1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 struct ib_rss_caps { 265 /* Corresponding bit will be set if qp type from 266 * 'enum ib_qp_type' is supported, e.g. 267 * supported_qpts |= 1 << IB_QPT_UD 268 */ 269 u32 supported_qpts; 270 u32 max_rwq_indirection_tables; 271 u32 max_rwq_indirection_table_size; 272 }; 273 274 enum ib_cq_creation_flags { 275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 277 }; 278 279 struct ib_cq_init_attr { 280 unsigned int cqe; 281 int comp_vector; 282 u32 flags; 283 }; 284 285 struct ib_device_attr { 286 u64 fw_ver; 287 __be64 sys_image_guid; 288 u64 max_mr_size; 289 u64 page_size_cap; 290 u32 vendor_id; 291 u32 vendor_part_id; 292 u32 hw_ver; 293 int max_qp; 294 int max_qp_wr; 295 u64 device_cap_flags; 296 int max_sge; 297 int max_sge_rd; 298 int max_cq; 299 int max_cqe; 300 int max_mr; 301 int max_pd; 302 int max_qp_rd_atom; 303 int max_ee_rd_atom; 304 int max_res_rd_atom; 305 int max_qp_init_rd_atom; 306 int max_ee_init_rd_atom; 307 enum ib_atomic_cap atomic_cap; 308 enum ib_atomic_cap masked_atomic_cap; 309 int max_ee; 310 int max_rdd; 311 int max_mw; 312 int max_raw_ipv6_qp; 313 int max_raw_ethy_qp; 314 int max_mcast_grp; 315 int max_mcast_qp_attach; 316 int max_total_mcast_qp_attach; 317 int max_ah; 318 int max_fmr; 319 int max_map_per_fmr; 320 int max_srq; 321 int max_srq_wr; 322 int max_srq_sge; 323 unsigned int max_fast_reg_page_list_len; 324 u16 max_pkeys; 325 u8 local_ca_ack_delay; 326 int sig_prot_cap; 327 int sig_guard_cap; 328 struct ib_odp_caps odp_caps; 329 uint64_t timestamp_mask; 330 uint64_t hca_core_clock; /* in KHZ */ 331 struct ib_rss_caps rss_caps; 332 u32 max_wq_type_rq; 333 }; 334 335 enum ib_mtu { 336 IB_MTU_256 = 1, 337 IB_MTU_512 = 2, 338 IB_MTU_1024 = 3, 339 IB_MTU_2048 = 4, 340 IB_MTU_4096 = 5 341 }; 342 343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 344 { 345 switch (mtu) { 346 case IB_MTU_256: return 256; 347 case IB_MTU_512: return 512; 348 case IB_MTU_1024: return 1024; 349 case IB_MTU_2048: return 2048; 350 case IB_MTU_4096: return 4096; 351 default: return -1; 352 } 353 } 354 355 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 356 { 357 if (mtu >= 4096) 358 return IB_MTU_4096; 359 else if (mtu >= 2048) 360 return IB_MTU_2048; 361 else if (mtu >= 1024) 362 return IB_MTU_1024; 363 else if (mtu >= 512) 364 return IB_MTU_512; 365 else 366 return IB_MTU_256; 367 } 368 369 enum ib_port_state { 370 IB_PORT_NOP = 0, 371 IB_PORT_DOWN = 1, 372 IB_PORT_INIT = 2, 373 IB_PORT_ARMED = 3, 374 IB_PORT_ACTIVE = 4, 375 IB_PORT_ACTIVE_DEFER = 5 376 }; 377 378 enum ib_port_cap_flags { 379 IB_PORT_SM = 1 << 1, 380 IB_PORT_NOTICE_SUP = 1 << 2, 381 IB_PORT_TRAP_SUP = 1 << 3, 382 IB_PORT_OPT_IPD_SUP = 1 << 4, 383 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 384 IB_PORT_SL_MAP_SUP = 1 << 6, 385 IB_PORT_MKEY_NVRAM = 1 << 7, 386 IB_PORT_PKEY_NVRAM = 1 << 8, 387 IB_PORT_LED_INFO_SUP = 1 << 9, 388 IB_PORT_SM_DISABLED = 1 << 10, 389 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 390 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 391 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 392 IB_PORT_CM_SUP = 1 << 16, 393 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 394 IB_PORT_REINIT_SUP = 1 << 18, 395 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 396 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 397 IB_PORT_DR_NOTICE_SUP = 1 << 21, 398 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 399 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 400 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 401 IB_PORT_CLIENT_REG_SUP = 1 << 25, 402 IB_PORT_IP_BASED_GIDS = 1 << 26, 403 }; 404 405 enum ib_port_width { 406 IB_WIDTH_1X = 1, 407 IB_WIDTH_4X = 2, 408 IB_WIDTH_8X = 4, 409 IB_WIDTH_12X = 8 410 }; 411 412 static inline int ib_width_enum_to_int(enum ib_port_width width) 413 { 414 switch (width) { 415 case IB_WIDTH_1X: return 1; 416 case IB_WIDTH_4X: return 4; 417 case IB_WIDTH_8X: return 8; 418 case IB_WIDTH_12X: return 12; 419 default: return -1; 420 } 421 } 422 423 enum ib_port_speed { 424 IB_SPEED_SDR = 1, 425 IB_SPEED_DDR = 2, 426 IB_SPEED_QDR = 4, 427 IB_SPEED_FDR10 = 8, 428 IB_SPEED_FDR = 16, 429 IB_SPEED_EDR = 32 430 }; 431 432 /** 433 * struct rdma_hw_stats 434 * @timestamp - Used by the core code to track when the last update was 435 * @lifespan - Used by the core code to determine how old the counters 436 * should be before being updated again. Stored in jiffies, defaults 437 * to 10 milliseconds, drivers can override the default be specifying 438 * their own value during their allocation routine. 439 * @name - Array of pointers to static names used for the counters in 440 * directory. 441 * @num_counters - How many hardware counters there are. If name is 442 * shorter than this number, a kernel oops will result. Driver authors 443 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 444 * in their code to prevent this. 445 * @value - Array of u64 counters that are accessed by the sysfs code and 446 * filled in by the drivers get_stats routine 447 */ 448 struct rdma_hw_stats { 449 unsigned long timestamp; 450 unsigned long lifespan; 451 const char * const *names; 452 int num_counters; 453 u64 value[]; 454 }; 455 456 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 457 /** 458 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 459 * for drivers. 460 * @names - Array of static const char * 461 * @num_counters - How many elements in array 462 * @lifespan - How many milliseconds between updates 463 */ 464 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 465 const char * const *names, int num_counters, 466 unsigned long lifespan) 467 { 468 struct rdma_hw_stats *stats; 469 470 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 471 GFP_KERNEL); 472 if (!stats) 473 return NULL; 474 stats->names = names; 475 stats->num_counters = num_counters; 476 stats->lifespan = msecs_to_jiffies(lifespan); 477 478 return stats; 479 } 480 481 482 /* Define bits for the various functionality this port needs to be supported by 483 * the core. 484 */ 485 /* Management 0x00000FFF */ 486 #define RDMA_CORE_CAP_IB_MAD 0x00000001 487 #define RDMA_CORE_CAP_IB_SMI 0x00000002 488 #define RDMA_CORE_CAP_IB_CM 0x00000004 489 #define RDMA_CORE_CAP_IW_CM 0x00000008 490 #define RDMA_CORE_CAP_IB_SA 0x00000010 491 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 492 493 /* Address format 0x000FF000 */ 494 #define RDMA_CORE_CAP_AF_IB 0x00001000 495 #define RDMA_CORE_CAP_ETH_AH 0x00002000 496 497 /* Protocol 0xFFF00000 */ 498 #define RDMA_CORE_CAP_PROT_IB 0x00100000 499 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 500 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 501 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 502 503 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 504 | RDMA_CORE_CAP_IB_MAD \ 505 | RDMA_CORE_CAP_IB_SMI \ 506 | RDMA_CORE_CAP_IB_CM \ 507 | RDMA_CORE_CAP_IB_SA \ 508 | RDMA_CORE_CAP_AF_IB) 509 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 510 | RDMA_CORE_CAP_IB_MAD \ 511 | RDMA_CORE_CAP_IB_CM \ 512 | RDMA_CORE_CAP_AF_IB \ 513 | RDMA_CORE_CAP_ETH_AH) 514 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 515 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 516 | RDMA_CORE_CAP_IB_MAD \ 517 | RDMA_CORE_CAP_IB_CM \ 518 | RDMA_CORE_CAP_AF_IB \ 519 | RDMA_CORE_CAP_ETH_AH) 520 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 521 | RDMA_CORE_CAP_IW_CM) 522 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 523 | RDMA_CORE_CAP_OPA_MAD) 524 525 struct ib_port_attr { 526 u64 subnet_prefix; 527 enum ib_port_state state; 528 enum ib_mtu max_mtu; 529 enum ib_mtu active_mtu; 530 int gid_tbl_len; 531 u32 port_cap_flags; 532 u32 max_msg_sz; 533 u32 bad_pkey_cntr; 534 u32 qkey_viol_cntr; 535 u16 pkey_tbl_len; 536 u16 lid; 537 u16 sm_lid; 538 u8 lmc; 539 u8 max_vl_num; 540 u8 sm_sl; 541 u8 subnet_timeout; 542 u8 init_type_reply; 543 u8 active_width; 544 u8 active_speed; 545 u8 phys_state; 546 bool grh_required; 547 }; 548 549 enum ib_device_modify_flags { 550 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 551 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 552 }; 553 554 #define IB_DEVICE_NODE_DESC_MAX 64 555 556 struct ib_device_modify { 557 u64 sys_image_guid; 558 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 559 }; 560 561 enum ib_port_modify_flags { 562 IB_PORT_SHUTDOWN = 1, 563 IB_PORT_INIT_TYPE = (1<<2), 564 IB_PORT_RESET_QKEY_CNTR = (1<<3) 565 }; 566 567 struct ib_port_modify { 568 u32 set_port_cap_mask; 569 u32 clr_port_cap_mask; 570 u8 init_type; 571 }; 572 573 enum ib_event_type { 574 IB_EVENT_CQ_ERR, 575 IB_EVENT_QP_FATAL, 576 IB_EVENT_QP_REQ_ERR, 577 IB_EVENT_QP_ACCESS_ERR, 578 IB_EVENT_COMM_EST, 579 IB_EVENT_SQ_DRAINED, 580 IB_EVENT_PATH_MIG, 581 IB_EVENT_PATH_MIG_ERR, 582 IB_EVENT_DEVICE_FATAL, 583 IB_EVENT_PORT_ACTIVE, 584 IB_EVENT_PORT_ERR, 585 IB_EVENT_LID_CHANGE, 586 IB_EVENT_PKEY_CHANGE, 587 IB_EVENT_SM_CHANGE, 588 IB_EVENT_SRQ_ERR, 589 IB_EVENT_SRQ_LIMIT_REACHED, 590 IB_EVENT_QP_LAST_WQE_REACHED, 591 IB_EVENT_CLIENT_REREGISTER, 592 IB_EVENT_GID_CHANGE, 593 IB_EVENT_WQ_FATAL, 594 }; 595 596 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 597 598 struct ib_event { 599 struct ib_device *device; 600 union { 601 struct ib_cq *cq; 602 struct ib_qp *qp; 603 struct ib_srq *srq; 604 struct ib_wq *wq; 605 u8 port_num; 606 } element; 607 enum ib_event_type event; 608 }; 609 610 struct ib_event_handler { 611 struct ib_device *device; 612 void (*handler)(struct ib_event_handler *, struct ib_event *); 613 struct list_head list; 614 }; 615 616 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 617 do { \ 618 (_ptr)->device = _device; \ 619 (_ptr)->handler = _handler; \ 620 INIT_LIST_HEAD(&(_ptr)->list); \ 621 } while (0) 622 623 struct ib_global_route { 624 union ib_gid dgid; 625 u32 flow_label; 626 u8 sgid_index; 627 u8 hop_limit; 628 u8 traffic_class; 629 }; 630 631 struct ib_grh { 632 __be32 version_tclass_flow; 633 __be16 paylen; 634 u8 next_hdr; 635 u8 hop_limit; 636 union ib_gid sgid; 637 union ib_gid dgid; 638 }; 639 640 union rdma_network_hdr { 641 struct ib_grh ibgrh; 642 struct { 643 /* The IB spec states that if it's IPv4, the header 644 * is located in the last 20 bytes of the header. 645 */ 646 u8 reserved[20]; 647 struct iphdr roce4grh; 648 }; 649 }; 650 651 enum { 652 IB_MULTICAST_QPN = 0xffffff 653 }; 654 655 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 656 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 657 658 enum ib_ah_flags { 659 IB_AH_GRH = 1 660 }; 661 662 enum ib_rate { 663 IB_RATE_PORT_CURRENT = 0, 664 IB_RATE_2_5_GBPS = 2, 665 IB_RATE_5_GBPS = 5, 666 IB_RATE_10_GBPS = 3, 667 IB_RATE_20_GBPS = 6, 668 IB_RATE_30_GBPS = 4, 669 IB_RATE_40_GBPS = 7, 670 IB_RATE_60_GBPS = 8, 671 IB_RATE_80_GBPS = 9, 672 IB_RATE_120_GBPS = 10, 673 IB_RATE_14_GBPS = 11, 674 IB_RATE_56_GBPS = 12, 675 IB_RATE_112_GBPS = 13, 676 IB_RATE_168_GBPS = 14, 677 IB_RATE_25_GBPS = 15, 678 IB_RATE_100_GBPS = 16, 679 IB_RATE_200_GBPS = 17, 680 IB_RATE_300_GBPS = 18 681 }; 682 683 /** 684 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 685 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 686 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 687 * @rate: rate to convert. 688 */ 689 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 690 691 /** 692 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 693 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 694 * @rate: rate to convert. 695 */ 696 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 697 698 699 /** 700 * enum ib_mr_type - memory region type 701 * @IB_MR_TYPE_MEM_REG: memory region that is used for 702 * normal registration 703 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 704 * signature operations (data-integrity 705 * capable regions) 706 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 707 * register any arbitrary sg lists (without 708 * the normal mr constraints - see 709 * ib_map_mr_sg) 710 */ 711 enum ib_mr_type { 712 IB_MR_TYPE_MEM_REG, 713 IB_MR_TYPE_SIGNATURE, 714 IB_MR_TYPE_SG_GAPS, 715 }; 716 717 /** 718 * Signature types 719 * IB_SIG_TYPE_NONE: Unprotected. 