xref: /linux/include/rdma/ib_verbs.h (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 
46 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47 
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55 
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59 
60 struct ib_ucq_object;
61 
62 __printf(3, 4) __cold
63 void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 		  const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77 __printf(2, 3) __cold
78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79 
80 #if defined(CONFIG_DYNAMIC_DEBUG) || \
81 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82 #define ibdev_dbg(__dev, format, args...)                       \
83 	dynamic_ibdev_dbg(__dev, format, ##args)
84 #else
85 __printf(2, 3) __cold
86 static inline
87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88 #endif
89 
90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
91 do {                                                                    \
92 	static DEFINE_RATELIMIT_STATE(_rs,                              \
93 				      DEFAULT_RATELIMIT_INTERVAL,       \
94 				      DEFAULT_RATELIMIT_BURST);         \
95 	if (__ratelimit(&_rs))                                          \
96 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
97 } while (0)
98 
99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113 
114 #if defined(CONFIG_DYNAMIC_DEBUG) || \
115 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118 do {                                                                    \
119 	static DEFINE_RATELIMIT_STATE(_rs,                              \
120 				      DEFAULT_RATELIMIT_INTERVAL,       \
121 				      DEFAULT_RATELIMIT_BURST);         \
122 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125 				    ##__VA_ARGS__);                     \
126 } while (0)
127 #else
128 __printf(2, 3) __cold
129 static inline
130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131 #endif
132 
133 union ib_gid {
134 	u8	raw[16];
135 	struct {
136 		__be64	subnet_prefix;
137 		__be64	interface_id;
138 	} global;
139 };
140 
141 extern union ib_gid zgid;
142 
143 enum ib_gid_type {
144 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 	IB_GID_TYPE_SIZE
148 };
149 
150 #define ROCE_V2_UDP_DPORT      4791
151 struct ib_gid_attr {
152 	struct net_device __rcu	*ndev;
153 	struct ib_device	*device;
154 	union ib_gid		gid;
155 	enum ib_gid_type	gid_type;
156 	u16			index;
157 	u32			port_num;
158 };
159 
160 enum {
161 	/* set the local administered indication */
162 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
163 };
164 
165 enum rdma_transport_type {
166 	RDMA_TRANSPORT_IB,
167 	RDMA_TRANSPORT_IWARP,
168 	RDMA_TRANSPORT_USNIC,
169 	RDMA_TRANSPORT_USNIC_UDP,
170 	RDMA_TRANSPORT_UNSPECIFIED,
171 };
172 
173 enum rdma_protocol_type {
174 	RDMA_PROTOCOL_IB,
175 	RDMA_PROTOCOL_IBOE,
176 	RDMA_PROTOCOL_IWARP,
177 	RDMA_PROTOCOL_USNIC_UDP
178 };
179 
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(unsigned int node_type);
182 
183 enum rdma_network_type {
184 	RDMA_NETWORK_IB,
185 	RDMA_NETWORK_ROCE_V1,
186 	RDMA_NETWORK_IPV4,
187 	RDMA_NETWORK_IPV6
188 };
189 
190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191 {
192 	if (network_type == RDMA_NETWORK_IPV4 ||
193 	    network_type == RDMA_NETWORK_IPV6)
194 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 	else if (network_type == RDMA_NETWORK_ROCE_V1)
196 		return IB_GID_TYPE_ROCE;
197 	else
198 		return IB_GID_TYPE_IB;
199 }
200 
201 static inline enum rdma_network_type
202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203 {
204 	if (attr->gid_type == IB_GID_TYPE_IB)
205 		return RDMA_NETWORK_IB;
206 
207 	if (attr->gid_type == IB_GID_TYPE_ROCE)
208 		return RDMA_NETWORK_ROCE_V1;
209 
210 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211 		return RDMA_NETWORK_IPV4;
212 	else
213 		return RDMA_NETWORK_IPV6;
214 }
215 
216 enum rdma_link_layer {
217 	IB_LINK_LAYER_UNSPECIFIED,
218 	IB_LINK_LAYER_INFINIBAND,
219 	IB_LINK_LAYER_ETHERNET,
220 };
221 
222 enum ib_device_cap_flags {
223 	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238 
239 	/* Reserved, old SEND_W_INV = 1 << 16,*/
240 	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 	/*
242 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 	 * messages and can verify the validity of checksum for
245 	 * incoming messages.  Setting this flag implies that the
246 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 	 */
248 	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250 
251 	/*
252 	 * This device supports the IB "base memory management extension",
253 	 * which includes support for fast registrations (IB_WR_REG_MR,
254 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
255 	 * also be set by any iWarp device which must support FRs to comply
256 	 * to the iWarp verbs spec.  iWarp devices also support the
257 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 	 * stag.
259 	 */
260 	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 	IB_DEVICE_MANAGED_FLOW_STEERING =
267 		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 	/* The device supports padding incoming writes to cacheline. */
271 	IB_DEVICE_PCI_WRITE_END_PADDING =
272 		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 	/* Placement type attributes */
274 	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277 };
278 
279 enum ib_kernel_cap_flags {
280 	/*
281 	 * This device supports a per-device lkey or stag that can be
282 	 * used without performing a memory registration for the local
283 	 * memory.  Note that ULPs should never check this flag, but
284 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 	 * which will always contain a usable lkey.
286 	 */
287 	IBK_LOCAL_DMA_LKEY = 1 << 0,
288 	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 	IBK_INTEGRITY_HANDOVER = 1 << 1,
290 	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 	IBK_ON_DEMAND_PAGING = 1 << 2,
292 	/* IB_MR_TYPE_SG_GAPS is supported */
293 	IBK_SG_GAPS_REG = 1 << 3,
294 	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 	IBK_ALLOW_USER_UNREG = 1 << 4,
296 
297 	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300 	IBK_UD_TSO = 1 << 6,
301 	/* iopib will use the device ops:
302 	 *   get_vf_config
303 	 *   get_vf_guid
304 	 *   get_vf_stats
305 	 *   set_vf_guid
306 	 *   set_vf_link_state
307 	 */
308 	IBK_VIRTUAL_FUNCTION = 1 << 7,
309 	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 	IBK_RDMA_NETDEV_OPA = 1 << 8,
311 };
312 
313 enum ib_atomic_cap {
314 	IB_ATOMIC_NONE,
315 	IB_ATOMIC_HCA,
316 	IB_ATOMIC_GLOB
317 };
318 
319 enum ib_odp_general_cap_bits {
320 	IB_ODP_SUPPORT		= 1 << 0,
321 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322 };
323 
324 enum ib_odp_transport_cap_bits {
325 	IB_ODP_SUPPORT_SEND	= 1 << 0,
326 	IB_ODP_SUPPORT_RECV	= 1 << 1,
327 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
328 	IB_ODP_SUPPORT_READ	= 1 << 3,
329 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
330 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
331 };
332 
333 struct ib_odp_caps {
334 	uint64_t general_caps;
335 	struct {
336 		uint32_t  rc_odp_caps;
337 		uint32_t  uc_odp_caps;
338 		uint32_t  ud_odp_caps;
339 		uint32_t  xrc_odp_caps;
340 	} per_transport_caps;
341 };
342 
343 struct ib_rss_caps {
344 	/* Corresponding bit will be set if qp type from
345 	 * 'enum ib_qp_type' is supported, e.g.
346 	 * supported_qpts |= 1 << IB_QPT_UD
347 	 */
348 	u32 supported_qpts;
349 	u32 max_rwq_indirection_tables;
350 	u32 max_rwq_indirection_table_size;
351 };
352 
353 enum ib_tm_cap_flags {
354 	/*  Support tag matching with rendezvous offload for RC transport */
355 	IB_TM_CAP_RNDV_RC = 1 << 0,
356 };
357 
358 struct ib_tm_caps {
359 	/* Max size of RNDV header */
360 	u32 max_rndv_hdr_size;
361 	/* Max number of entries in tag matching list */
362 	u32 max_num_tags;
363 	/* From enum ib_tm_cap_flags */
364 	u32 flags;
365 	/* Max number of outstanding list operations */
366 	u32 max_ops;
367 	/* Max number of SGE in tag matching entry */
368 	u32 max_sge;
369 };
370 
371 struct ib_cq_init_attr {
372 	unsigned int	cqe;
373 	u32		comp_vector;
374 	u32		flags;
375 };
376 
377 enum ib_cq_attr_mask {
378 	IB_CQ_MODERATE = 1 << 0,
379 };
380 
381 struct ib_cq_caps {
382 	u16     max_cq_moderation_count;
383 	u16     max_cq_moderation_period;
384 };
385 
386 struct ib_dm_mr_attr {
387 	u64		length;
388 	u64		offset;
389 	u32		access_flags;
390 };
391 
392 struct ib_dm_alloc_attr {
393 	u64	length;
394 	u32	alignment;
395 	u32	flags;
396 };
397 
398 struct ib_device_attr {
399 	u64			fw_ver;
400 	__be64			sys_image_guid;
401 	u64			max_mr_size;
402 	u64			page_size_cap;
403 	u32			vendor_id;
404 	u32			vendor_part_id;
405 	u32			hw_ver;
406 	int			max_qp;
407 	int			max_qp_wr;
408 	u64			device_cap_flags;
409 	u64			kernel_cap_flags;
410 	int			max_send_sge;
411 	int			max_recv_sge;
412 	int			max_sge_rd;
413 	int			max_cq;
414 	int			max_cqe;
415 	int			max_mr;
416 	int			max_pd;
417 	int			max_qp_rd_atom;
418 	int			max_ee_rd_atom;
419 	int			max_res_rd_atom;
420 	int			max_qp_init_rd_atom;
421 	int			max_ee_init_rd_atom;
422 	enum ib_atomic_cap	atomic_cap;
423 	enum ib_atomic_cap	masked_atomic_cap;
424 	int			max_ee;
425 	int			max_rdd;
426 	int			max_mw;
427 	int			max_raw_ipv6_qp;
428 	int			max_raw_ethy_qp;
429 	int			max_mcast_grp;
430 	int			max_mcast_qp_attach;
431 	int			max_total_mcast_qp_attach;
432 	int			max_ah;
433 	int			max_srq;
434 	int			max_srq_wr;
435 	int			max_srq_sge;
436 	unsigned int		max_fast_reg_page_list_len;
437 	unsigned int		max_pi_fast_reg_page_list_len;
438 	u16			max_pkeys;
439 	u8			local_ca_ack_delay;
440 	int			sig_prot_cap;
441 	int			sig_guard_cap;
442 	struct ib_odp_caps	odp_caps;
443 	uint64_t		timestamp_mask;
444 	uint64_t		hca_core_clock; /* in KHZ */
445 	struct ib_rss_caps	rss_caps;
446 	u32			max_wq_type_rq;
447 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 	struct ib_tm_caps	tm_caps;
449 	struct ib_cq_caps       cq_caps;
450 	u64			max_dm_size;
451 	/* Max entries for sgl for optimized performance per READ */
452 	u32			max_sgl_rd;
453 };
454 
455 enum ib_mtu {
456 	IB_MTU_256  = 1,
457 	IB_MTU_512  = 2,
458 	IB_MTU_1024 = 3,
459 	IB_MTU_2048 = 4,
460 	IB_MTU_4096 = 5
461 };
462 
463 enum opa_mtu {
464 	OPA_MTU_8192 = 6,
465 	OPA_MTU_10240 = 7
466 };
467 
468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469 {
470 	switch (mtu) {
471 	case IB_MTU_256:  return  256;
472 	case IB_MTU_512:  return  512;
473 	case IB_MTU_1024: return 1024;
474 	case IB_MTU_2048: return 2048;
475 	case IB_MTU_4096: return 4096;
476 	default: 	  return -1;
477 	}
478 }
479 
480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481 {
482 	if (mtu >= 4096)
483 		return IB_MTU_4096;
484 	else if (mtu >= 2048)
485 		return IB_MTU_2048;
486 	else if (mtu >= 1024)
487 		return IB_MTU_1024;
488 	else if (mtu >= 512)
489 		return IB_MTU_512;
490 	else
491 		return IB_MTU_256;
492 }
493 
494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495 {
496 	switch (mtu) {
497 	case OPA_MTU_8192:
498 		return 8192;
499 	case OPA_MTU_10240:
500 		return 10240;
501 	default:
502 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503 	}
504 }
505 
506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507 {
508 	if (mtu >= 10240)
509 		return OPA_MTU_10240;
510 	else if (mtu >= 8192)
511 		return OPA_MTU_8192;
512 	else
513 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514 }
515 
516 enum ib_port_state {
517 	IB_PORT_NOP		= 0,
518 	IB_PORT_DOWN		= 1,
519 	IB_PORT_INIT		= 2,
520 	IB_PORT_ARMED		= 3,
521 	IB_PORT_ACTIVE		= 4,
522 	IB_PORT_ACTIVE_DEFER	= 5
523 };
524 
525 enum ib_port_phys_state {
526 	IB_PORT_PHYS_STATE_SLEEP = 1,
527 	IB_PORT_PHYS_STATE_POLLING = 2,
528 	IB_PORT_PHYS_STATE_DISABLED = 3,
529 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 	IB_PORT_PHYS_STATE_LINK_UP = 5,
531 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
533 };
534 
535 enum ib_port_width {
536 	IB_WIDTH_1X	= 1,
537 	IB_WIDTH_2X	= 16,
538 	IB_WIDTH_4X	= 2,
539 	IB_WIDTH_8X	= 4,
540 	IB_WIDTH_12X	= 8
541 };
542 
543 static inline int ib_width_enum_to_int(enum ib_port_width width)
544 {
545 	switch (width) {
546 	case IB_WIDTH_1X:  return  1;
547 	case IB_WIDTH_2X:  return  2;
548 	case IB_WIDTH_4X:  return  4;
549 	case IB_WIDTH_8X:  return  8;
550 	case IB_WIDTH_12X: return 12;
551 	default: 	  return -1;
552 	}
553 }
554 
555 enum ib_port_speed {
556 	IB_SPEED_SDR	= 1,
557 	IB_SPEED_DDR	= 2,
558 	IB_SPEED_QDR	= 4,
559 	IB_SPEED_FDR10	= 8,
560 	IB_SPEED_FDR	= 16,
561 	IB_SPEED_EDR	= 32,
562 	IB_SPEED_HDR	= 64,
563 	IB_SPEED_NDR	= 128,
564 	IB_SPEED_XDR	= 256,
565 };
566 
567 enum ib_stat_flag {
568 	IB_STAT_FLAG_OPTIONAL = 1 << 0,
569 };
570 
571 /**
572  * struct rdma_stat_desc
573  * @name - The name of the counter
574  * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575  * @priv - Driver private information; Core code should not use
576  */
577 struct rdma_stat_desc {
578 	const char *name;
579 	unsigned int flags;
580 	const void *priv;
581 };
582 
583 /**
584  * struct rdma_hw_stats
585  * @lock - Mutex to protect parallel write access to lifespan and values
586  *    of counters, which are 64bits and not guaranteed to be written
587  *    atomicaly on 32bits systems.
588  * @timestamp - Used by the core code to track when the last update was
589  * @lifespan - Used by the core code to determine how old the counters
590  *   should be before being updated again.  Stored in jiffies, defaults
591  *   to 10 milliseconds, drivers can override the default be specifying
592  *   their own value during their allocation routine.
593  * @descs - Array of pointers to static descriptors used for the counters
594  *   in directory.
595  * @is_disabled - A bitmap to indicate each counter is currently disabled
596  *   or not.
597  * @num_counters - How many hardware counters there are.  If name is
598  *   shorter than this number, a kernel oops will result.  Driver authors
599  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600  *   in their code to prevent this.
601  * @value - Array of u64 counters that are accessed by the sysfs code and
602  *   filled in by the drivers get_stats routine
603  */
604 struct rdma_hw_stats {
605 	struct mutex	lock; /* Protect lifespan and values[] */
606 	unsigned long	timestamp;
607 	unsigned long	lifespan;
608 	const struct rdma_stat_desc *descs;
609 	unsigned long	*is_disabled;
610 	int		num_counters;
611 	u64		value[] __counted_by(num_counters);
612 };
613 
614 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615 
616 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617 	const struct rdma_stat_desc *descs, int num_counters,
618 	unsigned long lifespan);
619 
620 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621 
622 /* Define bits for the various functionality this port needs to be supported by
623  * the core.
