1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(2, 3) __cold 63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 64 __printf(2, 3) __cold 65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 66 __printf(2, 3) __cold 67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 68 __printf(2, 3) __cold 69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 70 __printf(2, 3) __cold 71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 72 __printf(2, 3) __cold 73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 74 __printf(2, 3) __cold 75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 76 77 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 79 #define ibdev_dbg(__dev, format, args...) \ 80 dynamic_ibdev_dbg(__dev, format, ##args) 81 #else 82 __printf(2, 3) __cold 83 static inline 84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 85 #endif 86 87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 88 do { \ 89 static DEFINE_RATELIMIT_STATE(_rs, \ 90 DEFAULT_RATELIMIT_INTERVAL, \ 91 DEFAULT_RATELIMIT_BURST); \ 92 if (__ratelimit(&_rs)) \ 93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 94 } while (0) 95 96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 110 111 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 115 do { \ 116 static DEFINE_RATELIMIT_STATE(_rs, \ 117 DEFAULT_RATELIMIT_INTERVAL, \ 118 DEFAULT_RATELIMIT_BURST); \ 119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 122 ##__VA_ARGS__); \ 123 } while (0) 124 #else 125 __printf(2, 3) __cold 126 static inline 127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 128 #endif 129 130 union ib_gid { 131 u8 raw[16]; 132 struct { 133 __be64 subnet_prefix; 134 __be64 interface_id; 135 } global; 136 }; 137 138 extern union ib_gid zgid; 139 140 enum ib_gid_type { 141 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 142 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 143 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 144 IB_GID_TYPE_SIZE 145 }; 146 147 #define ROCE_V2_UDP_DPORT 4791 148 struct ib_gid_attr { 149 struct net_device __rcu *ndev; 150 struct ib_device *device; 151 union ib_gid gid; 152 enum ib_gid_type gid_type; 153 u16 index; 154 u32 port_num; 155 }; 156 157 enum { 158 /* set the local administered indication */ 159 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 160 }; 161 162 enum rdma_transport_type { 163 RDMA_TRANSPORT_IB, 164 RDMA_TRANSPORT_IWARP, 165 RDMA_TRANSPORT_USNIC, 166 RDMA_TRANSPORT_USNIC_UDP, 167 RDMA_TRANSPORT_UNSPECIFIED, 168 }; 169 170 enum rdma_protocol_type { 171 RDMA_PROTOCOL_IB, 172 RDMA_PROTOCOL_IBOE, 173 RDMA_PROTOCOL_IWARP, 174 RDMA_PROTOCOL_USNIC_UDP 175 }; 176 177 __attribute_const__ enum rdma_transport_type 178 rdma_node_get_transport(unsigned int node_type); 179 180 enum rdma_network_type { 181 RDMA_NETWORK_IB, 182 RDMA_NETWORK_ROCE_V1, 183 RDMA_NETWORK_IPV4, 184 RDMA_NETWORK_IPV6 185 }; 186 187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 188 { 189 if (network_type == RDMA_NETWORK_IPV4 || 190 network_type == RDMA_NETWORK_IPV6) 191 return IB_GID_TYPE_ROCE_UDP_ENCAP; 192 else if (network_type == RDMA_NETWORK_ROCE_V1) 193 return IB_GID_TYPE_ROCE; 194 else 195 return IB_GID_TYPE_IB; 196 } 197 198 static inline enum rdma_network_type 199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 200 { 201 if (attr->gid_type == IB_GID_TYPE_IB) 202 return RDMA_NETWORK_IB; 203 204 if (attr->gid_type == IB_GID_TYPE_ROCE) 205 return RDMA_NETWORK_ROCE_V1; 206 207 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 208 return RDMA_NETWORK_IPV4; 209 else 210 return RDMA_NETWORK_IPV6; 211 } 212 213 enum rdma_link_layer { 214 IB_LINK_LAYER_UNSPECIFIED, 215 IB_LINK_LAYER_INFINIBAND, 216 IB_LINK_LAYER_ETHERNET, 217 }; 218 219 enum ib_device_cap_flags { 220 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 