1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(3, 4) __cold 63 void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77 __printf(2, 3) __cold 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82 #define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84 #else 85 __printf(2, 3) __cold 86 static inline 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88 #endif 89 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91 do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97 } while (0) 98 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118 do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 #else 128 __printf(2, 3) __cold 129 static inline 130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131 #endif 132 133 union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139 }; 140 141 extern union ib_gid zgid; 142 143 enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148 }; 149 150 #define ROCE_V2_UDP_DPORT 4791 151 struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158 }; 159 160 enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163 }; 164 165 enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171 }; 172 173 enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178 }; 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(unsigned int node_type); 182 183 enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188 }; 189 190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191 { 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199 } 200 201 static inline enum rdma_network_type 202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203 { 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214 } 215 216 enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220 }; 221 222 enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 238 239 /* Reserved, old SEND_W_INV = 1 << 16,*/ 240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 241 /* 242 * Devices should set IB_DEVICE_UD_IP_SUM if they support 243 * insertion of UDP and TCP checksum on outgoing UD IPoIB 244 * messages and can verify the validity of checksum for 245 * incoming messages. Setting this flag implies that the 246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 247 */ 248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 250 251 /* 252 * This device supports the IB "base memory management extension", 253 * which includes support for fast registrations (IB_WR_REG_MR, 254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 255 * also be set by any iWarp device which must support FRs to comply 256 * to the iWarp verbs spec. iWarp devices also support the 257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 258 * stag. 259 */ 260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 266 IB_DEVICE_MANAGED_FLOW_STEERING = 267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 270 /* The device supports padding incoming writes to cacheline. */ 271 IB_DEVICE_PCI_WRITE_END_PADDING = 272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 273 /* Placement type attributes */ 274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 277 }; 278 279 enum ib_kernel_cap_flags { 280 /* 281 * This device supports a per-device lkey or stag that can be 282 * used without performing a memory registration for the local 283 * memory. Note that ULPs should never check this flag, but 284 * instead of use the local_dma_lkey flag in the ib_pd structure, 285 * which will always contain a usable lkey. 286 */ 287 IBK_LOCAL_DMA_LKEY = 1 << 0, 288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 289 IBK_INTEGRITY_HANDOVER = 1 << 1, 290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 291 IBK_ON_DEMAND_PAGING = 1 << 2, 292 /* IB_MR_TYPE_SG_GAPS is supported */ 293 IBK_SG_GAPS_REG = 1 << 3, 294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 295 IBK_ALLOW_USER_UNREG = 1 << 4, 296 297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 300 IBK_UD_TSO = 1 << 6, 301 /* iopib will use the device ops: 302 * get_vf_config 303 * get_vf_guid 304 * get_vf_stats 305 * set_vf_guid 306 * set_vf_link_state 307 */ 308 IBK_VIRTUAL_FUNCTION = 1 << 7, 309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 310 IBK_RDMA_NETDEV_OPA = 1 << 8, 311 }; 312 313 enum ib_atomic_cap { 314 IB_ATOMIC_NONE, 315 IB_ATOMIC_HCA, 316 IB_ATOMIC_GLOB 317 }; 318 319 enum ib_odp_general_cap_bits { 320 IB_ODP_SUPPORT = 1 << 0, 321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 322 }; 323 324 enum ib_odp_transport_cap_bits { 325 IB_ODP_SUPPORT_SEND = 1 << 0, 326 IB_ODP_SUPPORT_RECV = 1 << 1, 327 IB_ODP_SUPPORT_WRITE = 1 << 2, 328 IB_ODP_SUPPORT_READ = 1 << 3, 329 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 331 }; 332 333 struct ib_odp_caps { 334 uint64_t general_caps; 335 struct { 336 uint32_t rc_odp_caps; 337 uint32_t uc_odp_caps; 338 uint32_t ud_odp_caps; 339 uint32_t xrc_odp_caps; 340 } per_transport_caps; 341 }; 342 343 struct ib_rss_caps { 344 /* Corresponding bit will be set if qp type from 345 * 'enum ib_qp_type' is supported, e.g. 346 * supported_qpts |= 1 << IB_QPT_UD 347 */ 348 u32 supported_qpts; 349 u32 max_rwq_indirection_tables; 350 u32 max_rwq_indirection_table_size; 351 }; 352 353 enum ib_tm_cap_flags { 354 /* Support tag matching with rendezvous offload for RC transport */ 355 IB_TM_CAP_RNDV_RC = 1 << 0, 356 }; 357 358 struct ib_tm_caps { 359 /* Max size of RNDV header */ 360 u32 max_rndv_hdr_size; 361 /* Max number of entries in tag matching list */ 362 u32 max_num_tags; 363 /* From enum ib_tm_cap_flags */ 364 u32 flags; 365 /* Max number of outstanding list operations */ 366 u32 max_ops; 367 /* Max number of SGE in tag matching entry */ 368 u32 max_sge; 369 }; 370 371 struct ib_cq_init_attr { 372 unsigned int cqe; 373 u32 comp_vector; 374 u32 flags; 375 }; 376 377 enum ib_cq_attr_mask { 378 IB_CQ_MODERATE = 1 << 0, 379 }; 380 381 struct ib_cq_caps { 382 u16 max_cq_moderation_count; 383 u16 max_cq_moderation_period; 384 }; 385 386 struct ib_dm_mr_attr { 387 u64 length; 388 u64 offset; 389 u32 access_flags; 390 }; 391 392 struct ib_dm_alloc_attr { 393 u64 length; 394 u32 alignment; 395 u32 flags; 396 }; 397 398 struct ib_device_attr { 399 u64 fw_ver; 400 __be64 sys_image_guid; 401 u64 max_mr_size; 402 u64 page_size_cap; 403 u32 vendor_id; 404 u32 vendor_part_id; 405 u32 hw_ver; 406 int max_qp; 407 int max_qp_wr; 408 u64 device_cap_flags; 409 u64 kernel_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_srq; 434 int max_srq_wr; 435 int max_srq_sge; 436 unsigned int max_fast_reg_page_list_len; 437 unsigned int max_pi_fast_reg_page_list_len; 438 u16 max_pkeys; 439 u8 local_ca_ack_delay; 440 int sig_prot_cap; 441 int sig_guard_cap; 442 struct ib_odp_caps odp_caps; 443 uint64_t timestamp_mask; 444 uint64_t hca_core_clock; /* in KHZ */ 445 struct ib_rss_caps rss_caps; 446 u32 max_wq_type_rq; 447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 448 struct ib_tm_caps tm_caps; 449 struct ib_cq_caps cq_caps; 450 u64 max_dm_size; 451 /* Max entries for sgl for optimized performance per READ */ 452 u32 max_sgl_rd; 453 }; 454 455 enum ib_mtu { 456 IB_MTU_256 = 1, 457 IB_MTU_512 = 2, 458 IB_MTU_1024 = 3, 459 IB_MTU_2048 = 4, 460 IB_MTU_4096 = 5 461 }; 462 463 enum opa_mtu { 464 OPA_MTU_8192 = 6, 465 OPA_MTU_10240 = 7 466 }; 467 468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 469 { 470 switch (mtu) { 471 case IB_MTU_256: return 256; 472 case IB_MTU_512: return 512; 473 case IB_MTU_1024: return 1024; 474 case IB_MTU_2048: return 2048; 475 case IB_MTU_4096: return 4096; 476 default: return -1; 477 } 478 } 479 480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 481 { 482 if (mtu >= 4096) 483 return IB_MTU_4096; 484 else if (mtu >= 2048) 485 return IB_MTU_2048; 486 else if (mtu >= 1024) 487 return IB_MTU_1024; 488 else if (mtu >= 512) 489 return IB_MTU_512; 490 else 491 return IB_MTU_256; 492 } 493 494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 495 { 496 switch (mtu) { 497 case OPA_MTU_8192: 498 return 8192; 499 case OPA_MTU_10240: 500 return 10240; 501 default: 502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 503 } 504 } 505 506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 507 { 508 if (mtu >= 10240) 509 return OPA_MTU_10240; 510 else if (mtu >= 8192) 511 return OPA_MTU_8192; 512 else 513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 514 } 515 516 enum ib_port_state { 517 IB_PORT_NOP = 0, 518 IB_PORT_DOWN = 1, 519 IB_PORT_INIT = 2, 520 IB_PORT_ARMED = 3, 521 IB_PORT_ACTIVE = 4, 522 IB_PORT_ACTIVE_DEFER = 5 523 }; 524 525 enum ib_port_phys_state { 526 IB_PORT_PHYS_STATE_SLEEP = 1, 527 IB_PORT_PHYS_STATE_POLLING = 2, 528 IB_PORT_PHYS_STATE_DISABLED = 3, 529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 530 IB_PORT_PHYS_STATE_LINK_UP = 5, 531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 532 IB_PORT_PHYS_STATE_PHY_TEST = 7, 533 }; 534 535 enum ib_port_width { 536 IB_WIDTH_1X = 1, 537 IB_WIDTH_2X = 16, 538 IB_WIDTH_4X = 2, 539 IB_WIDTH_8X = 4, 540 IB_WIDTH_12X = 8 541 }; 542 543 static inline int ib_width_enum_to_int(enum ib_port_width width) 544 { 545 switch (width) { 546 case IB_WIDTH_1X: return 1; 547 case IB_WIDTH_2X: return 2; 548 case IB_WIDTH_4X: return 4; 549 case IB_WIDTH_8X: return 8; 550 case IB_WIDTH_12X: return 12; 551 default: return -1; 552 } 553 } 554 555 enum ib_port_speed { 556 IB_SPEED_SDR = 1, 557 IB_SPEED_DDR = 2, 558 IB_SPEED_QDR = 4, 559 IB_SPEED_FDR10 = 8, 560 IB_SPEED_FDR = 16, 561 IB_SPEED_EDR = 32, 562 IB_SPEED_HDR = 64, 563 IB_SPEED_NDR = 128, 564 IB_SPEED_XDR = 256, 565 }; 566 567 enum ib_stat_flag { 568 IB_STAT_FLAG_OPTIONAL = 1 << 0, 569 }; 570 571 /** 572 * struct rdma_stat_desc 573 * @name - The name of the counter 574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 575 * @priv - Driver private information; Core code should not use 576 */ 577 struct rdma_stat_desc { 578 const char *name; 579 unsigned int flags; 580 const void *priv; 581 }; 582 583 /** 584 * struct rdma_hw_stats 585 * @lock - Mutex to protect parallel write access to lifespan and values 586 * of counters, which are 64bits and not guaranteed to be written 587 * atomicaly on 32bits systems. 588 * @timestamp - Used by the core code to track when the last update was 589 * @lifespan - Used by the core code to determine how old the counters 590 * should be before being updated again. Stored in jiffies, defaults 591 * to 10 milliseconds, drivers can override the default be specifying 592 * their own value during their allocation routine. 593 * @descs - Array of pointers to static descriptors used for the counters 594 * in directory. 595 * @is_disabled - A bitmap to indicate each counter is currently disabled 596 * or not. 597 * @num_counters - How many hardware counters there are. If name is 598 * shorter than this number, a kernel oops will result. Driver authors 599 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 600 * in their code to prevent this. 601 * @value - Array of u64 counters that are accessed by the sysfs code and 602 * filled in by the drivers get_stats routine 603 */ 604 struct rdma_hw_stats { 605 struct mutex lock; /* Protect lifespan and values[] */ 606 unsigned long timestamp; 607 unsigned long lifespan; 608 const struct rdma_stat_desc *descs; 609 unsigned long *is_disabled; 610 int num_counters; 611 u64 value[] __counted_by(num_counters); 612 }; 613 614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 615 616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 617 const struct rdma_stat_desc *descs, int num_counters, 618 unsigned long lifespan); 619 620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 621 622 /* Define bits for the various functionality this port needs to be supported by 623 * the core. 624 */ 625 /* Management 0x00000FFF */ 626 #define RDMA_CORE_CAP_IB_MAD 0x00000001 627 #define RDMA_CORE_CAP_IB_SMI 0x00000002 628 #define RDMA_CORE_CAP_IB_CM 0x00000004 629 #define RDMA_CORE_CAP_IW_CM 0x00000008 630 #define RDMA_CORE_CAP_IB_SA 0x00000010 631 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 632 633 /* Address format 0x000FF000 */ 634 #define RDMA_CORE_CAP_AF_IB 0x00001000 635 #define RDMA_CORE_CAP_ETH_AH 0x00002000 636 #define RDMA_CORE_CAP_OPA_AH 0x00004000 637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 638 639 /* Protocol 0xFFF00000 */ 640 #define RDMA_CORE_CAP_PROT_IB 0x00100000 641 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 642 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 644 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 645 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 646 647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 648 | RDMA_CORE_CAP_PROT_ROCE \ 649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 650 651 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 652 | RDMA_CORE_CAP_IB_MAD \ 653 | RDMA_CORE_CAP_IB_SMI \ 654 | RDMA_CORE_CAP_IB_CM \ 655 | RDMA_CORE_CAP_IB_SA \ 656 | RDMA_CORE_CAP_AF_IB) 657 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 658 | RDMA_CORE_CAP_IB_MAD \ 659 | RDMA_CORE_CAP_IB_CM \ 660 | RDMA_CORE_CAP_AF_IB \ 661 | RDMA_CORE_CAP_ETH_AH) 662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 664 | RDMA_CORE_CAP_IB_MAD \ 665 | RDMA_CORE_CAP_IB_CM \ 666 | RDMA_CORE_CAP_AF_IB \ 667 | RDMA_CORE_CAP_ETH_AH) 668 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 669 | RDMA_CORE_CAP_IW_CM) 670 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 671 | RDMA_CORE_CAP_OPA_MAD) 672 673 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 674 675 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 676 677 struct ib_port_attr { 678 u64 subnet_prefix; 679 enum ib_port_state state; 680 enum ib_mtu max_mtu; 681 enum ib_mtu active_mtu; 682 u32 phys_mtu; 683 int gid_tbl_len; 684 unsigned int ip_gids:1; 685 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 686 u32 port_cap_flags; 687 u32 max_msg_sz; 688 u32 bad_pkey_cntr; 689 u32 qkey_viol_cntr; 690 u16 pkey_tbl_len; 691 u32 sm_lid; 692 u32 lid; 693 u8 lmc; 694 u8 max_vl_num; 695 u8 sm_sl; 696 u8 subnet_timeout; 697 u8 init_type_reply; 698 u8 active_width; 699 u16 active_speed; 700 u8 phys_state; 701 u16 port_cap_flags2; 702 }; 703 704 enum ib_device_modify_flags { 705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 707 }; 708 709 #define IB_DEVICE_NODE_DESC_MAX 64 710 711 struct ib_device_modify { 712 u64 sys_image_guid; 713 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 714 }; 715 716 enum ib_port_modify_flags { 717 IB_PORT_SHUTDOWN = 1, 718 IB_PORT_INIT_TYPE = (1<<2), 719 IB_PORT_RESET_QKEY_CNTR = (1<<3), 720 IB_PORT_OPA_MASK_CHG = (1<<4) 721 }; 722 723 struct ib_port_modify { 724 u32 set_port_cap_mask; 725 u32 clr_port_cap_mask; 726 u8 init_type; 727 }; 728 729 enum ib_event_type { 730 IB_EVENT_CQ_ERR, 731 IB_EVENT_QP_FATAL, 732 IB_EVENT_QP_REQ_ERR, 733 IB_EVENT_QP_ACCESS_ERR, 734 IB_EVENT_COMM_EST, 735 IB_EVENT_SQ_DRAINED, 736 IB_EVENT_PATH_MIG, 737 IB_EVENT_PATH_MIG_ERR, 738 IB_EVENT_DEVICE_FATAL, 739 IB_EVENT_PORT_ACTIVE, 740 IB_EVENT_PORT_ERR, 741 IB_EVENT_LID_CHANGE, 742 IB_EVENT_PKEY_CHANGE, 743 IB_EVENT_SM_CHANGE, 744 IB_EVENT_SRQ_ERR, 745 IB_EVENT_SRQ_LIMIT_REACHED, 746 IB_EVENT_QP_LAST_WQE_REACHED, 747 IB_EVENT_CLIENT_REREGISTER, 748 IB_EVENT_GID_CHANGE, 749 IB_EVENT_WQ_FATAL, 750 }; 751 752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 753 754 struct ib_event { 755 struct ib_device *device; 756 union { 757 struct ib_cq *cq; 758 struct ib_qp *qp; 759 struct ib_srq *srq; 760 struct ib_wq *wq; 761 u32 port_num; 762 } element; 763 enum ib_event_type event; 764 }; 765 766 struct ib_event_handler { 767 struct ib_device *device; 768 void (*handler)(struct ib_event_handler *, struct ib_event *); 769 struct list_head list; 770 }; 771 772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 773 do { \ 774 (_ptr)->device = _device; \ 775 (_ptr)->handler = _handler; \ 776 INIT_LIST_HEAD(&(_ptr)->list); \ 777 } while (0) 778 779 struct ib_global_route { 780 const struct ib_gid_attr *sgid_attr; 781 union ib_gid dgid; 782 u32 flow_label; 783 u8 sgid_index; 784 u8 hop_limit; 785 u8 traffic_class; 786 }; 787 788 struct ib_grh { 789 __be32 version_tclass_flow; 790 __be16 paylen; 791 u8 next_hdr; 792 u8 hop_limit; 793 union ib_gid sgid; 794 union ib_gid dgid; 795 }; 796 797 union rdma_network_hdr { 798 struct ib_grh ibgrh; 799 struct { 800 /* The IB spec states that if it's IPv4, the header 801 * is located in the last 20 bytes of the header. 802 */ 803 u8 reserved[20]; 804 struct iphdr roce4grh; 805 }; 806 }; 807 808 #define IB_QPN_MASK 0xFFFFFF 809 810 enum { 811 IB_MULTICAST_QPN = 0xffffff 812 }; 813 814 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 815 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 816 817 enum ib_ah_flags { 818 IB_AH_GRH = 1 819 }; 820 821 enum ib_rate { 822 IB_RATE_PORT_CURRENT = 0, 823 IB_RATE_2_5_GBPS = 2, 824 IB_RATE_5_GBPS = 5, 825 IB_RATE_10_GBPS = 3, 826 IB_RATE_20_GBPS = 6, 827 IB_RATE_30_GBPS = 4, 828 IB_RATE_40_GBPS = 7, 829 IB_RATE_60_GBPS = 8, 830 IB_RATE_80_GBPS = 9, 831 IB_RATE_120_GBPS = 10, 832 IB_RATE_14_GBPS = 11, 833 IB_RATE_56_GBPS = 12, 834 IB_RATE_112_GBPS = 13, 835 IB_RATE_168_GBPS = 14, 836 IB_RATE_25_GBPS = 15, 837 IB_RATE_100_GBPS = 16, 838 IB_RATE_200_GBPS = 17, 839 IB_RATE_300_GBPS = 18, 840 IB_RATE_28_GBPS = 19, 841 IB_RATE_50_GBPS = 20, 842 IB_RATE_400_GBPS = 21, 843 IB_RATE_600_GBPS = 22, 844 IB_RATE_800_GBPS = 23, 845 }; 846 847 /** 848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 849 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 851 * @rate: rate to convert. 852 */ 853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 854 855 /** 856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 857 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 858 * @rate: rate to convert. 