xref: /linux/include/rdma/ib_verbs.h (revision b2105aa2c6481fda72c1825800b753a0bf614517)
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/types.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/kref.h>
19 #include <linux/list.h>
20 #include <linux/rwsem.h>
21 #include <linux/workqueue.h>
22 #include <linux/irq_poll.h>
23 #include <uapi/linux/if_ether.h>
24 #include <net/ipv6.h>
25 #include <net/ip.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/netdevice.h>
29 #include <linux/refcount.h>
30 #include <linux/if_link.h>
31 #include <linux/atomic.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/uaccess.h>
34 #include <linux/cgroup_rdma.h>
35 #include <linux/irqflags.h>
36 #include <linux/preempt.h>
37 #include <linux/dim.h>
38 #include <uapi/rdma/ib_user_verbs.h>
39 #include <rdma/rdma_counter.h>
40 #include <rdma/restrack.h>
41 #include <rdma/signature.h>
42 #include <uapi/rdma/rdma_user_ioctl.h>
43 #include <uapi/rdma/ib_user_ioctl_verbs.h>
44 
45 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
46 
47 struct ib_umem_odp;
48 struct ib_uqp_object;
49 struct ib_usrq_object;
50 struct ib_uwq_object;
51 struct rdma_cm_id;
52 
53 extern struct workqueue_struct *ib_wq;
54 extern struct workqueue_struct *ib_comp_wq;
55 extern struct workqueue_struct *ib_comp_unbound_wq;
56 
57 struct ib_ucq_object;
58 
59 __printf(3, 4) __cold
60 void ibdev_printk(const char *level, const struct ib_device *ibdev,
61 		  const char *format, ...);
62 __printf(2, 3) __cold
63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
64 __printf(2, 3) __cold
65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
66 __printf(2, 3) __cold
67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
68 __printf(2, 3) __cold
69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
70 __printf(2, 3) __cold
71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
72 __printf(2, 3) __cold
73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
74 __printf(2, 3) __cold
75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
76 
77 #if defined(CONFIG_DYNAMIC_DEBUG) || \
78 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
79 #define ibdev_dbg(__dev, format, args...)                       \
80 	dynamic_ibdev_dbg(__dev, format, ##args)
81 #else
82 __printf(2, 3) __cold
83 static inline
84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
85 #endif
86 
87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
88 do {                                                                    \
89 	static DEFINE_RATELIMIT_STATE(_rs,                              \
90 				      DEFAULT_RATELIMIT_INTERVAL,       \
91 				      DEFAULT_RATELIMIT_BURST);         \
92 	if (__ratelimit(&_rs))                                          \
93 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
94 } while (0)
95 
96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
97 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
99 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
101 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
103 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
105 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
107 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
109 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
110 
111 #if defined(CONFIG_DYNAMIC_DEBUG) || \
112 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
115 do {                                                                    \
116 	static DEFINE_RATELIMIT_STATE(_rs,                              \
117 				      DEFAULT_RATELIMIT_INTERVAL,       \
118 				      DEFAULT_RATELIMIT_BURST);         \
119 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
120 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
121 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
122 				    ##__VA_ARGS__);                     \
123 } while (0)
124 #else
125 __printf(2, 3) __cold
126 static inline
127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
128 #endif
129 
130 union ib_gid {
131 	u8	raw[16];
132 	struct {
133 		__be64	subnet_prefix;
134 		__be64	interface_id;
135 	} global;
136 };
137 
138 extern union ib_gid zgid;
139 
140 enum ib_gid_type {
141 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
142 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
143 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
144 	IB_GID_TYPE_SIZE
145 };
146 
147 #define ROCE_V2_UDP_DPORT      4791
148 struct ib_gid_attr {
149 	struct net_device __rcu	*ndev;
150 	struct ib_device	*device;
151 	union ib_gid		gid;
152 	enum ib_gid_type	gid_type;
153 	u16			index;
154 	u8			port_num;
155 };
156 
157 enum {
158 	/* set the local administered indication */
159 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
160 };
161 
162 enum rdma_transport_type {
163 	RDMA_TRANSPORT_IB,
164 	RDMA_TRANSPORT_IWARP,
165 	RDMA_TRANSPORT_USNIC,
166 	RDMA_TRANSPORT_USNIC_UDP,
167 	RDMA_TRANSPORT_UNSPECIFIED,
168 };
169 
170 enum rdma_protocol_type {
171 	RDMA_PROTOCOL_IB,
172 	RDMA_PROTOCOL_IBOE,
173 	RDMA_PROTOCOL_IWARP,
174 	RDMA_PROTOCOL_USNIC_UDP
175 };
176 
177 __attribute_const__ enum rdma_transport_type
178 rdma_node_get_transport(unsigned int node_type);
179 
180 enum rdma_network_type {
181 	RDMA_NETWORK_IB,
182 	RDMA_NETWORK_ROCE_V1,
183 	RDMA_NETWORK_IPV4,
184 	RDMA_NETWORK_IPV6
185 };
186 
187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
188 {
189 	if (network_type == RDMA_NETWORK_IPV4 ||
190 	    network_type == RDMA_NETWORK_IPV6)
191 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
192 	else if (network_type == RDMA_NETWORK_ROCE_V1)
193 		return IB_GID_TYPE_ROCE;
194 	else
195 		return IB_GID_TYPE_IB;
196 }
197 
198 static inline enum rdma_network_type
199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
200 {
201 	if (attr->gid_type == IB_GID_TYPE_IB)
202 		return RDMA_NETWORK_IB;
203 
204 	if (attr->gid_type == IB_GID_TYPE_ROCE)
205 		return RDMA_NETWORK_ROCE_V1;
206 
207 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
208 		return RDMA_NETWORK_IPV4;
209 	else
210 		return RDMA_NETWORK_IPV6;
211 }
212 
213 enum rdma_link_layer {
214 	IB_LINK_LAYER_UNSPECIFIED,
215 	IB_LINK_LAYER_INFINIBAND,
216 	IB_LINK_LAYER_ETHERNET,
217 };
218 
219 enum ib_device_cap_flags {
220 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
221 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
222 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
223 	IB_DEVICE_RAW_MULTI			= (1 << 3),
224 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
225 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
226 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
227 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
228 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
229 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
230 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
231 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
232 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
233 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
234 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
235 
236 	/*
237 	 * This device supports a per-device lkey or stag that can be
238 	 * used without performing a memory registration for the local
239 	 * memory.  Note that ULPs should never check this flag, but
240 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
241 	 * which will always contain a usable lkey.
242 	 */
243 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
244 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
245 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
246 	/*
247 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
248 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
249 	 * messages and can verify the validity of checksum for
250 	 * incoming messages.  Setting this flag implies that the
251 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
252 	 */
253 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
254 	IB_DEVICE_UD_TSO			= (1 << 19),
255 	IB_DEVICE_XRC				= (1 << 20),
256 
257 	/*
258 	 * This device supports the IB "base memory management extension",
259 	 * which includes support for fast registrations (IB_WR_REG_MR,
260 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
261 	 * also be set by any iWarp device which must support FRs to comply
262 	 * to the iWarp verbs spec.  iWarp devices also support the
263 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
264 	 * stag.
265 	 */
266 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
267 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
268 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
269 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
270 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
271 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
272 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
273 	/*
274 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
275 	 * support execution of WQEs that involve synchronization
276 	 * of I/O operations with single completion queue managed
277 	 * by hardware.
278 	 */
279 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
280 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
281 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
282 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
283 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
284 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
285 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
286 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
287 	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
288 	/* The device supports padding incoming writes to cacheline. */
289 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
290 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
291 };
292 
293 enum ib_atomic_cap {
294 	IB_ATOMIC_NONE,
295 	IB_ATOMIC_HCA,
296 	IB_ATOMIC_GLOB
297 };
298 
299 enum ib_odp_general_cap_bits {
300 	IB_ODP_SUPPORT		= 1 << 0,
301 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
302 };
303 
304 enum ib_odp_transport_cap_bits {
305 	IB_ODP_SUPPORT_SEND	= 1 << 0,
306 	IB_ODP_SUPPORT_RECV	= 1 << 1,
307 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
308 	IB_ODP_SUPPORT_READ	= 1 << 3,
309 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
310 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
311 };
312 
313 struct ib_odp_caps {
314 	uint64_t general_caps;
315 	struct {
316 		uint32_t  rc_odp_caps;
317 		uint32_t  uc_odp_caps;
318 		uint32_t  ud_odp_caps;
319 		uint32_t  xrc_odp_caps;
320 	} per_transport_caps;
321 };
322 
323 struct ib_rss_caps {
324 	/* Corresponding bit will be set if qp type from
325 	 * 'enum ib_qp_type' is supported, e.g.
326 	 * supported_qpts |= 1 << IB_QPT_UD
327 	 */
328 	u32 supported_qpts;
329 	u32 max_rwq_indirection_tables;
330 	u32 max_rwq_indirection_table_size;
331 };
332 
333 enum ib_tm_cap_flags {
334 	/*  Support tag matching with rendezvous offload for RC transport */
335 	IB_TM_CAP_RNDV_RC = 1 << 0,
336 };
337 
338 struct ib_tm_caps {
339 	/* Max size of RNDV header */
340 	u32 max_rndv_hdr_size;
341 	/* Max number of entries in tag matching list */
342 	u32 max_num_tags;
343 	/* From enum ib_tm_cap_flags */
344 	u32 flags;
345 	/* Max number of outstanding list operations */
346 	u32 max_ops;
347 	/* Max number of SGE in tag matching entry */
348 	u32 max_sge;
349 };
350 
351 struct ib_cq_init_attr {
352 	unsigned int	cqe;
353 	u32		comp_vector;
354 	u32		flags;
355 };
356 
357 enum ib_cq_attr_mask {
358 	IB_CQ_MODERATE = 1 << 0,
359 };
360 
361 struct ib_cq_caps {
362 	u16     max_cq_moderation_count;
363 	u16     max_cq_moderation_period;
364 };
365 
366 struct ib_dm_mr_attr {
367 	u64		length;
368 	u64		offset;
369 	u32		access_flags;
370 };
371 
372 struct ib_dm_alloc_attr {
373 	u64	length;
374 	u32	alignment;
375 	u32	flags;
376 };
377 
378 struct ib_device_attr {
379 	u64			fw_ver;
380 	__be64			sys_image_guid;
381 	u64			max_mr_size;
382 	u64			page_size_cap;
383 	u32			vendor_id;
384 	u32			vendor_part_id;
385 	u32			hw_ver;
386 	int			max_qp;
387 	int			max_qp_wr;
388 	u64			device_cap_flags;
389 	int			max_send_sge;
390 	int			max_recv_sge;
391 	int			max_sge_rd;
392 	int			max_cq;
393 	int			max_cqe;
394 	int			max_mr;
395 	int			max_pd;
396 	int			max_qp_rd_atom;
397 	int			max_ee_rd_atom;
398 	int			max_res_rd_atom;
399 	int			max_qp_init_rd_atom;
400 	int			max_ee_init_rd_atom;
401 	enum ib_atomic_cap	atomic_cap;
402 	enum ib_atomic_cap	masked_atomic_cap;
403 	int			max_ee;
404 	int			max_rdd;
405 	int			max_mw;
406 	int			max_raw_ipv6_qp;
407 	int			max_raw_ethy_qp;
408 	int			max_mcast_grp;
409 	int			max_mcast_qp_attach;
410 	int			max_total_mcast_qp_attach;
411 	int			max_ah;
412 	int			max_srq;
413 	int			max_srq_wr;
414 	int			max_srq_sge;
415 	unsigned int		max_fast_reg_page_list_len;
416 	unsigned int		max_pi_fast_reg_page_list_len;
417 	u16			max_pkeys;
418 	u8			local_ca_ack_delay;
419 	int			sig_prot_cap;
420 	int			sig_guard_cap;
421 	struct ib_odp_caps	odp_caps;
422 	uint64_t		timestamp_mask;
423 	uint64_t		hca_core_clock; /* in KHZ */
424 	struct ib_rss_caps	rss_caps;
425 	u32			max_wq_type_rq;
426 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
427 	struct ib_tm_caps	tm_caps;
428 	struct ib_cq_caps       cq_caps;
429 	u64			max_dm_size;
430 	/* Max entries for sgl for optimized performance per READ */
431 	u32			max_sgl_rd;
432 };
433 
434 enum ib_mtu {
435 	IB_MTU_256  = 1,
436 	IB_MTU_512  = 2,
437 	IB_MTU_1024 = 3,
438 	IB_MTU_2048 = 4,
439 	IB_MTU_4096 = 5
440 };
441 
442 enum opa_mtu {
443 	OPA_MTU_8192 = 6,
444 	OPA_MTU_10240 = 7
445 };
446 
447 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
448 {
449 	switch (mtu) {
450 	case IB_MTU_256:  return  256;
451 	case IB_MTU_512:  return  512;
452 	case IB_MTU_1024: return 1024;
453 	case IB_MTU_2048: return 2048;
454 	case IB_MTU_4096: return 4096;
455 	default: 	  return -1;
456 	}
457 }
458 
459 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
460 {
461 	if (mtu >= 4096)
462 		return IB_MTU_4096;
463 	else if (mtu >= 2048)
464 		return IB_MTU_2048;
465 	else if (mtu >= 1024)
466 		return IB_MTU_1024;
467 	else if (mtu >= 512)
468 		return IB_MTU_512;
469 	else
470 		return IB_MTU_256;
471 }
472 
473 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
474 {
475 	switch (mtu) {
476 	case OPA_MTU_8192:
477 		return 8192;
478 	case OPA_MTU_10240:
479 		return 10240;
480 	default:
481 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
482 	}
483 }
484 
485 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
486 {
487 	if (mtu >= 10240)
488 		return OPA_MTU_10240;
489 	else if (mtu >= 8192)
490 		return OPA_MTU_8192;
491 	else
492 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
493 }
494 
495 enum ib_port_state {
496 	IB_PORT_NOP		= 0,
497 	IB_PORT_DOWN		= 1,
498 	IB_PORT_INIT		= 2,
499 	IB_PORT_ARMED		= 3,
500 	IB_PORT_ACTIVE		= 4,
501 	IB_PORT_ACTIVE_DEFER	= 5
502 };
503 
504 enum ib_port_phys_state {
505 	IB_PORT_PHYS_STATE_SLEEP = 1,
506 	IB_PORT_PHYS_STATE_POLLING = 2,
507 	IB_PORT_PHYS_STATE_DISABLED = 3,
508 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
509 	IB_PORT_PHYS_STATE_LINK_UP = 5,
510 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
511 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
512 };
513 
514 enum ib_port_width {
515 	IB_WIDTH_1X	= 1,
516 	IB_WIDTH_2X	= 16,
517 	IB_WIDTH_4X	= 2,
518 	IB_WIDTH_8X	= 4,
519 	IB_WIDTH_12X	= 8
520 };
521 
522 static inline int ib_width_enum_to_int(enum ib_port_width width)
523 {
524 	switch (width) {
525 	case IB_WIDTH_1X:  return  1;
526 	case IB_WIDTH_2X:  return  2;
527 	case IB_WIDTH_4X:  return  4;
528 	case IB_WIDTH_8X:  return  8;
529 	case IB_WIDTH_12X: return 12;
530 	default: 	  return -1;
531 	}
532 }
533 
534 enum ib_port_speed {
535 	IB_SPEED_SDR	= 1,
536 	IB_SPEED_DDR	= 2,
537 	IB_SPEED_QDR	= 4,
538 	IB_SPEED_FDR10	= 8,
539 	IB_SPEED_FDR	= 16,
540 	IB_SPEED_EDR	= 32,
541 	IB_SPEED_HDR	= 64,
542 	IB_SPEED_NDR	= 128,
543 };
544 
545 /**
546  * struct rdma_hw_stats
547  * @lock - Mutex to protect parallel write access to lifespan and values
548  *    of counters, which are 64bits and not guaranteeed to be written
549  *    atomicaly on 32bits systems.
550  * @timestamp - Used by the core code to track when the last update was
551  * @lifespan - Used by the core code to determine how old the counters
552  *   should be before being updated again.  Stored in jiffies, defaults
553  *   to 10 milliseconds, drivers can override the default be specifying
554  *   their own value during their allocation routine.
555  * @name - Array of pointers to static names used for the counters in
556  *   directory.
557  * @num_counters - How many hardware counters there are.  If name is
558  *   shorter than this number, a kernel oops will result.  Driver authors
559  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
560  *   in their code to prevent this.
561  * @value - Array of u64 counters that are accessed by the sysfs code and
562  *   filled in by the drivers get_stats routine
563  */
564 struct rdma_hw_stats {
565 	struct mutex	lock; /* Protect lifespan and values[] */
566 	unsigned long	timestamp;
567 	unsigned long	lifespan;
568 	const char * const *names;
569 	int		num_counters;
570 	u64		value[];
571 };
572 
573 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
574 /**
575  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
576  *   for drivers.
577  * @names - Array of static const char *
578  * @num_counters - How many elements in array
579  * @lifespan - How many milliseconds between updates
580  */
581 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
582 		const char * const *names, int num_counters,
583 		unsigned long lifespan)
584 {
585 	struct rdma_hw_stats *stats;
586 
587 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
588 			GFP_KERNEL);
589 	if (!stats)
590 		return NULL;
591 	stats->names = names;
592 	stats->num_counters = num_counters;
593 	stats->lifespan = msecs_to_jiffies(lifespan);
594 
595 	return stats;
596 }
597 
598 
599 /* Define bits for the various functionality this port needs to be supported by
600  * the core.
