1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/atomic.h> 60 #include <linux/mmu_notifier.h> 61 #include <asm/uaccess.h> 62 63 extern struct workqueue_struct *ib_wq; 64 extern struct workqueue_struct *ib_comp_wq; 65 66 union ib_gid { 67 u8 raw[16]; 68 struct { 69 __be64 subnet_prefix; 70 __be64 interface_id; 71 } global; 72 }; 73 74 extern union ib_gid zgid; 75 76 enum ib_gid_type { 77 /* If link layer is Ethernet, this is RoCE V1 */ 78 IB_GID_TYPE_IB = 0, 79 IB_GID_TYPE_ROCE = 0, 80 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 81 IB_GID_TYPE_SIZE 82 }; 83 84 #define ROCE_V2_UDP_DPORT 4791 85 struct ib_gid_attr { 86 enum ib_gid_type gid_type; 87 struct net_device *ndev; 88 }; 89 90 enum rdma_node_type { 91 /* IB values map to NodeInfo:NodeType. */ 92 RDMA_NODE_IB_CA = 1, 93 RDMA_NODE_IB_SWITCH, 94 RDMA_NODE_IB_ROUTER, 95 RDMA_NODE_RNIC, 96 RDMA_NODE_USNIC, 97 RDMA_NODE_USNIC_UDP, 98 }; 99 100 enum rdma_transport_type { 101 RDMA_TRANSPORT_IB, 102 RDMA_TRANSPORT_IWARP, 103 RDMA_TRANSPORT_USNIC, 104 RDMA_TRANSPORT_USNIC_UDP 105 }; 106 107 enum rdma_protocol_type { 108 RDMA_PROTOCOL_IB, 109 RDMA_PROTOCOL_IBOE, 110 RDMA_PROTOCOL_IWARP, 111 RDMA_PROTOCOL_USNIC_UDP 112 }; 113 114 __attribute_const__ enum rdma_transport_type 115 rdma_node_get_transport(enum rdma_node_type node_type); 116 117 enum rdma_network_type { 118 RDMA_NETWORK_IB, 119 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 120 RDMA_NETWORK_IPV4, 121 RDMA_NETWORK_IPV6 122 }; 123 124 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 125 { 126 if (network_type == RDMA_NETWORK_IPV4 || 127 network_type == RDMA_NETWORK_IPV6) 128 return IB_GID_TYPE_ROCE_UDP_ENCAP; 129 130 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 131 return IB_GID_TYPE_IB; 132 } 133 134 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 135 union ib_gid *gid) 136 { 137 if (gid_type == IB_GID_TYPE_IB) 138 return RDMA_NETWORK_IB; 139 140 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 141 return RDMA_NETWORK_IPV4; 142 else 143 return RDMA_NETWORK_IPV6; 144 } 145 146 enum rdma_link_layer { 147 IB_LINK_LAYER_UNSPECIFIED, 148 IB_LINK_LAYER_INFINIBAND, 149 IB_LINK_LAYER_ETHERNET, 150 }; 151 152 enum ib_device_cap_flags { 153 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 154 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 155 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 156 IB_DEVICE_RAW_MULTI = (1 << 3), 157 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 158 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 159 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 160 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 161 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 162 IB_DEVICE_INIT_TYPE = (1 << 9), 163 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 164 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 165 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 166 IB_DEVICE_SRQ_RESIZE = (1 << 13), 167 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 168 169 /* 170 * This device supports a per-device lkey or stag that can be 171 * used without performing a memory registration for the local 172 * memory. Note that ULPs should never check this flag, but 173 * instead of use the local_dma_lkey flag in the ib_pd structure, 174 * which will always contain a usable lkey. 175 */ 176 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 177 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 178 IB_DEVICE_MEM_WINDOW = (1 << 17), 179 /* 180 * Devices should set IB_DEVICE_UD_IP_SUM if they support 181 * insertion of UDP and TCP checksum on outgoing UD IPoIB 182 * messages and can verify the validity of checksum for 183 * incoming messages. Setting this flag implies that the 184 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 185 */ 186 IB_DEVICE_UD_IP_CSUM = (1 << 18), 187 IB_DEVICE_UD_TSO = (1 << 19), 188 IB_DEVICE_XRC = (1 << 20), 189 190 /* 191 * This device supports the IB "base memory management extension", 192 * which includes support for fast registrations (IB_WR_REG_MR, 193 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 194 * also be set by any iWarp device which must support FRs to comply 195 * to the iWarp verbs spec. iWarp devices also support the 196 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 197 * stag. 198 */ 199 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 200 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 201 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 202 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 203 IB_DEVICE_RC_IP_CSUM = (1 << 25), 204 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 205 /* 206 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 207 * support execution of WQEs that involve synchronization 208 * of I/O operations with single completion queue managed 209 * by hardware. 210 */ 211 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 212 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 213 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 214 IB_DEVICE_ON_DEMAND_PAGING = (1 << 31), 215 }; 216 217 enum ib_signature_prot_cap { 218 IB_PROT_T10DIF_TYPE_1 = 1, 219 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 220 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 221 }; 222 223 enum ib_signature_guard_cap { 224 IB_GUARD_T10DIF_CRC = 1, 225 IB_GUARD_T10DIF_CSUM = 1 << 1, 226 }; 227 228 enum ib_atomic_cap { 229 IB_ATOMIC_NONE, 230 IB_ATOMIC_HCA, 231 IB_ATOMIC_GLOB 232 }; 233 234 enum ib_odp_general_cap_bits { 235 IB_ODP_SUPPORT = 1 << 0, 236 }; 237 238 enum ib_odp_transport_cap_bits { 239 IB_ODP_SUPPORT_SEND = 1 << 0, 240 IB_ODP_SUPPORT_RECV = 1 << 1, 241 IB_ODP_SUPPORT_WRITE = 1 << 2, 242 IB_ODP_SUPPORT_READ = 1 << 3, 243 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 244 }; 245 246 struct ib_odp_caps { 247 uint64_t general_caps; 248 struct { 249 uint32_t rc_odp_caps; 250 uint32_t uc_odp_caps; 251 uint32_t ud_odp_caps; 252 } per_transport_caps; 253 }; 254 255 enum ib_cq_creation_flags { 256 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 257 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 258 }; 259 260 struct ib_cq_init_attr { 261 unsigned int cqe; 262 int comp_vector; 263 u32 flags; 264 }; 265 266 struct ib_device_attr { 267 u64 fw_ver; 268 __be64 sys_image_guid; 269 u64 max_mr_size; 270 u64 page_size_cap; 271 u32 vendor_id; 272 u32 vendor_part_id; 273 u32 hw_ver; 274 int max_qp; 275 int max_qp_wr; 276 int device_cap_flags; 277 int max_sge; 278 int max_sge_rd; 279 int max_cq; 280 int max_cqe; 281 int max_mr; 282 int max_pd; 283 int max_qp_rd_atom; 284 int max_ee_rd_atom; 285 int max_res_rd_atom; 286 int max_qp_init_rd_atom; 287 int max_ee_init_rd_atom; 288 enum ib_atomic_cap atomic_cap; 289 enum ib_atomic_cap masked_atomic_cap; 290 int max_ee; 291 int max_rdd; 292 int max_mw; 293 int max_raw_ipv6_qp; 294 int max_raw_ethy_qp; 295 int max_mcast_grp; 296 int max_mcast_qp_attach; 297 int max_total_mcast_qp_attach; 298 int max_ah; 299 int max_fmr; 300 int max_map_per_fmr; 301 int max_srq; 302 int max_srq_wr; 303 int max_srq_sge; 304 unsigned int max_fast_reg_page_list_len; 305 u16 max_pkeys; 306 u8 local_ca_ack_delay; 307 int sig_prot_cap; 308 int sig_guard_cap; 309 struct ib_odp_caps odp_caps; 310 uint64_t timestamp_mask; 311 uint64_t hca_core_clock; /* in KHZ */ 312 }; 313 314 enum ib_mtu { 315 IB_MTU_256 = 1, 316 IB_MTU_512 = 2, 317 IB_MTU_1024 = 3, 318 IB_MTU_2048 = 4, 319 IB_MTU_4096 = 5 320 }; 321 322 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 323 { 324 switch (mtu) { 325 case IB_MTU_256: return 256; 326 case IB_MTU_512: return 512; 327 case IB_MTU_1024: return 1024; 328 case IB_MTU_2048: return 2048; 329 case IB_MTU_4096: return 4096; 330 default: return -1; 331 } 332 } 333 334 enum ib_port_state { 335 IB_PORT_NOP = 0, 336 IB_PORT_DOWN = 1, 337 IB_PORT_INIT = 2, 338 IB_PORT_ARMED = 3, 339 IB_PORT_ACTIVE = 4, 340 IB_PORT_ACTIVE_DEFER = 5 341 }; 342 343 enum ib_port_cap_flags { 344 IB_PORT_SM = 1 << 1, 345 IB_PORT_NOTICE_SUP = 1 << 2, 346 IB_PORT_TRAP_SUP = 1 << 3, 347 IB_PORT_OPT_IPD_SUP = 1 << 4, 348 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 349 IB_PORT_SL_MAP_SUP = 1 << 6, 350 IB_PORT_MKEY_NVRAM = 1 << 7, 351 IB_PORT_PKEY_NVRAM = 1 << 8, 352 IB_PORT_LED_INFO_SUP = 1 << 9, 353 IB_PORT_SM_DISABLED = 1 << 10, 354 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 355 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 356 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 357 IB_PORT_CM_SUP = 1 << 16, 358 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 359 IB_PORT_REINIT_SUP = 1 << 18, 360 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 361 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 362 IB_PORT_DR_NOTICE_SUP = 1 << 21, 363 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 364 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 365 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 366 IB_PORT_CLIENT_REG_SUP = 1 << 25, 367 IB_PORT_IP_BASED_GIDS = 1 << 26, 368 }; 369 370 enum ib_port_width { 371 IB_WIDTH_1X = 1, 372 IB_WIDTH_4X = 2, 373 IB_WIDTH_8X = 4, 374 IB_WIDTH_12X = 8 375 }; 376 377 static inline int ib_width_enum_to_int(enum ib_port_width width) 378 { 379 switch (width) { 380 case IB_WIDTH_1X: return 1; 381 case IB_WIDTH_4X: return 4; 382 case IB_WIDTH_8X: return 8; 383 case IB_WIDTH_12X: return 12; 384 default: return -1; 385 } 386 } 387 388 enum ib_port_speed { 389 IB_SPEED_SDR = 1, 390 IB_SPEED_DDR = 2, 391 IB_SPEED_QDR = 4, 392 IB_SPEED_FDR10 = 8, 393 IB_SPEED_FDR = 16, 394 IB_SPEED_EDR = 32 395 }; 396 397 struct ib_protocol_stats { 398 /* TBD... */ 399 }; 400 401 struct iw_protocol_stats { 402 u64 ipInReceives; 403 u64 ipInHdrErrors; 404 u64 ipInTooBigErrors; 405 u64 ipInNoRoutes; 406 u64 ipInAddrErrors; 407 u64 ipInUnknownProtos; 408 u64 ipInTruncatedPkts; 409 u64 ipInDiscards; 410 u64 ipInDelivers; 411 u64 ipOutForwDatagrams; 412 u64 ipOutRequests; 413 u64 ipOutDiscards; 414 u64 ipOutNoRoutes; 415 u64 ipReasmTimeout; 416 u64 ipReasmReqds; 417 u64 ipReasmOKs; 418 u64 ipReasmFails; 419 u64 ipFragOKs; 420 u64 ipFragFails; 421 u64 ipFragCreates; 422 u64 ipInMcastPkts; 423 u64 ipOutMcastPkts; 424 u64 ipInBcastPkts; 425 u64 ipOutBcastPkts; 426 427 u64 tcpRtoAlgorithm; 428 u64 tcpRtoMin; 429 u64 tcpRtoMax; 430 u64 tcpMaxConn; 431 u64 tcpActiveOpens; 432 u64 tcpPassiveOpens; 433 u64 tcpAttemptFails; 434 u64 tcpEstabResets; 435 u64 tcpCurrEstab; 436 u64 tcpInSegs; 437 u64 tcpOutSegs; 438 u64 tcpRetransSegs; 439 u64 tcpInErrs; 440 u64 tcpOutRsts; 441 }; 442 443 union rdma_protocol_stats { 444 struct ib_protocol_stats ib; 445 struct iw_protocol_stats iw; 446 }; 447 448 /* Define bits for the various functionality this port needs to be supported by 449 * the core. 450 */ 451 /* Management 0x00000FFF */ 452 #define RDMA_CORE_CAP_IB_MAD 0x00000001 453 #define RDMA_CORE_CAP_IB_SMI 0x00000002 454 #define RDMA_CORE_CAP_IB_CM 0x00000004 455 #define RDMA_CORE_CAP_IW_CM 0x00000008 456 #define RDMA_CORE_CAP_IB_SA 0x00000010 457 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 458 459 /* Address format 0x000FF000 */ 460 #define RDMA_CORE_CAP_AF_IB 0x00001000 461 #define RDMA_CORE_CAP_ETH_AH 0x00002000 462 463 /* Protocol 0xFFF00000 */ 464 #define RDMA_CORE_CAP_PROT_IB 0x00100000 465 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 466 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 467 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 468 469 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 470 | RDMA_CORE_CAP_IB_MAD \ 471 | RDMA_CORE_CAP_IB_SMI \ 472 | RDMA_CORE_CAP_IB_CM \ 473 | RDMA_CORE_CAP_IB_SA \ 474 | RDMA_CORE_CAP_AF_IB) 475 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 476 | RDMA_CORE_CAP_IB_MAD \ 477 | RDMA_CORE_CAP_IB_CM \ 478 | RDMA_CORE_CAP_AF_IB \ 479 | RDMA_CORE_CAP_ETH_AH) 480 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 481 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 482 | RDMA_CORE_CAP_IB_MAD \ 483 | RDMA_CORE_CAP_IB_CM \ 484 | RDMA_CORE_CAP_AF_IB \ 485 | RDMA_CORE_CAP_ETH_AH) 486 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 487 | RDMA_CORE_CAP_IW_CM) 488 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 489 | RDMA_CORE_CAP_OPA_MAD) 490 491 struct ib_port_attr { 492 enum ib_port_state state; 493 enum ib_mtu max_mtu; 494 enum ib_mtu active_mtu; 495 int gid_tbl_len; 496 u32 port_cap_flags; 497 u32 max_msg_sz; 498 u32 bad_pkey_cntr; 499 u32 qkey_viol_cntr; 500 u16 pkey_tbl_len; 501 u16 lid; 502 u16 sm_lid; 503 u8 lmc; 504 u8 max_vl_num; 505 u8 sm_sl; 506 u8 subnet_timeout; 507 u8 init_type_reply; 508 u8 active_width; 509 u8 active_speed; 510 u8 phys_state; 511 }; 512 513 enum ib_device_modify_flags { 514 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 515 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 516 }; 517 518 struct ib_device_modify { 519 u64 sys_image_guid; 520 char node_desc[64]; 521 }; 522 523 enum ib_port_modify_flags { 524 IB_PORT_SHUTDOWN = 1, 525 IB_PORT_INIT_TYPE = (1<<2), 526 IB_PORT_RESET_QKEY_CNTR = (1<<3) 527 }; 528 529 struct ib_port_modify { 530 u32 set_port_cap_mask; 531 u32 clr_port_cap_mask; 532 u8 init_type; 533 }; 534 535 enum ib_event_type { 536 IB_EVENT_CQ_ERR, 537 IB_EVENT_QP_FATAL, 538 IB_EVENT_QP_REQ_ERR, 539 IB_EVENT_QP_ACCESS_ERR, 540 IB_EVENT_COMM_EST, 541 IB_EVENT_SQ_DRAINED, 542 IB_EVENT_PATH_MIG, 543 IB_EVENT_PATH_MIG_ERR, 544 IB_EVENT_DEVICE_FATAL, 545 IB_EVENT_PORT_ACTIVE, 546 IB_EVENT_PORT_ERR, 547 IB_EVENT_LID_CHANGE, 548 IB_EVENT_PKEY_CHANGE, 549 IB_EVENT_SM_CHANGE, 550 IB_EVENT_SRQ_ERR, 551 IB_EVENT_SRQ_LIMIT_REACHED, 552 IB_EVENT_QP_LAST_WQE_REACHED, 553 IB_EVENT_CLIENT_REREGISTER, 554 IB_EVENT_GID_CHANGE, 555 }; 556 557 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 558 559 struct ib_event { 560 struct ib_device *device; 561 union { 562 struct ib_cq *cq; 563 struct ib_qp *qp; 564 struct ib_srq *srq; 565 u8 port_num; 566 } element; 567 enum ib_event_type event; 568 }; 569 570 struct ib_event_handler { 571 struct ib_device *device; 572 void (*handler)(struct ib_event_handler *, struct ib_event *); 573 struct list_head list; 574 }; 575 576 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 577 do { \ 578 (_ptr)->device = _device; \ 579 (_ptr)->handler = _handler; \ 580 INIT_LIST_HEAD(&(_ptr)->list); \ 581 } while (0) 582 583 struct ib_global_route { 584 union ib_gid dgid; 585 u32 flow_label; 586 u8 sgid_index; 587 u8 hop_limit; 588 u8 traffic_class; 589 }; 590 591 struct ib_grh { 592 __be32 version_tclass_flow; 593 __be16 paylen; 594 u8 next_hdr; 595 u8 hop_limit; 596 union ib_gid sgid; 597 union ib_gid dgid; 598 }; 599 600 union rdma_network_hdr { 601 struct ib_grh ibgrh; 602 struct { 603 /* The IB spec states that if it's IPv4, the header 604 * is located in the last 20 bytes of the header. 605 */ 606 u8 reserved[20]; 607 struct iphdr roce4grh; 608 }; 609 }; 610 611 enum { 612 IB_MULTICAST_QPN = 0xffffff 613 }; 614 615 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 616 617 enum ib_ah_flags { 618 IB_AH_GRH = 1 619 }; 620 621 enum ib_rate { 622 IB_RATE_PORT_CURRENT = 0, 623 IB_RATE_2_5_GBPS = 2, 624 IB_RATE_5_GBPS = 5, 625 IB_RATE_10_GBPS = 3, 626 IB_RATE_20_GBPS = 6, 627 IB_RATE_30_GBPS = 4, 628 IB_RATE_40_GBPS = 7, 629 IB_RATE_60_GBPS = 8, 630 IB_RATE_80_GBPS = 9, 631 IB_RATE_120_GBPS = 10, 632 IB_RATE_14_GBPS = 11, 633 IB_RATE_56_GBPS = 12, 634 IB_RATE_112_GBPS = 13, 635 IB_RATE_168_GBPS = 14, 636 IB_RATE_25_GBPS = 15, 637 IB_RATE_100_GBPS = 16, 638 IB_RATE_200_GBPS = 17, 639 IB_RATE_300_GBPS = 18 640 }; 641 642 /** 643 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 644 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 645 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 646 * @rate: rate to convert. 647 */ 648 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 649 650 /** 651 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 652 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 653 * @rate: rate to convert. 654 */ 655 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 656 657 658 /** 659 * enum ib_mr_type - memory region type 660 * @IB_MR_TYPE_MEM_REG: memory region that is used for 661 * normal registration 662 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 663 * signature operations (data-integrity 664 * capable regions) 665 */ 666 enum ib_mr_type { 667 IB_MR_TYPE_MEM_REG, 668 IB_MR_TYPE_SIGNATURE, 669 }; 670 671 /** 672 * Signature types 673 * IB_SIG_TYPE_NONE: Unprotected. 674 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 675 */ 676 enum ib_signature_type { 677 IB_SIG_TYPE_NONE, 678 IB_SIG_TYPE_T10_DIF, 679 }; 680 681 /** 682 * Signature T10-DIF block-guard types 683 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 684 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 685 */ 686 enum ib_t10_dif_bg_type { 687 IB_T10DIF_CRC, 688 IB_T10DIF_CSUM 689 }; 690 691 /** 692 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 693 * domain. 694 * @bg_type: T10-DIF block guard type (CRC|CSUM) 695 * @pi_interval: protection information interval. 696 * @bg: seed of guard computation. 697 * @app_tag: application tag of guard block 698 * @ref_tag: initial guard block reference tag. 699 * @ref_remap: Indicate wethear the reftag increments each block 700 * @app_escape: Indicate to skip block check if apptag=0xffff 701 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 702 * @apptag_check_mask: check bitmask of application tag. 703 */ 704 struct ib_t10_dif_domain { 705 enum ib_t10_dif_bg_type bg_type; 706 u16 pi_interval; 707 u16 bg; 708 u16 app_tag; 709 u32 ref_tag; 710 bool ref_remap; 711 bool app_escape; 712 bool ref_escape; 713 u16 apptag_check_mask; 714 }; 715 716 /** 717 * struct ib_sig_domain - Parameters for signature domain 718 * @sig_type: specific signauture type 719 * @sig: union of all signature domain attributes that may 720 * be used to set domain layout. 721 */ 722 struct ib_sig_domain { 723 enum ib_signature_type sig_type; 724 union { 725 struct ib_t10_dif_domain dif; 726 } sig; 727 }; 728 729 /** 730 * struct ib_sig_attrs - Parameters for signature handover operation 731 * @check_mask: bitmask for signature byte check (8 bytes) 732 * @mem: memory domain layout desciptor. 733 * @wire: wire domain layout desciptor. 734 */ 735 struct ib_sig_attrs { 736 u8 check_mask; 737 struct ib_sig_domain mem; 738 struct ib_sig_domain wire; 739 }; 740 741 enum ib_sig_err_type { 742 IB_SIG_BAD_GUARD, 743 IB_SIG_BAD_REFTAG, 744 IB_SIG_BAD_APPTAG, 745 }; 746 747 /** 748 * struct ib_sig_err - signature error descriptor 749 */ 750 struct ib_sig_err { 751 enum ib_sig_err_type err_type; 752 u32 expected; 753 u32 actual; 754 u64 sig_err_offset; 755 u32 key; 756 }; 757 758 enum ib_mr_status_check { 759 IB_MR_CHECK_SIG_STATUS = 1, 760 }; 761 762 /** 763 * struct ib_mr_status - Memory region status container 764 * 765 * @fail_status: Bitmask of MR checks status. For each 766 * failed check a corresponding status bit is set. 767 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 768 * failure. 769 */ 770 struct ib_mr_status { 771 u32 fail_status; 772 struct ib_sig_err sig_err; 773 }; 774 775 /** 776 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 777 * enum. 778 * @mult: multiple to convert. 779 */ 780 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 781 782 struct ib_ah_attr { 783 struct ib_global_route grh; 784 u16 dlid; 785 u8 sl; 786 u8 src_path_bits; 787 u8 static_rate; 788 u8 ah_flags; 789 u8 port_num; 790 u8 dmac[ETH_ALEN]; 791 }; 792 793 enum ib_wc_status { 794 IB_WC_SUCCESS, 795 IB_WC_LOC_LEN_ERR, 796 IB_WC_LOC_QP_OP_ERR, 797 IB_WC_LOC_EEC_OP_ERR, 798 IB_WC_LOC_PROT_ERR, 799 IB_WC_WR_FLUSH_ERR, 800 IB_WC_MW_BIND_ERR, 801 IB_WC_BAD_RESP_ERR, 802 IB_WC_LOC_ACCESS_ERR, 803 IB_WC_REM_INV_REQ_ERR, 804 IB_WC_REM_ACCESS_ERR, 805 IB_WC_REM_OP_ERR, 806 IB_WC_RETRY_EXC_ERR, 807 IB_WC_RNR_RETRY_EXC_ERR, 808 IB_WC_LOC_RDD_VIOL_ERR, 809 IB_WC_REM_INV_RD_REQ_ERR, 810 IB_WC_REM_ABORT_ERR, 811 IB_WC_INV_EECN_ERR, 812 IB_WC_INV_EEC_STATE_ERR, 813 IB_WC_FATAL_ERR, 814 IB_WC_RESP_TIMEOUT_ERR, 815 IB_WC_GENERAL_ERR 816 }; 817 818 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 819 820 enum ib_wc_opcode { 821 IB_WC_SEND, 822 IB_WC_RDMA_WRITE, 823 IB_WC_RDMA_READ, 824 IB_WC_COMP_SWAP, 825 IB_WC_FETCH_ADD, 826 IB_WC_LSO, 827 IB_WC_LOCAL_INV, 828 IB_WC_REG_MR, 829 IB_WC_MASKED_COMP_SWAP, 830 IB_WC_MASKED_FETCH_ADD, 831 /* 832 * Set value of IB_WC_RECV so consumers can test if a completion is a 833 * receive by testing (opcode & IB_WC_RECV). 834 */ 835 IB_WC_RECV = 1 << 7, 836 IB_WC_RECV_RDMA_WITH_IMM 837 }; 838 839 enum ib_wc_flags { 840 IB_WC_GRH = 1, 841 IB_WC_WITH_IMM = (1<<1), 842 IB_WC_WITH_INVALIDATE = (1<<2), 843 IB_WC_IP_CSUM_OK = (1<<3), 844 IB_WC_WITH_SMAC = (1<<4), 845 IB_WC_WITH_VLAN = (1<<5), 846 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 847 }; 848 849 struct ib_wc { 850 union { 851 u64 wr_id; 852 struct ib_cqe *wr_cqe; 853 }; 854 enum ib_wc_status status; 855 enum ib_wc_opcode opcode; 856 u32 vendor_err; 857 u32 byte_len; 858 struct ib_qp *qp; 859 union { 860 __be32 imm_data; 861 u32 invalidate_rkey; 862 } ex; 863 u32 src_qp; 864 int wc_flags; 865 u16 pkey_index; 866 u16 slid; 867 u8 sl; 868 u8 dlid_path_bits; 869 u8 port_num; /* valid only for DR SMPs on switches */ 870 u8 smac[ETH_ALEN]; 871 u16 vlan_id; 872 u8 network_hdr_type; 873 }; 874 875 enum ib_cq_notify_flags { 876 IB_CQ_SOLICITED = 1 << 0, 877 IB_CQ_NEXT_COMP = 1 << 1, 878 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 879 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 880 }; 881 882 enum ib_srq_type { 883 IB_SRQT_BASIC, 884 IB_SRQT_XRC 885 }; 886 887 enum ib_srq_attr_mask { 888 IB_SRQ_MAX_WR = 1 << 0, 889 IB_SRQ_LIMIT = 1 << 1, 890 }; 891 892 struct ib_srq_attr { 893 u32 max_wr; 894 u32 max_sge; 895 u32 srq_limit; 896 }; 897 898 struct ib_srq_init_attr { 899 void (*event_handler)(struct ib_event *, void *); 900 void *srq_context; 901 struct ib_srq_attr attr; 902 enum ib_srq_type srq_type; 903 904 union { 905 struct { 906 struct ib_xrcd *xrcd; 907 struct ib_cq *cq; 908 } xrc; 909 } ext; 910 }; 911 912 struct ib_qp_cap { 913 u32 max_send_wr; 914 u32 max_recv_wr; 915 u32 max_send_sge; 916 u32 max_recv_sge; 917 u32 max_inline_data; 918 }; 919 920 enum ib_sig_type { 921 IB_SIGNAL_ALL_WR, 922 IB_SIGNAL_REQ_WR 923 }; 924 925 enum ib_qp_type { 926 /* 927 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 928 * here (and in that order) since the MAD layer uses them as 929 * indices into a 2-entry table. 930 */ 931 IB_QPT_SMI, 932 IB_QPT_GSI, 933 934 IB_QPT_RC, 935 IB_QPT_UC, 936 IB_QPT_UD, 937 IB_QPT_RAW_IPV6, 938 IB_QPT_RAW_ETHERTYPE, 939 IB_QPT_RAW_PACKET = 8, 940 IB_QPT_XRC_INI = 9, 941 IB_QPT_XRC_TGT, 942 IB_QPT_MAX, 943 /* Reserve a range for qp types internal to the low level driver. 