859 */ 860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 861 862 863 /** 864 * enum ib_mr_type - memory region type 865 * @IB_MR_TYPE_MEM_REG: memory region that is used for 866 * normal registration 867 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 868 * register any arbitrary sg lists (without 869 * the normal mr constraints - see 870 * ib_map_mr_sg) 871 * @IB_MR_TYPE_DM: memory region that is used for device 872 * memory registration 873 * @IB_MR_TYPE_USER: memory region that is used for the user-space 874 * application 875 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 876 * without address translations (VA=PA) 877 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 878 * data integrity operations 879 */ 880 enum ib_mr_type { 881 IB_MR_TYPE_MEM_REG, 882 IB_MR_TYPE_SG_GAPS, 883 IB_MR_TYPE_DM, 884 IB_MR_TYPE_USER, 885 IB_MR_TYPE_DMA, 886 IB_MR_TYPE_INTEGRITY, 887 }; 888 889 enum ib_mr_status_check { 890 IB_MR_CHECK_SIG_STATUS = 1, 891 }; 892 893 /** 894 * struct ib_mr_status - Memory region status container 895 * 896 * @fail_status: Bitmask of MR checks status. For each 897 * failed check a corresponding status bit is set. 898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 899 * failure. 900 */ 901 struct ib_mr_status { 902 u32 fail_status; 903 struct ib_sig_err sig_err; 904 }; 905 906 /** 907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 908 * enum. 909 * @mult: multiple to convert. 910 */ 911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 912 913 struct rdma_ah_init_attr { 914 struct rdma_ah_attr *ah_attr; 915 u32 flags; 916 struct net_device *xmit_slave; 917 }; 918 919 enum rdma_ah_attr_type { 920 RDMA_AH_ATTR_TYPE_UNDEFINED, 921 RDMA_AH_ATTR_TYPE_IB, 922 RDMA_AH_ATTR_TYPE_ROCE, 923 RDMA_AH_ATTR_TYPE_OPA, 924 }; 925 926 struct ib_ah_attr { 927 u16 dlid; 928 u8 src_path_bits; 929 }; 930 931 struct roce_ah_attr { 932 u8 dmac[ETH_ALEN]; 933 }; 934 935 struct opa_ah_attr { 936 u32 dlid; 937 u8 src_path_bits; 938 bool make_grd; 939 }; 940 941 struct rdma_ah_attr { 942 struct ib_global_route grh; 943 u8 sl; 944 u8 static_rate; 945 u32 port_num; 946 u8 ah_flags; 947 enum rdma_ah_attr_type type; 948 union { 949 struct ib_ah_attr ib; 950 struct roce_ah_attr roce; 951 struct opa_ah_attr opa; 952 }; 953 }; 954 955 enum ib_wc_status { 956 IB_WC_SUCCESS, 957 IB_WC_LOC_LEN_ERR, 958 IB_WC_LOC_QP_OP_ERR, 959 IB_WC_LOC_EEC_OP_ERR, 960 IB_WC_LOC_PROT_ERR, 961 IB_WC_WR_FLUSH_ERR, 962 IB_WC_MW_BIND_ERR, 963 IB_WC_BAD_RESP_ERR, 964 IB_WC_LOC_ACCESS_ERR, 965 IB_WC_REM_INV_REQ_ERR, 966 IB_WC_REM_ACCESS_ERR, 967 IB_WC_REM_OP_ERR, 968 IB_WC_RETRY_EXC_ERR, 969 IB_WC_RNR_RETRY_EXC_ERR, 970 IB_WC_LOC_RDD_VIOL_ERR, 971 IB_WC_REM_INV_RD_REQ_ERR, 972 IB_WC_REM_ABORT_ERR, 973 IB_WC_INV_EECN_ERR, 974 IB_WC_INV_EEC_STATE_ERR, 975 IB_WC_FATAL_ERR, 976 IB_WC_RESP_TIMEOUT_ERR, 977 IB_WC_GENERAL_ERR 978 }; 979 980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 981 982 enum ib_wc_opcode { 983 IB_WC_SEND = IB_UVERBS_WC_SEND, 984 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 985 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 986 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 987 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 988 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 989 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 990 IB_WC_LSO = IB_UVERBS_WC_TSO, 991 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 992 IB_WC_REG_MR, 993 IB_WC_MASKED_COMP_SWAP, 994 IB_WC_MASKED_FETCH_ADD, 995 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 996 /* 997 * Set value of IB_WC_RECV so consumers can test if a completion is a 998 * receive by testing (opcode & IB_WC_RECV). 999 */ 1000 IB_WC_RECV = 1 << 7, 1001 IB_WC_RECV_RDMA_WITH_IMM 1002 }; 1003 1004 enum ib_wc_flags { 1005 IB_WC_GRH = 1, 1006 IB_WC_WITH_IMM = (1<<1), 1007 IB_WC_WITH_INVALIDATE = (1<<2), 1008 IB_WC_IP_CSUM_OK = (1<<3), 1009 IB_WC_WITH_SMAC = (1<<4), 1010 IB_WC_WITH_VLAN = (1<<5), 1011 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1012 }; 1013 1014 struct ib_wc { 1015 union { 1016 u64 wr_id; 1017 struct ib_cqe *wr_cqe; 1018 }; 1019 enum ib_wc_status status; 1020 enum ib_wc_opcode opcode; 1021 u32 vendor_err; 1022 u32 byte_len; 1023 struct ib_qp *qp; 1024 union { 1025 __be32 imm_data; 1026 u32 invalidate_rkey; 1027 } ex; 1028 u32 src_qp; 1029 u32 slid; 1030 int wc_flags; 1031 u16 pkey_index; 1032 u8 sl; 1033 u8 dlid_path_bits; 1034 u32 port_num; /* valid only for DR SMPs on switches */ 1035 u8 smac[ETH_ALEN]; 1036 u16 vlan_id; 1037 u8 network_hdr_type; 1038 }; 1039 1040 enum ib_cq_notify_flags { 1041 IB_CQ_SOLICITED = 1 << 0, 1042 IB_CQ_NEXT_COMP = 1 << 1, 1043 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1044 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1045 }; 1046 1047 enum ib_srq_type { 1048 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1049 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1050 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1051 }; 1052 1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1054 { 1055 return srq_type == IB_SRQT_XRC || 1056 srq_type == IB_SRQT_TM; 1057 } 1058 1059 enum ib_srq_attr_mask { 1060 IB_SRQ_MAX_WR = 1 << 0, 1061 IB_SRQ_LIMIT = 1 << 1, 1062 }; 1063 1064 struct ib_srq_attr { 1065 u32 max_wr; 1066 u32 max_sge; 1067 u32 srq_limit; 1068 }; 1069 1070 struct ib_srq_init_attr { 1071 void (*event_handler)(struct ib_event *, void *); 1072 void *srq_context; 1073 struct ib_srq_attr attr; 1074 enum ib_srq_type srq_type; 1075 1076 struct { 1077 struct ib_cq *cq; 1078 union { 1079 struct { 1080 struct ib_xrcd *xrcd; 1081 } xrc; 1082 1083 struct { 1084 u32 max_num_tags; 1085 } tag_matching; 1086 }; 1087 } ext; 1088 }; 1089 1090 struct ib_qp_cap { 1091 u32 max_send_wr; 1092 u32 max_recv_wr; 1093 u32 max_send_sge; 1094 u32 max_recv_sge; 1095 u32 max_inline_data; 1096 1097 /* 1098 * Maximum number of rdma_rw_ctx structures in flight at a time. 1099 * ib_create_qp() will calculate the right amount of needed WRs 1100 * and MRs based on this. 1101 */ 1102 u32 max_rdma_ctxs; 1103 }; 1104 1105 enum ib_sig_type { 1106 IB_SIGNAL_ALL_WR, 1107 IB_SIGNAL_REQ_WR 1108 }; 1109 1110 enum ib_qp_type { 1111 /* 1112 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1113 * here (and in that order) since the MAD layer uses them as 1114 * indices into a 2-entry table. 1115 */ 1116 IB_QPT_SMI, 1117 IB_QPT_GSI, 1118 1119 IB_QPT_RC = IB_UVERBS_QPT_RC, 1120 IB_QPT_UC = IB_UVERBS_QPT_UC, 1121 IB_QPT_UD = IB_UVERBS_QPT_UD, 1122 IB_QPT_RAW_IPV6, 1123 IB_QPT_RAW_ETHERTYPE, 1124 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1125 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1126 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1127 IB_QPT_MAX, 1128 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1129 /* Reserve a range for qp types internal to the low level driver. 1130 * These qp types will not be visible at the IB core layer, so the 1131 * IB_QPT_MAX usages should not be affected in the core layer 1132 */ 1133 IB_QPT_RESERVED1 = 0x1000, 1134 IB_QPT_RESERVED2, 1135 IB_QPT_RESERVED3, 1136 IB_QPT_RESERVED4, 1137 IB_QPT_RESERVED5, 1138 IB_QPT_RESERVED6, 1139 IB_QPT_RESERVED7, 1140 IB_QPT_RESERVED8, 1141 IB_QPT_RESERVED9, 1142 IB_QPT_RESERVED10, 1143 }; 1144 1145 enum ib_qp_create_flags { 1146 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1147 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1148 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1149 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1150 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1151 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1152 IB_QP_CREATE_NETIF_QP = 1 << 5, 1153 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1154 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1155 IB_QP_CREATE_SCATTER_FCS = 1156 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1157 IB_QP_CREATE_CVLAN_STRIPPING = 1158 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1159 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1160 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1161 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1162 /* reserve bits 26-31 for low level drivers' internal use */ 1163 IB_QP_CREATE_RESERVED_START = 1 << 26, 1164 IB_QP_CREATE_RESERVED_END = 1 << 31, 1165 }; 1166 1167 /* 1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1169 * callback to destroy the passed in QP. 1170 */ 1171 1172 struct ib_qp_init_attr { 1173 /* This callback occurs in workqueue context */ 1174 void (*event_handler)(struct ib_event *, void *); 1175 1176 void *qp_context; 1177 struct ib_cq *send_cq; 1178 struct ib_cq *recv_cq; 1179 struct ib_srq *srq; 1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1181 struct ib_qp_cap cap; 1182 enum ib_sig_type sq_sig_type; 1183 enum ib_qp_type qp_type; 1184 u32 create_flags; 1185 1186 /* 1187 * Only needed for special QP types, or when using the RW API. 1188 */ 1189 u32 port_num; 1190 struct ib_rwq_ind_table *rwq_ind_tbl; 1191 u32 source_qpn; 1192 }; 1193 1194 struct ib_qp_open_attr { 1195 void (*event_handler)(struct ib_event *, void *); 1196 void *qp_context; 1197 u32 qp_num; 1198 enum ib_qp_type qp_type; 1199 }; 1200 1201 enum ib_rnr_timeout { 1202 IB_RNR_TIMER_655_36 = 0, 1203 IB_RNR_TIMER_000_01 = 1, 1204 IB_RNR_TIMER_000_02 = 2, 1205 IB_RNR_TIMER_000_03 = 3, 1206 IB_RNR_TIMER_000_04 = 4, 1207 IB_RNR_TIMER_000_06 = 5, 1208 IB_RNR_TIMER_000_08 = 6, 1209 IB_RNR_TIMER_000_12 = 7, 1210 IB_RNR_TIMER_000_16 = 8, 1211 IB_RNR_TIMER_000_24 = 9, 1212 IB_RNR_TIMER_000_32 = 10, 1213 IB_RNR_TIMER_000_48 = 11, 1214 IB_RNR_TIMER_000_64 = 12, 1215 IB_RNR_TIMER_000_96 = 13, 1216 IB_RNR_TIMER_001_28 = 14, 1217 IB_RNR_TIMER_001_92 = 15, 1218 IB_RNR_TIMER_002_56 = 16, 1219 IB_RNR_TIMER_003_84 = 17, 1220 IB_RNR_TIMER_005_12 = 18, 1221 IB_RNR_TIMER_007_68 = 19, 1222 IB_RNR_TIMER_010_24 = 20, 1223 IB_RNR_TIMER_015_36 = 21, 1224 IB_RNR_TIMER_020_48 = 22, 1225 IB_RNR_TIMER_030_72 = 23, 1226 IB_RNR_TIMER_040_96 = 24, 1227 IB_RNR_TIMER_061_44 = 25, 1228 IB_RNR_TIMER_081_92 = 26, 1229 IB_RNR_TIMER_122_88 = 27, 1230 IB_RNR_TIMER_163_84 = 28, 1231 IB_RNR_TIMER_245_76 = 29, 1232 IB_RNR_TIMER_327_68 = 30, 1233 IB_RNR_TIMER_491_52 = 31 1234 }; 1235 1236 enum ib_qp_attr_mask { 1237 IB_QP_STATE = 1, 1238 IB_QP_CUR_STATE = (1<<1), 1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1240 IB_QP_ACCESS_FLAGS = (1<<3), 1241 IB_QP_PKEY_INDEX = (1<<4), 1242 IB_QP_PORT = (1<<5), 1243 IB_QP_QKEY = (1<<6), 1244 IB_QP_AV = (1<<7), 1245 IB_QP_PATH_MTU = (1<<8), 1246 IB_QP_TIMEOUT = (1<<9), 1247 IB_QP_RETRY_CNT = (1<<10), 1248 IB_QP_RNR_RETRY = (1<<11), 1249 IB_QP_RQ_PSN = (1<<12), 1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1251 IB_QP_ALT_PATH = (1<<14), 1252 IB_QP_MIN_RNR_TIMER = (1<<15), 1253 IB_QP_SQ_PSN = (1<<16), 1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1255 IB_QP_PATH_MIG_STATE = (1<<18), 1256 IB_QP_CAP = (1<<19), 1257 IB_QP_DEST_QPN = (1<<20), 1258 IB_QP_RESERVED1 = (1<<21), 1259 IB_QP_RESERVED2 = (1<<22), 1260 IB_QP_RESERVED3 = (1<<23), 1261 IB_QP_RESERVED4 = (1<<24), 1262 IB_QP_RATE_LIMIT = (1<<25), 1263 1264 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1265 }; 1266 1267 enum ib_qp_state { 1268 IB_QPS_RESET, 1269 IB_QPS_INIT, 1270 IB_QPS_RTR, 1271 IB_QPS_RTS, 1272 IB_QPS_SQD, 1273 IB_QPS_SQE, 1274 IB_QPS_ERR 1275 }; 1276 1277 enum ib_mig_state { 1278 IB_MIG_MIGRATED, 1279 IB_MIG_REARM, 1280 IB_MIG_ARMED 1281 }; 1282 1283 enum ib_mw_type { 1284 IB_MW_TYPE_1 = 1, 1285 IB_MW_TYPE_2 = 2 1286 }; 1287 1288 struct ib_qp_attr { 1289 enum ib_qp_state qp_state; 1290 enum ib_qp_state cur_qp_state; 1291 enum ib_mtu path_mtu; 1292 enum ib_mig_state path_mig_state; 1293 u32 qkey; 1294 u32 rq_psn; 1295 u32 sq_psn; 1296 u32 dest_qp_num; 1297 int qp_access_flags; 1298 struct ib_qp_cap cap; 1299 struct rdma_ah_attr ah_attr; 1300 struct rdma_ah_attr alt_ah_attr; 1301 u16 pkey_index; 1302 u16 alt_pkey_index; 1303 u8 en_sqd_async_notify; 1304 u8 sq_draining; 1305 u8 max_rd_atomic; 1306 u8 max_dest_rd_atomic; 1307 u8 min_rnr_timer; 1308 u32 port_num; 1309 u8 timeout; 1310 u8 retry_cnt; 1311 u8 rnr_retry; 1312 u32 alt_port_num; 1313 u8 alt_timeout; 1314 u32 rate_limit; 1315 struct net_device *xmit_slave; 1316 }; 1317 1318 enum ib_wr_opcode { 1319 /* These are shared with userspace */ 1320 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1321 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1322 IB_WR_SEND = IB_UVERBS_WR_SEND, 1323 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1324 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1325 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1326 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1327 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1328 IB_WR_LSO = IB_UVERBS_WR_TSO, 1329 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1330 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1331 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1332 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1333 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1334 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1335 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1336 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1337 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1338 1339 /* These are kernel only and can not be issued by userspace */ 1340 IB_WR_REG_MR = 0x20, 1341 IB_WR_REG_MR_INTEGRITY, 1342 1343 /* reserve values for low level drivers' internal use. 1344 * These values will not be used at all in the ib core layer. 1345 */ 1346 IB_WR_RESERVED1 = 0xf0, 1347 IB_WR_RESERVED2, 1348 IB_WR_RESERVED3, 1349 IB_WR_RESERVED4, 1350 IB_WR_RESERVED5, 1351 IB_WR_RESERVED6, 1352 IB_WR_RESERVED7, 1353 IB_WR_RESERVED8, 1354 IB_WR_RESERVED9, 1355 IB_WR_RESERVED10, 1356 }; 1357 1358 enum ib_send_flags { 1359 IB_SEND_FENCE = 1, 1360 IB_SEND_SIGNALED = (1<<1), 1361 IB_SEND_SOLICITED = (1<<2), 1362 IB_SEND_INLINE = (1<<3), 1363 IB_SEND_IP_CSUM = (1<<4), 1364 1365 /* reserve bits 26-31 for low level drivers' internal use */ 1366 IB_SEND_RESERVED_START = (1 << 26), 1367 IB_SEND_RESERVED_END = (1 << 31), 1368 }; 1369 1370 struct ib_sge { 1371 u64 addr; 1372 u32 length; 1373 u32 lkey; 1374 }; 1375 1376 struct ib_cqe { 1377 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1378 }; 1379 1380 struct ib_send_wr { 1381 struct ib_send_wr *next; 1382 union { 1383 u64 wr_id; 1384 struct ib_cqe *wr_cqe; 1385 }; 1386 struct ib_sge *sg_list; 1387 int num_sge; 1388 enum ib_wr_opcode opcode; 1389 int send_flags; 1390 union { 1391 __be32 imm_data; 1392 u32 invalidate_rkey; 1393 } ex; 1394 }; 1395 1396 struct ib_rdma_wr { 1397 struct ib_send_wr wr; 1398 u64 remote_addr; 1399 u32 rkey; 1400 }; 1401 1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1403 { 1404 return container_of(wr, struct ib_rdma_wr, wr); 1405 } 1406 1407 struct ib_atomic_wr { 1408 struct ib_send_wr wr; 1409 u64 remote_addr; 1410 u64 compare_add; 1411 u64 swap; 1412 u64 compare_add_mask; 1413 u64 swap_mask; 1414 u32 rkey; 1415 }; 1416 1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1418 { 1419 return container_of(wr, struct ib_atomic_wr, wr); 1420 } 1421 1422 struct ib_ud_wr { 1423 struct ib_send_wr wr; 1424 struct ib_ah *ah; 1425 void *header; 1426 int hlen; 1427 int mss; 1428 u32 remote_qpn; 1429 u32 remote_qkey; 1430 u16 pkey_index; /* valid for GSI only */ 1431 u32 port_num; /* valid for DR SMPs on switch only */ 1432 }; 1433 1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1435 { 1436 return container_of(wr, struct ib_ud_wr, wr); 1437 } 1438 1439 struct ib_reg_wr { 1440 struct ib_send_wr wr; 1441 struct ib_mr *mr; 1442 u32 key; 1443 int access; 1444 }; 1445 1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1447 { 1448 return container_of(wr, struct ib_reg_wr, wr); 1449 } 1450 1451 struct ib_recv_wr { 1452 struct ib_recv_wr *next; 1453 union { 1454 u64 wr_id; 1455 struct ib_cqe *wr_cqe; 1456 }; 1457 struct ib_sge *sg_list; 1458 int num_sge; 1459 }; 1460 1461 enum ib_access_flags { 1462 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1463 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1464 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1465 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1466 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1467 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1468 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1469 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1470 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1471 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1472 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1473 1474 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1475 IB_ACCESS_SUPPORTED = 1476 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1477 }; 1478 1479 /* 1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1481 * are hidden here instead of a uapi header! 