221 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 222 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 223 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 224 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 225 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 226 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 227 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 228 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 229 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 230 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 231 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 232 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 233 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 234 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 235 236 /* Reserved, old SEND_W_INV = 1 << 16,*/ 237 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 238 /* 239 * Devices should set IB_DEVICE_UD_IP_SUM if they support 240 * insertion of UDP and TCP checksum on outgoing UD IPoIB 241 * messages and can verify the validity of checksum for 242 * incoming messages. Setting this flag implies that the 243 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 244 */ 245 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 246 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 247 248 /* 249 * This device supports the IB "base memory management extension", 250 * which includes support for fast registrations (IB_WR_REG_MR, 251 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 252 * also be set by any iWarp device which must support FRs to comply 253 * to the iWarp verbs spec. iWarp devices also support the 254 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 255 * stag. 256 */ 257 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 258 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 259 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 260 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 261 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 262 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 263 IB_DEVICE_MANAGED_FLOW_STEERING = 264 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 265 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 266 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 267 /* The device supports padding incoming writes to cacheline. */ 268 IB_DEVICE_PCI_WRITE_END_PADDING = 269 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 270 /* Placement type attributes */ 271 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 272 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 273 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 274 }; 275 276 enum ib_kernel_cap_flags { 277 /* 278 * This device supports a per-device lkey or stag that can be 279 * used without performing a memory registration for the local 280 * memory. Note that ULPs should never check this flag, but 281 * instead of use the local_dma_lkey flag in the ib_pd structure, 282 * which will always contain a usable lkey. 283 */ 284 IBK_LOCAL_DMA_LKEY = 1 << 0, 285 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 286 IBK_INTEGRITY_HANDOVER = 1 << 1, 287 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 288 IBK_ON_DEMAND_PAGING = 1 << 2, 289 /* IB_MR_TYPE_SG_GAPS is supported */ 290 IBK_SG_GAPS_REG = 1 << 3, 291 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 292 IBK_ALLOW_USER_UNREG = 1 << 4, 293 294 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 295 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 296 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 297 IBK_UD_TSO = 1 << 6, 298 /* iopib will use the device ops: 299 * get_vf_config 300 * get_vf_guid 301 * get_vf_stats 302 * set_vf_guid 303 * set_vf_link_state 304 */ 305 IBK_VIRTUAL_FUNCTION = 1 << 7, 306 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 307 IBK_RDMA_NETDEV_OPA = 1 << 8, 308 }; 309 310 enum ib_atomic_cap { 311 IB_ATOMIC_NONE, 312 IB_ATOMIC_HCA, 313 IB_ATOMIC_GLOB 314 }; 315 316 enum ib_odp_general_cap_bits { 317 IB_ODP_SUPPORT = 1 << 0, 318 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 319 }; 320 321 enum ib_odp_transport_cap_bits { 322 IB_ODP_SUPPORT_SEND = 1 << 0, 323 IB_ODP_SUPPORT_RECV = 1 << 1, 324 IB_ODP_SUPPORT_WRITE = 1 << 2, 325 IB_ODP_SUPPORT_READ = 1 << 3, 326 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 327 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 328 }; 329 330 struct ib_odp_caps { 331 uint64_t general_caps; 332 struct { 333 uint32_t rc_odp_caps; 334 uint32_t uc_odp_caps; 335 uint32_t ud_odp_caps; 336 uint32_t xrc_odp_caps; 337 } per_transport_caps; 338 }; 339 340 struct ib_rss_caps { 341 /* Corresponding bit will be set if qp type from 342 * 'enum ib_qp_type' is supported, e.g. 343 * supported_qpts |= 1 << IB_QPT_UD 344 */ 345 u32 supported_qpts; 346 u32 max_rwq_indirection_tables; 347 u32 max_rwq_indirection_table_size; 348 }; 349 350 enum ib_tm_cap_flags { 351 /* Support tag matching with rendezvous offload for RC transport */ 352 IB_TM_CAP_RNDV_RC = 1 << 0, 353 }; 354 355 struct ib_tm_caps { 356 /* Max size of RNDV header */ 357 u32 max_rndv_hdr_size; 358 /* Max number of entries in tag matching list */ 359 u32 max_num_tags; 360 /* From enum ib_tm_cap_flags */ 361 u32 flags; 362 /* Max number of outstanding list operations */ 363 u32 max_ops; 364 /* Max number of SGE in tag matching entry */ 365 u32 max_sge; 366 }; 367 368 struct ib_cq_init_attr { 369 unsigned int cqe; 370 u32 comp_vector; 371 u32 flags; 372 }; 373 374 enum ib_cq_attr_mask { 375 IB_CQ_MODERATE = 1 << 0, 376 }; 377 378 struct ib_cq_caps { 379 u16 max_cq_moderation_count; 380 u16 max_cq_moderation_period; 381 }; 382 383 struct ib_dm_mr_attr { 384 u64 length; 385 u64 offset; 386 u32 access_flags; 387 }; 388 389 struct ib_dm_alloc_attr { 390 u64 length; 391 u32 alignment; 392 u32 flags; 393 }; 394 395 struct ib_device_attr { 396 u64 fw_ver; 397 __be64 sys_image_guid; 398 u64 max_mr_size; 399 u64 page_size_cap; 400 u32 vendor_id; 401 u32 vendor_part_id; 402 u32 hw_ver; 403 int max_qp; 404 int max_qp_wr; 405 u64 device_cap_flags; 406 u64 kernel_cap_flags; 407 int max_send_sge; 408 int max_recv_sge; 409 int max_sge_rd; 410 int max_cq; 411 int max_cqe; 412 int max_mr; 413 int max_pd; 414 int max_qp_rd_atom; 415 int max_ee_rd_atom; 416 int max_res_rd_atom; 417 int max_qp_init_rd_atom; 418 int max_ee_init_rd_atom; 419 enum ib_atomic_cap atomic_cap; 420 enum ib_atomic_cap masked_atomic_cap; 421 int max_ee; 422 int max_rdd; 423 int max_mw; 424 int max_raw_ipv6_qp; 425 int max_raw_ethy_qp; 426 int max_mcast_grp; 427 int max_mcast_qp_attach; 428 int max_total_mcast_qp_attach; 429 int max_ah; 430 int max_srq; 431 int max_srq_wr; 432 int max_srq_sge; 433 unsigned int max_fast_reg_page_list_len; 434 unsigned int max_pi_fast_reg_page_list_len; 435 u16 max_pkeys; 436 u8 local_ca_ack_delay; 437 int sig_prot_cap; 438 int sig_guard_cap; 439 struct ib_odp_caps odp_caps; 440 uint64_t timestamp_mask; 441 uint64_t hca_core_clock; /* in KHZ */ 442 struct ib_rss_caps rss_caps; 443 u32 max_wq_type_rq; 444 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 445 struct ib_tm_caps tm_caps; 446 struct ib_cq_caps cq_caps; 447 u64 max_dm_size; 448 /* Max entries for sgl for optimized performance per READ */ 449 u32 max_sgl_rd; 450 }; 451 452 enum ib_mtu { 453 IB_MTU_256 = 1, 454 IB_MTU_512 = 2, 455 IB_MTU_1024 = 3, 456 IB_MTU_2048 = 4, 457 IB_MTU_4096 = 5 458 }; 459 460 enum opa_mtu { 461 OPA_MTU_8192 = 6, 462 OPA_MTU_10240 = 7 463 }; 464 465 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 