624  */
625 /* Management                           0x00000FFF */
626 #define RDMA_CORE_CAP_IB_MAD            0x00000001
627 #define RDMA_CORE_CAP_IB_SMI            0x00000002
628 #define RDMA_CORE_CAP_IB_CM             0x00000004
629 #define RDMA_CORE_CAP_IW_CM             0x00000008
630 #define RDMA_CORE_CAP_IB_SA             0x00000010
631 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
632 
633 /* Address format                       0x000FF000 */
634 #define RDMA_CORE_CAP_AF_IB             0x00001000
635 #define RDMA_CORE_CAP_ETH_AH            0x00002000
636 #define RDMA_CORE_CAP_OPA_AH            0x00004000
637 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
638 
639 /* Protocol                             0xFFF00000 */
640 #define RDMA_CORE_CAP_PROT_IB           0x00100000
641 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
642 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
643 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
645 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
646 
647 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648 					| RDMA_CORE_CAP_PROT_ROCE     \
649 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650 
651 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
652 					| RDMA_CORE_CAP_IB_MAD \
653 					| RDMA_CORE_CAP_IB_SMI \
654 					| RDMA_CORE_CAP_IB_CM  \
655 					| RDMA_CORE_CAP_IB_SA  \
656 					| RDMA_CORE_CAP_AF_IB)
657 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
658 					| RDMA_CORE_CAP_IB_MAD  \
659 					| RDMA_CORE_CAP_IB_CM   \
660 					| RDMA_CORE_CAP_AF_IB   \
661 					| RDMA_CORE_CAP_ETH_AH)
662 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
663 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664 					| RDMA_CORE_CAP_IB_MAD  \
665 					| RDMA_CORE_CAP_IB_CM   \
666 					| RDMA_CORE_CAP_AF_IB   \
667 					| RDMA_CORE_CAP_ETH_AH)
668 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
669 					| RDMA_CORE_CAP_IW_CM)
670 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
671 					| RDMA_CORE_CAP_OPA_MAD)
672 
673 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
674 
675 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
676 
677 struct ib_port_attr {
678 	u64			subnet_prefix;
679 	enum ib_port_state	state;
680 	enum ib_mtu		max_mtu;
681 	enum ib_mtu		active_mtu;
682 	u32                     phys_mtu;
683 	int			gid_tbl_len;
684 	unsigned int		ip_gids:1;
685 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
686 	u32			port_cap_flags;
687 	u32			max_msg_sz;
688 	u32			bad_pkey_cntr;
689 	u32			qkey_viol_cntr;
690 	u16			pkey_tbl_len;
691 	u32			sm_lid;
692 	u32			lid;
693 	u8			lmc;
694 	u8			max_vl_num;
695 	u8			sm_sl;
696 	u8			subnet_timeout;
697 	u8			init_type_reply;
698 	u8			active_width;
699 	u16			active_speed;
700 	u8                      phys_state;
701 	u16			port_cap_flags2;
702 };
703 
704 enum ib_device_modify_flags {
705 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
706 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
707 };
708 
709 #define IB_DEVICE_NODE_DESC_MAX 64
710 
711 struct ib_device_modify {
712 	u64	sys_image_guid;
713 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
714 };
715 
716 enum ib_port_modify_flags {
717 	IB_PORT_SHUTDOWN		= 1,
718 	IB_PORT_INIT_TYPE		= (1<<2),
719 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
720 	IB_PORT_OPA_MASK_CHG		= (1<<4)
721 };
722 
723 struct ib_port_modify {
724 	u32	set_port_cap_mask;
725 	u32	clr_port_cap_mask;
726 	u8	init_type;
727 };
728 
729 enum ib_event_type {
730 	IB_EVENT_CQ_ERR,
731 	IB_EVENT_QP_FATAL,
732 	IB_EVENT_QP_REQ_ERR,
733 	IB_EVENT_QP_ACCESS_ERR,
734 	IB_EVENT_COMM_EST,
735 	IB_EVENT_SQ_DRAINED,
736 	IB_EVENT_PATH_MIG,
737 	IB_EVENT_PATH_MIG_ERR,
738 	IB_EVENT_DEVICE_FATAL,
739 	IB_EVENT_PORT_ACTIVE,
740 	IB_EVENT_PORT_ERR,
741 	IB_EVENT_LID_CHANGE,
742 	IB_EVENT_PKEY_CHANGE,
743 	IB_EVENT_SM_CHANGE,
744 	IB_EVENT_SRQ_ERR,
745 	IB_EVENT_SRQ_LIMIT_REACHED,
746 	IB_EVENT_QP_LAST_WQE_REACHED,
747 	IB_EVENT_CLIENT_REREGISTER,
748 	IB_EVENT_GID_CHANGE,
749 	IB_EVENT_WQ_FATAL,
750 };
751 
752 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753 
754 struct ib_event {
755 	struct ib_device	*device;
756 	union {
757 		struct ib_cq	*cq;
758 		struct ib_qp	*qp;
759 		struct ib_srq	*srq;
760 		struct ib_wq	*wq;
761 		u32		port_num;
762 	} element;
763 	enum ib_event_type	event;
764 };
765 
766 struct ib_event_handler {
767 	struct ib_device *device;
768 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
769 	struct list_head  list;
770 };
771 
772 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
773 	do {							\
774 		(_ptr)->device  = _device;			\
775 		(_ptr)->handler = _handler;			\
776 		INIT_LIST_HEAD(&(_ptr)->list);			\
777 	} while (0)
778 
779 struct ib_global_route {
780 	const struct ib_gid_attr *sgid_attr;
781 	union ib_gid	dgid;
782 	u32		flow_label;
783 	u8		sgid_index;
784 	u8		hop_limit;
785 	u8		traffic_class;
786 };
787 
788 struct ib_grh {
789 	__be32		version_tclass_flow;
790 	__be16		paylen;
791 	u8		next_hdr;
792 	u8		hop_limit;
793 	union ib_gid	sgid;
794 	union ib_gid	dgid;
795 };
796 
797 union rdma_network_hdr {
798 	struct ib_grh ibgrh;
799 	struct {
800 		/* The IB spec states that if it's IPv4, the header
801 		 * is located in the last 20 bytes of the header.
802 		 */
803 		u8		reserved[20];
804 		struct iphdr	roce4grh;
805 	};
806 };
807 
808 #define IB_QPN_MASK		0xFFFFFF
809 
810 enum {
811 	IB_MULTICAST_QPN = 0xffffff
812 };
813 
814 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
815 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
816 
817 enum ib_ah_flags {
818 	IB_AH_GRH	= 1
819 };
820 
821 enum ib_rate {
822 	IB_RATE_PORT_CURRENT = 0,
823 	IB_RATE_2_5_GBPS = 2,
824 	IB_RATE_5_GBPS   = 5,
825 	IB_RATE_10_GBPS  = 3,
826 	IB_RATE_20_GBPS  = 6,
827 	IB_RATE_30_GBPS  = 4,
828 	IB_RATE_40_GBPS  = 7,
829 	IB_RATE_60_GBPS  = 8,
830 	IB_RATE_80_GBPS  = 9,
831 	IB_RATE_120_GBPS = 10,
832 	IB_RATE_14_GBPS  = 11,
833 	IB_RATE_56_GBPS  = 12,
834 	IB_RATE_112_GBPS = 13,
835 	IB_RATE_168_GBPS = 14,
836 	IB_RATE_25_GBPS  = 15,
837 	IB_RATE_100_GBPS = 16,
838 	IB_RATE_200_GBPS = 17,
839 	IB_RATE_300_GBPS = 18,
840 	IB_RATE_28_GBPS  = 19,
841 	IB_RATE_50_GBPS  = 20,
842 	IB_RATE_400_GBPS = 21,
843 	IB_RATE_600_GBPS = 22,
844 	IB_RATE_800_GBPS = 23,
845 };
846 
847 /**
848  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
850  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851  * @rate: rate to convert.
852  */
853 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854 
855 /**
856  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858  * @rate: rate to convert.
859  */
860 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861 
862 
863 /**
864  * enum ib_mr_type - memory region type
865  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
866  *                            normal registration
867  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
868  *                            register any arbitrary sg lists (without
869  *                            the normal mr constraints - see
870  *                            ib_map_mr_sg)
871  * @IB_MR_TYPE_DM:            memory region that is used for device
872  *                            memory registration
873  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
874  *                            application
875  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
876  *                            without address translations (VA=PA)
877  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
878  *                            data integrity operations
879  */
880 enum ib_mr_type {
881 	IB_MR_TYPE_MEM_REG,
882 	IB_MR_TYPE_SG_GAPS,
883 	IB_MR_TYPE_DM,
884 	IB_MR_TYPE_USER,
885 	IB_MR_TYPE_DMA,
886 	IB_MR_TYPE_INTEGRITY,
887 };
888 
889 enum ib_mr_status_check {
890 	IB_MR_CHECK_SIG_STATUS = 1,
891 };
892 
893 /**
894  * struct ib_mr_status - Memory region status container
895  *
896  * @fail_status: Bitmask of MR checks status. For each
897  *     failed check a corresponding status bit is set.
898  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899  *     failure.
900  */
901 struct ib_mr_status {
902 	u32		    fail_status;
903 	struct ib_sig_err   sig_err;
904 };
905 
906 /**
907  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908  * enum.
909  * @mult: multiple to convert.
910  */
911 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912 
913 struct rdma_ah_init_attr {
914 	struct rdma_ah_attr *ah_attr;
915 	u32 flags;
916 	struct net_device *xmit_slave;
917 };
918 
919 enum rdma_ah_attr_type {
920 	RDMA_AH_ATTR_TYPE_UNDEFINED,
921 	RDMA_AH_ATTR_TYPE_IB,
922 	RDMA_AH_ATTR_TYPE_ROCE,
923 	RDMA_AH_ATTR_TYPE_OPA,
924 };
925 
926 struct ib_ah_attr {
927 	u16			dlid;
928 	u8			src_path_bits;
929 };
930 
931 struct roce_ah_attr {
932 	u8			dmac[ETH_ALEN];
933 };
934 
935 struct opa_ah_attr {
936 	u32			dlid;
937 	u8			src_path_bits;
938 	bool			make_grd;
939 };
940 
941 struct rdma_ah_attr {
942 	struct ib_global_route	grh;
943 	u8			sl;
944 	u8			static_rate;
945 	u32			port_num;
946 	u8			ah_flags;
947 	enum rdma_ah_attr_type type;
948 	union {
949 		struct ib_ah_attr ib;
950 		struct roce_ah_attr roce;
951 		struct opa_ah_attr opa;
952 	};
953 };
954 
955 enum ib_wc_status {
956 	IB_WC_SUCCESS,
957 	IB_WC_LOC_LEN_ERR,
958 	IB_WC_LOC_QP_OP_ERR,
959 	IB_WC_LOC_EEC_OP_ERR,
960 	IB_WC_LOC_PROT_ERR,
961 	IB_WC_WR_FLUSH_ERR,
962 	IB_WC_MW_BIND_ERR,
963 	IB_WC_BAD_RESP_ERR,
964 	IB_WC_LOC_ACCESS_ERR,
965 	IB_WC_REM_INV_REQ_ERR,
966 	IB_WC_REM_ACCESS_ERR,
967 	IB_WC_REM_OP_ERR,
968 	IB_WC_RETRY_EXC_ERR,
969 	IB_WC_RNR_RETRY_EXC_ERR,
970 	IB_WC_LOC_RDD_VIOL_ERR,
971 	IB_WC_REM_INV_RD_REQ_ERR,
972 	IB_WC_REM_ABORT_ERR,
973 	IB_WC_INV_EECN_ERR,
974 	IB_WC_INV_EEC_STATE_ERR,
975 	IB_WC_FATAL_ERR,
976 	IB_WC_RESP_TIMEOUT_ERR,
977 	IB_WC_GENERAL_ERR
978 };
979 
980 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981 
982 enum ib_wc_opcode {
983 	IB_WC_SEND = IB_UVERBS_WC_SEND,
984 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990 	IB_WC_LSO = IB_UVERBS_WC_TSO,
991 	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992 	IB_WC_REG_MR,
993 	IB_WC_MASKED_COMP_SWAP,
994 	IB_WC_MASKED_FETCH_ADD,
995 	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996 /*
997  * Set value of IB_WC_RECV so consumers can test if a completion is a
998  * receive by testing (opcode & IB_WC_RECV).
999  */
1000 	IB_WC_RECV			= 1 << 7,
1001 	IB_WC_RECV_RDMA_WITH_IMM
1002 };
1003 
1004 enum ib_wc_flags {
1005 	IB_WC_GRH		= 1,
1006 	IB_WC_WITH_IMM		= (1<<1),
1007 	IB_WC_WITH_INVALIDATE	= (1<<2),
1008 	IB_WC_IP_CSUM_OK	= (1<<3),
1009 	IB_WC_WITH_SMAC		= (1<<4),
1010 	IB_WC_WITH_VLAN		= (1<<5),
1011 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1012 };
1013 
1014 struct ib_wc {
1015 	union {
1016 		u64		wr_id;
1017 		struct ib_cqe	*wr_cqe;
1018 	};
1019 	enum ib_wc_status	status;
1020 	enum ib_wc_opcode	opcode;
1021 	u32			vendor_err;
1022 	u32			byte_len;
1023 	struct ib_qp	       *qp;
1024 	union {
1025 		__be32		imm_data;
1026 		u32		invalidate_rkey;
1027 	} ex;
1028 	u32			src_qp;
1029 	u32			slid;
1030 	int			wc_flags;
1031 	u16			pkey_index;
1032 	u8			sl;
1033 	u8			dlid_path_bits;
1034 	u32 port_num; /* valid only for DR SMPs on switches */
1035 	u8			smac[ETH_ALEN];
1036 	u16			vlan_id;
1037 	u8			network_hdr_type;
1038 };
1039 
1040 enum ib_cq_notify_flags {
1041 	IB_CQ_SOLICITED			= 1 << 0,
1042 	IB_CQ_NEXT_COMP			= 1 << 1,
1043 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1045 };
1046 
1047 enum ib_srq_type {
1048 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051 };
1052 
1053 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054 {
1055 	return srq_type == IB_SRQT_XRC ||
1056 	       srq_type == IB_SRQT_TM;
1057 }
1058 
1059 enum ib_srq_attr_mask {
1060 	IB_SRQ_MAX_WR	= 1 << 0,
1061 	IB_SRQ_LIMIT	= 1 << 1,
1062 };
1063 
1064 struct ib_srq_attr {
1065 	u32	max_wr;
1066 	u32	max_sge;
1067 	u32	srq_limit;
1068 };
1069 
1070 struct ib_srq_init_attr {
1071 	void		      (*event_handler)(struct ib_event *, void *);
1072 	void		       *srq_context;
1073 	struct ib_srq_attr	attr;
1074 	enum ib_srq_type	srq_type;
1075 
1076 	struct {
1077 		struct ib_cq   *cq;
1078 		union {
1079 			struct {
1080 				struct ib_xrcd *xrcd;
1081 			} xrc;
1082 
1083 			struct {
1084 				u32		max_num_tags;
1085 			} tag_matching;
1086 		};
1087 	} ext;
1088 };
1089 
1090 struct ib_qp_cap {
1091 	u32	max_send_wr;
1092 	u32	max_recv_wr;
1093 	u32	max_send_sge;
1094 	u32	max_recv_sge;
1095 	u32	max_inline_data;
1096 
1097 	/*
1098 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099 	 * ib_create_qp() will calculate the right amount of needed WRs
1100 	 * and MRs based on this.
1101 	 */
1102 	u32	max_rdma_ctxs;
1103 };
1104 
1105 enum ib_sig_type {
1106 	IB_SIGNAL_ALL_WR,
1107 	IB_SIGNAL_REQ_WR
1108 };
1109 
1110 enum ib_qp_type {
1111 	/*
1112 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113 	 * here (and in that order) since the MAD layer uses them as
1114 	 * indices into a 2-entry table.
1115 	 */
1116 	IB_QPT_SMI,
1117 	IB_QPT_GSI,
1118 
1119 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1120 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1121 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1122 	IB_QPT_RAW_IPV6,
1123 	IB_QPT_RAW_ETHERTYPE,
1124 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127 	IB_QPT_MAX,
1128 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129 	/* Reserve a range for qp types internal to the low level driver.
1130 	 * These qp types will not be visible at the IB core layer, so the
1131 	 * IB_QPT_MAX usages should not be affected in the core layer
1132 	 */
1133 	IB_QPT_RESERVED1 = 0x1000,
1134 	IB_QPT_RESERVED2,
1135 	IB_QPT_RESERVED3,
1136 	IB_QPT_RESERVED4,
1137 	IB_QPT_RESERVED5,
1138 	IB_QPT_RESERVED6,
1139 	IB_QPT_RESERVED7,
1140 	IB_QPT_RESERVED8,
1141 	IB_QPT_RESERVED9,
1142 	IB_QPT_RESERVED10,
1143 };
1144 
1145 enum ib_qp_create_flags {
1146 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1147 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1148 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1150 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1151 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1152 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1153 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1154 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1155 	IB_QP_CREATE_SCATTER_FCS		=
1156 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157 	IB_QP_CREATE_CVLAN_STRIPPING		=
1158 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1160 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1161 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162 	/* reserve bits 26-31 for low level drivers' internal use */
1163 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1164 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1165 };
1166 
1167 /*
1168  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169  * callback to destroy the passed in QP.
1170  */
1171 
1172 struct ib_qp_init_attr {
1173 	/* This callback occurs in workqueue context */
1174 	void                  (*event_handler)(struct ib_event *, void *);
1175 
1176 	void		       *qp_context;
1177 	struct ib_cq	       *send_cq;
1178 	struct ib_cq	       *recv_cq;
1179 	struct ib_srq	       *srq;
1180 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1181 	struct ib_qp_cap	cap;
1182 	enum ib_sig_type	sq_sig_type;
1183 	enum ib_qp_type		qp_type;
1184 	u32			create_flags;
1185 
1186 	/*
1187 	 * Only needed for special QP types, or when using the RW API.
1188 	 */
1189 	u32			port_num;
1190 	struct ib_rwq_ind_table *rwq_ind_tbl;
1191 	u32			source_qpn;
1192 };
1193 
1194 struct ib_qp_open_attr {
1195 	void                  (*event_handler)(struct ib_event *, void *);
1196 	void		       *qp_context;
1197 	u32			qp_num;
1198 	enum ib_qp_type		qp_type;
1199 };
1200 
1201 enum ib_rnr_timeout {
1202 	IB_RNR_TIMER_655_36 =  0,
1203 	IB_RNR_TIMER_000_01 =  1,
1204 	IB_RNR_TIMER_000_02 =  2,
1205 	IB_RNR_TIMER_000_03 =  3,
1206 	IB_RNR_TIMER_000_04 =  4,
1207 	IB_RNR_TIMER_000_06 =  5,
1208 	IB_RNR_TIMER_000_08 =  6,
1209 	IB_RNR_TIMER_000_12 =  7,
1210 	IB_RNR_TIMER_000_16 =  8,
1211 	IB_RNR_TIMER_000_24 =  9,
1212 	IB_RNR_TIMER_000_32 = 10,
1213 	IB_RNR_TIMER_000_48 = 11,
1214 	IB_RNR_TIMER_000_64 = 12,
1215 	IB_RNR_TIMER_000_96 = 13,
1216 	IB_RNR_TIMER_001_28 = 14,
1217 	IB_RNR_TIMER_001_92 = 15,
1218 	IB_RNR_TIMER_002_56 = 16,
1219 	IB_RNR_TIMER_003_84 = 17,
1220 	IB_RNR_TIMER_005_12 = 18,
1221 	IB_RNR_TIMER_007_68 = 19,
1222 	IB_RNR_TIMER_010_24 = 20,
1223 	IB_RNR_TIMER_015_36 = 21,
1224 	IB_RNR_TIMER_020_48 = 22,
1225 	IB_RNR_TIMER_030_72 = 23,
1226 	IB_RNR_TIMER_040_96 = 24,
1227 	IB_RNR_TIMER_061_44 = 25,
1228 	IB_RNR_TIMER_081_92 = 26,
1229 	IB_RNR_TIMER_122_88 = 27,
1230 	IB_RNR_TIMER_163_84 = 28,
1231 	IB_RNR_TIMER_245_76 = 29,
1232 	IB_RNR_TIMER_327_68 = 30,
1233 	IB_RNR_TIMER_491_52 = 31
1234 };
1235 
1236 enum ib_qp_attr_mask {
1237 	IB_QP_STATE			= 1,
1238 	IB_QP_CUR_STATE			= (1<<1),
1239 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1240 	IB_QP_ACCESS_FLAGS		= (1<<3),
1241 	IB_QP_PKEY_INDEX		= (1<<4),
1242 	IB_QP_PORT			= (1<<5),
1243 	IB_QP_QKEY			= (1<<6),
1244 	IB_QP_AV			= (1<<7),
1245 	IB_QP_PATH_MTU			= (1<<8),
1246 	IB_QP_TIMEOUT			= (1<<9),
1247 	IB_QP_RETRY_CNT			= (1<<10),
1248 	IB_QP_RNR_RETRY			= (1<<11),
1249 	IB_QP_RQ_PSN			= (1<<12),
1250 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1251 	IB_QP_ALT_PATH			= (1<<14),
1252 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1253 	IB_QP_SQ_PSN			= (1<<16),
1254 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1255 	IB_QP_PATH_MIG_STATE		= (1<<18),
1256 	IB_QP_CAP			= (1<<19),
1257 	IB_QP_DEST_QPN			= (1<<20),
1258 	IB_QP_RESERVED1			= (1<<21),
1259 	IB_QP_RESERVED2			= (1<<22),
1260 	IB_QP_RESERVED3			= (1<<23),
1261 	IB_QP_RESERVED4			= (1<<24),
1262 	IB_QP_RATE_LIMIT		= (1<<25),
1263 
1264 	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265 };
1266 
1267 enum ib_qp_state {
1268 	IB_QPS_RESET,
1269 	IB_QPS_INIT,
1270 	IB_QPS_RTR,
1271 	IB_QPS_RTS,
1272 	IB_QPS_SQD,
1273 	IB_QPS_SQE,
1274 	IB_QPS_ERR
1275 };
1276 
1277 enum ib_mig_state {
1278 	IB_MIG_MIGRATED,
1279 	IB_MIG_REARM,
1280 	IB_MIG_ARMED
1281 };
1282 
1283 enum ib_mw_type {
1284 	IB_MW_TYPE_1 = 1,
1285 	IB_MW_TYPE_2 = 2
1286 };
1287 
1288 struct ib_qp_attr {
1289 	enum ib_qp_state	qp_state;
1290 	enum ib_qp_state	cur_qp_state;
1291 	enum ib_mtu		path_mtu;
1292 	enum ib_mig_state	path_mig_state;
1293 	u32			qkey;
1294 	u32			rq_psn;
1295 	u32			sq_psn;
1296 	u32			dest_qp_num;
1297 	int			qp_access_flags;
1298 	struct ib_qp_cap	cap;
1299 	struct rdma_ah_attr	ah_attr;
1300 	struct rdma_ah_attr	alt_ah_attr;
1301 	u16			pkey_index;
1302 	u16			alt_pkey_index;
1303 	u8			en_sqd_async_notify;
1304 	u8			sq_draining;
1305 	u8			max_rd_atomic;
1306 	u8			max_dest_rd_atomic;
1307 	u8			min_rnr_timer;
1308 	u32			port_num;
1309 	u8			timeout;
1310 	u8			retry_cnt;
1311 	u8			rnr_retry;
1312 	u32			alt_port_num;
1313 	u8			alt_timeout;
1314 	u32			rate_limit;
1315 	struct net_device	*xmit_slave;
1316 };
1317 
1318 enum ib_wr_opcode {
1319 	/* These are shared with userspace */
1320 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1323 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1329 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336 	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337 	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338 
1339 	/* These are kernel only and can not be issued by userspace */
1340 	IB_WR_REG_MR = 0x20,
1341 	IB_WR_REG_MR_INTEGRITY,
1342 
1343 	/* reserve values for low level drivers' internal use.