944 * These qp types will not be visible at the IB core layer, so the 945 * IB_QPT_MAX usages should not be affected in the core layer 946 */ 947 IB_QPT_RESERVED1 = 0x1000, 948 IB_QPT_RESERVED2, 949 IB_QPT_RESERVED3, 950 IB_QPT_RESERVED4, 951 IB_QPT_RESERVED5, 952 IB_QPT_RESERVED6, 953 IB_QPT_RESERVED7, 954 IB_QPT_RESERVED8, 955 IB_QPT_RESERVED9, 956 IB_QPT_RESERVED10, 957 }; 958 959 enum ib_qp_create_flags { 960 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 961 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 962 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 963 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 964 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 965 IB_QP_CREATE_NETIF_QP = 1 << 5, 966 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 967 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 968 /* reserve bits 26-31 for low level drivers' internal use */ 969 IB_QP_CREATE_RESERVED_START = 1 << 26, 970 IB_QP_CREATE_RESERVED_END = 1 << 31, 971 }; 972 973 /* 974 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 975 * callback to destroy the passed in QP. 976 */ 977 978 struct ib_qp_init_attr { 979 void (*event_handler)(struct ib_event *, void *); 980 void *qp_context; 981 struct ib_cq *send_cq; 982 struct ib_cq *recv_cq; 983 struct ib_srq *srq; 984 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 985 struct ib_qp_cap cap; 986 enum ib_sig_type sq_sig_type; 987 enum ib_qp_type qp_type; 988 enum ib_qp_create_flags create_flags; 989 u8 port_num; /* special QP types only */ 990 }; 991 992 struct ib_qp_open_attr { 993 void (*event_handler)(struct ib_event *, void *); 994 void *qp_context; 995 u32 qp_num; 996 enum ib_qp_type qp_type; 997 }; 998 999 enum ib_rnr_timeout { 1000 IB_RNR_TIMER_655_36 = 0, 1001 IB_RNR_TIMER_000_01 = 1, 1002 IB_RNR_TIMER_000_02 = 2, 1003 IB_RNR_TIMER_000_03 = 3, 1004 IB_RNR_TIMER_000_04 = 4, 1005 IB_RNR_TIMER_000_06 = 5, 1006 IB_RNR_TIMER_000_08 = 6, 1007 IB_RNR_TIMER_000_12 = 7, 1008 IB_RNR_TIMER_000_16 = 8, 1009 IB_RNR_TIMER_000_24 = 9, 1010 IB_RNR_TIMER_000_32 = 10, 1011 IB_RNR_TIMER_000_48 = 11, 1012 IB_RNR_TIMER_000_64 = 12, 1013 IB_RNR_TIMER_000_96 = 13, 1014 IB_RNR_TIMER_001_28 = 14, 1015 IB_RNR_TIMER_001_92 = 15, 1016 IB_RNR_TIMER_002_56 = 16, 1017 IB_RNR_TIMER_003_84 = 17, 1018 IB_RNR_TIMER_005_12 = 18, 1019 IB_RNR_TIMER_007_68 = 19, 1020 IB_RNR_TIMER_010_24 = 20, 1021 IB_RNR_TIMER_015_36 = 21, 1022 IB_RNR_TIMER_020_48 = 22, 1023 IB_RNR_TIMER_030_72 = 23, 1024 IB_RNR_TIMER_040_96 = 24, 1025 IB_RNR_TIMER_061_44 = 25, 1026 IB_RNR_TIMER_081_92 = 26, 1027 IB_RNR_TIMER_122_88 = 27, 1028 IB_RNR_TIMER_163_84 = 28, 1029 IB_RNR_TIMER_245_76 = 29, 1030 IB_RNR_TIMER_327_68 = 30, 1031 IB_RNR_TIMER_491_52 = 31 1032 }; 1033 1034 enum ib_qp_attr_mask { 1035 IB_QP_STATE = 1, 1036 IB_QP_CUR_STATE = (1<<1), 1037 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1038 IB_QP_ACCESS_FLAGS = (1<<3), 1039 IB_QP_PKEY_INDEX = (1<<4), 1040 IB_QP_PORT = (1<<5), 1041 IB_QP_QKEY = (1<<6), 1042 IB_QP_AV = (1<<7), 1043 IB_QP_PATH_MTU = (1<<8), 1044 IB_QP_TIMEOUT = (1<<9), 1045 IB_QP_RETRY_CNT = (1<<10), 1046 IB_QP_RNR_RETRY = (1<<11), 1047 IB_QP_RQ_PSN = (1<<12), 1048 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1049 IB_QP_ALT_PATH = (1<<14), 1050 IB_QP_MIN_RNR_TIMER = (1<<15), 1051 IB_QP_SQ_PSN = (1<<16), 1052 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1053 IB_QP_PATH_MIG_STATE = (1<<18), 1054 IB_QP_CAP = (1<<19), 1055 IB_QP_DEST_QPN = (1<<20), 1056 IB_QP_RESERVED1 = (1<<21), 1057 IB_QP_RESERVED2 = (1<<22), 1058 IB_QP_RESERVED3 = (1<<23), 1059 IB_QP_RESERVED4 = (1<<24), 1060 }; 1061 1062 enum ib_qp_state { 1063 IB_QPS_RESET, 1064 IB_QPS_INIT, 1065 IB_QPS_RTR, 1066 IB_QPS_RTS, 1067 IB_QPS_SQD, 1068 IB_QPS_SQE, 1069 IB_QPS_ERR 1070 }; 1071 1072 enum ib_mig_state { 1073 IB_MIG_MIGRATED, 1074 IB_MIG_REARM, 1075 IB_MIG_ARMED 1076 }; 1077 1078 enum ib_mw_type { 1079 IB_MW_TYPE_1 = 1, 1080 IB_MW_TYPE_2 = 2 1081 }; 1082 1083 struct ib_qp_attr { 1084 enum ib_qp_state qp_state; 1085 enum ib_qp_state cur_qp_state; 1086 enum ib_mtu path_mtu; 1087 enum ib_mig_state path_mig_state; 1088 u32 qkey; 1089 u32 rq_psn; 1090 u32 sq_psn; 1091 u32 dest_qp_num; 1092 int qp_access_flags; 1093 struct ib_qp_cap cap; 1094 struct ib_ah_attr ah_attr; 1095 struct ib_ah_attr alt_ah_attr; 1096 u16 pkey_index; 1097 u16 alt_pkey_index; 1098 u8 en_sqd_async_notify; 1099 u8 sq_draining; 1100 u8 max_rd_atomic; 1101 u8 max_dest_rd_atomic; 1102 u8 min_rnr_timer; 1103 u8 port_num; 1104 u8 timeout; 1105 u8 retry_cnt; 1106 u8 rnr_retry; 1107 u8 alt_port_num; 1108 u8 alt_timeout; 1109 }; 1110 1111 enum ib_wr_opcode { 1112 IB_WR_RDMA_WRITE, 1113 IB_WR_RDMA_WRITE_WITH_IMM, 1114 IB_WR_SEND, 1115 IB_WR_SEND_WITH_IMM, 1116 IB_WR_RDMA_READ, 1117 IB_WR_ATOMIC_CMP_AND_SWP, 1118 IB_WR_ATOMIC_FETCH_AND_ADD, 1119 IB_WR_LSO, 1120 IB_WR_SEND_WITH_INV, 1121 IB_WR_RDMA_READ_WITH_INV, 1122 IB_WR_LOCAL_INV, 1123 IB_WR_REG_MR, 1124 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1125 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1126 IB_WR_REG_SIG_MR, 1127 /* reserve values for low level drivers' internal use. 1128 * These values will not be used at all in the ib core layer. 1129 */ 1130 IB_WR_RESERVED1 = 0xf0, 1131 IB_WR_RESERVED2, 1132 IB_WR_RESERVED3, 1133 IB_WR_RESERVED4, 1134 IB_WR_RESERVED5, 1135 IB_WR_RESERVED6, 1136 IB_WR_RESERVED7, 1137 IB_WR_RESERVED8, 1138 IB_WR_RESERVED9, 1139 IB_WR_RESERVED10, 1140 }; 1141 1142 enum ib_send_flags { 1143 IB_SEND_FENCE = 1, 1144 IB_SEND_SIGNALED = (1<<1), 1145 IB_SEND_SOLICITED = (1<<2), 1146 IB_SEND_INLINE = (1<<3), 1147 IB_SEND_IP_CSUM = (1<<4), 1148 1149 /* reserve bits 26-31 for low level drivers' internal use */ 1150 IB_SEND_RESERVED_START = (1 << 26), 1151 IB_SEND_RESERVED_END = (1 << 31), 1152 }; 1153 1154 struct ib_sge { 1155 u64 addr; 1156 u32 length; 1157 u32 lkey; 1158 }; 1159 1160 struct ib_cqe { 1161 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1162 }; 1163 1164 struct ib_send_wr { 1165 struct ib_send_wr *next; 1166 union { 1167 u64 wr_id; 1168 struct ib_cqe *wr_cqe; 1169 }; 1170 struct ib_sge *sg_list; 1171 int num_sge; 1172 enum ib_wr_opcode opcode; 1173 int send_flags; 1174 union { 1175 __be32 imm_data; 1176 u32 invalidate_rkey; 1177 } ex; 1178 }; 1179 1180 struct ib_rdma_wr { 1181 struct ib_send_wr wr; 1182 u64 remote_addr; 1183 u32 rkey; 1184 }; 1185 1186 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1187 { 1188 return container_of(wr, struct ib_rdma_wr, wr); 1189 } 1190 1191 struct ib_atomic_wr { 1192 struct ib_send_wr wr; 1193 u64 remote_addr; 1194 u64 compare_add; 1195 u64 swap; 1196 u64 compare_add_mask; 1197 u64 swap_mask; 1198 u32 rkey; 1199 }; 1200 1201 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1202 { 1203 return container_of(wr, struct ib_atomic_wr, wr); 1204 } 1205 1206 struct ib_ud_wr { 1207 struct ib_send_wr wr; 1208 struct ib_ah *ah; 1209 void *header; 1210 int hlen; 1211 int mss; 1212 u32 remote_qpn; 1213 u32 remote_qkey; 1214 u16 pkey_index; /* valid for GSI only */ 1215 u8 port_num; /* valid for DR SMPs on switch only */ 1216 }; 1217 1218 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1219 { 1220 return container_of(wr, struct ib_ud_wr, wr); 1221 } 1222 1223 struct ib_reg_wr { 1224 struct ib_send_wr wr; 1225 struct ib_mr *mr; 1226 u32 key; 1227 int access; 1228 }; 1229 1230 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1231 { 1232 return container_of(wr, struct ib_reg_wr, wr); 1233 } 1234 1235 struct ib_sig_handover_wr { 1236 struct ib_send_wr wr; 1237 struct ib_sig_attrs *sig_attrs; 1238 struct ib_mr *sig_mr; 1239 int access_flags; 1240 struct ib_sge *prot; 1241 }; 1242 1243 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1244 { 1245 return container_of(wr, struct ib_sig_handover_wr, wr); 1246 } 1247 1248 struct ib_recv_wr { 1249 struct ib_recv_wr *next; 1250 union { 1251 u64 wr_id; 1252 struct ib_cqe *wr_cqe; 1253 }; 1254 struct ib_sge *sg_list; 1255 int num_sge; 1256 }; 1257 1258 enum ib_access_flags { 1259 IB_ACCESS_LOCAL_WRITE = 1, 1260 IB_ACCESS_REMOTE_WRITE = (1<<1), 1261 IB_ACCESS_REMOTE_READ = (1<<2), 1262 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1263 IB_ACCESS_MW_BIND = (1<<4), 1264 IB_ZERO_BASED = (1<<5), 1265 IB_ACCESS_ON_DEMAND = (1<<6), 1266 }; 1267 1268 /* 1269 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1270 * are hidden here instead of a uapi header! 1271 */ 1272 enum ib_mr_rereg_flags { 1273 IB_MR_REREG_TRANS = 1, 1274 IB_MR_REREG_PD = (1<<1), 1275 IB_MR_REREG_ACCESS = (1<<2), 1276 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1277 }; 1278 1279 struct ib_fmr_attr { 1280 int max_pages; 1281 int max_maps; 1282 u8 page_shift; 1283 }; 1284 1285 struct ib_umem; 1286 1287 struct ib_ucontext { 1288 struct ib_device *device; 1289 struct list_head pd_list; 1290 struct list_head mr_list; 1291 struct list_head mw_list; 1292 struct list_head cq_list; 1293 struct list_head qp_list; 1294 struct list_head srq_list; 1295 struct list_head ah_list; 1296 struct list_head xrcd_list; 1297 struct list_head rule_list; 1298 int closing; 1299 1300 struct pid *tgid; 1301 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1302 struct rb_root umem_tree; 1303 /* 1304 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1305 * mmu notifiers registration. 1306 */ 1307 struct rw_semaphore umem_rwsem; 1308 void (*invalidate_range)(struct ib_umem *umem, 1309 unsigned long start, unsigned long end); 1310 1311 struct mmu_notifier mn; 1312 atomic_t notifier_count; 1313 /* A list of umems that don't have private mmu notifier counters yet. */ 1314 struct list_head no_private_counters; 1315 int odp_mrs_count; 1316 #endif 1317 }; 1318 1319 struct ib_uobject { 1320 u64 user_handle; /* handle given to us by userspace */ 1321 struct ib_ucontext *context; /* associated user context */ 1322 void *object; /* containing object */ 1323 struct list_head list; /* link to context's list */ 1324 int id; /* index into kernel idr */ 1325 struct kref ref; 1326 struct rw_semaphore mutex; /* protects .live */ 1327 struct rcu_head rcu; /* kfree_rcu() overhead */ 1328 int live; 1329 }; 1330 1331 struct ib_udata { 1332 const void __user *inbuf; 1333 void __user *outbuf; 1334 size_t inlen; 1335 size_t outlen; 1336 }; 1337 1338 struct ib_pd { 1339 u32 local_dma_lkey; 1340 struct ib_device *device; 1341 struct ib_uobject *uobject; 1342 atomic_t usecnt; /* count all resources */ 1343 struct ib_mr *local_mr; 1344 }; 1345 1346 struct ib_xrcd { 1347 struct ib_device *device; 1348 atomic_t usecnt; /* count all exposed resources */ 1349 struct inode *inode; 1350 1351 struct mutex tgt_qp_mutex; 1352 struct list_head tgt_qp_list; 1353 }; 1354 1355 struct ib_ah { 1356 struct ib_device *device; 1357 struct ib_pd *pd; 1358 struct ib_uobject *uobject; 1359 }; 1360 1361 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1362 1363 enum ib_poll_context { 1364 IB_POLL_DIRECT, /* caller context, no hw completions */ 1365 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1366 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1367 }; 1368 1369 struct ib_cq { 1370 struct ib_device *device; 1371 struct ib_uobject *uobject; 1372 ib_comp_handler comp_handler; 1373 void (*event_handler)(struct ib_event *, void *); 1374 void *cq_context; 1375 int cqe; 1376 atomic_t usecnt; /* count number of work queues */ 1377 enum ib_poll_context poll_ctx; 1378 struct ib_wc *wc; 1379 union { 1380 struct irq_poll iop; 1381 struct work_struct work; 1382 }; 1383 }; 1384 1385 struct ib_srq { 1386 struct ib_device *device; 1387 struct ib_pd *pd; 1388 struct ib_uobject *uobject; 1389 void (*event_handler)(struct ib_event *, void *); 1390 void *srq_context; 1391 enum ib_srq_type srq_type; 1392 atomic_t usecnt; 1393 1394 union { 1395 struct { 1396 struct ib_xrcd *xrcd; 1397 struct ib_cq *cq; 1398 u32 srq_num; 1399 } xrc; 1400 } ext; 1401 }; 1402 1403 struct ib_qp { 1404 struct ib_device *device; 1405 struct ib_pd *pd; 1406 struct ib_cq *send_cq; 1407 struct ib_cq *recv_cq; 1408 struct ib_srq *srq; 1409 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1410 struct list_head xrcd_list; 1411 /* count times opened, mcast attaches, flow attaches */ 1412 atomic_t usecnt; 1413 struct list_head open_list; 1414 struct ib_qp *real_qp; 1415 struct ib_uobject *uobject; 1416 void (*event_handler)(struct ib_event *, void *); 1417 void *qp_context; 1418 u32 qp_num; 1419 enum ib_qp_type qp_type; 1420 }; 1421 1422 struct ib_mr { 1423 struct ib_device *device; 1424 struct ib_pd *pd; 1425 struct ib_uobject *uobject; 1426 u32 lkey; 1427 u32 rkey; 1428 u64 iova; 1429 u32 length; 1430 unsigned int page_size; 1431 }; 1432 1433 struct ib_mw { 1434 struct ib_device *device; 1435 struct ib_pd *pd; 1436 struct ib_uobject *uobject; 1437 u32 rkey; 1438 enum ib_mw_type type; 1439 }; 1440 1441 struct ib_fmr { 1442 struct ib_device *device; 1443 struct ib_pd *pd; 1444 struct list_head list; 1445 u32 lkey; 1446 u32 rkey; 1447 }; 1448 1449 /* Supported steering options */ 1450 enum ib_flow_attr_type { 1451 /* steering according to rule specifications */ 1452 IB_FLOW_ATTR_NORMAL = 0x0, 1453 /* default unicast and multicast rule - 1454 * receive all Eth traffic which isn't steered to any QP 1455 */ 1456 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1457 /* default multicast rule - 1458 * receive all Eth multicast traffic which isn't steered to any QP 1459 */ 1460 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1461 /* sniffer rule - receive all port traffic */ 1462 IB_FLOW_ATTR_SNIFFER = 0x3 1463 }; 1464 1465 /* Supported steering header types */ 1466 enum ib_flow_spec_type { 1467 /* L2 headers*/ 1468 IB_FLOW_SPEC_ETH = 0x20, 1469 IB_FLOW_SPEC_IB = 0x22, 1470 /* L3 header*/ 1471 IB_FLOW_SPEC_IPV4 = 0x30, 1472 /* L4 headers*/ 1473 IB_FLOW_SPEC_TCP = 0x40, 1474 IB_FLOW_SPEC_UDP = 0x41 1475 }; 1476 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1477 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1478 1479 /* Flow steering rule priority is set according to it's domain. 1480 * Lower domain value means higher priority. 1481 */ 1482 enum ib_flow_domain { 1483 IB_FLOW_DOMAIN_USER, 1484 IB_FLOW_DOMAIN_ETHTOOL, 1485 IB_FLOW_DOMAIN_RFS, 1486 IB_FLOW_DOMAIN_NIC, 1487 IB_FLOW_DOMAIN_NUM /* Must be last */ 1488 }; 1489 1490 struct ib_flow_eth_filter { 1491 u8 dst_mac[6]; 1492 u8 src_mac[6]; 1493 __be16 ether_type; 1494 __be16 vlan_tag; 1495 }; 1496 1497 struct ib_flow_spec_eth { 1498 enum ib_flow_spec_type type; 1499 u16 size; 1500 struct ib_flow_eth_filter val; 1501 struct ib_flow_eth_filter mask; 1502 }; 1503 1504 struct ib_flow_ib_filter { 1505 __be16 dlid; 1506 __u8 sl; 1507 }; 1508 1509 struct ib_flow_spec_ib { 1510 enum ib_flow_spec_type type; 1511 u16 size; 1512 struct ib_flow_ib_filter val; 1513 struct ib_flow_ib_filter mask; 1514 }; 1515 1516 struct ib_flow_ipv4_filter { 1517 __be32 src_ip; 1518 __be32 dst_ip; 1519 }; 1520 1521 struct ib_flow_spec_ipv4 { 1522 enum ib_flow_spec_type type; 1523 u16 size; 1524 struct ib_flow_ipv4_filter val; 1525 struct ib_flow_ipv4_filter mask; 1526 }; 1527 1528 struct ib_flow_tcp_udp_filter { 1529 __be16 dst_port; 1530 __be16 src_port; 1531 }; 1532 1533 struct ib_flow_spec_tcp_udp { 1534 enum ib_flow_spec_type type; 1535 u16 size; 1536 struct ib_flow_tcp_udp_filter val; 1537 struct ib_flow_tcp_udp_filter mask; 1538 }; 1539 1540 union ib_flow_spec { 1541 struct { 1542 enum ib_flow_spec_type type; 1543 u16 size; 1544 }; 1545 struct ib_flow_spec_eth eth; 1546 struct ib_flow_spec_ib ib; 1547 struct ib_flow_spec_ipv4 ipv4; 1548 struct ib_flow_spec_tcp_udp tcp_udp; 1549 }; 1550 1551 struct ib_flow_attr { 1552 enum ib_flow_attr_type type; 1553 u16 size; 1554 u16 priority; 1555 u32 flags; 1556 u8 num_of_specs; 1557 u8 port; 1558 /* Following are the optional layers according to user request 1559 * struct ib_flow_spec_xxx 1560 * struct ib_flow_spec_yyy 1561 */ 1562 }; 1563 1564 struct ib_flow { 1565 struct ib_qp *qp; 1566 struct ib_uobject *uobject; 1567 }; 1568 1569 struct ib_mad_hdr; 1570 struct ib_grh; 1571 1572 enum ib_process_mad_flags { 1573 IB_MAD_IGNORE_MKEY = 1, 1574 IB_MAD_IGNORE_BKEY = 2, 1575 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1576 }; 1577 1578 enum ib_mad_result { 1579 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1580 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1581 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1582 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1583 }; 1584 1585 #define IB_DEVICE_NAME_MAX 64 1586 1587 struct ib_cache { 1588 rwlock_t lock; 1589 struct ib_event_handler event_handler; 1590 struct ib_pkey_cache **pkey_cache; 1591 struct ib_gid_table **gid_cache; 1592 u8 *lmc_cache; 1593 }; 1594 1595 struct ib_dma_mapping_ops { 1596 int (*mapping_error)(struct ib_device *dev, 1597 u64 dma_addr); 1598 u64 (*map_single)(struct ib_device *dev, 1599 void *ptr, size_t size, 1600 enum dma_data_direction direction); 1601 void (*unmap_single)(struct ib_device *dev, 1602 u64 addr, size_t size, 1603 enum dma_data_direction direction); 1604 u64 (*map_page)(struct ib_device *dev, 1605 struct page *page, unsigned long offset, 1606 size_t size, 1607 enum dma_data_direction direction); 1608 void (*unmap_page)(struct ib_device *dev, 1609 u64 addr, size_t size, 1610 enum dma_data_direction direction); 1611 int (*map_sg)(struct ib_device *dev, 1612 struct scatterlist *sg, int nents, 1613 enum dma_data_direction direction); 1614 void (*unmap_sg)(struct ib_device *dev, 1615 struct scatterlist *sg, int nents, 1616 enum dma_data_direction direction); 1617 void (*sync_single_for_cpu)(struct ib_device *dev, 1618 u64 dma_handle, 1619 size_t size, 1620 enum dma_data_direction dir); 1621 void (*sync_single_for_device)(struct ib_device *dev, 1622 u64 dma_handle, 1623 size_t size, 1624 enum dma_data_direction dir); 1625 void *(*alloc_coherent)(struct ib_device *dev, 1626 size_t size, 1627 u64 *dma_handle, 1628 gfp_t flag); 1629 void (*free_coherent)(struct ib_device *dev, 1630 size_t size, void *cpu_addr, 1631 u64 dma_handle); 1632 }; 1633 1634 struct iw_cm_verbs; 1635 1636 struct ib_port_immutable { 1637 int pkey_tbl_len; 1638 int gid_tbl_len; 1639 u32 core_cap_flags; 1640 u32 max_mad_size; 1641 }; 1642 1643 struct ib_device { 1644 struct device *dma_device; 1645 1646 char name[IB_DEVICE_NAME_MAX]; 1647 1648 struct list_head event_handler_list; 1649 spinlock_t event_handler_lock; 1650 1651 spinlock_t client_data_lock; 1652 struct list_head core_list; 1653 /* Access to the client_data_list is protected by the client_data_lock 1654 * spinlock and the lists_rwsem read-write semaphore */ 1655 struct list_head client_data_list; 1656 1657 struct ib_cache cache; 1658 /** 1659 * port_immutable is indexed by port number 1660 */ 1661 struct ib_port_immutable *port_immutable; 1662 1663 int num_comp_vectors; 1664 1665 struct iw_cm_verbs *iwcm; 1666 1667 int (*get_protocol_stats)(struct ib_device *device, 1668 union rdma_protocol_stats *stats); 1669 int (*query_device)(struct ib_device *device, 1670 struct ib_device_attr *device_attr, 1671 struct ib_udata *udata); 1672 int (*query_port)(struct ib_device *device, 1673 u8 port_num, 1674 struct ib_port_attr *port_attr); 1675 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1676 u8 port_num); 1677 /* When calling get_netdev, the HW vendor's driver should return the 1678 * net device of device @device at port @port_num or NULL if such 1679 * a net device doesn't exist. The vendor driver should call dev_hold 1680 * on this net device. The HW vendor's device driver must guarantee 1681 * that this function returns NULL before the net device reaches 1682 * NETDEV_UNREGISTER_FINAL state. 1683 */ 1684 struct net_device *(*get_netdev)(struct ib_device *device, 1685 u8 port_num); 1686 int (*query_gid)(struct ib_device *device, 1687 u8 port_num, int index, 1688 union ib_gid *gid); 1689 /* When calling add_gid, the HW vendor's driver should 1690 * add the gid of device @device at gid index @index of 1691 * port @port_num to be @gid. Meta-info of that gid (for example, 1692 * the network device related to this gid is available 1693 * at @attr. @context allows the HW vendor driver to store extra 1694 * information together with a GID entry. The HW vendor may allocate 1695 * memory to contain this information and store it in @context when a 1696 * new GID entry is written to. Params are consistent until the next 1697 * call of add_gid or delete_gid. The function should return 0 on 1698 * success or error otherwise. The function could be called 1699 * concurrently for different ports. This function is only called 1700 * when roce_gid_table is used. 1701 */ 1702 int (*add_gid)(struct ib_device *device, 1703 u8 port_num, 1704 unsigned int index, 1705 const union ib_gid *gid, 1706 const struct ib_gid_attr *attr, 1707 void **context); 1708 /* When calling del_gid, the HW vendor's driver should delete the 1709 * gid of device @device at gid index @index of port @port_num. 1710 * Upon the deletion of a GID entry, the HW vendor must free any 1711 * allocated memory. The caller will clear @context afterwards. 1712 * This function is only called when roce_gid_table is used. 1713 */ 1714 int (*del_gid)(struct ib_device *device, 1715 u8 port_num, 1716 unsigned int index, 1717 void **context); 1718 int (*query_pkey)(struct ib_device *device, 1719 u8 port_num, u16 index, u16 *pkey); 1720 int (*modify_device)(struct ib_device *device, 1721 int device_modify_mask, 1722 struct ib_device_modify *device_modify); 1723 int (*modify_port)(struct ib_device *device, 1724 u8 port_num, int port_modify_mask, 1725 struct ib_port_modify *port_modify); 1726 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1727 struct ib_udata *udata); 1728 int (*dealloc_ucontext)(struct ib_ucontext *context); 1729 int (*mmap)(struct ib_ucontext *context, 1730 struct vm_area_struct *vma); 1731 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1732 struct ib_ucontext *context, 1733 struct ib_udata *udata); 1734 int (*dealloc_pd)(struct ib_pd *pd); 1735 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1736 struct ib_ah_attr *ah_attr); 1737 int (*modify_ah)(struct ib_ah *ah, 1738 struct ib_ah_attr *ah_attr); 1739 int (*query_ah)(struct ib_ah *ah, 1740 struct ib_ah_attr *ah_attr); 1741 int (*destroy_ah)(struct ib_ah *ah); 1742 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1743 struct ib_srq_init_attr *srq_init_attr, 1744 struct ib_udata *udata); 1745 int (*modify_srq)(struct ib_srq *srq, 1746 struct ib_srq_attr *srq_attr, 1747 enum ib_srq_attr_mask srq_attr_mask, 1748 struct ib_udata *udata); 1749 int (*query_srq)(struct ib_srq *srq, 1750 struct ib_srq_attr *srq_attr); 1751 int (*destroy_srq)(struct ib_srq *srq); 1752 int (*post_srq_recv)(struct ib_srq *srq, 1753 struct ib_recv_wr *recv_wr, 1754 struct ib_recv_wr **bad_recv_wr); 1755 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1756 struct ib_qp_init_attr *qp_init_attr, 1757 struct ib_udata *udata); 1758 int (*modify_qp)(struct ib_qp *qp, 1759 struct ib_qp_attr *qp_attr, 1760 int qp_attr_mask, 1761 struct ib_udata *udata); 1762 int (*query_qp)(struct ib_qp *qp, 1763 struct ib_qp_attr *qp_attr, 1764 int qp_attr_mask, 1765 struct ib_qp_init_attr *qp_init_attr); 1766 int (*destroy_qp)(struct ib_qp *qp); 1767 int (*post_send)(struct ib_qp *qp, 1768 struct ib_send_wr *send_wr, 1769 struct ib_send_wr **bad_send_wr); 1770 int (*post_recv)(struct ib_qp *qp, 1771 struct ib_recv_wr *recv_wr, 1772 struct ib_recv_wr **bad_recv_wr); 1773 struct ib_cq * (*create_cq)(struct ib_device *device, 1774 const struct