1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 * 38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 50 #include <asm/atomic.h> 51 #include <asm/scatterlist.h> 52 #include <asm/uaccess.h> 53 54 union ib_gid { 55 u8 raw[16]; 56 struct { 57 __be64 subnet_prefix; 58 __be64 interface_id; 59 } global; 60 }; 61 62 enum rdma_node_type { 63 /* IB values map to NodeInfo:NodeType. */ 64 RDMA_NODE_IB_CA = 1, 65 RDMA_NODE_IB_SWITCH, 66 RDMA_NODE_IB_ROUTER, 67 RDMA_NODE_RNIC 68 }; 69 70 enum rdma_transport_type { 71 RDMA_TRANSPORT_IB, 72 RDMA_TRANSPORT_IWARP 73 }; 74 75 enum rdma_transport_type 76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 77 78 enum ib_device_cap_flags { 79 IB_DEVICE_RESIZE_MAX_WR = 1, 80 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 81 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 82 IB_DEVICE_RAW_MULTI = (1<<3), 83 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 84 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 85 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 86 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 87 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 88 IB_DEVICE_INIT_TYPE = (1<<9), 89 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 90 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 91 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 92 IB_DEVICE_SRQ_RESIZE = (1<<13), 93 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 94 IB_DEVICE_ZERO_STAG = (1<<15), 95 IB_DEVICE_SEND_W_INV = (1<<16), 96 IB_DEVICE_MEM_WINDOW = (1<<17) 97 }; 98 99 enum ib_atomic_cap { 100 IB_ATOMIC_NONE, 101 IB_ATOMIC_HCA, 102 IB_ATOMIC_GLOB 103 }; 104 105 struct ib_device_attr { 106 u64 fw_ver; 107 __be64 sys_image_guid; 108 u64 max_mr_size; 109 u64 page_size_cap; 110 u32 vendor_id; 111 u32 vendor_part_id; 112 u32 hw_ver; 113 int max_qp; 114 int max_qp_wr; 115 int device_cap_flags; 116 int max_sge; 117 int max_sge_rd; 118 int max_cq; 119 int max_cqe; 120 int max_mr; 121 int max_pd; 122 int max_qp_rd_atom; 123 int max_ee_rd_atom; 124 int max_res_rd_atom; 125 int max_qp_init_rd_atom; 126 int max_ee_init_rd_atom; 127 enum ib_atomic_cap atomic_cap; 128 int max_ee; 129 int max_rdd; 130 int max_mw; 131 int max_raw_ipv6_qp; 132 int max_raw_ethy_qp; 133 int max_mcast_grp; 134 int max_mcast_qp_attach; 135 int max_total_mcast_qp_attach; 136 int max_ah; 137 int max_fmr; 138 int max_map_per_fmr; 139 int max_srq; 140 int max_srq_wr; 141 int max_srq_sge; 142 u16 max_pkeys; 143 u8 local_ca_ack_delay; 144 }; 145 146 enum ib_mtu { 147 IB_MTU_256 = 1, 148 IB_MTU_512 = 2, 149 IB_MTU_1024 = 3, 150 IB_MTU_2048 = 4, 151 IB_MTU_4096 = 5 152 }; 153 154 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 155 { 156 switch (mtu) { 157 case IB_MTU_256: return 256; 158 case IB_MTU_512: return 512; 159 case IB_MTU_1024: return 1024; 160 case IB_MTU_2048: return 2048; 161 case IB_MTU_4096: return 4096; 162 default: return -1; 163 } 164 } 165 166 enum ib_port_state { 167 IB_PORT_NOP = 0, 168 IB_PORT_DOWN = 1, 169 IB_PORT_INIT = 2, 170 IB_PORT_ARMED = 3, 171 IB_PORT_ACTIVE = 4, 172 IB_PORT_ACTIVE_DEFER = 5 173 }; 174 175 enum ib_port_cap_flags { 176 IB_PORT_SM = 1 << 1, 177 IB_PORT_NOTICE_SUP = 1 << 2, 178 IB_PORT_TRAP_SUP = 1 << 3, 179 IB_PORT_OPT_IPD_SUP = 1 << 4, 180 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 181 IB_PORT_SL_MAP_SUP = 1 << 6, 182 IB_PORT_MKEY_NVRAM = 1 << 7, 183 IB_PORT_PKEY_NVRAM = 1 << 8, 184 IB_PORT_LED_INFO_SUP = 1 << 9, 185 IB_PORT_SM_DISABLED = 1 << 10, 186 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 187 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 188 IB_PORT_CM_SUP = 1 << 16, 189 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 190 IB_PORT_REINIT_SUP = 1 << 18, 191 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 192 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 193 IB_PORT_DR_NOTICE_SUP = 1 << 21, 194 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 195 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 196 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 197 IB_PORT_CLIENT_REG_SUP = 1 << 25 198 }; 199 200 enum ib_port_width { 201 IB_WIDTH_1X = 1, 202 IB_WIDTH_4X = 2, 203 IB_WIDTH_8X = 4, 204 IB_WIDTH_12X = 8 205 }; 206 207 static inline int ib_width_enum_to_int(enum ib_port_width width) 208 { 209 switch (width) { 210 case IB_WIDTH_1X: return 1; 211 case IB_WIDTH_4X: return 4; 212 case IB_WIDTH_8X: return 8; 213 case IB_WIDTH_12X: return 12; 214 default: return -1; 215 } 216 } 217 218 struct ib_port_attr { 219 enum ib_port_state state; 220 enum ib_mtu max_mtu; 221 enum ib_mtu active_mtu; 222 int gid_tbl_len; 223 u32 port_cap_flags; 224 u32 max_msg_sz; 225 u32 bad_pkey_cntr; 226 u32 qkey_viol_cntr; 227 u16 pkey_tbl_len; 228 u16 lid; 229 u16 sm_lid; 230 u8 lmc; 231 u8 max_vl_num; 232 u8 sm_sl; 233 u8 subnet_timeout; 234 u8 init_type_reply; 235 u8 active_width; 236 u8 active_speed; 237 u8 phys_state; 238 }; 239 240 enum ib_device_modify_flags { 241 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 242 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 243 }; 244 245 struct ib_device_modify { 246 u64 sys_image_guid; 247 char node_desc[64]; 248 }; 249 250 enum ib_port_modify_flags { 251 IB_PORT_SHUTDOWN = 1, 252 IB_PORT_INIT_TYPE = (1<<2), 253 IB_PORT_RESET_QKEY_CNTR = (1<<3) 254 }; 255 256 struct ib_port_modify { 257 u32 set_port_cap_mask; 258 u32 clr_port_cap_mask; 259 u8 init_type; 260 }; 261 262 enum ib_event_type { 263 IB_EVENT_CQ_ERR, 264 IB_EVENT_QP_FATAL, 265 IB_EVENT_QP_REQ_ERR, 266 IB_EVENT_QP_ACCESS_ERR, 267 IB_EVENT_COMM_EST, 268 IB_EVENT_SQ_DRAINED, 269 IB_EVENT_PATH_MIG, 270 IB_EVENT_PATH_MIG_ERR, 271 IB_EVENT_DEVICE_FATAL, 272 IB_EVENT_PORT_ACTIVE, 273 IB_EVENT_PORT_ERR, 274 IB_EVENT_LID_CHANGE, 275 IB_EVENT_PKEY_CHANGE, 276 IB_EVENT_SM_CHANGE, 277 IB_EVENT_SRQ_ERR, 278 IB_EVENT_SRQ_LIMIT_REACHED, 279 IB_EVENT_QP_LAST_WQE_REACHED, 280 IB_EVENT_CLIENT_REREGISTER 281 }; 282 283 struct ib_event { 284 struct ib_device *device; 285 union { 286 struct ib_cq *cq; 287 struct ib_qp *qp; 288 struct ib_srq *srq; 289 u8 port_num; 290 } element; 291 enum ib_event_type event; 292 }; 293 294 struct ib_event_handler { 295 struct ib_device *device; 296 void (*handler)(struct ib_event_handler *, struct ib_event *); 297 struct list_head list; 298 }; 299 300 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 301 do { \ 302 (_ptr)->device = _device; \ 303 (_ptr)->handler = _handler; \ 304 INIT_LIST_HEAD(&(_ptr)->list); \ 305 } while (0) 306 307 struct ib_global_route { 308 union ib_gid dgid; 309 u32 flow_label; 310 u8 sgid_index; 311 u8 hop_limit; 312 u8 traffic_class; 313 }; 314 315 struct ib_grh { 316 __be32 version_tclass_flow; 317 __be16 paylen; 318 u8 next_hdr; 319 u8 hop_limit; 320 union ib_gid sgid; 321 union ib_gid dgid; 322 }; 323 324 enum { 325 IB_MULTICAST_QPN = 0xffffff 326 }; 327 328 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 329 330 enum ib_ah_flags { 331 IB_AH_GRH = 1 332 }; 333 334 enum ib_rate { 335 IB_RATE_PORT_CURRENT = 0, 336 IB_RATE_2_5_GBPS = 2, 337 IB_RATE_5_GBPS = 5, 338 IB_RATE_10_GBPS = 3, 339 IB_RATE_20_GBPS = 6, 340 IB_RATE_30_GBPS = 4, 341 IB_RATE_40_GBPS = 7, 342 IB_RATE_60_GBPS = 8, 343 IB_RATE_80_GBPS = 9, 344 IB_RATE_120_GBPS = 10 345 }; 346 347 /** 348 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 349 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 350 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 351 * @rate: rate to convert. 