1482 */ 1483 enum ib_mr_rereg_flags { 1484 IB_MR_REREG_TRANS = 1, 1485 IB_MR_REREG_PD = (1<<1), 1486 IB_MR_REREG_ACCESS = (1<<2), 1487 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1488 }; 1489 1490 struct ib_umem; 1491 1492 enum rdma_remove_reason { 1493 /* 1494 * Userspace requested uobject deletion or initial try 1495 * to remove uobject via cleanup. Call could fail 1496 */ 1497 RDMA_REMOVE_DESTROY, 1498 /* Context deletion. This call should delete the actual object itself */ 1499 RDMA_REMOVE_CLOSE, 1500 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1501 RDMA_REMOVE_DRIVER_REMOVE, 1502 /* uobj is being cleaned-up before being committed */ 1503 RDMA_REMOVE_ABORT, 1504 /* The driver failed to destroy the uobject and is being disconnected */ 1505 RDMA_REMOVE_DRIVER_FAILURE, 1506 }; 1507 1508 struct ib_rdmacg_object { 1509 #ifdef CONFIG_CGROUP_RDMA 1510 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1511 #endif 1512 }; 1513 1514 struct ib_ucontext { 1515 struct ib_device *device; 1516 struct ib_uverbs_file *ufile; 1517 1518 struct ib_rdmacg_object cg_obj; 1519 /* 1520 * Implementation details of the RDMA core, don't use in drivers: 1521 */ 1522 struct rdma_restrack_entry res; 1523 struct xarray mmap_xa; 1524 }; 1525 1526 struct ib_uobject { 1527 u64 user_handle; /* handle given to us by userspace */ 1528 /* ufile & ucontext owning this object */ 1529 struct ib_uverbs_file *ufile; 1530 /* FIXME, save memory: ufile->context == context */ 1531 struct ib_ucontext *context; /* associated user context */ 1532 void *object; /* containing object */ 1533 struct list_head list; /* link to context's list */ 1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1535 int id; /* index into kernel idr */ 1536 struct kref ref; 1537 atomic_t usecnt; /* protects exclusive access */ 1538 struct rcu_head rcu; /* kfree_rcu() overhead */ 1539 1540 const struct uverbs_api_object *uapi_object; 1541 }; 1542 1543 struct ib_udata { 1544 const void __user *inbuf; 1545 void __user *outbuf; 1546 size_t inlen; 1547 size_t outlen; 1548 }; 1549 1550 struct ib_pd { 1551 u32 local_dma_lkey; 1552 u32 flags; 1553 struct ib_device *device; 1554 struct ib_uobject *uobject; 1555 atomic_t usecnt; /* count all resources */ 1556 1557 u32 unsafe_global_rkey; 1558 1559 /* 1560 * Implementation details of the RDMA core, don't use in drivers: 1561 */ 1562 struct ib_mr *__internal_mr; 1563 struct rdma_restrack_entry res; 1564 }; 1565 1566 struct ib_xrcd { 1567 struct ib_device *device; 1568 atomic_t usecnt; /* count all exposed resources */ 1569 struct inode *inode; 1570 struct rw_semaphore tgt_qps_rwsem; 1571 struct xarray tgt_qps; 1572 }; 1573 1574 struct ib_ah { 1575 struct ib_device *device; 1576 struct ib_pd *pd; 1577 struct ib_uobject *uobject; 1578 const struct ib_gid_attr *sgid_attr; 1579 enum rdma_ah_attr_type type; 1580 }; 1581 1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1583 1584 enum ib_poll_context { 1585 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1586 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1589 1590 IB_POLL_DIRECT, /* caller context, no hw completions */ 1591 }; 1592 1593 struct ib_cq { 1594 struct ib_device *device; 1595 struct ib_ucq_object *uobject; 1596 ib_comp_handler comp_handler; 1597 void (*event_handler)(struct ib_event *, void *); 1598 void *cq_context; 1599 int cqe; 1600 unsigned int cqe_used; 1601 atomic_t usecnt; /* count number of work queues */ 1602 enum ib_poll_context poll_ctx; 1603 struct ib_wc *wc; 1604 struct list_head pool_entry; 1605 union { 1606 struct irq_poll iop; 1607 struct work_struct work; 1608 }; 1609 struct workqueue_struct *comp_wq; 1610 struct dim *dim; 1611 1612 /* updated only by trace points */ 1613 ktime_t timestamp; 1614 u8 interrupt:1; 1615 u8 shared:1; 1616 unsigned int comp_vector; 1617 1618 /* 1619 * Implementation details of the RDMA core, don't use in drivers: 1620 */ 1621 struct rdma_restrack_entry res; 1622 }; 1623 1624 struct ib_srq { 1625 struct ib_device *device; 1626 struct ib_pd *pd; 1627 struct ib_usrq_object *uobject; 1628 void (*event_handler)(struct ib_event *, void *); 1629 void *srq_context; 1630 enum ib_srq_type srq_type; 1631 atomic_t usecnt; 1632 1633 struct { 1634 struct ib_cq *cq; 1635 union { 1636 struct { 1637 struct ib_xrcd *xrcd; 1638 u32 srq_num; 1639 } xrc; 1640 }; 1641 } ext; 1642 1643 /* 1644 * Implementation details of the RDMA core, don't use in drivers: 1645 */ 1646 struct rdma_restrack_entry res; 1647 }; 1648 1649 enum ib_raw_packet_caps { 1650 /* 1651 * Strip cvlan from incoming packet and report it in the matching work 1652 * completion is supported. 1653 */ 1654 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1655 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1656 /* 1657 * Scatter FCS field of an incoming packet to host memory is supported. 1658 */ 1659 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1660 /* Checksum offloads are supported (for both send and receive). */ 1661 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1662 /* 1663 * When a packet is received for an RQ with no receive WQEs, the 1664 * packet processing is delayed. 1665 */ 1666 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1667 }; 1668 1669 enum ib_wq_type { 1670 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1671 }; 1672 1673 enum ib_wq_state { 1674 IB_WQS_RESET, 1675 IB_WQS_RDY, 1676 IB_WQS_ERR 1677 }; 1678 1679 struct ib_wq { 1680 struct ib_device *device; 1681 struct ib_uwq_object *uobject; 1682 void *wq_context; 1683 void (*event_handler)(struct ib_event *, void *); 1684 struct ib_pd *pd; 1685 struct ib_cq *cq; 1686 u32 wq_num; 1687 enum ib_wq_state state; 1688 enum ib_wq_type wq_type; 1689 atomic_t usecnt; 1690 }; 1691 1692 enum ib_wq_flags { 1693 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1694 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1695 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1696 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1697 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1698 }; 1699 1700 struct ib_wq_init_attr { 1701 void *wq_context; 1702 enum ib_wq_type wq_type; 1703 u32 max_wr; 1704 u32 max_sge; 1705 struct ib_cq *cq; 1706 void (*event_handler)(struct ib_event *, void *); 1707 u32 create_flags; /* Use enum ib_wq_flags */ 1708 }; 1709 1710 enum ib_wq_attr_mask { 1711 IB_WQ_STATE = 1 << 0, 1712 IB_WQ_CUR_STATE = 1 << 1, 1713 IB_WQ_FLAGS = 1 << 2, 1714 }; 1715 1716 struct ib_wq_attr { 1717 enum ib_wq_state wq_state; 1718 enum ib_wq_state curr_wq_state; 1719 u32 flags; /* Use enum ib_wq_flags */ 1720 u32 flags_mask; /* Use enum ib_wq_flags */ 1721 }; 1722 1723 struct ib_rwq_ind_table { 1724 struct ib_device *device; 1725 struct ib_uobject *uobject; 1726 atomic_t usecnt; 1727 u32 ind_tbl_num; 1728 u32 log_ind_tbl_size; 1729 struct ib_wq **ind_tbl; 1730 }; 1731 1732 struct ib_rwq_ind_table_init_attr { 1733 u32 log_ind_tbl_size; 1734 /* Each entry is a pointer to Receive Work Queue */ 1735 struct ib_wq **ind_tbl; 1736 }; 1737 1738 enum port_pkey_state { 1739 IB_PORT_PKEY_NOT_VALID = 0, 1740 IB_PORT_PKEY_VALID = 1, 1741 IB_PORT_PKEY_LISTED = 2, 1742 }; 1743 1744 struct ib_qp_security; 1745 1746 struct ib_port_pkey { 1747 enum port_pkey_state state; 1748 u16 pkey_index; 1749 u32 port_num; 1750 struct list_head qp_list; 1751 struct list_head to_error_list; 1752 struct ib_qp_security *sec; 1753 }; 1754 1755 struct ib_ports_pkeys { 1756 struct ib_port_pkey main; 1757 struct ib_port_pkey alt; 1758 }; 1759 1760 struct ib_qp_security { 1761 struct ib_qp *qp; 1762 struct ib_device *dev; 1763 /* Hold this mutex when changing port and pkey settings. */ 1764 struct mutex mutex; 1765 struct ib_ports_pkeys *ports_pkeys; 1766 /* A list of all open shared QP handles. Required to enforce security 1767 * properly for all users of a shared QP. 1768 */ 1769 struct list_head shared_qp_list; 1770 void *security; 1771 bool destroying; 1772 atomic_t error_list_count; 1773 struct completion error_complete; 1774 int error_comps_pending; 1775 }; 1776 1777 /* 1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1779 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1780 */ 1781 struct ib_qp { 1782 struct ib_device *device; 1783 struct ib_pd *pd; 1784 struct ib_cq *send_cq; 1785 struct ib_cq *recv_cq; 1786 spinlock_t mr_lock; 1787 int mrs_used; 1788 struct list_head rdma_mrs; 1789 struct list_head sig_mrs; 1790 struct ib_srq *srq; 1791 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1792 struct list_head xrcd_list; 1793 1794 /* count times opened, mcast attaches, flow attaches */ 1795 atomic_t usecnt; 1796 struct list_head open_list; 1797 struct ib_qp *real_qp; 1798 struct ib_uqp_object *uobject; 1799 void (*event_handler)(struct ib_event *, void *); 1800 void *qp_context; 1801 /* sgid_attrs associated with the AV's */ 1802 const struct ib_gid_attr *av_sgid_attr; 1803 const struct ib_gid_attr *alt_path_sgid_attr; 1804 u32 qp_num; 1805 u32 max_write_sge; 1806 u32 max_read_sge; 1807 enum ib_qp_type qp_type; 1808 struct ib_rwq_ind_table *rwq_ind_tbl; 1809 struct ib_qp_security *qp_sec; 1810 u32 port; 1811 1812 bool integrity_en; 1813 /* 1814 * Implementation details of the RDMA core, don't use in drivers: 1815 */ 1816 struct rdma_restrack_entry res; 1817 1818 /* The counter the qp is bind to */ 1819 struct rdma_counter *counter; 1820 }; 1821 1822 struct ib_dm { 1823 struct ib_device *device; 1824 u32 length; 1825 u32 flags; 1826 struct ib_uobject *uobject; 1827 atomic_t usecnt; 1828 }; 1829 1830 struct ib_mr { 1831 struct ib_device *device; 1832 struct ib_pd *pd; 1833 u32 lkey; 1834 u32 rkey; 1835 u64 iova; 1836 u64 length; 1837 unsigned int page_size; 1838 enum ib_mr_type type; 1839 bool need_inval; 1840 union { 1841 struct ib_uobject *uobject; /* user */ 1842 struct list_head qp_entry; /* FR */ 1843 }; 1844 1845 struct ib_dm *dm; 1846 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1847 /* 1848 * Implementation details of the RDMA core, don't use in drivers: 1849 */ 1850 struct rdma_restrack_entry res; 1851 }; 1852 1853 struct ib_mw { 1854 struct ib_device *device; 1855 struct ib_pd *pd; 1856 struct ib_uobject *uobject; 1857 u32 rkey; 1858 enum ib_mw_type type; 1859 }; 1860 1861 /* Supported steering options */ 1862 enum ib_flow_attr_type { 1863 /* steering according to rule specifications */ 1864 IB_FLOW_ATTR_NORMAL = 0x0, 1865 /* default unicast and multicast rule - 1866 * receive all Eth traffic which isn't steered to any QP 1867 */ 1868 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1869 /* default multicast rule - 1870 * receive all Eth multicast traffic which isn't steered to any QP 1871 */ 1872 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1873 /* sniffer rule - receive all port traffic */ 1874 IB_FLOW_ATTR_SNIFFER = 0x3 1875 }; 1876 1877 /* Supported steering header types */ 1878 enum ib_flow_spec_type { 1879 /* L2 headers*/ 1880 IB_FLOW_SPEC_ETH = 0x20, 1881 IB_FLOW_SPEC_IB = 0x22, 1882 /* L3 header*/ 1883 IB_FLOW_SPEC_IPV4 = 0x30, 1884 IB_FLOW_SPEC_IPV6 = 0x31, 1885 IB_FLOW_SPEC_ESP = 0x34, 1886 /* L4 headers*/ 1887 IB_FLOW_SPEC_TCP = 0x40, 1888 IB_FLOW_SPEC_UDP = 0x41, 1889 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1890 IB_FLOW_SPEC_GRE = 0x51, 1891 IB_FLOW_SPEC_MPLS = 0x60, 1892 IB_FLOW_SPEC_INNER = 0x100, 1893 /* Actions */ 1894 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1895 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1896 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1897 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1898 }; 1899 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1900 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1901 1902 enum ib_flow_flags { 1903 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1904 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1905 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1906 }; 1907 1908 struct ib_flow_eth_filter { 1909 u8 dst_mac[6]; 1910 u8 src_mac[6]; 1911 __be16 ether_type; 1912 __be16 vlan_tag; 1913 /* Must be last */ 1914 u8 real_sz[]; 1915 }; 1916 1917 struct ib_flow_spec_eth { 1918 u32 type; 1919 u16 size; 1920 struct ib_flow_eth_filter val; 1921 struct ib_flow_eth_filter mask; 1922 }; 1923 1924 struct ib_flow_ib_filter { 1925 __be16 dlid; 1926 __u8 sl; 1927 /* Must be last */ 1928 u8 real_sz[]; 1929 }; 1930 1931 struct ib_flow_spec_ib { 1932 u32 type; 1933 u16 size; 1934 struct ib_flow_ib_filter val; 1935 struct ib_flow_ib_filter mask; 1936 }; 1937 1938 /* IPv4 header flags */ 1939 enum ib_ipv4_flags { 1940 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1941 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1942 last have this flag set */ 1943 }; 1944 1945 struct ib_flow_ipv4_filter { 1946 __be32 src_ip; 1947 __be32 dst_ip; 1948 u8 proto; 1949 u8 tos; 1950 u8 ttl; 1951 u8 flags; 1952 /* Must be last */ 1953 u8 real_sz[]; 1954 }; 1955 1956 struct ib_flow_spec_ipv4 { 1957 u32 type; 1958 u16 size; 1959 struct ib_flow_ipv4_filter val; 1960 struct ib_flow_ipv4_filter mask; 1961 }; 1962 1963 struct ib_flow_ipv6_filter { 1964 u8 src_ip[16]; 1965 u8 dst_ip[16]; 1966 __be32 flow_label; 1967 u8 next_hdr; 1968 u8 traffic_class; 1969 u8 hop_limit; 1970 /* Must be last */ 1971 u8 real_sz[]; 1972 }; 1973 1974 struct ib_flow_spec_ipv6 { 1975 u32 type; 1976 u16 size; 1977 struct ib_flow_ipv6_filter val; 1978 struct ib_flow_ipv6_filter mask; 1979 }; 1980 1981 struct ib_flow_tcp_udp_filter { 1982 __be16 dst_port; 1983 __be16 src_port; 1984 /* Must be last */ 1985 u8 real_sz[]; 1986 }; 1987 1988 struct ib_flow_spec_tcp_udp { 1989 u32 type; 1990 u16 size; 1991 struct ib_flow_tcp_udp_filter val; 1992 struct ib_flow_tcp_udp_filter mask; 1993 }; 1994 1995 struct ib_flow_tunnel_filter { 1996 __be32 tunnel_id; 1997 u8 real_sz[]; 1998 }; 1999 2000 /* ib_flow_spec_tunnel describes the Vxlan tunnel 2001 * the tunnel_id from val has the vni value 2002 */ 2003 struct ib_flow_spec_tunnel { 2004 u32 type; 2005 u16 size; 2006 struct ib_flow_tunnel_filter val; 2007 struct ib_flow_tunnel_filter mask; 2008 }; 2009 2010 struct ib_flow_esp_filter { 2011 __be32 spi; 2012 __be32 seq; 2013 /* Must be last */ 2014 u8 real_sz[]; 2015 }; 2016 2017 struct ib_flow_spec_esp { 2018 u32 type; 2019 u16 size; 2020 struct ib_flow_esp_filter val; 2021 struct ib_flow_esp_filter mask; 2022 }; 2023 2024 struct ib_flow_gre_filter { 2025 __be16 c_ks_res0_ver; 2026 __be16 protocol; 2027 __be32 key; 2028 /* Must be last */ 2029 u8 real_sz[]; 2030 }; 2031 2032 struct ib_flow_spec_gre { 2033 u32 type; 2034 u16 size; 2035 struct ib_flow_gre_filter val; 2036 struct ib_flow_gre_filter mask; 2037 }; 2038 2039 struct ib_flow_mpls_filter { 2040 __be32 tag; 2041 /* Must be last */ 2042 u8 real_sz[]; 2043 }; 2044 2045 struct ib_flow_spec_mpls { 2046 u32 type; 2047 u16 size; 2048 struct ib_flow_mpls_filter val; 2049 struct ib_flow_mpls_filter mask; 2050 }; 2051 2052 struct ib_flow_spec_action_tag { 2053 enum ib_flow_spec_type type; 2054 u16 size; 2055 u32 tag_id; 2056 }; 2057 2058 struct ib_flow_spec_action_drop { 2059 enum ib_flow_spec_type type; 2060 u16 size; 2061 }; 2062 2063 struct ib_flow_spec_action_handle { 2064 enum ib_flow_spec_type type; 2065 u16 size; 2066 struct ib_flow_action *act; 2067 }; 2068 2069 enum ib_counters_description { 2070 IB_COUNTER_PACKETS, 2071 IB_COUNTER_BYTES, 2072 }; 2073 2074 struct ib_flow_spec_action_count { 2075 enum ib_flow_spec_type type; 2076 u16 size; 2077 struct ib_counters *counters; 2078 }; 2079 2080 union ib_flow_spec { 2081 struct { 2082 u32 type; 2083 u16 size; 2084 }; 2085 struct ib_flow_spec_eth eth; 2086 struct ib_flow_spec_ib ib; 2087 struct ib_flow_spec_ipv4 ipv4; 2088 struct ib_flow_spec_tcp_udp tcp_udp; 2089 struct ib_flow_spec_ipv6 ipv6; 2090 struct ib_flow_spec_tunnel tunnel; 2091 struct ib_flow_spec_esp esp; 2092 struct ib_flow_spec_gre gre; 2093 struct ib_flow_spec_mpls mpls; 2094 struct ib_flow_spec_action_tag flow_tag; 2095 struct ib_flow_spec_action_drop drop; 2096 struct ib_flow_spec_action_handle action; 2097 struct ib_flow_spec_action_count flow_count; 2098 }; 2099 2100 struct ib_flow_attr { 2101 enum ib_flow_attr_type type; 2102 u16 size; 2103 u16 priority; 2104 u32 flags; 2105 u8 num_of_specs; 2106 u32 port; 2107 union ib_flow_spec flows[]; 2108 }; 2109 2110 struct ib_flow { 2111 struct ib_qp *qp; 2112 struct ib_device *device; 2113 struct ib_uobject *uobject; 2114 }; 2115 2116 enum ib_flow_action_type { 2117 IB_FLOW_ACTION_UNSPECIFIED, 2118 IB_FLOW_ACTION_ESP = 1, 2119 }; 2120 2121 struct ib_flow_action_attrs_esp_keymats { 2122 enum ib_uverbs_flow_action_esp_keymat protocol; 2123 union { 2124 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2125 } keymat; 2126 }; 2127 2128 struct ib_flow_action_attrs_esp_replays { 2129 enum ib_uverbs_flow_action_esp_replay protocol; 2130 union { 2131 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2132 } replay; 2133 }; 2134 2135 enum ib_flow_action_attrs_esp_flags { 2136 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2137 * This is done in order to share the same flags between user-space and 2138 * kernel and spare an unnecessary translation. 2139 */ 2140 2141 /* Kernel flags */ 2142 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2143 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2144 }; 2145 2146 struct ib_flow_spec_list { 2147 struct ib_flow_spec_list *next; 2148 union ib_flow_spec spec; 2149 }; 2150 2151 struct ib_flow_action_attrs_esp { 2152 struct ib_flow_action_attrs_esp_keymats *keymat; 2153 struct ib_flow_action_attrs_esp_replays *replay; 2154 struct ib_flow_spec_list *encap; 2155 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2156 * Value of 0 is a valid value. 2157 */ 2158 u32 esn; 2159 u32 spi; 2160 u32 seq; 2161 u32 tfc_pad; 2162 /* Use enum ib_flow_action_attrs_esp_flags */ 2163 u64 flags; 2164 u64 hard_limit_pkts; 2165 }; 2166 2167 struct ib_flow_action { 2168 struct ib_device *device; 2169 struct ib_uobject *uobject; 2170 enum ib_flow_action_type type; 2171 atomic_t usecnt; 2172 }; 2173 2174 struct ib_mad; 2175 2176 enum ib_process_mad_flags { 2177 IB_MAD_IGNORE_MKEY = 1, 2178 IB_MAD_IGNORE_BKEY = 2, 2179 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2180 }; 2181 2182 enum ib_mad_result { 2183 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2184 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2185 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2186 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2187 }; 2188 2189 struct ib_port_cache { 2190 u64 subnet_prefix; 2191 struct ib_pkey_cache *pkey; 2192 struct ib_gid_table *gid; 2193 u8 lmc; 2194 enum ib_port_state port_state; 2195 }; 2196 2197 struct ib_port_immutable { 2198 int pkey_tbl_len; 2199 int gid_tbl_len; 2200 u32 core_cap_flags; 2201 u32 max_mad_size; 2202 }; 2203 2204 struct ib_port_data { 2205 struct ib_device *ib_dev; 2206 2207 struct ib_port_immutable immutable; 2208 2209 spinlock_t pkey_list_lock; 2210 2211 spinlock_t netdev_lock; 2212 2213 struct list_head pkey_list; 2214 2215 struct ib_port_cache cache; 2216 2217 struct net_device __rcu *netdev; 2218 netdevice_tracker netdev_tracker; 2219 struct hlist_node ndev_hash_link; 2220 struct rdma_port_counter port_counter; 2221 struct ib_port *sysfs; 2222 }; 2223 2224 /* rdma netdev type - specifies protocol type */ 2225 enum rdma_netdev_t { 2226 RDMA_NETDEV_OPA_VNIC, 2227 RDMA_NETDEV_IPOIB, 2228 }; 2229 2230 /** 2231 * struct rdma_netdev - rdma netdev 2232 * For cases where netstack interfacing is required. 2233 */ 2234 struct rdma_netdev { 2235 void *clnt_priv; 2236 struct ib_device *hca; 2237 u32 port_num; 2238 int mtu; 2239 2240 /* 2241 * cleanup function must be specified. 