601  */
602 /* Management                           0x00000FFF */
603 #define RDMA_CORE_CAP_IB_MAD            0x00000001
604 #define RDMA_CORE_CAP_IB_SMI            0x00000002
605 #define RDMA_CORE_CAP_IB_CM             0x00000004
606 #define RDMA_CORE_CAP_IW_CM             0x00000008
607 #define RDMA_CORE_CAP_IB_SA             0x00000010
608 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
609 
610 /* Address format                       0x000FF000 */
611 #define RDMA_CORE_CAP_AF_IB             0x00001000
612 #define RDMA_CORE_CAP_ETH_AH            0x00002000
613 #define RDMA_CORE_CAP_OPA_AH            0x00004000
614 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
615 
616 /* Protocol                             0xFFF00000 */
617 #define RDMA_CORE_CAP_PROT_IB           0x00100000
618 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
619 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
620 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
621 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
622 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
623 
624 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
625 					| RDMA_CORE_CAP_PROT_ROCE     \
626 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
627 
628 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
629 					| RDMA_CORE_CAP_IB_MAD \
630 					| RDMA_CORE_CAP_IB_SMI \
631 					| RDMA_CORE_CAP_IB_CM  \
632 					| RDMA_CORE_CAP_IB_SA  \
633 					| RDMA_CORE_CAP_AF_IB)
634 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
635 					| RDMA_CORE_CAP_IB_MAD  \
636 					| RDMA_CORE_CAP_IB_CM   \
637 					| RDMA_CORE_CAP_AF_IB   \
638 					| RDMA_CORE_CAP_ETH_AH)
639 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
640 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
641 					| RDMA_CORE_CAP_IB_MAD  \
642 					| RDMA_CORE_CAP_IB_CM   \
643 					| RDMA_CORE_CAP_AF_IB   \
644 					| RDMA_CORE_CAP_ETH_AH)
645 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
646 					| RDMA_CORE_CAP_IW_CM)
647 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
648 					| RDMA_CORE_CAP_OPA_MAD)
649 
650 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
651 
652 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
653 
654 struct ib_port_attr {
655 	u64			subnet_prefix;
656 	enum ib_port_state	state;
657 	enum ib_mtu		max_mtu;
658 	enum ib_mtu		active_mtu;
659 	u32                     phys_mtu;
660 	int			gid_tbl_len;
661 	unsigned int		ip_gids:1;
662 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
663 	u32			port_cap_flags;
664 	u32			max_msg_sz;
665 	u32			bad_pkey_cntr;
666 	u32			qkey_viol_cntr;
667 	u16			pkey_tbl_len;
668 	u32			sm_lid;
669 	u32			lid;
670 	u8			lmc;
671 	u8			max_vl_num;
672 	u8			sm_sl;
673 	u8			subnet_timeout;
674 	u8			init_type_reply;
675 	u8			active_width;
676 	u16			active_speed;
677 	u8                      phys_state;
678 	u16			port_cap_flags2;
679 };
680 
681 enum ib_device_modify_flags {
682 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
683 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
684 };
685 
686 #define IB_DEVICE_NODE_DESC_MAX 64
687 
688 struct ib_device_modify {
689 	u64	sys_image_guid;
690 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
691 };
692 
693 enum ib_port_modify_flags {
694 	IB_PORT_SHUTDOWN		= 1,
695 	IB_PORT_INIT_TYPE		= (1<<2),
696 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
697 	IB_PORT_OPA_MASK_CHG		= (1<<4)
698 };
699 
700 struct ib_port_modify {
701 	u32	set_port_cap_mask;
702 	u32	clr_port_cap_mask;
703 	u8	init_type;
704 };
705 
706 enum ib_event_type {
707 	IB_EVENT_CQ_ERR,
708 	IB_EVENT_QP_FATAL,
709 	IB_EVENT_QP_REQ_ERR,
710 	IB_EVENT_QP_ACCESS_ERR,
711 	IB_EVENT_COMM_EST,
712 	IB_EVENT_SQ_DRAINED,
713 	IB_EVENT_PATH_MIG,
714 	IB_EVENT_PATH_MIG_ERR,
715 	IB_EVENT_DEVICE_FATAL,
716 	IB_EVENT_PORT_ACTIVE,
717 	IB_EVENT_PORT_ERR,
718 	IB_EVENT_LID_CHANGE,
719 	IB_EVENT_PKEY_CHANGE,
720 	IB_EVENT_SM_CHANGE,
721 	IB_EVENT_SRQ_ERR,
722 	IB_EVENT_SRQ_LIMIT_REACHED,
723 	IB_EVENT_QP_LAST_WQE_REACHED,
724 	IB_EVENT_CLIENT_REREGISTER,
725 	IB_EVENT_GID_CHANGE,
726 	IB_EVENT_WQ_FATAL,
727 };
728 
729 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
730 
731 struct ib_event {
732 	struct ib_device	*device;
733 	union {
734 		struct ib_cq	*cq;
735 		struct ib_qp	*qp;
736 		struct ib_srq	*srq;
737 		struct ib_wq	*wq;
738 		u8		port_num;
739 	} element;
740 	enum ib_event_type	event;
741 };
742 
743 struct ib_event_handler {
744 	struct ib_device *device;
745 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
746 	struct list_head  list;
747 };
748 
749 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
750 	do {							\
751 		(_ptr)->device  = _device;			\
752 		(_ptr)->handler = _handler;			\
753 		INIT_LIST_HEAD(&(_ptr)->list);			\
754 	} while (0)
755 
756 struct ib_global_route {
757 	const struct ib_gid_attr *sgid_attr;
758 	union ib_gid	dgid;
759 	u32		flow_label;
760 	u8		sgid_index;
761 	u8		hop_limit;
762 	u8		traffic_class;
763 };
764 
765 struct ib_grh {
766 	__be32		version_tclass_flow;
767 	__be16		paylen;
768 	u8		next_hdr;
769 	u8		hop_limit;
770 	union ib_gid	sgid;
771 	union ib_gid	dgid;
772 };
773 
774 union rdma_network_hdr {
775 	struct ib_grh ibgrh;
776 	struct {
777 		/* The IB spec states that if it's IPv4, the header
778 		 * is located in the last 20 bytes of the header.
779 		 */
780 		u8		reserved[20];
781 		struct iphdr	roce4grh;
782 	};
783 };
784 
785 #define IB_QPN_MASK		0xFFFFFF
786 
787 enum {
788 	IB_MULTICAST_QPN = 0xffffff
789 };
790 
791 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
792 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
793 
794 enum ib_ah_flags {
795 	IB_AH_GRH	= 1
796 };
797 
798 enum ib_rate {
799 	IB_RATE_PORT_CURRENT = 0,
800 	IB_RATE_2_5_GBPS = 2,
801 	IB_RATE_5_GBPS   = 5,
802 	IB_RATE_10_GBPS  = 3,
803 	IB_RATE_20_GBPS  = 6,
804 	IB_RATE_30_GBPS  = 4,
805 	IB_RATE_40_GBPS  = 7,
806 	IB_RATE_60_GBPS  = 8,
807 	IB_RATE_80_GBPS  = 9,
808 	IB_RATE_120_GBPS = 10,
809 	IB_RATE_14_GBPS  = 11,
810 	IB_RATE_56_GBPS  = 12,
811 	IB_RATE_112_GBPS = 13,
812 	IB_RATE_168_GBPS = 14,
813 	IB_RATE_25_GBPS  = 15,
814 	IB_RATE_100_GBPS = 16,
815 	IB_RATE_200_GBPS = 17,
816 	IB_RATE_300_GBPS = 18,
817 	IB_RATE_28_GBPS  = 19,
818 	IB_RATE_50_GBPS  = 20,
819 	IB_RATE_400_GBPS = 21,
820 	IB_RATE_600_GBPS = 22,
821 };
822 
823 /**
824  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
825  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
826  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
827  * @rate: rate to convert.
828  */
829 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
830 
831 /**
832  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
833  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
834  * @rate: rate to convert.
835  */
836 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
837 
838 
839 /**
840  * enum ib_mr_type - memory region type
841  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
842  *                            normal registration
843  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
844  *                            register any arbitrary sg lists (without
845  *                            the normal mr constraints - see
846  *                            ib_map_mr_sg)
847  * @IB_MR_TYPE_DM:            memory region that is used for device
848  *                            memory registration
849  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
850  *                            application
851  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
852  *                            without address translations (VA=PA)
853  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
854  *                            data integrity operations
855  */
856 enum ib_mr_type {
857 	IB_MR_TYPE_MEM_REG,
858 	IB_MR_TYPE_SG_GAPS,
859 	IB_MR_TYPE_DM,
860 	IB_MR_TYPE_USER,
861 	IB_MR_TYPE_DMA,
862 	IB_MR_TYPE_INTEGRITY,
863 };
864 
865 enum ib_mr_status_check {
866 	IB_MR_CHECK_SIG_STATUS = 1,
867 };
868 
869 /**
870  * struct ib_mr_status - Memory region status container
871  *
872  * @fail_status: Bitmask of MR checks status. For each
873  *     failed check a corresponding status bit is set.
874  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
875  *     failure.
876  */
877 struct ib_mr_status {
878 	u32		    fail_status;
879 	struct ib_sig_err   sig_err;
880 };
881 
882 /**
883  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
884  * enum.
885  * @mult: multiple to convert.
886  */
887 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
888 
889 struct rdma_ah_init_attr {
890 	struct rdma_ah_attr *ah_attr;
891 	u32 flags;
892 	struct net_device *xmit_slave;
893 };
894 
895 enum rdma_ah_attr_type {
896 	RDMA_AH_ATTR_TYPE_UNDEFINED,
897 	RDMA_AH_ATTR_TYPE_IB,
898 	RDMA_AH_ATTR_TYPE_ROCE,
899 	RDMA_AH_ATTR_TYPE_OPA,
900 };
901 
902 struct ib_ah_attr {
903 	u16			dlid;
904 	u8			src_path_bits;
905 };
906 
907 struct roce_ah_attr {
908 	u8			dmac[ETH_ALEN];
909 };
910 
911 struct opa_ah_attr {
912 	u32			dlid;
913 	u8			src_path_bits;
914 	bool			make_grd;
915 };
916 
917 struct rdma_ah_attr {
918 	struct ib_global_route	grh;
919 	u8			sl;
920 	u8			static_rate;
921 	u8			port_num;
922 	u8			ah_flags;
923 	enum rdma_ah_attr_type type;
924 	union {
925 		struct ib_ah_attr ib;
926 		struct roce_ah_attr roce;
927 		struct opa_ah_attr opa;
928 	};
929 };
930 
931 enum ib_wc_status {
932 	IB_WC_SUCCESS,
933 	IB_WC_LOC_LEN_ERR,
934 	IB_WC_LOC_QP_OP_ERR,
935 	IB_WC_LOC_EEC_OP_ERR,
936 	IB_WC_LOC_PROT_ERR,
937 	IB_WC_WR_FLUSH_ERR,
938 	IB_WC_MW_BIND_ERR,
939 	IB_WC_BAD_RESP_ERR,
940 	IB_WC_LOC_ACCESS_ERR,
941 	IB_WC_REM_INV_REQ_ERR,
942 	IB_WC_REM_ACCESS_ERR,
943 	IB_WC_REM_OP_ERR,
944 	IB_WC_RETRY_EXC_ERR,
945 	IB_WC_RNR_RETRY_EXC_ERR,
946 	IB_WC_LOC_RDD_VIOL_ERR,
947 	IB_WC_REM_INV_RD_REQ_ERR,
948 	IB_WC_REM_ABORT_ERR,
949 	IB_WC_INV_EECN_ERR,
950 	IB_WC_INV_EEC_STATE_ERR,
951 	IB_WC_FATAL_ERR,
952 	IB_WC_RESP_TIMEOUT_ERR,
953 	IB_WC_GENERAL_ERR
954 };
955 
956 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
957 
958 enum ib_wc_opcode {
959 	IB_WC_SEND = IB_UVERBS_WC_SEND,
960 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
961 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
962 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
963 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
964 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
965 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
966 	IB_WC_LSO = IB_UVERBS_WC_TSO,
967 	IB_WC_REG_MR,
968 	IB_WC_MASKED_COMP_SWAP,
969 	IB_WC_MASKED_FETCH_ADD,
970 /*
971  * Set value of IB_WC_RECV so consumers can test if a completion is a
972  * receive by testing (opcode & IB_WC_RECV).
973  */
974 	IB_WC_RECV			= 1 << 7,
975 	IB_WC_RECV_RDMA_WITH_IMM
976 };
977 
978 enum ib_wc_flags {
979 	IB_WC_GRH		= 1,
980 	IB_WC_WITH_IMM		= (1<<1),
981 	IB_WC_WITH_INVALIDATE	= (1<<2),
982 	IB_WC_IP_CSUM_OK	= (1<<3),
983 	IB_WC_WITH_SMAC		= (1<<4),
984 	IB_WC_WITH_VLAN		= (1<<5),
985 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
986 };
987 
988 struct ib_wc {
989 	union {
990 		u64		wr_id;
991 		struct ib_cqe	*wr_cqe;
992 	};
993 	enum ib_wc_status	status;
994 	enum ib_wc_opcode	opcode;
995 	u32			vendor_err;
996 	u32			byte_len;
997 	struct ib_qp	       *qp;
998 	union {
999 		__be32		imm_data;
1000 		u32		invalidate_rkey;
1001 	} ex;
1002 	u32			src_qp;
1003 	u32			slid;
1004 	int			wc_flags;
1005 	u16			pkey_index;
1006 	u8			sl;
1007 	u8			dlid_path_bits;
1008 	u8			port_num;	/* valid only for DR SMPs on switches */
1009 	u8			smac[ETH_ALEN];
1010 	u16			vlan_id;
1011 	u8			network_hdr_type;
1012 };
1013 
1014 enum ib_cq_notify_flags {
1015 	IB_CQ_SOLICITED			= 1 << 0,
1016 	IB_CQ_NEXT_COMP			= 1 << 1,
1017 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1018 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1019 };
1020 
1021 enum ib_srq_type {
1022 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1023 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1024 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1025 };
1026 
1027 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1028 {
1029 	return srq_type == IB_SRQT_XRC ||
1030 	       srq_type == IB_SRQT_TM;
1031 }
1032 
1033 enum ib_srq_attr_mask {
1034 	IB_SRQ_MAX_WR	= 1 << 0,
1035 	IB_SRQ_LIMIT	= 1 << 1,
1036 };
1037 
1038 struct ib_srq_attr {
1039 	u32	max_wr;
1040 	u32	max_sge;
1041 	u32	srq_limit;
1042 };
1043 
1044 struct ib_srq_init_attr {
1045 	void		      (*event_handler)(struct ib_event *, void *);
1046 	void		       *srq_context;
1047 	struct ib_srq_attr	attr;
1048 	enum ib_srq_type	srq_type;
1049 
1050 	struct {
1051 		struct ib_cq   *cq;
1052 		union {
1053 			struct {
1054 				struct ib_xrcd *xrcd;
1055 			} xrc;
1056 
1057 			struct {
1058 				u32		max_num_tags;
1059 			} tag_matching;
1060 		};
1061 	} ext;
1062 };
1063 
1064 struct ib_qp_cap {
1065 	u32	max_send_wr;
1066 	u32	max_recv_wr;
1067 	u32	max_send_sge;
1068 	u32	max_recv_sge;
1069 	u32	max_inline_data;
1070 
1071 	/*
1072 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1073 	 * ib_create_qp() will calculate the right amount of neededed WRs
1074 	 * and MRs based on this.
1075 	 */
1076 	u32	max_rdma_ctxs;
1077 };
1078 
1079 enum ib_sig_type {
1080 	IB_SIGNAL_ALL_WR,
1081 	IB_SIGNAL_REQ_WR
1082 };
1083 
1084 enum ib_qp_type {
1085 	/*
1086 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1087 	 * here (and in that order) since the MAD layer uses them as
1088 	 * indices into a 2-entry table.
1089 	 */
1090 	IB_QPT_SMI,
1091 	IB_QPT_GSI,
1092 
1093 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1094 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1095 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1096 	IB_QPT_RAW_IPV6,
1097 	IB_QPT_RAW_ETHERTYPE,
1098 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1099 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1100 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1101 	IB_QPT_MAX,
1102 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1103 	/* Reserve a range for qp types internal to the low level driver.
1104 	 * These qp types will not be visible at the IB core layer, so the
1105 	 * IB_QPT_MAX usages should not be affected in the core layer
1106 	 */
1107 	IB_QPT_RESERVED1 = 0x1000,
1108 	IB_QPT_RESERVED2,
1109 	IB_QPT_RESERVED3,
1110 	IB_QPT_RESERVED4,
1111 	IB_QPT_RESERVED5,
1112 	IB_QPT_RESERVED6,
1113 	IB_QPT_RESERVED7,
1114 	IB_QPT_RESERVED8,
1115 	IB_QPT_RESERVED9,
1116 	IB_QPT_RESERVED10,
1117 };
1118 
1119 enum ib_qp_create_flags {
1120 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1121 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1122 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1123 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1124 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1125 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1126 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1127 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1128 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1129 	IB_QP_CREATE_SCATTER_FCS		=
1130 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1131 	IB_QP_CREATE_CVLAN_STRIPPING		=
1132 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1133 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1134 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1135 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1136 	/* reserve bits 26-31 for low level drivers' internal use */
1137 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1138 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1139 };
1140 
1141 /*
1142  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1143  * callback to destroy the passed in QP.
1144  */
1145 
1146 struct ib_qp_init_attr {
1147 	/* Consumer's event_handler callback must not block */
1148 	void                  (*event_handler)(struct ib_event *, void *);
1149 
1150 	void		       *qp_context;
1151 	struct ib_cq	       *send_cq;
1152 	struct ib_cq	       *recv_cq;
1153 	struct ib_srq	       *srq;
1154 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1155 	struct ib_qp_cap	cap;
1156 	enum ib_sig_type	sq_sig_type;
1157 	enum ib_qp_type		qp_type;
1158 	u32			create_flags;
1159 
1160 	/*
1161 	 * Only needed for special QP types, or when using the RW API.