352 */ 353 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 354 355 /** 356 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 357 * enum. 358 * @mult: multiple to convert. 359 */ 360 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 361 362 struct ib_ah_attr { 363 struct ib_global_route grh; 364 u16 dlid; 365 u8 sl; 366 u8 src_path_bits; 367 u8 static_rate; 368 u8 ah_flags; 369 u8 port_num; 370 }; 371 372 enum ib_wc_status { 373 IB_WC_SUCCESS, 374 IB_WC_LOC_LEN_ERR, 375 IB_WC_LOC_QP_OP_ERR, 376 IB_WC_LOC_EEC_OP_ERR, 377 IB_WC_LOC_PROT_ERR, 378 IB_WC_WR_FLUSH_ERR, 379 IB_WC_MW_BIND_ERR, 380 IB_WC_BAD_RESP_ERR, 381 IB_WC_LOC_ACCESS_ERR, 382 IB_WC_REM_INV_REQ_ERR, 383 IB_WC_REM_ACCESS_ERR, 384 IB_WC_REM_OP_ERR, 385 IB_WC_RETRY_EXC_ERR, 386 IB_WC_RNR_RETRY_EXC_ERR, 387 IB_WC_LOC_RDD_VIOL_ERR, 388 IB_WC_REM_INV_RD_REQ_ERR, 389 IB_WC_REM_ABORT_ERR, 390 IB_WC_INV_EECN_ERR, 391 IB_WC_INV_EEC_STATE_ERR, 392 IB_WC_FATAL_ERR, 393 IB_WC_RESP_TIMEOUT_ERR, 394 IB_WC_GENERAL_ERR 395 }; 396 397 enum ib_wc_opcode { 398 IB_WC_SEND, 399 IB_WC_RDMA_WRITE, 400 IB_WC_RDMA_READ, 401 IB_WC_COMP_SWAP, 402 IB_WC_FETCH_ADD, 403 IB_WC_BIND_MW, 404 /* 405 * Set value of IB_WC_RECV so consumers can test if a completion is a 406 * receive by testing (opcode & IB_WC_RECV). 407 */ 408 IB_WC_RECV = 1 << 7, 409 IB_WC_RECV_RDMA_WITH_IMM 410 }; 411 412 enum ib_wc_flags { 413 IB_WC_GRH = 1, 414 IB_WC_WITH_IMM = (1<<1) 415 }; 416 417 struct ib_wc { 418 u64 wr_id; 419 enum ib_wc_status status; 420 enum ib_wc_opcode opcode; 421 u32 vendor_err; 422 u32 byte_len; 423 struct ib_qp *qp; 424 __be32 imm_data; 425 u32 src_qp; 426 int wc_flags; 427 u16 pkey_index; 428 u16 slid; 429 u8 sl; 430 u8 dlid_path_bits; 431 u8 port_num; /* valid only for DR SMPs on switches */ 432 }; 433 434 enum ib_cq_notify { 435 IB_CQ_SOLICITED, 436 IB_CQ_NEXT_COMP 437 }; 438 439 enum ib_srq_attr_mask { 440 IB_SRQ_MAX_WR = 1 << 0, 441 IB_SRQ_LIMIT = 1 << 1, 442 }; 443 444 struct ib_srq_attr { 445 u32 max_wr; 446 u32 max_sge; 447 u32 srq_limit; 448 }; 449 450 struct ib_srq_init_attr { 451 void (*event_handler)(struct ib_event *, void *); 452 void *srq_context; 453 struct ib_srq_attr attr; 454 }; 455 456 struct ib_qp_cap { 457 u32 max_send_wr; 458 u32 max_recv_wr; 459 u32 max_send_sge; 460 u32 max_recv_sge; 461 u32 max_inline_data; 462 }; 463 464 enum ib_sig_type { 465 IB_SIGNAL_ALL_WR, 466 IB_SIGNAL_REQ_WR 467 }; 468 469 enum ib_qp_type { 470 /* 471 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 472 * here (and in that order) since the MAD layer uses them as 473 * indices into a 2-entry table. 474 */ 475 IB_QPT_SMI, 476 IB_QPT_GSI, 477 478 IB_QPT_RC, 479 IB_QPT_UC, 480 IB_QPT_UD, 481 IB_QPT_RAW_IPV6, 482 IB_QPT_RAW_ETY 483 }; 484 485 struct ib_qp_init_attr { 486 void (*event_handler)(struct ib_event *, void *); 487 void *qp_context; 488 struct ib_cq *send_cq; 489 struct ib_cq *recv_cq; 490 struct ib_srq *srq; 491 struct ib_qp_cap cap; 492 enum ib_sig_type sq_sig_type; 493 enum ib_qp_type qp_type; 494 u8 port_num; /* special QP types only */ 495 }; 496 497 enum ib_rnr_timeout { 498 IB_RNR_TIMER_655_36 = 0, 499 IB_RNR_TIMER_000_01 = 1, 500 IB_RNR_TIMER_000_02 = 2, 501 IB_RNR_TIMER_000_03 = 3, 502 IB_RNR_TIMER_000_04 = 4, 503 IB_RNR_TIMER_000_06 = 5, 504 IB_RNR_TIMER_000_08 = 6, 505 IB_RNR_TIMER_000_12 = 7, 506 IB_RNR_TIMER_000_16 = 8, 507 IB_RNR_TIMER_000_24 = 9, 508 IB_RNR_TIMER_000_32 = 10, 509 IB_RNR_TIMER_000_48 = 11, 510 IB_RNR_TIMER_000_64 = 12, 511 IB_RNR_TIMER_000_96 = 13, 512 IB_RNR_TIMER_001_28 = 14, 513 IB_RNR_TIMER_001_92 = 15, 514 IB_RNR_TIMER_002_56 = 16, 515 IB_RNR_TIMER_003_84 = 17, 516 IB_RNR_TIMER_005_12 = 18, 517 IB_RNR_TIMER_007_68 = 19, 518 IB_RNR_TIMER_010_24 = 20, 519 IB_RNR_TIMER_015_36 = 21, 520 IB_RNR_TIMER_020_48 = 22, 521 IB_RNR_TIMER_030_72 = 23, 522 IB_RNR_TIMER_040_96 = 24, 523 IB_RNR_TIMER_061_44 = 25, 524 IB_RNR_TIMER_081_92 = 26, 525 IB_RNR_TIMER_122_88 = 27, 526 IB_RNR_TIMER_163_84 = 28, 527 IB_RNR_TIMER_245_76 = 29, 528 IB_RNR_TIMER_327_68 = 30, 529 IB_RNR_TIMER_491_52 = 31 530 }; 531 532 enum ib_qp_attr_mask { 533 IB_QP_STATE = 1, 534 IB_QP_CUR_STATE = (1<<1), 535 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 536 IB_QP_ACCESS_FLAGS = (1<<3), 537 IB_QP_PKEY_INDEX = (1<<4), 538 IB_QP_PORT = (1<<5), 539 IB_QP_QKEY = (1<<6), 540 IB_QP_AV = (1<<7), 541 IB_QP_PATH_MTU = (1<<8), 542 IB_QP_TIMEOUT = (1<<9), 543 IB_QP_RETRY_CNT = (1<<10), 544 IB_QP_RNR_RETRY = (1<<11), 545 IB_QP_RQ_PSN = (1<<12), 546 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 547 IB_QP_ALT_PATH = (1<<14), 548 IB_QP_MIN_RNR_TIMER = (1<<15), 549 IB_QP_SQ_PSN = (1<<16), 550 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 551 IB_QP_PATH_MIG_STATE = (1<<18), 552 IB_QP_CAP = (1<<19), 553 IB_QP_DEST_QPN = (1<<20) 554 }; 555 556 enum ib_qp_state { 557 IB_QPS_RESET, 558 IB_QPS_INIT, 559 IB_QPS_RTR, 560 IB_QPS_RTS, 561 IB_QPS_SQD, 562 IB_QPS_SQE, 563 IB_QPS_ERR 564 }; 565 566 enum ib_mig_state { 567 IB_MIG_MIGRATED, 568 IB_MIG_REARM, 569 IB_MIG_ARMED 570 }; 571 572 struct ib_qp_attr { 573 enum ib_qp_state qp_state; 574 enum ib_qp_state cur_qp_state; 575 enum ib_mtu path_mtu; 576 enum ib_mig_state path_mig_state; 577 u32 qkey; 578 u32 rq_psn; 579 u32 sq_psn; 580 u32 dest_qp_num; 581 int qp_access_flags; 582 struct ib_qp_cap cap; 583 struct ib_ah_attr ah_attr; 584 struct ib_ah_attr alt_ah_attr; 585 u16 pkey_index; 586 u16 alt_pkey_index; 587 u8 en_sqd_async_notify; 588 u8 sq_draining; 589 u8 max_rd_atomic; 590 u8 max_dest_rd_atomic; 591 u8 min_rnr_timer; 592 u8 port_num; 593 u8 timeout; 594 u8 retry_cnt; 595 u8 rnr_retry; 596 u8 alt_port_num; 597 u8 alt_timeout; 598 }; 599 600 enum ib_wr_opcode { 601 IB_WR_RDMA_WRITE, 602 IB_WR_RDMA_WRITE_WITH_IMM, 603 IB_WR_SEND, 604 IB_WR_SEND_WITH_IMM, 605 IB_WR_RDMA_READ, 606 IB_WR_ATOMIC_CMP_AND_SWP, 607 IB_WR_ATOMIC_FETCH_AND_ADD 608 }; 609 610 enum ib_send_flags { 611 IB_SEND_FENCE = 1, 612 IB_SEND_SIGNALED = (1<<1), 613 IB_SEND_SOLICITED = (1<<2), 614 IB_SEND_INLINE = (1<<3) 615 }; 616 617 struct ib_sge { 618 u64 addr; 619 u32 length; 620 u32 lkey; 621 }; 622 623 struct ib_send_wr { 624 struct ib_send_wr *next; 625 u64 wr_id; 626 struct ib_sge *sg_list; 627 int num_sge; 628 enum ib_wr_opcode opcode; 629 int send_flags; 630 __be32 imm_data; 631 union { 632 struct { 633 u64 remote_addr; 634 u32 rkey; 635 } rdma; 636 struct { 637 u64 remote_addr; 638 u64 compare_add; 639 u64 swap; 640 u32 rkey; 641 } atomic; 642 struct { 643 struct ib_ah *ah; 644 u32 remote_qpn; 645 u32 remote_qkey; 646 u16 pkey_index; /* valid for GSI only */ 647 u8 port_num; /* valid for DR SMPs on switch only */ 648 } ud; 649 } wr; 650 }; 651 652 struct ib_recv_wr { 653 struct ib_recv_wr *next; 654 u64 wr_id; 655 struct ib_sge *sg_list; 656 int num_sge; 657 }; 658 659 enum ib_access_flags { 660 IB_ACCESS_LOCAL_WRITE = 1, 661 IB_ACCESS_REMOTE_WRITE = (1<<1), 662 IB_ACCESS_REMOTE_READ = (1<<2), 663 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 664 IB_ACCESS_MW_BIND = (1<<4) 665 }; 666 667 struct ib_phys_buf { 668 u64 addr; 669 u64 size; 670 }; 671 672 struct ib_mr_attr { 673 struct ib_pd *pd; 674 u64 device_virt_addr; 675 u64 size; 676 int mr_access_flags; 677 u32 lkey; 678 u32 rkey; 679 }; 680 681 enum ib_mr_rereg_flags { 682 IB_MR_REREG_TRANS = 1, 683 IB_MR_REREG_PD = (1<<1), 684 IB_MR_REREG_ACCESS = (1<<2) 685 }; 686 687 struct ib_mw_bind { 688 struct ib_mr *mr; 689 u64 wr_id; 690 u64 addr; 691 u32 length; 692 int send_flags; 693 int mw_access_flags; 694 }; 695 696 struct ib_fmr_attr { 697 int max_pages; 698 int max_maps; 699 u8 page_shift; 700 }; 701 702 struct ib_ucontext { 703 struct ib_device *device; 704 struct list_head pd_list; 705 struct list_head mr_list; 706 struct list_head mw_list; 707 struct list_head cq_list; 708 struct list_head qp_list; 709 struct list_head srq_list; 710 struct list_head ah_list; 711 }; 712 713 struct ib_uobject { 714 u64 user_handle; /* handle given to us by userspace */ 715 struct ib_ucontext *context; /* associated user context */ 716 void *object; /* containing object */ 717 struct list_head list; /* link to context's list */ 718 u32 id; /* index into kernel idr */ 719 struct kref ref; 720 struct rw_semaphore mutex; /* protects .live */ 721 int live; 722 }; 723 724 struct ib_umem { 725 unsigned long user_base; 726 unsigned long virt_base; 727 size_t length; 728 int offset; 729 int page_size; 730 int writable; 731 struct list_head chunk_list; 732 }; 733 734 struct ib_umem_chunk { 735 struct list_head list; 736 int nents; 737 int nmap; 738 struct scatterlist page_list[0]; 739 }; 740 741 struct ib_udata { 742 void __user *inbuf; 743 void __user *outbuf; 744 size_t inlen; 745 size_t outlen; 746 }; 747 748 #define IB_UMEM_MAX_PAGE_CHUNK \ 749 ((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \ 750 ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \ 751 (void *) &((struct ib_umem_chunk *) 0)->page_list[0])) 752 753 struct ib_umem_object { 754 struct ib_uobject uobject; 755 struct ib_umem umem; 756 }; 757 758 struct ib_pd { 759 struct ib_device *device; 760 struct ib_uobject *uobject; 761 atomic_t usecnt; /* count all resources */ 762 }; 763 764 struct ib_ah { 765 struct ib_device *device; 766 struct ib_pd *pd; 767 struct ib_uobject *uobject; 768 }; 769 770 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 771 772 struct ib_cq { 773 struct ib_device *device; 774 struct ib_uobject *uobject; 775 ib_comp_handler comp_handler; 776 void (*event_handler)(struct ib_event *, void *); 777 void * cq_context; 778 int cqe; 779 atomic_t usecnt; /* count number of work queues */ 780 }; 781 782 struct ib_srq { 783 struct ib_device *device; 784 struct ib_pd *pd; 785 struct ib_uobject *uobject; 786 void (*event_handler)(struct ib_event *, void *); 787 void *srq_context; 788 atomic_t usecnt; 789 }; 790 791 struct ib_qp { 792 struct ib_device *device; 793 struct ib_pd *pd; 794 struct ib_cq *send_cq; 795 struct ib_cq *recv_cq; 796 struct ib_srq *srq; 797 struct ib_uobject *uobject; 798 void (*event_handler)(struct ib_event *, void *); 799 void *qp_context; 800 u32 qp_num; 801 enum ib_qp_type qp_type; 802 }; 803 804 struct ib_mr { 805 struct ib_device *device; 806 struct ib_pd *pd; 807 struct ib_uobject *uobject; 808 u32 lkey; 809 u32 rkey; 810 atomic_t usecnt; /* count number of MWs */ 811 }; 812 813 struct ib_mw { 814 struct ib_device *device; 815 struct ib_pd *pd; 816 struct ib_uobject *uobject; 817 u32 rkey; 818 }; 819 820 struct ib_fmr { 821 struct ib_device *device; 822 struct ib_pd *pd; 823 struct list_head list; 824 u32 lkey; 825 u32 rkey; 826 }; 827 828 struct ib_mad; 829 struct ib_grh; 830 831 enum ib_process_mad_flags { 832 IB_MAD_IGNORE_MKEY = 1, 833 IB_MAD_IGNORE_BKEY = 2, 834 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 835 }; 836 837 enum ib_mad_result { 838 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 839 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 840 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 841 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 842 }; 843 844 #define IB_DEVICE_NAME_MAX 64 845 846 struct ib_cache { 847 rwlock_t lock; 848 struct ib_event_handler event_handler; 849 struct ib_pkey_cache **pkey_cache; 850 struct ib_gid_cache **gid_cache; 851 u8 *lmc_cache; 852 }; 853 854 struct ib_dma_mapping_ops { 855 int (*mapping_error)(struct ib_device *dev, 856 u64 dma_addr); 857 u64 (*map_single)(struct ib_device *dev, 858 void *ptr, size_t size, 859 enum dma_data_direction direction); 860 void (*unmap_single)(struct ib_device *dev, 861 u64 addr, size_t size, 862 enum dma_data_direction direction); 863 u64 (*map_page)(struct ib_device *dev, 864 struct page *page, unsigned long offset, 865 size_t size, 866 enum dma_data_direction direction); 867 void (*unmap_page)(struct ib_device *dev, 868 u64 addr, size_t size, 869 enum dma_data_direction direction); 870 int (*map_sg)(struct ib_device *dev, 871 struct scatterlist *sg, int nents, 872 enum dma_data_direction direction); 873 void (*unmap_sg)(struct ib_device *dev, 874 struct scatterlist *sg, int nents, 875 enum dma_data_direction direction); 876 u64 (*dma_address)(struct ib_device *dev, 877 struct scatterlist *sg); 878 unsigned int (*dma_len)(struct ib_device *dev, 879 struct scatterlist *sg); 880 void (*sync_single_for_cpu)(struct ib_device *dev, 881 u64 dma_handle, 882 size_t size, 883 enum dma_data_direction dir); 884 void (*sync_single_for_device)(struct ib_device *dev, 885 u64 dma_handle, 886 size_t size, 887 enum dma_data_direction dir); 888 void *(*alloc_coherent)(struct