2242 * FIXME: This is only used for OPA_VNIC and that usage should be 2243 * removed too. 2244 */ 2245 void (*free_rdma_netdev)(struct net_device *netdev); 2246 2247 /* control functions */ 2248 void (*set_id)(struct net_device *netdev, int id); 2249 /* send packet */ 2250 int (*send)(struct net_device *dev, struct sk_buff *skb, 2251 struct ib_ah *address, u32 dqpn); 2252 /* multicast */ 2253 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2254 union ib_gid *gid, u16 mlid, 2255 int set_qkey, u32 qkey); 2256 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2257 union ib_gid *gid, u16 mlid); 2258 /* timeout */ 2259 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2260 }; 2261 2262 struct rdma_netdev_alloc_params { 2263 size_t sizeof_priv; 2264 unsigned int txqs; 2265 unsigned int rxqs; 2266 void *param; 2267 2268 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2269 struct net_device *netdev, void *param); 2270 }; 2271 2272 struct ib_odp_counters { 2273 atomic64_t faults; 2274 atomic64_t invalidations; 2275 atomic64_t prefetch; 2276 }; 2277 2278 struct ib_counters { 2279 struct ib_device *device; 2280 struct ib_uobject *uobject; 2281 /* num of objects attached */ 2282 atomic_t usecnt; 2283 }; 2284 2285 struct ib_counters_read_attr { 2286 u64 *counters_buff; 2287 u32 ncounters; 2288 u32 flags; /* use enum ib_read_counters_flags */ 2289 }; 2290 2291 struct uverbs_attr_bundle; 2292 struct iw_cm_id; 2293 struct iw_cm_conn_param; 2294 2295 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2296 .size_##ib_struct = \ 2297 (sizeof(struct drv_struct) + \ 2298 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2299 BUILD_BUG_ON_ZERO( \ 2300 !__same_type(((struct drv_struct *)NULL)->member, \ 2301 struct ib_struct))) 2302 2303 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2304 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2305 gfp, false)) 2306 2307 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2308 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2309 GFP_KERNEL, true)) 2310 2311 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2312 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2313 2314 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2315 2316 struct rdma_user_mmap_entry { 2317 struct kref ref; 2318 struct ib_ucontext *ucontext; 2319 unsigned long start_pgoff; 2320 size_t npages; 2321 bool driver_removed; 2322 }; 2323 2324 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2325 static inline u64 2326 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2327 { 2328 return (u64)entry->start_pgoff << PAGE_SHIFT; 2329 } 2330 2331 /** 2332 * struct ib_device_ops - InfiniBand device operations 2333 * This structure defines all the InfiniBand device operations, providers will 2334 * need to define the supported operations, otherwise they will be set to null. 2335 */ 2336 struct ib_device_ops { 2337 struct module *owner; 2338 enum rdma_driver_id driver_id; 2339 u32 uverbs_abi_ver; 2340 unsigned int uverbs_no_driver_id_binding:1; 2341 2342 /* 2343 * NOTE: New drivers should not make use of device_group; instead new 2344 * device parameter should be exposed via netlink command. This 2345 * mechanism exists only for existing drivers. 2346 */ 2347 const struct attribute_group *device_group; 2348 const struct attribute_group **port_groups; 2349 2350 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2351 const struct ib_send_wr **bad_send_wr); 2352 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2353 const struct ib_recv_wr **bad_recv_wr); 2354 void (*drain_rq)(struct ib_qp *qp); 2355 void (*drain_sq)(struct ib_qp *qp); 2356 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2357 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2358 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2359 int (*post_srq_recv)(struct ib_srq *srq, 2360 const struct ib_recv_wr *recv_wr, 2361 const struct ib_recv_wr **bad_recv_wr); 2362 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2363 u32 port_num, const struct ib_wc *in_wc, 2364 const struct ib_grh *in_grh, 2365 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2366 size_t *out_mad_size, u16 *out_mad_pkey_index); 2367 int (*query_device)(struct ib_device *device, 2368 struct ib_device_attr *device_attr, 2369 struct ib_udata *udata); 2370 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2371 struct ib_device_modify *device_modify); 2372 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2373 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2374 int comp_vector); 2375 int (*query_port)(struct ib_device *device, u32 port_num, 2376 struct ib_port_attr *port_attr); 2377 int (*modify_port)(struct ib_device *device, u32 port_num, 2378 int port_modify_mask, 2379 struct ib_port_modify *port_modify); 2380 /** 2381 * The following mandatory functions are used only at device 2382 * registration. Keep functions such as these at the end of this 2383 * structure to avoid cache line misses when accessing struct ib_device 2384 * in fast paths. 2385 */ 2386 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2387 struct ib_port_immutable *immutable); 2388 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2389 u32 port_num); 2390 /** 2391 * When calling get_netdev, the HW vendor's driver should return the 2392 * net device of device @device at port @port_num or NULL if such 2393 * a net device doesn't exist. The vendor driver should call dev_hold 2394 * on this net device. The HW vendor's device driver must guarantee 2395 * that this function returns NULL before the net device has finished 2396 * NETDEV_UNREGISTER state. 2397 */ 2398 struct net_device *(*get_netdev)(struct ib_device *device, 2399 u32 port_num); 2400 /** 2401 * rdma netdev operation 2402 * 2403 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2404 * must return -EOPNOTSUPP if it doesn't support the specified type. 2405 */ 2406 struct net_device *(*alloc_rdma_netdev)( 2407 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2408 const char *name, unsigned char name_assign_type, 2409 void (*setup)(struct net_device *)); 2410 2411 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2412 enum rdma_netdev_t type, 2413 struct rdma_netdev_alloc_params *params); 2414 /** 2415 * query_gid should be return GID value for @device, when @port_num 2416 * link layer is either IB or iWarp. It is no-op if @port_num port 2417 * is RoCE link layer. 2418 */ 2419 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2420 union ib_gid *gid); 2421 /** 2422 * When calling add_gid, the HW vendor's driver should add the gid 2423 * of device of port at gid index available at @attr. Meta-info of 2424 * that gid (for example, the network device related to this gid) is 2425 * available at @attr. @context allows the HW vendor driver to store 2426 * extra information together with a GID entry. The HW vendor driver may 2427 * allocate memory to contain this information and store it in @context 2428 * when a new GID entry is written to. Params are consistent until the 2429 * next call of add_gid or delete_gid. The function should return 0 on 2430 * success or error otherwise. The function could be called 2431 * concurrently for different ports. This function is only called when 2432 * roce_gid_table is used. 2433 */ 2434 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2435 /** 2436 * When calling del_gid, the HW vendor's driver should delete the 2437 * gid of device @device at gid index gid_index of port port_num 2438 * available in @attr. 2439 * Upon the deletion of a GID entry, the HW vendor must free any 2440 * allocated memory. The caller will clear @context afterwards. 2441 * This function is only called when roce_gid_table is used. 2442 */ 2443 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2444 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2445 u16 *pkey); 2446 int (*alloc_ucontext)(struct ib_ucontext *context, 2447 struct ib_udata *udata); 2448 void (*dealloc_ucontext)(struct ib_ucontext *context); 2449 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2450 /** 2451 * This will be called once refcount of an entry in mmap_xa reaches 2452 * zero. The type of the memory that was mapped may differ between 2453 * entries and is opaque to the rdma_user_mmap interface. 2454 * Therefore needs to be implemented by the driver in mmap_free. 2455 */ 2456 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2457 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2458 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2459 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2460 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2461 struct ib_udata *udata); 2462 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2463 struct ib_udata *udata); 2464 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2465 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2466 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2467 int (*create_srq)(struct ib_srq *srq, 2468 struct ib_srq_init_attr *srq_init_attr, 2469 struct ib_udata *udata); 2470 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2471 enum ib_srq_attr_mask srq_attr_mask, 2472 struct ib_udata *udata); 2473 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2474 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2475 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2476 struct ib_udata *udata); 2477 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2478 int qp_attr_mask, struct ib_udata *udata); 2479 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2480 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2481 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2482 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2483 struct ib_udata *udata); 2484 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2485 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2486 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2487 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2488 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2489 u64 virt_addr, int mr_access_flags, 2490 struct ib_udata *udata); 2491 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2492 u64 length, u64 virt_addr, int fd, 2493 int mr_access_flags, 2494 struct ib_udata *udata); 2495 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2496 u64 length, u64 virt_addr, 2497 int mr_access_flags, struct ib_pd *pd, 2498 struct ib_udata *udata); 2499 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2500 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2501 u32 max_num_sg); 2502 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2503 u32 max_num_data_sg, 2504 u32 max_num_meta_sg); 2505 int (*advise_mr)(struct ib_pd *pd, 2506 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2507 struct ib_sge *sg_list, u32 num_sge, 2508 struct uverbs_attr_bundle *attrs); 2509 2510 /* 2511 * Kernel users should universally support relaxed ordering (RO), as 2512 * they are designed to read data only after observing the CQE and use 2513 * the DMA API correctly. 2514 * 2515 * Some drivers implicitly enable RO if platform supports it. 2516 */ 2517 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2518 unsigned int *sg_offset); 2519 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2520 struct ib_mr_status *mr_status); 2521 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2522 int (*dealloc_mw)(struct ib_mw *mw); 2523 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2524 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2525 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2526 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2527 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2528 struct ib_flow_attr *flow_attr, 2529 struct ib_udata *udata); 2530 int (*destroy_flow)(struct ib_flow *flow_id); 2531 int (*destroy_flow_action)(struct ib_flow_action *action); 2532 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2533 int state); 2534 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2535 struct ifla_vf_info *ivf); 2536 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2537 struct ifla_vf_stats *stats); 2538 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2539 struct ifla_vf_guid *node_guid, 2540 struct ifla_vf_guid *port_guid); 2541 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2542 int type); 2543 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2544 struct ib_wq_init_attr *init_attr, 2545 struct ib_udata *udata); 2546 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2547 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2548 u32 wq_attr_mask, struct ib_udata *udata); 2549 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2550 struct ib_rwq_ind_table_init_attr *init_attr, 2551 struct ib_udata *udata); 2552 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2553 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2554 struct ib_ucontext *context, 2555 struct ib_dm_alloc_attr *attr, 2556 struct uverbs_attr_bundle *attrs); 2557 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2558 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2559 struct ib_dm_mr_attr *attr, 2560 struct uverbs_attr_bundle *attrs); 2561 int (*create_counters)(struct ib_counters *counters, 2562 struct uverbs_attr_bundle *attrs); 2563 int (*destroy_counters)(struct ib_counters *counters); 2564 int (*read_counters)(struct ib_counters *counters, 2565 struct ib_counters_read_attr *counters_read_attr, 2566 struct uverbs_attr_bundle *attrs); 2567 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2568 int data_sg_nents, unsigned int *data_sg_offset, 2569 struct scatterlist *meta_sg, int meta_sg_nents, 2570 unsigned int *meta_sg_offset); 2571 2572 /** 2573 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2574 * fill in the driver initialized data. The struct is kfree()'ed by 2575 * the sysfs core when the device is removed. A lifespan of -1 in the 2576 * return struct tells the core to set a default lifespan. 2577 */ 2578 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2579 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2580 u32 port_num); 2581 /** 2582 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2583 * @index - The index in the value array we wish to have updated, or 2584 * num_counters if we want all stats updated 2585 * Return codes - 2586 * < 0 - Error, no counters updated 2587 * index - Updated the single counter pointed to by index 2588 * num_counters - Updated all counters (will reset the timestamp 2589 * and prevent further calls for lifespan milliseconds) 2590 * Drivers are allowed to update all counters in leiu of just the 2591 * one given in index at their option 2592 */ 2593 int (*get_hw_stats)(struct ib_device *device, 2594 struct rdma_hw_stats *stats, u32 port, int index); 2595 2596 /** 2597 * modify_hw_stat - Modify the counter configuration 2598 * @enable: true/false when enable/disable a counter 2599 * Return codes - 0 on success or error code otherwise. 2600 */ 2601 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2602 unsigned int counter_index, bool enable); 2603 /** 2604 * Allows rdma drivers to add their own restrack attributes. 2605 */ 2606 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2607 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2608 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2609 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2610 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2611 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2612 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2613 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq); 2614 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq); 2615 2616 /* Device lifecycle callbacks */ 2617 /* 2618 * Called after the device becomes registered, before clients are 2619 * attached 2620 */ 2621 int (*enable_driver)(struct ib_device *dev); 2622 /* 2623 * This is called as part of ib_dealloc_device(). 2624 */ 2625 void (*dealloc_driver)(struct ib_device *dev); 2626 2627 /* iWarp CM callbacks */ 2628 void (*iw_add_ref)(struct ib_qp *qp); 2629 void (*iw_rem_ref)(struct ib_qp *qp); 2630 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2631 int (*iw_connect)(struct iw_cm_id *cm_id, 2632 struct iw_cm_conn_param *conn_param); 2633 int (*iw_accept)(struct iw_cm_id *cm_id, 2634 struct iw_cm_conn_param *conn_param); 2635 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2636 u8 pdata_len); 2637 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2638 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2639 /** 2640 * counter_bind_qp - Bind a QP to a counter. 2641 * @counter - The counter to be bound. If counter->id is zero then 2642 * the driver needs to allocate a new counter and set counter->id 2643 */ 2644 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2645 /** 2646 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2647 * counter and bind it onto the default one 2648 */ 2649 int (*counter_unbind_qp)(struct ib_qp *qp); 2650 /** 2651 * counter_dealloc -De-allocate the hw counter 2652 */ 2653 int (*counter_dealloc)(struct rdma_counter *counter); 2654 /** 2655 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2656 * the driver initialized data. 2657 */ 2658 struct rdma_hw_stats *(*counter_alloc_stats)( 2659 struct rdma_counter *counter); 2660 /** 2661 * counter_update_stats - Query the stats value of this counter 2662 */ 2663 int (*counter_update_stats)(struct rdma_counter *counter); 2664 2665 /** 2666 * Allows rdma drivers to add their own restrack attributes 2667 * dumped via 'rdma stat' iproute2 command. 2668 */ 2669 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2670 2671 /* query driver for its ucontext properties */ 2672 int (*query_ucontext)(struct ib_ucontext *context, 2673 struct uverbs_attr_bundle *attrs); 2674 2675 /* 2676 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2677 * Everyone else relies on Linux memory management model. 