466 { 467 switch (mtu) { 468 case IB_MTU_256: return 256; 469 case IB_MTU_512: return 512; 470 case IB_MTU_1024: return 1024; 471 case IB_MTU_2048: return 2048; 472 case IB_MTU_4096: return 4096; 473 default: return -1; 474 } 475 } 476 477 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 478 { 479 if (mtu >= 4096) 480 return IB_MTU_4096; 481 else if (mtu >= 2048) 482 return IB_MTU_2048; 483 else if (mtu >= 1024) 484 return IB_MTU_1024; 485 else if (mtu >= 512) 486 return IB_MTU_512; 487 else 488 return IB_MTU_256; 489 } 490 491 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 492 { 493 switch (mtu) { 494 case OPA_MTU_8192: 495 return 8192; 496 case OPA_MTU_10240: 497 return 10240; 498 default: 499 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 500 } 501 } 502 503 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 504 { 505 if (mtu >= 10240) 506 return OPA_MTU_10240; 507 else if (mtu >= 8192) 508 return OPA_MTU_8192; 509 else 510 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 511 } 512 513 enum ib_port_state { 514 IB_PORT_NOP = 0, 515 IB_PORT_DOWN = 1, 516 IB_PORT_INIT = 2, 517 IB_PORT_ARMED = 3, 518 IB_PORT_ACTIVE = 4, 519 IB_PORT_ACTIVE_DEFER = 5 520 }; 521 522 static inline const char *__attribute_const__ 523 ib_port_state_to_str(enum ib_port_state state) 524 { 525 const char * const states[] = { 526 [IB_PORT_NOP] = "NOP", 527 [IB_PORT_DOWN] = "DOWN", 528 [IB_PORT_INIT] = "INIT", 529 [IB_PORT_ARMED] = "ARMED", 530 [IB_PORT_ACTIVE] = "ACTIVE", 531 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER", 532 }; 533 534 if (state < ARRAY_SIZE(states)) 535 return states[state]; 536 return "UNKNOWN"; 537 } 538 539 enum ib_port_phys_state { 540 IB_PORT_PHYS_STATE_SLEEP = 1, 541 IB_PORT_PHYS_STATE_POLLING = 2, 542 IB_PORT_PHYS_STATE_DISABLED = 3, 543 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 544 IB_PORT_PHYS_STATE_LINK_UP = 5, 545 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 546 IB_PORT_PHYS_STATE_PHY_TEST = 7, 547 }; 548 549 enum ib_port_width { 550 IB_WIDTH_1X = 1, 551 IB_WIDTH_2X = 16, 552 IB_WIDTH_4X = 2, 553 IB_WIDTH_8X = 4, 554 IB_WIDTH_12X = 8 555 }; 556 557 static inline int ib_width_enum_to_int(enum ib_port_width width) 558 { 559 switch (width) { 560 case IB_WIDTH_1X: return 1; 561 case IB_WIDTH_2X: return 2; 562 case IB_WIDTH_4X: return 4; 563 case IB_WIDTH_8X: return 8; 564 case IB_WIDTH_12X: return 12; 565 default: return -1; 566 } 567 } 568 569 enum ib_port_speed { 570 IB_SPEED_SDR = 1, 571 IB_SPEED_DDR = 2, 572 IB_SPEED_QDR = 4, 573 IB_SPEED_FDR10 = 8, 574 IB_SPEED_FDR = 16, 575 IB_SPEED_EDR = 32, 576 IB_SPEED_HDR = 64, 577 IB_SPEED_NDR = 128, 578 IB_SPEED_XDR = 256, 579 }; 580 581 enum ib_stat_flag { 582 IB_STAT_FLAG_OPTIONAL = 1 << 0, 583 }; 584 585 /** 586 * struct rdma_stat_desc 587 * @name - The name of the counter 588 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 589 * @priv - Driver private information; Core code should not use 590 */ 591 struct rdma_stat_desc { 592 const char *name; 593 unsigned int flags; 594 const void *priv; 595 }; 596 597 /** 598 * struct rdma_hw_stats 599 * @lock - Mutex to protect parallel write access to lifespan and values 600 * of counters, which are 64bits and not guaranteed to be written 601 * atomicaly on 32bits systems. 602 * @timestamp - Used by the core code to track when the last update was 603 * @lifespan - Used by the core code to determine how old the counters 604 * should be before being updated again. Stored in jiffies, defaults 605 * to 10 milliseconds, drivers can override the default be specifying 606 * their own value during their allocation routine. 607 * @descs - Array of pointers to static descriptors used for the counters 608 * in directory. 