1162 	 */
1163 	u8			port_num;
1164 	struct ib_rwq_ind_table *rwq_ind_tbl;
1165 	u32			source_qpn;
1166 };
1167 
1168 struct ib_qp_open_attr {
1169 	void                  (*event_handler)(struct ib_event *, void *);
1170 	void		       *qp_context;
1171 	u32			qp_num;
1172 	enum ib_qp_type		qp_type;
1173 };
1174 
1175 enum ib_rnr_timeout {
1176 	IB_RNR_TIMER_655_36 =  0,
1177 	IB_RNR_TIMER_000_01 =  1,
1178 	IB_RNR_TIMER_000_02 =  2,
1179 	IB_RNR_TIMER_000_03 =  3,
1180 	IB_RNR_TIMER_000_04 =  4,
1181 	IB_RNR_TIMER_000_06 =  5,
1182 	IB_RNR_TIMER_000_08 =  6,
1183 	IB_RNR_TIMER_000_12 =  7,
1184 	IB_RNR_TIMER_000_16 =  8,
1185 	IB_RNR_TIMER_000_24 =  9,
1186 	IB_RNR_TIMER_000_32 = 10,
1187 	IB_RNR_TIMER_000_48 = 11,
1188 	IB_RNR_TIMER_000_64 = 12,
1189 	IB_RNR_TIMER_000_96 = 13,
1190 	IB_RNR_TIMER_001_28 = 14,
1191 	IB_RNR_TIMER_001_92 = 15,
1192 	IB_RNR_TIMER_002_56 = 16,
1193 	IB_RNR_TIMER_003_84 = 17,
1194 	IB_RNR_TIMER_005_12 = 18,
1195 	IB_RNR_TIMER_007_68 = 19,
1196 	IB_RNR_TIMER_010_24 = 20,
1197 	IB_RNR_TIMER_015_36 = 21,
1198 	IB_RNR_TIMER_020_48 = 22,
1199 	IB_RNR_TIMER_030_72 = 23,
1200 	IB_RNR_TIMER_040_96 = 24,
1201 	IB_RNR_TIMER_061_44 = 25,
1202 	IB_RNR_TIMER_081_92 = 26,
1203 	IB_RNR_TIMER_122_88 = 27,
1204 	IB_RNR_TIMER_163_84 = 28,
1205 	IB_RNR_TIMER_245_76 = 29,
1206 	IB_RNR_TIMER_327_68 = 30,
1207 	IB_RNR_TIMER_491_52 = 31
1208 };
1209 
1210 enum ib_qp_attr_mask {
1211 	IB_QP_STATE			= 1,
1212 	IB_QP_CUR_STATE			= (1<<1),
1213 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1214 	IB_QP_ACCESS_FLAGS		= (1<<3),
1215 	IB_QP_PKEY_INDEX		= (1<<4),
1216 	IB_QP_PORT			= (1<<5),
1217 	IB_QP_QKEY			= (1<<6),
1218 	IB_QP_AV			= (1<<7),
1219 	IB_QP_PATH_MTU			= (1<<8),
1220 	IB_QP_TIMEOUT			= (1<<9),
1221 	IB_QP_RETRY_CNT			= (1<<10),
1222 	IB_QP_RNR_RETRY			= (1<<11),
1223 	IB_QP_RQ_PSN			= (1<<12),
1224 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1225 	IB_QP_ALT_PATH			= (1<<14),
1226 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1227 	IB_QP_SQ_PSN			= (1<<16),
1228 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1229 	IB_QP_PATH_MIG_STATE		= (1<<18),
1230 	IB_QP_CAP			= (1<<19),
1231 	IB_QP_DEST_QPN			= (1<<20),
1232 	IB_QP_RESERVED1			= (1<<21),
1233 	IB_QP_RESERVED2			= (1<<22),
1234 	IB_QP_RESERVED3			= (1<<23),
1235 	IB_QP_RESERVED4			= (1<<24),
1236 	IB_QP_RATE_LIMIT		= (1<<25),
1237 };
1238 
1239 enum ib_qp_state {
1240 	IB_QPS_RESET,
1241 	IB_QPS_INIT,
1242 	IB_QPS_RTR,
1243 	IB_QPS_RTS,
1244 	IB_QPS_SQD,
1245 	IB_QPS_SQE,
1246 	IB_QPS_ERR
1247 };
1248 
1249 enum ib_mig_state {
1250 	IB_MIG_MIGRATED,
1251 	IB_MIG_REARM,
1252 	IB_MIG_ARMED
1253 };
1254 
1255 enum ib_mw_type {
1256 	IB_MW_TYPE_1 = 1,
1257 	IB_MW_TYPE_2 = 2
1258 };
1259 
1260 struct ib_qp_attr {
1261 	enum ib_qp_state	qp_state;
1262 	enum ib_qp_state	cur_qp_state;
1263 	enum ib_mtu		path_mtu;
1264 	enum ib_mig_state	path_mig_state;
1265 	u32			qkey;
1266 	u32			rq_psn;
1267 	u32			sq_psn;
1268 	u32			dest_qp_num;
1269 	int			qp_access_flags;
1270 	struct ib_qp_cap	cap;
1271 	struct rdma_ah_attr	ah_attr;
1272 	struct rdma_ah_attr	alt_ah_attr;
1273 	u16			pkey_index;
1274 	u16			alt_pkey_index;
1275 	u8			en_sqd_async_notify;
1276 	u8			sq_draining;
1277 	u8			max_rd_atomic;
1278 	u8			max_dest_rd_atomic;
1279 	u8			min_rnr_timer;
1280 	u8			port_num;
1281 	u8			timeout;
1282 	u8			retry_cnt;
1283 	u8			rnr_retry;
1284 	u8			alt_port_num;
1285 	u8			alt_timeout;
1286 	u32			rate_limit;
1287 	struct net_device	*xmit_slave;
1288 };
1289 
1290 enum ib_wr_opcode {
1291 	/* These are shared with userspace */
1292 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1293 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1294 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1295 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1296 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1297 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1298 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1299 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1300 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1301 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1302 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1303 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1304 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1305 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1306 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1307 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1308 
1309 	/* These are kernel only and can not be issued by userspace */
1310 	IB_WR_REG_MR = 0x20,
1311 	IB_WR_REG_MR_INTEGRITY,
1312 
1313 	/* reserve values for low level drivers' internal use.
1314 	 * These values will not be used at all in the ib core layer.
1315 	 */
1316 	IB_WR_RESERVED1 = 0xf0,
1317 	IB_WR_RESERVED2,
1318 	IB_WR_RESERVED3,
1319 	IB_WR_RESERVED4,
1320 	IB_WR_RESERVED5,
1321 	IB_WR_RESERVED6,
1322 	IB_WR_RESERVED7,
1323 	IB_WR_RESERVED8,
1324 	IB_WR_RESERVED9,
1325 	IB_WR_RESERVED10,
1326 };
1327 
1328 enum ib_send_flags {
1329 	IB_SEND_FENCE		= 1,
1330 	IB_SEND_SIGNALED	= (1<<1),
1331 	IB_SEND_SOLICITED	= (1<<2),
1332 	IB_SEND_INLINE		= (1<<3),
1333 	IB_SEND_IP_CSUM		= (1<<4),
1334 
1335 	/* reserve bits 26-31 for low level drivers' internal use */
1336 	IB_SEND_RESERVED_START	= (1 << 26),
1337 	IB_SEND_RESERVED_END	= (1 << 31),
1338 };
1339 
1340 struct ib_sge {
1341 	u64	addr;
1342 	u32	length;
1343 	u32	lkey;
1344 };
1345 
1346 struct ib_cqe {
1347 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1348 };
1349 
1350 struct ib_send_wr {
1351 	struct ib_send_wr      *next;
1352 	union {
1353 		u64		wr_id;
1354 		struct ib_cqe	*wr_cqe;
1355 	};
1356 	struct ib_sge	       *sg_list;
1357 	int			num_sge;
1358 	enum ib_wr_opcode	opcode;
1359 	int			send_flags;
1360 	union {
1361 		__be32		imm_data;
1362 		u32		invalidate_rkey;
1363 	} ex;
1364 };
1365 
1366 struct ib_rdma_wr {
1367 	struct ib_send_wr	wr;
1368 	u64			remote_addr;
1369 	u32			rkey;
1370 };
1371 
1372 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1373 {
1374 	return container_of(wr, struct ib_rdma_wr, wr);
1375 }
1376 
1377 struct ib_atomic_wr {
1378 	struct ib_send_wr	wr;
1379 	u64			remote_addr;
1380 	u64			compare_add;
1381 	u64			swap;
1382 	u64			compare_add_mask;
1383 	u64			swap_mask;
1384 	u32			rkey;
1385 };
1386 
1387 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1388 {
1389 	return container_of(wr, struct ib_atomic_wr, wr);
1390 }
1391 
1392 struct ib_ud_wr {
1393 	struct ib_send_wr	wr;
1394 	struct ib_ah		*ah;
1395 	void			*header;
1396 	int			hlen;
1397 	int			mss;
1398 	u32			remote_qpn;
1399 	u32			remote_qkey;
1400 	u16			pkey_index; /* valid for GSI only */
1401 	u8			port_num;   /* valid for DR SMPs on switch only */
1402 };
1403 
1404 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1405 {
1406 	return container_of(wr, struct ib_ud_wr, wr);
1407 }
1408 
1409 struct ib_reg_wr {
1410 	struct ib_send_wr	wr;
1411 	struct ib_mr		*mr;
1412 	u32			key;
1413 	int			access;
1414 };
1415 
1416 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1417 {
1418 	return container_of(wr, struct ib_reg_wr, wr);
1419 }
1420 
1421 struct ib_recv_wr {
1422 	struct ib_recv_wr      *next;
1423 	union {
1424 		u64		wr_id;
1425 		struct ib_cqe	*wr_cqe;
1426 	};
1427 	struct ib_sge	       *sg_list;
1428 	int			num_sge;
1429 };
1430 
1431 enum ib_access_flags {
1432 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1433 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1434 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1435 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1436 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1437 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1438 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1439 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1440 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1441 
1442 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1443 	IB_ACCESS_SUPPORTED =
1444 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1445 };
1446 
1447 /*
1448  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1449  * are hidden here instead of a uapi header!
1450  */
1451 enum ib_mr_rereg_flags {
1452 	IB_MR_REREG_TRANS	= 1,
1453 	IB_MR_REREG_PD		= (1<<1),
1454 	IB_MR_REREG_ACCESS	= (1<<2),
1455 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1456 };
1457 
1458 struct ib_umem;
1459 
1460 enum rdma_remove_reason {
1461 	/*
1462 	 * Userspace requested uobject deletion or initial try
1463 	 * to remove uobject via cleanup. Call could fail
1464 	 */
1465 	RDMA_REMOVE_DESTROY,
1466 	/* Context deletion. This call should delete the actual object itself */
1467 	RDMA_REMOVE_CLOSE,
1468 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1469 	RDMA_REMOVE_DRIVER_REMOVE,
1470 	/* uobj is being cleaned-up before being committed */
1471 	RDMA_REMOVE_ABORT,
1472 };
1473 
1474 struct ib_rdmacg_object {
1475 #ifdef CONFIG_CGROUP_RDMA
1476 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1477 #endif
1478 };
1479 
1480 struct ib_ucontext {
1481 	struct ib_device       *device;
1482 	struct ib_uverbs_file  *ufile;
1483 
1484 	bool cleanup_retryable;
1485 
1486 	struct ib_rdmacg_object	cg_obj;
1487 	/*
1488 	 * Implementation details of the RDMA core, don't use in drivers:
1489 	 */
1490 	struct rdma_restrack_entry res;
1491 	struct xarray mmap_xa;
1492 };
1493 
1494 struct ib_uobject {
1495 	u64			user_handle;	/* handle given to us by userspace */
1496 	/* ufile & ucontext owning this object */
1497 	struct ib_uverbs_file  *ufile;
1498 	/* FIXME, save memory: ufile->context == context */
1499 	struct ib_ucontext     *context;	/* associated user context */
1500 	void		       *object;		/* containing object */
1501 	struct list_head	list;		/* link to context's list */
1502 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1503 	int			id;		/* index into kernel idr */
1504 	struct kref		ref;
1505 	atomic_t		usecnt;		/* protects exclusive access */
1506 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1507 
1508 	const struct uverbs_api_object *uapi_object;
1509 };
1510 
1511 struct ib_udata {
1512 	const void __user *inbuf;
1513 	void __user *outbuf;
1514 	size_t       inlen;
1515 	size_t       outlen;
1516 };
1517 
1518 struct ib_pd {
1519 	u32			local_dma_lkey;
1520 	u32			flags;
1521 	struct ib_device       *device;
1522 	struct ib_uobject      *uobject;
1523 	atomic_t          	usecnt; /* count all resources */
1524 
1525 	u32			unsafe_global_rkey;
1526 
1527 	/*
1528 	 * Implementation details of the RDMA core, don't use in drivers:
1529 	 */
1530 	struct ib_mr	       *__internal_mr;
1531 	struct rdma_restrack_entry res;
1532 };
1533 
1534 struct ib_xrcd {
1535 	struct ib_device       *device;
1536 	atomic_t		usecnt; /* count all exposed resources */
1537 	struct inode	       *inode;
1538 	struct rw_semaphore	tgt_qps_rwsem;
1539 	struct xarray		tgt_qps;
1540 };
1541 
1542 struct ib_ah {
1543 	struct ib_device	*device;
1544 	struct ib_pd		*pd;
1545 	struct ib_uobject	*uobject;
1546 	const struct ib_gid_attr *sgid_attr;
1547 	enum rdma_ah_attr_type	type;
1548 };
1549 
1550 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1551 
1552 enum ib_poll_context {
1553 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1554 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1555 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1556 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1557 
1558 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1559 };
1560 
1561 struct ib_cq {
1562 	struct ib_device       *device;
1563 	struct ib_ucq_object   *uobject;
1564 	ib_comp_handler   	comp_handler;
1565 	void                  (*event_handler)(struct ib_event *, void *);
1566 	void                   *cq_context;
1567 	int               	cqe;
1568 	unsigned int		cqe_used;
1569 	atomic_t          	usecnt; /* count number of work queues */
1570 	enum ib_poll_context	poll_ctx;
1571 	struct ib_wc		*wc;
1572 	struct list_head        pool_entry;
1573 	union {
1574 		struct irq_poll		iop;
1575 		struct work_struct	work;
1576 	};
1577 	struct workqueue_struct *comp_wq;
1578 	struct dim *dim;
1579 
1580 	/* updated only by trace points */
1581 	ktime_t timestamp;
1582 	u8 interrupt:1;
1583 	u8 shared:1;
1584 	unsigned int comp_vector;
1585 
1586 	/*
1587 	 * Implementation details of the RDMA core, don't use in drivers:
1588 	 */
1589 	struct rdma_restrack_entry res;
1590 };
1591 
1592 struct ib_srq {
1593 	struct ib_device       *device;
1594 	struct ib_pd	       *pd;
1595 	struct ib_usrq_object  *uobject;
1596 	void		      (*event_handler)(struct ib_event *, void *);
1597 	void		       *srq_context;
1598 	enum ib_srq_type	srq_type;
1599 	atomic_t		usecnt;
1600 
1601 	struct {
1602 		struct ib_cq   *cq;
1603 		union {
1604 			struct {
1605 				struct ib_xrcd *xrcd;
1606 				u32		srq_num;
1607 			} xrc;
1608 		};
1609 	} ext;
1610 };
1611 
1612 enum ib_raw_packet_caps {
1613 	/* Strip cvlan from incoming packet and report it in the matching work
1614 	 * completion is supported.
1615 	 */
1616 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1617 	/* Scatter FCS field of an incoming packet to host memory is supported.
1618 	 */
1619 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1620 	/* Checksum offloads are supported (for both send and receive). */
1621 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1622 	/* When a packet is received for an RQ with no receive WQEs, the
1623 	 * packet processing is delayed.
1624 	 */
1625 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1626 };
1627 
1628 enum ib_wq_type {
1629 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1630 };
1631 
1632 enum ib_wq_state {
1633 	IB_WQS_RESET,
1634 	IB_WQS_RDY,
1635 	IB_WQS_ERR
1636 };
1637 
1638 struct ib_wq {
1639 	struct ib_device       *device;
1640 	struct ib_uwq_object   *uobject;
1641 	void		    *wq_context;
1642 	void		    (*event_handler)(struct ib_event *, void *);
1643 	struct ib_pd	       *pd;
1644 	struct ib_cq	       *cq;
1645 	u32		wq_num;
1646 	enum ib_wq_state       state;
1647 	enum ib_wq_type	wq_type;
1648 	atomic_t		usecnt;
1649 };
1650 
1651 enum ib_wq_flags {
1652 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1653 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1654 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1655 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1656 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1657 };
1658 
1659 struct ib_wq_init_attr {
1660 	void		       *wq_context;
1661 	enum ib_wq_type	wq_type;
1662 	u32		max_wr;
1663 	u32		max_sge;
1664 	struct	ib_cq	       *cq;
1665 	void		    (*event_handler)(struct ib_event *, void *);
1666 	u32		create_flags; /* Use enum ib_wq_flags */
1667 };
1668 
1669 enum ib_wq_attr_mask {
1670 	IB_WQ_STATE		= 1 << 0,
1671 	IB_WQ_CUR_STATE		= 1 << 1,
1672 	IB_WQ_FLAGS		= 1 << 2,
1673 };
1674 
1675 struct ib_wq_attr {
1676 	enum	ib_wq_state	wq_state;
1677 	enum	ib_wq_state	curr_wq_state;
1678 	u32			flags; /* Use enum ib_wq_flags */
1679 	u32			flags_mask; /* Use enum ib_wq_flags */
1680 };
1681 
1682 struct ib_rwq_ind_table {
1683 	struct ib_device	*device;
1684 	struct ib_uobject      *uobject;
1685 	atomic_t		usecnt;
1686 	u32		ind_tbl_num;
1687 	u32		log_ind_tbl_size;
1688 	struct ib_wq	**ind_tbl;
1689 };
1690 
1691 struct ib_rwq_ind_table_init_attr {
1692 	u32		log_ind_tbl_size;
1693 	/* Each entry is a pointer to Receive Work Queue */
1694 	struct ib_wq	**ind_tbl;
1695 };
1696 
1697 enum port_pkey_state {
1698 	IB_PORT_PKEY_NOT_VALID = 0,
1699 	IB_PORT_PKEY_VALID = 1,
1700 	IB_PORT_PKEY_LISTED = 2,
1701 };
1702 
1703 struct ib_qp_security;
1704 
1705 struct ib_port_pkey {
1706 	enum port_pkey_state	state;
1707 	u16			pkey_index;
1708 	u8			port_num;
1709 	struct list_head	qp_list;
1710 	struct list_head	to_error_list;
1711 	struct ib_qp_security  *sec;
1712 };
1713 
1714 struct ib_ports_pkeys {
1715 	struct ib_port_pkey	main;
1716 	struct ib_port_pkey	alt;
1717 };
1718 
1719 struct ib_qp_security {
1720 	struct ib_qp	       *qp;
1721 	struct ib_device       *dev;
1722 	/* Hold this mutex when changing port and pkey settings. */
1723 	struct mutex		mutex;
1724 	struct ib_ports_pkeys  *ports_pkeys;
1725 	/* A list of all open shared QP handles.  Required to enforce security
1726 	 * properly for all users of a shared QP.