2678 */ 2679 int (*get_numa_node)(struct ib_device *dev); 2680 2681 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2682 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2683 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2684 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2685 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2686 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2687 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2688 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2689 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2690 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2691 }; 2692 2693 struct ib_core_device { 2694 /* device must be the first element in structure until, 2695 * union of ib_core_device and device exists in ib_device. 2696 */ 2697 struct device dev; 2698 possible_net_t rdma_net; 2699 struct kobject *ports_kobj; 2700 struct list_head port_list; 2701 struct ib_device *owner; /* reach back to owner ib_device */ 2702 }; 2703 2704 struct rdma_restrack_root; 2705 struct ib_device { 2706 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2707 struct device *dma_device; 2708 struct ib_device_ops ops; 2709 char name[IB_DEVICE_NAME_MAX]; 2710 struct rcu_head rcu_head; 2711 2712 struct list_head event_handler_list; 2713 /* Protects event_handler_list */ 2714 struct rw_semaphore event_handler_rwsem; 2715 2716 /* Protects QP's event_handler calls and open_qp list */ 2717 spinlock_t qp_open_list_lock; 2718 2719 struct rw_semaphore client_data_rwsem; 2720 struct xarray client_data; 2721 struct mutex unregistration_lock; 2722 2723 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2724 rwlock_t cache_lock; 2725 /** 2726 * port_data is indexed by port number 2727 */ 2728 struct ib_port_data *port_data; 2729 2730 int num_comp_vectors; 2731 2732 union { 2733 struct device dev; 2734 struct ib_core_device coredev; 2735 }; 2736 2737 /* First group is for device attributes, 2738 * Second group is for driver provided attributes (optional). 2739 * Third group is for the hw_stats 2740 * It is a NULL terminated array. 2741 */ 2742 const struct attribute_group *groups[4]; 2743 2744 u64 uverbs_cmd_mask; 2745 2746 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2747 __be64 node_guid; 2748 u32 local_dma_lkey; 2749 u16 is_switch:1; 2750 /* Indicates kernel verbs support, should not be used in drivers */ 2751 u16 kverbs_provider:1; 2752 /* CQ adaptive moderation (RDMA DIM) */ 2753 u16 use_cq_dim:1; 2754 u8 node_type; 2755 u32 phys_port_cnt; 2756 struct ib_device_attr attrs; 2757 struct hw_stats_device_data *hw_stats_data; 2758 2759 #ifdef CONFIG_CGROUP_RDMA 2760 struct rdmacg_device cg_device; 2761 #endif 2762 2763 u32 index; 2764 2765 spinlock_t cq_pools_lock; 2766 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2767 2768 struct rdma_restrack_root *res; 2769 2770 const struct uapi_definition *driver_def; 2771 2772 /* 2773 * Positive refcount indicates that the device is currently 2774 * registered and cannot be unregistered. 2775 */ 2776 refcount_t refcount; 2777 struct completion unreg_completion; 2778 struct work_struct unregistration_work; 2779 2780 const struct rdma_link_ops *link_ops; 2781 2782 /* Protects compat_devs xarray modifications */ 2783 struct mutex compat_devs_mutex; 2784 /* Maintains compat devices for each net namespace */ 2785 struct xarray compat_devs; 2786 2787 /* Used by iWarp CM */ 2788 char iw_ifname[IFNAMSIZ]; 2789 u32 iw_driver_flags; 2790 u32 lag_flags; 2791 }; 2792 2793 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2794 gfp_t gfp, bool is_numa_aware) 2795 { 2796 if (is_numa_aware && dev->ops.get_numa_node) 2797 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2798 2799 return kzalloc(size, gfp); 2800 } 2801 2802 struct ib_client_nl_info; 2803 struct ib_client { 2804 const char *name; 2805 int (*add)(struct ib_device *ibdev); 2806 void (*remove)(struct ib_device *, void *client_data); 2807 void (*rename)(struct ib_device *dev, void *client_data); 2808 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2809 struct ib_client_nl_info *res); 2810 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2811 2812 /* Returns the net_dev belonging to this ib_client and matching the 2813 * given parameters. 2814 * @dev: An RDMA device that the net_dev use for communication. 2815 * @port: A physical port number on the RDMA device. 2816 * @pkey: P_Key that the net_dev uses if applicable. 2817 * @gid: A GID that the net_dev uses to communicate. 2818 * @addr: An IP address the net_dev is configured with. 2819 * @client_data: The device's client data set by ib_set_client_data(). 2820 * 2821 * An ib_client that implements a net_dev on top of RDMA devices 2822 * (such as IP over IB) should implement this callback, allowing the 2823 * rdma_cm module to find the right net_dev for a given request. 2824 * 2825 * The caller is responsible for calling dev_put on the returned 2826 * netdev. */ 2827 struct net_device *(*get_net_dev_by_params)( 2828 struct ib_device *dev, 2829 u32 port, 2830 u16 pkey, 2831 const union ib_gid *gid, 2832 const struct sockaddr *addr, 2833 void *client_data); 2834 2835 refcount_t uses; 2836 struct completion uses_zero; 2837 u32 client_id; 2838 2839 /* kverbs are not required by the client */ 2840 u8 no_kverbs_req:1; 2841 }; 2842 2843 /* 2844 * IB block DMA iterator 2845 * 2846 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2847 * to a HW supported page size. 2848 */ 2849 struct ib_block_iter { 2850 /* internal states */ 2851 struct scatterlist *__sg; /* sg holding the current aligned block */ 2852 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2853 unsigned int __sg_nents; /* number of SG entries */ 2854 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2855 unsigned int __pg_bit; /* alignment of current block */ 2856 }; 2857 2858 struct ib_device *_ib_alloc_device(size_t size); 2859 #define ib_alloc_device(drv_struct, member) \ 2860 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2861 BUILD_BUG_ON_ZERO(offsetof( \ 2862 struct drv_struct, member))), \ 2863 struct drv_struct, member) 2864 2865 void ib_dealloc_device(struct ib_device *device); 2866 2867 void ib_get_device_fw_str(struct ib_device *device, char *str); 2868 2869 int ib_register_device(struct ib_device *device, const char *name, 2870 struct device *dma_device); 2871 void ib_unregister_device(struct ib_device *device); 2872 void ib_unregister_driver(enum rdma_driver_id driver_id); 2873 void ib_unregister_device_and_put(struct ib_device *device); 2874 void ib_unregister_device_queued(struct ib_device *ib_dev); 2875 2876 int ib_register_client (struct ib_client *client); 2877 void ib_unregister_client(struct ib_client *client); 2878 2879 void __rdma_block_iter_start(struct ib_block_iter *biter, 2880 struct scatterlist *sglist, 2881 unsigned int nents, 2882 unsigned long pgsz); 2883 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2884 2885 /** 2886 * rdma_block_iter_dma_address - get the aligned dma address of the current 2887 * block held by the block iterator. 2888 * @biter: block iterator holding the memory block 2889 */ 2890 static inline dma_addr_t 2891 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2892 { 2893 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2894 } 2895 2896 /** 2897 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2898 * @sglist: sglist to iterate over 2899 * @biter: block iterator holding the memory block 2900 * @nents: maximum number of sg entries to iterate over 2901 * @pgsz: best HW supported page size to use 2902 * 2903 * Callers may use rdma_block_iter_dma_address() to get each 2904 * blocks aligned DMA address. 2905 */ 2906 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2907 for (__rdma_block_iter_start(biter, sglist, nents, \ 2908 pgsz); \ 2909 __rdma_block_iter_next(biter);) 2910 2911 /** 2912 * ib_get_client_data - Get IB client context 2913 * @device:Device to get context for 2914 * @client:Client to get context for 2915 * 2916 * ib_get_client_data() returns the client context data set with 2917 * ib_set_client_data(). This can only be called while the client is 2918 * registered to the device, once the ib_client remove() callback returns this 2919 * cannot be called. 2920 */ 2921 static inline void *ib_get_client_data(struct ib_device *device, 2922 struct ib_client *client) 2923 { 2924 return xa_load(&device->client_data, client->client_id); 2925 } 2926 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2927 void *data); 2928 void ib_set_device_ops(struct ib_device *device, 2929 const struct ib_device_ops *ops); 2930 2931 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2932 unsigned long pfn, unsigned long size, pgprot_t prot, 2933 struct rdma_user_mmap_entry *entry); 2934 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2935 struct rdma_user_mmap_entry *entry, 2936 size_t length); 2937 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2938 struct rdma_user_mmap_entry *entry, 2939 size_t length, u32 min_pgoff, 2940 u32 max_pgoff); 2941 2942 static inline int 2943 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2944 struct rdma_user_mmap_entry *entry, 2945 size_t length, u32 pgoff) 2946 { 2947 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2948 pgoff); 2949 } 2950 2951 struct rdma_user_mmap_entry * 2952 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2953 unsigned long pgoff); 2954 struct rdma_user_mmap_entry * 2955 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2956 struct vm_area_struct *vma); 2957 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2958 2959 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2960 2961 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2962 { 2963 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2964 } 2965 2966 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2967 { 2968 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2969 } 2970 2971 static inline bool ib_is_buffer_cleared(const void __user *p, 2972 size_t len) 2973 { 2974 bool ret; 2975 u8 *buf; 2976 2977 if (len > USHRT_MAX) 2978 return false; 2979 2980 buf = memdup_user(p, len); 2981 if (IS_ERR(buf)) 2982 return false; 2983 2984 ret = !memchr_inv(buf, 0, len); 2985 kfree(buf); 2986 return ret; 2987 } 2988 2989 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2990 size_t offset, 2991 size_t len) 2992 { 2993 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2994 } 2995 2996 /** 2997 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2998 * contains all required attributes and no attributes not allowed for 2999 * the given QP state transition. 3000 * @cur_state: Current QP state 3001 * @next_state: Next QP state 3002 * @type: QP type 3003 * @mask: Mask of supplied QP attributes 3004 * 3005 * This function is a helper function that a low-level driver's 3006 * modify_qp method can use to validate the consumer's input. It 3007 * checks that cur_state and next_state are valid QP states, that a 3008 * transition from cur_state to next_state is allowed by the IB spec, 3009 * and that the attribute mask supplied is allowed for the transition. 3010 */ 3011 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3012 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3013 3014 void ib_register_event_handler(struct ib_event_handler *event_handler); 3015 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3016 void ib_dispatch_event(const struct ib_event *event); 3017 3018 int ib_query_port(struct ib_device *device, 3019 u32 port_num, struct ib_port_attr *port_attr); 3020 3021 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3022 u32 port_num); 3023 3024 /** 3025 * rdma_cap_ib_switch - Check if the device is IB switch 3026 * @device: Device to check 3027 * 3028 * Device driver is responsible for setting is_switch bit on 3029 * in ib_device structure at init time. 3030 * 3031 * Return: true if the device is IB switch. 3032 */ 3033 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3034 { 3035 return device->is_switch; 3036 } 3037 3038 /** 3039 * rdma_start_port - Return the first valid port number for the device 3040 * specified 3041 * 3042 * @device: Device to be checked 3043 * 3044 * Return start port number 3045 */ 3046 static inline u32 rdma_start_port(const struct ib_device *device) 3047 { 3048 return rdma_cap_ib_switch(device) ? 0 : 1; 3049 } 3050 3051 /** 3052 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3053 * @device - The struct ib_device * to iterate over 3054 * @iter - The unsigned int to store the port number 3055 */ 3056 #define rdma_for_each_port(device, iter) \ 3057 for (iter = rdma_start_port(device + \ 3058 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3059 iter))); \ 3060 iter <= rdma_end_port(device); iter++) 3061 3062 /** 3063 * rdma_end_port - Return the last valid port number for the device 3064 * specified 3065 * 3066 * @device: Device to be checked 3067 * 3068 * Return last port number 3069 */ 3070 static inline u32 rdma_end_port(const struct ib_device *device) 3071 { 3072 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3073 } 3074 3075 static inline int rdma_is_port_valid(const struct ib_device *device, 3076 unsigned int port) 3077 { 3078 return (port >= rdma_start_port(device) && 3079 port <= rdma_end_port(device)); 3080 } 3081 3082 static inline bool rdma_is_grh_required(const struct ib_device *device, 3083 u32 port_num) 3084 { 3085 return device->port_data[port_num].immutable.core_cap_flags & 3086 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3087 } 3088 3089 static inline bool rdma_protocol_ib(const struct ib_device *device, 3090 u32 port_num) 3091 { 3092 return device->port_data[port_num].immutable.core_cap_flags & 3093 RDMA_CORE_CAP_PROT_IB; 3094 } 3095 3096 static inline bool rdma_protocol_roce(const struct ib_device *device, 3097 u32 port_num) 3098 { 3099 return device->port_data[port_num].immutable.core_cap_flags & 3100 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3101 } 3102 3103 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3104 u32 port_num) 3105 { 3106 return device->port_data[port_num].immutable.core_cap_flags & 3107 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3108 } 3109 3110 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3111 u32 port_num) 3112 { 3113 return device->port_data[port_num].immutable.core_cap_flags & 3114 RDMA_CORE_CAP_PROT_ROCE; 3115 } 3116 3117 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3118 u32 port_num) 3119 { 3120 return device->port_data[port_num].immutable.core_cap_flags & 3121 RDMA_CORE_CAP_PROT_IWARP; 3122 } 3123 3124 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3125 u32 port_num) 3126 { 3127 return rdma_protocol_ib(device, port_num) || 3128 rdma_protocol_roce(device, port_num); 3129 } 3130 3131 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3132 u32 port_num) 3133 { 3134 return device->port_data[port_num].immutable.core_cap_flags & 3135 RDMA_CORE_CAP_PROT_RAW_PACKET; 3136 } 3137 3138 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3139 u32 port_num) 3140 { 3141 return device->port_data[port_num].immutable.core_cap_flags & 3142 RDMA_CORE_CAP_PROT_USNIC; 3143 } 3144 3145 /** 3146 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3147 * Management Datagrams. 3148 * @device: Device to check 3149 * @port_num: Port number to check 3150 * 3151 * Management Datagrams (MAD) are a required part of the InfiniBand 3152 * specification and are supported on all InfiniBand devices. A slightly 3153 * extended version are also supported on OPA interfaces. 3154 * 3155 * Return: true if the port supports sending/receiving of MAD packets. 3156 */ 3157 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3158 { 3159 return device->port_data[port_num].immutable.core_cap_flags & 3160 RDMA_CORE_CAP_IB_MAD; 3161 } 3162 3163 /** 3164 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3165 * Management Datagrams. 3166 * @device: Device to check 3167 * @port_num: Port number to check 3168 * 3169 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3170 * datagrams with their own versions. These OPA MADs share many but not all of 3171 * the characteristics of InfiniBand MADs. 3172 * 3173 * OPA MADs differ in the following ways: 3174 * 3175 * 1) MADs are variable size up to 2K 3176 * IBTA defined MADs remain fixed at 256 bytes 3177 * 2) OPA SMPs must carry valid PKeys 3178 * 3) OPA SMP packets are a different format 3179 * 3180 * Return: true if the port supports OPA MAD packet formats. 3181 */ 3182 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3183 { 3184 return device->port_data[port_num].immutable.core_cap_flags & 3185 RDMA_CORE_CAP_OPA_MAD; 3186 } 3187 3188 /** 3189 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3190 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3191 * @device: Device to check 3192 * @port_num: Port number to check 3193 * 3194 * Each InfiniBand node is required to provide a Subnet Management Agent 3195 * that the subnet manager can access. Prior to the fabric being fully 3196 * configured by the subnet manager, the SMA is accessed via a well known 3197 * interface called the Subnet Management Interface (SMI). This interface 3198 * uses directed route packets to communicate with the SM to get around the 3199 * chicken and egg problem of the SM needing to know what's on the fabric 3200 * in order to configure the fabric, and needing to configure the fabric in 3201 * order to send packets to the devices on the fabric. These directed 3202 * route packets do not need the fabric fully configured in order to reach 3203 * their destination. The SMI is the only method allowed to send 3204 * directed route packets on an InfiniBand fabric. 3205 * 3206 * Return: true if the port provides an SMI. 3207 */ 3208 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3209 { 3210 return device->port_data[port_num].immutable.core_cap_flags & 3211 RDMA_CORE_CAP_IB_SMI; 3212 } 3213 3214 /** 3215 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3216 * Communication Manager. 3217 * @device: Device to check 3218 * @port_num: Port number to check 3219 * 3220 * The InfiniBand Communication Manager is one of many pre-defined General 3221 * Service Agents (GSA) that are accessed via the General Service 3222 * Interface (GSI). It's role is to facilitate establishment of connections 3223 * between nodes as well as other management related tasks for established 3224 * connections. 3225 * 3226 * Return: true if the port supports an IB CM (this does not guarantee that 3227 * a CM is actually running however). 