720 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 721 */ 722 enum ib_signature_type { 723 IB_SIG_TYPE_NONE, 724 IB_SIG_TYPE_T10_DIF, 725 }; 726 727 /** 728 * Signature T10-DIF block-guard types 729 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 730 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 731 */ 732 enum ib_t10_dif_bg_type { 733 IB_T10DIF_CRC, 734 IB_T10DIF_CSUM 735 }; 736 737 /** 738 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 739 * domain. 740 * @bg_type: T10-DIF block guard type (CRC|CSUM) 741 * @pi_interval: protection information interval. 742 * @bg: seed of guard computation. 743 * @app_tag: application tag of guard block 744 * @ref_tag: initial guard block reference tag. 745 * @ref_remap: Indicate wethear the reftag increments each block 746 * @app_escape: Indicate to skip block check if apptag=0xffff 747 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 748 * @apptag_check_mask: check bitmask of application tag. 749 */ 750 struct ib_t10_dif_domain { 751 enum ib_t10_dif_bg_type bg_type; 752 u16 pi_interval; 753 u16 bg; 754 u16 app_tag; 755 u32 ref_tag; 756 bool ref_remap; 757 bool app_escape; 758 bool ref_escape; 759 u16 apptag_check_mask; 760 }; 761 762 /** 763 * struct ib_sig_domain - Parameters for signature domain 764 * @sig_type: specific signauture type 765 * @sig: union of all signature domain attributes that may 766 * be used to set domain layout. 767 */ 768 struct ib_sig_domain { 769 enum ib_signature_type sig_type; 770 union { 771 struct ib_t10_dif_domain dif; 772 } sig; 773 }; 774 775 /** 776 * struct ib_sig_attrs - Parameters for signature handover operation 777 * @check_mask: bitmask for signature byte check (8 bytes) 778 * @mem: memory domain layout desciptor. 779 * @wire: wire domain layout desciptor. 780 */ 781 struct ib_sig_attrs { 782 u8 check_mask; 783 struct ib_sig_domain mem; 784 struct ib_sig_domain wire; 785 }; 786 787 enum ib_sig_err_type { 788 IB_SIG_BAD_GUARD, 789 IB_SIG_BAD_REFTAG, 790 IB_SIG_BAD_APPTAG, 791 }; 792 793 /** 794 * struct ib_sig_err - signature error descriptor 795 */ 796 struct ib_sig_err { 797 enum ib_sig_err_type err_type; 798 u32 expected; 799 u32 actual; 800 u64 sig_err_offset; 801 u32 key; 802 }; 803 804 enum ib_mr_status_check { 805 IB_MR_CHECK_SIG_STATUS = 1, 806 }; 807 808 /** 809 * struct ib_mr_status - Memory region status container 810 * 811 * @fail_status: Bitmask of MR checks status. For each 812 * failed check a corresponding status bit is set. 813 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 814 * failure. 815 */ 816 struct ib_mr_status { 817 u32 fail_status; 818 struct ib_sig_err sig_err; 819 }; 820 821 /** 822 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 823 * enum. 824 * @mult: multiple to convert. 825 */ 826 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 827 828 struct ib_ah_attr { 829 struct ib_global_route grh; 830 u16 dlid; 831 u8 sl; 832 u8 src_path_bits; 833 u8 static_rate; 834 u8 ah_flags; 835 u8 port_num; 836 u8 dmac[ETH_ALEN]; 837 }; 838 839 enum ib_wc_status { 840 IB_WC_SUCCESS, 841 IB_WC_LOC_LEN_ERR, 842 IB_WC_LOC_QP_OP_ERR, 843 IB_WC_LOC_EEC_OP_ERR, 844 IB_WC_LOC_PROT_ERR, 845 IB_WC_WR_FLUSH_ERR, 846 IB_WC_MW_BIND_ERR, 847 IB_WC_BAD_RESP_ERR, 848 IB_WC_LOC_ACCESS_ERR, 849 IB_WC_REM_INV_REQ_ERR, 850 IB_WC_REM_ACCESS_ERR, 851 IB_WC_REM_OP_ERR, 852 IB_WC_RETRY_EXC_ERR, 853 IB_WC_RNR_RETRY_EXC_ERR, 854 IB_WC_LOC_RDD_VIOL_ERR, 855 IB_WC_REM_INV_RD_REQ_ERR, 856 IB_WC_REM_ABORT_ERR, 857 IB_WC_INV_EECN_ERR, 858 IB_WC_INV_EEC_STATE_ERR, 859 IB_WC_FATAL_ERR, 860 IB_WC_RESP_TIMEOUT_ERR, 861 IB_WC_GENERAL_ERR 862 }; 863 864 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 865 866 enum ib_wc_opcode { 867 IB_WC_SEND, 868 IB_WC_RDMA_WRITE, 869 IB_WC_RDMA_READ, 870 IB_WC_COMP_SWAP, 871 IB_WC_FETCH_ADD, 872 IB_WC_LSO, 873 IB_WC_LOCAL_INV, 874 IB_WC_REG_MR, 875 IB_WC_MASKED_COMP_SWAP, 876 IB_WC_MASKED_FETCH_ADD, 877 /* 878 * Set value of IB_WC_RECV so consumers can test if a completion is a 879 * receive by testing (opcode & IB_WC_RECV). 880 */ 881 IB_WC_RECV = 1 << 7, 882 IB_WC_RECV_RDMA_WITH_IMM 883 }; 884 885 enum ib_wc_flags { 886 IB_WC_GRH = 1, 887 IB_WC_WITH_IMM = (1<<1), 888 IB_WC_WITH_INVALIDATE = (1<<2), 889 IB_WC_IP_CSUM_OK = (1<<3), 890 IB_WC_WITH_SMAC = (1<<4), 891 IB_WC_WITH_VLAN = (1<<5), 892 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 893 }; 894 895 struct ib_wc { 896 union { 897 u64 wr_id; 898 struct ib_cqe *wr_cqe; 899 }; 900 enum ib_wc_status status; 901 enum ib_wc_opcode opcode; 902 u32 vendor_err; 903 u32 byte_len; 904 struct ib_qp *qp; 905 union { 906 __be32 imm_data; 907 u32 invalidate_rkey; 908 } ex; 909 u32 src_qp; 910 int wc_flags; 911 u16 pkey_index; 912 u16 slid; 913 u8 sl; 914 u8 dlid_path_bits; 915 u8 port_num; /* valid only for DR SMPs on switches */ 916 u8 smac[ETH_ALEN]; 917 u16 vlan_id; 918 u8 network_hdr_type; 919 }; 920 921 enum ib_cq_notify_flags { 922 IB_CQ_SOLICITED = 1 << 0, 923 IB_CQ_NEXT_COMP = 1 << 1, 924 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 925 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 926 }; 927 928 enum ib_srq_type { 929 IB_SRQT_BASIC, 930 IB_SRQT_XRC 931 }; 932 933 enum ib_srq_attr_mask { 934 IB_SRQ_MAX_WR = 1 << 0, 935 IB_SRQ_LIMIT = 1 << 1, 936 }; 937 938 struct ib_srq_attr { 939 u32 max_wr; 940 u32 max_sge; 941 u32 srq_limit; 942 }; 943 944 struct ib_srq_init_attr { 945 void (*event_handler)(struct ib_event *, void *); 946 void *srq_context; 947 struct ib_srq_attr attr; 948 enum ib_srq_type srq_type; 949 950 union { 951 struct { 952 struct ib_xrcd *xrcd; 953 struct ib_cq *cq; 954 } xrc; 955 } ext; 956 }; 957 958 struct ib_qp_cap { 959 u32 max_send_wr; 960 u32 max_recv_wr; 961 u32 max_send_sge; 962 u32 max_recv_sge; 963 u32 max_inline_data; 964 965 /* 966 * Maximum number of rdma_rw_ctx structures in flight at a time. 967 * ib_create_qp() will calculate the right amount of neededed WRs 968 * and MRs based on this. 969 */ 970 u32 max_rdma_ctxs; 971 }; 972 973 enum ib_sig_type { 974 IB_SIGNAL_ALL_WR, 975 IB_SIGNAL_REQ_WR 976 }; 977 978 enum ib_qp_type { 979 /* 980 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 981 * here (and in that order) since the MAD layer uses them as 982 * indices into a 2-entry table. 983 */ 984 IB_QPT_SMI, 985 IB_QPT_GSI, 986 987 IB_QPT_RC, 988 IB_QPT_UC, 989 IB_QPT_UD, 990 IB_QPT_RAW_IPV6, 991 IB_QPT_RAW_ETHERTYPE, 992 IB_QPT_RAW_PACKET = 8, 993 IB_QPT_XRC_INI = 9, 994 IB_QPT_XRC_TGT, 995 IB_QPT_MAX, 996 /* Reserve a range for qp types internal to the low level driver. 997 * These qp types will not be visible at the IB core layer, so the 998 * IB_QPT_MAX usages should not be affected in the core layer 999 */ 1000 IB_QPT_RESERVED1 = 0x1000, 1001 IB_QPT_RESERVED2, 1002 IB_QPT_RESERVED3, 1003 IB_QPT_RESERVED4, 1004 IB_QPT_RESERVED5, 1005 IB_QPT_RESERVED6, 1006 IB_QPT_RESERVED7, 1007 IB_QPT_RESERVED8, 1008 IB_QPT_RESERVED9, 1009 IB_QPT_RESERVED10, 1010 }; 1011 1012 enum ib_qp_create_flags { 1013 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1014 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1015 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1016 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1017 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1018 IB_QP_CREATE_NETIF_QP = 1 << 5, 1019 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1020 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1021 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1022 /* reserve bits 26-31 for low level drivers' internal use */ 1023 IB_QP_CREATE_RESERVED_START = 1 << 26, 1024 IB_QP_CREATE_RESERVED_END = 1 << 31, 1025 }; 1026 1027 /* 1028 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1029 * callback to destroy the passed in QP. 1030 */ 1031 1032 struct ib_qp_init_attr { 1033 void (*event_handler)(struct ib_event *, void *); 1034 void *qp_context; 1035 struct ib_cq *send_cq; 1036 struct ib_cq *recv_cq; 1037 struct ib_srq *srq; 1038 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1039 struct ib_qp_cap cap; 1040 enum ib_sig_type sq_sig_type; 1041 enum ib_qp_type qp_type; 1042 enum ib_qp_create_flags create_flags; 1043 1044 /* 1045 * Only needed for special QP types, or when using the RW API. 1046 */ 1047 u8 port_num; 1048 struct ib_rwq_ind_table *rwq_ind_tbl; 1049 }; 1050 1051 struct ib_qp_open_attr { 1052 void (*event_handler)(struct ib_event *, void *); 1053 void *qp_context; 1054 u32 qp_num; 1055 enum ib_qp_type qp_type; 1056 }; 1057 1058 enum ib_rnr_timeout { 1059 IB_RNR_TIMER_655_36 = 0, 1060 IB_RNR_TIMER_000_01 = 1, 1061 IB_RNR_TIMER_000_02 = 2, 1062 IB_RNR_TIMER_000_03 = 3, 1063 IB_RNR_TIMER_000_04 = 4, 1064 IB_RNR_TIMER_000_06 = 5, 1065 IB_RNR_TIMER_000_08 = 6, 1066 IB_RNR_TIMER_000_12 = 7, 1067 IB_RNR_TIMER_000_16 = 8, 1068 IB_RNR_TIMER_000_24 = 9, 1069 IB_RNR_TIMER_000_32 = 10, 1070 IB_RNR_TIMER_000_48 = 11, 1071 IB_RNR_TIMER_000_64 = 12, 1072 IB_RNR_TIMER_000_96 = 13, 1073 IB_RNR_TIMER_001_28 = 14, 1074 IB_RNR_TIMER_001_92 = 15, 1075 IB_RNR_TIMER_002_56 = 16, 1076 IB_RNR_TIMER_003_84 = 17, 1077 IB_RNR_TIMER_005_12 = 18, 1078 IB_RNR_TIMER_007_68 = 19, 1079 IB_RNR_TIMER_010_24 = 20, 1080 IB_RNR_TIMER_015_36 = 21, 1081 IB_RNR_TIMER_020_48 = 22, 1082 IB_RNR_TIMER_030_72 = 23, 1083 IB_RNR_TIMER_040_96 = 24, 1084 IB_RNR_TIMER_061_44 = 25, 1085 IB_RNR_TIMER_081_92 = 26, 1086 IB_RNR_TIMER_122_88 = 27, 1087 IB_RNR_TIMER_163_84 = 28, 1088 IB_RNR_TIMER_245_76 = 29, 1089 IB_RNR_TIMER_327_68 = 30, 1090 IB_RNR_TIMER_491_52 = 31 1091 }; 1092 1093 enum ib_qp_attr_mask { 1094 IB_QP_STATE = 1, 1095 IB_QP_CUR_STATE = (1<<1), 1096 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1097 IB_QP_ACCESS_FLAGS = (1<<3), 1098 IB_QP_PKEY_INDEX = (1<<4), 1099 IB_QP_PORT = (1<<5), 1100 IB_QP_QKEY = (1<<6), 1101 IB_QP_AV = (1<<7), 1102 IB_QP_PATH_MTU = (1<<8), 1103 IB_QP_TIMEOUT = (1<<9), 1104 IB_QP_RETRY_CNT = (1<<10), 1105 IB_QP_RNR_RETRY = (1<<11), 1106 IB_QP_RQ_PSN = (1<<12), 1107 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1108 IB_QP_ALT_PATH = (1<<14), 1109 IB_QP_MIN_RNR_TIMER = (1<<15), 1110 IB_QP_SQ_PSN = (1<<16), 1111 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1112 IB_QP_PATH_MIG_STATE = (1<<18), 1113 IB_QP_CAP = (1<<19), 1114 IB_QP_DEST_QPN = (1<<20), 1115 IB_QP_RESERVED1 = (1<<21), 1116 IB_QP_RESERVED2 = (1<<22), 1117 IB_QP_RESERVED3 = (1<<23), 1118 IB_QP_RESERVED4 = (1<<24), 1119 IB_QP_RATE_LIMIT = (1<<25), 1120 }; 1121 1122 enum ib_qp_state { 1123 IB_QPS_RESET, 1124 IB_QPS_INIT, 1125 IB_QPS_RTR, 1126 IB_QPS_RTS, 1127 IB_QPS_SQD, 1128 IB_QPS_SQE, 1129 IB_QPS_ERR 1130 }; 1131 1132 enum ib_mig_state { 1133 IB_MIG_MIGRATED, 1134 IB_MIG_REARM, 1135 IB_MIG_ARMED 1136 }; 1137 1138 enum ib_mw_type { 1139 IB_MW_TYPE_1 = 1, 1140 IB_MW_TYPE_2 = 2 1141 }; 1142 1143 struct ib_qp_attr { 1144 enum ib_qp_state qp_state; 1145 enum ib_qp_state cur_qp_state; 1146 enum ib_mtu path_mtu; 1147 enum ib_mig_state path_mig_state; 1148 u32 qkey; 1149 u32 rq_psn; 1150 u32 sq_psn; 1151 u32 dest_qp_num; 1152 int qp_access_flags; 1153 struct ib_qp_cap cap; 1154 struct ib_ah_attr ah_attr; 1155 struct ib_ah_attr alt_ah_attr; 1156 u16 pkey_index; 1157 u16 alt_pkey_index; 1158 u8 en_sqd_async_notify; 1159 u8 sq_draining; 1160 u8 max_rd_atomic; 1161 u8 max_dest_rd_atomic; 1162 u8 min_rnr_timer; 1163 u8 port_num; 1164 u8 timeout; 1165 u8 retry_cnt; 1166 u8 rnr_retry; 1167 u8 alt_port_num; 1168 u8 alt_timeout; 1169 u32 rate_limit; 1170 }; 1171 1172 enum ib_wr_opcode { 1173 IB_WR_RDMA_WRITE, 1174 IB_WR_RDMA_WRITE_WITH_IMM, 1175 IB_WR_SEND, 1176 IB_WR_SEND_WITH_IMM, 1177 IB_WR_RDMA_READ, 1178 IB_WR_ATOMIC_CMP_AND_SWP, 1179 IB_WR_ATOMIC_FETCH_AND_ADD, 1180 IB_WR_LSO, 1181 IB_WR_SEND_WITH_INV, 1182 IB_WR_RDMA_READ_WITH_INV, 1183 IB_WR_LOCAL_INV, 1184 IB_WR_REG_MR, 1185 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1186 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1187 IB_WR_REG_SIG_MR, 1188 /* reserve values for low level drivers' internal use. 1189 * These values will not be used at all in the ib core layer. 