ib_device *dev, 889 size_t size, 890 u64 *dma_handle, 891 gfp_t flag); 892 void (*free_coherent)(struct ib_device *dev, 893 size_t size, void *cpu_addr, 894 u64 dma_handle); 895 }; 896 897 struct iw_cm_verbs; 898 899 struct ib_device { 900 struct device *dma_device; 901 902 char name[IB_DEVICE_NAME_MAX]; 903 904 struct list_head event_handler_list; 905 spinlock_t event_handler_lock; 906 907 struct list_head core_list; 908 struct list_head client_data_list; 909 spinlock_t client_data_lock; 910 911 struct ib_cache cache; 912 913 u32 flags; 914 915 struct iw_cm_verbs *iwcm; 916 917 int (*query_device)(struct ib_device *device, 918 struct ib_device_attr *device_attr); 919 int (*query_port)(struct ib_device *device, 920 u8 port_num, 921 struct ib_port_attr *port_attr); 922 int (*query_gid)(struct ib_device *device, 923 u8 port_num, int index, 924 union ib_gid *gid); 925 int (*query_pkey)(struct ib_device *device, 926 u8 port_num, u16 index, u16 *pkey); 927 int (*modify_device)(struct ib_device *device, 928 int device_modify_mask, 929 struct ib_device_modify *device_modify); 930 int (*modify_port)(struct ib_device *device, 931 u8 port_num, int port_modify_mask, 932 struct ib_port_modify *port_modify); 933 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 934 struct ib_udata *udata); 935 int (*dealloc_ucontext)(struct ib_ucontext *context); 936 int (*mmap)(struct ib_ucontext *context, 937 struct vm_area_struct *vma); 938 struct ib_pd * (*alloc_pd)(struct ib_device *device, 939 struct ib_ucontext *context, 940 struct ib_udata *udata); 941 int (*dealloc_pd)(struct ib_pd *pd); 942 struct ib_ah * (*create_ah)(struct ib_pd *pd, 943 struct ib_ah_attr *ah_attr); 944 int (*modify_ah)(struct ib_ah *ah, 945 struct ib_ah_attr *ah_attr); 946 int (*query_ah)(struct ib_ah *ah, 947 struct ib_ah_attr *ah_attr); 948 int (*destroy_ah)(struct ib_ah *ah); 949 struct ib_srq * (*create_srq)(struct ib_pd *pd, 950 struct ib_srq_init_attr *srq_init_attr, 951 struct ib_udata *udata); 952 int (*modify_srq)(struct ib_srq *srq, 953 struct ib_srq_attr *srq_attr, 954 enum ib_srq_attr_mask srq_attr_mask, 955 struct ib_udata *udata); 956 int (*query_srq)(struct ib_srq *srq, 957 struct ib_srq_attr *srq_attr); 958 int (*destroy_srq)(struct ib_srq *srq); 959 int (*post_srq_recv)(struct ib_srq *srq, 960 struct ib_recv_wr *recv_wr, 961 struct ib_recv_wr **bad_recv_wr); 962 struct ib_qp * (*create_qp)(struct ib_pd *pd, 963 struct ib_qp_init_attr *qp_init_attr, 964 struct ib_udata *udata); 965 int (*modify_qp)(struct ib_qp *qp, 966 struct ib_qp_attr *qp_attr, 967 int qp_attr_mask, 968 struct ib_udata *udata); 969 int (*query_qp)(struct ib_qp *qp, 970 struct ib_qp_attr *qp_attr, 971 int qp_attr_mask, 972 struct ib_qp_init_attr *qp_init_attr); 973 int (*destroy_qp)(struct ib_qp *qp); 974 int (*post_send)(struct ib_qp *qp, 975 struct ib_send_wr *send_wr, 976 struct ib_send_wr **bad_send_wr); 977 int (*post_recv)(struct ib_qp *qp, 978 struct ib_recv_wr *recv_wr, 979 struct ib_recv_wr **bad_recv_wr); 980 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 981 struct ib_ucontext *context, 982 struct ib_udata *udata); 983 int (*destroy_cq)(struct ib_cq *cq); 984 int (*resize_cq)(struct ib_cq *cq, int cqe, 985 struct ib_udata *udata); 986 int (*poll_cq)(struct ib_cq *cq, int num_entries, 987 struct ib_wc *wc); 988 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 989 int (*req_notify_cq)(struct ib_cq *cq, 990 enum ib_cq_notify cq_notify); 991 int (*req_ncomp_notif)(struct ib_cq *cq, 992 int wc_cnt); 993 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 994 int mr_access_flags); 995 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 996 struct ib_phys_buf *phys_buf_array, 997 int num_phys_buf, 998 int mr_access_flags, 999 u64 *iova_start); 1000 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1001 struct ib_umem *region, 1002 int mr_access_flags, 1003 struct ib_udata *udata); 1004 int (*query_mr)(struct ib_mr *mr, 1005 struct ib_mr_attr *mr_attr); 1006 int (*dereg_mr)(struct ib_mr *mr); 1007 int (*rereg_phys_mr)(struct ib_mr *mr, 1008 int mr_rereg_mask, 1009 struct ib_pd *pd, 1010 struct ib_phys_buf *phys_buf_array, 1011 int num_phys_buf, 1012 int mr_access_flags, 1013 u64 *iova_start); 1014 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1015 int (*bind_mw)(struct ib_qp *qp, 1016 struct ib_mw *mw, 1017 struct ib_mw_bind *mw_bind); 1018 int (*dealloc_mw)(struct ib_mw *mw); 1019 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1020 int mr_access_flags, 1021 struct ib_fmr_attr *fmr_attr); 1022 int (*map_phys_fmr)(struct ib_fmr *fmr, 1023 u64 *page_list, int list_len, 1024 u64 iova); 1025 int (*unmap_fmr)(struct list_head *fmr_list); 1026 int (*dealloc_fmr)(struct ib_fmr *fmr); 1027 int (*attach_mcast)(struct ib_qp *qp, 1028 union ib_gid *gid, 1029 u16 lid); 1030 int (*detach_mcast)(struct ib_qp *qp, 1031 union ib_gid *gid, 1032 u16 lid); 1033 int (*process_mad)(struct ib_device *device, 1034 int process_mad_flags, 1035 u8 port_num, 1036 struct ib_wc *in_wc, 1037 struct ib_grh *in_grh, 1038 struct ib_mad *in_mad, 1039 struct ib_mad *out_mad); 1040 1041 struct ib_dma_mapping_ops *dma_ops; 1042 1043 struct module *owner; 1044 struct class_device class_dev; 1045 struct kobject ports_parent; 1046 struct list_head port_list; 1047 1048 enum { 1049 IB_DEV_UNINITIALIZED, 1050 IB_DEV_REGISTERED, 1051 IB_DEV_UNREGISTERED 1052 } reg_state; 1053 1054 u64 uverbs_cmd_mask; 1055 int uverbs_abi_ver; 1056 1057 char node_desc[64]; 1058 __be64 node_guid; 1059 u8 node_type; 1060 u8 phys_port_cnt; 1061 }; 1062 1063 struct ib_client { 1064 char *name; 1065 void (*add) (struct ib_device *); 1066 void (*remove)(struct ib_device *); 1067 1068 struct list_head list; 1069 }; 1070 1071 struct ib_device *ib_alloc_device(size_t size); 1072 void ib_dealloc_device(struct ib_device *device); 1073 1074 int ib_register_device (struct ib_device *device); 1075 void ib_unregister_device(struct ib_device *device); 1076 1077 int ib_register_client (struct ib_client *client); 1078 void ib_unregister_client(struct ib_client *client); 1079 1080 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1081 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1082 void *data); 1083 1084 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1085 { 1086 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1087 } 1088 1089 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1090 { 1091 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1092 } 1093 1094 /** 1095 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1096 * contains all required attributes and no attributes not allowed for 1097 * the given QP state transition. 