3228 */ 3229 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3230 { 3231 return device->port_data[port_num].immutable.core_cap_flags & 3232 RDMA_CORE_CAP_IB_CM; 3233 } 3234 3235 /** 3236 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3237 * Communication Manager. 3238 * @device: Device to check 3239 * @port_num: Port number to check 3240 * 3241 * Similar to above, but specific to iWARP connections which have a different 3242 * managment protocol than InfiniBand. 3243 * 3244 * Return: true if the port supports an iWARP CM (this does not guarantee that 3245 * a CM is actually running however). 3246 */ 3247 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3248 { 3249 return device->port_data[port_num].immutable.core_cap_flags & 3250 RDMA_CORE_CAP_IW_CM; 3251 } 3252 3253 /** 3254 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3255 * Subnet Administration. 3256 * @device: Device to check 3257 * @port_num: Port number to check 3258 * 3259 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3260 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3261 * fabrics, devices should resolve routes to other hosts by contacting the 3262 * SA to query the proper route. 3263 * 3264 * Return: true if the port should act as a client to the fabric Subnet 3265 * Administration interface. This does not imply that the SA service is 3266 * running locally. 3267 */ 3268 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3269 { 3270 return device->port_data[port_num].immutable.core_cap_flags & 3271 RDMA_CORE_CAP_IB_SA; 3272 } 3273 3274 /** 3275 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3276 * Multicast. 3277 * @device: Device to check 3278 * @port_num: Port number to check 3279 * 3280 * InfiniBand multicast registration is more complex than normal IPv4 or 3281 * IPv6 multicast registration. Each Host Channel Adapter must register 3282 * with the Subnet Manager when it wishes to join a multicast group. It 3283 * should do so only once regardless of how many queue pairs it subscribes 3284 * to this group. And it should leave the group only after all queue pairs 3285 * attached to the group have been detached. 3286 * 3287 * Return: true if the port must undertake the additional adminstrative 3288 * overhead of registering/unregistering with the SM and tracking of the 3289 * total number of queue pairs attached to the multicast group. 3290 */ 3291 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3292 u32 port_num) 3293 { 3294 return rdma_cap_ib_sa(device, port_num); 3295 } 3296 3297 /** 3298 * rdma_cap_af_ib - Check if the port of device has the capability 3299 * Native Infiniband Address. 3300 * @device: Device to check 3301 * @port_num: Port number to check 3302 * 3303 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3304 * GID. RoCE uses a different mechanism, but still generates a GID via 3305 * a prescribed mechanism and port specific data. 3306 * 3307 * Return: true if the port uses a GID address to identify devices on the 3308 * network. 3309 */ 3310 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3311 { 3312 return device->port_data[port_num].immutable.core_cap_flags & 3313 RDMA_CORE_CAP_AF_IB; 3314 } 3315 3316 /** 3317 * rdma_cap_eth_ah - Check if the port of device has the capability 3318 * Ethernet Address Handle. 3319 * @device: Device to check 3320 * @port_num: Port number to check 3321 * 3322 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3323 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3324 * port. Normally, packet headers are generated by the sending host 3325 * adapter, but when sending connectionless datagrams, we must manually 3326 * inject the proper headers for the fabric we are communicating over. 3327 * 3328 * Return: true if we are running as a RoCE port and must force the 3329 * addition of a Global Route Header built from our Ethernet Address 3330 * Handle into our header list for connectionless packets. 3331 */ 3332 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3333 { 3334 return device->port_data[port_num].immutable.core_cap_flags & 3335 RDMA_CORE_CAP_ETH_AH; 3336 } 3337 3338 /** 3339 * rdma_cap_opa_ah - Check if the port of device supports 3340 * OPA Address handles 3341 * @device: Device to check 3342 * @port_num: Port number to check 3343 * 3344 * Return: true if we are running on an OPA device which supports 3345 * the extended OPA addressing. 3346 */ 3347 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3348 { 3349 return (device->port_data[port_num].immutable.core_cap_flags & 3350 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3351 } 3352 3353 /** 3354 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3355 * 3356 * @device: Device 3357 * @port_num: Port number 3358 * 3359 * This MAD size includes the MAD headers and MAD payload. No other headers 3360 * are included. 3361 * 3362 * Return the max MAD size required by the Port. Will return 0 if the port 3363 * does not support MADs 3364 */ 3365 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3366 u32 port_num) 3367 { 3368 return device->port_data[port_num].immutable.max_mad_size; 3369 } 3370 3371 /** 3372 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3373 * @device: Device to check 3374 * @port_num: Port number to check 3375 * 3376 * RoCE GID table mechanism manages the various GIDs for a device. 3377 * 3378 * NOTE: if allocating the port's GID table has failed, this call will still 3379 * return true, but any RoCE GID table API will fail. 3380 * 3381 * Return: true if the port uses RoCE GID table mechanism in order to manage 3382 * its GIDs. 3383 */ 3384 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3385 u32 port_num) 3386 { 3387 return rdma_protocol_roce(device, port_num) && 3388 device->ops.add_gid && device->ops.del_gid; 3389 } 3390 3391 /* 3392 * Check if the device supports READ W/ INVALIDATE. 3393 */ 3394 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3395 { 3396 /* 3397 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3398 * has support for it yet. 3399 */ 3400 return rdma_protocol_iwarp(dev, port_num); 3401 } 3402 3403 /** 3404 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3405 * @device: Device 3406 * @port_num: 1 based Port number 3407 * 3408 * Return true if port is an Intel OPA port , false if not 3409 */ 3410 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3411 u32 port_num) 3412 { 3413 return (device->port_data[port_num].immutable.core_cap_flags & 3414 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3415 } 3416 3417 /** 3418 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3419 * @device: Device 3420 * @port_num: Port number 3421 * @mtu: enum value of MTU 3422 * 3423 * Return the MTU size supported by the port as an integer value. Will return 3424 * -1 if enum value of mtu is not supported. 3425 */ 3426 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3427 int mtu) 3428 { 3429 if (rdma_core_cap_opa_port(device, port)) 3430 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3431 else 3432 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3433 } 3434 3435 /** 3436 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3437 * @device: Device 3438 * @port_num: Port number 3439 * @attr: port attribute 3440 * 3441 * Return the MTU size supported by the port as an integer value. 3442 */ 3443 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3444 struct ib_port_attr *attr) 3445 { 3446 if (rdma_core_cap_opa_port(device, port)) 3447 return attr->phys_mtu; 3448 else 3449 return ib_mtu_enum_to_int(attr->max_mtu); 3450 } 3451 3452 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3453 int state); 3454 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3455 struct ifla_vf_info *info); 3456 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3457 struct ifla_vf_stats *stats); 3458 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3459 struct ifla_vf_guid *node_guid, 3460 struct ifla_vf_guid *port_guid); 3461 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3462 int type); 3463 3464 int ib_query_pkey(struct ib_device *device, 3465 u32 port_num, u16 index, u16 *pkey); 3466 3467 int ib_modify_device(struct ib_device *device, 3468 int device_modify_mask, 3469 struct ib_device_modify *device_modify); 3470 3471 int ib_modify_port(struct ib_device *device, 3472 u32 port_num, int port_modify_mask, 3473 struct ib_port_modify *port_modify); 3474 3475 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3476 u32 *port_num, u16 *index); 3477 3478 int ib_find_pkey(struct ib_device *device, 3479 u32 port_num, u16 pkey, u16 *index); 3480 3481 enum ib_pd_flags { 3482 /* 3483 * Create a memory registration for all memory in the system and place 3484 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3485 * ULPs to avoid the overhead of dynamic MRs. 3486 * 3487 * This flag is generally considered unsafe and must only be used in 3488 * extremly trusted environments. Every use of it will log a warning 3489 * in the kernel log. 3490 */ 3491 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3492 }; 3493 3494 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3495 const char *caller); 3496 3497 /** 3498 * ib_alloc_pd - Allocates an unused protection domain. 3499 * @device: The device on which to allocate the protection domain. 3500 * @flags: protection domain flags 3501 * 3502 * A protection domain object provides an association between QPs, shared 3503 * receive queues, address handles, memory regions, and memory windows. 3504 * 3505 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3506 * memory operations. 3507 */ 3508 #define ib_alloc_pd(device, flags) \ 3509 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3510 3511 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3512 3513 /** 3514 * ib_dealloc_pd - Deallocate kernel PD 3515 * @pd: The protection domain 3516 * 3517 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3518 */ 3519 static inline void ib_dealloc_pd(struct ib_pd *pd) 3520 { 3521 int ret = ib_dealloc_pd_user(pd, NULL); 3522 3523 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3524 } 3525 3526 enum rdma_create_ah_flags { 3527 /* In a sleepable context */ 3528 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3529 }; 3530 3531 /** 3532 * rdma_create_ah - Creates an address handle for the given address vector. 3533 * @pd: The protection domain associated with the address handle. 3534 * @ah_attr: The attributes of the address vector. 3535 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3536 * 3537 * The address handle is used to reference a local or global destination 3538 * in all UD QP post sends. 3539 */ 3540 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3541 u32 flags); 3542 3543 /** 3544 * rdma_create_user_ah - Creates an address handle for the given address vector. 3545 * It resolves destination mac address for ah attribute of RoCE type. 3546 * @pd: The protection domain associated with the address handle. 3547 * @ah_attr: The attributes of the address vector. 3548 * @udata: pointer to user's input output buffer information need by 3549 * provider driver. 3550 * 3551 * It returns 0 on success and returns appropriate error code on error. 3552 * The address handle is used to reference a local or global destination 3553 * in all UD QP post sends. 3554 */ 3555 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3556 struct rdma_ah_attr *ah_attr, 3557 struct ib_udata *udata); 3558 /** 3559 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3560 * work completion. 3561 * @hdr: the L3 header to parse 3562 * @net_type: type of header to parse 3563 * @sgid: place to store source gid 3564 * @dgid: place to store destination gid 3565 */ 3566 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3567 enum rdma_network_type net_type, 3568 union ib_gid *sgid, union ib_gid *dgid); 3569 3570 /** 3571 * ib_get_rdma_header_version - Get the header version 3572 * @hdr: the L3 header to parse 3573 */ 3574 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3575 3576 /** 3577 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3578 * work completion. 3579 * @device: Device on which the received message arrived. 3580 * @port_num: Port on which the received message arrived. 3581 * @wc: Work completion associated with the received message. 3582 * @grh: References the received global route header. This parameter is 3583 * ignored unless the work completion indicates that the GRH is valid. 3584 * @ah_attr: Returned attributes that can be used when creating an address 3585 * handle for replying to the message. 3586 * When ib_init_ah_attr_from_wc() returns success, 3587 * (a) for IB link layer it optionally contains a reference to SGID attribute 3588 * when GRH is present for IB link layer. 3589 * (b) for RoCE link layer it contains a reference to SGID attribute. 3590 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3591 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3592 * 3593 */ 3594 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3595 const struct ib_wc *wc, const struct ib_grh *grh, 3596 struct rdma_ah_attr *ah_attr); 3597 3598 /** 3599 * ib_create_ah_from_wc - Creates an address handle associated with the 3600 * sender of the specified work completion. 3601 * @pd: The protection domain associated with the address handle. 3602 * @wc: Work completion information associated with a received message. 3603 * @grh: References the received global route header. This parameter is 3604 * ignored unless the work completion indicates that the GRH is valid. 3605 * @port_num: The outbound port number to associate with the address. 3606 * 3607 * The address handle is used to reference a local or global destination 3608 * in all UD QP post sends. 3609 */ 3610 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3611 const struct ib_grh *grh, u32 port_num); 3612 3613 /** 3614 * rdma_modify_ah - Modifies the address vector associated with an address 3615 * handle. 3616 * @ah: The address handle to modify. 3617 * @ah_attr: The new address vector attributes to associate with the 3618 * address handle. 3619 */ 3620 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3621 3622 /** 3623 * rdma_query_ah - Queries the address vector associated with an address 3624 * handle. 3625 * @ah: The address handle to query. 3626 * @ah_attr: The address vector attributes associated with the address 3627 * handle. 3628 */ 3629 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3630 3631 enum rdma_destroy_ah_flags { 3632 /* In a sleepable context */ 3633 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3634 }; 3635 3636 /** 3637 * rdma_destroy_ah_user - Destroys an address handle. 3638 * @ah: The address handle to destroy. 3639 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3640 * @udata: Valid user data or NULL for kernel objects 3641 */ 3642 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3643 3644 /** 3645 * rdma_destroy_ah - Destroys an kernel address handle. 3646 * @ah: The address handle to destroy. 3647 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3648 * 3649 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3650 */ 3651 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3652 { 3653 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3654 3655 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3656 } 3657 3658 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3659 struct ib_srq_init_attr *srq_init_attr, 3660 struct ib_usrq_object *uobject, 3661 struct ib_udata *udata); 3662 static inline struct ib_srq * 3663 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3664 { 3665 if (!pd->device->ops.create_srq) 3666 return ERR_PTR(-EOPNOTSUPP); 3667 3668 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3669 } 3670 3671 /** 3672 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3673 * @srq: The SRQ to modify. 3674 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3675 * the current values of selected SRQ attributes are returned. 3676 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3677 * are being modified. 3678 * 3679 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3680 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3681 * the number of receives queued drops below the limit. 3682 */ 3683 int ib_modify_srq(struct ib_srq *srq, 3684 struct ib_srq_attr *srq_attr, 3685 enum ib_srq_attr_mask srq_attr_mask); 3686 3687 /** 3688 * ib_query_srq - Returns the attribute list and current values for the 3689 * specified SRQ. 3690 * @srq: The SRQ to query. 3691 * @srq_attr: The attributes of the specified SRQ. 3692 */ 3693 int ib_query_srq(struct ib_srq *srq, 3694 struct ib_srq_attr *srq_attr); 3695 3696 /** 3697 * ib_destroy_srq_user - Destroys the specified SRQ. 3698 * @srq: The SRQ to destroy. 3699 * @udata: Valid user data or NULL for kernel objects 3700 */ 3701 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3702 3703 /** 3704 * ib_destroy_srq - Destroys the specified kernel SRQ. 3705 * @srq: The SRQ to destroy. 3706 * 3707 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3708 */ 3709 static inline void ib_destroy_srq(struct ib_srq *srq) 3710 { 3711 int ret = ib_destroy_srq_user(srq, NULL); 3712 3713 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3714 } 3715 3716 /** 3717 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3718 * @srq: The SRQ to post the work request on. 3719 * @recv_wr: A list of work requests to post on the receive queue. 3720 * @bad_recv_wr: On an immediate failure, this parameter will reference 3721 * the work request that failed to be posted on the QP. 3722 */ 3723 static inline int ib_post_srq_recv(struct ib_srq *srq, 3724 const struct ib_recv_wr *recv_wr, 3725 const struct ib_recv_wr **bad_recv_wr) 3726 { 3727 const struct ib_recv_wr *dummy; 3728 3729 return srq->device->ops.post_srq_recv(srq, recv_wr, 3730 bad_recv_wr ? : &dummy); 3731 } 3732 3733 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3734 struct ib_qp_init_attr *qp_init_attr, 3735 const char *caller); 3736 /** 3737 * ib_create_qp - Creates a kernel QP associated with the specific protection 3738 * domain. 