1344 	 * These values will not be used at all in the ib core layer.
1345 	 */
1346 	IB_WR_RESERVED1 = 0xf0,
1347 	IB_WR_RESERVED2,
1348 	IB_WR_RESERVED3,
1349 	IB_WR_RESERVED4,
1350 	IB_WR_RESERVED5,
1351 	IB_WR_RESERVED6,
1352 	IB_WR_RESERVED7,
1353 	IB_WR_RESERVED8,
1354 	IB_WR_RESERVED9,
1355 	IB_WR_RESERVED10,
1356 };
1357 
1358 enum ib_send_flags {
1359 	IB_SEND_FENCE		= 1,
1360 	IB_SEND_SIGNALED	= (1<<1),
1361 	IB_SEND_SOLICITED	= (1<<2),
1362 	IB_SEND_INLINE		= (1<<3),
1363 	IB_SEND_IP_CSUM		= (1<<4),
1364 
1365 	/* reserve bits 26-31 for low level drivers' internal use */
1366 	IB_SEND_RESERVED_START	= (1 << 26),
1367 	IB_SEND_RESERVED_END	= (1 << 31),
1368 };
1369 
1370 struct ib_sge {
1371 	u64	addr;
1372 	u32	length;
1373 	u32	lkey;
1374 };
1375 
1376 struct ib_cqe {
1377 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378 };
1379 
1380 struct ib_send_wr {
1381 	struct ib_send_wr      *next;
1382 	union {
1383 		u64		wr_id;
1384 		struct ib_cqe	*wr_cqe;
1385 	};
1386 	struct ib_sge	       *sg_list;
1387 	int			num_sge;
1388 	enum ib_wr_opcode	opcode;
1389 	int			send_flags;
1390 	union {
1391 		__be32		imm_data;
1392 		u32		invalidate_rkey;
1393 	} ex;
1394 };
1395 
1396 struct ib_rdma_wr {
1397 	struct ib_send_wr	wr;
1398 	u64			remote_addr;
1399 	u32			rkey;
1400 };
1401 
1402 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403 {
1404 	return container_of(wr, struct ib_rdma_wr, wr);
1405 }
1406 
1407 struct ib_atomic_wr {
1408 	struct ib_send_wr	wr;
1409 	u64			remote_addr;
1410 	u64			compare_add;
1411 	u64			swap;
1412 	u64			compare_add_mask;
1413 	u64			swap_mask;
1414 	u32			rkey;
1415 };
1416 
1417 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418 {
1419 	return container_of(wr, struct ib_atomic_wr, wr);
1420 }
1421 
1422 struct ib_ud_wr {
1423 	struct ib_send_wr	wr;
1424 	struct ib_ah		*ah;
1425 	void			*header;
1426 	int			hlen;
1427 	int			mss;
1428 	u32			remote_qpn;
1429 	u32			remote_qkey;
1430 	u16			pkey_index; /* valid for GSI only */
1431 	u32			port_num; /* valid for DR SMPs on switch only */
1432 };
1433 
1434 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435 {
1436 	return container_of(wr, struct ib_ud_wr, wr);
1437 }
1438 
1439 struct ib_reg_wr {
1440 	struct ib_send_wr	wr;
1441 	struct ib_mr		*mr;
1442 	u32			key;
1443 	int			access;
1444 };
1445 
1446 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447 {
1448 	return container_of(wr, struct ib_reg_wr, wr);
1449 }
1450 
1451 struct ib_recv_wr {
1452 	struct ib_recv_wr      *next;
1453 	union {
1454 		u64		wr_id;
1455 		struct ib_cqe	*wr_cqe;
1456 	};
1457 	struct ib_sge	       *sg_list;
1458 	int			num_sge;
1459 };
1460 
1461 enum ib_access_flags {
1462 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471 	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472 	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473 
1474 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475 	IB_ACCESS_SUPPORTED =
1476 		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477 };
1478 
1479 /*
1480  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481  * are hidden here instead of a uapi header!
1482  */
1483 enum ib_mr_rereg_flags {
1484 	IB_MR_REREG_TRANS	= 1,
1485 	IB_MR_REREG_PD		= (1<<1),
1486 	IB_MR_REREG_ACCESS	= (1<<2),
1487 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1488 };
1489 
1490 struct ib_umem;
1491 
1492 enum rdma_remove_reason {
1493 	/*
1494 	 * Userspace requested uobject deletion or initial try
1495 	 * to remove uobject via cleanup. Call could fail
1496 	 */
1497 	RDMA_REMOVE_DESTROY,
1498 	/* Context deletion. This call should delete the actual object itself */
1499 	RDMA_REMOVE_CLOSE,
1500 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1501 	RDMA_REMOVE_DRIVER_REMOVE,
1502 	/* uobj is being cleaned-up before being committed */
1503 	RDMA_REMOVE_ABORT,
1504 	/* The driver failed to destroy the uobject and is being disconnected */
1505 	RDMA_REMOVE_DRIVER_FAILURE,
1506 };
1507 
1508 struct ib_rdmacg_object {
1509 #ifdef CONFIG_CGROUP_RDMA
1510 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1511 #endif
1512 };
1513 
1514 struct ib_ucontext {
1515 	struct ib_device       *device;
1516 	struct ib_uverbs_file  *ufile;
1517 
1518 	struct ib_rdmacg_object	cg_obj;
1519 	/*
1520 	 * Implementation details of the RDMA core, don't use in drivers:
1521 	 */
1522 	struct rdma_restrack_entry res;
1523 	struct xarray mmap_xa;
1524 };
1525 
1526 struct ib_uobject {
1527 	u64			user_handle;	/* handle given to us by userspace */
1528 	/* ufile & ucontext owning this object */
1529 	struct ib_uverbs_file  *ufile;
1530 	/* FIXME, save memory: ufile->context == context */
1531 	struct ib_ucontext     *context;	/* associated user context */
1532 	void		       *object;		/* containing object */
1533 	struct list_head	list;		/* link to context's list */
1534 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1535 	int			id;		/* index into kernel idr */
1536 	struct kref		ref;
1537 	atomic_t		usecnt;		/* protects exclusive access */
1538 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1539 
1540 	const struct uverbs_api_object *uapi_object;
1541 };
1542 
1543 struct ib_udata {
1544 	const void __user *inbuf;
1545 	void __user *outbuf;
1546 	size_t       inlen;
1547 	size_t       outlen;
1548 };
1549 
1550 struct ib_pd {
1551 	u32			local_dma_lkey;
1552 	u32			flags;
1553 	struct ib_device       *device;
1554 	struct ib_uobject      *uobject;
1555 	atomic_t          	usecnt; /* count all resources */
1556 
1557 	u32			unsafe_global_rkey;
1558 
1559 	/*
1560 	 * Implementation details of the RDMA core, don't use in drivers:
1561 	 */
1562 	struct ib_mr	       *__internal_mr;
1563 	struct rdma_restrack_entry res;
1564 };
1565 
1566 struct ib_xrcd {
1567 	struct ib_device       *device;
1568 	atomic_t		usecnt; /* count all exposed resources */
1569 	struct inode	       *inode;
1570 	struct rw_semaphore	tgt_qps_rwsem;
1571 	struct xarray		tgt_qps;
1572 };
1573 
1574 struct ib_ah {
1575 	struct ib_device	*device;
1576 	struct ib_pd		*pd;
1577 	struct ib_uobject	*uobject;
1578 	const struct ib_gid_attr *sgid_attr;
1579 	enum rdma_ah_attr_type	type;
1580 };
1581 
1582 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583 
1584 enum ib_poll_context {
1585 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1586 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1587 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589 
1590 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1591 };
1592 
1593 struct ib_cq {
1594 	struct ib_device       *device;
1595 	struct ib_ucq_object   *uobject;
1596 	ib_comp_handler   	comp_handler;
1597 	void                  (*event_handler)(struct ib_event *, void *);
1598 	void                   *cq_context;
1599 	int               	cqe;
1600 	unsigned int		cqe_used;
1601 	atomic_t          	usecnt; /* count number of work queues */
1602 	enum ib_poll_context	poll_ctx;
1603 	struct ib_wc		*wc;
1604 	struct list_head        pool_entry;
1605 	union {
1606 		struct irq_poll		iop;
1607 		struct work_struct	work;
1608 	};
1609 	struct workqueue_struct *comp_wq;
1610 	struct dim *dim;
1611 
1612 	/* updated only by trace points */
1613 	ktime_t timestamp;
1614 	u8 interrupt:1;
1615 	u8 shared:1;
1616 	unsigned int comp_vector;
1617 
1618 	/*
1619 	 * Implementation details of the RDMA core, don't use in drivers:
1620 	 */
1621 	struct rdma_restrack_entry res;
1622 };
1623 
1624 struct ib_srq {
1625 	struct ib_device       *device;
1626 	struct ib_pd	       *pd;
1627 	struct ib_usrq_object  *uobject;
1628 	void		      (*event_handler)(struct ib_event *, void *);
1629 	void		       *srq_context;
1630 	enum ib_srq_type	srq_type;
1631 	atomic_t		usecnt;
1632 
1633 	struct {
1634 		struct ib_cq   *cq;
1635 		union {
1636 			struct {
1637 				struct ib_xrcd *xrcd;
1638 				u32		srq_num;
1639 			} xrc;
1640 		};
1641 	} ext;
1642 
1643 	/*
1644 	 * Implementation details of the RDMA core, don't use in drivers:
1645 	 */
1646 	struct rdma_restrack_entry res;
1647 };
1648 
1649 enum ib_raw_packet_caps {
1650 	/*
1651 	 * Strip cvlan from incoming packet and report it in the matching work
1652 	 * completion is supported.
1653 	 */
1654 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655 		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656 	/*
1657 	 * Scatter FCS field of an incoming packet to host memory is supported.
1658 	 */
1659 	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660 	/* Checksum offloads are supported (for both send and receive). */
1661 	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662 	/*
1663 	 * When a packet is received for an RQ with no receive WQEs, the
1664 	 * packet processing is delayed.
1665 	 */
1666 	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667 };
1668 
1669 enum ib_wq_type {
1670 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671 };
1672 
1673 enum ib_wq_state {
1674 	IB_WQS_RESET,
1675 	IB_WQS_RDY,
1676 	IB_WQS_ERR
1677 };
1678 
1679 struct ib_wq {
1680 	struct ib_device       *device;
1681 	struct ib_uwq_object   *uobject;
1682 	void		    *wq_context;
1683 	void		    (*event_handler)(struct ib_event *, void *);
1684 	struct ib_pd	       *pd;
1685 	struct ib_cq	       *cq;
1686 	u32		wq_num;
1687 	enum ib_wq_state       state;
1688 	enum ib_wq_type	wq_type;
1689 	atomic_t		usecnt;
1690 };
1691 
1692 enum ib_wq_flags {
1693 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698 };
1699 
1700 struct ib_wq_init_attr {
1701 	void		       *wq_context;
1702 	enum ib_wq_type	wq_type;
1703 	u32		max_wr;
1704 	u32		max_sge;
1705 	struct	ib_cq	       *cq;
1706 	void		    (*event_handler)(struct ib_event *, void *);
1707 	u32		create_flags; /* Use enum ib_wq_flags */
1708 };
1709 
1710 enum ib_wq_attr_mask {
1711 	IB_WQ_STATE		= 1 << 0,
1712 	IB_WQ_CUR_STATE		= 1 << 1,
1713 	IB_WQ_FLAGS		= 1 << 2,
1714 };
1715 
1716 struct ib_wq_attr {
1717 	enum	ib_wq_state	wq_state;
1718 	enum	ib_wq_state	curr_wq_state;
1719 	u32			flags; /* Use enum ib_wq_flags */
1720 	u32			flags_mask; /* Use enum ib_wq_flags */
1721 };
1722 
1723 struct ib_rwq_ind_table {
1724 	struct ib_device	*device;
1725 	struct ib_uobject      *uobject;
1726 	atomic_t		usecnt;
1727 	u32		ind_tbl_num;
1728 	u32		log_ind_tbl_size;
1729 	struct ib_wq	**ind_tbl;
1730 };
1731 
1732 struct ib_rwq_ind_table_init_attr {
1733 	u32		log_ind_tbl_size;
1734 	/* Each entry is a pointer to Receive Work Queue */
1735 	struct ib_wq	**ind_tbl;
1736 };
1737 
1738 enum port_pkey_state {
1739 	IB_PORT_PKEY_NOT_VALID = 0,
1740 	IB_PORT_PKEY_VALID = 1,
1741 	IB_PORT_PKEY_LISTED = 2,
1742 };
1743 
1744 struct ib_qp_security;
1745 
1746 struct ib_port_pkey {
1747 	enum port_pkey_state	state;
1748 	u16			pkey_index;
1749 	u32			port_num;
1750 	struct list_head	qp_list;
1751 	struct list_head	to_error_list;
1752 	struct ib_qp_security  *sec;
1753 };
1754 
1755 struct ib_ports_pkeys {
1756 	struct ib_port_pkey	main;
1757 	struct ib_port_pkey	alt;
1758 };
1759 
1760 struct ib_qp_security {
1761 	struct ib_qp	       *qp;
1762 	struct ib_device       *dev;
1763 	/* Hold this mutex when changing port and pkey settings. */
1764 	struct mutex		mutex;
1765 	struct ib_ports_pkeys  *ports_pkeys;
1766 	/* A list of all open shared QP handles.  Required to enforce security
1767 	 * properly for all users of a shared QP.