1727 	 */
1728 	struct list_head        shared_qp_list;
1729 	void                   *security;
1730 	bool			destroying;
1731 	atomic_t		error_list_count;
1732 	struct completion	error_complete;
1733 	int			error_comps_pending;
1734 };
1735 
1736 /*
1737  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1738  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1739  */
1740 struct ib_qp {
1741 	struct ib_device       *device;
1742 	struct ib_pd	       *pd;
1743 	struct ib_cq	       *send_cq;
1744 	struct ib_cq	       *recv_cq;
1745 	spinlock_t		mr_lock;
1746 	int			mrs_used;
1747 	struct list_head	rdma_mrs;
1748 	struct list_head	sig_mrs;
1749 	struct ib_srq	       *srq;
1750 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1751 	struct list_head	xrcd_list;
1752 
1753 	/* count times opened, mcast attaches, flow attaches */
1754 	atomic_t		usecnt;
1755 	struct list_head	open_list;
1756 	struct ib_qp           *real_qp;
1757 	struct ib_uqp_object   *uobject;
1758 	void                  (*event_handler)(struct ib_event *, void *);
1759 	void		       *qp_context;
1760 	/* sgid_attrs associated with the AV's */
1761 	const struct ib_gid_attr *av_sgid_attr;
1762 	const struct ib_gid_attr *alt_path_sgid_attr;
1763 	u32			qp_num;
1764 	u32			max_write_sge;
1765 	u32			max_read_sge;
1766 	enum ib_qp_type		qp_type;
1767 	struct ib_rwq_ind_table *rwq_ind_tbl;
1768 	struct ib_qp_security  *qp_sec;
1769 	u8			port;
1770 
1771 	bool			integrity_en;
1772 	/*
1773 	 * Implementation details of the RDMA core, don't use in drivers:
1774 	 */
1775 	struct rdma_restrack_entry     res;
1776 
1777 	/* The counter the qp is bind to */
1778 	struct rdma_counter    *counter;
1779 };
1780 
1781 struct ib_dm {
1782 	struct ib_device  *device;
1783 	u32		   length;
1784 	u32		   flags;
1785 	struct ib_uobject *uobject;
1786 	atomic_t	   usecnt;
1787 };
1788 
1789 struct ib_mr {
1790 	struct ib_device  *device;
1791 	struct ib_pd	  *pd;
1792 	u32		   lkey;
1793 	u32		   rkey;
1794 	u64		   iova;
1795 	u64		   length;
1796 	unsigned int	   page_size;
1797 	enum ib_mr_type	   type;
1798 	bool		   need_inval;
1799 	union {
1800 		struct ib_uobject	*uobject;	/* user */
1801 		struct list_head	qp_entry;	/* FR */
1802 	};
1803 
1804 	struct ib_dm      *dm;
1805 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1806 	/*
1807 	 * Implementation details of the RDMA core, don't use in drivers:
1808 	 */
1809 	struct rdma_restrack_entry res;
1810 };
1811 
1812 struct ib_mw {
1813 	struct ib_device	*device;
1814 	struct ib_pd		*pd;
1815 	struct ib_uobject	*uobject;
1816 	u32			rkey;
1817 	enum ib_mw_type         type;
1818 };
1819 
1820 /* Supported steering options */
1821 enum ib_flow_attr_type {
1822 	/* steering according to rule specifications */
1823 	IB_FLOW_ATTR_NORMAL		= 0x0,
1824 	/* default unicast and multicast rule -
1825 	 * receive all Eth traffic which isn't steered to any QP
1826 	 */
1827 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1828 	/* default multicast rule -
1829 	 * receive all Eth multicast traffic which isn't steered to any QP
1830 	 */
1831 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1832 	/* sniffer rule - receive all port traffic */
1833 	IB_FLOW_ATTR_SNIFFER		= 0x3
1834 };
1835 
1836 /* Supported steering header types */
1837 enum ib_flow_spec_type {
1838 	/* L2 headers*/
1839 	IB_FLOW_SPEC_ETH		= 0x20,
1840 	IB_FLOW_SPEC_IB			= 0x22,
1841 	/* L3 header*/
1842 	IB_FLOW_SPEC_IPV4		= 0x30,
1843 	IB_FLOW_SPEC_IPV6		= 0x31,
1844 	IB_FLOW_SPEC_ESP                = 0x34,
1845 	/* L4 headers*/
1846 	IB_FLOW_SPEC_TCP		= 0x40,
1847 	IB_FLOW_SPEC_UDP		= 0x41,
1848 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1849 	IB_FLOW_SPEC_GRE		= 0x51,
1850 	IB_FLOW_SPEC_MPLS		= 0x60,
1851 	IB_FLOW_SPEC_INNER		= 0x100,
1852 	/* Actions */
1853 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1854 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1855 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1856 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1857 };
1858 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1859 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1860 
1861 enum ib_flow_flags {
1862 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1863 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1864 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1865 };
1866 
1867 struct ib_flow_eth_filter {
1868 	u8	dst_mac[6];
1869 	u8	src_mac[6];
1870 	__be16	ether_type;
1871 	__be16	vlan_tag;
1872 	/* Must be last */
1873 	u8	real_sz[];
1874 };
1875 
1876 struct ib_flow_spec_eth {
1877 	u32			  type;
1878 	u16			  size;
1879 	struct ib_flow_eth_filter val;
1880 	struct ib_flow_eth_filter mask;
1881 };
1882 
1883 struct ib_flow_ib_filter {
1884 	__be16 dlid;
1885 	__u8   sl;
1886 	/* Must be last */
1887 	u8	real_sz[];
1888 };
1889 
1890 struct ib_flow_spec_ib {
1891 	u32			 type;
1892 	u16			 size;
1893 	struct ib_flow_ib_filter val;
1894 	struct ib_flow_ib_filter mask;
1895 };
1896 
1897 /* IPv4 header flags */
1898 enum ib_ipv4_flags {
1899 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1900 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1901 				    last have this flag set */
1902 };
1903 
1904 struct ib_flow_ipv4_filter {
1905 	__be32	src_ip;
1906 	__be32	dst_ip;
1907 	u8	proto;
1908 	u8	tos;
1909 	u8	ttl;
1910 	u8	flags;
1911 	/* Must be last */
1912 	u8	real_sz[];
1913 };
1914 
1915 struct ib_flow_spec_ipv4 {
1916 	u32			   type;
1917 	u16			   size;
1918 	struct ib_flow_ipv4_filter val;
1919 	struct ib_flow_ipv4_filter mask;
1920 };
1921 
1922 struct ib_flow_ipv6_filter {
1923 	u8	src_ip[16];
1924 	u8	dst_ip[16];
1925 	__be32	flow_label;
1926 	u8	next_hdr;
1927 	u8	traffic_class;
1928 	u8	hop_limit;
1929 	/* Must be last */
1930 	u8	real_sz[];
1931 };
1932 
1933 struct ib_flow_spec_ipv6 {
1934 	u32			   type;
1935 	u16			   size;
1936 	struct ib_flow_ipv6_filter val;
1937 	struct ib_flow_ipv6_filter mask;
1938 };
1939 
1940 struct ib_flow_tcp_udp_filter {
1941 	__be16	dst_port;
1942 	__be16	src_port;
1943 	/* Must be last */
1944 	u8	real_sz[];
1945 };
1946 
1947 struct ib_flow_spec_tcp_udp {
1948 	u32			      type;
1949 	u16			      size;
1950 	struct ib_flow_tcp_udp_filter val;
1951 	struct ib_flow_tcp_udp_filter mask;
1952 };
1953 
1954 struct ib_flow_tunnel_filter {
1955 	__be32	tunnel_id;
1956 	u8	real_sz[];
1957 };
1958 
1959 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1960  * the tunnel_id from val has the vni value
1961  */
1962 struct ib_flow_spec_tunnel {
1963 	u32			      type;
1964 	u16			      size;
1965 	struct ib_flow_tunnel_filter  val;
1966 	struct ib_flow_tunnel_filter  mask;
1967 };
1968 
1969 struct ib_flow_esp_filter {
1970 	__be32	spi;
1971 	__be32  seq;
1972 	/* Must be last */
1973 	u8	real_sz[];
1974 };
1975 
1976 struct ib_flow_spec_esp {
1977 	u32                           type;
1978 	u16			      size;
1979 	struct ib_flow_esp_filter     val;
1980 	struct ib_flow_esp_filter     mask;
1981 };
1982 
1983 struct ib_flow_gre_filter {
1984 	__be16 c_ks_res0_ver;
1985 	__be16 protocol;
1986 	__be32 key;
1987 	/* Must be last */
1988 	u8	real_sz[];
1989 };
1990 
1991 struct ib_flow_spec_gre {
1992 	u32                           type;
1993 	u16			      size;
1994 	struct ib_flow_gre_filter     val;
1995 	struct ib_flow_gre_filter     mask;
1996 };
1997 
1998 struct ib_flow_mpls_filter {
1999 	__be32 tag;
2000 	/* Must be last */
2001 	u8	real_sz[];
2002 };
2003 
2004 struct ib_flow_spec_mpls {
2005 	u32                           type;
2006 	u16			      size;
2007 	struct ib_flow_mpls_filter     val;
2008 	struct ib_flow_mpls_filter     mask;
2009 };
2010 
2011 struct ib_flow_spec_action_tag {
2012 	enum ib_flow_spec_type	      type;
2013 	u16			      size;
2014 	u32                           tag_id;
2015 };
2016 
2017 struct ib_flow_spec_action_drop {
2018 	enum ib_flow_spec_type	      type;
2019 	u16			      size;
2020 };
2021 
2022 struct ib_flow_spec_action_handle {
2023 	enum ib_flow_spec_type	      type;
2024 	u16			      size;
2025 	struct ib_flow_action	     *act;
2026 };
2027 
2028 enum ib_counters_description {
2029 	IB_COUNTER_PACKETS,
2030 	IB_COUNTER_BYTES,
2031 };
2032 
2033 struct ib_flow_spec_action_count {
2034 	enum ib_flow_spec_type type;
2035 	u16 size;
2036 	struct ib_counters *counters;
2037 };
2038 
2039 union ib_flow_spec {
2040 	struct {
2041 		u32			type;
2042 		u16			size;
2043 	};
2044 	struct ib_flow_spec_eth		eth;
2045 	struct ib_flow_spec_ib		ib;
2046 	struct ib_flow_spec_ipv4        ipv4;
2047 	struct ib_flow_spec_tcp_udp	tcp_udp;
2048 	struct ib_flow_spec_ipv6        ipv6;
2049 	struct ib_flow_spec_tunnel      tunnel;
2050 	struct ib_flow_spec_esp		esp;
2051 	struct ib_flow_spec_gre		gre;
2052 	struct ib_flow_spec_mpls	mpls;
2053 	struct ib_flow_spec_action_tag  flow_tag;
2054 	struct ib_flow_spec_action_drop drop;
2055 	struct ib_flow_spec_action_handle action;
2056 	struct ib_flow_spec_action_count flow_count;
2057 };
2058 
2059 struct ib_flow_attr {
2060 	enum ib_flow_attr_type type;
2061 	u16	     size;
2062 	u16	     priority;
2063 	u32	     flags;
2064 	u8	     num_of_specs;
2065 	u8	     port;
2066 	union ib_flow_spec flows[];
2067 };
2068 
2069 struct ib_flow {
2070 	struct ib_qp		*qp;
2071 	struct ib_device	*device;
2072 	struct ib_uobject	*uobject;
2073 };
2074 
2075 enum ib_flow_action_type {
2076 	IB_FLOW_ACTION_UNSPECIFIED,
2077 	IB_FLOW_ACTION_ESP = 1,
2078 };
2079 
2080 struct ib_flow_action_attrs_esp_keymats {
2081 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2082 	union {
2083 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2084 	} keymat;
2085 };
2086 
2087 struct ib_flow_action_attrs_esp_replays {
2088 	enum ib_uverbs_flow_action_esp_replay			protocol;
2089 	union {
2090 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2091 	} replay;
2092 };
2093 
2094 enum ib_flow_action_attrs_esp_flags {
2095 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2096 	 * This is done in order to share the same flags between user-space and
2097 	 * kernel and spare an unnecessary translation.
2098 	 */
2099 
2100 	/* Kernel flags */
2101 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2102 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2103 };
2104 
2105 struct ib_flow_spec_list {
2106 	struct ib_flow_spec_list	*next;
2107 	union ib_flow_spec		spec;
2108 };
2109 
2110 struct ib_flow_action_attrs_esp {
2111 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2112 	struct ib_flow_action_attrs_esp_replays		*replay;
2113 	struct ib_flow_spec_list			*encap;
2114 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2115 	 * Value of 0 is a valid value.
2116 	 */
2117 	u32						esn;
2118 	u32						spi;
2119 	u32						seq;
2120 	u32						tfc_pad;
2121 	/* Use enum ib_flow_action_attrs_esp_flags */
2122 	u64						flags;
2123 	u64						hard_limit_pkts;
2124 };
2125 
2126 struct ib_flow_action {
2127 	struct ib_device		*device;
2128 	struct ib_uobject		*uobject;
2129 	enum ib_flow_action_type	type;
2130 	atomic_t			usecnt;
2131 };
2132 
2133 struct ib_mad;
2134 struct ib_grh;
2135 
2136 enum ib_process_mad_flags {
2137 	IB_MAD_IGNORE_MKEY	= 1,
2138 	IB_MAD_IGNORE_BKEY	= 2,
2139 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2140 };
2141 
2142 enum ib_mad_result {
2143 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2144 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2145 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2146 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2147 };
2148 
2149 struct ib_port_cache {
2150 	u64		      subnet_prefix;
2151 	struct ib_pkey_cache  *pkey;
2152 	struct ib_gid_table   *gid;
2153 	u8                     lmc;
2154 	enum ib_port_state     port_state;
2155 };
2156 
2157 struct ib_port_immutable {
2158 	int                           pkey_tbl_len;
2159 	int                           gid_tbl_len;
2160 	u32                           core_cap_flags;
2161 	u32                           max_mad_size;
2162 };
2163 
2164 struct ib_port_data {
2165 	struct ib_device *ib_dev;
2166 
2167 	struct ib_port_immutable immutable;
2168 
2169 	spinlock_t pkey_list_lock;
2170 	struct list_head pkey_list;
2171 
2172 	struct ib_port_cache cache;
2173 
2174 	spinlock_t netdev_lock;
2175 	struct net_device __rcu *netdev;
2176 	struct hlist_node ndev_hash_link;
2177 	struct rdma_port_counter port_counter;
2178 	struct rdma_hw_stats *hw_stats;
2179 };
2180 
2181 /* rdma netdev type - specifies protocol type */
2182 enum rdma_netdev_t {
2183 	RDMA_NETDEV_OPA_VNIC,
2184 	RDMA_NETDEV_IPOIB,
2185 };
2186 
2187 /**
2188  * struct rdma_netdev - rdma netdev
2189  * For cases where netstack interfacing is required.
2190  */
2191 struct rdma_netdev {
2192 	void              *clnt_priv;
2193 	struct ib_device  *hca;
2194 	u8                 port_num;
2195 	int                mtu;
2196 
2197 	/*
2198 	 * cleanup function must be specified.
2199 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2200 	 * removed too.
2201 	 */
2202 	void (*free_rdma_netdev)(struct net_device *netdev);
2203 
2204 	/* control functions */
2205 	void (*set_id)(struct net_device *netdev, int id);
2206 	/* send packet */
2207 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2208 		    struct ib_ah *address, u32 dqpn);
2209 	/* multicast */
2210 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2211 			    union ib_gid *gid, u16 mlid,
2212 			    int set_qkey, u32 qkey);
2213 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2214 			    union ib_gid *gid, u16 mlid);
2215 };
2216 
2217 struct rdma_netdev_alloc_params {
2218 	size_t sizeof_priv;
2219 	unsigned int txqs;
2220 	unsigned int rxqs;
2221 	void *param;
2222 
2223 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2224 				      struct net_device *netdev, void *param);
2225 };
2226 
2227 struct ib_odp_counters {
2228 	atomic64_t faults;
2229 	atomic64_t invalidations;
2230 	atomic64_t prefetch;
2231 };
2232 
2233 struct ib_counters {
2234 	struct ib_device	*device;
2235 	struct ib_uobject	*uobject;
2236 	/* num of objects attached */
2237 	atomic_t	usecnt;
2238 };
2239 
2240 struct ib_counters_read_attr {
2241 	u64	*counters_buff;
2242 	u32	ncounters;
2243 	u32	flags; /* use enum ib_read_counters_flags */
2244 };
2245 
2246 struct uverbs_attr_bundle;
2247 struct iw_cm_id;
2248 struct iw_cm_conn_param;
2249 
2250 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2251 	.size_##ib_struct =                                                    \
2252 		(sizeof(struct drv_struct) +                                   \
2253 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2254 		 BUILD_BUG_ON_ZERO(                                            \
2255 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2256 				      struct ib_struct)))
2257 
2258 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2259 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2260 
2261 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2262 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2263 
2264 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2265 
2266 struct rdma_user_mmap_entry {
2267 	struct kref ref;
2268 	struct ib_ucontext *ucontext;
2269 	unsigned long start_pgoff;
2270 	size_t npages;
2271 	bool driver_removed;
2272 };
2273 
2274 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2275 static inline u64
2276 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2277 {
2278 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2279 }
2280 
2281 /**
2282  * struct ib_device_ops - InfiniBand device operations
2283  * This structure defines all the InfiniBand device operations, providers will
2284  * need to define the supported operations, otherwise they will be set to null.