1190 */ 1191 IB_WR_RESERVED1 = 0xf0, 1192 IB_WR_RESERVED2, 1193 IB_WR_RESERVED3, 1194 IB_WR_RESERVED4, 1195 IB_WR_RESERVED5, 1196 IB_WR_RESERVED6, 1197 IB_WR_RESERVED7, 1198 IB_WR_RESERVED8, 1199 IB_WR_RESERVED9, 1200 IB_WR_RESERVED10, 1201 }; 1202 1203 enum ib_send_flags { 1204 IB_SEND_FENCE = 1, 1205 IB_SEND_SIGNALED = (1<<1), 1206 IB_SEND_SOLICITED = (1<<2), 1207 IB_SEND_INLINE = (1<<3), 1208 IB_SEND_IP_CSUM = (1<<4), 1209 1210 /* reserve bits 26-31 for low level drivers' internal use */ 1211 IB_SEND_RESERVED_START = (1 << 26), 1212 IB_SEND_RESERVED_END = (1 << 31), 1213 }; 1214 1215 struct ib_sge { 1216 u64 addr; 1217 u32 length; 1218 u32 lkey; 1219 }; 1220 1221 struct ib_cqe { 1222 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1223 }; 1224 1225 struct ib_send_wr { 1226 struct ib_send_wr *next; 1227 union { 1228 u64 wr_id; 1229 struct ib_cqe *wr_cqe; 1230 }; 1231 struct ib_sge *sg_list; 1232 int num_sge; 1233 enum ib_wr_opcode opcode; 1234 int send_flags; 1235 union { 1236 __be32 imm_data; 1237 u32 invalidate_rkey; 1238 } ex; 1239 }; 1240 1241 struct ib_rdma_wr { 1242 struct ib_send_wr wr; 1243 u64 remote_addr; 1244 u32 rkey; 1245 }; 1246 1247 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1248 { 1249 return container_of(wr, struct ib_rdma_wr, wr); 1250 } 1251 1252 struct ib_atomic_wr { 1253 struct ib_send_wr wr; 1254 u64 remote_addr; 1255 u64 compare_add; 1256 u64 swap; 1257 u64 compare_add_mask; 1258 u64 swap_mask; 1259 u32 rkey; 1260 }; 1261 1262 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1263 { 1264 return container_of(wr, struct ib_atomic_wr, wr); 1265 } 1266 1267 struct ib_ud_wr { 1268 struct ib_send_wr wr; 1269 struct ib_ah *ah; 1270 void *header; 1271 int hlen; 1272 int mss; 1273 u32 remote_qpn; 1274 u32 remote_qkey; 1275 u16 pkey_index; /* valid for GSI only */ 1276 u8 port_num; /* valid for DR SMPs on switch only */ 1277 }; 1278 1279 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1280 { 1281 return container_of(wr, struct ib_ud_wr, wr); 1282 } 1283 1284 struct ib_reg_wr { 1285 struct ib_send_wr wr; 1286 struct ib_mr *mr; 1287 u32 key; 1288 int access; 1289 }; 1290 1291 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1292 { 1293 return container_of(wr, struct ib_reg_wr, wr); 1294 } 1295 1296 struct ib_sig_handover_wr { 1297 struct ib_send_wr wr; 1298 struct ib_sig_attrs *sig_attrs; 1299 struct ib_mr *sig_mr; 1300 int access_flags; 1301 struct ib_sge *prot; 1302 }; 1303 1304 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1305 { 1306 return container_of(wr, struct ib_sig_handover_wr, wr); 1307 } 1308 1309 struct ib_recv_wr { 1310 struct ib_recv_wr *next; 1311 union { 1312 u64 wr_id; 1313 struct ib_cqe *wr_cqe; 1314 }; 1315 struct ib_sge *sg_list; 1316 int num_sge; 1317 }; 1318 1319 enum ib_access_flags { 1320 IB_ACCESS_LOCAL_WRITE = 1, 1321 IB_ACCESS_REMOTE_WRITE = (1<<1), 1322 IB_ACCESS_REMOTE_READ = (1<<2), 1323 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1324 IB_ACCESS_MW_BIND = (1<<4), 1325 IB_ZERO_BASED = (1<<5), 1326 IB_ACCESS_ON_DEMAND = (1<<6), 1327 }; 1328 1329 /* 1330 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1331 * are hidden here instead of a uapi header! 1332 */ 1333 enum ib_mr_rereg_flags { 1334 IB_MR_REREG_TRANS = 1, 1335 IB_MR_REREG_PD = (1<<1), 1336 IB_MR_REREG_ACCESS = (1<<2), 1337 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1338 }; 1339 1340 struct ib_fmr_attr { 1341 int max_pages; 1342 int max_maps; 1343 u8 page_shift; 1344 }; 1345 1346 struct ib_umem; 1347 1348 struct ib_ucontext { 1349 struct ib_device *device; 1350 struct list_head pd_list; 1351 struct list_head mr_list; 1352 struct list_head mw_list; 1353 struct list_head cq_list; 1354 struct list_head qp_list; 1355 struct list_head srq_list; 1356 struct list_head ah_list; 1357 struct list_head xrcd_list; 1358 struct list_head rule_list; 1359 struct list_head wq_list; 1360 struct list_head rwq_ind_tbl_list; 1361 int closing; 1362 1363 struct pid *tgid; 1364 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1365 struct rb_root umem_tree; 1366 /* 1367 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1368 * mmu notifiers registration. 1369 */ 1370 struct rw_semaphore umem_rwsem; 1371 void (*invalidate_range)(struct ib_umem *umem, 1372 unsigned long start, unsigned long end); 1373 1374 struct mmu_notifier mn; 1375 atomic_t notifier_count; 1376 /* A list of umems that don't have private mmu notifier counters yet. */ 1377 struct list_head no_private_counters; 1378 int odp_mrs_count; 1379 #endif 1380 }; 1381 1382 struct ib_uobject { 1383 u64 user_handle; /* handle given to us by userspace */ 1384 struct ib_ucontext *context; /* associated user context */ 1385 void *object; /* containing object */ 1386 struct list_head list; /* link to context's list */ 1387 int id; /* index into kernel idr */ 1388 struct kref ref; 1389 struct rw_semaphore mutex; /* protects .live */ 1390 struct rcu_head rcu; /* kfree_rcu() overhead */ 1391 int live; 1392 }; 1393 1394 struct ib_udata { 1395 const void __user *inbuf; 1396 void __user *outbuf; 1397 size_t inlen; 1398 size_t outlen; 1399 }; 1400 1401 struct ib_pd { 1402 u32 local_dma_lkey; 1403 u32 flags; 1404 struct ib_device *device; 1405 struct ib_uobject *uobject; 1406 atomic_t usecnt; /* count all resources */ 1407 1408 u32 unsafe_global_rkey; 1409 1410 /* 1411 * Implementation details of the RDMA core, don't use in drivers: 1412 */ 1413 struct ib_mr *__internal_mr; 1414 }; 1415 1416 struct ib_xrcd { 1417 struct ib_device *device; 1418 atomic_t usecnt; /* count all exposed resources */ 1419 struct inode *inode; 1420 1421 struct mutex tgt_qp_mutex; 1422 struct list_head tgt_qp_list; 1423 }; 1424 1425 struct ib_ah { 1426 struct ib_device *device; 1427 struct ib_pd *pd; 1428 struct ib_uobject *uobject; 1429 }; 1430 1431 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1432 1433 enum ib_poll_context { 1434 IB_POLL_DIRECT, /* caller context, no hw completions */ 1435 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1436 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1437 }; 1438 1439 struct ib_cq { 1440 struct ib_device *device; 1441 struct ib_uobject *uobject; 1442 ib_comp_handler comp_handler; 1443 void (*event_handler)(struct ib_event *, void *); 1444 void *cq_context; 1445 int cqe; 1446 atomic_t usecnt; /* count number of work queues */ 1447 enum ib_poll_context poll_ctx; 1448 struct ib_wc *wc; 1449 union { 1450 struct irq_poll iop; 1451 struct work_struct work; 1452 }; 1453 }; 1454 1455 struct ib_srq { 1456 struct ib_device *device; 1457 struct ib_pd *pd; 1458 struct ib_uobject *uobject; 1459 void (*event_handler)(struct ib_event *, void *); 1460 void *srq_context; 1461 enum ib_srq_type srq_type; 1462 atomic_t usecnt; 1463 1464 union { 1465 struct { 1466 struct ib_xrcd *xrcd; 1467 struct ib_cq *cq; 1468 u32 srq_num; 1469 } xrc; 1470 } ext; 1471 }; 1472 1473 enum ib_wq_type { 1474 IB_WQT_RQ 1475 }; 1476 1477 enum ib_wq_state { 1478 IB_WQS_RESET, 1479 IB_WQS_RDY, 1480 IB_WQS_ERR 1481 }; 1482 1483 struct ib_wq { 1484 struct ib_device *device; 1485 struct ib_uobject *uobject; 1486 void *wq_context; 1487 void (*event_handler)(struct ib_event *, void *); 1488 struct ib_pd *pd; 1489 struct ib_cq *cq; 1490 u32 wq_num; 1491 enum ib_wq_state state; 1492 enum ib_wq_type wq_type; 1493 atomic_t usecnt; 1494 }; 1495 1496 struct ib_wq_init_attr { 1497 void *wq_context; 1498 enum ib_wq_type wq_type; 1499 u32 max_wr; 1500 u32 max_sge; 1501 struct ib_cq *cq; 1502 void (*event_handler)(struct ib_event *, void *); 1503 }; 1504 1505 enum ib_wq_attr_mask { 1506 IB_WQ_STATE = 1 << 0, 1507 IB_WQ_CUR_STATE = 1 << 1, 1508 }; 1509 1510 struct ib_wq_attr { 1511 enum ib_wq_state wq_state; 1512 enum ib_wq_state curr_wq_state; 1513 }; 1514 1515 struct ib_rwq_ind_table { 1516 struct ib_device *device; 1517 struct ib_uobject *uobject; 1518 atomic_t usecnt; 1519 u32 ind_tbl_num; 1520 u32 log_ind_tbl_size; 1521 struct ib_wq **ind_tbl; 1522 }; 1523 1524 struct ib_rwq_ind_table_init_attr { 1525 u32 log_ind_tbl_size; 1526 /* Each entry is a pointer to Receive Work Queue */ 1527 struct ib_wq **ind_tbl; 1528 }; 1529 1530 /* 1531 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1532 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1533 */ 1534 struct ib_qp { 1535 struct ib_device *device; 1536 struct ib_pd *pd; 1537 struct ib_cq *send_cq; 1538 struct ib_cq *recv_cq; 1539 spinlock_t mr_lock; 1540 int mrs_used; 1541 struct list_head rdma_mrs; 1542 struct list_head sig_mrs; 1543 struct ib_srq *srq; 1544 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1545 struct list_head xrcd_list; 1546 1547 /* count times opened, mcast attaches, flow attaches */ 1548 atomic_t usecnt; 1549 struct list_head open_list; 1550 struct ib_qp *real_qp; 1551 struct ib_uobject *uobject; 1552 void (*event_handler)(struct ib_event *, void *); 1553 void *qp_context; 1554 u32 qp_num; 1555 u32 max_write_sge; 1556 u32 max_read_sge; 1557 enum ib_qp_type qp_type; 1558 struct ib_rwq_ind_table *rwq_ind_tbl; 1559 }; 1560 1561 struct ib_mr { 1562 struct ib_device *device; 1563 struct ib_pd *pd; 1564 u32 lkey; 1565 u32 rkey; 1566 u64 iova; 1567 u32 length; 1568 unsigned int page_size; 1569 bool need_inval; 1570 union { 1571 struct ib_uobject *uobject; /* user */ 1572 struct list_head qp_entry; /* FR */ 1573 }; 1574 }; 1575 1576 struct ib_mw { 1577 struct ib_device *device; 1578 struct ib_pd *pd; 1579 struct ib_uobject *uobject; 1580 u32 rkey; 1581 enum ib_mw_type type; 1582 }; 1583 1584 struct ib_fmr { 1585 struct ib_device *device; 1586 struct ib_pd *pd; 1587 struct list_head list; 1588 u32 lkey; 1589 u32 rkey; 1590 }; 1591 1592 /* Supported steering options */ 1593 enum ib_flow_attr_type { 1594 /* steering according to rule specifications */ 1595 IB_FLOW_ATTR_NORMAL = 0x0, 1596 /* default unicast and multicast rule - 1597 * receive all Eth traffic which isn't steered to any QP 1598 */ 1599 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1600 /* default multicast rule - 1601 * receive all Eth multicast traffic which isn't steered to any QP 1602 */ 1603 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1604 /* sniffer rule - receive all port traffic */ 1605 IB_FLOW_ATTR_SNIFFER = 0x3 1606 }; 1607 1608 /* Supported steering header types */ 1609 enum ib_flow_spec_type { 1610 /* L2 headers*/ 1611 IB_FLOW_SPEC_ETH = 0x20, 1612 IB_FLOW_SPEC_IB = 0x22, 1613 /* L3 header*/ 1614 IB_FLOW_SPEC_IPV4 = 0x30, 1615 IB_FLOW_SPEC_IPV6 = 0x31, 1616 /* L4 headers*/ 1617 IB_FLOW_SPEC_TCP = 0x40, 1618 IB_FLOW_SPEC_UDP = 0x41, 1619 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1620 IB_FLOW_SPEC_INNER = 0x100, 1621 }; 1622 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1623 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1624 1625 /* Flow steering rule priority is set according to it's domain. 1626 * Lower domain value means higher priority. 