1768 	 */
1769 	struct list_head        shared_qp_list;
1770 	void                   *security;
1771 	bool			destroying;
1772 	atomic_t		error_list_count;
1773 	struct completion	error_complete;
1774 	int			error_comps_pending;
1775 };
1776 
1777 /*
1778  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1780  */
1781 struct ib_qp {
1782 	struct ib_device       *device;
1783 	struct ib_pd	       *pd;
1784 	struct ib_cq	       *send_cq;
1785 	struct ib_cq	       *recv_cq;
1786 	spinlock_t		mr_lock;
1787 	int			mrs_used;
1788 	struct list_head	rdma_mrs;
1789 	struct list_head	sig_mrs;
1790 	struct ib_srq	       *srq;
1791 	struct completion	srq_completion;
1792 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1793 	struct list_head	xrcd_list;
1794 
1795 	/* count times opened, mcast attaches, flow attaches */
1796 	atomic_t		usecnt;
1797 	struct list_head	open_list;
1798 	struct ib_qp           *real_qp;
1799 	struct ib_uqp_object   *uobject;
1800 	void                  (*event_handler)(struct ib_event *, void *);
1801 	void                  (*registered_event_handler)(struct ib_event *, void *);
1802 	void		       *qp_context;
1803 	/* sgid_attrs associated with the AV's */
1804 	const struct ib_gid_attr *av_sgid_attr;
1805 	const struct ib_gid_attr *alt_path_sgid_attr;
1806 	u32			qp_num;
1807 	u32			max_write_sge;
1808 	u32			max_read_sge;
1809 	enum ib_qp_type		qp_type;
1810 	struct ib_rwq_ind_table *rwq_ind_tbl;
1811 	struct ib_qp_security  *qp_sec;
1812 	u32			port;
1813 
1814 	bool			integrity_en;
1815 	/*
1816 	 * Implementation details of the RDMA core, don't use in drivers:
1817 	 */
1818 	struct rdma_restrack_entry     res;
1819 
1820 	/* The counter the qp is bind to */
1821 	struct rdma_counter    *counter;
1822 };
1823 
1824 struct ib_dm {
1825 	struct ib_device  *device;
1826 	u32		   length;
1827 	u32		   flags;
1828 	struct ib_uobject *uobject;
1829 	atomic_t	   usecnt;
1830 };
1831 
1832 struct ib_mr {
1833 	struct ib_device  *device;
1834 	struct ib_pd	  *pd;
1835 	u32		   lkey;
1836 	u32		   rkey;
1837 	u64		   iova;
1838 	u64		   length;
1839 	unsigned int	   page_size;
1840 	enum ib_mr_type	   type;
1841 	bool		   need_inval;
1842 	union {
1843 		struct ib_uobject	*uobject;	/* user */
1844 		struct list_head	qp_entry;	/* FR */
1845 	};
1846 
1847 	struct ib_dm      *dm;
1848 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1849 	/*
1850 	 * Implementation details of the RDMA core, don't use in drivers:
1851 	 */
1852 	struct rdma_restrack_entry res;
1853 };
1854 
1855 struct ib_mw {
1856 	struct ib_device	*device;
1857 	struct ib_pd		*pd;
1858 	struct ib_uobject	*uobject;
1859 	u32			rkey;
1860 	enum ib_mw_type         type;
1861 };
1862 
1863 /* Supported steering options */
1864 enum ib_flow_attr_type {
1865 	/* steering according to rule specifications */
1866 	IB_FLOW_ATTR_NORMAL		= 0x0,
1867 	/* default unicast and multicast rule -
1868 	 * receive all Eth traffic which isn't steered to any QP
1869 	 */
1870 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1871 	/* default multicast rule -
1872 	 * receive all Eth multicast traffic which isn't steered to any QP
1873 	 */
1874 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1875 	/* sniffer rule - receive all port traffic */
1876 	IB_FLOW_ATTR_SNIFFER		= 0x3
1877 };
1878 
1879 /* Supported steering header types */
1880 enum ib_flow_spec_type {
1881 	/* L2 headers*/
1882 	IB_FLOW_SPEC_ETH		= 0x20,
1883 	IB_FLOW_SPEC_IB			= 0x22,
1884 	/* L3 header*/
1885 	IB_FLOW_SPEC_IPV4		= 0x30,
1886 	IB_FLOW_SPEC_IPV6		= 0x31,
1887 	IB_FLOW_SPEC_ESP                = 0x34,
1888 	/* L4 headers*/
1889 	IB_FLOW_SPEC_TCP		= 0x40,
1890 	IB_FLOW_SPEC_UDP		= 0x41,
1891 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1892 	IB_FLOW_SPEC_GRE		= 0x51,
1893 	IB_FLOW_SPEC_MPLS		= 0x60,
1894 	IB_FLOW_SPEC_INNER		= 0x100,
1895 	/* Actions */
1896 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1897 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1898 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1899 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1900 };
1901 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1902 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1903 
1904 enum ib_flow_flags {
1905 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1906 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1907 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1908 };
1909 
1910 struct ib_flow_eth_filter {
1911 	u8	dst_mac[6];
1912 	u8	src_mac[6];
1913 	__be16	ether_type;
1914 	__be16	vlan_tag;
1915 };
1916 
1917 struct ib_flow_spec_eth {
1918 	u32			  type;
1919 	u16			  size;
1920 	struct ib_flow_eth_filter val;
1921 	struct ib_flow_eth_filter mask;
1922 };
1923 
1924 struct ib_flow_ib_filter {
1925 	__be16 dlid;
1926 	__u8   sl;
1927 };
1928 
1929 struct ib_flow_spec_ib {
1930 	u32			 type;
1931 	u16			 size;
1932 	struct ib_flow_ib_filter val;
1933 	struct ib_flow_ib_filter mask;
1934 };
1935 
1936 /* IPv4 header flags */
1937 enum ib_ipv4_flags {
1938 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1940 				    last have this flag set */
1941 };
1942 
1943 struct ib_flow_ipv4_filter {
1944 	__be32	src_ip;
1945 	__be32	dst_ip;
1946 	u8	proto;
1947 	u8	tos;
1948 	u8	ttl;
1949 	u8	flags;
1950 };
1951 
1952 struct ib_flow_spec_ipv4 {
1953 	u32			   type;
1954 	u16			   size;
1955 	struct ib_flow_ipv4_filter val;
1956 	struct ib_flow_ipv4_filter mask;
1957 };
1958 
1959 struct ib_flow_ipv6_filter {
1960 	u8	src_ip[16];
1961 	u8	dst_ip[16];
1962 	__be32	flow_label;
1963 	u8	next_hdr;
1964 	u8	traffic_class;
1965 	u8	hop_limit;
1966 } __packed;
1967 
1968 struct ib_flow_spec_ipv6 {
1969 	u32			   type;
1970 	u16			   size;
1971 	struct ib_flow_ipv6_filter val;
1972 	struct ib_flow_ipv6_filter mask;
1973 };
1974 
1975 struct ib_flow_tcp_udp_filter {
1976 	__be16	dst_port;
1977 	__be16	src_port;
1978 };
1979 
1980 struct ib_flow_spec_tcp_udp {
1981 	u32			      type;
1982 	u16			      size;
1983 	struct ib_flow_tcp_udp_filter val;
1984 	struct ib_flow_tcp_udp_filter mask;
1985 };
1986 
1987 struct ib_flow_tunnel_filter {
1988 	__be32	tunnel_id;
1989 };
1990 
1991 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1992  * the tunnel_id from val has the vni value
1993  */
1994 struct ib_flow_spec_tunnel {
1995 	u32			      type;
1996 	u16			      size;
1997 	struct ib_flow_tunnel_filter  val;
1998 	struct ib_flow_tunnel_filter  mask;
1999 };
2000 
2001 struct ib_flow_esp_filter {
2002 	__be32	spi;
2003 	__be32  seq;
2004 };
2005 
2006 struct ib_flow_spec_esp {
2007 	u32                           type;
2008 	u16			      size;
2009 	struct ib_flow_esp_filter     val;
2010 	struct ib_flow_esp_filter     mask;
2011 };
2012 
2013 struct ib_flow_gre_filter {
2014 	__be16 c_ks_res0_ver;
2015 	__be16 protocol;
2016 	__be32 key;
2017 };
2018 
2019 struct ib_flow_spec_gre {
2020 	u32                           type;
2021 	u16			      size;
2022 	struct ib_flow_gre_filter     val;
2023 	struct ib_flow_gre_filter     mask;
2024 };
2025 
2026 struct ib_flow_mpls_filter {
2027 	__be32 tag;
2028 };
2029 
2030 struct ib_flow_spec_mpls {
2031 	u32                           type;
2032 	u16			      size;
2033 	struct ib_flow_mpls_filter     val;
2034 	struct ib_flow_mpls_filter     mask;
2035 };
2036 
2037 struct ib_flow_spec_action_tag {
2038 	enum ib_flow_spec_type	      type;
2039 	u16			      size;
2040 	u32                           tag_id;
2041 };
2042 
2043 struct ib_flow_spec_action_drop {
2044 	enum ib_flow_spec_type	      type;
2045 	u16			      size;
2046 };
2047 
2048 struct ib_flow_spec_action_handle {
2049 	enum ib_flow_spec_type	      type;
2050 	u16			      size;
2051 	struct ib_flow_action	     *act;
2052 };
2053 
2054 enum ib_counters_description {
2055 	IB_COUNTER_PACKETS,
2056 	IB_COUNTER_BYTES,
2057 };
2058 
2059 struct ib_flow_spec_action_count {
2060 	enum ib_flow_spec_type type;
2061 	u16 size;
2062 	struct ib_counters *counters;
2063 };
2064 
2065 union ib_flow_spec {
2066 	struct {
2067 		u32			type;
2068 		u16			size;
2069 	};
2070 	struct ib_flow_spec_eth		eth;
2071 	struct ib_flow_spec_ib		ib;
2072 	struct ib_flow_spec_ipv4        ipv4;
2073 	struct ib_flow_spec_tcp_udp	tcp_udp;
2074 	struct ib_flow_spec_ipv6        ipv6;
2075 	struct ib_flow_spec_tunnel      tunnel;
2076 	struct ib_flow_spec_esp		esp;
2077 	struct ib_flow_spec_gre		gre;
2078 	struct ib_flow_spec_mpls	mpls;
2079 	struct ib_flow_spec_action_tag  flow_tag;
2080 	struct ib_flow_spec_action_drop drop;
2081 	struct ib_flow_spec_action_handle action;
2082 	struct ib_flow_spec_action_count flow_count;
2083 };
2084 
2085 struct ib_flow_attr {
2086 	enum ib_flow_attr_type type;
2087 	u16	     size;
2088 	u16	     priority;
2089 	u32	     flags;
2090 	u8	     num_of_specs;
2091 	u32	     port;
2092 	union ib_flow_spec flows[];
2093 };
2094 
2095 struct ib_flow {
2096 	struct ib_qp		*qp;
2097 	struct ib_device	*device;
2098 	struct ib_uobject	*uobject;
2099 };
2100 
2101 enum ib_flow_action_type {
2102 	IB_FLOW_ACTION_UNSPECIFIED,
2103 	IB_FLOW_ACTION_ESP = 1,
2104 };
2105 
2106 struct ib_flow_action_attrs_esp_keymats {
2107 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2108 	union {
2109 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2110 	} keymat;
2111 };
2112 
2113 struct ib_flow_action_attrs_esp_replays {
2114 	enum ib_uverbs_flow_action_esp_replay			protocol;
2115 	union {
2116 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2117 	} replay;
2118 };
2119 
2120 enum ib_flow_action_attrs_esp_flags {
2121 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2122 	 * This is done in order to share the same flags between user-space and
2123 	 * kernel and spare an unnecessary translation.
2124 	 */
2125 
2126 	/* Kernel flags */
2127 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2128 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2129 };
2130 
2131 struct ib_flow_spec_list {
2132 	struct ib_flow_spec_list	*next;
2133 	union ib_flow_spec		spec;
2134 };
2135 
2136 struct ib_flow_action_attrs_esp {
2137 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2138 	struct ib_flow_action_attrs_esp_replays		*replay;
2139 	struct ib_flow_spec_list			*encap;
2140 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2141 	 * Value of 0 is a valid value.
2142 	 */
2143 	u32						esn;
2144 	u32						spi;
2145 	u32						seq;
2146 	u32						tfc_pad;
2147 	/* Use enum ib_flow_action_attrs_esp_flags */
2148 	u64						flags;
2149 	u64						hard_limit_pkts;
2150 };
2151 
2152 struct ib_flow_action {
2153 	struct ib_device		*device;
2154 	struct ib_uobject		*uobject;
2155 	enum ib_flow_action_type	type;
2156 	atomic_t			usecnt;
2157 };
2158 
2159 struct ib_mad;
2160 
2161 enum ib_process_mad_flags {
2162 	IB_MAD_IGNORE_MKEY	= 1,
2163 	IB_MAD_IGNORE_BKEY	= 2,
2164 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2165 };
2166 
2167 enum ib_mad_result {
2168 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2169 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2170 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2171 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2172 };
2173 
2174 struct ib_port_cache {
2175 	u64		      subnet_prefix;
2176 	struct ib_pkey_cache  *pkey;
2177 	struct ib_gid_table   *gid;
2178 	u8                     lmc;
2179 	enum ib_port_state     port_state;
2180 };
2181 
2182 struct ib_port_immutable {
2183 	int                           pkey_tbl_len;
2184 	int                           gid_tbl_len;
2185 	u32                           core_cap_flags;
2186 	u32                           max_mad_size;
2187 };
2188 
2189 struct ib_port_data {
2190 	struct ib_device *ib_dev;
2191 
2192 	struct ib_port_immutable immutable;
2193 
2194 	spinlock_t pkey_list_lock;
2195 
2196 	spinlock_t netdev_lock;
2197 
2198 	struct list_head pkey_list;
2199 
2200 	struct ib_port_cache cache;
2201 
2202 	struct net_device __rcu *netdev;
2203 	netdevice_tracker netdev_tracker;
2204 	struct hlist_node ndev_hash_link;
2205 	struct rdma_port_counter port_counter;
2206 	struct ib_port *sysfs;
2207 };
2208 
2209 /* rdma netdev type - specifies protocol type */
2210 enum rdma_netdev_t {
2211 	RDMA_NETDEV_OPA_VNIC,
2212 	RDMA_NETDEV_IPOIB,
2213 };
2214 
2215 /**
2216  * struct rdma_netdev - rdma netdev
2217  * For cases where netstack interfacing is required.
2218  */
2219 struct rdma_netdev {
2220 	void              *clnt_priv;
2221 	struct ib_device  *hca;
2222 	u32		   port_num;
2223 	int                mtu;
2224 
2225 	/*
2226 	 * cleanup function must be specified.
2227 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2228 	 * removed too.
2229 	 */
2230 	void (*free_rdma_netdev)(struct net_device *netdev);
2231 
2232 	/* control functions */
2233 	void (*set_id)(struct net_device *netdev, int id);
2234 	/* send packet */
2235 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2236 		    struct ib_ah *address, u32 dqpn);
2237 	/* multicast */
2238 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2239 			    union ib_gid *gid, u16 mlid,
2240 			    int set_qkey, u32 qkey);
2241 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2242 			    union ib_gid *gid, u16 mlid);
2243 	/* timeout */
2244 	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2245 };
2246 
2247 struct rdma_netdev_alloc_params {
2248 	size_t sizeof_priv;
2249 	unsigned int txqs;
2250 	unsigned int rxqs;
2251 	void *param;
2252 
2253 	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2254 				      struct net_device *netdev, void *param);
2255 };
2256 
2257 struct ib_odp_counters {
2258 	atomic64_t faults;
2259 	atomic64_t invalidations;
2260 	atomic64_t prefetch;
2261 };
2262 
2263 struct ib_counters {
2264 	struct ib_device	*device;
2265 	struct ib_uobject	*uobject;
2266 	/* num of objects attached */
2267 	atomic_t	usecnt;
2268 };
2269 
2270 struct ib_counters_read_attr {
2271 	u64	*counters_buff;
2272 	u32	ncounters;
2273 	u32	flags; /* use enum ib_read_counters_flags */
2274 };
2275 
2276 struct uverbs_attr_bundle;
2277 struct iw_cm_id;
2278 struct iw_cm_conn_param;
2279 
2280 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2281 	.size_##ib_struct =                                                    \
2282 		(sizeof(struct drv_struct) +                                   \
2283 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2284 		 BUILD_BUG_ON_ZERO(                                            \
2285 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2286 				      struct ib_struct)))
2287 
2288 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2289 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2290 					   gfp, false))
2291 
2292 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2293 	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2294 					   GFP_KERNEL, true))
2295 
2296 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2297 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2298 
2299 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2300 
2301 struct rdma_user_mmap_entry {
2302 	struct kref ref;
2303 	struct ib_ucontext *ucontext;
2304 	unsigned long start_pgoff;
2305 	size_t npages;
2306 	bool driver_removed;
2307 };
2308 
2309 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2310 static inline u64
2311 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2312 {
2313 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2314 }
2315 
2316 /**
2317  * struct ib_device_ops - InfiniBand device operations
2318  * This structure defines all the InfiniBand device operations, providers will
2319  * need to define the supported operations, otherwise they will be set to null.
2320  */
2321 struct ib_device_ops {
2322 	struct module *owner;
2323 	enum rdma_driver_id driver_id;
2324 	u32 uverbs_abi_ver;
2325 	unsigned int uverbs_no_driver_id_binding:1;
2326 
2327 	/*
2328 	 * NOTE: New drivers should not make use of device_group; instead new
2329 	 * device parameter should be exposed via netlink command. This
2330 	 * mechanism exists only for existing drivers.
2331 	 */
2332 	const struct attribute_group *device_group;
2333 	const struct attribute_group **port_groups;
2334 
2335 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2336 			 const struct ib_send_wr **bad_send_wr);
2337 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2338 			 const struct ib_recv_wr **bad_recv_wr);
2339 	void (*drain_rq)(struct ib_qp *qp);
2340 	void (*drain_sq)(struct ib_qp *qp);
2341 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2342 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2343 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2344 	int (*post_srq_recv)(struct ib_srq *srq,
2345 			     const struct ib_recv_wr *recv_wr,
2346 			     const struct ib_recv_wr **bad_recv_wr);
2347 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2348 			   u32 port_num, const struct ib_wc *in_wc,
2349 			   const struct ib_grh *in_grh,
2350 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2351 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2352 	int (*query_device)(struct ib_device *device,
2353 			    struct ib_device_attr *device_attr,
2354 			    struct ib_udata *udata);
2355 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2356 			     struct ib_device_modify *device_modify);
2357 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2358 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2359 						     int comp_vector);
2360 	int (*query_port)(struct ib_device *device, u32 port_num,
2361 			  struct ib_port_attr *port_attr);
2362 	int (*modify_port)(struct ib_device *device, u32 port_num,
2363 			   int port_modify_mask,
2364 			   struct ib_port_modify *port_modify);
2365 	/**
2366 	 * The following mandatory functions are used only at device
2367 	 * registration.  Keep functions such as these at the end of this
2368 	 * structure to avoid cache line misses when accessing struct ib_device
2369 	 * in fast paths.
2370 	 */
2371 	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2372 				  struct ib_port_immutable *immutable);
2373 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2374 					       u32 port_num);
2375 	/**
2376 	 * When calling get_netdev, the HW vendor's driver should return the
2377 	 * net device of device @device at port @port_num or NULL if such
2378 	 * a net device doesn't exist. The vendor driver should call dev_hold
2379 	 * on this net device. The HW vendor's device driver must guarantee
2380 	 * that this function returns NULL before the net device has finished
2381 	 * NETDEV_UNREGISTER state.
2382 	 */
2383 	struct net_device *(*get_netdev)(struct ib_device *device,
2384 					 u32 port_num);
2385 	/**
2386 	 * rdma netdev operation
2387 	 *
2388 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2389 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2390 	 */
2391 	struct net_device *(*alloc_rdma_netdev)(
2392 		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2393 		const char *name, unsigned char name_assign_type,
2394 		void (*setup)(struct net_device *));
2395 
2396 	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2397 				      enum rdma_netdev_t type,
2398 				      struct rdma_netdev_alloc_params *params);
2399 	/**
2400 	 * query_gid should be return GID value for @device, when @port_num
2401 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2402 	 * is RoCE link layer.
2403 	 */
2404 	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2405 			 union ib_gid *gid);
2406 	/**
2407 	 * When calling add_gid, the HW vendor's driver should add the gid
2408 	 * of device of port at gid index available at @attr. Meta-info of
2409 	 * that gid (for example, the network device related to this gid) is
2410 	 * available at @attr. @context allows the HW vendor driver to store
2411 	 * extra information together with a GID entry. The HW vendor driver may
2412 	 * allocate memory to contain this information and store it in @context
2413 	 * when a new GID entry is written to. Params are consistent until the
2414 	 * next call of add_gid or delete_gid. The function should return 0 on
2415 	 * success or error otherwise. The function could be called
2416 	 * concurrently for different ports. This function is only called when
2417 	 * roce_gid_table is used.
2418 	 */
2419 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2420 	/**
2421 	 * When calling del_gid, the HW vendor's driver should delete the
2422 	 * gid of device @device at gid index gid_index of port port_num
2423 	 * available in @attr.