2285  */
2286 struct ib_device_ops {
2287 	struct module *owner;
2288 	enum rdma_driver_id driver_id;
2289 	u32 uverbs_abi_ver;
2290 	unsigned int uverbs_no_driver_id_binding:1;
2291 
2292 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2293 			 const struct ib_send_wr **bad_send_wr);
2294 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2295 			 const struct ib_recv_wr **bad_recv_wr);
2296 	void (*drain_rq)(struct ib_qp *qp);
2297 	void (*drain_sq)(struct ib_qp *qp);
2298 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2299 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2300 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2301 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2302 	int (*post_srq_recv)(struct ib_srq *srq,
2303 			     const struct ib_recv_wr *recv_wr,
2304 			     const struct ib_recv_wr **bad_recv_wr);
2305 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2306 			   u8 port_num, const struct ib_wc *in_wc,
2307 			   const struct ib_grh *in_grh,
2308 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2309 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2310 	int (*query_device)(struct ib_device *device,
2311 			    struct ib_device_attr *device_attr,
2312 			    struct ib_udata *udata);
2313 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2314 			     struct ib_device_modify *device_modify);
2315 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2316 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2317 						     int comp_vector);
2318 	int (*query_port)(struct ib_device *device, u8 port_num,
2319 			  struct ib_port_attr *port_attr);
2320 	int (*modify_port)(struct ib_device *device, u8 port_num,
2321 			   int port_modify_mask,
2322 			   struct ib_port_modify *port_modify);
2323 	/**
2324 	 * The following mandatory functions are used only at device
2325 	 * registration.  Keep functions such as these at the end of this
2326 	 * structure to avoid cache line misses when accessing struct ib_device
2327 	 * in fast paths.
2328 	 */
2329 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2330 				  struct ib_port_immutable *immutable);
2331 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2332 					       u8 port_num);
2333 	/**
2334 	 * When calling get_netdev, the HW vendor's driver should return the
2335 	 * net device of device @device at port @port_num or NULL if such
2336 	 * a net device doesn't exist. The vendor driver should call dev_hold
2337 	 * on this net device. The HW vendor's device driver must guarantee
2338 	 * that this function returns NULL before the net device has finished
2339 	 * NETDEV_UNREGISTER state.
2340 	 */
2341 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2342 	/**
2343 	 * rdma netdev operation
2344 	 *
2345 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2346 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2347 	 */
2348 	struct net_device *(*alloc_rdma_netdev)(
2349 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2350 		const char *name, unsigned char name_assign_type,
2351 		void (*setup)(struct net_device *));
2352 
2353 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2354 				      enum rdma_netdev_t type,
2355 				      struct rdma_netdev_alloc_params *params);
2356 	/**
2357 	 * query_gid should be return GID value for @device, when @port_num
2358 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2359 	 * is RoCE link layer.
2360 	 */
2361 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2362 			 union ib_gid *gid);
2363 	/**
2364 	 * When calling add_gid, the HW vendor's driver should add the gid
2365 	 * of device of port at gid index available at @attr. Meta-info of
2366 	 * that gid (for example, the network device related to this gid) is
2367 	 * available at @attr. @context allows the HW vendor driver to store
2368 	 * extra information together with a GID entry. The HW vendor driver may
2369 	 * allocate memory to contain this information and store it in @context
2370 	 * when a new GID entry is written to. Params are consistent until the
2371 	 * next call of add_gid or delete_gid. The function should return 0 on
2372 	 * success or error otherwise. The function could be called
2373 	 * concurrently for different ports. This function is only called when
2374 	 * roce_gid_table is used.
2375 	 */
2376 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2377 	/**
2378 	 * When calling del_gid, the HW vendor's driver should delete the
2379 	 * gid of device @device at gid index gid_index of port port_num
2380 	 * available in @attr.
2381 	 * Upon the deletion of a GID entry, the HW vendor must free any
2382 	 * allocated memory. The caller will clear @context afterwards.
2383 	 * This function is only called when roce_gid_table is used.
2384 	 */
2385 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2386 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2387 			  u16 *pkey);
2388 	int (*alloc_ucontext)(struct ib_ucontext *context,
2389 			      struct ib_udata *udata);
2390 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2391 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2392 	/**
2393 	 * This will be called once refcount of an entry in mmap_xa reaches
2394 	 * zero. The type of the memory that was mapped may differ between
2395 	 * entries and is opaque to the rdma_user_mmap interface.
2396 	 * Therefore needs to be implemented by the driver in mmap_free.
2397 	 */
2398 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2399 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2400 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2401 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2402 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2403 			 struct ib_udata *udata);
2404 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2405 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2406 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2407 	int (*create_srq)(struct ib_srq *srq,
2408 			  struct ib_srq_init_attr *srq_init_attr,
2409 			  struct ib_udata *udata);
2410 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2411 			  enum ib_srq_attr_mask srq_attr_mask,
2412 			  struct ib_udata *udata);
2413 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2414 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2415 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2416 				   struct ib_qp_init_attr *qp_init_attr,
2417 				   struct ib_udata *udata);
2418 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2419 			 int qp_attr_mask, struct ib_udata *udata);
2420 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2421 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2422 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2423 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2424 			 struct ib_udata *udata);
2425 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2426 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2427 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2428 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2429 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2430 				     u64 virt_addr, int mr_access_flags,
2431 				     struct ib_udata *udata);
2432 	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2433 			     u64 virt_addr, int mr_access_flags,
2434 			     struct ib_pd *pd, struct ib_udata *udata);
2435 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2436 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2437 				  u32 max_num_sg);
2438 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2439 					    u32 max_num_data_sg,
2440 					    u32 max_num_meta_sg);
2441 	int (*advise_mr)(struct ib_pd *pd,
2442 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2443 			 struct ib_sge *sg_list, u32 num_sge,
2444 			 struct uverbs_attr_bundle *attrs);
2445 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2446 			 unsigned int *sg_offset);
2447 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2448 			       struct ib_mr_status *mr_status);
2449 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2450 	int (*dealloc_mw)(struct ib_mw *mw);
2451 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2452 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2453 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2454 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2455 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2456 				       struct ib_flow_attr *flow_attr,
2457 				       struct ib_udata *udata);
2458 	int (*destroy_flow)(struct ib_flow *flow_id);
2459 	struct ib_flow_action *(*create_flow_action_esp)(
2460 		struct ib_device *device,
2461 		const struct ib_flow_action_attrs_esp *attr,
2462 		struct uverbs_attr_bundle *attrs);
2463 	int (*destroy_flow_action)(struct ib_flow_action *action);
2464 	int (*modify_flow_action_esp)(
2465 		struct ib_flow_action *action,
2466 		const struct ib_flow_action_attrs_esp *attr,
2467 		struct uverbs_attr_bundle *attrs);
2468 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2469 				 int state);
2470 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2471 			     struct ifla_vf_info *ivf);
2472 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2473 			    struct ifla_vf_stats *stats);
2474 	int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2475 			    struct ifla_vf_guid *node_guid,
2476 			    struct ifla_vf_guid *port_guid);
2477 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2478 			   int type);
2479 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2480 				   struct ib_wq_init_attr *init_attr,
2481 				   struct ib_udata *udata);
2482 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2483 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2484 			 u32 wq_attr_mask, struct ib_udata *udata);
2485 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2486 				    struct ib_rwq_ind_table_init_attr *init_attr,
2487 				    struct ib_udata *udata);
2488 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2489 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2490 				  struct ib_ucontext *context,
2491 				  struct ib_dm_alloc_attr *attr,
2492 				  struct uverbs_attr_bundle *attrs);
2493 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2494 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2495 				   struct ib_dm_mr_attr *attr,
2496 				   struct uverbs_attr_bundle *attrs);
2497 	int (*create_counters)(struct ib_counters *counters,
2498 			       struct uverbs_attr_bundle *attrs);
2499 	int (*destroy_counters)(struct ib_counters *counters);
2500 	int (*read_counters)(struct ib_counters *counters,
2501 			     struct ib_counters_read_attr *counters_read_attr,
2502 			     struct uverbs_attr_bundle *attrs);
2503 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2504 			    int data_sg_nents, unsigned int *data_sg_offset,
2505 			    struct scatterlist *meta_sg, int meta_sg_nents,
2506 			    unsigned int *meta_sg_offset);
2507 
2508 	/**
2509 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2510 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2511 	 *   core when the device is removed.  A lifespan of -1 in the return
2512 	 *   struct tells the core to set a default lifespan.
2513 	 */
2514 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2515 						u8 port_num);
2516 	/**
2517 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2518 	 * @index - The index in the value array we wish to have updated, or
2519 	 *   num_counters if we want all stats updated
2520 	 * Return codes -
2521 	 *   < 0 - Error, no counters updated
2522 	 *   index - Updated the single counter pointed to by index
2523 	 *   num_counters - Updated all counters (will reset the timestamp
2524 	 *     and prevent further calls for lifespan milliseconds)
2525 	 * Drivers are allowed to update all counters in leiu of just the
2526 	 *   one given in index at their option
2527 	 */
2528 	int (*get_hw_stats)(struct ib_device *device,
2529 			    struct rdma_hw_stats *stats, u8 port, int index);
2530 	/*
2531 	 * This function is called once for each port when a ib device is
2532 	 * registered.
2533 	 */
2534 	int (*init_port)(struct ib_device *device, u8 port_num,
2535 			 struct kobject *port_sysfs);
2536 	/**
2537 	 * Allows rdma drivers to add their own restrack attributes.
2538 	 */
2539 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2540 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2541 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2542 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2543 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2544 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2545 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2546 
2547 	/* Device lifecycle callbacks */
2548 	/*
2549 	 * Called after the device becomes registered, before clients are
2550 	 * attached
2551 	 */
2552 	int (*enable_driver)(struct ib_device *dev);
2553 	/*
2554 	 * This is called as part of ib_dealloc_device().
2555 	 */
2556 	void (*dealloc_driver)(struct ib_device *dev);
2557 
2558 	/* iWarp CM callbacks */
2559 	void (*iw_add_ref)(struct ib_qp *qp);
2560 	void (*iw_rem_ref)(struct ib_qp *qp);
2561 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2562 	int (*iw_connect)(struct iw_cm_id *cm_id,
2563 			  struct iw_cm_conn_param *conn_param);
2564 	int (*iw_accept)(struct iw_cm_id *cm_id,
2565 			 struct iw_cm_conn_param *conn_param);
2566 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2567 			 u8 pdata_len);
2568 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2569 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2570 	/**
2571 	 * counter_bind_qp - Bind a QP to a counter.
2572 	 * @counter - The counter to be bound. If counter->id is zero then
2573 	 *   the driver needs to allocate a new counter and set counter->id
2574 	 */
2575 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2576 	/**
2577 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2578 	 *   counter and bind it onto the default one
2579 	 */
2580 	int (*counter_unbind_qp)(struct ib_qp *qp);
2581 	/**
2582 	 * counter_dealloc -De-allocate the hw counter
2583 	 */
2584 	int (*counter_dealloc)(struct rdma_counter *counter);
2585 	/**
2586 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2587 	 * the driver initialized data.
2588 	 */
2589 	struct rdma_hw_stats *(*counter_alloc_stats)(
2590 		struct rdma_counter *counter);
2591 	/**
2592 	 * counter_update_stats - Query the stats value of this counter
2593 	 */
2594 	int (*counter_update_stats)(struct rdma_counter *counter);
2595 
2596 	/**
2597 	 * Allows rdma drivers to add their own restrack attributes
2598 	 * dumped via 'rdma stat' iproute2 command.
2599 	 */
2600 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2601 
2602 	/* query driver for its ucontext properties */
2603 	int (*query_ucontext)(struct ib_ucontext *context,
2604 			      struct uverbs_attr_bundle *attrs);
2605 
2606 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2607 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2608 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2609 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2610 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2611 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2612 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2613 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2614 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2615 };
2616 
2617 struct ib_core_device {
2618 	/* device must be the first element in structure until,
2619 	 * union of ib_core_device and device exists in ib_device.
2620 	 */
2621 	struct device dev;
2622 	possible_net_t rdma_net;
2623 	struct kobject *ports_kobj;
2624 	struct list_head port_list;
2625 	struct ib_device *owner; /* reach back to owner ib_device */
2626 };
2627 
2628 struct rdma_restrack_root;
2629 struct ib_device {
2630 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2631 	struct device                *dma_device;
2632 	struct ib_device_ops	     ops;
2633 	char                          name[IB_DEVICE_NAME_MAX];
2634 	struct rcu_head rcu_head;
2635 
2636 	struct list_head              event_handler_list;
2637 	/* Protects event_handler_list */
2638 	struct rw_semaphore event_handler_rwsem;
2639 
2640 	/* Protects QP's event_handler calls and open_qp list */
2641 	spinlock_t qp_open_list_lock;
2642 
2643 	struct rw_semaphore	      client_data_rwsem;
2644 	struct xarray                 client_data;
2645 	struct mutex                  unregistration_lock;
2646 
2647 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2648 	rwlock_t cache_lock;
2649 	/**
2650 	 * port_data is indexed by port number
2651 	 */
2652 	struct ib_port_data *port_data;
2653 
2654 	int			      num_comp_vectors;
2655 
2656 	union {
2657 		struct device		dev;
2658 		struct ib_core_device	coredev;
2659 	};
2660 
2661 	/* First group for device attributes,
2662 	 * Second group for driver provided attributes (optional).
2663 	 * It is NULL terminated array.
2664 	 */
2665 	const struct attribute_group	*groups[3];
2666 
2667 	u64			     uverbs_cmd_mask;
2668 	u64			     uverbs_ex_cmd_mask;
2669 
2670 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2671 	__be64			     node_guid;
2672 	u32			     local_dma_lkey;
2673 	u16                          is_switch:1;
2674 	/* Indicates kernel verbs support, should not be used in drivers */
2675 	u16                          kverbs_provider:1;
2676 	/* CQ adaptive moderation (RDMA DIM) */
2677 	u16                          use_cq_dim:1;
2678 	u8                           node_type;
2679 	u8                           phys_port_cnt;
2680 	struct ib_device_attr        attrs;
2681 	struct attribute_group	     *hw_stats_ag;
2682 	struct rdma_hw_stats         *hw_stats;
2683 
2684 #ifdef CONFIG_CGROUP_RDMA
2685 	struct rdmacg_device         cg_device;
2686 #endif
2687 
2688 	u32                          index;
2689 
2690 	spinlock_t                   cq_pools_lock;
2691 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2692 
2693 	struct rdma_restrack_root *res;
2694 
2695 	const struct uapi_definition   *driver_def;
2696 
2697 	/*
2698 	 * Positive refcount indicates that the device is currently
2699 	 * registered and cannot be unregistered.
2700 	 */
2701 	refcount_t refcount;
2702 	struct completion unreg_completion;
2703 	struct work_struct unregistration_work;
2704 
2705 	const struct rdma_link_ops *link_ops;
2706 
2707 	/* Protects compat_devs xarray modifications */
2708 	struct mutex compat_devs_mutex;
2709 	/* Maintains compat devices for each net namespace */
2710 	struct xarray compat_devs;
2711 
2712 	/* Used by iWarp CM */
2713 	char iw_ifname[IFNAMSIZ];
2714 	u32 iw_driver_flags;
2715 	u32 lag_flags;
2716 };
2717 
2718 struct ib_client_nl_info;
2719 struct ib_client {
2720 	const char *name;
2721 	int (*add)(struct ib_device *ibdev);
2722 	void (*remove)(struct ib_device *, void *client_data);
2723 	void (*rename)(struct ib_device *dev, void *client_data);
2724 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2725 			   struct ib_client_nl_info *res);
2726 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2727 
2728 	/* Returns the net_dev belonging to this ib_client and matching the
2729 	 * given parameters.
2730 	 * @dev:	 An RDMA device that the net_dev use for communication.
2731 	 * @port:	 A physical port number on the RDMA device.
2732 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2733 	 * @gid:	 A GID that the net_dev uses to communicate.
2734 	 * @addr:	 An IP address the net_dev is configured with.
2735 	 * @client_data: The device's client data set by ib_set_client_data().
2736 	 *
2737 	 * An ib_client that implements a net_dev on top of RDMA devices
2738 	 * (such as IP over IB) should implement this callback, allowing the
2739 	 * rdma_cm module to find the right net_dev for a given request.
2740 	 *
2741 	 * The caller is responsible for calling dev_put on the returned
2742 	 * netdev. */
2743 	struct net_device *(*get_net_dev_by_params)(
2744 			struct ib_device *dev,
2745 			u8 port,
2746 			u16 pkey,
2747 			const union ib_gid *gid,
2748 			const struct sockaddr *addr,
2749 			void *client_data);
2750 
2751 	refcount_t uses;
2752 	struct completion uses_zero;
2753 	u32 client_id;
2754 
2755 	/* kverbs are not required by the client */
2756 	u8 no_kverbs_req:1;
2757 };
2758 
2759 /*
2760  * IB block DMA iterator
2761  *
2762  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2763  * to a HW supported page size.
2764  */
2765 struct ib_block_iter {
2766 	/* internal states */
2767 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2768 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2769 	unsigned int __sg_nents;	/* number of SG entries */
2770 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2771 	unsigned int __pg_bit;		/* alignment of current block */
2772 };
2773 
2774 struct ib_device *_ib_alloc_device(size_t size);
2775 #define ib_alloc_device(drv_struct, member)                                    \
2776 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2777 				      BUILD_BUG_ON_ZERO(offsetof(              \
2778 					      struct drv_struct, member))),    \
2779 		     struct drv_struct, member)
2780 
2781 void ib_dealloc_device(struct ib_device *device);
2782 
2783 void ib_get_device_fw_str(struct ib_device *device, char *str);
2784 
2785 int ib_register_device(struct ib_device *device, const char *name,
2786 		       struct device *dma_device);
2787 void ib_unregister_device(struct ib_device *device);
2788 void ib_unregister_driver(enum rdma_driver_id driver_id);
2789 void ib_unregister_device_and_put(struct ib_device *device);
2790 void ib_unregister_device_queued(struct ib_device *ib_dev);
2791 
2792 int ib_register_client   (struct ib_client *client);
2793 void ib_unregister_client(struct ib_client *client);
2794 
2795 void __rdma_block_iter_start(struct ib_block_iter *biter,
2796 			     struct scatterlist *sglist,
2797 			     unsigned int nents,
2798 			     unsigned long pgsz);
2799 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2800 
2801 /**
2802  * rdma_block_iter_dma_address - get the aligned dma address of the current
2803  * block held by the block iterator.
2804  * @biter: block iterator holding the memory block
2805  */
2806 static inline dma_addr_t
2807 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2808 {
2809 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2810 }
2811 
2812 /**
2813  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2814  * @sglist: sglist to iterate over
2815  * @biter: block iterator holding the memory block
2816  * @nents: maximum number of sg entries to iterate over
2817  * @pgsz: best HW supported page size to use
2818  *
2819  * Callers may use rdma_block_iter_dma_address() to get each
2820  * blocks aligned DMA address.