1627 */ 1628 enum ib_flow_domain { 1629 IB_FLOW_DOMAIN_USER, 1630 IB_FLOW_DOMAIN_ETHTOOL, 1631 IB_FLOW_DOMAIN_RFS, 1632 IB_FLOW_DOMAIN_NIC, 1633 IB_FLOW_DOMAIN_NUM /* Must be last */ 1634 }; 1635 1636 enum ib_flow_flags { 1637 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1638 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1639 }; 1640 1641 struct ib_flow_eth_filter { 1642 u8 dst_mac[6]; 1643 u8 src_mac[6]; 1644 __be16 ether_type; 1645 __be16 vlan_tag; 1646 /* Must be last */ 1647 u8 real_sz[0]; 1648 }; 1649 1650 struct ib_flow_spec_eth { 1651 u32 type; 1652 u16 size; 1653 struct ib_flow_eth_filter val; 1654 struct ib_flow_eth_filter mask; 1655 }; 1656 1657 struct ib_flow_ib_filter { 1658 __be16 dlid; 1659 __u8 sl; 1660 /* Must be last */ 1661 u8 real_sz[0]; 1662 }; 1663 1664 struct ib_flow_spec_ib { 1665 u32 type; 1666 u16 size; 1667 struct ib_flow_ib_filter val; 1668 struct ib_flow_ib_filter mask; 1669 }; 1670 1671 /* IPv4 header flags */ 1672 enum ib_ipv4_flags { 1673 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1674 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1675 last have this flag set */ 1676 }; 1677 1678 struct ib_flow_ipv4_filter { 1679 __be32 src_ip; 1680 __be32 dst_ip; 1681 u8 proto; 1682 u8 tos; 1683 u8 ttl; 1684 u8 flags; 1685 /* Must be last */ 1686 u8 real_sz[0]; 1687 }; 1688 1689 struct ib_flow_spec_ipv4 { 1690 u32 type; 1691 u16 size; 1692 struct ib_flow_ipv4_filter val; 1693 struct ib_flow_ipv4_filter mask; 1694 }; 1695 1696 struct ib_flow_ipv6_filter { 1697 u8 src_ip[16]; 1698 u8 dst_ip[16]; 1699 __be32 flow_label; 1700 u8 next_hdr; 1701 u8 traffic_class; 1702 u8 hop_limit; 1703 /* Must be last */ 1704 u8 real_sz[0]; 1705 }; 1706 1707 struct ib_flow_spec_ipv6 { 1708 u32 type; 1709 u16 size; 1710 struct ib_flow_ipv6_filter val; 1711 struct ib_flow_ipv6_filter mask; 1712 }; 1713 1714 struct ib_flow_tcp_udp_filter { 1715 __be16 dst_port; 1716 __be16 src_port; 1717 /* Must be last */ 1718 u8 real_sz[0]; 1719 }; 1720 1721 struct ib_flow_spec_tcp_udp { 1722 u32 type; 1723 u16 size; 1724 struct ib_flow_tcp_udp_filter val; 1725 struct ib_flow_tcp_udp_filter mask; 1726 }; 1727 1728 struct ib_flow_tunnel_filter { 1729 __be32 tunnel_id; 1730 u8 real_sz[0]; 1731 }; 1732 1733 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1734 * the tunnel_id from val has the vni value 1735 */ 1736 struct ib_flow_spec_tunnel { 1737 u32 type; 1738 u16 size; 1739 struct ib_flow_tunnel_filter val; 1740 struct ib_flow_tunnel_filter mask; 1741 }; 1742 1743 union ib_flow_spec { 1744 struct { 1745 u32 type; 1746 u16 size; 1747 }; 1748 struct ib_flow_spec_eth eth; 1749 struct ib_flow_spec_ib ib; 1750 struct ib_flow_spec_ipv4 ipv4; 1751 struct ib_flow_spec_tcp_udp tcp_udp; 1752 struct ib_flow_spec_ipv6 ipv6; 1753 struct ib_flow_spec_tunnel tunnel; 1754 }; 1755 1756 struct ib_flow_attr { 1757 enum ib_flow_attr_type type; 1758 u16 size; 1759 u16 priority; 1760 u32 flags; 1761 u8 num_of_specs; 1762 u8 port; 1763 /* Following are the optional layers according to user request 1764 * struct ib_flow_spec_xxx 1765 * struct ib_flow_spec_yyy 1766 */ 1767 }; 1768 1769 struct ib_flow { 1770 struct ib_qp *qp; 1771 struct ib_uobject *uobject; 1772 }; 1773 1774 struct ib_mad_hdr; 1775 struct ib_grh; 1776 1777 enum ib_process_mad_flags { 1778 IB_MAD_IGNORE_MKEY = 1, 1779 IB_MAD_IGNORE_BKEY = 2, 1780 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1781 }; 1782 1783 enum ib_mad_result { 1784 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1785 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1786 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1787 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1788 }; 1789 1790 #define IB_DEVICE_NAME_MAX 64 1791 1792 struct ib_cache { 1793 rwlock_t lock; 1794 struct ib_event_handler event_handler; 1795 struct ib_pkey_cache **pkey_cache; 1796 struct ib_gid_table **gid_cache; 1797 u8 *lmc_cache; 1798 }; 1799 1800 struct ib_dma_mapping_ops { 1801 int (*mapping_error)(struct ib_device *dev, 1802 u64 dma_addr); 1803 u64 (*map_single)(struct ib_device *dev, 1804 void *ptr, size_t size, 1805 enum dma_data_direction direction); 1806 void (*unmap_single)(struct ib_device *dev, 1807 u64 addr, size_t size, 1808 enum dma_data_direction direction); 1809 u64 (*map_page)(struct ib_device *dev, 1810 struct page *page, unsigned long offset, 1811 size_t size, 1812 enum dma_data_direction direction); 1813 void (*unmap_page)(struct ib_device *dev, 1814 u64 addr, size_t size, 1815 enum dma_data_direction direction); 1816 int (*map_sg)(struct ib_device *dev, 1817 struct scatterlist *sg, int nents, 1818 enum dma_data_direction direction); 1819 void (*unmap_sg)(struct ib_device *dev, 1820 struct scatterlist *sg, int nents, 1821 enum dma_data_direction direction); 1822 int (*map_sg_attrs)(struct ib_device *dev, 1823 struct scatterlist *sg, int nents, 1824 enum dma_data_direction direction, 1825 unsigned long attrs); 1826 void (*unmap_sg_attrs)(struct ib_device *dev, 1827 struct scatterlist *sg, int nents, 1828 enum dma_data_direction direction, 1829 unsigned long attrs); 1830 void (*sync_single_for_cpu)(struct ib_device *dev, 1831 u64 dma_handle, 1832 size_t size, 1833 enum dma_data_direction dir); 1834 void (*sync_single_for_device)(struct ib_device *dev, 1835 u64 dma_handle, 1836 size_t size, 1837 enum dma_data_direction dir); 1838 void *(*alloc_coherent)(struct ib_device *dev, 1839 size_t size, 1840 u64 *dma_handle, 1841 gfp_t flag); 1842 void (*free_coherent)(struct ib_device *dev, 1843 size_t size, void *cpu_addr, 1844 u64 dma_handle); 1845 }; 1846 1847 struct iw_cm_verbs; 1848 1849 struct ib_port_immutable { 1850 int pkey_tbl_len; 1851 int gid_tbl_len; 1852 u32 core_cap_flags; 1853 u32 max_mad_size; 1854 }; 1855 1856 struct ib_device { 1857 struct device *dma_device; 1858 1859 char name[IB_DEVICE_NAME_MAX]; 1860 1861 struct list_head event_handler_list; 1862 spinlock_t event_handler_lock; 1863 1864 spinlock_t client_data_lock; 1865 struct list_head core_list; 1866 /* Access to the client_data_list is protected by the client_data_lock 1867 * spinlock and the lists_rwsem read-write semaphore */ 1868 struct list_head client_data_list; 1869 1870 struct ib_cache cache; 1871 /** 1872 * port_immutable is indexed by port number 1873 */ 1874 struct ib_port_immutable *port_immutable; 1875 1876 int num_comp_vectors; 1877 1878 struct iw_cm_verbs *iwcm; 1879 1880 /** 1881 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1882 * driver initialized data. The struct is kfree()'ed by the sysfs 1883 * core when the device is removed. A lifespan of -1 in the return 1884 * struct tells the core to set a default lifespan. 1885 */ 1886 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1887 u8 port_num); 1888 /** 1889 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1890 * @index - The index in the value array we wish to have updated, or 1891 * num_counters if we want all stats updated 1892 * Return codes - 1893 * < 0 - Error, no counters updated 1894 * index - Updated the single counter pointed to by index 1895 * num_counters - Updated all counters (will reset the timestamp 1896 * and prevent further calls for lifespan milliseconds) 1897 * Drivers are allowed to update all counters in leiu of just the 1898 * one given in index at their option 1899 */ 1900 int (*get_hw_stats)(struct ib_device *device, 1901 struct rdma_hw_stats *stats, 1902 u8 port, int index); 1903 int (*query_device)(struct ib_device *device, 1904 struct ib_device_attr *device_attr, 1905 struct ib_udata *udata); 1906 int (*query_port)(struct ib_device *device, 1907 u8 port_num, 1908 struct ib_port_attr *port_attr); 1909 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1910 u8 port_num); 1911 /* When calling get_netdev, the HW vendor's driver should return the 1912 * net device of device @device at port @port_num or NULL if such 1913 * a net device doesn't exist. The vendor driver should call dev_hold 1914 * on this net device. The HW vendor's device driver must guarantee 1915 * that this function returns NULL before the net device reaches 1916 * NETDEV_UNREGISTER_FINAL state. 1917 */ 1918 struct net_device *(*get_netdev)(struct ib_device *device, 1919 u8 port_num); 1920 int (*query_gid)(struct ib_device *device, 1921 u8 port_num, int index, 1922 union ib_gid *gid); 1923 /* When calling add_gid, the HW vendor's driver should 1924 * add the gid of device @device at gid index @index of 1925 * port @port_num to be @gid. Meta-info of that gid (for example, 1926 * the network device related to this gid is available 1927 * at @attr. @context allows the HW vendor driver to store extra 1928 * information together with a GID entry. The HW vendor may allocate 1929 * memory to contain this information and store it in @context when a 1930 * new GID entry is written to. Params are consistent until the next 1931 * call of add_gid or delete_gid. The function should return 0 on 1932 * success or error otherwise. The function could be called 1933 * concurrently for different ports. This function is only called 1934 * when roce_gid_table is used. 1935 */ 1936 int (*add_gid)(struct ib_device *device, 1937 u8 port_num, 1938 unsigned int index, 1939 const union ib_gid *gid, 1940 const struct ib_gid_attr *attr, 1941 void **context); 1942 /* When calling del_gid, the HW vendor's driver should delete the 1943 * gid of device @device at gid index @index of port @port_num. 1944 * Upon the deletion of a GID entry, the HW vendor must free any 1945 * allocated memory. The caller will clear @context afterwards. 1946 * This function is only called when roce_gid_table is used. 1947 */ 1948 int (*del_gid)(struct ib_device *device, 1949 u8 port_num, 1950 unsigned int index, 1951 void **context); 1952 int (*query_pkey)(struct ib_device *device, 1953 u8 port_num, u16 index, u16 *pkey); 1954 int (*modify_device)(struct ib_device *device, 1955 int device_modify_mask, 1956 struct ib_device_modify *device_modify); 1957 int (*modify_port)(struct ib_device *device, 1958 u8 port_num, int port_modify_mask, 1959 struct ib_port_modify *port_modify); 1960 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1961 struct ib_udata *udata); 1962 int (*dealloc_ucontext)(struct ib_ucontext *context); 1963 int (*mmap)(struct ib_ucontext *context, 1964 struct vm_area_struct *vma); 1965 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1966 struct ib_ucontext *context, 1967 struct ib_udata *udata); 1968 int (*dealloc_pd)(struct ib_pd *pd); 1969 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1970 struct ib_ah_attr *ah_attr, 1971 struct ib_udata *udata); 1972 int (*modify_ah)(struct ib_ah *ah, 1973 struct ib_ah_attr *ah_attr); 1974 int (*query_ah)(struct ib_ah *ah, 1975 struct ib_ah_attr *ah_attr); 1976 int (*destroy_ah)(struct ib_ah *ah); 1977 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1978 struct ib_srq_init_attr *srq_init_attr, 1979 struct ib_udata *udata); 1980 int (*modify_srq)(struct ib_srq *srq, 1981 struct ib_srq_attr *srq_attr, 1982 enum ib_srq_attr_mask srq_attr_mask, 1983 struct ib_udata *udata); 1984 int (*query_srq)(struct ib_srq *srq, 1985 struct ib_srq_attr *srq_attr); 1986 int (*destroy_srq)(struct ib_srq *srq); 1987 int (*post_srq_recv)(struct ib_srq *srq, 1988 struct ib_recv_wr *recv_wr, 1989 struct ib_recv_wr **bad_recv_wr); 1990 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1991 struct ib_qp_init_attr *qp_init_attr, 1992 struct ib_udata *udata); 1993 int (*modify_qp)(struct ib_qp *qp, 1994 struct ib_qp_attr *qp_attr, 1995 int qp_attr_mask, 1996 struct ib_udata *udata); 1997 int (*query_qp)(struct ib_qp *qp, 1998 struct ib_qp_attr *qp_attr, 1999 int qp_attr_mask, 2000 struct ib_qp_init_attr *qp_init_attr); 2001 int (*destroy_qp)(struct ib_qp *qp); 2002 int (*post_send)(struct ib_qp *qp, 2003 struct ib_send_wr *send_wr, 2004 struct ib_send_wr **bad_send_wr); 2005 int (*post_recv)(struct ib_qp *qp, 2006 struct ib_recv_wr *recv_wr, 2007 struct ib_recv_wr **bad_recv_wr); 2008 struct ib_cq * (*create_cq)(struct ib_device *device, 2009 const struct ib_cq_init_attr *attr, 2010 struct ib_ucontext *context, 2011 struct ib_udata *udata); 2012 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2013 u16 cq_period); 2014 int (*destroy_cq)(struct ib_cq *cq); 2015 int (*resize_cq)(struct ib_cq *cq, int cqe, 2016 struct ib_udata *udata); 2017 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2018 struct ib_wc *wc); 2019 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2020 int (*req_notify_cq)(struct ib_cq *cq, 2021 enum ib_cq_notify_flags flags); 2022 int (*req_ncomp_notif)(struct ib_cq *cq, 2023 int wc_cnt); 2024 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2025 int mr_access_flags); 2026 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2027 u64 start, u64 length, 2028 u64 virt_addr, 2029 int mr_access_flags, 2030 struct ib_udata *udata); 2031 int (*rereg_user_mr)(struct ib_mr *mr, 2032 int flags, 2033 u64 start, u64 length, 2034 u64 virt_addr, 2035 int mr_access_flags, 2036 struct ib_pd *pd, 2037 struct ib_udata *udata); 2038 int (*dereg_mr)(struct ib_mr *mr); 2039 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2040 enum ib_mr_type mr_type, 2041 u32 max_num_sg); 2042 int (*map_mr_sg)(struct ib_mr *mr, 2043 struct scatterlist *sg, 2044 int sg_nents, 2045 unsigned int *sg_offset); 2046 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2047 enum ib_mw_type type, 2048 struct ib_udata *udata); 2049 int (*dealloc_mw)(struct ib_mw *mw); 2050 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2051 int mr_access_flags, 2052 struct ib_fmr_attr *fmr_attr); 2053 int (*map_phys_fmr)(struct ib_fmr *fmr, 2054 u64 *page_list, int list_len, 2055 u64 iova); 2056 int (*unmap_fmr)(struct list_head *fmr_list); 2057 int (*dealloc_fmr)(struct ib_fmr *fmr); 2058 int (*attach_mcast)(struct ib_qp *qp, 2059 union ib_gid *gid, 2060 u16 lid); 2061 int (*detach_mcast)(struct ib_qp *qp, 2062 union ib_gid *gid, 2063 u16 lid); 2064 int (*process_mad)(struct ib_device *device, 2065 int process_mad_flags, 2066 u8 port_num, 2067 const struct ib_wc *in_wc, 2068 const struct ib_grh *in_grh, 2069 const struct ib_mad_hdr *in_mad, 2070 size_t in_mad_size, 2071 struct ib_mad_hdr *out_mad, 2072 size_t *out_mad_size, 2073 u16 *out_mad_pkey_index); 2074 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2075 struct ib_ucontext *ucontext, 2076 struct ib_udata *udata); 2077 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2078 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2079 struct ib_flow_attr 2080 *flow_attr, 2081 int domain); 2082 int (*destroy_flow)(struct ib_flow *flow_id); 2083 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2084 struct ib_mr_status *mr_status); 2085 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2086 void (*drain_rq)(struct ib_qp *qp); 2087 void (*drain_sq)(struct ib_qp *qp); 2088 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2089 int state); 2090 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2091 struct ifla_vf_info *ivf); 2092 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2093 struct ifla_vf_stats *stats); 2094 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2095 int type); 2096 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2097 struct ib_wq_init_attr *init_attr, 2098 struct ib_udata *udata); 2099 int (*destroy_wq)(struct ib_wq *wq); 2100 int (*modify_wq)(struct ib_wq *wq, 2101 struct ib_wq_attr *attr, 2102 u32 wq_attr_mask, 2103 struct ib_udata *udata); 2104 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2105 struct ib_rwq_ind_table_init_attr *init_attr, 2106 struct ib_udata *udata); 2107 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2108 struct ib_dma_mapping_ops *dma_ops; 2109 2110 struct module *owner; 2111 struct device dev; 2112 struct kobject *ports_parent; 2113 struct list_head port_list; 2114 2115 enum { 2116 IB_DEV_UNINITIALIZED, 2117 IB_DEV_REGISTERED, 2118 IB_DEV_UNREGISTERED 2119 } reg_state; 2120 2121 int uverbs_abi_ver; 2122 u64 uverbs_cmd_mask; 2123 u64 uverbs_ex_cmd_mask; 2124 2125 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2126 __be64 node_guid; 2127 u32 local_dma_lkey; 2128 u16 is_switch:1; 2129 u8 node_type; 2130 u8 phys_port_cnt; 2131 struct ib_device_attr attrs; 2132 struct attribute_group *hw_stats_ag; 2133 struct rdma_hw_stats *hw_stats; 2134 2135 /** 2136 * The following mandatory functions are used only at device 2137 * registration. Keep functions such as these at the end of this 2138 * structure to avoid cache line misses when accessing struct ib_device 2139 * in fast paths. 2140 */ 2141 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2142 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2143 }; 2144 2145 struct ib_client { 2146 char *name; 2147 void (*add) (struct ib_device *); 2148 void (*remove)(struct ib_device *, void *client_data); 2149 2150 /* Returns the net_dev belonging to this ib_client and matching the 2151 * given parameters. 2152 * @dev: An RDMA device that the net_dev use for communication. 2153 * @port: A physical port number on the RDMA device. 2154 * @pkey: P_Key that the net_dev uses if applicable. 2155 * @gid: A GID that the net_dev uses to communicate. 2156 * @addr: An IP address the net_dev is configured with. 2157 * @client_data: The device's client data set by ib_set_client_data(). 2158 * 2159 * An ib_client that implements a net_dev on top of RDMA devices 2160 * (such as IP over IB) should implement this callback, allowing the 2161 * rdma_cm module to find the right net_dev for a given request. 2162 * 2163 * The caller is responsible for calling dev_put on the returned 2164 * netdev. */ 2165 struct net_device *(*get_net_dev_by_params)( 2166 struct ib_device *dev, 2167 u8 port, 2168 u16 pkey, 2169 const union ib_gid *gid, 2170 const struct sockaddr *addr, 2171 void *client_data); 2172 struct list_head list; 2173 }; 2174 2175 struct ib_device *ib_alloc_device(size_t size); 2176 void ib_dealloc_device(struct ib_device *device); 2177 2178 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2179 2180 int ib_register_device(struct ib_device *device, 2181 int (*port_callback)(struct ib_device *, 2182 u8, struct kobject *)); 2183 void ib_unregister_device(struct ib_device *device); 2184 2185 int ib_register_client (struct ib_client *client); 2186 void ib_unregister_client(struct ib_client *client); 2187 2188 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2189 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2190 void *data); 2191 2192 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2193 { 2194 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2195 } 2196 2197 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2198 { 2199 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2200 } 2201 2202 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2203 size_t offset, 2204 size_t len) 2205 { 2206 const void __user *p = udata->inbuf + offset; 2207 bool ret; 2208 u8 *buf; 2209 2210 if (len > USHRT_MAX) 2211 return false; 2212 2213 buf = memdup_user(p, len); 2214 if (IS_ERR(buf)) 2215 return false; 2216 2217 ret = !memchr_inv(buf, 0, len); 2218 kfree(buf); 2219 return ret; 2220 } 2221 2222 /** 2223 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2224 * contains all required attributes and no attributes not allowed for 2225 * the given QP state transition. 2226 * @cur_state: Current QP state 2227 * @next_state: Next QP state 2228 * @type: QP type 2229 * @mask: Mask of supplied QP attributes 2230 * @ll : link layer of port 2231 * 2232 * This function is a helper function that a low-level driver's 2233 * modify_qp method can use to validate the consumer's input. It 2234 * checks that cur_state and next_state are valid QP states, that a 2235 * transition from cur_state to next_state is allowed by the IB spec, 2236 * and that the attribute mask supplied is allowed for the transition. 2237 */ 2238 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2239 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2240 enum rdma_link_layer ll); 2241 2242 int ib_register_event_handler (struct ib_event_handler *event_handler); 2243 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2244 void ib_dispatch_event(struct ib_event *event); 2245 2246 int ib_query_port(struct ib_device *device, 2247 u8 port_num, struct ib_port_attr *port_attr); 2248 2249 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2250 u8 port_num); 2251 2252 /** 2253 * rdma_cap_ib_switch - Check if the device is IB switch 2254 * @device: Device to check 2255 * 2256 * Device driver is responsible for setting is_switch bit on 2257 * in ib_device structure at init time. 2258 * 2259 * Return: true if the device is IB switch. 2260 */ 2261 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2262 { 2263 return device->is_switch; 2264 } 2265 2266 /** 2267 * rdma_start_port - Return the first valid port number for the device 2268 * specified 2269 * 2270 * @device: Device to be checked 2271 * 2272 * Return start port number 2273 */ 2274 static inline u8 rdma_start_port(const struct ib_device *device) 2275 { 2276 return rdma_cap_ib_switch(device) ? 0 : 1; 2277 } 2278 2279 /** 2280 * rdma_end_port - Return the last valid port number for the device 2281 * specified 2282 * 2283 * @device: Device to be checked 2284 * 2285 * Return last port number 2286 */ 2287 static inline u8 rdma_end_port(const struct ib_device *device) 2288 { 2289 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2290 } 2291 2292 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2293 { 2294 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2295 } 2296 2297 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2298 { 2299 return device->port_immutable[port_num].core_cap_flags & 2300 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2301 } 2302 2303 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2304 { 2305 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2306 } 2307 2308 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2309 { 2310 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2311 } 2312 2313 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2314 { 2315 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2316 } 2317 2318 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2319 { 2320 return rdma_protocol_ib(device, port_num) || 2321 rdma_protocol_roce(device, port_num); 2322 } 2323 2324 /** 2325 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2326 * Management Datagrams. 2327 * @device: Device to check 2328 * @port_num: Port number to check 2329 * 2330 * Management Datagrams (MAD) are a required part of the InfiniBand 2331 * specification and are supported on all InfiniBand devices. A slightly 2332 * extended version are also supported on OPA interfaces. 2333 * 2334 * Return: true if the port supports sending/receiving of MAD packets. 2335 */ 2336 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2337 { 2338 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2339 } 2340 2341 /** 2342 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2343 * Management Datagrams. 2344 * @device: Device to check 2345 * @port_num: Port number to check 2346 * 2347 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2348 * datagrams with their own versions. These OPA MADs share many but not all of 2349 * the characteristics of InfiniBand MADs. 2350 * 2351 * OPA MADs differ in the following ways: 2352 * 2353 * 1) MADs are variable size up to 2K 2354 * IBTA defined MADs remain fixed at 256 bytes 2355 * 2) OPA SMPs must carry valid PKeys 2356 * 3) OPA SMP packets are a different format 2357 * 2358 * Return: true if the port supports OPA MAD packet formats. 2359 */ 2360 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2361 { 2362 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2363 == RDMA_CORE_CAP_OPA_MAD; 2364 } 2365 2366 /** 2367 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2368 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2369 * @device: Device to check 2370 * @port_num: Port number to check 2371 * 2372 * Each InfiniBand node is required to provide a Subnet Management Agent 2373 * that the subnet manager can access. Prior to the fabric being fully 2374 * configured by the subnet manager, the SMA is accessed via a well known 2375 * interface called the Subnet Management Interface (SMI). This interface 2376 * uses directed route packets to communicate with the SM to get around the 2377 * chicken and egg problem of the SM needing to know what's on the fabric 2378 * in order to configure the fabric, and needing to configure the fabric in 2379 * order to send packets to the devices on the fabric. These directed 2380 * route packets do not need the fabric fully configured in order to reach 2381 * their destination. The SMI is the only method allowed to send 2382 * directed route packets on an InfiniBand fabric. 2383 * 2384 * Return: true if the port provides an SMI. 2385 */ 2386 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2387 { 2388 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2389 } 2390 2391 /** 2392 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2393 * Communication Manager. 2394 * @device: Device to check 2395 * @port_num: Port number to check 2396 * 2397 * The InfiniBand Communication Manager is one of many pre-defined General 2398 * Service Agents (GSA) that are accessed via the General Service 2399 * Interface (GSI). It's role is to facilitate establishment of connections 2400 * between nodes as well as other management related tasks for established 2401 * connections. 