2424 	 * Upon the deletion of a GID entry, the HW vendor must free any
2425 	 * allocated memory. The caller will clear @context afterwards.
2426 	 * This function is only called when roce_gid_table is used.
2427 	 */
2428 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2429 	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2430 			  u16 *pkey);
2431 	int (*alloc_ucontext)(struct ib_ucontext *context,
2432 			      struct ib_udata *udata);
2433 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2434 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2435 	/**
2436 	 * This will be called once refcount of an entry in mmap_xa reaches
2437 	 * zero. The type of the memory that was mapped may differ between
2438 	 * entries and is opaque to the rdma_user_mmap interface.
2439 	 * Therefore needs to be implemented by the driver in mmap_free.
2440 	 */
2441 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2442 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2443 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2444 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2445 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446 			 struct ib_udata *udata);
2447 	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2448 			      struct ib_udata *udata);
2449 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2450 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2451 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2452 	int (*create_srq)(struct ib_srq *srq,
2453 			  struct ib_srq_init_attr *srq_init_attr,
2454 			  struct ib_udata *udata);
2455 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2456 			  enum ib_srq_attr_mask srq_attr_mask,
2457 			  struct ib_udata *udata);
2458 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2459 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2460 	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2461 			 struct ib_udata *udata);
2462 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463 			 int qp_attr_mask, struct ib_udata *udata);
2464 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2465 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2466 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2467 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2468 			 struct uverbs_attr_bundle *attrs);
2469 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2470 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2471 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2472 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2473 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2474 				     u64 virt_addr, int mr_access_flags,
2475 				     struct ib_udata *udata);
2476 	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2477 					    u64 length, u64 virt_addr, int fd,
2478 					    int mr_access_flags,
2479 					    struct uverbs_attr_bundle *attrs);
2480 	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2481 				       u64 length, u64 virt_addr,
2482 				       int mr_access_flags, struct ib_pd *pd,
2483 				       struct ib_udata *udata);
2484 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2485 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2486 				  u32 max_num_sg);
2487 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2488 					    u32 max_num_data_sg,
2489 					    u32 max_num_meta_sg);
2490 	int (*advise_mr)(struct ib_pd *pd,
2491 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2492 			 struct ib_sge *sg_list, u32 num_sge,
2493 			 struct uverbs_attr_bundle *attrs);
2494 
2495 	/*
2496 	 * Kernel users should universally support relaxed ordering (RO), as
2497 	 * they are designed to read data only after observing the CQE and use
2498 	 * the DMA API correctly.
2499 	 *
2500 	 * Some drivers implicitly enable RO if platform supports it.
2501 	 */
2502 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2503 			 unsigned int *sg_offset);
2504 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2505 			       struct ib_mr_status *mr_status);
2506 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2507 	int (*dealloc_mw)(struct ib_mw *mw);
2508 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2509 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2510 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2511 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2512 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2513 				       struct ib_flow_attr *flow_attr,
2514 				       struct ib_udata *udata);
2515 	int (*destroy_flow)(struct ib_flow *flow_id);
2516 	int (*destroy_flow_action)(struct ib_flow_action *action);
2517 	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2518 				 int state);
2519 	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2520 			     struct ifla_vf_info *ivf);
2521 	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2522 			    struct ifla_vf_stats *stats);
2523 	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2524 			    struct ifla_vf_guid *node_guid,
2525 			    struct ifla_vf_guid *port_guid);
2526 	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2527 			   int type);
2528 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2529 				   struct ib_wq_init_attr *init_attr,
2530 				   struct ib_udata *udata);
2531 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2532 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2533 			 u32 wq_attr_mask, struct ib_udata *udata);
2534 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2535 				    struct ib_rwq_ind_table_init_attr *init_attr,
2536 				    struct ib_udata *udata);
2537 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2538 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2539 				  struct ib_ucontext *context,
2540 				  struct ib_dm_alloc_attr *attr,
2541 				  struct uverbs_attr_bundle *attrs);
2542 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2543 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2544 				   struct ib_dm_mr_attr *attr,
2545 				   struct uverbs_attr_bundle *attrs);
2546 	int (*create_counters)(struct ib_counters *counters,
2547 			       struct uverbs_attr_bundle *attrs);
2548 	int (*destroy_counters)(struct ib_counters *counters);
2549 	int (*read_counters)(struct ib_counters *counters,
2550 			     struct ib_counters_read_attr *counters_read_attr,
2551 			     struct uverbs_attr_bundle *attrs);
2552 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2553 			    int data_sg_nents, unsigned int *data_sg_offset,
2554 			    struct scatterlist *meta_sg, int meta_sg_nents,
2555 			    unsigned int *meta_sg_offset);
2556 
2557 	/**
2558 	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2559 	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2560 	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2561 	 *   return struct tells the core to set a default lifespan.
2562 	 */
2563 	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2564 	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2565 						     u32 port_num);
2566 	/**
2567 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2568 	 * @index - The index in the value array we wish to have updated, or
2569 	 *   num_counters if we want all stats updated
2570 	 * Return codes -
2571 	 *   < 0 - Error, no counters updated
2572 	 *   index - Updated the single counter pointed to by index
2573 	 *   num_counters - Updated all counters (will reset the timestamp
2574 	 *     and prevent further calls for lifespan milliseconds)
2575 	 * Drivers are allowed to update all counters in leiu of just the
2576 	 *   one given in index at their option
2577 	 */
2578 	int (*get_hw_stats)(struct ib_device *device,
2579 			    struct rdma_hw_stats *stats, u32 port, int index);
2580 
2581 	/**
2582 	 * modify_hw_stat - Modify the counter configuration
2583 	 * @enable: true/false when enable/disable a counter
2584 	 * Return codes - 0 on success or error code otherwise.
2585 	 */
2586 	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2587 			      unsigned int counter_index, bool enable);
2588 	/**
2589 	 * Allows rdma drivers to add their own restrack attributes.
2590 	 */
2591 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2592 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2593 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2594 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2595 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2596 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2597 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2598 	int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2599 	int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2600 
2601 	/* Device lifecycle callbacks */
2602 	/*
2603 	 * Called after the device becomes registered, before clients are
2604 	 * attached
2605 	 */
2606 	int (*enable_driver)(struct ib_device *dev);
2607 	/*
2608 	 * This is called as part of ib_dealloc_device().
2609 	 */
2610 	void (*dealloc_driver)(struct ib_device *dev);
2611 
2612 	/* iWarp CM callbacks */
2613 	void (*iw_add_ref)(struct ib_qp *qp);
2614 	void (*iw_rem_ref)(struct ib_qp *qp);
2615 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2616 	int (*iw_connect)(struct iw_cm_id *cm_id,
2617 			  struct iw_cm_conn_param *conn_param);
2618 	int (*iw_accept)(struct iw_cm_id *cm_id,
2619 			 struct iw_cm_conn_param *conn_param);
2620 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2621 			 u8 pdata_len);
2622 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2623 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2624 	/**
2625 	 * counter_bind_qp - Bind a QP to a counter.
2626 	 * @counter - The counter to be bound. If counter->id is zero then
2627 	 *   the driver needs to allocate a new counter and set counter->id
2628 	 */
2629 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2630 	/**
2631 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2632 	 *   counter and bind it onto the default one
2633 	 */
2634 	int (*counter_unbind_qp)(struct ib_qp *qp);
2635 	/**
2636 	 * counter_dealloc -De-allocate the hw counter
2637 	 */
2638 	int (*counter_dealloc)(struct rdma_counter *counter);
2639 	/**
2640 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2641 	 * the driver initialized data.
2642 	 */
2643 	struct rdma_hw_stats *(*counter_alloc_stats)(
2644 		struct rdma_counter *counter);
2645 	/**
2646 	 * counter_update_stats - Query the stats value of this counter
2647 	 */
2648 	int (*counter_update_stats)(struct rdma_counter *counter);
2649 
2650 	/**
2651 	 * Allows rdma drivers to add their own restrack attributes
2652 	 * dumped via 'rdma stat' iproute2 command.
2653 	 */
2654 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2655 
2656 	/* query driver for its ucontext properties */
2657 	int (*query_ucontext)(struct ib_ucontext *context,
2658 			      struct uverbs_attr_bundle *attrs);
2659 
2660 	/*
2661 	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2662 	 * Everyone else relies on Linux memory management model.
2663 	 */
2664 	int (*get_numa_node)(struct ib_device *dev);
2665 
2666 	/**
2667 	 * add_sub_dev - Add a sub IB device
2668 	 */
2669 	struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2670 					 enum rdma_nl_dev_type type,
2671 					 const char *name);
2672 
2673 	/**
2674 	 * del_sub_dev - Delete a sub IB device
2675 	 */
2676 	void (*del_sub_dev)(struct ib_device *sub_dev);
2677 
2678 	/**
2679 	 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2680 	 * the ufile.
2681 	 */
2682 	void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2683 
2684 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2685 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2686 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2687 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2688 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2689 	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2690 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2691 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2692 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2693 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2694 };
2695 
2696 struct ib_core_device {
2697 	/* device must be the first element in structure until,
2698 	 * union of ib_core_device and device exists in ib_device.
2699 	 */
2700 	struct device dev;
2701 	possible_net_t rdma_net;
2702 	struct kobject *ports_kobj;
2703 	struct list_head port_list;
2704 	struct ib_device *owner; /* reach back to owner ib_device */
2705 };
2706 
2707 struct rdma_restrack_root;
2708 struct ib_device {
2709 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2710 	struct device                *dma_device;
2711 	struct ib_device_ops	     ops;
2712 	char                          name[IB_DEVICE_NAME_MAX];
2713 	struct rcu_head rcu_head;
2714 
2715 	struct list_head              event_handler_list;
2716 	/* Protects event_handler_list */
2717 	struct rw_semaphore event_handler_rwsem;
2718 
2719 	/* Protects QP's event_handler calls and open_qp list */
2720 	spinlock_t qp_open_list_lock;
2721 
2722 	struct rw_semaphore	      client_data_rwsem;
2723 	struct xarray                 client_data;
2724 	struct mutex                  unregistration_lock;
2725 
2726 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2727 	rwlock_t cache_lock;
2728 	/**
2729 	 * port_data is indexed by port number
2730 	 */
2731 	struct ib_port_data *port_data;
2732 
2733 	int			      num_comp_vectors;
2734 
2735 	union {
2736 		struct device		dev;
2737 		struct ib_core_device	coredev;
2738 	};
2739 
2740 	/* First group is for device attributes,
2741 	 * Second group is for driver provided attributes (optional).
2742 	 * Third group is for the hw_stats
2743 	 * It is a NULL terminated array.
2744 	 */
2745 	const struct attribute_group	*groups[4];
2746 
2747 	u64			     uverbs_cmd_mask;
2748 
2749 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2750 	__be64			     node_guid;
2751 	u32			     local_dma_lkey;
2752 	u16                          is_switch:1;
2753 	/* Indicates kernel verbs support, should not be used in drivers */
2754 	u16                          kverbs_provider:1;
2755 	/* CQ adaptive moderation (RDMA DIM) */
2756 	u16                          use_cq_dim:1;
2757 	u8                           node_type;
2758 	u32			     phys_port_cnt;
2759 	struct ib_device_attr        attrs;
2760 	struct hw_stats_device_data *hw_stats_data;
2761 
2762 #ifdef CONFIG_CGROUP_RDMA
2763 	struct rdmacg_device         cg_device;
2764 #endif
2765 
2766 	u32                          index;
2767 
2768 	spinlock_t                   cq_pools_lock;
2769 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2770 
2771 	struct rdma_restrack_root *res;
2772 
2773 	const struct uapi_definition   *driver_def;
2774 
2775 	/*
2776 	 * Positive refcount indicates that the device is currently
2777 	 * registered and cannot be unregistered.
2778 	 */
2779 	refcount_t refcount;
2780 	struct completion unreg_completion;
2781 	struct work_struct unregistration_work;
2782 
2783 	const struct rdma_link_ops *link_ops;
2784 
2785 	/* Protects compat_devs xarray modifications */
2786 	struct mutex compat_devs_mutex;
2787 	/* Maintains compat devices for each net namespace */
2788 	struct xarray compat_devs;
2789 
2790 	/* Used by iWarp CM */
2791 	char iw_ifname[IFNAMSIZ];
2792 	u32 iw_driver_flags;
2793 	u32 lag_flags;
2794 
2795 	/* A parent device has a list of sub-devices */
2796 	struct mutex subdev_lock;
2797 	struct list_head subdev_list_head;
2798 
2799 	/* A sub device has a type and a parent */
2800 	enum rdma_nl_dev_type type;
2801 	struct ib_device *parent;
2802 	struct list_head subdev_list;
2803 
2804 	enum rdma_nl_name_assign_type name_assign_type;
2805 };
2806 
2807 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2808 				    gfp_t gfp, bool is_numa_aware)
2809 {
2810 	if (is_numa_aware && dev->ops.get_numa_node)
2811 		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2812 
2813 	return kzalloc(size, gfp);
2814 }
2815 
2816 struct ib_client_nl_info;
2817 struct ib_client {
2818 	const char *name;
2819 	int (*add)(struct ib_device *ibdev);
2820 	void (*remove)(struct ib_device *, void *client_data);
2821 	void (*rename)(struct ib_device *dev, void *client_data);
2822 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2823 			   struct ib_client_nl_info *res);
2824 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2825 
2826 	/* Returns the net_dev belonging to this ib_client and matching the
2827 	 * given parameters.
2828 	 * @dev:	 An RDMA device that the net_dev use for communication.
2829 	 * @port:	 A physical port number on the RDMA device.
2830 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2831 	 * @gid:	 A GID that the net_dev uses to communicate.
2832 	 * @addr:	 An IP address the net_dev is configured with.
2833 	 * @client_data: The device's client data set by ib_set_client_data().
2834 	 *
2835 	 * An ib_client that implements a net_dev on top of RDMA devices
2836 	 * (such as IP over IB) should implement this callback, allowing the
2837 	 * rdma_cm module to find the right net_dev for a given request.
2838 	 *
2839 	 * The caller is responsible for calling dev_put on the returned
2840 	 * netdev. */
2841 	struct net_device *(*get_net_dev_by_params)(
2842 			struct ib_device *dev,
2843 			u32 port,
2844 			u16 pkey,
2845 			const union ib_gid *gid,
2846 			const struct sockaddr *addr,
2847 			void *client_data);
2848 
2849 	refcount_t uses;
2850 	struct completion uses_zero;
2851 	u32 client_id;
2852 
2853 	/* kverbs are not required by the client */
2854 	u8 no_kverbs_req:1;
2855 };
2856 
2857 /*
2858  * IB block DMA iterator
2859  *
2860  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2861  * to a HW supported page size.
2862  */
2863 struct ib_block_iter {
2864 	/* internal states */
2865 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2866 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2867 	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2868 	unsigned int __sg_nents;	/* number of SG entries */
2869 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2870 	unsigned int __pg_bit;		/* alignment of current block */
2871 };
2872 
2873 struct ib_device *_ib_alloc_device(size_t size);
2874 #define ib_alloc_device(drv_struct, member)                                    \
2875 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2876 				      BUILD_BUG_ON_ZERO(offsetof(              \
2877 					      struct drv_struct, member))),    \
2878 		     struct drv_struct, member)
2879 
2880 void ib_dealloc_device(struct ib_device *device);
2881 
2882 void ib_get_device_fw_str(struct ib_device *device, char *str);
2883 
2884 int ib_register_device(struct ib_device *device, const char *name,
2885 		       struct device *dma_device);
2886 void ib_unregister_device(struct ib_device *device);
2887 void ib_unregister_driver(enum rdma_driver_id driver_id);
2888 void ib_unregister_device_and_put(struct ib_device *device);
2889 void ib_unregister_device_queued(struct ib_device *ib_dev);
2890 
2891 int ib_register_client   (struct ib_client *client);
2892 void ib_unregister_client(struct ib_client *client);
2893 
2894 void __rdma_block_iter_start(struct ib_block_iter *biter,
2895 			     struct scatterlist *sglist,
2896 			     unsigned int nents,
2897 			     unsigned long pgsz);
2898 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2899 
2900 /**
2901  * rdma_block_iter_dma_address - get the aligned dma address of the current
2902  * block held by the block iterator.
2903  * @biter: block iterator holding the memory block
2904  */
2905 static inline dma_addr_t
2906 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2907 {
2908 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2909 }
2910 
2911 /**
2912  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2913  * @sglist: sglist to iterate over
2914  * @biter: block iterator holding the memory block
2915  * @nents: maximum number of sg entries to iterate over
2916  * @pgsz: best HW supported page size to use
2917  *
2918  * Callers may use rdma_block_iter_dma_address() to get each
2919  * blocks aligned DMA address.
2920  */
2921 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2922 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2923 				     pgsz);			\
2924 	     __rdma_block_iter_next(biter);)
2925 
2926 /**
2927  * ib_get_client_data - Get IB client context
2928  * @device:Device to get context for
2929  * @client:Client to get context for
2930  *
2931  * ib_get_client_data() returns the client context data set with
2932  * ib_set_client_data(). This can only be called while the client is
2933  * registered to the device, once the ib_client remove() callback returns this
2934  * cannot be called.
2935  */
2936 static inline void *ib_get_client_data(struct ib_device *device,
2937 				       struct ib_client *client)
2938 {
2939 	return xa_load(&device->client_data, client->client_id);
2940 }
2941 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2942 			 void *data);
2943 void ib_set_device_ops(struct ib_device *device,
2944 		       const struct ib_device_ops *ops);
2945 
2946 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2947 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2948 		      struct rdma_user_mmap_entry *entry);
2949 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2950 				struct rdma_user_mmap_entry *entry,
2951 				size_t length);
2952 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2953 				      struct rdma_user_mmap_entry *entry,
2954 				      size_t length, u32 min_pgoff,
2955 				      u32 max_pgoff);
2956 
2957 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2958 void rdma_user_mmap_disassociate(struct ib_device *device);
2959 #else
2960 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
2961 {
2962 }
2963 #endif
2964 
2965 static inline int
2966 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2967 				  struct rdma_user_mmap_entry *entry,
2968 				  size_t length, u32 pgoff)
2969 {
2970 	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2971 						 pgoff);
2972 }
2973 
2974 struct rdma_user_mmap_entry *
2975 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2976 			       unsigned long pgoff);
2977 struct rdma_user_mmap_entry *
2978 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2979 			 struct vm_area_struct *vma);
2980 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2981 
2982 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2983 
2984 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2985 {
2986 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2987 }
2988 
2989 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2990 {
2991 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2992 }
2993 
2994 static inline bool ib_is_buffer_cleared(const void __user *p,
2995 					size_t len)
2996 {
2997 	bool ret;
2998 	u8 *buf;
2999 
3000 	if (len > USHRT_MAX)
3001 		return false;
3002 
3003 	buf = memdup_user(p, len);
3004 	if (IS_ERR(buf))
3005 		return false;
3006 
3007 	ret = !memchr_inv(buf, 0, len);
3008 	kfree(buf);
3009 	return ret;
3010 }
3011 
3012 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3013 				       size_t offset,
3014 				       size_t len)
3015 {
3016 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
3017 }
3018 
3019 /**
3020  * ib_modify_qp_is_ok - Check that the supplied attribute mask
3021  * contains all required attributes and no attributes not allowed for
3022  * the given QP state transition.