3739 * @pd: The protection domain associated with the QP. 3740 * @init_attr: A list of initial attributes required to create the 3741 * QP. If QP creation succeeds, then the attributes are updated to 3742 * the actual capabilities of the created QP. 3743 */ 3744 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3745 struct ib_qp_init_attr *init_attr) 3746 { 3747 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3748 } 3749 3750 /** 3751 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3752 * @qp: The QP to modify. 3753 * @attr: On input, specifies the QP attributes to modify. On output, 3754 * the current values of selected QP attributes are returned. 3755 * @attr_mask: A bit-mask used to specify which attributes of the QP 3756 * are being modified. 3757 * @udata: pointer to user's input output buffer information 3758 * are being modified. 3759 * It returns 0 on success and returns appropriate error code on error. 3760 */ 3761 int ib_modify_qp_with_udata(struct ib_qp *qp, 3762 struct ib_qp_attr *attr, 3763 int attr_mask, 3764 struct ib_udata *udata); 3765 3766 /** 3767 * ib_modify_qp - Modifies the attributes for the specified QP and then 3768 * transitions the QP to the given state. 3769 * @qp: The QP to modify. 3770 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3771 * the current values of selected QP attributes are returned. 3772 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3773 * are being modified. 3774 */ 3775 int ib_modify_qp(struct ib_qp *qp, 3776 struct ib_qp_attr *qp_attr, 3777 int qp_attr_mask); 3778 3779 /** 3780 * ib_query_qp - Returns the attribute list and current values for the 3781 * specified QP. 3782 * @qp: The QP to query. 3783 * @qp_attr: The attributes of the specified QP. 3784 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3785 * @qp_init_attr: Additional attributes of the selected QP. 3786 * 3787 * The qp_attr_mask may be used to limit the query to gathering only the 3788 * selected attributes. 3789 */ 3790 int ib_query_qp(struct ib_qp *qp, 3791 struct ib_qp_attr *qp_attr, 3792 int qp_attr_mask, 3793 struct ib_qp_init_attr *qp_init_attr); 3794 3795 /** 3796 * ib_destroy_qp - Destroys the specified QP. 3797 * @qp: The QP to destroy. 3798 * @udata: Valid udata or NULL for kernel objects 3799 */ 3800 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3801 3802 /** 3803 * ib_destroy_qp - Destroys the specified kernel QP. 3804 * @qp: The QP to destroy. 3805 * 3806 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3807 */ 3808 static inline int ib_destroy_qp(struct ib_qp *qp) 3809 { 3810 return ib_destroy_qp_user(qp, NULL); 3811 } 3812 3813 /** 3814 * ib_open_qp - Obtain a reference to an existing sharable QP. 3815 * @xrcd - XRC domain 3816 * @qp_open_attr: Attributes identifying the QP to open. 3817 * 3818 * Returns a reference to a sharable QP. 3819 */ 3820 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3821 struct ib_qp_open_attr *qp_open_attr); 3822 3823 /** 3824 * ib_close_qp - Release an external reference to a QP. 3825 * @qp: The QP handle to release 3826 * 3827 * The opened QP handle is released by the caller. The underlying 3828 * shared QP is not destroyed until all internal references are released. 3829 */ 3830 int ib_close_qp(struct ib_qp *qp); 3831 3832 /** 3833 * ib_post_send - Posts a list of work requests to the send queue of 3834 * the specified QP. 3835 * @qp: The QP to post the work request on. 3836 * @send_wr: A list of work requests to post on the send queue. 3837 * @bad_send_wr: On an immediate failure, this parameter will reference 3838 * the work request that failed to be posted on the QP. 3839 * 3840 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3841 * error is returned, the QP state shall not be affected, 3842 * ib_post_send() will return an immediate error after queueing any 3843 * earlier work requests in the list. 3844 */ 3845 static inline int ib_post_send(struct ib_qp *qp, 3846 const struct ib_send_wr *send_wr, 3847 const struct ib_send_wr **bad_send_wr) 3848 { 3849 const struct ib_send_wr *dummy; 3850 3851 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3852 } 3853 3854 /** 3855 * ib_post_recv - Posts a list of work requests to the receive queue of 3856 * the specified QP. 3857 * @qp: The QP to post the work request on. 3858 * @recv_wr: A list of work requests to post on the receive queue. 3859 * @bad_recv_wr: On an immediate failure, this parameter will reference 3860 * the work request that failed to be posted on the QP. 3861 */ 3862 static inline int ib_post_recv(struct ib_qp *qp, 3863 const struct ib_recv_wr *recv_wr, 3864 const struct ib_recv_wr **bad_recv_wr) 3865 { 3866 const struct ib_recv_wr *dummy; 3867 3868 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3869 } 3870 3871 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3872 int comp_vector, enum ib_poll_context poll_ctx, 3873 const char *caller); 3874 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3875 int nr_cqe, int comp_vector, 3876 enum ib_poll_context poll_ctx) 3877 { 3878 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3879 KBUILD_MODNAME); 3880 } 3881 3882 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3883 int nr_cqe, enum ib_poll_context poll_ctx, 3884 const char *caller); 3885 3886 /** 3887 * ib_alloc_cq_any: Allocate kernel CQ 3888 * @dev: The IB device 3889 * @private: Private data attached to the CQE 3890 * @nr_cqe: Number of CQEs in the CQ 3891 * @poll_ctx: Context used for polling the CQ 3892 */ 3893 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3894 void *private, int nr_cqe, 3895 enum ib_poll_context poll_ctx) 3896 { 3897 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3898 KBUILD_MODNAME); 3899 } 3900 3901 void ib_free_cq(struct ib_cq *cq); 3902 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3903 3904 /** 3905 * ib_create_cq - Creates a CQ on the specified device. 3906 * @device: The device on which to create the CQ. 3907 * @comp_handler: A user-specified callback that is invoked when a 3908 * completion event occurs on the CQ. 3909 * @event_handler: A user-specified callback that is invoked when an 3910 * asynchronous event not associated with a completion occurs on the CQ. 3911 * @cq_context: Context associated with the CQ returned to the user via 3912 * the associated completion and event handlers. 3913 * @cq_attr: The attributes the CQ should be created upon. 3914 * 3915 * Users can examine the cq structure to determine the actual CQ size. 3916 */ 3917 struct ib_cq *__ib_create_cq(struct ib_device *device, 3918 ib_comp_handler comp_handler, 3919 void (*event_handler)(struct ib_event *, void *), 3920 void *cq_context, 3921 const struct ib_cq_init_attr *cq_attr, 3922 const char *caller); 3923 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3924 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3925 3926 /** 3927 * ib_resize_cq - Modifies the capacity of the CQ. 3928 * @cq: The CQ to resize. 3929 * @cqe: The minimum size of the CQ. 3930 * 3931 * Users can examine the cq structure to determine the actual CQ size. 3932 */ 3933 int ib_resize_cq(struct ib_cq *cq, int cqe); 3934 3935 /** 3936 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3937 * @cq: The CQ to modify. 3938 * @cq_count: number of CQEs that will trigger an event 3939 * @cq_period: max period of time in usec before triggering an event 3940 * 3941 */ 3942 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3943 3944 /** 3945 * ib_destroy_cq_user - Destroys the specified CQ. 3946 * @cq: The CQ to destroy. 3947 * @udata: Valid user data or NULL for kernel objects 3948 */ 3949 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3950 3951 /** 3952 * ib_destroy_cq - Destroys the specified kernel CQ. 3953 * @cq: The CQ to destroy. 3954 * 3955 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3956 */ 3957 static inline void ib_destroy_cq(struct ib_cq *cq) 3958 { 3959 int ret = ib_destroy_cq_user(cq, NULL); 3960 3961 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3962 } 3963 3964 /** 3965 * ib_poll_cq - poll a CQ for completion(s) 3966 * @cq:the CQ being polled 3967 * @num_entries:maximum number of completions to return 3968 * @wc:array of at least @num_entries &struct ib_wc where completions 3969 * will be returned 3970 * 3971 * Poll a CQ for (possibly multiple) completions. If the return value 3972 * is < 0, an error occurred. If the return value is >= 0, it is the 3973 * number of completions returned. If the return value is 3974 * non-negative and < num_entries, then the CQ was emptied. 3975 */ 3976 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3977 struct ib_wc *wc) 3978 { 3979 return cq->device->ops.poll_cq(cq, num_entries, wc); 3980 } 3981 3982 /** 3983 * ib_req_notify_cq - Request completion notification on a CQ. 3984 * @cq: The CQ to generate an event for. 3985 * @flags: 3986 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3987 * to request an event on the next solicited event or next work 3988 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3989 * may also be |ed in to request a hint about missed events, as 3990 * described below. 3991 * 3992 * Return Value: 3993 * < 0 means an error occurred while requesting notification 3994 * == 0 means notification was requested successfully, and if 3995 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3996 * were missed and it is safe to wait for another event. In 3997 * this case is it guaranteed that any work completions added 3998 * to the CQ since the last CQ poll will trigger a completion 3999 * notification event. 4000 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4001 * in. It means that the consumer must poll the CQ again to 4002 * make sure it is empty to avoid missing an event because of a 4003 * race between requesting notification and an entry being 4004 * added to the CQ. This return value means it is possible 4005 * (but not guaranteed) that a work completion has been added 4006 * to the CQ since the last poll without triggering a 4007 * completion notification event. 4008 */ 4009 static inline int ib_req_notify_cq(struct ib_cq *cq, 4010 enum ib_cq_notify_flags flags) 4011 { 4012 return cq->device->ops.req_notify_cq(cq, flags); 4013 } 4014 4015 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4016 int comp_vector_hint, 4017 enum ib_poll_context poll_ctx); 4018 4019 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4020 4021 /* 4022 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4023 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4024 * address into the dma address. 4025 */ 4026 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4027 { 4028 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4029 } 4030 4031 /* 4032 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4033 */ 4034 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4035 { 4036 if (ib_uses_virt_dma(dev)) 4037 return false; 4038 4039 return dma_pci_p2pdma_supported(dev->dma_device); 4040 } 4041 4042 /** 4043 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4044 * @dma_addr: The DMA address 4045 * 4046 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4047 * going through the dma_addr marshalling. 4048 */ 4049 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4050 { 4051 /* virt_dma mode maps the kvs's directly into the dma addr */ 4052 return (void *)(uintptr_t)dma_addr; 4053 } 4054 4055 /** 4056 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4057 * @dma_addr: The DMA address 4058 * 4059 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4060 * through the dma_addr marshalling. 4061 */ 4062 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4063 { 4064 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4065 } 4066 4067 /** 4068 * ib_dma_mapping_error - check a DMA addr for error 4069 * @dev: The device for which the dma_addr was created 4070 * @dma_addr: The DMA address to check 4071 */ 4072 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4073 { 4074 if (ib_uses_virt_dma(dev)) 4075 return 0; 4076 return dma_mapping_error(dev->dma_device, dma_addr); 4077 } 4078 4079 /** 4080 * ib_dma_map_single - Map a kernel virtual address to DMA address 4081 * @dev: The device for which the dma_addr is to be created 4082 * @cpu_addr: The kernel virtual address 4083 * @size: The size of the region in bytes 4084 * @direction: The direction of the DMA 4085 */ 4086 static inline u64 ib_dma_map_single(struct ib_device *dev, 4087 void *cpu_addr, size_t size, 4088 enum dma_data_direction direction) 4089 { 4090 if (ib_uses_virt_dma(dev)) 4091 return (uintptr_t)cpu_addr; 4092 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4093 } 4094 4095 /** 4096 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4097 * @dev: The device for which the DMA address was created 4098 * @addr: The DMA address 4099 * @size: The size of the region in bytes 4100 * @direction: The direction of the DMA 4101 */ 4102 static inline void ib_dma_unmap_single(struct ib_device *dev, 4103 u64 addr, size_t size, 4104 enum dma_data_direction direction) 4105 { 4106 if (!ib_uses_virt_dma(dev)) 4107 dma_unmap_single(dev->dma_device, addr, size, direction); 4108 } 4109 4110 /** 4111 * ib_dma_map_page - Map a physical page to DMA address 4112 * @dev: The device for which the dma_addr is to be created 4113 * @page: The page to be mapped 4114 * @offset: The offset within the page 4115 * @size: The size of the region in bytes 4116 * @direction: The direction of the DMA 4117 */ 4118 static inline u64 ib_dma_map_page(struct ib_device *dev, 4119 struct page *page, 4120 unsigned long offset, 4121 size_t size, 4122 enum dma_data_direction direction) 4123 { 4124 if (ib_uses_virt_dma(dev)) 4125 return (uintptr_t)(page_address(page) + offset); 4126 return dma_map_page(dev->dma_device, page, offset, size, direction); 4127 } 4128 4129 /** 4130 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4131 * @dev: The device for which the DMA address was created 4132 * @addr: The DMA address 4133 * @size: The size of the region in bytes 4134 * @direction: The direction of the DMA 4135 */ 4136 static inline void ib_dma_unmap_page(struct ib_device *dev, 4137 u64 addr, size_t size, 4138 enum dma_data_direction direction) 4139 { 4140 if (!ib_uses_virt_dma(dev)) 4141 dma_unmap_page(dev->dma_device, addr, size, direction); 4142 } 4143 4144 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4145 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4146 struct scatterlist *sg, int nents, 4147 enum dma_data_direction direction, 4148 unsigned long dma_attrs) 4149 { 4150 if (ib_uses_virt_dma(dev)) 4151 return ib_dma_virt_map_sg(dev, sg, nents); 4152 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4153 dma_attrs); 4154 } 4155 4156 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4157 struct scatterlist *sg, int nents, 4158 enum dma_data_direction direction, 4159 unsigned long dma_attrs) 4160 { 4161 if (!ib_uses_virt_dma(dev)) 4162 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4163 dma_attrs); 4164 } 4165 4166 /** 4167 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4168 * @dev: The device for which the DMA addresses are to be created 4169 * @sg: The sg_table object describing the buffer 4170 * @direction: The direction of the DMA 4171 * @attrs: Optional DMA attributes for the map operation 4172 */ 4173 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4174 struct sg_table *sgt, 4175 enum dma_data_direction direction, 4176 unsigned long dma_attrs) 4177 { 4178 int nents; 4179 4180 if (ib_uses_virt_dma(dev)) { 4181 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4182 if (!nents) 4183 return -EIO; 4184 sgt->nents = nents; 4185 return 0; 4186 } 4187 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4188 } 4189 4190 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4191 struct sg_table *sgt, 4192 enum dma_data_direction direction, 4193 unsigned long dma_attrs) 4194 { 4195 if (!ib_uses_virt_dma(dev)) 4196 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4197 } 4198 4199 /** 4200 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4201 * @dev: The device for which the DMA addresses are to be created 4202 * @sg: The array of scatter/gather entries 4203 * @nents: The number of scatter/gather entries 4204 * @direction: The direction of the DMA 4205 */ 4206 static inline int ib_dma_map_sg(struct ib_device *dev, 4207 struct scatterlist *sg, int nents, 4208 enum dma_data_direction direction) 4209 { 4210 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4211 } 4212 4213 /** 4214 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4215 * @dev: The device for which the DMA addresses were created 4216 * @sg: The array of scatter/gather entries 4217 * @nents: The number of scatter/gather entries 4218 * @direction: The direction of the DMA 4219 */ 4220 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4221 struct scatterlist *sg, int nents, 4222 enum dma_data_direction direction) 4223 { 4224 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4225 } 4226 4227 /** 4228 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4229 * @dev: The device to query 4230 * 4231 * The returned value represents a size in bytes. 4232 */ 4233 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4234 { 4235 if (ib_uses_virt_dma(dev)) 4236 return UINT_MAX; 4237 return dma_get_max_seg_size(dev->dma_device); 4238 } 4239 4240 /** 4241 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4242 * @dev: The device for which the DMA address was created 4243 * @addr: The DMA address 4244 * @size: The size of the region in bytes 4245 * @dir: The direction of the DMA 4246 */ 4247 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4248 u64 addr, 4249 size_t size, 4250 enum dma_data_direction dir) 4251 { 4252 if (!ib_uses_virt_dma(dev)) 4253 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4254 } 4255 4256 /** 4257 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4258 * @dev: The device for which the DMA address was created 4259 * @addr: The DMA address 4260 * @size: The size of the region in bytes 4261 * @dir: The direction of the DMA 4262 */ 4263 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4264 u64 addr, 4265 size_t size, 4266 enum dma_data_direction dir) 4267 { 4268 if (!ib_uses_virt_dma(dev)) 4269 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4270 } 4271 4272 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4273 * space. This function should be called when 'current' is the owning MM. 4274 */ 4275 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4276 u64 virt_addr, int mr_access_flags); 4277 4278 /* ib_advise_mr - give an advice about an address range in a memory region */ 4279 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4280 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4281 /** 4282 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4283 * HCA translation table. 