ib_cq_init_attr *attr, 1775 struct ib_ucontext *context, 1776 struct ib_udata *udata); 1777 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1778 u16 cq_period); 1779 int (*destroy_cq)(struct ib_cq *cq); 1780 int (*resize_cq)(struct ib_cq *cq, int cqe, 1781 struct ib_udata *udata); 1782 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1783 struct ib_wc *wc); 1784 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1785 int (*req_notify_cq)(struct ib_cq *cq, 1786 enum ib_cq_notify_flags flags); 1787 int (*req_ncomp_notif)(struct ib_cq *cq, 1788 int wc_cnt); 1789 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1790 int mr_access_flags); 1791 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1792 u64 start, u64 length, 1793 u64 virt_addr, 1794 int mr_access_flags, 1795 struct ib_udata *udata); 1796 int (*rereg_user_mr)(struct ib_mr *mr, 1797 int flags, 1798 u64 start, u64 length, 1799 u64 virt_addr, 1800 int mr_access_flags, 1801 struct ib_pd *pd, 1802 struct ib_udata *udata); 1803 int (*dereg_mr)(struct ib_mr *mr); 1804 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 1805 enum ib_mr_type mr_type, 1806 u32 max_num_sg); 1807 int (*map_mr_sg)(struct ib_mr *mr, 1808 struct scatterlist *sg, 1809 int sg_nents); 1810 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1811 enum ib_mw_type type); 1812 int (*dealloc_mw)(struct ib_mw *mw); 1813 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1814 int mr_access_flags, 1815 struct ib_fmr_attr *fmr_attr); 1816 int (*map_phys_fmr)(struct ib_fmr *fmr, 1817 u64 *page_list, int list_len, 1818 u64 iova); 1819 int (*unmap_fmr)(struct list_head *fmr_list); 1820 int (*dealloc_fmr)(struct ib_fmr *fmr); 1821 int (*attach_mcast)(struct ib_qp *qp, 1822 union ib_gid *gid, 1823 u16 lid); 1824 int (*detach_mcast)(struct ib_qp *qp, 1825 union ib_gid *gid, 1826 u16 lid); 1827 int (*process_mad)(struct ib_device *device, 1828 int process_mad_flags, 1829 u8 port_num, 1830 const struct ib_wc *in_wc, 1831 const struct ib_grh *in_grh, 1832 const struct ib_mad_hdr *in_mad, 1833 size_t in_mad_size, 1834 struct ib_mad_hdr *out_mad, 1835 size_t *out_mad_size, 1836 u16 *out_mad_pkey_index); 1837 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1838 struct ib_ucontext *ucontext, 1839 struct ib_udata *udata); 1840 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1841 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1842 struct ib_flow_attr 1843 *flow_attr, 1844 int domain); 1845 int (*destroy_flow)(struct ib_flow *flow_id); 1846 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1847 struct ib_mr_status *mr_status); 1848 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 1849 1850 struct ib_dma_mapping_ops *dma_ops; 1851 1852 struct module *owner; 1853 struct device dev; 1854 struct kobject *ports_parent; 1855 struct list_head port_list; 1856 1857 enum { 1858 IB_DEV_UNINITIALIZED, 1859 IB_DEV_REGISTERED, 1860 IB_DEV_UNREGISTERED 1861 } reg_state; 1862 1863 int uverbs_abi_ver; 1864 u64 uverbs_cmd_mask; 1865 u64 uverbs_ex_cmd_mask; 1866 1867 char node_desc[64]; 1868 __be64 node_guid; 1869 u32 local_dma_lkey; 1870 u16 is_switch:1; 1871 u8 node_type; 1872 u8 phys_port_cnt; 1873 struct ib_device_attr attrs; 1874 1875 /** 1876 * The following mandatory functions are used only at device 1877 * registration. Keep functions such as these at the end of this 1878 * structure to avoid cache line misses when accessing struct ib_device 1879 * in fast paths. 1880 */ 1881 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 1882 }; 1883 1884 struct ib_client { 1885 char *name; 1886 void (*add) (struct ib_device *); 1887 void (*remove)(struct ib_device *, void *client_data); 1888 1889 /* Returns the net_dev belonging to this ib_client and matching the 1890 * given parameters. 1891 * @dev: An RDMA device that the net_dev use for communication. 1892 * @port: A physical port number on the RDMA device. 1893 * @pkey: P_Key that the net_dev uses if applicable. 1894 * @gid: A GID that the net_dev uses to communicate. 1895 * @addr: An IP address the net_dev is configured with. 1896 * @client_data: The device's client data set by ib_set_client_data(). 1897 * 1898 * An ib_client that implements a net_dev on top of RDMA devices 1899 * (such as IP over IB) should implement this callback, allowing the 1900 * rdma_cm module to find the right net_dev for a given request. 1901 * 1902 * The caller is responsible for calling dev_put on the returned 1903 * netdev. */ 1904 struct net_device *(*get_net_dev_by_params)( 1905 struct ib_device *dev, 1906 u8 port, 1907 u16 pkey, 1908 const union ib_gid *gid, 1909 const struct sockaddr *addr, 1910 void *client_data); 1911 struct list_head list; 1912 }; 1913 1914 struct ib_device *ib_alloc_device(size_t size); 1915 void ib_dealloc_device(struct ib_device *device); 1916 1917 int ib_register_device(struct ib_device *device, 1918 int (*port_callback)(struct ib_device *, 1919 u8, struct kobject *)); 1920 void ib_unregister_device(struct ib_device *device); 1921 1922 int ib_register_client (struct ib_client *client); 1923 void ib_unregister_client(struct ib_client *client); 1924 1925 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1926 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1927 void *data); 1928 1929 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1930 { 1931 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1932 } 1933 1934 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1935 { 1936 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1937 } 1938 1939 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 1940 size_t offset, 1941 size_t len) 1942 { 1943 const void __user *p = udata->inbuf + offset; 1944 bool ret = false; 1945 u8 *buf; 1946 1947 if (len > USHRT_MAX) 1948 return false; 1949 1950 buf = kmalloc(len, GFP_KERNEL); 1951 if (!buf) 1952 return false; 1953 1954 if (copy_from_user(buf, p, len)) 1955 goto free; 1956 1957 ret = !memchr_inv(buf, 0, len); 1958 1959 free: 1960 kfree(buf); 1961 return ret; 1962 } 1963 1964 /** 1965 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1966 * contains all required attributes and no attributes not allowed for 1967 * the given QP state transition. 1968 * @cur_state: Current QP state 1969 * @next_state: Next QP state 1970 * @type: QP type 1971 * @mask: Mask of supplied QP attributes 1972 * @ll : link layer of port 1973 * 1974 * This function is a helper function that a low-level driver's 1975 * modify_qp method can use to validate the consumer's input. It 1976 * checks that cur_state and next_state are valid QP states, that a 1977 * transition from cur_state to next_state is allowed by the IB spec, 1978 * and that the attribute mask supplied is allowed for the transition. 1979 */ 1980 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1981 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1982 enum rdma_link_layer ll); 1983 1984 int ib_register_event_handler (struct ib_event_handler *event_handler); 1985 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1986 void ib_dispatch_event(struct ib_event *event); 1987 1988 int ib_query_port(struct ib_device *device, 1989 u8 port_num, struct ib_port_attr *port_attr); 1990 1991 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1992 u8 port_num); 1993 1994 /** 1995 * rdma_cap_ib_switch - Check if the device is IB switch 1996 * @device: Device to check 1997 * 1998 * Device driver is responsible for setting is_switch bit on 1999 * in ib_device structure at init time. 2000 * 2001 * Return: true if the device is IB switch. 2002 */ 2003 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2004 { 2005 return device->is_switch; 2006 } 2007 2008 /** 2009 * rdma_start_port - Return the first valid port number for the device 2010 * specified 2011 * 2012 * @device: Device to be checked 2013 * 2014 * Return start port number 2015 */ 2016 static inline u8 rdma_start_port(const struct ib_device *device) 2017 { 2018 return rdma_cap_ib_switch(device) ? 0 : 1; 2019 } 2020 2021 /** 2022 * rdma_end_port - Return the last valid port number for the device 2023 * specified 2024 * 2025 * @device: Device to be checked 2026 * 2027 * Return last port number 2028 */ 2029 static inline u8 rdma_end_port(const struct ib_device *device) 2030 { 2031 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2032 } 2033 2034 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2035 { 2036 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2037 } 2038 2039 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2040 { 2041 return device->port_immutable[port_num].core_cap_flags & 2042 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2043 } 2044 2045 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2046 { 2047 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2048 } 2049 2050 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2051 { 2052 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2053 } 2054 2055 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2056 { 2057 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2058 } 2059 2060 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2061 { 2062 return rdma_protocol_ib(device, port_num) || 2063 rdma_protocol_roce(device, port_num); 2064 } 2065 2066 /** 2067 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2068 * Management Datagrams. 2069 * @device: Device to check 2070 * @port_num: Port number to check 2071 * 2072 * Management Datagrams (MAD) are a required part of the InfiniBand 2073 * specification and are supported on all InfiniBand devices. A slightly 2074 * extended version are also supported on OPA interfaces. 2075 * 2076 * Return: true if the port supports sending/receiving of MAD packets. 2077 */ 2078 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2079 { 2080 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2081 } 2082 2083 /** 2084 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2085 * Management Datagrams. 2086 * @device: Device to check 2087 * @port_num: Port number to check 2088 * 2089 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2090 * datagrams with their own versions. These OPA MADs share many but not all of 2091 * the characteristics of InfiniBand MADs. 2092 * 2093 * OPA MADs differ in the following ways: 2094 * 2095 * 1) MADs are variable size up to 2K 2096 * IBTA defined MADs remain fixed at 256 bytes 2097 * 2) OPA SMPs must carry valid PKeys 2098 * 3) OPA SMP packets are a different format 2099 * 2100 * Return: true if the port supports OPA MAD packet formats. 2101 */ 2102 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2103 { 2104 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2105 == RDMA_CORE_CAP_OPA_MAD; 2106 } 2107 2108 /** 2109 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2110 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2111 * @device: Device to check 2112 * @port_num: Port number to check 2113 * 2114 * Each InfiniBand node is required to provide a Subnet Management Agent 2115 * that the subnet manager can access. Prior to the fabric being fully 2116 * configured by the subnet manager, the SMA is accessed via a well known 2117 * interface called the Subnet Management Interface (SMI). This interface 2118 * uses directed route packets to communicate with the SM to get around the 2119 * chicken and egg problem of the SM needing to know what's on the fabric 2120 * in order to configure the fabric, and needing to configure the fabric in 2121 * order to send packets to the devices on the fabric. These directed 2122 * route packets do not need the fabric fully configured in order to reach 2123 * their destination. The SMI is the only method allowed to send 2124 * directed route packets on an InfiniBand fabric. 