3023  * @cur_state: Current QP state
3024  * @next_state: Next QP state
3025  * @type: QP type
3026  * @mask: Mask of supplied QP attributes
3027  *
3028  * This function is a helper function that a low-level driver's
3029  * modify_qp method can use to validate the consumer's input.  It
3030  * checks that cur_state and next_state are valid QP states, that a
3031  * transition from cur_state to next_state is allowed by the IB spec,
3032  * and that the attribute mask supplied is allowed for the transition.
3033  */
3034 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3035 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
3036 
3037 void ib_register_event_handler(struct ib_event_handler *event_handler);
3038 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3039 void ib_dispatch_event(const struct ib_event *event);
3040 
3041 int ib_query_port(struct ib_device *device,
3042 		  u32 port_num, struct ib_port_attr *port_attr);
3043 
3044 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3045 					       u32 port_num);
3046 
3047 /**
3048  * rdma_cap_ib_switch - Check if the device is IB switch
3049  * @device: Device to check
3050  *
3051  * Device driver is responsible for setting is_switch bit on
3052  * in ib_device structure at init time.
3053  *
3054  * Return: true if the device is IB switch.
3055  */
3056 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3057 {
3058 	return device->is_switch;
3059 }
3060 
3061 /**
3062  * rdma_start_port - Return the first valid port number for the device
3063  * specified
3064  *
3065  * @device: Device to be checked
3066  *
3067  * Return start port number
3068  */
3069 static inline u32 rdma_start_port(const struct ib_device *device)
3070 {
3071 	return rdma_cap_ib_switch(device) ? 0 : 1;
3072 }
3073 
3074 /**
3075  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3076  * @device - The struct ib_device * to iterate over
3077  * @iter - The unsigned int to store the port number
3078  */
3079 #define rdma_for_each_port(device, iter)                                       \
3080 	for (iter = rdma_start_port(device +				       \
3081 				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3082 								   iter)));    \
3083 	     iter <= rdma_end_port(device); iter++)
3084 
3085 /**
3086  * rdma_end_port - Return the last valid port number for the device
3087  * specified
3088  *
3089  * @device: Device to be checked
3090  *
3091  * Return last port number
3092  */
3093 static inline u32 rdma_end_port(const struct ib_device *device)
3094 {
3095 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3096 }
3097 
3098 static inline int rdma_is_port_valid(const struct ib_device *device,
3099 				     unsigned int port)
3100 {
3101 	return (port >= rdma_start_port(device) &&
3102 		port <= rdma_end_port(device));
3103 }
3104 
3105 static inline bool rdma_is_grh_required(const struct ib_device *device,
3106 					u32 port_num)
3107 {
3108 	return device->port_data[port_num].immutable.core_cap_flags &
3109 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3110 }
3111 
3112 static inline bool rdma_protocol_ib(const struct ib_device *device,
3113 				    u32 port_num)
3114 {
3115 	return device->port_data[port_num].immutable.core_cap_flags &
3116 	       RDMA_CORE_CAP_PROT_IB;
3117 }
3118 
3119 static inline bool rdma_protocol_roce(const struct ib_device *device,
3120 				      u32 port_num)
3121 {
3122 	return device->port_data[port_num].immutable.core_cap_flags &
3123 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3124 }
3125 
3126 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3127 						u32 port_num)
3128 {
3129 	return device->port_data[port_num].immutable.core_cap_flags &
3130 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3131 }
3132 
3133 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3134 						u32 port_num)
3135 {
3136 	return device->port_data[port_num].immutable.core_cap_flags &
3137 	       RDMA_CORE_CAP_PROT_ROCE;
3138 }
3139 
3140 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3141 				       u32 port_num)
3142 {
3143 	return device->port_data[port_num].immutable.core_cap_flags &
3144 	       RDMA_CORE_CAP_PROT_IWARP;
3145 }
3146 
3147 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3148 				   u32 port_num)
3149 {
3150 	return rdma_protocol_ib(device, port_num) ||
3151 		rdma_protocol_roce(device, port_num);
3152 }
3153 
3154 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3155 					    u32 port_num)
3156 {
3157 	return device->port_data[port_num].immutable.core_cap_flags &
3158 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3159 }
3160 
3161 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3162 				       u32 port_num)
3163 {
3164 	return device->port_data[port_num].immutable.core_cap_flags &
3165 	       RDMA_CORE_CAP_PROT_USNIC;
3166 }
3167 
3168 /**
3169  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3170  * Management Datagrams.
3171  * @device: Device to check
3172  * @port_num: Port number to check
3173  *
3174  * Management Datagrams (MAD) are a required part of the InfiniBand
3175  * specification and are supported on all InfiniBand devices.  A slightly
3176  * extended version are also supported on OPA interfaces.
3177  *
3178  * Return: true if the port supports sending/receiving of MAD packets.
3179  */
3180 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3181 {
3182 	return device->port_data[port_num].immutable.core_cap_flags &
3183 	       RDMA_CORE_CAP_IB_MAD;
3184 }
3185 
3186 /**
3187  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3188  * Management Datagrams.
3189  * @device: Device to check
3190  * @port_num: Port number to check
3191  *
3192  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3193  * datagrams with their own versions.  These OPA MADs share many but not all of
3194  * the characteristics of InfiniBand MADs.
3195  *
3196  * OPA MADs differ in the following ways:
3197  *
3198  *    1) MADs are variable size up to 2K
3199  *       IBTA defined MADs remain fixed at 256 bytes
3200  *    2) OPA SMPs must carry valid PKeys
3201  *    3) OPA SMP packets are a different format
3202  *
3203  * Return: true if the port supports OPA MAD packet formats.
3204  */
3205 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3206 {
3207 	return device->port_data[port_num].immutable.core_cap_flags &
3208 		RDMA_CORE_CAP_OPA_MAD;
3209 }
3210 
3211 /**
3212  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3213  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3214  * @device: Device to check
3215  * @port_num: Port number to check
3216  *
3217  * Each InfiniBand node is required to provide a Subnet Management Agent
3218  * that the subnet manager can access.  Prior to the fabric being fully
3219  * configured by the subnet manager, the SMA is accessed via a well known
3220  * interface called the Subnet Management Interface (SMI).  This interface
3221  * uses directed route packets to communicate with the SM to get around the
3222  * chicken and egg problem of the SM needing to know what's on the fabric
3223  * in order to configure the fabric, and needing to configure the fabric in
3224  * order to send packets to the devices on the fabric.  These directed
3225  * route packets do not need the fabric fully configured in order to reach
3226  * their destination.  The SMI is the only method allowed to send
3227  * directed route packets on an InfiniBand fabric.
3228  *
3229  * Return: true if the port provides an SMI.
3230  */
3231 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3232 {
3233 	return device->port_data[port_num].immutable.core_cap_flags &
3234 	       RDMA_CORE_CAP_IB_SMI;
3235 }
3236 
3237 /**
3238  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3239  * Communication Manager.
3240  * @device: Device to check
3241  * @port_num: Port number to check
3242  *
3243  * The InfiniBand Communication Manager is one of many pre-defined General
3244  * Service Agents (GSA) that are accessed via the General Service
3245  * Interface (GSI).  It's role is to facilitate establishment of connections
3246  * between nodes as well as other management related tasks for established
3247  * connections.
3248  *
3249  * Return: true if the port supports an IB CM (this does not guarantee that
3250  * a CM is actually running however).
3251  */
3252 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3253 {
3254 	return device->port_data[port_num].immutable.core_cap_flags &
3255 	       RDMA_CORE_CAP_IB_CM;
3256 }
3257 
3258 /**
3259  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3260  * Communication Manager.
3261  * @device: Device to check
3262  * @port_num: Port number to check
3263  *
3264  * Similar to above, but specific to iWARP connections which have a different
3265  * managment protocol than InfiniBand.
3266  *
3267  * Return: true if the port supports an iWARP CM (this does not guarantee that
3268  * a CM is actually running however).
3269  */
3270 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3271 {
3272 	return device->port_data[port_num].immutable.core_cap_flags &
3273 	       RDMA_CORE_CAP_IW_CM;
3274 }
3275 
3276 /**
3277  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3278  * Subnet Administration.
3279  * @device: Device to check
3280  * @port_num: Port number to check
3281  *
3282  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3283  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3284  * fabrics, devices should resolve routes to other hosts by contacting the
3285  * SA to query the proper route.
3286  *
3287  * Return: true if the port should act as a client to the fabric Subnet
3288  * Administration interface.  This does not imply that the SA service is
3289  * running locally.
3290  */
3291 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3292 {
3293 	return device->port_data[port_num].immutable.core_cap_flags &
3294 	       RDMA_CORE_CAP_IB_SA;
3295 }
3296 
3297 /**
3298  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3299  * Multicast.
3300  * @device: Device to check
3301  * @port_num: Port number to check
3302  *
3303  * InfiniBand multicast registration is more complex than normal IPv4 or
3304  * IPv6 multicast registration.  Each Host Channel Adapter must register
3305  * with the Subnet Manager when it wishes to join a multicast group.  It
3306  * should do so only once regardless of how many queue pairs it subscribes
3307  * to this group.  And it should leave the group only after all queue pairs
3308  * attached to the group have been detached.
3309  *
3310  * Return: true if the port must undertake the additional adminstrative
3311  * overhead of registering/unregistering with the SM and tracking of the
3312  * total number of queue pairs attached to the multicast group.
3313  */
3314 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3315 				     u32 port_num)
3316 {
3317 	return rdma_cap_ib_sa(device, port_num);
3318 }
3319 
3320 /**
3321  * rdma_cap_af_ib - Check if the port of device has the capability
3322  * Native Infiniband Address.
3323  * @device: Device to check
3324  * @port_num: Port number to check
3325  *
3326  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3327  * GID.  RoCE uses a different mechanism, but still generates a GID via
3328  * a prescribed mechanism and port specific data.
3329  *
3330  * Return: true if the port uses a GID address to identify devices on the
3331  * network.
3332  */
3333 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3334 {
3335 	return device->port_data[port_num].immutable.core_cap_flags &
3336 	       RDMA_CORE_CAP_AF_IB;
3337 }
3338 
3339 /**
3340  * rdma_cap_eth_ah - Check if the port of device has the capability
3341  * Ethernet Address Handle.
3342  * @device: Device to check
3343  * @port_num: Port number to check
3344  *
3345  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3346  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3347  * port.  Normally, packet headers are generated by the sending host
3348  * adapter, but when sending connectionless datagrams, we must manually
3349  * inject the proper headers for the fabric we are communicating over.
3350  *
3351  * Return: true if we are running as a RoCE port and must force the
3352  * addition of a Global Route Header built from our Ethernet Address
3353  * Handle into our header list for connectionless packets.
3354  */
3355 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3356 {
3357 	return device->port_data[port_num].immutable.core_cap_flags &
3358 	       RDMA_CORE_CAP_ETH_AH;
3359 }
3360 
3361 /**
3362  * rdma_cap_opa_ah - Check if the port of device supports
3363  * OPA Address handles
3364  * @device: Device to check
3365  * @port_num: Port number to check
3366  *
3367  * Return: true if we are running on an OPA device which supports
3368  * the extended OPA addressing.
3369  */
3370 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3371 {
3372 	return (device->port_data[port_num].immutable.core_cap_flags &
3373 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3374 }
3375 
3376 /**
3377  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3378  *
3379  * @device: Device
3380  * @port_num: Port number
3381  *
3382  * This MAD size includes the MAD headers and MAD payload.  No other headers
3383  * are included.
3384  *
3385  * Return the max MAD size required by the Port.  Will return 0 if the port
3386  * does not support MADs
3387  */
3388 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3389 				       u32 port_num)
3390 {
3391 	return device->port_data[port_num].immutable.max_mad_size;
3392 }
3393 
3394 /**
3395  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3396  * @device: Device to check
3397  * @port_num: Port number to check
3398  *
3399  * RoCE GID table mechanism manages the various GIDs for a device.
3400  *
3401  * NOTE: if allocating the port's GID table has failed, this call will still
3402  * return true, but any RoCE GID table API will fail.
3403  *
3404  * Return: true if the port uses RoCE GID table mechanism in order to manage
3405  * its GIDs.
3406  */
3407 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3408 					   u32 port_num)
3409 {
3410 	return rdma_protocol_roce(device, port_num) &&
3411 		device->ops.add_gid && device->ops.del_gid;
3412 }
3413 
3414 /*
3415  * Check if the device supports READ W/ INVALIDATE.
3416  */
3417 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3418 {
3419 	/*
3420 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3421 	 * has support for it yet.
3422 	 */
3423 	return rdma_protocol_iwarp(dev, port_num);
3424 }
3425 
3426 /**
3427  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3428  * @device: Device
3429  * @port_num: 1 based Port number
3430  *
3431  * Return true if port is an Intel OPA port , false if not
3432  */
3433 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3434 					  u32 port_num)
3435 {
3436 	return (device->port_data[port_num].immutable.core_cap_flags &
3437 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3438 }
3439 
3440 /**
3441  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3442  * @device: Device
3443  * @port_num: Port number
3444  * @mtu: enum value of MTU
3445  *
3446  * Return the MTU size supported by the port as an integer value. Will return
3447  * -1 if enum value of mtu is not supported.
3448  */
3449 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3450 				       int mtu)
3451 {
3452 	if (rdma_core_cap_opa_port(device, port))
3453 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3454 	else
3455 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3456 }
3457 
3458 /**
3459  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3460  * @device: Device
3461  * @port_num: Port number
3462  * @attr: port attribute
3463  *
3464  * Return the MTU size supported by the port as an integer value.
3465  */
3466 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3467 				     struct ib_port_attr *attr)
3468 {
3469 	if (rdma_core_cap_opa_port(device, port))
3470 		return attr->phys_mtu;
3471 	else
3472 		return ib_mtu_enum_to_int(attr->max_mtu);
3473 }
3474 
3475 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3476 			 int state);
3477 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3478 		     struct ifla_vf_info *info);
3479 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3480 		    struct ifla_vf_stats *stats);
3481 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3482 		    struct ifla_vf_guid *node_guid,
3483 		    struct ifla_vf_guid *port_guid);
3484 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3485 		   int type);
3486 
3487 int ib_query_pkey(struct ib_device *device,
3488 		  u32 port_num, u16 index, u16 *pkey);
3489 
3490 int ib_modify_device(struct ib_device *device,
3491 		     int device_modify_mask,
3492 		     struct ib_device_modify *device_modify);
3493 
3494 int ib_modify_port(struct ib_device *device,
3495 		   u32 port_num, int port_modify_mask,
3496 		   struct ib_port_modify *port_modify);
3497 
3498 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3499 		u32 *port_num, u16 *index);
3500 
3501 int ib_find_pkey(struct ib_device *device,
3502 		 u32 port_num, u16 pkey, u16 *index);
3503 
3504 enum ib_pd_flags {
3505 	/*
3506 	 * Create a memory registration for all memory in the system and place
3507 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3508 	 * ULPs to avoid the overhead of dynamic MRs.
3509 	 *
3510 	 * This flag is generally considered unsafe and must only be used in
3511 	 * extremly trusted environments.  Every use of it will log a warning
3512 	 * in the kernel log.
3513 	 */
3514 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3515 };
3516 
3517 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3518 		const char *caller);
3519 
3520 /**
3521  * ib_alloc_pd - Allocates an unused protection domain.
3522  * @device: The device on which to allocate the protection domain.
3523  * @flags: protection domain flags
3524  *
3525  * A protection domain object provides an association between QPs, shared
3526  * receive queues, address handles, memory regions, and memory windows.
3527  *
3528  * Every PD has a local_dma_lkey which can be used as the lkey value for local
3529  * memory operations.
3530  */
3531 #define ib_alloc_pd(device, flags) \
3532 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3533 
3534 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3535 
3536 /**
3537  * ib_dealloc_pd - Deallocate kernel PD
3538  * @pd: The protection domain
3539  *
3540  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3541  */
3542 static inline void ib_dealloc_pd(struct ib_pd *pd)
3543 {
3544 	int ret = ib_dealloc_pd_user(pd, NULL);
3545 
3546 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3547 }
3548 
3549 enum rdma_create_ah_flags {
3550 	/* In a sleepable context */
3551 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3552 };
3553 
3554 /**
3555  * rdma_create_ah - Creates an address handle for the given address vector.
3556  * @pd: The protection domain associated with the address handle.
3557  * @ah_attr: The attributes of the address vector.
3558  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3559  *
3560  * The address handle is used to reference a local or global destination
3561  * in all UD QP post sends.
3562  */
3563 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3564 			     u32 flags);
3565 
3566 /**
3567  * rdma_create_user_ah - Creates an address handle for the given address vector.
3568  * It resolves destination mac address for ah attribute of RoCE type.
3569  * @pd: The protection domain associated with the address handle.
3570  * @ah_attr: The attributes of the address vector.
3571  * @udata: pointer to user's input output buffer information need by
3572  *         provider driver.
3573  *
3574  * It returns 0 on success and returns appropriate error code on error.
3575  * The address handle is used to reference a local or global destination
3576  * in all UD QP post sends.
3577  */
3578 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3579 				  struct rdma_ah_attr *ah_attr,
3580 				  struct ib_udata *udata);
3581 /**
3582  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3583  *   work completion.
3584  * @hdr: the L3 header to parse
3585  * @net_type: type of header to parse
3586  * @sgid: place to store source gid
3587  * @dgid: place to store destination gid
3588  */
3589 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3590 			      enum rdma_network_type net_type,
3591 			      union ib_gid *sgid, union ib_gid *dgid);
3592 
3593 /**
3594  * ib_get_rdma_header_version - Get the header version
3595  * @hdr: the L3 header to parse
3596  */
3597 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3598 
3599 /**
3600  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3601  *   work completion.
3602  * @device: Device on which the received message arrived.
3603  * @port_num: Port on which the received message arrived.
3604  * @wc: Work completion associated with the received message.
3605  * @grh: References the received global route header.  This parameter is
3606  *   ignored unless the work completion indicates that the GRH is valid.
3607  * @ah_attr: Returned attributes that can be used when creating an address
3608  *   handle for replying to the message.
3609  * When ib_init_ah_attr_from_wc() returns success,
3610  * (a) for IB link layer it optionally contains a reference to SGID attribute
3611  * when GRH is present for IB link layer.
3612  * (b) for RoCE link layer it contains a reference to SGID attribute.