4284 * @mr: The memory region to deregister. 4285 * @udata: Valid user data or NULL for kernel object 4286 * 4287 * This function can fail, if the memory region has memory windows bound to it. 4288 */ 4289 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4290 4291 /** 4292 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4293 * HCA translation table. 4294 * @mr: The memory region to deregister. 4295 * 4296 * This function can fail, if the memory region has memory windows bound to it. 4297 * 4298 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4299 */ 4300 static inline int ib_dereg_mr(struct ib_mr *mr) 4301 { 4302 return ib_dereg_mr_user(mr, NULL); 4303 } 4304 4305 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4306 u32 max_num_sg); 4307 4308 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4309 u32 max_num_data_sg, 4310 u32 max_num_meta_sg); 4311 4312 /** 4313 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4314 * R_Key and L_Key. 4315 * @mr - struct ib_mr pointer to be updated. 4316 * @newkey - new key to be used. 4317 */ 4318 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4319 { 4320 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4321 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4322 } 4323 4324 /** 4325 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4326 * for calculating a new rkey for type 2 memory windows. 4327 * @rkey - the rkey to increment. 4328 */ 4329 static inline u32 ib_inc_rkey(u32 rkey) 4330 { 4331 const u32 mask = 0x000000ff; 4332 return ((rkey + 1) & mask) | (rkey & ~mask); 4333 } 4334 4335 /** 4336 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4337 * @qp: QP to attach to the multicast group. The QP must be type 4338 * IB_QPT_UD. 4339 * @gid: Multicast group GID. 4340 * @lid: Multicast group LID in host byte order. 4341 * 4342 * In order to send and receive multicast packets, subnet 4343 * administration must have created the multicast group and configured 4344 * the fabric appropriately. The port associated with the specified 4345 * QP must also be a member of the multicast group. 4346 */ 4347 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4348 4349 /** 4350 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4351 * @qp: QP to detach from the multicast group. 4352 * @gid: Multicast group GID. 4353 * @lid: Multicast group LID in host byte order. 4354 */ 4355 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4356 4357 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4358 struct inode *inode, struct ib_udata *udata); 4359 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4360 4361 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4362 unsigned int flags) 4363 { 4364 u64 device_cap = ib_dev->attrs.device_cap_flags; 4365 4366 /* 4367 * Local write permission is required if remote write or 4368 * remote atomic permission is also requested. 4369 */ 4370 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4371 !(flags & IB_ACCESS_LOCAL_WRITE)) 4372 return -EINVAL; 4373 4374 if (flags & ~IB_ACCESS_SUPPORTED) 4375 return -EINVAL; 4376 4377 if (flags & IB_ACCESS_ON_DEMAND && 4378 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4379 return -EOPNOTSUPP; 4380 4381 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4382 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4383 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4384 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4385 return -EOPNOTSUPP; 4386 4387 return 0; 4388 } 4389 4390 static inline bool ib_access_writable(int access_flags) 4391 { 4392 /* 4393 * We have writable memory backing the MR if any of the following 4394 * access flags are set. "Local write" and "remote write" obviously 4395 * require write access. "Remote atomic" can do things like fetch and 4396 * add, which will modify memory, and "MW bind" can change permissions 4397 * by binding a window. 4398 */ 4399 return access_flags & 4400 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4401 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4402 } 4403 4404 /** 4405 * ib_check_mr_status: lightweight check of MR status. 4406 * This routine may provide status checks on a selected 4407 * ib_mr. first use is for signature status check. 4408 * 4409 * @mr: A memory region. 4410 * @check_mask: Bitmask of which checks to perform from 4411 * ib_mr_status_check enumeration. 4412 * @mr_status: The container of relevant status checks. 4413 * failed checks will be indicated in the status bitmask 4414 * and the relevant info shall be in the error item. 4415 */ 4416 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4417 struct ib_mr_status *mr_status); 4418 4419 /** 4420 * ib_device_try_get: Hold a registration lock 4421 * device: The device to lock 4422 * 4423 * A device under an active registration lock cannot become unregistered. It 4424 * is only possible to obtain a registration lock on a device that is fully 4425 * registered, otherwise this function returns false. 4426 * 4427 * The registration lock is only necessary for actions which require the 4428 * device to still be registered. Uses that only require the device pointer to 4429 * be valid should use get_device(&ibdev->dev) to hold the memory. 4430 * 4431 */ 4432 static inline bool ib_device_try_get(struct ib_device *dev) 4433 { 4434 return refcount_inc_not_zero(&dev->refcount); 4435 } 4436 4437 void ib_device_put(struct ib_device *device); 4438 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4439 enum rdma_driver_id driver_id); 4440 struct ib_device *ib_device_get_by_name(const char *name, 4441 enum rdma_driver_id driver_id); 4442 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4443 u16 pkey, const union ib_gid *gid, 4444 const struct sockaddr *addr); 4445 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4446 unsigned int port); 4447 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4448 struct ib_wq_init_attr *init_attr); 4449 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4450 4451 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4452 unsigned int *sg_offset, unsigned int page_size); 4453 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4454 int data_sg_nents, unsigned int *data_sg_offset, 4455 struct scatterlist *meta_sg, int meta_sg_nents, 4456 unsigned int *meta_sg_offset, unsigned int page_size); 4457 4458 static inline int 4459 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4460 unsigned int *sg_offset, unsigned int page_size) 4461 { 4462 int n; 4463 4464 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4465 mr->iova = 0; 4466 4467 return n; 4468 } 4469 4470 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4471 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4472 4473 void ib_drain_rq(struct ib_qp *qp); 4474 void ib_drain_sq(struct ib_qp *qp); 4475 void ib_drain_qp(struct ib_qp *qp); 4476 4477 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4478 u8 *width); 4479 4480 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4481 { 4482 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4483 return attr->roce.dmac; 4484 return NULL; 4485 } 4486 4487 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4488 { 4489 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4490 attr->ib.dlid = (u16)dlid; 4491 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4492 attr->opa.dlid = dlid; 4493 } 4494 4495 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4496 { 4497 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4498 return attr->ib.dlid; 4499 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4500 return attr->opa.dlid; 4501 return 0; 4502 } 4503 4504 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4505 { 4506 attr->sl = sl; 4507 } 4508 4509 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4510 { 4511 return attr->sl; 4512 } 4513 4514 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4515 u8 src_path_bits) 4516 { 4517 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4518 attr->ib.src_path_bits = src_path_bits; 4519 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4520 attr->opa.src_path_bits = src_path_bits; 4521 } 4522 4523 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4524 { 4525 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4526 return attr->ib.src_path_bits; 4527 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4528 return attr->opa.src_path_bits; 4529 return 0; 4530 } 4531 4532 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4533 bool make_grd) 4534 { 4535 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4536 attr->opa.make_grd = make_grd; 4537 } 4538 4539 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4540 { 4541 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4542 return attr->opa.make_grd; 4543 return false; 4544 } 4545 4546 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4547 { 4548 attr->port_num = port_num; 4549 } 4550 4551 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4552 { 4553 return attr->port_num; 4554 } 4555 4556 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4557 u8 static_rate) 4558 { 4559 attr->static_rate = static_rate; 4560 } 4561 4562 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4563 { 4564 return attr->static_rate; 4565 } 4566 4567 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4568 enum ib_ah_flags flag) 4569 { 4570 attr->ah_flags = flag; 4571 } 4572 4573 static inline enum ib_ah_flags 4574 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4575 { 4576 return attr->ah_flags; 4577 } 4578 4579 static inline const struct ib_global_route 4580 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4581 { 4582 return &attr->grh; 4583 } 4584 4585 /*To retrieve and modify the grh */ 4586 static inline struct ib_global_route 4587 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4588 { 4589 return &attr->grh; 4590 } 4591 4592 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4593 { 4594 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4595 4596 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4597 } 4598 4599 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4600 __be64 prefix) 4601 { 4602 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4603 4604 grh->dgid.global.subnet_prefix = prefix; 4605 } 4606 4607 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4608 __be64 if_id) 4609 { 4610 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4611 4612 grh->dgid.global.interface_id = if_id; 4613 } 4614 4615 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4616 union ib_gid *dgid, u32 flow_label, 4617 u8 sgid_index, u8 hop_limit, 4618 u8 traffic_class) 4619 { 4620 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4621 4622 attr->ah_flags = IB_AH_GRH; 4623 if (dgid) 4624 grh->dgid = *dgid; 4625 grh->flow_label = flow_label; 4626 grh->sgid_index = sgid_index; 4627 grh->hop_limit = hop_limit; 4628 grh->traffic_class = traffic_class; 4629 grh->sgid_attr = NULL; 4630 } 4631 4632 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4633 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4634 u32 flow_label, u8 hop_limit, u8 traffic_class, 4635 const struct ib_gid_attr *sgid_attr); 4636 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4637 const struct rdma_ah_attr *src); 4638 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4639 const struct rdma_ah_attr *new); 4640 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4641 4642 /** 4643 * rdma_ah_find_type - Return address handle type. 4644 * 4645 * @dev: Device to be checked 4646 * @port_num: Port number 4647 */ 4648 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4649 u32 port_num) 4650 { 4651 if (rdma_protocol_roce(dev, port_num)) 4652 return RDMA_AH_ATTR_TYPE_ROCE; 4653 if (rdma_protocol_ib(dev, port_num)) { 4654 if (rdma_cap_opa_ah(dev, port_num)) 4655 return RDMA_AH_ATTR_TYPE_OPA; 4656 return RDMA_AH_ATTR_TYPE_IB; 4657 } 4658 4659 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4660 } 4661 4662 /** 4663 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4664 * In the current implementation the only way to 4665 * get the 32bit lid is from other sources for OPA. 4666 * For IB, lids will always be 16bits so cast the 4667 * value accordingly. 4668 * 4669 * @lid: A 32bit LID 4670 */ 4671 static inline u16 ib_lid_cpu16(u32 lid) 4672 { 4673 WARN_ON_ONCE(lid & 0xFFFF0000); 4674 return (u16)lid; 4675 } 4676 4677 /** 4678 * ib_lid_be16 - Return lid in 16bit BE encoding. 4679 * 4680 * @lid: A 32bit LID 4681 */ 4682 static inline __be16 ib_lid_be16(u32 lid) 4683 { 4684 WARN_ON_ONCE(lid & 0xFFFF0000); 4685 return cpu_to_be16((u16)lid); 4686 } 4687 4688 /** 4689 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4690 * vector 4691 * @device: the rdma device 4692 * @comp_vector: index of completion vector 4693 * 4694 * Returns NULL on failure, otherwise a corresponding cpu map of the 4695 * completion vector (returns all-cpus map if the device driver doesn't 4696 * implement get_vector_affinity). 4697 */ 4698 static inline const struct cpumask * 4699 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4700 { 4701 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4702 !device->ops.get_vector_affinity) 4703 return NULL; 4704 4705 return device->ops.get_vector_affinity(device, comp_vector); 4706 4707 } 4708 4709 /** 4710 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4711 * and add their gids, as needed, to the relevant RoCE devices. 4712 * 4713 * @device: the rdma device 4714 */ 4715 void rdma_roce_rescan_device(struct ib_device *ibdev); 4716 4717 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4718 4719 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4720 4721 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4722 enum rdma_netdev_t type, const char *name, 4723 unsigned char name_assign_type, 4724 void (*setup)(struct net_device *)); 4725 4726 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4727 enum rdma_netdev_t type, const char *name, 4728 unsigned char name_assign_type, 4729 void (*setup)(struct net_device *), 4730 struct net_device *netdev); 4731 4732 /** 4733 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4734 * 4735 * @device: device pointer for which ib_device pointer to retrieve 4736 * 4737 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4738 * 4739 */ 4740 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4741 { 4742 struct ib_core_device *coredev = 4743 container_of(device, struct ib_core_device, dev); 4744 4745 return coredev->owner; 4746 } 4747 4748 /** 4749 * ibdev_to_node - return the NUMA node for a given ib_device 4750 * @dev: device to get the NUMA node for. 4751 */ 4752 static inline int ibdev_to_node(struct ib_device *ibdev) 4753 { 4754 struct device *parent = ibdev->dev.parent; 4755 4756 if (!parent) 4757 return NUMA_NO_NODE; 4758 return dev_to_node(parent); 4759 } 4760 4761 /** 4762 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4763 * ib_device holder structure from device pointer. 4764 * 4765 * NOTE: New drivers should not make use of this API; This API is only for 4766 * existing drivers who have exposed sysfs entries using 4767 * ops->device_group. 4768 */ 4769 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4770 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4771 4772 bool rdma_dev_access_netns(const struct ib_device *device, 4773 const struct net *net); 4774 4775 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4776 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4777 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4778 4779 /** 4780 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4781 * on the flow_label 4782 * 4783 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4784 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4785 * convention. 4786 */ 4787 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4788 { 4789 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4790 4791 fl_low ^= fl_high >> 14; 4792 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4793 } 4794 4795 /** 4796 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4797 * local and remote qpn values 4798 * 4799 * This function folded the multiplication results of two qpns, 24 bit each, 4800 * fields, and converts it to a 20 bit results. 4801 * 4802 * This function will create symmetric flow_label value based on the local 4803 * and remote qpn values. this will allow both the requester and responder 4804 * to calculate the same flow_label for a given connection. 4805 * 4806 * This helper function should be used by driver in case the upper layer 4807 * provide a zero flow_label value. This is to improve entropy of RDMA 4808 * traffic in the network. 4809 */ 4810 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4811 { 4812 u64 v = (u64)lqpn * rqpn; 4813 4814 v ^= v >> 20; 4815 v ^= v >> 40; 4816 4817 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4818 } 4819 4820 /** 4821 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4822 * label. If flow label is not defined in GRH then 4823 * calculate it based on lqpn/rqpn. 4824 * 4825 * @fl: flow label from GRH 4826 * @lqpn: local qp number 4827 * @rqpn: remote qp number 4828 */ 4829 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4830 { 4831 if (!fl) 4832 fl = rdma_calc_flow_label(lqpn, rqpn); 4833 4834 return rdma_flow_label_to_udp_sport(fl); 4835 } 4836 4837 const struct ib_port_immutable* 4838 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4839 #endif /* IB_VERBS_H */ 4840