1098 * @cur_state: Current QP state 1099 * @next_state: Next QP state 1100 * @type: QP type 1101 * @mask: Mask of supplied QP attributes 1102 * 1103 * This function is a helper function that a low-level driver's 1104 * modify_qp method can use to validate the consumer's input. It 1105 * checks that cur_state and next_state are valid QP states, that a 1106 * transition from cur_state to next_state is allowed by the IB spec, 1107 * and that the attribute mask supplied is allowed for the transition. 1108 */ 1109 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1110 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1111 1112 int ib_register_event_handler (struct ib_event_handler *event_handler); 1113 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1114 void ib_dispatch_event(struct ib_event *event); 1115 1116 int ib_query_device(struct ib_device *device, 1117 struct ib_device_attr *device_attr); 1118 1119 int ib_query_port(struct ib_device *device, 1120 u8 port_num, struct ib_port_attr *port_attr); 1121 1122 int ib_query_gid(struct ib_device *device, 1123 u8 port_num, int index, union ib_gid *gid); 1124 1125 int ib_query_pkey(struct ib_device *device, 1126 u8 port_num, u16 index, u16 *pkey); 1127 1128 int ib_modify_device(struct ib_device *device, 1129 int device_modify_mask, 1130 struct ib_device_modify *device_modify); 1131 1132 int ib_modify_port(struct ib_device *device, 1133 u8 port_num, int port_modify_mask, 1134 struct ib_port_modify *port_modify); 1135 1136 /** 1137 * ib_alloc_pd - Allocates an unused protection domain. 1138 * @device: The device on which to allocate the protection domain. 1139 * 1140 * A protection domain object provides an association between QPs, shared 1141 * receive queues, address handles, memory regions, and memory windows. 1142 */ 1143 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1144 1145 /** 1146 * ib_dealloc_pd - Deallocates a protection domain. 1147 * @pd: The protection domain to deallocate. 1148 */ 1149 int ib_dealloc_pd(struct ib_pd *pd); 1150 1151 /** 1152 * ib_create_ah - Creates an address handle for the given address vector. 1153 * @pd: The protection domain associated with the address handle. 1154 * @ah_attr: The attributes of the address vector. 1155 * 1156 * The address handle is used to reference a local or global destination 1157 * in all UD QP post sends. 1158 */ 1159 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1160 1161 /** 1162 * ib_init_ah_from_wc - Initializes address handle attributes from a 1163 * work completion. 1164 * @device: Device on which the received message arrived. 1165 * @port_num: Port on which the received message arrived. 1166 * @wc: Work completion associated with the received message. 1167 * @grh: References the received global route header. This parameter is 1168 * ignored unless the work completion indicates that the GRH is valid. 1169 * @ah_attr: Returned attributes that can be used when creating an address 1170 * handle for replying to the message. 1171 */ 1172 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1173 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1174 1175 /** 1176 * ib_create_ah_from_wc - Creates an address handle associated with the 1177 * sender of the specified work completion. 1178 * @pd: The protection domain associated with the address handle. 1179 * @wc: Work completion information associated with a received message. 1180 * @grh: References the received global route header. This parameter is 1181 * ignored unless the work completion indicates that the GRH is valid. 1182 * @port_num: The outbound port number to associate with the address. 1183 * 1184 * The address handle is used to reference a local or global destination 1185 * in all UD QP post sends. 1186 */ 1187 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1188 struct ib_grh *grh, u8 port_num); 1189 1190 /** 1191 * ib_modify_ah - Modifies the address vector associated with an address 1192 * handle. 1193 * @ah: The address handle to modify. 1194 * @ah_attr: The new address vector attributes to associate with the 1195 * address handle. 1196 */ 1197 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1198 1199 /** 1200 * ib_query_ah - Queries the address vector associated with an address 1201 * handle. 1202 * @ah: The address handle to query. 1203 * @ah_attr: The address vector attributes associated with the address 1204 * handle. 1205 */ 1206 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1207 1208 /** 1209 * ib_destroy_ah - Destroys an address handle. 1210 * @ah: The address handle to destroy. 1211 */ 1212 int ib_destroy_ah(struct ib_ah *ah); 1213 1214 /** 1215 * ib_create_srq - Creates a SRQ associated with the specified protection 1216 * domain. 1217 * @pd: The protection domain associated with the SRQ. 1218 * @srq_init_attr: A list of initial attributes required to create the 1219 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1220 * the actual capabilities of the created SRQ. 1221 * 1222 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1223 * requested size of the SRQ, and set to the actual values allocated 1224 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1225 * will always be at least as large as the requested values. 1226 */ 1227 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1228 struct ib_srq_init_attr *srq_init_attr); 1229 1230 /** 1231 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1232 * @srq: The SRQ to modify. 1233 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1234 * the current values of selected SRQ attributes are returned. 1235 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1236 * are being modified. 1237 * 1238 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1239 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1240 * the number of receives queued drops below the limit. 1241 */ 1242 int ib_modify_srq(struct ib_srq *srq, 1243 struct ib_srq_attr *srq_attr, 1244 enum ib_srq_attr_mask srq_attr_mask); 1245 1246 /** 1247 * ib_query_srq - Returns the attribute list and current values for the 1248 * specified SRQ. 1249 * @srq: The SRQ to query. 1250 * @srq_attr: The attributes of the specified SRQ. 1251 */ 1252 int ib_query_srq(struct ib_srq *srq, 1253 struct ib_srq_attr *srq_attr); 1254 1255 /** 1256 * ib_destroy_srq - Destroys the specified SRQ. 1257 * @srq: The SRQ to destroy. 1258 */ 1259 int ib_destroy_srq(struct ib_srq *srq); 1260 1261 /** 1262 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1263 * @srq: The SRQ to post the work request on. 1264 * @recv_wr: A list of work requests to post on the receive queue. 