3613  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3614  * attributes which are initialized using ib_init_ah_attr_from_wc().
3615  *
3616  */
3617 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3618 			    const struct ib_wc *wc, const struct ib_grh *grh,
3619 			    struct rdma_ah_attr *ah_attr);
3620 
3621 /**
3622  * ib_create_ah_from_wc - Creates an address handle associated with the
3623  *   sender of the specified work completion.
3624  * @pd: The protection domain associated with the address handle.
3625  * @wc: Work completion information associated with a received message.
3626  * @grh: References the received global route header.  This parameter is
3627  *   ignored unless the work completion indicates that the GRH is valid.
3628  * @port_num: The outbound port number to associate with the address.
3629  *
3630  * The address handle is used to reference a local or global destination
3631  * in all UD QP post sends.
3632  */
3633 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3634 				   const struct ib_grh *grh, u32 port_num);
3635 
3636 /**
3637  * rdma_modify_ah - Modifies the address vector associated with an address
3638  *   handle.
3639  * @ah: The address handle to modify.
3640  * @ah_attr: The new address vector attributes to associate with the
3641  *   address handle.
3642  */
3643 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3644 
3645 /**
3646  * rdma_query_ah - Queries the address vector associated with an address
3647  *   handle.
3648  * @ah: The address handle to query.
3649  * @ah_attr: The address vector attributes associated with the address
3650  *   handle.
3651  */
3652 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3653 
3654 enum rdma_destroy_ah_flags {
3655 	/* In a sleepable context */
3656 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3657 };
3658 
3659 /**
3660  * rdma_destroy_ah_user - Destroys an address handle.
3661  * @ah: The address handle to destroy.
3662  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3663  * @udata: Valid user data or NULL for kernel objects
3664  */
3665 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3666 
3667 /**
3668  * rdma_destroy_ah - Destroys an kernel address handle.
3669  * @ah: The address handle to destroy.
3670  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3671  *
3672  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3673  */
3674 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3675 {
3676 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3677 
3678 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3679 }
3680 
3681 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3682 				  struct ib_srq_init_attr *srq_init_attr,
3683 				  struct ib_usrq_object *uobject,
3684 				  struct ib_udata *udata);
3685 static inline struct ib_srq *
3686 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3687 {
3688 	if (!pd->device->ops.create_srq)
3689 		return ERR_PTR(-EOPNOTSUPP);
3690 
3691 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3692 }
3693 
3694 /**
3695  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3696  * @srq: The SRQ to modify.
3697  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3698  *   the current values of selected SRQ attributes are returned.
3699  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3700  *   are being modified.
3701  *
3702  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3703  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3704  * the number of receives queued drops below the limit.
3705  */
3706 int ib_modify_srq(struct ib_srq *srq,
3707 		  struct ib_srq_attr *srq_attr,
3708 		  enum ib_srq_attr_mask srq_attr_mask);
3709 
3710 /**
3711  * ib_query_srq - Returns the attribute list and current values for the
3712  *   specified SRQ.
3713  * @srq: The SRQ to query.
3714  * @srq_attr: The attributes of the specified SRQ.
3715  */
3716 int ib_query_srq(struct ib_srq *srq,
3717 		 struct ib_srq_attr *srq_attr);
3718 
3719 /**
3720  * ib_destroy_srq_user - Destroys the specified SRQ.
3721  * @srq: The SRQ to destroy.
3722  * @udata: Valid user data or NULL for kernel objects
3723  */
3724 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3725 
3726 /**
3727  * ib_destroy_srq - Destroys the specified kernel SRQ.
3728  * @srq: The SRQ to destroy.
3729  *
3730  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3731  */
3732 static inline void ib_destroy_srq(struct ib_srq *srq)
3733 {
3734 	int ret = ib_destroy_srq_user(srq, NULL);
3735 
3736 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3737 }
3738 
3739 /**
3740  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3741  * @srq: The SRQ to post the work request on.
3742  * @recv_wr: A list of work requests to post on the receive queue.
3743  * @bad_recv_wr: On an immediate failure, this parameter will reference
3744  *   the work request that failed to be posted on the QP.
3745  */
3746 static inline int ib_post_srq_recv(struct ib_srq *srq,
3747 				   const struct ib_recv_wr *recv_wr,
3748 				   const struct ib_recv_wr **bad_recv_wr)
3749 {
3750 	const struct ib_recv_wr *dummy;
3751 
3752 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3753 					      bad_recv_wr ? : &dummy);
3754 }
3755 
3756 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3757 				  struct ib_qp_init_attr *qp_init_attr,
3758 				  const char *caller);
3759 /**
3760  * ib_create_qp - Creates a kernel QP associated with the specific protection
3761  * domain.
3762  * @pd: The protection domain associated with the QP.
3763  * @init_attr: A list of initial attributes required to create the
3764  *   QP.  If QP creation succeeds, then the attributes are updated to
3765  *   the actual capabilities of the created QP.
3766  */
3767 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3768 					 struct ib_qp_init_attr *init_attr)
3769 {
3770 	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3771 }
3772 
3773 /**
3774  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3775  * @qp: The QP to modify.
3776  * @attr: On input, specifies the QP attributes to modify.  On output,
3777  *   the current values of selected QP attributes are returned.
3778  * @attr_mask: A bit-mask used to specify which attributes of the QP
3779  *   are being modified.
3780  * @udata: pointer to user's input output buffer information
3781  *   are being modified.
3782  * It returns 0 on success and returns appropriate error code on error.
3783  */
3784 int ib_modify_qp_with_udata(struct ib_qp *qp,
3785 			    struct ib_qp_attr *attr,
3786 			    int attr_mask,
3787 			    struct ib_udata *udata);
3788 
3789 /**
3790  * ib_modify_qp - Modifies the attributes for the specified QP and then
3791  *   transitions the QP to the given state.
3792  * @qp: The QP to modify.
3793  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3794  *   the current values of selected QP attributes are returned.
3795  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3796  *   are being modified.
3797  */
3798 int ib_modify_qp(struct ib_qp *qp,
3799 		 struct ib_qp_attr *qp_attr,
3800 		 int qp_attr_mask);
3801 
3802 /**
3803  * ib_query_qp - Returns the attribute list and current values for the
3804  *   specified QP.
3805  * @qp: The QP to query.
3806  * @qp_attr: The attributes of the specified QP.
3807  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3808  * @qp_init_attr: Additional attributes of the selected QP.
3809  *
3810  * The qp_attr_mask may be used to limit the query to gathering only the
3811  * selected attributes.
3812  */
3813 int ib_query_qp(struct ib_qp *qp,
3814 		struct ib_qp_attr *qp_attr,
3815 		int qp_attr_mask,
3816 		struct ib_qp_init_attr *qp_init_attr);
3817 
3818 /**
3819  * ib_destroy_qp - Destroys the specified QP.
3820  * @qp: The QP to destroy.
3821  * @udata: Valid udata or NULL for kernel objects
3822  */
3823 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3824 
3825 /**
3826  * ib_destroy_qp - Destroys the specified kernel QP.
3827  * @qp: The QP to destroy.
3828  *
3829  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3830  */
3831 static inline int ib_destroy_qp(struct ib_qp *qp)
3832 {
3833 	return ib_destroy_qp_user(qp, NULL);
3834 }
3835 
3836 /**
3837  * ib_open_qp - Obtain a reference to an existing sharable QP.
3838  * @xrcd - XRC domain
3839  * @qp_open_attr: Attributes identifying the QP to open.
3840  *
3841  * Returns a reference to a sharable QP.
3842  */
3843 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3844 			 struct ib_qp_open_attr *qp_open_attr);
3845 
3846 /**
3847  * ib_close_qp - Release an external reference to a QP.
3848  * @qp: The QP handle to release
3849  *
3850  * The opened QP handle is released by the caller.  The underlying
3851  * shared QP is not destroyed until all internal references are released.
3852  */
3853 int ib_close_qp(struct ib_qp *qp);
3854 
3855 /**
3856  * ib_post_send - Posts a list of work requests to the send queue of
3857  *   the specified QP.
3858  * @qp: The QP to post the work request on.
3859  * @send_wr: A list of work requests to post on the send queue.
3860  * @bad_send_wr: On an immediate failure, this parameter will reference
3861  *   the work request that failed to be posted on the QP.
3862  *
3863  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3864  * error is returned, the QP state shall not be affected,
3865  * ib_post_send() will return an immediate error after queueing any
3866  * earlier work requests in the list.
3867  */
3868 static inline int ib_post_send(struct ib_qp *qp,
3869 			       const struct ib_send_wr *send_wr,
3870 			       const struct ib_send_wr **bad_send_wr)
3871 {
3872 	const struct ib_send_wr *dummy;
3873 
3874 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3875 }
3876 
3877 /**
3878  * ib_post_recv - Posts a list of work requests to the receive queue of
3879  *   the specified QP.
3880  * @qp: The QP to post the work request on.
3881  * @recv_wr: A list of work requests to post on the receive queue.
3882  * @bad_recv_wr: On an immediate failure, this parameter will reference
3883  *   the work request that failed to be posted on the QP.
3884  */
3885 static inline int ib_post_recv(struct ib_qp *qp,
3886 			       const struct ib_recv_wr *recv_wr,
3887 			       const struct ib_recv_wr **bad_recv_wr)
3888 {
3889 	const struct ib_recv_wr *dummy;
3890 
3891 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3892 }
3893 
3894 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3895 			    int comp_vector, enum ib_poll_context poll_ctx,
3896 			    const char *caller);
3897 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3898 					int nr_cqe, int comp_vector,
3899 					enum ib_poll_context poll_ctx)
3900 {
3901 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3902 			     KBUILD_MODNAME);
3903 }
3904 
3905 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3906 				int nr_cqe, enum ib_poll_context poll_ctx,
3907 				const char *caller);
3908 
3909 /**
3910  * ib_alloc_cq_any: Allocate kernel CQ
3911  * @dev: The IB device
3912  * @private: Private data attached to the CQE
3913  * @nr_cqe: Number of CQEs in the CQ
3914  * @poll_ctx: Context used for polling the CQ
3915  */
3916 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3917 					    void *private, int nr_cqe,
3918 					    enum ib_poll_context poll_ctx)
3919 {
3920 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3921 				 KBUILD_MODNAME);
3922 }
3923 
3924 void ib_free_cq(struct ib_cq *cq);
3925 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3926 
3927 /**
3928  * ib_create_cq - Creates a CQ on the specified device.
3929  * @device: The device on which to create the CQ.
3930  * @comp_handler: A user-specified callback that is invoked when a
3931  *   completion event occurs on the CQ.
3932  * @event_handler: A user-specified callback that is invoked when an
3933  *   asynchronous event not associated with a completion occurs on the CQ.
3934  * @cq_context: Context associated with the CQ returned to the user via
3935  *   the associated completion and event handlers.
3936  * @cq_attr: The attributes the CQ should be created upon.
3937  *
3938  * Users can examine the cq structure to determine the actual CQ size.
3939  */
3940 struct ib_cq *__ib_create_cq(struct ib_device *device,
3941 			     ib_comp_handler comp_handler,
3942 			     void (*event_handler)(struct ib_event *, void *),
3943 			     void *cq_context,
3944 			     const struct ib_cq_init_attr *cq_attr,
3945 			     const char *caller);
3946 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3947 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3948 
3949 /**
3950  * ib_resize_cq - Modifies the capacity of the CQ.
3951  * @cq: The CQ to resize.
3952  * @cqe: The minimum size of the CQ.
3953  *
3954  * Users can examine the cq structure to determine the actual CQ size.
3955  */
3956 int ib_resize_cq(struct ib_cq *cq, int cqe);
3957 
3958 /**
3959  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3960  * @cq: The CQ to modify.
3961  * @cq_count: number of CQEs that will trigger an event
3962  * @cq_period: max period of time in usec before triggering an event
3963  *
3964  */
3965 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3966 
3967 /**
3968  * ib_destroy_cq_user - Destroys the specified CQ.
3969  * @cq: The CQ to destroy.
3970  * @udata: Valid user data or NULL for kernel objects
3971  */
3972 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3973 
3974 /**
3975  * ib_destroy_cq - Destroys the specified kernel CQ.
3976  * @cq: The CQ to destroy.
3977  *
3978  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3979  */
3980 static inline void ib_destroy_cq(struct ib_cq *cq)
3981 {
3982 	int ret = ib_destroy_cq_user(cq, NULL);
3983 
3984 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3985 }
3986 
3987 /**
3988  * ib_poll_cq - poll a CQ for completion(s)
3989  * @cq:the CQ being polled
3990  * @num_entries:maximum number of completions to return
3991  * @wc:array of at least @num_entries &struct ib_wc where completions
3992  *   will be returned
3993  *
3994  * Poll a CQ for (possibly multiple) completions.  If the return value
3995  * is < 0, an error occurred.  If the return value is >= 0, it is the
3996  * number of completions returned.  If the return value is
3997  * non-negative and < num_entries, then the CQ was emptied.
3998  */
3999 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4000 			     struct ib_wc *wc)
4001 {
4002 	return cq->device->ops.poll_cq(cq, num_entries, wc);
4003 }
4004 
4005 /**
4006  * ib_req_notify_cq - Request completion notification on a CQ.
4007  * @cq: The CQ to generate an event for.
4008  * @flags:
4009  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4010  *   to request an event on the next solicited event or next work
4011  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4012  *   may also be |ed in to request a hint about missed events, as
4013  *   described below.
4014  *
4015  * Return Value:
4016  *    < 0 means an error occurred while requesting notification
4017  *   == 0 means notification was requested successfully, and if
4018  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4019  *        were missed and it is safe to wait for another event.  In
4020  *        this case is it guaranteed that any work completions added
4021  *        to the CQ since the last CQ poll will trigger a completion
4022  *        notification event.
4023  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4024  *        in.  It means that the consumer must poll the CQ again to
4025  *        make sure it is empty to avoid missing an event because of a
4026  *        race between requesting notification and an entry being
4027  *        added to the CQ.  This return value means it is possible
4028  *        (but not guaranteed) that a work completion has been added
4029  *        to the CQ since the last poll without triggering a
4030  *        completion notification event.
4031  */
4032 static inline int ib_req_notify_cq(struct ib_cq *cq,
4033 				   enum ib_cq_notify_flags flags)
4034 {
4035 	return cq->device->ops.req_notify_cq(cq, flags);
4036 }
4037 
4038 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4039 			     int comp_vector_hint,
4040 			     enum ib_poll_context poll_ctx);
4041 
4042 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4043 
4044 /*
4045  * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4046  * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4047  * address into the dma address.
4048  */
4049 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4050 {
4051 	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4052 }
4053 
4054 /*
4055  * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4056  */
4057 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4058 {
4059 	if (ib_uses_virt_dma(dev))
4060 		return false;
4061 
4062 	return dma_pci_p2pdma_supported(dev->dma_device);
4063 }
4064 
4065 /**
4066  * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4067  * @dma_addr: The DMA address
4068  *
4069  * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4070  * going through the dma_addr marshalling.
4071  */
4072 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4073 {
4074 	/* virt_dma mode maps the kvs's directly into the dma addr */
4075 	return (void *)(uintptr_t)dma_addr;
4076 }
4077 
4078 /**
4079  * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4080  * @dma_addr: The DMA address
4081  *
4082  * Used by ib_uses_virt_dma() device to get back to the struct page after going
4083  * through the dma_addr marshalling.
4084  */
4085 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4086 {
4087 	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4088 }
4089 
4090 /**
4091  * ib_dma_mapping_error - check a DMA addr for error
4092  * @dev: The device for which the dma_addr was created
4093  * @dma_addr: The DMA address to check
4094  */
4095 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4096 {
4097 	if (ib_uses_virt_dma(dev))
4098 		return 0;
4099 	return dma_mapping_error(dev->dma_device, dma_addr);
4100 }
4101 
4102 /**
4103  * ib_dma_map_single - Map a kernel virtual address to DMA address
4104  * @dev: The device for which the dma_addr is to be created
4105  * @cpu_addr: The kernel virtual address
4106  * @size: The size of the region in bytes
4107  * @direction: The direction of the DMA
4108  */
4109 static inline u64 ib_dma_map_single(struct ib_device *dev,
4110 				    void *cpu_addr, size_t size,
4111 				    enum dma_data_direction direction)
4112 {
4113 	if (ib_uses_virt_dma(dev))
4114 		return (uintptr_t)cpu_addr;
4115 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4116 }
4117 
4118 /**
4119  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4120  * @dev: The device for which the DMA address was created
4121  * @addr: The DMA address
4122  * @size: The size of the region in bytes
4123  * @direction: The direction of the DMA
4124  */
4125 static inline void ib_dma_unmap_single(struct ib_device *dev,
4126 				       u64 addr, size_t size,
4127 				       enum dma_data_direction direction)
4128 {
4129 	if (!ib_uses_virt_dma(dev))
4130 		dma_unmap_single(dev->dma_device, addr, size, direction);
4131 }
4132 
4133 /**
4134  * ib_dma_map_page - Map a physical page to DMA address
4135  * @dev: The device for which the dma_addr is to be created
4136  * @page: The page to be mapped
4137  * @offset: The offset within the page
4138  * @size: The size of the region in bytes
4139  * @direction: The direction of the DMA
4140  */
4141 static inline u64 ib_dma_map_page(struct ib_device *dev,
4142 				  struct page *page,
4143 				  unsigned long offset,
4144 				  size_t size,
4145 					 enum dma_data_direction direction)
4146 {
4147 	if (ib_uses_virt_dma(dev))
4148 		return (uintptr_t)(page_address(page) + offset);
4149 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4150 }
4151 
4152 /**
4153  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4154  * @dev: The device for which the DMA address was created
4155  * @addr: The DMA address
4156  * @size: The size of the region in bytes
4157  * @direction: The direction of the DMA
4158  */
4159 static inline void ib_dma_unmap_page(struct ib_device *dev,
4160 				     u64 addr, size_t size,
4161 				     enum dma_data_direction direction)
4162 {
4163 	if (!ib_uses_virt_dma(dev))
4164 		dma_unmap_page(dev->dma_device, addr, size, direction);
4165 }
4166 
4167 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4168 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4169 				      struct scatterlist *sg, int nents,
4170 				      enum dma_data_direction direction,
4171 				      unsigned long dma_attrs)
4172 {
4173 	if (ib_uses_virt_dma(dev))
4174 		return ib_dma_virt_map_sg(dev, sg, nents);
4175 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4176 				dma_attrs);
4177 }
4178 
4179 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4180 					 struct scatterlist *sg, int nents,
4181 					 enum dma_data_direction direction,
4182 					 unsigned long dma_attrs)
4183 {
4184 	if (!ib_uses_virt_dma(dev))
4185 		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4186 				   dma_attrs);
4187 }
4188 
4189 /**
4190  * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4191  * @dev: The device for which the DMA addresses are to be created
4192  * @sg: The sg_table object describing the buffer
4193  * @direction: The direction of the DMA
4194  * @attrs: Optional DMA attributes for the map operation
4195  */
4196 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4197 					   struct sg_table *sgt,
4198 					   enum dma_data_direction direction,
4199 					   unsigned long dma_attrs)
4200 {
4201 	int nents;
4202 
4203 	if (ib_uses_virt_dma(dev)) {
4204 		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4205 		if (!nents)
4206 			return -EIO;
4207 		sgt->nents = nents;
4208 		return 0;
4209 	}
4210 	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4211 }
4212 
4213 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4214 					      struct sg_table *sgt,
4215 					      enum dma_data_direction direction,
4216 					      unsigned long dma_attrs)
4217 {
4218 	if (!ib_uses_virt_dma(dev))
4219 		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4220 }
4221 
4222 /**
4223  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4224  * @dev: The device for which the DMA addresses are to be created
4225  * @sg: The array of scatter/gather entries
4226  * @nents: The number of scatter/gather entries
4227  * @direction: The direction of the DMA
4228  */
4229 static inline int ib_dma_map_sg(struct ib_device *dev,
4230 				struct scatterlist *sg, int nents,
4231 				enum dma_data_direction direction)
4232 {
4233 	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4234 }
4235 
4236 /**
4237  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4238  * @dev: The device for which the DMA addresses were created
4239  * @sg: The array of scatter/gather entries
4240  * @nents: The number of scatter/gather entries
4241  * @direction: The direction of the DMA
4242  */
4243 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4244 				   struct scatterlist *sg, int nents,
4245 				   enum dma_data_direction direction)
4246 {
4247 	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4248 }
4249 
4250 /**
4251  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4252  * @dev: The device to query
4253  *
4254  * The returned value represents a size in bytes.