2821  */
2822 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2823 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2824 				     pgsz);			\
2825 	     __rdma_block_iter_next(biter);)
2826 
2827 /**
2828  * ib_get_client_data - Get IB client context
2829  * @device:Device to get context for
2830  * @client:Client to get context for
2831  *
2832  * ib_get_client_data() returns the client context data set with
2833  * ib_set_client_data(). This can only be called while the client is
2834  * registered to the device, once the ib_client remove() callback returns this
2835  * cannot be called.
2836  */
2837 static inline void *ib_get_client_data(struct ib_device *device,
2838 				       struct ib_client *client)
2839 {
2840 	return xa_load(&device->client_data, client->client_id);
2841 }
2842 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2843 			 void *data);
2844 void ib_set_device_ops(struct ib_device *device,
2845 		       const struct ib_device_ops *ops);
2846 
2847 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2848 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2849 		      struct rdma_user_mmap_entry *entry);
2850 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2851 				struct rdma_user_mmap_entry *entry,
2852 				size_t length);
2853 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2854 				      struct rdma_user_mmap_entry *entry,
2855 				      size_t length, u32 min_pgoff,
2856 				      u32 max_pgoff);
2857 
2858 struct rdma_user_mmap_entry *
2859 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2860 			       unsigned long pgoff);
2861 struct rdma_user_mmap_entry *
2862 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2863 			 struct vm_area_struct *vma);
2864 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2865 
2866 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2867 
2868 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2869 {
2870 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2871 }
2872 
2873 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2874 {
2875 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2876 }
2877 
2878 static inline bool ib_is_buffer_cleared(const void __user *p,
2879 					size_t len)
2880 {
2881 	bool ret;
2882 	u8 *buf;
2883 
2884 	if (len > USHRT_MAX)
2885 		return false;
2886 
2887 	buf = memdup_user(p, len);
2888 	if (IS_ERR(buf))
2889 		return false;
2890 
2891 	ret = !memchr_inv(buf, 0, len);
2892 	kfree(buf);
2893 	return ret;
2894 }
2895 
2896 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2897 				       size_t offset,
2898 				       size_t len)
2899 {
2900 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2901 }
2902 
2903 /**
2904  * ib_is_destroy_retryable - Check whether the uobject destruction
2905  * is retryable.
2906  * @ret: The initial destruction return code
2907  * @why: remove reason
2908  * @uobj: The uobject that is destroyed
2909  *
2910  * This function is a helper function that IB layer and low-level drivers
2911  * can use to consider whether the destruction of the given uobject is
2912  * retry-able.
2913  * It checks the original return code, if it wasn't success the destruction
2914  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2915  * the remove reason. (i.e. why).
2916  * Must be called with the object locked for destroy.
2917  */
2918 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2919 					   struct ib_uobject *uobj)
2920 {
2921 	return ret && (why == RDMA_REMOVE_DESTROY ||
2922 		       uobj->context->cleanup_retryable);
2923 }
2924 
2925 /**
2926  * ib_destroy_usecnt - Called during destruction to check the usecnt
2927  * @usecnt: The usecnt atomic
2928  * @why: remove reason
2929  * @uobj: The uobject that is destroyed
2930  *
2931  * Non-zero usecnts will block destruction unless destruction was triggered by
2932  * a ucontext cleanup.
2933  */
2934 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2935 				    enum rdma_remove_reason why,
2936 				    struct ib_uobject *uobj)
2937 {
2938 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2939 		return -EBUSY;
2940 	return 0;
2941 }
2942 
2943 /**
2944  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2945  * contains all required attributes and no attributes not allowed for
2946  * the given QP state transition.
2947  * @cur_state: Current QP state
2948  * @next_state: Next QP state
2949  * @type: QP type
2950  * @mask: Mask of supplied QP attributes
2951  *
2952  * This function is a helper function that a low-level driver's
2953  * modify_qp method can use to validate the consumer's input.  It
2954  * checks that cur_state and next_state are valid QP states, that a
2955  * transition from cur_state to next_state is allowed by the IB spec,
2956  * and that the attribute mask supplied is allowed for the transition.
2957  */
2958 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2959 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2960 
2961 void ib_register_event_handler(struct ib_event_handler *event_handler);
2962 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2963 void ib_dispatch_event(const struct ib_event *event);
2964 
2965 int ib_query_port(struct ib_device *device,
2966 		  u8 port_num, struct ib_port_attr *port_attr);
2967 
2968 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2969 					       u8 port_num);
2970 
2971 /**
2972  * rdma_cap_ib_switch - Check if the device is IB switch
2973  * @device: Device to check
2974  *
2975  * Device driver is responsible for setting is_switch bit on
2976  * in ib_device structure at init time.
2977  *
2978  * Return: true if the device is IB switch.
2979  */
2980 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2981 {
2982 	return device->is_switch;
2983 }
2984 
2985 /**
2986  * rdma_start_port - Return the first valid port number for the device
2987  * specified
2988  *
2989  * @device: Device to be checked
2990  *
2991  * Return start port number
2992  */
2993 static inline u8 rdma_start_port(const struct ib_device *device)
2994 {
2995 	return rdma_cap_ib_switch(device) ? 0 : 1;
2996 }
2997 
2998 /**
2999  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3000  * @device - The struct ib_device * to iterate over
3001  * @iter - The unsigned int to store the port number
3002  */
3003 #define rdma_for_each_port(device, iter)                                       \
3004 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
3005 						     unsigned int, iter)));    \
3006 	     iter <= rdma_end_port(device); (iter)++)
3007 
3008 /**
3009  * rdma_end_port - Return the last valid port number for the device
3010  * specified
3011  *
3012  * @device: Device to be checked
3013  *
3014  * Return last port number
3015  */
3016 static inline u8 rdma_end_port(const struct ib_device *device)
3017 {
3018 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3019 }
3020 
3021 static inline int rdma_is_port_valid(const struct ib_device *device,
3022 				     unsigned int port)
3023 {
3024 	return (port >= rdma_start_port(device) &&
3025 		port <= rdma_end_port(device));
3026 }
3027 
3028 static inline bool rdma_is_grh_required(const struct ib_device *device,
3029 					u8 port_num)
3030 {
3031 	return device->port_data[port_num].immutable.core_cap_flags &
3032 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3033 }
3034 
3035 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3036 {
3037 	return device->port_data[port_num].immutable.core_cap_flags &
3038 	       RDMA_CORE_CAP_PROT_IB;
3039 }
3040 
3041 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3042 {
3043 	return device->port_data[port_num].immutable.core_cap_flags &
3044 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3045 }
3046 
3047 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3048 {
3049 	return device->port_data[port_num].immutable.core_cap_flags &
3050 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3051 }
3052 
3053 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3054 {
3055 	return device->port_data[port_num].immutable.core_cap_flags &
3056 	       RDMA_CORE_CAP_PROT_ROCE;
3057 }
3058 
3059 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3060 {
3061 	return device->port_data[port_num].immutable.core_cap_flags &
3062 	       RDMA_CORE_CAP_PROT_IWARP;
3063 }
3064 
3065 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3066 {
3067 	return rdma_protocol_ib(device, port_num) ||
3068 		rdma_protocol_roce(device, port_num);
3069 }
3070 
3071 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3072 {
3073 	return device->port_data[port_num].immutable.core_cap_flags &
3074 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3075 }
3076 
3077 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3078 {
3079 	return device->port_data[port_num].immutable.core_cap_flags &
3080 	       RDMA_CORE_CAP_PROT_USNIC;
3081 }
3082 
3083 /**
3084  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3085  * Management Datagrams.
3086  * @device: Device to check
3087  * @port_num: Port number to check
3088  *
3089  * Management Datagrams (MAD) are a required part of the InfiniBand
3090  * specification and are supported on all InfiniBand devices.  A slightly
3091  * extended version are also supported on OPA interfaces.
3092  *
3093  * Return: true if the port supports sending/receiving of MAD packets.
3094  */
3095 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3096 {
3097 	return device->port_data[port_num].immutable.core_cap_flags &
3098 	       RDMA_CORE_CAP_IB_MAD;
3099 }
3100 
3101 /**
3102  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3103  * Management Datagrams.
3104  * @device: Device to check
3105  * @port_num: Port number to check
3106  *
3107  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3108  * datagrams with their own versions.  These OPA MADs share many but not all of
3109  * the characteristics of InfiniBand MADs.
3110  *
3111  * OPA MADs differ in the following ways:
3112  *
3113  *    1) MADs are variable size up to 2K
3114  *       IBTA defined MADs remain fixed at 256 bytes
3115  *    2) OPA SMPs must carry valid PKeys
3116  *    3) OPA SMP packets are a different format
3117  *
3118  * Return: true if the port supports OPA MAD packet formats.
3119  */
3120 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3121 {
3122 	return device->port_data[port_num].immutable.core_cap_flags &
3123 		RDMA_CORE_CAP_OPA_MAD;
3124 }
3125 
3126 /**
3127  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3128  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3129  * @device: Device to check
3130  * @port_num: Port number to check
3131  *
3132  * Each InfiniBand node is required to provide a Subnet Management Agent
3133  * that the subnet manager can access.  Prior to the fabric being fully
3134  * configured by the subnet manager, the SMA is accessed via a well known
3135  * interface called the Subnet Management Interface (SMI).  This interface
3136  * uses directed route packets to communicate with the SM to get around the
3137  * chicken and egg problem of the SM needing to know what's on the fabric
3138  * in order to configure the fabric, and needing to configure the fabric in
3139  * order to send packets to the devices on the fabric.  These directed
3140  * route packets do not need the fabric fully configured in order to reach
3141  * their destination.  The SMI is the only method allowed to send
3142  * directed route packets on an InfiniBand fabric.
3143  *
3144  * Return: true if the port provides an SMI.
3145  */
3146 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3147 {
3148 	return device->port_data[port_num].immutable.core_cap_flags &
3149 	       RDMA_CORE_CAP_IB_SMI;
3150 }
3151 
3152 /**
3153  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3154  * Communication Manager.
3155  * @device: Device to check
3156  * @port_num: Port number to check
3157  *
3158  * The InfiniBand Communication Manager is one of many pre-defined General
3159  * Service Agents (GSA) that are accessed via the General Service
3160  * Interface (GSI).  It's role is to facilitate establishment of connections
3161  * between nodes as well as other management related tasks for established
3162  * connections.
3163  *
3164  * Return: true if the port supports an IB CM (this does not guarantee that
3165  * a CM is actually running however).
3166  */
3167 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3168 {
3169 	return device->port_data[port_num].immutable.core_cap_flags &
3170 	       RDMA_CORE_CAP_IB_CM;
3171 }
3172 
3173 /**
3174  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3175  * Communication Manager.
3176  * @device: Device to check
3177  * @port_num: Port number to check
3178  *
3179  * Similar to above, but specific to iWARP connections which have a different
3180  * managment protocol than InfiniBand.
3181  *
3182  * Return: true if the port supports an iWARP CM (this does not guarantee that
3183  * a CM is actually running however).
3184  */
3185 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3186 {
3187 	return device->port_data[port_num].immutable.core_cap_flags &
3188 	       RDMA_CORE_CAP_IW_CM;
3189 }
3190 
3191 /**
3192  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3193  * Subnet Administration.
3194  * @device: Device to check
3195  * @port_num: Port number to check
3196  *
3197  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3198  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3199  * fabrics, devices should resolve routes to other hosts by contacting the
3200  * SA to query the proper route.
3201  *
3202  * Return: true if the port should act as a client to the fabric Subnet
3203  * Administration interface.  This does not imply that the SA service is
3204  * running locally.
3205  */
3206 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3207 {
3208 	return device->port_data[port_num].immutable.core_cap_flags &
3209 	       RDMA_CORE_CAP_IB_SA;
3210 }
3211 
3212 /**
3213  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3214  * Multicast.
3215  * @device: Device to check
3216  * @port_num: Port number to check
3217  *
3218  * InfiniBand multicast registration is more complex than normal IPv4 or
3219  * IPv6 multicast registration.  Each Host Channel Adapter must register
3220  * with the Subnet Manager when it wishes to join a multicast group.  It
3221  * should do so only once regardless of how many queue pairs it subscribes
3222  * to this group.  And it should leave the group only after all queue pairs
3223  * attached to the group have been detached.
3224  *
3225  * Return: true if the port must undertake the additional adminstrative
3226  * overhead of registering/unregistering with the SM and tracking of the
3227  * total number of queue pairs attached to the multicast group.
3228  */
3229 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3230 {
3231 	return rdma_cap_ib_sa(device, port_num);
3232 }
3233 
3234 /**
3235  * rdma_cap_af_ib - Check if the port of device has the capability
3236  * Native Infiniband Address.
3237  * @device: Device to check
3238  * @port_num: Port number to check
3239  *
3240  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3241  * GID.  RoCE uses a different mechanism, but still generates a GID via
3242  * a prescribed mechanism and port specific data.
3243  *
3244  * Return: true if the port uses a GID address to identify devices on the
3245  * network.
3246  */
3247 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3248 {
3249 	return device->port_data[port_num].immutable.core_cap_flags &
3250 	       RDMA_CORE_CAP_AF_IB;
3251 }
3252 
3253 /**
3254  * rdma_cap_eth_ah - Check if the port of device has the capability
3255  * Ethernet Address Handle.
3256  * @device: Device to check
3257  * @port_num: Port number to check
3258  *
3259  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3260  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3261  * port.  Normally, packet headers are generated by the sending host
3262  * adapter, but when sending connectionless datagrams, we must manually
3263  * inject the proper headers for the fabric we are communicating over.
3264  *
3265  * Return: true if we are running as a RoCE port and must force the
3266  * addition of a Global Route Header built from our Ethernet Address
3267  * Handle into our header list for connectionless packets.
3268  */
3269 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3270 {
3271 	return device->port_data[port_num].immutable.core_cap_flags &
3272 	       RDMA_CORE_CAP_ETH_AH;
3273 }
3274 
3275 /**
3276  * rdma_cap_opa_ah - Check if the port of device supports
3277  * OPA Address handles
3278  * @device: Device to check
3279  * @port_num: Port number to check
3280  *
3281  * Return: true if we are running on an OPA device which supports
3282  * the extended OPA addressing.
3283  */
3284 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3285 {
3286 	return (device->port_data[port_num].immutable.core_cap_flags &
3287 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3288 }
3289 
3290 /**
3291  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3292  *
3293  * @device: Device
3294  * @port_num: Port number
3295  *
3296  * This MAD size includes the MAD headers and MAD payload.  No other headers
3297  * are included.
3298  *
3299  * Return the max MAD size required by the Port.  Will return 0 if the port
3300  * does not support MADs
3301  */
3302 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3303 {
3304 	return device->port_data[port_num].immutable.max_mad_size;
3305 }
3306 
3307 /**
3308  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3309  * @device: Device to check
3310  * @port_num: Port number to check
3311  *
3312  * RoCE GID table mechanism manages the various GIDs for a device.
3313  *
3314  * NOTE: if allocating the port's GID table has failed, this call will still
3315  * return true, but any RoCE GID table API will fail.
3316  *
3317  * Return: true if the port uses RoCE GID table mechanism in order to manage
3318  * its GIDs.
3319  */
3320 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3321 					   u8 port_num)
3322 {
3323 	return rdma_protocol_roce(device, port_num) &&
3324 		device->ops.add_gid && device->ops.del_gid;
3325 }
3326 
3327 /*
3328  * Check if the device supports READ W/ INVALIDATE.
3329  */
3330 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3331 {
3332 	/*
3333 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3334 	 * has support for it yet.
3335 	 */
3336 	return rdma_protocol_iwarp(dev, port_num);
3337 }
3338 
3339 /**
3340  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3341  * @device: Device
3342  * @port_num: 1 based Port number
3343  *
3344  * Return true if port is an Intel OPA port , false if not
3345  */
3346 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3347 					  u32 port_num)
3348 {
3349 	return (device->port_data[port_num].immutable.core_cap_flags &
3350 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3351 }
3352 
3353 /**
3354  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3355  * @device: Device
3356  * @port_num: Port number
3357  * @mtu: enum value of MTU
3358  *
3359  * Return the MTU size supported by the port as an integer value. Will return
3360  * -1 if enum value of mtu is not supported.
3361  */
3362 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3363 				       int mtu)
3364 {
3365 	if (rdma_core_cap_opa_port(device, port))
3366 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3367 	else
3368 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3369 }
3370 
3371 /**
3372  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3373  * @device: Device
3374  * @port_num: Port number
3375  * @attr: port attribute
3376  *
3377  * Return the MTU size supported by the port as an integer value.
3378  */
3379 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3380 				     struct ib_port_attr *attr)
3381 {
3382 	if (rdma_core_cap_opa_port(device, port))
3383 		return attr->phys_mtu;
3384 	else
3385 		return ib_mtu_enum_to_int(attr->max_mtu);
3386 }
3387 
3388 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3389 			 int state);
3390 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3391 		     struct ifla_vf_info *info);
3392 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3393 		    struct ifla_vf_stats *stats);
3394 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3395 		    struct ifla_vf_guid *node_guid,
3396 		    struct ifla_vf_guid *port_guid);
3397 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3398 		   int type);
3399 
3400 int ib_query_pkey(struct ib_device *device,
3401 		  u8 port_num, u16 index, u16 *pkey);
3402 
3403 int ib_modify_device(struct ib_device *device,
3404 		     int device_modify_mask,
3405 		     struct ib_device_modify *device_modify);
3406 
3407 int ib_modify_port(struct ib_device *device,
3408 		   u8 port_num, int port_modify_mask,
3409 		   struct ib_port_modify *port_modify);
3410 
3411 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3412 		u8 *port_num, u16 *index);
3413 
3414 int ib_find_pkey(struct ib_device *device,
3415 		 u8 port_num, u16 pkey, u16 *index);
3416 
3417 enum ib_pd_flags {
3418 	/*
3419 	 * Create a memory registration for all memory in the system and place
3420 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3421 	 * ULPs to avoid the overhead of dynamic MRs.
3422 	 *
3423 	 * This flag is generally considered unsafe and must only be used in
3424 	 * extremly trusted environments.  Every use of it will log a warning
3425 	 * in the kernel log.