1265 * @bad_recv_wr: On an immediate failure, this parameter will reference 1266 * the work request that failed to be posted on the QP. 1267 */ 1268 static inline int ib_post_srq_recv(struct ib_srq *srq, 1269 struct ib_recv_wr *recv_wr, 1270 struct ib_recv_wr **bad_recv_wr) 1271 { 1272 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1273 } 1274 1275 /** 1276 * ib_create_qp - Creates a QP associated with the specified protection 1277 * domain. 1278 * @pd: The protection domain associated with the QP. 1279 * @qp_init_attr: A list of initial attributes required to create the 1280 * QP. If QP creation succeeds, then the attributes are updated to 1281 * the actual capabilities of the created QP. 1282 */ 1283 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1284 struct ib_qp_init_attr *qp_init_attr); 1285 1286 /** 1287 * ib_modify_qp - Modifies the attributes for the specified QP and then 1288 * transitions the QP to the given state. 1289 * @qp: The QP to modify. 1290 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1291 * the current values of selected QP attributes are returned. 1292 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1293 * are being modified. 1294 */ 1295 int ib_modify_qp(struct ib_qp *qp, 1296 struct ib_qp_attr *qp_attr, 1297 int qp_attr_mask); 1298 1299 /** 1300 * ib_query_qp - Returns the attribute list and current values for the 1301 * specified QP. 1302 * @qp: The QP to query. 1303 * @qp_attr: The attributes of the specified QP. 1304 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1305 * @qp_init_attr: Additional attributes of the selected QP. 1306 * 1307 * The qp_attr_mask may be used to limit the query to gathering only the 1308 * selected attributes. 1309 */ 1310 int ib_query_qp(struct ib_qp *qp, 1311 struct ib_qp_attr *qp_attr, 1312 int qp_attr_mask, 1313 struct ib_qp_init_attr *qp_init_attr); 1314 1315 /** 1316 * ib_destroy_qp - Destroys the specified QP. 1317 * @qp: The QP to destroy. 1318 */ 1319 int ib_destroy_qp(struct ib_qp *qp); 1320 1321 /** 1322 * ib_post_send - Posts a list of work requests to the send queue of 1323 * the specified QP. 1324 * @qp: The QP to post the work request on. 1325 * @send_wr: A list of work requests to post on the send queue. 1326 * @bad_send_wr: On an immediate failure, this parameter will reference 1327 * the work request that failed to be posted on the QP. 1328 */ 1329 static inline int ib_post_send(struct ib_qp *qp, 1330 struct ib_send_wr *send_wr, 1331 struct ib_send_wr **bad_send_wr) 1332 { 1333 return qp->device->post_send(qp, send_wr, bad_send_wr); 1334 } 1335 1336 /** 1337 * ib_post_recv - Posts a list of work requests to the receive queue of 1338 * the specified QP. 1339 * @qp: The QP to post the work request on. 1340 * @recv_wr: A list of work requests to post on the receive queue. 1341 * @bad_recv_wr: On an immediate failure, this parameter will reference 1342 * the work request that failed to be posted on the QP. 1343 */ 1344 static inline int ib_post_recv(struct ib_qp *qp, 1345 struct ib_recv_wr *recv_wr, 1346 struct ib_recv_wr **bad_recv_wr) 1347 { 1348 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1349 } 1350 1351 /** 1352 * ib_create_cq - Creates a CQ on the specified device. 1353 * @device: The device on which to create the CQ. 1354 * @comp_handler: A user-specified callback that is invoked when a 1355 * completion event occurs on the CQ. 1356 * @event_handler: A user-specified callback that is invoked when an 1357 * asynchronous event not associated with a completion occurs on the CQ. 1358 * @cq_context: Context associated with the CQ returned to the user via 1359 * the associated completion and event handlers. 1360 * @cqe: The minimum size of the CQ. 1361 * 1362 * Users can examine the cq structure to determine the actual CQ size. 1363 */ 1364 struct ib_cq *ib_create_cq(struct ib_device *device, 1365 ib_comp_handler comp_handler, 1366 void (*event_handler)(struct ib_event *, void *), 1367 void *cq_context, int cqe); 1368 1369 /** 1370 * ib_resize_cq - Modifies the capacity of the CQ. 1371 * @cq: The CQ to resize. 1372 * @cqe: The minimum size of the CQ. 1373 * 1374 * Users can examine the cq structure to determine the actual CQ size. 1375 */ 1376 int ib_resize_cq(struct ib_cq *cq, int cqe); 1377 1378 /** 1379 * ib_destroy_cq - Destroys the specified CQ. 1380 * @cq: The CQ to destroy. 1381 */ 1382 int ib_destroy_cq(struct ib_cq *cq); 1383 1384 /** 1385 * ib_poll_cq - poll a CQ for completion(s) 1386 * @cq:the CQ being polled 1387 * @num_entries:maximum number of completions to return 1388 * @wc:array of at least @num_entries &struct ib_wc where completions 1389 * will be returned 1390 * 1391 * Poll a CQ for (possibly multiple) completions. If the return value 1392 * is < 0, an error occurred. If the return value is >= 0, it is the 1393 * number of completions returned. If the return value is 1394 * non-negative and < num_entries, then the CQ was emptied. 1395 */ 1396 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1397 struct ib_wc *wc) 1398 { 1399 return cq->device->poll_cq(cq, num_entries, wc); 1400 } 1401 1402 /** 1403 * ib_peek_cq - Returns the number of unreaped completions currently 1404 * on the specified CQ. 1405 * @cq: The CQ to peek. 1406 * @wc_cnt: A minimum number of unreaped completions to check for. 1407 * 1408 * If the number of unreaped completions is greater than or equal to wc_cnt, 1409 * this function returns wc_cnt, otherwise, it returns the actual number of 1410 * unreaped completions. 1411 */ 1412 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1413 1414 /** 1415 * ib_req_notify_cq - Request completion notification on a CQ. 1416 * @cq: The CQ to generate an event for. 1417 * @cq_notify: If set to %IB_CQ_SOLICITED, completion notification will 1418 * occur on the next solicited event. If set to %IB_CQ_NEXT_COMP, 1419 * notification will occur on the next completion. 1420 */ 1421 static inline int ib_req_notify_cq(struct ib_cq *cq, 1422 enum ib_cq_notify cq_notify) 1423 { 1424 return cq->device->req_notify_cq(cq, cq_notify); 1425 } 1426 1427 /** 1428 * ib_req_ncomp_notif - Request completion notification when there are 1429 * at least the specified number of unreaped completions on the CQ. 1430 * @cq: The CQ to generate an event for. 1431 * @wc_cnt: The number of unreaped completions that should be on the 1432 * CQ before an event is generated. 1433 */ 1434 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1435 { 1436 return cq->device->req_ncomp_notif ? 1437 cq->device->req_ncomp_notif(cq, wc_cnt) : 1438 -ENOSYS; 1439 } 1440 1441 /** 1442 * ib_get_dma_mr - Returns a memory region for system memory that is 1443 * usable for DMA. 1444 * @pd: The protection domain associated with the memory region. 