2402 * 2403 * Return: true if the port supports an IB CM (this does not guarantee that 2404 * a CM is actually running however). 2405 */ 2406 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2407 { 2408 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2409 } 2410 2411 /** 2412 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2413 * Communication Manager. 2414 * @device: Device to check 2415 * @port_num: Port number to check 2416 * 2417 * Similar to above, but specific to iWARP connections which have a different 2418 * managment protocol than InfiniBand. 2419 * 2420 * Return: true if the port supports an iWARP CM (this does not guarantee that 2421 * a CM is actually running however). 2422 */ 2423 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2424 { 2425 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2426 } 2427 2428 /** 2429 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2430 * Subnet Administration. 2431 * @device: Device to check 2432 * @port_num: Port number to check 2433 * 2434 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2435 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2436 * fabrics, devices should resolve routes to other hosts by contacting the 2437 * SA to query the proper route. 2438 * 2439 * Return: true if the port should act as a client to the fabric Subnet 2440 * Administration interface. This does not imply that the SA service is 2441 * running locally. 2442 */ 2443 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2444 { 2445 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2446 } 2447 2448 /** 2449 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2450 * Multicast. 2451 * @device: Device to check 2452 * @port_num: Port number to check 2453 * 2454 * InfiniBand multicast registration is more complex than normal IPv4 or 2455 * IPv6 multicast registration. Each Host Channel Adapter must register 2456 * with the Subnet Manager when it wishes to join a multicast group. It 2457 * should do so only once regardless of how many queue pairs it subscribes 2458 * to this group. And it should leave the group only after all queue pairs 2459 * attached to the group have been detached. 2460 * 2461 * Return: true if the port must undertake the additional adminstrative 2462 * overhead of registering/unregistering with the SM and tracking of the 2463 * total number of queue pairs attached to the multicast group. 2464 */ 2465 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2466 { 2467 return rdma_cap_ib_sa(device, port_num); 2468 } 2469 2470 /** 2471 * rdma_cap_af_ib - Check if the port of device has the capability 2472 * Native Infiniband Address. 2473 * @device: Device to check 2474 * @port_num: Port number to check 2475 * 2476 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2477 * GID. RoCE uses a different mechanism, but still generates a GID via 2478 * a prescribed mechanism and port specific data. 2479 * 2480 * Return: true if the port uses a GID address to identify devices on the 2481 * network. 2482 */ 2483 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2484 { 2485 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2486 } 2487 2488 /** 2489 * rdma_cap_eth_ah - Check if the port of device has the capability 2490 * Ethernet Address Handle. 2491 * @device: Device to check 2492 * @port_num: Port number to check 2493 * 2494 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2495 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2496 * port. Normally, packet headers are generated by the sending host 2497 * adapter, but when sending connectionless datagrams, we must manually 2498 * inject the proper headers for the fabric we are communicating over. 2499 * 2500 * Return: true if we are running as a RoCE port and must force the 2501 * addition of a Global Route Header built from our Ethernet Address 2502 * Handle into our header list for connectionless packets. 2503 */ 2504 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2505 { 2506 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2507 } 2508 2509 /** 2510 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2511 * 2512 * @device: Device 2513 * @port_num: Port number 2514 * 2515 * This MAD size includes the MAD headers and MAD payload. No other headers 2516 * are included. 2517 * 2518 * Return the max MAD size required by the Port. Will return 0 if the port 2519 * does not support MADs 2520 */ 2521 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2522 { 2523 return device->port_immutable[port_num].max_mad_size; 2524 } 2525 2526 /** 2527 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2528 * @device: Device to check 2529 * @port_num: Port number to check 2530 * 2531 * RoCE GID table mechanism manages the various GIDs for a device. 2532 * 2533 * NOTE: if allocating the port's GID table has failed, this call will still 2534 * return true, but any RoCE GID table API will fail. 2535 * 2536 * Return: true if the port uses RoCE GID table mechanism in order to manage 2537 * its GIDs. 2538 */ 2539 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2540 u8 port_num) 2541 { 2542 return rdma_protocol_roce(device, port_num) && 2543 device->add_gid && device->del_gid; 2544 } 2545 2546 /* 2547 * Check if the device supports READ W/ INVALIDATE. 2548 */ 2549 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2550 { 2551 /* 2552 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2553 * has support for it yet. 2554 */ 2555 return rdma_protocol_iwarp(dev, port_num); 2556 } 2557 2558 int ib_query_gid(struct ib_device *device, 2559 u8 port_num, int index, union ib_gid *gid, 2560 struct ib_gid_attr *attr); 2561 2562 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2563 int state); 2564 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2565 struct ifla_vf_info *info); 2566 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2567 struct ifla_vf_stats *stats); 2568 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2569 int type); 2570 2571 int ib_query_pkey(struct ib_device *device, 2572 u8 port_num, u16 index, u16 *pkey); 2573 2574 int ib_modify_device(struct ib_device *device, 2575 int device_modify_mask, 2576 struct ib_device_modify *device_modify); 2577 2578 int ib_modify_port(struct ib_device *device, 2579 u8 port_num, int port_modify_mask, 2580 struct ib_port_modify *port_modify); 2581 2582 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2583 enum ib_gid_type gid_type, struct net_device *ndev, 2584 u8 *port_num, u16 *index); 2585 2586 int ib_find_pkey(struct ib_device *device, 2587 u8 port_num, u16 pkey, u16 *index); 2588 2589 enum ib_pd_flags { 2590 /* 2591 * Create a memory registration for all memory in the system and place 2592 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2593 * ULPs to avoid the overhead of dynamic MRs. 2594 * 2595 * This flag is generally considered unsafe and must only be used in 2596 * extremly trusted environments. Every use of it will log a warning 2597 * in the kernel log. 2598 */ 2599 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2600 }; 2601 2602 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2603 const char *caller); 2604 #define ib_alloc_pd(device, flags) \ 2605 __ib_alloc_pd((device), (flags), __func__) 2606 void ib_dealloc_pd(struct ib_pd *pd); 2607 2608 /** 2609 * ib_create_ah - Creates an address handle for the given address vector. 2610 * @pd: The protection domain associated with the address handle. 2611 * @ah_attr: The attributes of the address vector. 2612 * 2613 * The address handle is used to reference a local or global destination 2614 * in all UD QP post sends. 2615 */ 2616 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2617 2618 /** 2619 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2620 * work completion. 2621 * @hdr: the L3 header to parse 2622 * @net_type: type of header to parse 2623 * @sgid: place to store source gid 2624 * @dgid: place to store destination gid 2625 */ 2626 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2627 enum rdma_network_type net_type, 2628 union ib_gid *sgid, union ib_gid *dgid); 2629 2630 /** 2631 * ib_get_rdma_header_version - Get the header version 2632 * @hdr: the L3 header to parse 2633 */ 2634 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2635 2636 /** 2637 * ib_init_ah_from_wc - Initializes address handle attributes from a 2638 * work completion. 2639 * @device: Device on which the received message arrived. 2640 * @port_num: Port on which the received message arrived. 2641 * @wc: Work completion associated with the received message. 2642 * @grh: References the received global route header. This parameter is 2643 * ignored unless the work completion indicates that the GRH is valid. 2644 * @ah_attr: Returned attributes that can be used when creating an address 2645 * handle for replying to the message. 2646 */ 2647 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2648 const struct ib_wc *wc, const struct ib_grh *grh, 2649 struct ib_ah_attr *ah_attr); 2650 2651 /** 2652 * ib_create_ah_from_wc - Creates an address handle associated with the 2653 * sender of the specified work completion. 2654 * @pd: The protection domain associated with the address handle. 2655 * @wc: Work completion information associated with a received message. 2656 * @grh: References the received global route header. This parameter is 2657 * ignored unless the work completion indicates that the GRH is valid. 2658 * @port_num: The outbound port number to associate with the address. 2659 * 2660 * The address handle is used to reference a local or global destination 2661 * in all UD QP post sends. 2662 */ 2663 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2664 const struct ib_grh *grh, u8 port_num); 2665 2666 /** 2667 * ib_modify_ah - Modifies the address vector associated with an address 2668 * handle. 2669 * @ah: The address handle to modify. 2670 * @ah_attr: The new address vector attributes to associate with the 2671 * address handle. 2672 */ 2673 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2674 2675 /** 2676 * ib_query_ah - Queries the address vector associated with an address 2677 * handle. 2678 * @ah: The address handle to query. 2679 * @ah_attr: The address vector attributes associated with the address 2680 * handle. 2681 */ 2682 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2683 2684 /** 2685 * ib_destroy_ah - Destroys an address handle. 2686 * @ah: The address handle to destroy. 2687 */ 2688 int ib_destroy_ah(struct ib_ah *ah); 2689 2690 /** 2691 * ib_create_srq - Creates a SRQ associated with the specified protection 2692 * domain. 2693 * @pd: The protection domain associated with the SRQ. 2694 * @srq_init_attr: A list of initial attributes required to create the 2695 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2696 * the actual capabilities of the created SRQ. 2697 * 2698 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2699 * requested size of the SRQ, and set to the actual values allocated 2700 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2701 * will always be at least as large as the requested values. 2702 */ 2703 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2704 struct ib_srq_init_attr *srq_init_attr); 2705 2706 /** 2707 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2708 * @srq: The SRQ to modify. 2709 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2710 * the current values of selected SRQ attributes are returned. 2711 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2712 * are being modified. 2713 * 2714 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2715 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2716 * the number of receives queued drops below the limit. 2717 */ 2718 int ib_modify_srq(struct ib_srq *srq, 2719 struct ib_srq_attr *srq_attr, 2720 enum ib_srq_attr_mask srq_attr_mask); 2721 2722 /** 2723 * ib_query_srq - Returns the attribute list and current values for the 2724 * specified SRQ. 2725 * @srq: The SRQ to query. 