3426 	 */
3427 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3428 };
3429 
3430 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3431 		const char *caller);
3432 
3433 #define ib_alloc_pd(device, flags) \
3434 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3435 
3436 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3437 
3438 /**
3439  * ib_dealloc_pd - Deallocate kernel PD
3440  * @pd: The protection domain
3441  *
3442  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3443  */
3444 static inline void ib_dealloc_pd(struct ib_pd *pd)
3445 {
3446 	int ret = ib_dealloc_pd_user(pd, NULL);
3447 
3448 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3449 }
3450 
3451 enum rdma_create_ah_flags {
3452 	/* In a sleepable context */
3453 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3454 };
3455 
3456 /**
3457  * rdma_create_ah - Creates an address handle for the given address vector.
3458  * @pd: The protection domain associated with the address handle.
3459  * @ah_attr: The attributes of the address vector.
3460  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3461  *
3462  * The address handle is used to reference a local or global destination
3463  * in all UD QP post sends.
3464  */
3465 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3466 			     u32 flags);
3467 
3468 /**
3469  * rdma_create_user_ah - Creates an address handle for the given address vector.
3470  * It resolves destination mac address for ah attribute of RoCE type.
3471  * @pd: The protection domain associated with the address handle.
3472  * @ah_attr: The attributes of the address vector.
3473  * @udata: pointer to user's input output buffer information need by
3474  *         provider driver.
3475  *
3476  * It returns 0 on success and returns appropriate error code on error.
3477  * The address handle is used to reference a local or global destination
3478  * in all UD QP post sends.
3479  */
3480 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3481 				  struct rdma_ah_attr *ah_attr,
3482 				  struct ib_udata *udata);
3483 /**
3484  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3485  *   work completion.
3486  * @hdr: the L3 header to parse
3487  * @net_type: type of header to parse
3488  * @sgid: place to store source gid
3489  * @dgid: place to store destination gid
3490  */
3491 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3492 			      enum rdma_network_type net_type,
3493 			      union ib_gid *sgid, union ib_gid *dgid);
3494 
3495 /**
3496  * ib_get_rdma_header_version - Get the header version
3497  * @hdr: the L3 header to parse
3498  */
3499 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3500 
3501 /**
3502  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3503  *   work completion.
3504  * @device: Device on which the received message arrived.
3505  * @port_num: Port on which the received message arrived.
3506  * @wc: Work completion associated with the received message.
3507  * @grh: References the received global route header.  This parameter is
3508  *   ignored unless the work completion indicates that the GRH is valid.
3509  * @ah_attr: Returned attributes that can be used when creating an address
3510  *   handle for replying to the message.
3511  * When ib_init_ah_attr_from_wc() returns success,
3512  * (a) for IB link layer it optionally contains a reference to SGID attribute
3513  * when GRH is present for IB link layer.
3514  * (b) for RoCE link layer it contains a reference to SGID attribute.
3515  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3516  * attributes which are initialized using ib_init_ah_attr_from_wc().
3517  *
3518  */
3519 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3520 			    const struct ib_wc *wc, const struct ib_grh *grh,
3521 			    struct rdma_ah_attr *ah_attr);
3522 
3523 /**
3524  * ib_create_ah_from_wc - Creates an address handle associated with the
3525  *   sender of the specified work completion.
3526  * @pd: The protection domain associated with the address handle.
3527  * @wc: Work completion information associated with a received message.
3528  * @grh: References the received global route header.  This parameter is
3529  *   ignored unless the work completion indicates that the GRH is valid.
3530  * @port_num: The outbound port number to associate with the address.
3531  *
3532  * The address handle is used to reference a local or global destination
3533  * in all UD QP post sends.
3534  */
3535 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3536 				   const struct ib_grh *grh, u8 port_num);
3537 
3538 /**
3539  * rdma_modify_ah - Modifies the address vector associated with an address
3540  *   handle.
3541  * @ah: The address handle to modify.
3542  * @ah_attr: The new address vector attributes to associate with the
3543  *   address handle.
3544  */
3545 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3546 
3547 /**
3548  * rdma_query_ah - Queries the address vector associated with an address
3549  *   handle.
3550  * @ah: The address handle to query.
3551  * @ah_attr: The address vector attributes associated with the address
3552  *   handle.
3553  */
3554 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3555 
3556 enum rdma_destroy_ah_flags {
3557 	/* In a sleepable context */
3558 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3559 };
3560 
3561 /**
3562  * rdma_destroy_ah_user - Destroys an address handle.
3563  * @ah: The address handle to destroy.
3564  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3565  * @udata: Valid user data or NULL for kernel objects
3566  */
3567 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3568 
3569 /**
3570  * rdma_destroy_ah - Destroys an kernel address handle.
3571  * @ah: The address handle to destroy.
3572  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3573  *
3574  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3575  */
3576 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3577 {
3578 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3579 
3580 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3581 }
3582 
3583 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3584 				  struct ib_srq_init_attr *srq_init_attr,
3585 				  struct ib_usrq_object *uobject,
3586 				  struct ib_udata *udata);
3587 static inline struct ib_srq *
3588 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3589 {
3590 	if (!pd->device->ops.create_srq)
3591 		return ERR_PTR(-EOPNOTSUPP);
3592 
3593 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3594 }
3595 
3596 /**
3597  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3598  * @srq: The SRQ to modify.
3599  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3600  *   the current values of selected SRQ attributes are returned.
3601  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3602  *   are being modified.
3603  *
3604  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3605  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3606  * the number of receives queued drops below the limit.
3607  */
3608 int ib_modify_srq(struct ib_srq *srq,
3609 		  struct ib_srq_attr *srq_attr,
3610 		  enum ib_srq_attr_mask srq_attr_mask);
3611 
3612 /**
3613  * ib_query_srq - Returns the attribute list and current values for the
3614  *   specified SRQ.
3615  * @srq: The SRQ to query.
3616  * @srq_attr: The attributes of the specified SRQ.
3617  */
3618 int ib_query_srq(struct ib_srq *srq,
3619 		 struct ib_srq_attr *srq_attr);
3620 
3621 /**
3622  * ib_destroy_srq_user - Destroys the specified SRQ.
3623  * @srq: The SRQ to destroy.
3624  * @udata: Valid user data or NULL for kernel objects
3625  */
3626 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3627 
3628 /**
3629  * ib_destroy_srq - Destroys the specified kernel SRQ.
3630  * @srq: The SRQ to destroy.
3631  *
3632  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3633  */
3634 static inline void ib_destroy_srq(struct ib_srq *srq)
3635 {
3636 	int ret = ib_destroy_srq_user(srq, NULL);
3637 
3638 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3639 }
3640 
3641 /**
3642  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3643  * @srq: The SRQ to post the work request on.
3644  * @recv_wr: A list of work requests to post on the receive queue.
3645  * @bad_recv_wr: On an immediate failure, this parameter will reference
3646  *   the work request that failed to be posted on the QP.
3647  */
3648 static inline int ib_post_srq_recv(struct ib_srq *srq,
3649 				   const struct ib_recv_wr *recv_wr,
3650 				   const struct ib_recv_wr **bad_recv_wr)
3651 {
3652 	const struct ib_recv_wr *dummy;
3653 
3654 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3655 					      bad_recv_wr ? : &dummy);
3656 }
3657 
3658 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3659 			   struct ib_qp_init_attr *qp_init_attr);
3660 
3661 /**
3662  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3663  * @qp: The QP to modify.
3664  * @attr: On input, specifies the QP attributes to modify.  On output,
3665  *   the current values of selected QP attributes are returned.
3666  * @attr_mask: A bit-mask used to specify which attributes of the QP
3667  *   are being modified.
3668  * @udata: pointer to user's input output buffer information
3669  *   are being modified.
3670  * It returns 0 on success and returns appropriate error code on error.
3671  */
3672 int ib_modify_qp_with_udata(struct ib_qp *qp,
3673 			    struct ib_qp_attr *attr,
3674 			    int attr_mask,
3675 			    struct ib_udata *udata);
3676 
3677 /**
3678  * ib_modify_qp - Modifies the attributes for the specified QP and then
3679  *   transitions the QP to the given state.
3680  * @qp: The QP to modify.
3681  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3682  *   the current values of selected QP attributes are returned.
3683  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3684  *   are being modified.
3685  */
3686 int ib_modify_qp(struct ib_qp *qp,
3687 		 struct ib_qp_attr *qp_attr,
3688 		 int qp_attr_mask);
3689 
3690 /**
3691  * ib_query_qp - Returns the attribute list and current values for the
3692  *   specified QP.
3693  * @qp: The QP to query.
3694  * @qp_attr: The attributes of the specified QP.
3695  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3696  * @qp_init_attr: Additional attributes of the selected QP.
3697  *
3698  * The qp_attr_mask may be used to limit the query to gathering only the
3699  * selected attributes.
3700  */
3701 int ib_query_qp(struct ib_qp *qp,
3702 		struct ib_qp_attr *qp_attr,
3703 		int qp_attr_mask,
3704 		struct ib_qp_init_attr *qp_init_attr);
3705 
3706 /**
3707  * ib_destroy_qp - Destroys the specified QP.
3708  * @qp: The QP to destroy.
3709  * @udata: Valid udata or NULL for kernel objects
3710  */
3711 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3712 
3713 /**
3714  * ib_destroy_qp - Destroys the specified kernel QP.
3715  * @qp: The QP to destroy.
3716  *
3717  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3718  */
3719 static inline int ib_destroy_qp(struct ib_qp *qp)
3720 {
3721 	return ib_destroy_qp_user(qp, NULL);
3722 }
3723 
3724 /**
3725  * ib_open_qp - Obtain a reference to an existing sharable QP.
3726  * @xrcd - XRC domain
3727  * @qp_open_attr: Attributes identifying the QP to open.
3728  *
3729  * Returns a reference to a sharable QP.
3730  */
3731 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3732 			 struct ib_qp_open_attr *qp_open_attr);
3733 
3734 /**
3735  * ib_close_qp - Release an external reference to a QP.
3736  * @qp: The QP handle to release
3737  *
3738  * The opened QP handle is released by the caller.  The underlying
3739  * shared QP is not destroyed until all internal references are released.
3740  */
3741 int ib_close_qp(struct ib_qp *qp);
3742 
3743 /**
3744  * ib_post_send - Posts a list of work requests to the send queue of
3745  *   the specified QP.
3746  * @qp: The QP to post the work request on.
3747  * @send_wr: A list of work requests to post on the send queue.
3748  * @bad_send_wr: On an immediate failure, this parameter will reference
3749  *   the work request that failed to be posted on the QP.
3750  *
3751  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3752  * error is returned, the QP state shall not be affected,
3753  * ib_post_send() will return an immediate error after queueing any
3754  * earlier work requests in the list.
3755  */
3756 static inline int ib_post_send(struct ib_qp *qp,
3757 			       const struct ib_send_wr *send_wr,
3758 			       const struct ib_send_wr **bad_send_wr)
3759 {
3760 	const struct ib_send_wr *dummy;
3761 
3762 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3763 }
3764 
3765 /**
3766  * ib_post_recv - Posts a list of work requests to the receive queue of
3767  *   the specified QP.
3768  * @qp: The QP to post the work request on.
3769  * @recv_wr: A list of work requests to post on the receive queue.
3770  * @bad_recv_wr: On an immediate failure, this parameter will reference
3771  *   the work request that failed to be posted on the QP.
3772  */
3773 static inline int ib_post_recv(struct ib_qp *qp,
3774 			       const struct ib_recv_wr *recv_wr,
3775 			       const struct ib_recv_wr **bad_recv_wr)
3776 {
3777 	const struct ib_recv_wr *dummy;
3778 
3779 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3780 }
3781 
3782 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3783 			    int comp_vector, enum ib_poll_context poll_ctx,
3784 			    const char *caller);
3785 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3786 					int nr_cqe, int comp_vector,
3787 					enum ib_poll_context poll_ctx)
3788 {
3789 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3790 			     KBUILD_MODNAME);
3791 }
3792 
3793 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3794 				int nr_cqe, enum ib_poll_context poll_ctx,
3795 				const char *caller);
3796 
3797 /**
3798  * ib_alloc_cq_any: Allocate kernel CQ
3799  * @dev: The IB device
3800  * @private: Private data attached to the CQE
3801  * @nr_cqe: Number of CQEs in the CQ
3802  * @poll_ctx: Context used for polling the CQ
3803  */
3804 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3805 					    void *private, int nr_cqe,
3806 					    enum ib_poll_context poll_ctx)
3807 {
3808 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3809 				 KBUILD_MODNAME);
3810 }
3811 
3812 void ib_free_cq(struct ib_cq *cq);
3813 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3814 
3815 /**
3816  * ib_create_cq - Creates a CQ on the specified device.
3817  * @device: The device on which to create the CQ.
3818  * @comp_handler: A user-specified callback that is invoked when a
3819  *   completion event occurs on the CQ.
3820  * @event_handler: A user-specified callback that is invoked when an
3821  *   asynchronous event not associated with a completion occurs on the CQ.
3822  * @cq_context: Context associated with the CQ returned to the user via
3823  *   the associated completion and event handlers.
3824  * @cq_attr: The attributes the CQ should be created upon.
3825  *
3826  * Users can examine the cq structure to determine the actual CQ size.
3827  */
3828 struct ib_cq *__ib_create_cq(struct ib_device *device,
3829 			     ib_comp_handler comp_handler,
3830 			     void (*event_handler)(struct ib_event *, void *),
3831 			     void *cq_context,
3832 			     const struct ib_cq_init_attr *cq_attr,
3833 			     const char *caller);
3834 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3835 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3836 
3837 /**
3838  * ib_resize_cq - Modifies the capacity of the CQ.
3839  * @cq: The CQ to resize.
3840  * @cqe: The minimum size of the CQ.
3841  *
3842  * Users can examine the cq structure to determine the actual CQ size.
3843  */
3844 int ib_resize_cq(struct ib_cq *cq, int cqe);
3845 
3846 /**
3847  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3848  * @cq: The CQ to modify.
3849  * @cq_count: number of CQEs that will trigger an event
3850  * @cq_period: max period of time in usec before triggering an event
3851  *
3852  */
3853 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3854 
3855 /**
3856  * ib_destroy_cq_user - Destroys the specified CQ.
3857  * @cq: The CQ to destroy.
3858  * @udata: Valid user data or NULL for kernel objects
3859  */
3860 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3861 
3862 /**
3863  * ib_destroy_cq - Destroys the specified kernel CQ.
3864  * @cq: The CQ to destroy.
3865  *
3866  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3867  */
3868 static inline void ib_destroy_cq(struct ib_cq *cq)
3869 {
3870 	int ret = ib_destroy_cq_user(cq, NULL);
3871 
3872 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3873 }
3874 
3875 /**
3876  * ib_poll_cq - poll a CQ for completion(s)
3877  * @cq:the CQ being polled
3878  * @num_entries:maximum number of completions to return
3879  * @wc:array of at least @num_entries &struct ib_wc where completions
3880  *   will be returned
3881  *
3882  * Poll a CQ for (possibly multiple) completions.  If the return value
3883  * is < 0, an error occurred.  If the return value is >= 0, it is the
3884  * number of completions returned.  If the return value is
3885  * non-negative and < num_entries, then the CQ was emptied.
3886  */
3887 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3888 			     struct ib_wc *wc)
3889 {
3890 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3891 }
3892 
3893 /**
3894  * ib_req_notify_cq - Request completion notification on a CQ.
3895  * @cq: The CQ to generate an event for.
3896  * @flags:
3897  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3898  *   to request an event on the next solicited event or next work
3899  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3900  *   may also be |ed in to request a hint about missed events, as
3901  *   described below.
3902  *
3903  * Return Value:
3904  *    < 0 means an error occurred while requesting notification
3905  *   == 0 means notification was requested successfully, and if
3906  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3907  *        were missed and it is safe to wait for another event.  In
3908  *        this case is it guaranteed that any work completions added
3909  *        to the CQ since the last CQ poll will trigger a completion
3910  *        notification event.
3911  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3912  *        in.  It means that the consumer must poll the CQ again to
3913  *        make sure it is empty to avoid missing an event because of a
3914  *        race between requesting notification and an entry being
3915  *        added to the CQ.  This return value means it is possible
3916  *        (but not guaranteed) that a work completion has been added
3917  *        to the CQ since the last poll without triggering a
3918  *        completion notification event.
3919  */
3920 static inline int ib_req_notify_cq(struct ib_cq *cq,
3921 				   enum ib_cq_notify_flags flags)
3922 {
3923 	return cq->device->ops.req_notify_cq(cq, flags);
3924 }
3925 
3926 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3927 			     int comp_vector_hint,
3928 			     enum ib_poll_context poll_ctx);
3929 
3930 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3931 
3932 /**
3933  * ib_req_ncomp_notif - Request completion notification when there are
3934  *   at least the specified number of unreaped completions on the CQ.
3935  * @cq: The CQ to generate an event for.
3936  * @wc_cnt: The number of unreaped completions that should be on the
3937  *   CQ before an event is generated.
3938  */
3939 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3940 {
3941 	return cq->device->ops.req_ncomp_notif ?