1445 * @mr_access_flags: Specifies the memory access rights. 1446 * 1447 * Note that the ib_dma_*() functions defined below must be used 1448 * to create/destroy addresses used with the Lkey or Rkey returned 1449 * by ib_get_dma_mr(). 1450 */ 1451 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1452 1453 /** 1454 * ib_dma_mapping_error - check a DMA addr for error 1455 * @dev: The device for which the dma_addr was created 1456 * @dma_addr: The DMA address to check 1457 */ 1458 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1459 { 1460 if (dev->dma_ops) 1461 return dev->dma_ops->mapping_error(dev, dma_addr); 1462 return dma_mapping_error(dma_addr); 1463 } 1464 1465 /** 1466 * ib_dma_map_single - Map a kernel virtual address to DMA address 1467 * @dev: The device for which the dma_addr is to be created 1468 * @cpu_addr: The kernel virtual address 1469 * @size: The size of the region in bytes 1470 * @direction: The direction of the DMA 1471 */ 1472 static inline u64 ib_dma_map_single(struct ib_device *dev, 1473 void *cpu_addr, size_t size, 1474 enum dma_data_direction direction) 1475 { 1476 if (dev->dma_ops) 1477 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1478 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1479 } 1480 1481 /** 1482 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1483 * @dev: The device for which the DMA address was created 1484 * @addr: The DMA address 1485 * @size: The size of the region in bytes 1486 * @direction: The direction of the DMA 1487 */ 1488 static inline void ib_dma_unmap_single(struct ib_device *dev, 1489 u64 addr, size_t size, 1490 enum dma_data_direction direction) 1491 { 1492 if (dev->dma_ops) 1493 dev->dma_ops->unmap_single(dev, addr, size, direction); 1494 else 1495 dma_unmap_single(dev->dma_device, addr, size, direction); 1496 } 1497 1498 /** 1499 * ib_dma_map_page - Map a physical page to DMA address 1500 * @dev: The device for which the dma_addr is to be created 1501 * @page: The page to be mapped 1502 * @offset: The offset within the page 1503 * @size: The size of the region in bytes 1504 * @direction: The direction of the DMA 1505 */ 1506 static inline u64 ib_dma_map_page(struct ib_device *dev, 1507 struct page *page, 1508 unsigned long offset, 1509 size_t size, 1510 enum dma_data_direction direction) 1511 { 1512 if (dev->dma_ops) 1513 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1514 return dma_map_page(dev->dma_device, page, offset, size, direction); 1515 } 1516 1517 /** 1518 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1519 * @dev: The device for which the DMA address was created 1520 * @addr: The DMA address 1521 * @size: The size of the region in bytes 1522 * @direction: The direction of the DMA 1523 */ 1524 static inline void ib_dma_unmap_page(struct ib_device *dev, 1525 u64 addr, size_t size, 1526 enum dma_data_direction direction) 1527 { 1528 if (dev->dma_ops) 1529 dev->dma_ops->unmap_page(dev, addr, size, direction); 1530 else 1531 dma_unmap_page(dev->dma_device, addr, size, direction); 1532 } 1533 1534 /** 1535 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1536 * @dev: The device for which the DMA addresses are to be created 1537 * @sg: The array of scatter/gather entries 1538 * @nents: The number of scatter/gather entries 1539 * @direction: The direction of the DMA 1540 */ 1541 static inline int ib_dma_map_sg(struct ib_device *dev, 1542 struct scatterlist *sg, int nents, 1543 enum dma_data_direction direction) 1544 { 1545 if (dev->dma_ops) 1546 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1547 return dma_map_sg(dev->dma_device, sg, nents, direction); 1548 } 1549 1550 /** 1551 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1552 * @dev: The device for which the DMA addresses were created 1553 * @sg: The array of scatter/gather entries 1554 * @nents: The number of scatter/gather entries 1555 * @direction: The direction of the DMA 1556 */ 1557 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1558 struct scatterlist *sg, int nents, 1559 enum dma_data_direction direction) 1560 { 1561 if (dev->dma_ops) 1562 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1563 else 1564 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1565 } 1566 1567 /** 1568 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1569 * @dev: The device for which the DMA addresses were created 1570 * @sg: The scatter/gather entry 1571 */ 1572 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1573 struct scatterlist *sg) 1574 { 1575 if (dev->dma_ops) 1576 return dev->dma_ops->dma_address(dev, sg); 1577 return sg_dma_address(sg); 1578 } 1579 1580 /** 1581 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1582 * @dev: The device for which the DMA addresses were created 1583 * @sg: The scatter/gather entry 1584 */ 1585 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1586 struct scatterlist *sg) 1587 { 1588 if (dev->dma_ops) 1589 return dev->dma_ops->dma_len(dev, sg); 1590 return sg_dma_len(sg); 1591 } 1592 1593 /** 1594 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1595 * @dev: The device for which the DMA address was created 1596 * @addr: The DMA address 1597 * @size: The size of the region in bytes 1598 * @dir: The direction of the DMA 1599 */ 1600 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1601 u64 addr, 1602 size_t size, 1603 enum dma_data_direction dir) 1604 { 1605 if (dev->dma_ops) 1606 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1607 else 1608 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1609 } 1610 1611 /** 1612 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1613 * @dev: The device for which the DMA address was created 1614 * @addr: The DMA address 1615 * @size: The size of the region in bytes 1616 * @dir: The direction of the DMA 1617 */ 1618 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1619 u64 addr, 1620 size_t size, 1621 enum dma_data_direction dir) 1622 { 1623 if (dev->dma_ops) 1624 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1625 else 1626 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1627 } 1628 1629 /** 1630 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1631 * @dev: The device for which the DMA address is requested 1632 * @size: The size of the region to allocate in bytes 1633 * @dma_handle: A pointer for returning the DMA address of the region 1634 * @flag: memory allocator flags 1635 */ 1636 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1637 size_t size, 1638 u64 *dma_handle, 1639 gfp_t flag) 1640 { 1641 if (dev->dma_ops) 1642 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1643 else { 1644 dma_addr_t handle; 1645 void *ret; 1646 1647 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1648 *dma_handle = handle; 1649 return ret; 1650 } 1651 } 1652 1653 /** 1654 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1655 * @dev: The device for which the DMA addresses were allocated 1656 * @size: The size of the region 1657 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1658 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1659 */ 1660 static inline void ib_dma_free_coherent(struct ib_device *dev, 1661 size_t size, void *cpu_addr, 1662 u64 dma_handle) 1663 { 1664 if (dev->dma_ops) 1665 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1666 else 1667 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1668 } 1669 1670 /** 1671 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1672 * by an HCA. 1673 * @pd: The protection domain associated assigned to the registered region. 