2726 * @srq_attr: The attributes of the specified SRQ. 2727 */ 2728 int ib_query_srq(struct ib_srq *srq, 2729 struct ib_srq_attr *srq_attr); 2730 2731 /** 2732 * ib_destroy_srq - Destroys the specified SRQ. 2733 * @srq: The SRQ to destroy. 2734 */ 2735 int ib_destroy_srq(struct ib_srq *srq); 2736 2737 /** 2738 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2739 * @srq: The SRQ to post the work request on. 2740 * @recv_wr: A list of work requests to post on the receive queue. 2741 * @bad_recv_wr: On an immediate failure, this parameter will reference 2742 * the work request that failed to be posted on the QP. 2743 */ 2744 static inline int ib_post_srq_recv(struct ib_srq *srq, 2745 struct ib_recv_wr *recv_wr, 2746 struct ib_recv_wr **bad_recv_wr) 2747 { 2748 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2749 } 2750 2751 /** 2752 * ib_create_qp - Creates a QP associated with the specified protection 2753 * domain. 2754 * @pd: The protection domain associated with the QP. 2755 * @qp_init_attr: A list of initial attributes required to create the 2756 * QP. If QP creation succeeds, then the attributes are updated to 2757 * the actual capabilities of the created QP. 2758 */ 2759 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2760 struct ib_qp_init_attr *qp_init_attr); 2761 2762 /** 2763 * ib_modify_qp - Modifies the attributes for the specified QP and then 2764 * transitions the QP to the given state. 2765 * @qp: The QP to modify. 2766 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2767 * the current values of selected QP attributes are returned. 2768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2769 * are being modified. 2770 */ 2771 int ib_modify_qp(struct ib_qp *qp, 2772 struct ib_qp_attr *qp_attr, 2773 int qp_attr_mask); 2774 2775 /** 2776 * ib_query_qp - Returns the attribute list and current values for the 2777 * specified QP. 2778 * @qp: The QP to query. 2779 * @qp_attr: The attributes of the specified QP. 2780 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2781 * @qp_init_attr: Additional attributes of the selected QP. 2782 * 2783 * The qp_attr_mask may be used to limit the query to gathering only the 2784 * selected attributes. 2785 */ 2786 int ib_query_qp(struct ib_qp *qp, 2787 struct ib_qp_attr *qp_attr, 2788 int qp_attr_mask, 2789 struct ib_qp_init_attr *qp_init_attr); 2790 2791 /** 2792 * ib_destroy_qp - Destroys the specified QP. 2793 * @qp: The QP to destroy. 2794 */ 2795 int ib_destroy_qp(struct ib_qp *qp); 2796 2797 /** 2798 * ib_open_qp - Obtain a reference to an existing sharable QP. 2799 * @xrcd - XRC domain 2800 * @qp_open_attr: Attributes identifying the QP to open. 2801 * 2802 * Returns a reference to a sharable QP. 2803 */ 2804 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2805 struct ib_qp_open_attr *qp_open_attr); 2806 2807 /** 2808 * ib_close_qp - Release an external reference to a QP. 2809 * @qp: The QP handle to release 2810 * 2811 * The opened QP handle is released by the caller. The underlying 2812 * shared QP is not destroyed until all internal references are released. 2813 */ 2814 int ib_close_qp(struct ib_qp *qp); 2815 2816 /** 2817 * ib_post_send - Posts a list of work requests to the send queue of 2818 * the specified QP. 2819 * @qp: The QP to post the work request on. 2820 * @send_wr: A list of work requests to post on the send queue. 2821 * @bad_send_wr: On an immediate failure, this parameter will reference 2822 * the work request that failed to be posted on the QP. 2823 * 2824 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2825 * error is returned, the QP state shall not be affected, 2826 * ib_post_send() will return an immediate error after queueing any 2827 * earlier work requests in the list. 2828 */ 2829 static inline int ib_post_send(struct ib_qp *qp, 2830 struct ib_send_wr *send_wr, 2831 struct ib_send_wr **bad_send_wr) 2832 { 2833 return qp->device->post_send(qp, send_wr, bad_send_wr); 2834 } 2835 2836 /** 2837 * ib_post_recv - Posts a list of work requests to the receive queue of 2838 * the specified QP. 2839 * @qp: The QP to post the work request on. 2840 * @recv_wr: A list of work requests to post on the receive queue. 2841 * @bad_recv_wr: On an immediate failure, this parameter will reference 2842 * the work request that failed to be posted on the QP. 2843 */ 2844 static inline int ib_post_recv(struct ib_qp *qp, 2845 struct ib_recv_wr *recv_wr, 2846 struct ib_recv_wr **bad_recv_wr) 2847 { 2848 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2849 } 2850 2851 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2852 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2853 void ib_free_cq(struct ib_cq *cq); 2854 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2855 2856 /** 2857 * ib_create_cq - Creates a CQ on the specified device. 2858 * @device: The device on which to create the CQ. 2859 * @comp_handler: A user-specified callback that is invoked when a 2860 * completion event occurs on the CQ. 2861 * @event_handler: A user-specified callback that is invoked when an 2862 * asynchronous event not associated with a completion occurs on the CQ. 2863 * @cq_context: Context associated with the CQ returned to the user via 2864 * the associated completion and event handlers. 2865 * @cq_attr: The attributes the CQ should be created upon. 2866 * 2867 * Users can examine the cq structure to determine the actual CQ size. 2868 */ 2869 struct ib_cq *ib_create_cq(struct ib_device *device, 2870 ib_comp_handler comp_handler, 2871 void (*event_handler)(struct ib_event *, void *), 2872 void *cq_context, 2873 const struct ib_cq_init_attr *cq_attr); 2874 2875 /** 2876 * ib_resize_cq - Modifies the capacity of the CQ. 2877 * @cq: The CQ to resize. 2878 * @cqe: The minimum size of the CQ. 2879 * 2880 * Users can examine the cq structure to determine the actual CQ size. 2881 */ 2882 int ib_resize_cq(struct ib_cq *cq, int cqe); 2883 2884 /** 2885 * ib_modify_cq - Modifies moderation params of the CQ 2886 * @cq: The CQ to modify. 2887 * @cq_count: number of CQEs that will trigger an event 2888 * @cq_period: max period of time in usec before triggering an event 2889 * 2890 */ 2891 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2892 2893 /** 2894 * ib_destroy_cq - Destroys the specified CQ. 2895 * @cq: The CQ to destroy. 2896 */ 2897 int ib_destroy_cq(struct ib_cq *cq); 2898 2899 /** 2900 * ib_poll_cq - poll a CQ for completion(s) 2901 * @cq:the CQ being polled 2902 * @num_entries:maximum number of completions to return 2903 * @wc:array of at least @num_entries &struct ib_wc where completions 2904 * will be returned 2905 * 2906 * Poll a CQ for (possibly multiple) completions. If the return value 2907 * is < 0, an error occurred. If the return value is >= 0, it is the 2908 * number of completions returned. If the return value is 2909 * non-negative and < num_entries, then the CQ was emptied. 2910 */ 2911 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2912 struct ib_wc *wc) 2913 { 2914 return cq->device->poll_cq(cq, num_entries, wc); 2915 } 2916 2917 /** 2918 * ib_peek_cq - Returns the number of unreaped completions currently 2919 * on the specified CQ. 2920 * @cq: The CQ to peek. 2921 * @wc_cnt: A minimum number of unreaped completions to check for. 2922 * 2923 * If the number of unreaped completions is greater than or equal to wc_cnt, 2924 * this function returns wc_cnt, otherwise, it returns the actual number of 2925 * unreaped completions. 2926 */ 2927 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2928 2929 /** 2930 * ib_req_notify_cq - Request completion notification on a CQ. 2931 * @cq: The CQ to generate an event for. 2932 * @flags: 2933 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2934 * to request an event on the next solicited event or next work 2935 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2936 * may also be |ed in to request a hint about missed events, as 2937 * described below. 2938 * 2939 * Return Value: 2940 * < 0 means an error occurred while requesting notification 2941 * == 0 means notification was requested successfully, and if 2942 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2943 * were missed and it is safe to wait for another event. In 2944 * this case is it guaranteed that any work completions added 2945 * to the CQ since the last CQ poll will trigger a completion 2946 * notification event. 2947 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2948 * in. It means that the consumer must poll the CQ again to 2949 * make sure it is empty to avoid missing an event because of a 2950 * race between requesting notification and an entry being 2951 * added to the CQ. This return value means it is possible 2952 * (but not guaranteed) that a work completion has been added 2953 * to the CQ since the last poll without triggering a 2954 * completion notification event. 2955 */ 2956 static inline int ib_req_notify_cq(struct ib_cq *cq, 2957 enum ib_cq_notify_flags flags) 2958 { 2959 return cq->device->req_notify_cq(cq, flags); 2960 } 2961 2962 /** 2963 * ib_req_ncomp_notif - Request completion notification when there are 2964 * at least the specified number of unreaped completions on the CQ. 2965 * @cq: The CQ to generate an event for. 2966 * @wc_cnt: The number of unreaped completions that should be on the 2967 * CQ before an event is generated. 2968 */ 2969 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2970 { 2971 return cq->device->req_ncomp_notif ? 2972 cq->device->req_ncomp_notif(cq, wc_cnt) : 2973 -ENOSYS; 2974 } 2975 2976 /** 2977 * ib_dma_mapping_error - check a DMA addr for error 2978 * @dev: The device for which the dma_addr was created 2979 * @dma_addr: The DMA address to check 2980 */ 2981 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2982 { 2983 if (dev->dma_ops) 2984 return dev->dma_ops->mapping_error(dev, dma_addr); 2985 return dma_mapping_error(dev->dma_device, dma_addr); 2986 } 2987 2988 /** 2989 * ib_dma_map_single - Map a kernel virtual address to DMA address 2990 * @dev: The device for which the dma_addr is to be created 2991 * @cpu_addr: The kernel virtual address 2992 * @size: The size of the region in bytes 2993 * @direction: The direction of the DMA 2994 */ 2995 static inline u64 ib_dma_map_single(struct ib_device *dev, 2996 void *cpu_addr, size_t size, 2997 enum dma_data_direction direction) 2998 { 2999 if (dev->dma_ops) 3000 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 3001 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3002 } 3003 3004 /** 3005 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3006 * @dev: The device for which the DMA address was created 3007 * @addr: The DMA address 3008 * @size: The size of the region in bytes 3009 * @direction: The direction of the DMA 3010 */ 3011 static inline void ib_dma_unmap_single(struct ib_device *dev, 3012 u64 addr, size_t size, 3013 enum dma_data_direction direction) 3014 { 3015 if (dev->dma_ops) 3016 dev->dma_ops->unmap_single(dev, addr, size, direction); 3017 else 3018 dma_unmap_single(dev->dma_device, addr, size, direction); 3019 } 3020 3021 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 3022 void *cpu_addr, size_t size, 3023 enum dma_data_direction direction, 3024 unsigned long dma_attrs) 3025 { 3026 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 3027 direction, dma_attrs); 3028 } 3029 3030 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 3031 u64 addr, size_t size, 3032 enum dma_data_direction direction, 3033 unsigned long dma_attrs) 3034 { 3035 return dma_unmap_single_attrs(dev->dma_device, addr, size, 3036 direction, dma_attrs); 3037 } 3038 3039 /** 3040 * ib_dma_map_page - Map a physical page to DMA address 3041 * @dev: The device for which the dma_addr is to be created 3042 * @page: The page to be mapped 3043 * @offset: The offset within the page 3044 * @size: The size of the region in bytes 3045 * @direction: The direction of the DMA 3046 */ 3047 static inline u64 ib_dma_map_page(struct ib_device *dev, 3048 struct page *page, 3049 unsigned long offset, 