3942 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3943 		-ENOSYS;
3944 }
3945 
3946 /**
3947  * ib_dma_mapping_error - check a DMA addr for error
3948  * @dev: The device for which the dma_addr was created
3949  * @dma_addr: The DMA address to check
3950  */
3951 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3952 {
3953 	return dma_mapping_error(dev->dma_device, dma_addr);
3954 }
3955 
3956 /**
3957  * ib_dma_map_single - Map a kernel virtual address to DMA address
3958  * @dev: The device for which the dma_addr is to be created
3959  * @cpu_addr: The kernel virtual address
3960  * @size: The size of the region in bytes
3961  * @direction: The direction of the DMA
3962  */
3963 static inline u64 ib_dma_map_single(struct ib_device *dev,
3964 				    void *cpu_addr, size_t size,
3965 				    enum dma_data_direction direction)
3966 {
3967 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3968 }
3969 
3970 /**
3971  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3972  * @dev: The device for which the DMA address was created
3973  * @addr: The DMA address
3974  * @size: The size of the region in bytes
3975  * @direction: The direction of the DMA
3976  */
3977 static inline void ib_dma_unmap_single(struct ib_device *dev,
3978 				       u64 addr, size_t size,
3979 				       enum dma_data_direction direction)
3980 {
3981 	dma_unmap_single(dev->dma_device, addr, size, direction);
3982 }
3983 
3984 /**
3985  * ib_dma_map_page - Map a physical page to DMA address
3986  * @dev: The device for which the dma_addr is to be created
3987  * @page: The page to be mapped
3988  * @offset: The offset within the page
3989  * @size: The size of the region in bytes
3990  * @direction: The direction of the DMA
3991  */
3992 static inline u64 ib_dma_map_page(struct ib_device *dev,
3993 				  struct page *page,
3994 				  unsigned long offset,
3995 				  size_t size,
3996 					 enum dma_data_direction direction)
3997 {
3998 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3999 }
4000 
4001 /**
4002  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4003  * @dev: The device for which the DMA address was created
4004  * @addr: The DMA address
4005  * @size: The size of the region in bytes
4006  * @direction: The direction of the DMA
4007  */
4008 static inline void ib_dma_unmap_page(struct ib_device *dev,
4009 				     u64 addr, size_t size,
4010 				     enum dma_data_direction direction)
4011 {
4012 	dma_unmap_page(dev->dma_device, addr, size, direction);
4013 }
4014 
4015 /**
4016  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4017  * @dev: The device for which the DMA addresses are to be created
4018  * @sg: The array of scatter/gather entries
4019  * @nents: The number of scatter/gather entries
4020  * @direction: The direction of the DMA
4021  */
4022 static inline int ib_dma_map_sg(struct ib_device *dev,
4023 				struct scatterlist *sg, int nents,
4024 				enum dma_data_direction direction)
4025 {
4026 	return dma_map_sg(dev->dma_device, sg, nents, direction);
4027 }
4028 
4029 /**
4030  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4031  * @dev: The device for which the DMA addresses were created
4032  * @sg: The array of scatter/gather entries
4033  * @nents: The number of scatter/gather entries
4034  * @direction: The direction of the DMA
4035  */
4036 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4037 				   struct scatterlist *sg, int nents,
4038 				   enum dma_data_direction direction)
4039 {
4040 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
4041 }
4042 
4043 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4044 				      struct scatterlist *sg, int nents,
4045 				      enum dma_data_direction direction,
4046 				      unsigned long dma_attrs)
4047 {
4048 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4049 				dma_attrs);
4050 }
4051 
4052 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4053 					 struct scatterlist *sg, int nents,
4054 					 enum dma_data_direction direction,
4055 					 unsigned long dma_attrs)
4056 {
4057 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4058 }
4059 
4060 /**
4061  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4062  * @dev: The device to query
4063  *
4064  * The returned value represents a size in bytes.
4065  */
4066 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4067 {
4068 	return dma_get_max_seg_size(dev->dma_device);
4069 }
4070 
4071 /**
4072  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4073  * @dev: The device for which the DMA address was created
4074  * @addr: The DMA address
4075  * @size: The size of the region in bytes
4076  * @dir: The direction of the DMA
4077  */
4078 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4079 					      u64 addr,
4080 					      size_t size,
4081 					      enum dma_data_direction dir)
4082 {
4083 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4084 }
4085 
4086 /**
4087  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4088  * @dev: The device for which the DMA address was created
4089  * @addr: The DMA address
4090  * @size: The size of the region in bytes
4091  * @dir: The direction of the DMA
4092  */
4093 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4094 						 u64 addr,
4095 						 size_t size,
4096 						 enum dma_data_direction dir)
4097 {
4098 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4099 }
4100 
4101 /**
4102  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4103  * @dev: The device for which the DMA address is requested
4104  * @size: The size of the region to allocate in bytes
4105  * @dma_handle: A pointer for returning the DMA address of the region
4106  * @flag: memory allocator flags
4107  */
4108 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4109 					   size_t size,
4110 					   dma_addr_t *dma_handle,
4111 					   gfp_t flag)
4112 {
4113 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4114 }
4115 
4116 /**
4117  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4118  * @dev: The device for which the DMA addresses were allocated
4119  * @size: The size of the region
4120  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4121  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4122  */
4123 static inline void ib_dma_free_coherent(struct ib_device *dev,
4124 					size_t size, void *cpu_addr,
4125 					dma_addr_t dma_handle)
4126 {
4127 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4128 }
4129 
4130 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4131  * space. This function should be called when 'current' is the owning MM.
4132  */
4133 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4134 			     u64 virt_addr, int mr_access_flags);
4135 
4136 /* ib_advise_mr -  give an advice about an address range in a memory region */
4137 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4138 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4139 /**
4140  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4141  *   HCA translation table.
4142  * @mr: The memory region to deregister.
4143  * @udata: Valid user data or NULL for kernel object
4144  *
4145  * This function can fail, if the memory region has memory windows bound to it.
4146  */
4147 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4148 
4149 /**
4150  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4151  *   HCA translation table.
4152  * @mr: The memory region to deregister.
4153  *
4154  * This function can fail, if the memory region has memory windows bound to it.
4155  *
4156  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4157  */
4158 static inline int ib_dereg_mr(struct ib_mr *mr)
4159 {
4160 	return ib_dereg_mr_user(mr, NULL);
4161 }
4162 
4163 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4164 			  u32 max_num_sg);
4165 
4166 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4167 				    u32 max_num_data_sg,
4168 				    u32 max_num_meta_sg);
4169 
4170 /**
4171  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4172  *   R_Key and L_Key.
4173  * @mr - struct ib_mr pointer to be updated.
4174  * @newkey - new key to be used.
4175  */
4176 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4177 {
4178 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4179 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4180 }
4181 
4182 /**
4183  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4184  * for calculating a new rkey for type 2 memory windows.
4185  * @rkey - the rkey to increment.
4186  */
4187 static inline u32 ib_inc_rkey(u32 rkey)
4188 {
4189 	const u32 mask = 0x000000ff;
4190 	return ((rkey + 1) & mask) | (rkey & ~mask);
4191 }
4192 
4193 /**
4194  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4195  * @qp: QP to attach to the multicast group.  The QP must be type
4196  *   IB_QPT_UD.
4197  * @gid: Multicast group GID.
4198  * @lid: Multicast group LID in host byte order.
4199  *
4200  * In order to send and receive multicast packets, subnet
4201  * administration must have created the multicast group and configured
4202  * the fabric appropriately.  The port associated with the specified
4203  * QP must also be a member of the multicast group.
4204  */
4205 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4206 
4207 /**
4208  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4209  * @qp: QP to detach from the multicast group.
4210  * @gid: Multicast group GID.
4211  * @lid: Multicast group LID in host byte order.
4212  */
4213 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4214 
4215 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4216 				   struct inode *inode, struct ib_udata *udata);
4217 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4218 
4219 static inline int ib_check_mr_access(int flags)
4220 {
4221 	/*
4222 	 * Local write permission is required if remote write or
4223 	 * remote atomic permission is also requested.
4224 	 */
4225 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4226 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4227 		return -EINVAL;
4228 
4229 	if (flags & ~IB_ACCESS_SUPPORTED)
4230 		return -EINVAL;
4231 
4232 	return 0;
4233 }
4234 
4235 static inline bool ib_access_writable(int access_flags)
4236 {
4237 	/*
4238 	 * We have writable memory backing the MR if any of the following
4239 	 * access flags are set.  "Local write" and "remote write" obviously
4240 	 * require write access.  "Remote atomic" can do things like fetch and
4241 	 * add, which will modify memory, and "MW bind" can change permissions
4242 	 * by binding a window.
4243 	 */
4244 	return access_flags &
4245 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4246 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4247 }
4248 
4249 /**
4250  * ib_check_mr_status: lightweight check of MR status.
4251  *     This routine may provide status checks on a selected
4252  *     ib_mr. first use is for signature status check.
4253  *
4254  * @mr: A memory region.
4255  * @check_mask: Bitmask of which checks to perform from
4256  *     ib_mr_status_check enumeration.
4257  * @mr_status: The container of relevant status checks.
4258  *     failed checks will be indicated in the status bitmask
4259  *     and the relevant info shall be in the error item.
4260  */
4261 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4262 		       struct ib_mr_status *mr_status);
4263 
4264 /**
4265  * ib_device_try_get: Hold a registration lock
4266  * device: The device to lock
4267  *
4268  * A device under an active registration lock cannot become unregistered. It
4269  * is only possible to obtain a registration lock on a device that is fully
4270  * registered, otherwise this function returns false.
4271  *
4272  * The registration lock is only necessary for actions which require the
4273  * device to still be registered. Uses that only require the device pointer to
4274  * be valid should use get_device(&ibdev->dev) to hold the memory.
4275  *
4276  */
4277 static inline bool ib_device_try_get(struct ib_device *dev)
4278 {
4279 	return refcount_inc_not_zero(&dev->refcount);
4280 }
4281 
4282 void ib_device_put(struct ib_device *device);
4283 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4284 					  enum rdma_driver_id driver_id);
4285 struct ib_device *ib_device_get_by_name(const char *name,
4286 					enum rdma_driver_id driver_id);
4287 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4288 					    u16 pkey, const union ib_gid *gid,
4289 					    const struct sockaddr *addr);
4290 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4291 			 unsigned int port);
4292 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4293 
4294 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4295 			   struct ib_wq_init_attr *init_attr);
4296 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4297 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4298 		 u32 wq_attr_mask);
4299 
4300 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4301 		 unsigned int *sg_offset, unsigned int page_size);
4302 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4303 		    int data_sg_nents, unsigned int *data_sg_offset,
4304 		    struct scatterlist *meta_sg, int meta_sg_nents,
4305 		    unsigned int *meta_sg_offset, unsigned int page_size);
4306 
4307 static inline int
4308 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4309 		  unsigned int *sg_offset, unsigned int page_size)
4310 {
4311 	int n;
4312 
4313 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4314 	mr->iova = 0;
4315 
4316 	return n;
4317 }
4318 
4319 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4320 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4321 
4322 void ib_drain_rq(struct ib_qp *qp);
4323 void ib_drain_sq(struct ib_qp *qp);
4324 void ib_drain_qp(struct ib_qp *qp);
4325 
4326 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width);
4327 
4328 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4329 {
4330 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4331 		return attr->roce.dmac;
4332 	return NULL;
4333 }
4334 
4335 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4336 {
4337 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4338 		attr->ib.dlid = (u16)dlid;
4339 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4340 		attr->opa.dlid = dlid;
4341 }
4342 
4343 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4344 {
4345 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4346 		return attr->ib.dlid;
4347 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4348 		return attr->opa.dlid;
4349 	return 0;
4350 }
4351 
4352 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4353 {
4354 	attr->sl = sl;
4355 }
4356 
4357 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4358 {
4359 	return attr->sl;
4360 }
4361 
4362 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4363 					 u8 src_path_bits)
4364 {
4365 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4366 		attr->ib.src_path_bits = src_path_bits;
4367 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4368 		attr->opa.src_path_bits = src_path_bits;
4369 }
4370 
4371 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4372 {
4373 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4374 		return attr->ib.src_path_bits;
4375 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4376 		return attr->opa.src_path_bits;
4377 	return 0;
4378 }
4379 
4380 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4381 					bool make_grd)
4382 {
4383 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4384 		attr->opa.make_grd = make_grd;
4385 }
4386 
4387 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4388 {
4389 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4390 		return attr->opa.make_grd;
4391 	return false;
4392 }
4393 
4394 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4395 {
4396 	attr->port_num = port_num;
4397 }
4398 
4399 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4400 {
4401 	return attr->port_num;
4402 }
4403 
4404 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4405 					   u8 static_rate)
4406 {
4407 	attr->static_rate = static_rate;
4408 }
4409 
4410 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4411 {
4412 	return attr->static_rate;
4413 }
4414 
4415 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4416 					enum ib_ah_flags flag)
4417 {
4418 	attr->ah_flags = flag;
4419 }
4420 
4421 static inline enum ib_ah_flags
4422 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4423 {
4424 	return attr->ah_flags;
4425 }
4426 
4427 static inline const struct ib_global_route
4428 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4429 {
4430 	return &attr->grh;
4431 }
4432 
4433 /*To retrieve and modify the grh */
4434 static inline struct ib_global_route
4435 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4436 {
4437 	return &attr->grh;
4438 }
4439 
4440 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4441 {
4442 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4443 
4444 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4445 }
4446 
4447 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4448 					     __be64 prefix)
4449 {
4450 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4451 
4452 	grh->dgid.global.subnet_prefix = prefix;
4453 }
4454 
4455 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4456 					    __be64 if_id)
4457 {
4458 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4459 
4460 	grh->dgid.global.interface_id = if_id;
4461 }
4462 
4463 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4464 				   union ib_gid *dgid, u32 flow_label,
4465 				   u8 sgid_index, u8 hop_limit,
4466 				   u8 traffic_class)
4467 {
4468 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4469 
4470 	attr->ah_flags = IB_AH_GRH;
4471 	if (dgid)
4472 		grh->dgid = *dgid;
4473 	grh->flow_label = flow_label;
4474 	grh->sgid_index = sgid_index;
4475 	grh->hop_limit = hop_limit;
4476 	grh->traffic_class = traffic_class;
4477 	grh->sgid_attr = NULL;
4478 }
4479 
4480 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4481 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4482 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4483 			     const struct ib_gid_attr *sgid_attr);
4484 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4485 		       const struct rdma_ah_attr *src);
4486 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4487 			  const struct rdma_ah_attr *new);
4488 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4489 
4490 /**
4491  * rdma_ah_find_type - Return address handle type.
4492  *
4493  * @dev: Device to be checked
4494  * @port_num: Port number
4495  */
4496 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4497 						       u8 port_num)
4498 {
4499 	if (rdma_protocol_roce(dev, port_num))
4500 		return RDMA_AH_ATTR_TYPE_ROCE;
4501 	if (rdma_protocol_ib(dev, port_num)) {
4502 		if (rdma_cap_opa_ah(dev, port_num))
4503 			return RDMA_AH_ATTR_TYPE_OPA;
4504 		return RDMA_AH_ATTR_TYPE_IB;
4505 	}
4506 
4507 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4508 }
4509 
4510 /**
4511  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4512  *     In the current implementation the only way to get
4513  *     get the 32bit lid is from other sources for OPA.
4514  *     For IB, lids will always be 16bits so cast the
4515  *     value accordingly.
4516  *
4517  * @lid: A 32bit LID
4518  */
4519 static inline u16 ib_lid_cpu16(u32 lid)
4520 {
4521 	WARN_ON_ONCE(lid & 0xFFFF0000);
4522 	return (u16)lid;
4523 }
4524 
4525 /**
4526  * ib_lid_be16 - Return lid in 16bit BE encoding.
4527  *
4528  * @lid: A 32bit LID
4529  */
4530 static inline __be16 ib_lid_be16(u32 lid)
4531 {
4532 	WARN_ON_ONCE(lid & 0xFFFF0000);
4533 	return cpu_to_be16((u16)lid);
4534 }
4535 
4536 /**
4537  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4538  *   vector
4539  * @device:         the rdma device
4540  * @comp_vector:    index of completion vector
4541  *
4542  * Returns NULL on failure, otherwise a corresponding cpu map of the
4543  * completion vector (returns all-cpus map if the device driver doesn't
4544  * implement get_vector_affinity).
4545  */
4546 static inline const struct cpumask *
4547 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4548 {
4549 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4550 	    !device->ops.get_vector_affinity)
4551 		return NULL;
4552 
4553 	return device->ops.get_vector_affinity(device, comp_vector);
4554 
4555 }
4556 
4557 /**
4558  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4559  * and add their gids, as needed, to the relevant RoCE devices.
4560  *
4561  * @device:         the rdma device
4562  */
4563 void rdma_roce_rescan_device(struct ib_device *ibdev);
4564 
4565 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4566 
4567 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4568 
4569 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4570 				     enum rdma_netdev_t type, const char *name,
4571 				     unsigned char name_assign_type,
4572 				     void (*setup)(struct net_device *));
4573 
4574 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4575 		     enum rdma_netdev_t type, const char *name,
4576 		     unsigned char name_assign_type,
4577 		     void (*setup)(struct net_device *),
4578 		     struct net_device *netdev);
4579 
4580 /**
4581  * rdma_set_device_sysfs_group - Set device attributes group to have
4582  *				 driver specific sysfs entries at
4583  *				 for infiniband class.
4584  *
4585  * @device:	device pointer for which attributes to be created
4586  * @group:	Pointer to group which should be added when device
4587  *		is registered with sysfs.
4588  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4589  * group per device to have sysfs attributes.
4590  *
4591  * NOTE: New drivers should not make use of this API; instead new device
4592  * parameter should be exposed via netlink command. This API and mechanism
4593  * exist only for existing drivers.
4594  */
4595 static inline void
4596 rdma_set_device_sysfs_group(struct ib_device *dev,
4597 			    const struct attribute_group *group)
4598 {
4599 	dev->groups[1] = group;
4600 }
4601 
4602 /**
4603  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4604  *
4605  * @device:	device pointer for which ib_device pointer to retrieve
4606  *
4607  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4608  *
4609  */
4610 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4611 {
4612 	struct ib_core_device *coredev =
4613 		container_of(device, struct ib_core_device, dev);
4614 
4615 	return coredev->owner;
4616 }
4617 
4618 /**
4619  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4620  *			       ib_device holder structure from device pointer.
4621  *
4622  * NOTE: New drivers should not make use of this API; This API is only for
4623  * existing drivers who have exposed sysfs entries using
4624  * rdma_set_device_sysfs_group().
4625  */
4626 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4627 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4628 
4629 bool rdma_dev_access_netns(const struct ib_device *device,
4630 			   const struct net *net);
4631 
4632 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4633 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4634 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4635 
4636 /**
4637  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4638  *                               on the flow_label
4639  *
4640  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4641  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4642  * convention.
4643  */
4644 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4645 {
4646 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4647 
4648 	fl_low ^= fl_high >> 14;
4649 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4650 }
4651 
4652 /**
4653  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4654  *                        local and remote qpn values
4655  *
4656  * This function folded the multiplication results of two qpns, 24 bit each,
4657  * fields, and converts it to a 20 bit results.
4658  *
4659  * This function will create symmetric flow_label value based on the local
4660  * and remote qpn values. this will allow both the requester and responder
4661  * to calculate the same flow_label for a given connection.
4662  *
4663  * This helper function should be used by driver in case the upper layer
4664  * provide a zero flow_label value. This is to improve entropy of RDMA
4665  * traffic in the network.
4666  */
4667 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4668 {
4669 	u64 v = (u64)lqpn * rqpn;
4670 
4671 	v ^= v >> 20;
4672 	v ^= v >> 40;
4673 
4674 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4675 }
4676 #endif /* IB_VERBS_H */
4677