4255  */
4256 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4257 {
4258 	if (ib_uses_virt_dma(dev))
4259 		return UINT_MAX;
4260 	return dma_get_max_seg_size(dev->dma_device);
4261 }
4262 
4263 /**
4264  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4265  * @dev: The device for which the DMA address was created
4266  * @addr: The DMA address
4267  * @size: The size of the region in bytes
4268  * @dir: The direction of the DMA
4269  */
4270 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4271 					      u64 addr,
4272 					      size_t size,
4273 					      enum dma_data_direction dir)
4274 {
4275 	if (!ib_uses_virt_dma(dev))
4276 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4277 }
4278 
4279 /**
4280  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4281  * @dev: The device for which the DMA address was created
4282  * @addr: The DMA address
4283  * @size: The size of the region in bytes
4284  * @dir: The direction of the DMA
4285  */
4286 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4287 						 u64 addr,
4288 						 size_t size,
4289 						 enum dma_data_direction dir)
4290 {
4291 	if (!ib_uses_virt_dma(dev))
4292 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4293 }
4294 
4295 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4296  * space. This function should be called when 'current' is the owning MM.
4297  */
4298 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4299 			     u64 virt_addr, int mr_access_flags);
4300 
4301 /* ib_advise_mr -  give an advice about an address range in a memory region */
4302 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4303 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4304 /**
4305  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4306  *   HCA translation table.
4307  * @mr: The memory region to deregister.
4308  * @udata: Valid user data or NULL for kernel object
4309  *
4310  * This function can fail, if the memory region has memory windows bound to it.
4311  */
4312 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4313 
4314 /**
4315  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4316  *   HCA translation table.
4317  * @mr: The memory region to deregister.
4318  *
4319  * This function can fail, if the memory region has memory windows bound to it.
4320  *
4321  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4322  */
4323 static inline int ib_dereg_mr(struct ib_mr *mr)
4324 {
4325 	return ib_dereg_mr_user(mr, NULL);
4326 }
4327 
4328 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4329 			  u32 max_num_sg);
4330 
4331 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4332 				    u32 max_num_data_sg,
4333 				    u32 max_num_meta_sg);
4334 
4335 /**
4336  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4337  *   R_Key and L_Key.
4338  * @mr - struct ib_mr pointer to be updated.
4339  * @newkey - new key to be used.
4340  */
4341 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4342 {
4343 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4344 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4345 }
4346 
4347 /**
4348  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4349  * for calculating a new rkey for type 2 memory windows.
4350  * @rkey - the rkey to increment.
4351  */
4352 static inline u32 ib_inc_rkey(u32 rkey)
4353 {
4354 	const u32 mask = 0x000000ff;
4355 	return ((rkey + 1) & mask) | (rkey & ~mask);
4356 }
4357 
4358 /**
4359  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4360  * @qp: QP to attach to the multicast group.  The QP must be type
4361  *   IB_QPT_UD.
4362  * @gid: Multicast group GID.
4363  * @lid: Multicast group LID in host byte order.
4364  *
4365  * In order to send and receive multicast packets, subnet
4366  * administration must have created the multicast group and configured
4367  * the fabric appropriately.  The port associated with the specified
4368  * QP must also be a member of the multicast group.
4369  */
4370 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4371 
4372 /**
4373  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4374  * @qp: QP to detach from the multicast group.
4375  * @gid: Multicast group GID.
4376  * @lid: Multicast group LID in host byte order.
4377  */
4378 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4379 
4380 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4381 				   struct inode *inode, struct ib_udata *udata);
4382 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4383 
4384 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4385 				     unsigned int flags)
4386 {
4387 	u64 device_cap = ib_dev->attrs.device_cap_flags;
4388 
4389 	/*
4390 	 * Local write permission is required if remote write or
4391 	 * remote atomic permission is also requested.
4392 	 */
4393 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4394 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4395 		return -EINVAL;
4396 
4397 	if (flags & ~IB_ACCESS_SUPPORTED)
4398 		return -EINVAL;
4399 
4400 	if (flags & IB_ACCESS_ON_DEMAND &&
4401 	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4402 		return -EOPNOTSUPP;
4403 
4404 	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4405 	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4406 	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4407 	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4408 		return -EOPNOTSUPP;
4409 
4410 	return 0;
4411 }
4412 
4413 static inline bool ib_access_writable(int access_flags)
4414 {
4415 	/*
4416 	 * We have writable memory backing the MR if any of the following
4417 	 * access flags are set.  "Local write" and "remote write" obviously
4418 	 * require write access.  "Remote atomic" can do things like fetch and
4419 	 * add, which will modify memory, and "MW bind" can change permissions
4420 	 * by binding a window.
4421 	 */
4422 	return access_flags &
4423 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4424 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4425 }
4426 
4427 /**
4428  * ib_check_mr_status: lightweight check of MR status.
4429  *     This routine may provide status checks on a selected
4430  *     ib_mr. first use is for signature status check.
4431  *
4432  * @mr: A memory region.
4433  * @check_mask: Bitmask of which checks to perform from
4434  *     ib_mr_status_check enumeration.
4435  * @mr_status: The container of relevant status checks.
4436  *     failed checks will be indicated in the status bitmask
4437  *     and the relevant info shall be in the error item.
4438  */
4439 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4440 		       struct ib_mr_status *mr_status);
4441 
4442 /**
4443  * ib_device_try_get: Hold a registration lock
4444  * device: The device to lock
4445  *
4446  * A device under an active registration lock cannot become unregistered. It
4447  * is only possible to obtain a registration lock on a device that is fully
4448  * registered, otherwise this function returns false.
4449  *
4450  * The registration lock is only necessary for actions which require the
4451  * device to still be registered. Uses that only require the device pointer to
4452  * be valid should use get_device(&ibdev->dev) to hold the memory.
4453  *
4454  */
4455 static inline bool ib_device_try_get(struct ib_device *dev)
4456 {
4457 	return refcount_inc_not_zero(&dev->refcount);
4458 }
4459 
4460 void ib_device_put(struct ib_device *device);
4461 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4462 					  enum rdma_driver_id driver_id);
4463 struct ib_device *ib_device_get_by_name(const char *name,
4464 					enum rdma_driver_id driver_id);
4465 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4466 					    u16 pkey, const union ib_gid *gid,
4467 					    const struct sockaddr *addr);
4468 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4469 			 unsigned int port);
4470 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4471 					u32 port);
4472 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4473 			   struct ib_wq_init_attr *init_attr);
4474 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4475 
4476 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4477 		 unsigned int *sg_offset, unsigned int page_size);
4478 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4479 		    int data_sg_nents, unsigned int *data_sg_offset,
4480 		    struct scatterlist *meta_sg, int meta_sg_nents,
4481 		    unsigned int *meta_sg_offset, unsigned int page_size);
4482 
4483 static inline int
4484 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4485 		  unsigned int *sg_offset, unsigned int page_size)
4486 {
4487 	int n;
4488 
4489 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4490 	mr->iova = 0;
4491 
4492 	return n;
4493 }
4494 
4495 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4496 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4497 
4498 void ib_drain_rq(struct ib_qp *qp);
4499 void ib_drain_sq(struct ib_qp *qp);
4500 void ib_drain_qp(struct ib_qp *qp);
4501 
4502 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4503 		     u8 *width);
4504 
4505 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4506 {
4507 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4508 		return attr->roce.dmac;
4509 	return NULL;
4510 }
4511 
4512 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4513 {
4514 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4515 		attr->ib.dlid = (u16)dlid;
4516 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4517 		attr->opa.dlid = dlid;
4518 }
4519 
4520 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4521 {
4522 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4523 		return attr->ib.dlid;
4524 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4525 		return attr->opa.dlid;
4526 	return 0;
4527 }
4528 
4529 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4530 {
4531 	attr->sl = sl;
4532 }
4533 
4534 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4535 {
4536 	return attr->sl;
4537 }
4538 
4539 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4540 					 u8 src_path_bits)
4541 {
4542 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4543 		attr->ib.src_path_bits = src_path_bits;
4544 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4545 		attr->opa.src_path_bits = src_path_bits;
4546 }
4547 
4548 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4549 {
4550 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4551 		return attr->ib.src_path_bits;
4552 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4553 		return attr->opa.src_path_bits;
4554 	return 0;
4555 }
4556 
4557 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4558 					bool make_grd)
4559 {
4560 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4561 		attr->opa.make_grd = make_grd;
4562 }
4563 
4564 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4565 {
4566 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4567 		return attr->opa.make_grd;
4568 	return false;
4569 }
4570 
4571 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4572 {
4573 	attr->port_num = port_num;
4574 }
4575 
4576 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4577 {
4578 	return attr->port_num;
4579 }
4580 
4581 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4582 					   u8 static_rate)
4583 {
4584 	attr->static_rate = static_rate;
4585 }
4586 
4587 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4588 {
4589 	return attr->static_rate;
4590 }
4591 
4592 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4593 					enum ib_ah_flags flag)
4594 {
4595 	attr->ah_flags = flag;
4596 }
4597 
4598 static inline enum ib_ah_flags
4599 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4600 {
4601 	return attr->ah_flags;
4602 }
4603 
4604 static inline const struct ib_global_route
4605 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4606 {
4607 	return &attr->grh;
4608 }
4609 
4610 /*To retrieve and modify the grh */
4611 static inline struct ib_global_route
4612 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4613 {
4614 	return &attr->grh;
4615 }
4616 
4617 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4618 {
4619 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4620 
4621 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4622 }
4623 
4624 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4625 					     __be64 prefix)
4626 {
4627 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4628 
4629 	grh->dgid.global.subnet_prefix = prefix;
4630 }
4631 
4632 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4633 					    __be64 if_id)
4634 {
4635 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4636 
4637 	grh->dgid.global.interface_id = if_id;
4638 }
4639 
4640 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4641 				   union ib_gid *dgid, u32 flow_label,
4642 				   u8 sgid_index, u8 hop_limit,
4643 				   u8 traffic_class)
4644 {
4645 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4646 
4647 	attr->ah_flags = IB_AH_GRH;
4648 	if (dgid)
4649 		grh->dgid = *dgid;
4650 	grh->flow_label = flow_label;
4651 	grh->sgid_index = sgid_index;
4652 	grh->hop_limit = hop_limit;
4653 	grh->traffic_class = traffic_class;
4654 	grh->sgid_attr = NULL;
4655 }
4656 
4657 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4658 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4659 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4660 			     const struct ib_gid_attr *sgid_attr);
4661 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4662 		       const struct rdma_ah_attr *src);
4663 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4664 			  const struct rdma_ah_attr *new);
4665 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4666 
4667 /**
4668  * rdma_ah_find_type - Return address handle type.
4669  *
4670  * @dev: Device to be checked
4671  * @port_num: Port number
4672  */
4673 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4674 						       u32 port_num)
4675 {
4676 	if (rdma_protocol_roce(dev, port_num))
4677 		return RDMA_AH_ATTR_TYPE_ROCE;
4678 	if (rdma_protocol_ib(dev, port_num)) {
4679 		if (rdma_cap_opa_ah(dev, port_num))
4680 			return RDMA_AH_ATTR_TYPE_OPA;
4681 		return RDMA_AH_ATTR_TYPE_IB;
4682 	}
4683 	if (dev->type == RDMA_DEVICE_TYPE_SMI)
4684 		return RDMA_AH_ATTR_TYPE_IB;
4685 
4686 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4687 }
4688 
4689 /**
4690  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4691  *     In the current implementation the only way to
4692  *     get the 32bit lid is from other sources for OPA.
4693  *     For IB, lids will always be 16bits so cast the
4694  *     value accordingly.
4695  *
4696  * @lid: A 32bit LID
4697  */
4698 static inline u16 ib_lid_cpu16(u32 lid)
4699 {
4700 	WARN_ON_ONCE(lid & 0xFFFF0000);
4701 	return (u16)lid;
4702 }
4703 
4704 /**
4705  * ib_lid_be16 - Return lid in 16bit BE encoding.
4706  *
4707  * @lid: A 32bit LID
4708  */
4709 static inline __be16 ib_lid_be16(u32 lid)
4710 {
4711 	WARN_ON_ONCE(lid & 0xFFFF0000);
4712 	return cpu_to_be16((u16)lid);
4713 }
4714 
4715 /**
4716  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4717  *   vector
4718  * @device:         the rdma device
4719  * @comp_vector:    index of completion vector
4720  *
4721  * Returns NULL on failure, otherwise a corresponding cpu map of the
4722  * completion vector (returns all-cpus map if the device driver doesn't
4723  * implement get_vector_affinity).
4724  */
4725 static inline const struct cpumask *
4726 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4727 {
4728 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4729 	    !device->ops.get_vector_affinity)
4730 		return NULL;
4731 
4732 	return device->ops.get_vector_affinity(device, comp_vector);
4733 
4734 }
4735 
4736 /**
4737  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4738  * and add their gids, as needed, to the relevant RoCE devices.
4739  *
4740  * @device:         the rdma device
4741  */
4742 void rdma_roce_rescan_device(struct ib_device *ibdev);
4743 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4744 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4745 			      u32 port, struct net_device *ndev);
4746 
4747 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4748 
4749 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4750 
4751 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4752 				     enum rdma_netdev_t type, const char *name,
4753 				     unsigned char name_assign_type,
4754 				     void (*setup)(struct net_device *));
4755 
4756 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4757 		     enum rdma_netdev_t type, const char *name,
4758 		     unsigned char name_assign_type,
4759 		     void (*setup)(struct net_device *),
4760 		     struct net_device *netdev);
4761 
4762 /**
4763  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4764  *
4765  * @device:	device pointer for which ib_device pointer to retrieve
4766  *
4767  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4768  *
4769  */
4770 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4771 {
4772 	struct ib_core_device *coredev =
4773 		container_of(device, struct ib_core_device, dev);
4774 
4775 	return coredev->owner;
4776 }
4777 
4778 /**
4779  * ibdev_to_node - return the NUMA node for a given ib_device
4780  * @dev:	device to get the NUMA node for.
4781  */
4782 static inline int ibdev_to_node(struct ib_device *ibdev)
4783 {
4784 	struct device *parent = ibdev->dev.parent;
4785 
4786 	if (!parent)
4787 		return NUMA_NO_NODE;
4788 	return dev_to_node(parent);
4789 }
4790 
4791 /**
4792  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4793  *			       ib_device holder structure from device pointer.
4794  *
4795  * NOTE: New drivers should not make use of this API; This API is only for
4796  * existing drivers who have exposed sysfs entries using
4797  * ops->device_group.
4798  */
4799 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4800 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4801 
4802 bool rdma_dev_access_netns(const struct ib_device *device,
4803 			   const struct net *net);
4804 
4805 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4806 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4807 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4808 
4809 /**
4810  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4811  *                               on the flow_label
4812  *
4813  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4814  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4815  * convention.
4816  */
4817 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4818 {
4819 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4820 
4821 	fl_low ^= fl_high >> 14;
4822 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4823 }
4824 
4825 /**
4826  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4827  *                        local and remote qpn values
4828  *
4829  * This function folded the multiplication results of two qpns, 24 bit each,
4830  * fields, and converts it to a 20 bit results.
4831  *
4832  * This function will create symmetric flow_label value based on the local
4833  * and remote qpn values. this will allow both the requester and responder
4834  * to calculate the same flow_label for a given connection.
4835  *
4836  * This helper function should be used by driver in case the upper layer
4837  * provide a zero flow_label value. This is to improve entropy of RDMA
4838  * traffic in the network.
4839  */
4840 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4841 {
4842 	u64 v = (u64)lqpn * rqpn;
4843 
4844 	v ^= v >> 20;
4845 	v ^= v >> 40;
4846 
4847 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4848 }
4849 
4850 /**
4851  * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4852  *                      label. If flow label is not defined in GRH then
4853  *                      calculate it based on lqpn/rqpn.
4854  *
4855  * @fl:                 flow label from GRH
4856  * @lqpn:               local qp number
4857  * @rqpn:               remote qp number
4858  */
4859 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4860 {
4861 	if (!fl)
4862 		fl = rdma_calc_flow_label(lqpn, rqpn);
4863 
4864 	return rdma_flow_label_to_udp_sport(fl);
4865 }
4866 
4867 const struct ib_port_immutable*
4868 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4869 
4870 /** ib_add_sub_device - Add a sub IB device on an existing one
4871  *
4872  * @parent: The IB device that needs to add a sub device
4873  * @type: The type of the new sub device
4874  * @name: The name of the new sub device
4875  *
4876  *
4877  * Return 0 on success, an error code otherwise
4878  */
4879 int ib_add_sub_device(struct ib_device *parent,
4880 		      enum rdma_nl_dev_type type,
4881 		      const char *name);
4882 
4883 
4884 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4885  *
4886  * @sub: The sub device that is going to be deleted
4887  *
4888  * Return 0 on success, an error code otherwise
4889  */
4890 int ib_del_sub_device_and_put(struct ib_device *sub);
4891 
4892 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4893 {
4894 	ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4895 }
4896 
4897 #endif /* IB_VERBS_H */
4898