3050 size_t size, 3051 enum dma_data_direction direction) 3052 { 3053 if (dev->dma_ops) 3054 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3055 return dma_map_page(dev->dma_device, page, offset, size, direction); 3056 } 3057 3058 /** 3059 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3060 * @dev: The device for which the DMA address was created 3061 * @addr: The DMA address 3062 * @size: The size of the region in bytes 3063 * @direction: The direction of the DMA 3064 */ 3065 static inline void ib_dma_unmap_page(struct ib_device *dev, 3066 u64 addr, size_t size, 3067 enum dma_data_direction direction) 3068 { 3069 if (dev->dma_ops) 3070 dev->dma_ops->unmap_page(dev, addr, size, direction); 3071 else 3072 dma_unmap_page(dev->dma_device, addr, size, direction); 3073 } 3074 3075 /** 3076 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3077 * @dev: The device for which the DMA addresses are to be created 3078 * @sg: The array of scatter/gather entries 3079 * @nents: The number of scatter/gather entries 3080 * @direction: The direction of the DMA 3081 */ 3082 static inline int ib_dma_map_sg(struct ib_device *dev, 3083 struct scatterlist *sg, int nents, 3084 enum dma_data_direction direction) 3085 { 3086 if (dev->dma_ops) 3087 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3088 return dma_map_sg(dev->dma_device, sg, nents, direction); 3089 } 3090 3091 /** 3092 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3093 * @dev: The device for which the DMA addresses were created 3094 * @sg: The array of scatter/gather entries 3095 * @nents: The number of scatter/gather entries 3096 * @direction: The direction of the DMA 3097 */ 3098 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3099 struct scatterlist *sg, int nents, 3100 enum dma_data_direction direction) 3101 { 3102 if (dev->dma_ops) 3103 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3104 else 3105 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3106 } 3107 3108 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3109 struct scatterlist *sg, int nents, 3110 enum dma_data_direction direction, 3111 unsigned long dma_attrs) 3112 { 3113 if (dev->dma_ops) 3114 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3115 dma_attrs); 3116 else 3117 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3118 dma_attrs); 3119 } 3120 3121 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3122 struct scatterlist *sg, int nents, 3123 enum dma_data_direction direction, 3124 unsigned long dma_attrs) 3125 { 3126 if (dev->dma_ops) 3127 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3128 dma_attrs); 3129 else 3130 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3131 dma_attrs); 3132 } 3133 /** 3134 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3135 * @dev: The device for which the DMA addresses were created 3136 * @sg: The scatter/gather entry 3137 * 3138 * Note: this function is obsolete. To do: change all occurrences of 3139 * ib_sg_dma_address() into sg_dma_address(). 3140 */ 3141 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3142 struct scatterlist *sg) 3143 { 3144 return sg_dma_address(sg); 3145 } 3146 3147 /** 3148 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3149 * @dev: The device for which the DMA addresses were created 3150 * @sg: The scatter/gather entry 3151 * 3152 * Note: this function is obsolete. To do: change all occurrences of 3153 * ib_sg_dma_len() into sg_dma_len(). 3154 */ 3155 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3156 struct scatterlist *sg) 3157 { 3158 return sg_dma_len(sg); 3159 } 3160 3161 /** 3162 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3163 * @dev: The device for which the DMA address was created 3164 * @addr: The DMA address 3165 * @size: The size of the region in bytes 3166 * @dir: The direction of the DMA 3167 */ 3168 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3169 u64 addr, 3170 size_t size, 3171 enum dma_data_direction dir) 3172 { 3173 if (dev->dma_ops) 3174 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3175 else 3176 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3177 } 3178 3179 /** 3180 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3181 * @dev: The device for which the DMA address was created 3182 * @addr: The DMA address 3183 * @size: The size of the region in bytes 3184 * @dir: The direction of the DMA 3185 */ 3186 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3187 u64 addr, 3188 size_t size, 3189 enum dma_data_direction dir) 3190 { 3191 if (dev->dma_ops) 3192 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3193 else 3194 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3195 } 3196 3197 /** 3198 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3199 * @dev: The device for which the DMA address is requested 3200 * @size: The size of the region to allocate in bytes 3201 * @dma_handle: A pointer for returning the DMA address of the region 3202 * @flag: memory allocator flags 3203 */ 3204 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3205 size_t size, 3206 u64 *dma_handle, 3207 gfp_t flag) 3208 { 3209 if (dev->dma_ops) 3210 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3211 else { 3212 dma_addr_t handle; 3213 void *ret; 3214 3215 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3216 *dma_handle = handle; 3217 return ret; 3218 } 3219 } 3220 3221 /** 3222 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3223 * @dev: The device for which the DMA addresses were allocated 3224 * @size: The size of the region 3225 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3226 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3227 */ 3228 static inline void ib_dma_free_coherent(struct ib_device *dev, 3229 size_t size, void *cpu_addr, 3230 u64 dma_handle) 3231 { 3232 if (dev->dma_ops) 3233 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3234 else 3235 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3236 } 3237 3238 /** 3239 * ib_dereg_mr - Deregisters a memory region and removes it from the 3240 * HCA translation table. 3241 * @mr: The memory region to deregister. 3242 * 3243 * This function can fail, if the memory region has memory windows bound to it. 3244 */ 3245 int ib_dereg_mr(struct ib_mr *mr); 3246 3247 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3248 enum ib_mr_type mr_type, 3249 u32 max_num_sg); 3250 3251 /** 3252 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3253 * R_Key and L_Key. 3254 * @mr - struct ib_mr pointer to be updated. 3255 * @newkey - new key to be used. 3256 */ 3257 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3258 { 3259 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3260 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3261 } 3262 3263 /** 3264 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3265 * for calculating a new rkey for type 2 memory windows. 3266 * @rkey - the rkey to increment. 3267 */ 3268 static inline u32 ib_inc_rkey(u32 rkey) 3269 { 3270 const u32 mask = 0x000000ff; 3271 return ((rkey + 1) & mask) | (rkey & ~mask); 3272 } 3273 3274 /** 3275 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3276 * @pd: The protection domain associated with the unmapped region. 3277 * @mr_access_flags: Specifies the memory access rights. 3278 * @fmr_attr: Attributes of the unmapped region. 3279 * 3280 * A fast memory region must be mapped before it can be used as part of 3281 * a work request. 3282 */ 3283 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3284 int mr_access_flags, 3285 struct ib_fmr_attr *fmr_attr); 3286 3287 /** 3288 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3289 * @fmr: The fast memory region to associate with the pages. 3290 * @page_list: An array of physical pages to map to the fast memory region. 3291 * @list_len: The number of pages in page_list. 3292 * @iova: The I/O virtual address to use with the mapped region. 3293 */ 3294 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3295 u64 *page_list, int list_len, 3296 u64 iova) 3297 { 3298 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3299 } 3300 3301 /** 3302 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3303 * @fmr_list: A linked list of fast memory regions to unmap. 3304 */ 3305 int ib_unmap_fmr(struct list_head *fmr_list); 3306 3307 /** 3308 * ib_dealloc_fmr - Deallocates a fast memory region. 3309 * @fmr: The fast memory region to deallocate. 3310 */ 3311 int ib_dealloc_fmr(struct ib_fmr *fmr); 3312 3313 /** 3314 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3315 * @qp: QP to attach to the multicast group. The QP must be type 3316 * IB_QPT_UD. 3317 * @gid: Multicast group GID. 3318 * @lid: Multicast group LID in host byte order. 3319 * 3320 * In order to send and receive multicast packets, subnet 3321 * administration must have created the multicast group and configured 3322 * the fabric appropriately. The port associated with the specified 3323 * QP must also be a member of the multicast group. 3324 */ 3325 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3326 3327 /** 3328 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3329 * @qp: QP to detach from the multicast group. 3330 * @gid: Multicast group GID. 3331 * @lid: Multicast group LID in host byte order. 3332 */ 3333 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3334 3335 /** 3336 * ib_alloc_xrcd - Allocates an XRC domain. 3337 * @device: The device on which to allocate the XRC domain. 3338 */ 3339 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3340 3341 /** 3342 * ib_dealloc_xrcd - Deallocates an XRC domain. 3343 * @xrcd: The XRC domain to deallocate. 3344 */ 3345 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3346 3347 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3348 struct ib_flow_attr *flow_attr, int domain); 3349 int ib_destroy_flow(struct ib_flow *flow_id); 3350 3351 static inline int ib_check_mr_access(int flags) 3352 { 3353 /* 3354 * Local write permission is required if remote write or 3355 * remote atomic permission is also requested. 3356 */ 3357 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3358 !(flags & IB_ACCESS_LOCAL_WRITE)) 3359 return -EINVAL; 3360 3361 return 0; 3362 } 3363 3364 /** 3365 * ib_check_mr_status: lightweight check of MR status. 3366 * This routine may provide status checks on a selected 3367 * ib_mr. first use is for signature status check. 3368 * 3369 * @mr: A memory region. 3370 * @check_mask: Bitmask of which checks to perform from 3371 * ib_mr_status_check enumeration. 3372 * @mr_status: The container of relevant status checks. 3373 * failed checks will be indicated in the status bitmask 3374 * and the relevant info shall be in the error item. 3375 */ 3376 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3377 struct ib_mr_status *mr_status); 3378 3379 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3380 u16 pkey, const union ib_gid *gid, 3381 const struct sockaddr *addr); 3382 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3383 struct ib_wq_init_attr *init_attr); 3384 int ib_destroy_wq(struct ib_wq *wq); 3385 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3386 u32 wq_attr_mask); 3387 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3388 struct ib_rwq_ind_table_init_attr* 3389 wq_ind_table_init_attr); 3390 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3391 3392 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3393 unsigned int *sg_offset, unsigned int page_size); 3394 3395 static inline int 3396 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3397 unsigned int *sg_offset, unsigned int page_size) 3398 { 3399 int n; 3400 3401 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3402 mr->iova = 0; 3403 3404 return n; 3405 } 3406 3407 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3408 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3409 3410 void ib_drain_rq(struct ib_qp *qp); 3411 void ib_drain_sq(struct ib_qp *qp); 3412 void ib_drain_qp(struct ib_qp *qp); 3413 3414 int ib_resolve_eth_dmac(struct ib_device *device, 3415 struct ib_ah_attr *ah_attr); 3416 #endif /* IB_VERBS_H */ 3417