1674 * @phys_buf_array: Specifies a list of physical buffers to use in the 1675 * memory region. 1676 * @num_phys_buf: Specifies the size of the phys_buf_array. 1677 * @mr_access_flags: Specifies the memory access rights. 1678 * @iova_start: The offset of the region's starting I/O virtual address. 1679 */ 1680 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1681 struct ib_phys_buf *phys_buf_array, 1682 int num_phys_buf, 1683 int mr_access_flags, 1684 u64 *iova_start); 1685 1686 /** 1687 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1688 * Conceptually, this call performs the functions deregister memory region 1689 * followed by register physical memory region. Where possible, 1690 * resources are reused instead of deallocated and reallocated. 1691 * @mr: The memory region to modify. 1692 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1693 * properties of the memory region are being modified. 1694 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1695 * the new protection domain to associated with the memory region, 1696 * otherwise, this parameter is ignored. 1697 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1698 * field specifies a list of physical buffers to use in the new 1699 * translation, otherwise, this parameter is ignored. 1700 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1701 * field specifies the size of the phys_buf_array, otherwise, this 1702 * parameter is ignored. 1703 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1704 * field specifies the new memory access rights, otherwise, this 1705 * parameter is ignored. 1706 * @iova_start: The offset of the region's starting I/O virtual address. 1707 */ 1708 int ib_rereg_phys_mr(struct ib_mr *mr, 1709 int mr_rereg_mask, 1710 struct ib_pd *pd, 1711 struct ib_phys_buf *phys_buf_array, 1712 int num_phys_buf, 1713 int mr_access_flags, 1714 u64 *iova_start); 1715 1716 /** 1717 * ib_query_mr - Retrieves information about a specific memory region. 1718 * @mr: The memory region to retrieve information about. 1719 * @mr_attr: The attributes of the specified memory region. 1720 */ 1721 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1722 1723 /** 1724 * ib_dereg_mr - Deregisters a memory region and removes it from the 1725 * HCA translation table. 1726 * @mr: The memory region to deregister. 1727 */ 1728 int ib_dereg_mr(struct ib_mr *mr); 1729 1730 /** 1731 * ib_alloc_mw - Allocates a memory window. 1732 * @pd: The protection domain associated with the memory window. 1733 */ 1734 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1735 1736 /** 1737 * ib_bind_mw - Posts a work request to the send queue of the specified 1738 * QP, which binds the memory window to the given address range and 1739 * remote access attributes. 1740 * @qp: QP to post the bind work request on. 1741 * @mw: The memory window to bind. 1742 * @mw_bind: Specifies information about the memory window, including 1743 * its address range, remote access rights, and associated memory region. 1744 */ 1745 static inline int ib_bind_mw(struct ib_qp *qp, 1746 struct ib_mw *mw, 1747 struct ib_mw_bind *mw_bind) 1748 { 1749 /* XXX reference counting in corresponding MR? */ 1750 return mw->device->bind_mw ? 1751 mw->device->bind_mw(qp, mw, mw_bind) : 1752 -ENOSYS; 1753 } 1754 1755 /** 1756 * ib_dealloc_mw - Deallocates a memory window. 1757 * @mw: The memory window to deallocate. 1758 */ 1759 int ib_dealloc_mw(struct ib_mw *mw); 1760 1761 /** 1762 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1763 * @pd: The protection domain associated with the unmapped region. 1764 * @mr_access_flags: Specifies the memory access rights. 1765 * @fmr_attr: Attributes of the unmapped region. 1766 * 1767 * A fast memory region must be mapped before it can be used as part of 1768 * a work request. 1769 */ 1770 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1771 int mr_access_flags, 1772 struct ib_fmr_attr *fmr_attr); 1773 1774 /** 1775 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1776 * @fmr: The fast memory region to associate with the pages. 1777 * @page_list: An array of physical pages to map to the fast memory region. 1778 * @list_len: The number of pages in page_list. 1779 * @iova: The I/O virtual address to use with the mapped region. 1780 */ 1781 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1782 u64 *page_list, int list_len, 1783 u64 iova) 1784 { 1785 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1786 } 1787 1788 /** 1789 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 1790 * @fmr_list: A linked list of fast memory regions to unmap. 1791 */ 1792 int ib_unmap_fmr(struct list_head *fmr_list); 1793 1794 /** 1795 * ib_dealloc_fmr - Deallocates a fast memory region. 1796 * @fmr: The fast memory region to deallocate. 1797 */ 1798 int ib_dealloc_fmr(struct ib_fmr *fmr); 1799 1800 /** 1801 * ib_attach_mcast - Attaches the specified QP to a multicast group. 1802 * @qp: QP to attach to the multicast group. The QP must be type 1803 * IB_QPT_UD. 1804 * @gid: Multicast group GID. 1805 * @lid: Multicast group LID in host byte order. 1806 * 1807 * In order to send and receive multicast packets, subnet 1808 * administration must have created the multicast group and configured 1809 * the fabric appropriately. The port associated with the specified 1810 * QP must also be a member of the multicast group. 1811 */ 1812 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1813 1814 /** 1815 * ib_detach_mcast - Detaches the specified QP from a multicast group. 1816 * @qp: QP to detach from the multicast group. 1817 * @gid: Multicast group GID. 1818 * @lid: Multicast group LID in host byte order. 1819 */ 1820 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1821 1822 #endif /* IB_VERBS_H */ 1823