2125 * 2126 * Return: true if the port provides an SMI. 2127 */ 2128 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2129 { 2130 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2131 } 2132 2133 /** 2134 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2135 * Communication Manager. 2136 * @device: Device to check 2137 * @port_num: Port number to check 2138 * 2139 * The InfiniBand Communication Manager is one of many pre-defined General 2140 * Service Agents (GSA) that are accessed via the General Service 2141 * Interface (GSI). It's role is to facilitate establishment of connections 2142 * between nodes as well as other management related tasks for established 2143 * connections. 2144 * 2145 * Return: true if the port supports an IB CM (this does not guarantee that 2146 * a CM is actually running however). 2147 */ 2148 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2149 { 2150 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2151 } 2152 2153 /** 2154 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2155 * Communication Manager. 2156 * @device: Device to check 2157 * @port_num: Port number to check 2158 * 2159 * Similar to above, but specific to iWARP connections which have a different 2160 * managment protocol than InfiniBand. 2161 * 2162 * Return: true if the port supports an iWARP CM (this does not guarantee that 2163 * a CM is actually running however). 2164 */ 2165 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2166 { 2167 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2168 } 2169 2170 /** 2171 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2172 * Subnet Administration. 2173 * @device: Device to check 2174 * @port_num: Port number to check 2175 * 2176 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2177 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2178 * fabrics, devices should resolve routes to other hosts by contacting the 2179 * SA to query the proper route. 2180 * 2181 * Return: true if the port should act as a client to the fabric Subnet 2182 * Administration interface. This does not imply that the SA service is 2183 * running locally. 2184 */ 2185 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2186 { 2187 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2188 } 2189 2190 /** 2191 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2192 * Multicast. 2193 * @device: Device to check 2194 * @port_num: Port number to check 2195 * 2196 * InfiniBand multicast registration is more complex than normal IPv4 or 2197 * IPv6 multicast registration. Each Host Channel Adapter must register 2198 * with the Subnet Manager when it wishes to join a multicast group. It 2199 * should do so only once regardless of how many queue pairs it subscribes 2200 * to this group. And it should leave the group only after all queue pairs 2201 * attached to the group have been detached. 2202 * 2203 * Return: true if the port must undertake the additional adminstrative 2204 * overhead of registering/unregistering with the SM and tracking of the 2205 * total number of queue pairs attached to the multicast group. 2206 */ 2207 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2208 { 2209 return rdma_cap_ib_sa(device, port_num); 2210 } 2211 2212 /** 2213 * rdma_cap_af_ib - Check if the port of device has the capability 2214 * Native Infiniband Address. 2215 * @device: Device to check 2216 * @port_num: Port number to check 2217 * 2218 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2219 * GID. RoCE uses a different mechanism, but still generates a GID via 2220 * a prescribed mechanism and port specific data. 2221 * 2222 * Return: true if the port uses a GID address to identify devices on the 2223 * network. 2224 */ 2225 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2226 { 2227 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2228 } 2229 2230 /** 2231 * rdma_cap_eth_ah - Check if the port of device has the capability 2232 * Ethernet Address Handle. 2233 * @device: Device to check 2234 * @port_num: Port number to check 2235 * 2236 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2237 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2238 * port. Normally, packet headers are generated by the sending host 2239 * adapter, but when sending connectionless datagrams, we must manually 2240 * inject the proper headers for the fabric we are communicating over. 2241 * 2242 * Return: true if we are running as a RoCE port and must force the 2243 * addition of a Global Route Header built from our Ethernet Address 2244 * Handle into our header list for connectionless packets. 2245 */ 2246 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2247 { 2248 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2249 } 2250 2251 /** 2252 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2253 * 2254 * @device: Device 2255 * @port_num: Port number 2256 * 2257 * This MAD size includes the MAD headers and MAD payload. No other headers 2258 * are included. 2259 * 2260 * Return the max MAD size required by the Port. Will return 0 if the port 2261 * does not support MADs 2262 */ 2263 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2264 { 2265 return device->port_immutable[port_num].max_mad_size; 2266 } 2267 2268 /** 2269 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2270 * @device: Device to check 2271 * @port_num: Port number to check 2272 * 2273 * RoCE GID table mechanism manages the various GIDs for a device. 2274 * 2275 * NOTE: if allocating the port's GID table has failed, this call will still 2276 * return true, but any RoCE GID table API will fail. 2277 * 2278 * Return: true if the port uses RoCE GID table mechanism in order to manage 2279 * its GIDs. 2280 */ 2281 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2282 u8 port_num) 2283 { 2284 return rdma_protocol_roce(device, port_num) && 2285 device->add_gid && device->del_gid; 2286 } 2287 2288 int ib_query_gid(struct ib_device *device, 2289 u8 port_num, int index, union ib_gid *gid, 2290 struct ib_gid_attr *attr); 2291 2292 int ib_query_pkey(struct ib_device *device, 2293 u8 port_num, u16 index, u16 *pkey); 2294 2295 int ib_modify_device(struct ib_device *device, 2296 int device_modify_mask, 2297 struct ib_device_modify *device_modify); 2298 2299 int ib_modify_port(struct ib_device *device, 2300 u8 port_num, int port_modify_mask, 2301 struct ib_port_modify *port_modify); 2302 2303 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2304 enum ib_gid_type gid_type, struct net_device *ndev, 2305 u8 *port_num, u16 *index); 2306 2307 int ib_find_pkey(struct ib_device *device, 2308 u8 port_num, u16 pkey, u16 *index); 2309 2310 struct ib_pd *ib_alloc_pd(struct ib_device *device); 2311 2312 void ib_dealloc_pd(struct ib_pd *pd); 2313 2314 /** 2315 * ib_create_ah - Creates an address handle for the given address vector. 2316 * @pd: The protection domain associated with the address handle. 2317 * @ah_attr: The attributes of the address vector. 2318 * 2319 * The address handle is used to reference a local or global destination 2320 * in all UD QP post sends. 2321 */ 2322 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2323 2324 /** 2325 * ib_init_ah_from_wc - Initializes address handle attributes from a 2326 * work completion. 2327 * @device: Device on which the received message arrived. 2328 * @port_num: Port on which the received message arrived. 2329 * @wc: Work completion associated with the received message. 2330 * @grh: References the received global route header. This parameter is 2331 * ignored unless the work completion indicates that the GRH is valid. 2332 * @ah_attr: Returned attributes that can be used when creating an address 2333 * handle for replying to the message. 2334 */ 2335 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2336 const struct ib_wc *wc, const struct ib_grh *grh, 2337 struct ib_ah_attr *ah_attr); 2338 2339 /** 2340 * ib_create_ah_from_wc - Creates an address handle associated with the 2341 * sender of the specified work completion. 2342 * @pd: The protection domain associated with the address handle. 2343 * @wc: Work completion information associated with a received message. 2344 * @grh: References the received global route header. This parameter is 2345 * ignored unless the work completion indicates that the GRH is valid. 2346 * @port_num: The outbound port number to associate with the address. 2347 * 2348 * The address handle is used to reference a local or global destination 2349 * in all UD QP post sends. 2350 */ 2351 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2352 const struct ib_grh *grh, u8 port_num); 2353 2354 /** 2355 * ib_modify_ah - Modifies the address vector associated with an address 2356 * handle. 2357 * @ah: The address handle to modify. 2358 * @ah_attr: The new address vector attributes to associate with the 2359 * address handle. 2360 */ 2361 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2362 2363 /** 2364 * ib_query_ah - Queries the address vector associated with an address 2365 * handle. 2366 * @ah: The address handle to query. 2367 * @ah_attr: The address vector attributes associated with the address 2368 * handle. 2369 */ 2370 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2371 2372 /** 2373 * ib_destroy_ah - Destroys an address handle. 2374 * @ah: The address handle to destroy. 2375 */ 2376 int ib_destroy_ah(struct ib_ah *ah); 2377 2378 /** 2379 * ib_create_srq - Creates a SRQ associated with the specified protection 2380 * domain. 2381 * @pd: The protection domain associated with the SRQ. 2382 * @srq_init_attr: A list of initial attributes required to create the 2383 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2384 * the actual capabilities of the created SRQ. 2385 * 2386 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2387 * requested size of the SRQ, and set to the actual values allocated 2388 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2389 * will always be at least as large as the requested values. 2390 */ 2391 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2392 struct ib_srq_init_attr *srq_init_attr); 2393 2394 /** 2395 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2396 * @srq: The SRQ to modify. 2397 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2398 * the current values of selected SRQ attributes are returned. 2399 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2400 * are being modified. 2401 * 2402 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2403 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2404 * the number of receives queued drops below the limit. 2405 */ 2406 int ib_modify_srq(struct ib_srq *srq, 2407 struct ib_srq_attr *srq_attr, 2408 enum ib_srq_attr_mask srq_attr_mask); 2409 2410 /** 2411 * ib_query_srq - Returns the attribute list and current values for the 2412 * specified SRQ. 2413 * @srq: The SRQ to query. 2414 * @srq_attr: The attributes of the specified SRQ. 2415 */ 2416 int ib_query_srq(struct ib_srq *srq, 2417 struct ib_srq_attr *srq_attr); 2418 2419 /** 2420 * ib_destroy_srq - Destroys the specified SRQ. 2421 * @srq: The SRQ to destroy. 2422 */ 2423 int ib_destroy_srq(struct ib_srq *srq); 2424 2425 /** 2426 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2427 * @srq: The SRQ to post the work request on. 2428 * @recv_wr: A list of work requests to post on the receive queue. 2429 * @bad_recv_wr: On an immediate failure, this parameter will reference 2430 * the work request that failed to be posted on the QP. 2431 */ 2432 static inline int ib_post_srq_recv(struct ib_srq *srq, 2433 struct ib_recv_wr *recv_wr, 2434 struct ib_recv_wr **bad_recv_wr) 2435 { 2436 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2437 } 2438 2439 /** 2440 * ib_create_qp - Creates a QP associated with the specified protection 2441 * domain. 2442 * @pd: The protection domain associated with the QP. 2443 * @qp_init_attr: A list of initial attributes required to create the 2444 * QP. If QP creation succeeds, then the attributes are updated to 2445 * the actual capabilities of the created QP. 2446 */ 2447 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2448 struct ib_qp_init_attr *qp_init_attr); 2449 2450 /** 2451 * ib_modify_qp - Modifies the attributes for the specified QP and then 2452 * transitions the QP to the given state. 2453 * @qp: The QP to modify. 2454 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2455 * the current values of selected QP attributes are returned. 2456 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2457 * are being modified. 2458 */ 2459 int ib_modify_qp(struct ib_qp *qp, 2460 struct ib_qp_attr *qp_attr, 2461 int qp_attr_mask); 2462 2463 /** 2464 * ib_query_qp - Returns the attribute list and current values for the 2465 * specified QP. 2466 * @qp: The QP to query. 2467 * @qp_attr: The attributes of the specified QP. 2468 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2469 * @qp_init_attr: Additional attributes of the selected QP. 2470 * 2471 * The qp_attr_mask may be used to limit the query to gathering only the 2472 * selected attributes. 2473 */ 2474 int ib_query_qp(struct ib_qp *qp, 2475 struct ib_qp_attr *qp_attr, 2476 int qp_attr_mask, 2477 struct ib_qp_init_attr *qp_init_attr); 2478 2479 /** 2480 * ib_destroy_qp - Destroys the specified QP. 2481 * @qp: The QP to destroy. 2482 */ 2483 int ib_destroy_qp(struct ib_qp *qp); 2484 2485 /** 2486 * ib_open_qp - Obtain a reference to an existing sharable QP. 2487 * @xrcd - XRC domain 2488 * @qp_open_attr: Attributes identifying the QP to open. 2489 * 2490 * Returns a reference to a sharable QP. 2491 */ 2492 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2493 struct ib_qp_open_attr *qp_open_attr); 2494 2495 /** 2496 * ib_close_qp - Release an external reference to a QP. 2497 * @qp: The QP handle to release 2498 * 2499 * The opened QP handle is released by the caller. The underlying 2500 * shared QP is not destroyed until all internal references are released. 2501 */ 2502 int ib_close_qp(struct ib_qp *qp); 2503 2504 /** 2505 * ib_post_send - Posts a list of work requests to the send queue of 2506 * the specified QP. 2507 * @qp: The QP to post the work request on. 2508 * @send_wr: A list of work requests to post on the send queue. 2509 * @bad_send_wr: On an immediate failure, this parameter will reference 2510 * the work request that failed to be posted on the QP. 2511 * 2512 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2513 * error is returned, the QP state shall not be affected, 2514 * ib_post_send() will return an immediate error after queueing any 2515 * earlier work requests in the list. 2516 */ 2517 static inline int ib_post_send(struct ib_qp *qp, 2518 struct ib_send_wr *send_wr, 2519 struct ib_send_wr **bad_send_wr) 2520 { 2521 return qp->device->post_send(qp, send_wr, bad_send_wr); 2522 } 2523 2524 /** 2525 * ib_post_recv - Posts a list of work requests to the receive queue of 2526 * the specified QP. 2527 * @qp: The QP to post the work request on. 2528 * @recv_wr: A list of work requests to post on the receive queue. 2529 * @bad_recv_wr: On an immediate failure, this parameter will reference 2530 * the work request that failed to be posted on the QP. 2531 */ 2532 static inline int ib_post_recv(struct ib_qp *qp, 2533 struct ib_recv_wr *recv_wr, 2534 struct ib_recv_wr **bad_recv_wr) 2535 { 2536 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2537 } 2538 2539 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2540 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2541 void ib_free_cq(struct ib_cq *cq); 2542 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2543 2544 /** 2545 * ib_create_cq - Creates a CQ on the specified device. 2546 * @device: The device on which to create the CQ. 2547 * @comp_handler: A user-specified callback that is invoked when a 2548 * completion event occurs on the CQ. 2549 * @event_handler: A user-specified callback that is invoked when an 2550 * asynchronous event not associated with a completion occurs on the CQ. 2551 * @cq_context: Context associated with the CQ returned to the user via 2552 * the associated completion and event handlers. 2553 * @cq_attr: The attributes the CQ should be created upon. 2554 * 2555 * Users can examine the cq structure to determine the actual CQ size. 2556 */ 2557 struct ib_cq *ib_create_cq(struct ib_device *device, 2558 ib_comp_handler comp_handler, 2559 void (*event_handler)(struct ib_event *, void *), 2560 void *cq_context, 2561 const struct ib_cq_init_attr *cq_attr); 2562 2563 /** 2564 * ib_resize_cq - Modifies the capacity of the CQ. 2565 * @cq: The CQ to resize. 2566 * @cqe: The minimum size of the CQ. 2567 * 2568 * Users can examine the cq structure to determine the actual CQ size. 2569 */ 2570 int ib_resize_cq(struct ib_cq *cq, int cqe); 2571 2572 /** 2573 * ib_modify_cq - Modifies moderation params of the CQ 2574 * @cq: The CQ to modify. 2575 * @cq_count: number of CQEs that will trigger an event 2576 * @cq_period: max period of time in usec before triggering an event 2577 * 2578 */ 2579 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2580 2581 /** 2582 * ib_destroy_cq - Destroys the specified CQ. 2583 * @cq: The CQ to destroy. 2584 */ 2585 int ib_destroy_cq(struct ib_cq *cq); 2586 2587 /** 2588 * ib_poll_cq - poll a CQ for completion(s) 2589 * @cq:the CQ being polled 2590 * @num_entries:maximum number of completions to return 2591 * @wc:array of at least @num_entries &struct ib_wc where completions 2592 * will be returned 2593 * 2594 * Poll a CQ for (possibly multiple) completions. If the return value 2595 * is < 0, an error occurred. If the return value is >= 0, it is the 2596 * number of completions returned. If the return value is 2597 * non-negative and < num_entries, then the CQ was emptied. 2598 */ 2599 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2600 struct ib_wc *wc) 2601 { 2602 return cq->device->poll_cq(cq, num_entries, wc); 2603 } 2604 2605 /** 2606 * ib_peek_cq - Returns the number of unreaped completions currently 2607 * on the specified CQ. 2608 * @cq: The CQ to peek. 2609 * @wc_cnt: A minimum number of unreaped completions to check for. 2610 * 2611 * If the number of unreaped completions is greater than or equal to wc_cnt, 2612 * this function returns wc_cnt, otherwise, it returns the actual number of 2613 * unreaped completions. 2614 */ 2615 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2616 2617 /** 2618 * ib_req_notify_cq - Request completion notification on a CQ. 2619 * @cq: The CQ to generate an event for. 2620 * @flags: 2621 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2622 * to request an event on the next solicited event or next work 2623 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2624 * may also be |ed in to request a hint about missed events, as 2625 * described below. 2626 * 2627 * Return Value: 2628 * < 0 means an error occurred while requesting notification 2629 * == 0 means notification was requested successfully, and if 2630 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2631 * were missed and it is safe to wait for another event. In 2632 * this case is it guaranteed that any work completions added 2633 * to the CQ since the last CQ poll will trigger a completion 2634 * notification event. 2635 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2636 * in. It means that the consumer must poll the CQ again to 2637 * make sure it is empty to avoid missing an event because of a 2638 * race between requesting notification and an entry being 2639 * added to the CQ. This return value means it is possible 2640 * (but not guaranteed) that a work completion has been added 2641 * to the CQ since the last poll without triggering a 2642 * completion notification event. 2643 */ 2644 static inline int ib_req_notify_cq(struct ib_cq *cq, 2645 enum ib_cq_notify_flags flags) 2646 { 2647 return cq->device->req_notify_cq(cq, flags); 2648 } 2649 2650 /** 2651 * ib_req_ncomp_notif - Request completion notification when there are 2652 * at least the specified number of unreaped completions on the CQ. 2653 * @cq: The CQ to generate an event for. 2654 * @wc_cnt: The number of unreaped completions that should be on the 2655 * CQ before an event is generated. 2656 */ 2657 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2658 { 2659 return cq->device->req_ncomp_notif ? 2660 cq->device->req_ncomp_notif(cq, wc_cnt) : 2661 -ENOSYS; 2662 } 2663 2664 /** 2665 * ib_get_dma_mr - Returns a memory region for system memory that is 2666 * usable for DMA. 2667 * @pd: The protection domain associated with the memory region. 2668 * @mr_access_flags: Specifies the memory access rights. 2669 * 2670 * Note that the ib_dma_*() functions defined below must be used 2671 * to create/destroy addresses used with the Lkey or Rkey returned 2672 * by ib_get_dma_mr(). 2673 */ 2674 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2675 2676 /** 2677 * ib_dma_mapping_error - check a DMA addr for error 2678 * @dev: The device for which the dma_addr was created 2679 * @dma_addr: The DMA address to check 2680 */ 2681 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2682 { 2683 if (dev->dma_ops) 2684 return dev->dma_ops->mapping_error(dev, dma_addr); 2685 return dma_mapping_error(dev->dma_device, dma_addr); 2686 } 2687 2688 /** 2689 * ib_dma_map_single - Map a kernel virtual address to DMA address 2690 * @dev: The device for which the dma_addr is to be created 2691 * @cpu_addr: The kernel virtual address 2692 * @size: The size of the region in bytes 2693 * @direction: The direction of the DMA 2694 */ 2695 static inline u64 ib_dma_map_single(struct ib_device *dev, 2696 void *cpu_addr, size_t size, 2697 enum dma_data_direction direction) 2698 { 2699 if (dev->dma_ops) 2700 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2701 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2702 } 2703 2704 /** 2705 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2706 * @dev: The device for which the DMA address was created 2707 * @addr: The DMA address 2708 * @size: The size of the region in bytes 2709 * @direction: The direction of the DMA 2710 */ 2711 static inline void ib_dma_unmap_single(struct ib_device *dev, 2712 u64 addr, size_t size, 2713 enum dma_data_direction direction) 2714 { 2715 if (dev->dma_ops) 2716 dev->dma_ops->unmap_single(dev, addr, size, direction); 2717 else 2718 dma_unmap_single(dev->dma_device, addr, size, direction); 2719 } 2720 2721 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2722 void *cpu_addr, size_t size, 2723 enum dma_data_direction direction, 2724 struct dma_attrs *attrs) 2725 { 2726 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2727 direction, attrs); 2728 } 2729 2730 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2731 u64 addr, size_t size, 2732 enum dma_data_direction direction, 2733 struct dma_attrs *attrs) 2734 { 2735 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2736 direction, attrs); 2737 } 2738 2739 /** 2740 * ib_dma_map_page - Map a physical page to DMA address 2741 * @dev: The device for which the dma_addr is to be created 2742 * @page: The page to be mapped 2743 * @offset: The offset within the page 2744 * @size: The size of the region in bytes 2745 * @direction: The direction of the DMA 2746 */ 2747 static inline u64 ib_dma_map_page(struct ib_device *dev, 2748 struct page *page, 2749 unsigned long offset, 2750 size_t size, 2751 enum dma_data_direction direction) 2752 { 2753 if (dev->dma_ops) 2754 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2755 return dma_map_page(dev->dma_device, page, offset, size, direction); 2756 } 2757 2758 /** 2759 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2760 * @dev: The device for which the DMA address was created 2761 * @addr: The DMA address 2762 * @size: The size of the region in bytes 2763 * @direction: The direction of the DMA 2764 */ 2765 static inline void ib_dma_unmap_page(struct ib_device *dev, 2766 u64 addr, size_t size, 2767 enum dma_data_direction direction) 2768 { 2769 if (dev->dma_ops) 2770 dev->dma_ops->unmap_page(dev, addr, size, direction); 2771 else 2772 dma_unmap_page(dev->dma_device, addr, size, direction); 2773 } 2774 2775 /** 2776 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2777 * @dev: The device for which the DMA addresses are to be created 2778 * @sg: The array of scatter/gather entries 2779 * @nents: The number of scatter/gather entries 2780 * @direction: The direction of the DMA 2781 */ 2782 static inline int ib_dma_map_sg(struct ib_device *dev, 2783 struct scatterlist *sg, int nents, 2784 enum dma_data_direction direction) 2785 { 2786 if (dev->dma_ops) 2787 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2788 return dma_map_sg(dev->dma_device, sg, nents, direction); 2789 } 2790 2791 /** 2792 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2793 * @dev: The device for which the DMA addresses were created 2794 * @sg: The array of scatter/gather entries 2795 * @nents: The number of scatter/gather entries 2796 * @direction: The direction of the DMA 2797 */ 2798 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2799 struct scatterlist *sg, int nents, 2800 enum dma_data_direction direction) 2801 { 2802 if (dev->dma_ops) 2803 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2804 else 2805 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2806 } 2807 2808 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2809 struct scatterlist *sg, int nents, 2810 enum dma_data_direction direction, 2811 struct dma_attrs *attrs) 2812 { 2813 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2814 } 2815 2816 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2817 struct scatterlist *sg, int nents, 2818 enum dma_data_direction direction, 2819 struct dma_attrs *attrs) 2820 { 2821 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2822 } 2823 /** 2824 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2825 * @dev: The device for which the DMA addresses were created 2826 * @sg: The scatter/gather entry 2827 * 2828 * Note: this function is obsolete. To do: change all occurrences of 2829 * ib_sg_dma_address() into sg_dma_address(). 2830 */ 2831 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2832 struct scatterlist *sg) 2833 { 2834 return sg_dma_address(sg); 2835 } 2836 2837 /** 2838 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2839 * @dev: The device for which the DMA addresses were created 2840 * @sg: The scatter/gather entry 2841 * 2842 * Note: this function is obsolete. To do: change all occurrences of 2843 * ib_sg_dma_len() into sg_dma_len(). 2844 */ 2845 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2846 struct scatterlist *sg) 2847 { 2848 return sg_dma_len(sg); 2849 } 2850 2851 /** 2852 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2853 * @dev: The device for which the DMA address was created 2854 * @addr: The DMA address 2855 * @size: The size of the region in bytes 2856 * @dir: The direction of the DMA 2857 */ 2858 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2859 u64 addr, 2860 size_t size, 2861 enum dma_data_direction dir) 2862 { 2863 if (dev->dma_ops) 2864 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2865 else 2866 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2867 } 2868 2869 /** 2870 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2871 * @dev: The device for which the DMA address was created 2872 * @addr: The DMA address 2873 * @size: The size of the region in bytes 2874 * @dir: The direction of the DMA 2875 */ 2876 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2877 u64 addr, 2878 size_t size, 2879 enum dma_data_direction dir) 2880 { 2881 if (dev->dma_ops) 2882 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2883 else 2884 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2885 } 2886 2887 /** 2888 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2889 * @dev: The device for which the DMA address is requested 2890 * @size: The size of the region to allocate in bytes 2891 * @dma_handle: A pointer for returning the DMA address of the region 2892 * @flag: memory allocator flags 2893 */ 2894 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2895 size_t size, 2896 u64 *dma_handle, 2897 gfp_t flag) 2898 { 2899 if (dev->dma_ops) 2900 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2901 else { 2902 dma_addr_t handle; 2903 void *ret; 2904 2905 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2906 *dma_handle = handle; 2907 return ret; 2908 } 2909 } 2910 2911 /** 2912 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2913 * @dev: The device for which the DMA addresses were allocated 2914 * @size: The size of the region 2915 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2916 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2917 */ 2918 static inline void ib_dma_free_coherent(struct ib_device *dev, 2919 size_t size, void *cpu_addr, 2920 u64 dma_handle) 2921 { 2922 if (dev->dma_ops) 2923 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2924 else 2925 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2926 } 2927 2928 /** 2929 * ib_dereg_mr - Deregisters a memory region and removes it from the 2930 * HCA translation table. 2931 * @mr: The memory region to deregister. 2932 * 2933 * This function can fail, if the memory region has memory windows bound to it. 2934 */ 2935 int ib_dereg_mr(struct ib_mr *mr); 2936 2937 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 2938 enum ib_mr_type mr_type, 2939 u32 max_num_sg); 2940 2941 /** 2942 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2943 * R_Key and L_Key. 2944 * @mr - struct ib_mr pointer to be updated. 2945 * @newkey - new key to be used. 2946 */ 2947 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2948 { 2949 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2950 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2951 } 2952 2953 /** 2954 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2955 * for calculating a new rkey for type 2 memory windows. 2956 * @rkey - the rkey to increment. 2957 */ 2958 static inline u32 ib_inc_rkey(u32 rkey) 2959 { 2960 const u32 mask = 0x000000ff; 2961 return ((rkey + 1) & mask) | (rkey & ~mask); 2962 } 2963 2964 /** 2965 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2966 * @pd: The protection domain associated with the unmapped region. 2967 * @mr_access_flags: Specifies the memory access rights. 2968 * @fmr_attr: Attributes of the unmapped region. 2969 * 2970 * A fast memory region must be mapped before it can be used as part of 2971 * a work request. 2972 */ 2973 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2974 int mr_access_flags, 2975 struct ib_fmr_attr *fmr_attr); 2976 2977 /** 2978 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2979 * @fmr: The fast memory region to associate with the pages. 2980 * @page_list: An array of physical pages to map to the fast memory region. 2981 * @list_len: The number of pages in page_list. 2982 * @iova: The I/O virtual address to use with the mapped region. 2983 */ 2984 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2985 u64 *page_list, int list_len, 2986 u64 iova) 2987 { 2988 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2989 } 2990 2991 /** 2992 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2993 * @fmr_list: A linked list of fast memory regions to unmap. 2994 */ 2995 int ib_unmap_fmr(struct list_head *fmr_list); 2996 2997 /** 2998 * ib_dealloc_fmr - Deallocates a fast memory region. 2999 * @fmr: The fast memory region to deallocate. 3000 */ 3001 int ib_dealloc_fmr(struct ib_fmr *fmr); 3002 3003 /** 3004 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3005 * @qp: QP to attach to the multicast group. The QP must be type 3006 * IB_QPT_UD. 3007 * @gid: Multicast group GID. 3008 * @lid: Multicast group LID in host byte order. 3009 * 3010 * In order to send and receive multicast packets, subnet 3011 * administration must have created the multicast group and configured 3012 * the fabric appropriately. The port associated with the specified 3013 * QP must also be a member of the multicast group. 3014 */ 3015 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3016 3017 /** 3018 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3019 * @qp: QP to detach from the multicast group. 3020 * @gid: Multicast group GID. 3021 * @lid: Multicast group LID in host byte order. 3022 */ 3023 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3024 3025 /** 3026 * ib_alloc_xrcd - Allocates an XRC domain. 3027 * @device: The device on which to allocate the XRC domain. 3028 */ 3029 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3030 3031 /** 3032 * ib_dealloc_xrcd - Deallocates an XRC domain. 3033 * @xrcd: The XRC domain to deallocate. 3034 */ 3035 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3036 3037 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3038 struct ib_flow_attr *flow_attr, int domain); 3039 int ib_destroy_flow(struct ib_flow *flow_id); 3040 3041 static inline int ib_check_mr_access(int flags) 3042 { 3043 /* 3044 * Local write permission is required if remote write or 3045 * remote atomic permission is also requested. 3046 */ 3047 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3048 !(flags & IB_ACCESS_LOCAL_WRITE)) 3049 return -EINVAL; 3050 3051 return 0; 3052 } 3053 3054 /** 3055 * ib_check_mr_status: lightweight check of MR status. 3056 * This routine may provide status checks on a selected 3057 * ib_mr. first use is for signature status check. 3058 * 3059 * @mr: A memory region. 3060 * @check_mask: Bitmask of which checks to perform from 3061 * ib_mr_status_check enumeration. 3062 * @mr_status: The container of relevant status checks. 3063 * failed checks will be indicated in the status bitmask 3064 * and the relevant info shall be in the error item. 3065 */ 3066 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3067 struct ib_mr_status *mr_status); 3068 3069 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3070 u16 pkey, const union ib_gid *gid, 3071 const struct sockaddr *addr); 3072 3073 int ib_map_mr_sg(struct ib_mr *mr, 3074 struct scatterlist *sg, 3075 int sg_nents, 3076 unsigned int page_size); 3077 3078 static inline int 3079 ib_map_mr_sg_zbva(struct ib_mr *mr, 3080 struct scatterlist *sg, 3081 int sg_nents, 3082 unsigned int page_size) 3083 { 3084 int n; 3085 3086 n = ib_map_mr_sg(mr, sg, sg_nents, page_size); 3087 mr->iova = 0; 3088 3089 return n; 3090 } 3091 3092 int ib_sg_to_pages(struct ib_mr *mr, 3093 struct scatterlist *sgl, 3094 int sg_nents, 3095 int (*set_page)(struct ib_mr *, u64)); 3096 3097 #endif /* IB_VERBS_H */ 3098