609 * @is_disabled - A bitmap to indicate each counter is currently disabled 610 * or not. 611 * @num_counters - How many hardware counters there are. If name is 612 * shorter than this number, a kernel oops will result. Driver authors 613 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 614 * in their code to prevent this. 615 * @value - Array of u64 counters that are accessed by the sysfs code and 616 * filled in by the drivers get_stats routine 617 */ 618 struct rdma_hw_stats { 619 struct mutex lock; /* Protect lifespan and values[] */ 620 unsigned long timestamp; 621 unsigned long lifespan; 622 const struct rdma_stat_desc *descs; 623 unsigned long *is_disabled; 624 int num_counters; 625 u64 value[] __counted_by(num_counters); 626 }; 627 628 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 629 630 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 631 const struct rdma_stat_desc *descs, int num_counters, 632 unsigned long lifespan); 633 634 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 635 636 /* Define bits for the various functionality this port needs to be supported by 637 * the core. 638 */ 639 /* Management 0x00000FFF */ 640 #define RDMA_CORE_CAP_IB_MAD 0x00000001 641 #define RDMA_CORE_CAP_IB_SMI 0x00000002 642 #define RDMA_CORE_CAP_IB_CM 0x00000004 643 #define RDMA_CORE_CAP_IW_CM 0x00000008 644 #define RDMA_CORE_CAP_IB_SA 0x00000010 645 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 646 647 /* Address format 0x000FF000 */ 648 #define RDMA_CORE_CAP_AF_IB 0x00001000 649 #define RDMA_CORE_CAP_ETH_AH 0x00002000 650 #define RDMA_CORE_CAP_OPA_AH 0x00004000 651 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 652 653 /* Protocol 0xFFF00000 */ 654 #define RDMA_CORE_CAP_PROT_IB 0x00100000 655 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 656 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 657 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 658 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 659 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 660 661 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 662 | RDMA_CORE_CAP_PROT_ROCE \ 663 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 664 665 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 666 | RDMA_CORE_CAP_IB_MAD \ 667 | RDMA_CORE_CAP_IB_SMI \ 668 | RDMA_CORE_CAP_IB_CM \ 669 | RDMA_CORE_CAP_IB_SA \ 670 | RDMA_CORE_CAP_AF_IB) 671 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 672 | RDMA_CORE_CAP_IB_MAD \ 673 | RDMA_CORE_CAP_IB_CM \ 674 | RDMA_CORE_CAP_AF_IB \ 675 | RDMA_CORE_CAP_ETH_AH) 676 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 677 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 678 | RDMA_CORE_CAP_IB_MAD \ 679 | RDMA_CORE_CAP_IB_CM \ 680 | RDMA_CORE_CAP_AF_IB \ 681 | RDMA_CORE_CAP_ETH_AH) 682 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 683 | RDMA_CORE_CAP_IW_CM) 684 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 685 | RDMA_CORE_CAP_OPA_MAD) 686 687 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 688 689 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 690 691 struct ib_port_attr { 692 u64 subnet_prefix; 693 enum ib_port_state state; 694 enum ib_mtu max_mtu; 695 enum ib_mtu active_mtu; 696 u32 phys_mtu; 697 int gid_tbl_len; 698 unsigned int ip_gids:1; 699 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 700 u32 port_cap_flags; 701 u32 max_msg_sz; 702 u32 bad_pkey_cntr; 703 u32 qkey_viol_cntr; 704 u16 pkey_tbl_len; 705 u32 sm_lid; 706 u32 lid; 707 u8 lmc; 708 u8 max_vl_num; 709 u8 sm_sl; 710 u8 subnet_timeout; 711 u8 init_type_reply; 712 u8 active_width; 713 u16 active_speed; 714 u8 phys_state; 715 u16 port_cap_flags2; 716 }; 717 718 enum ib_device_modify_flags { 719 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 720 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 721 }; 722 723 #define IB_DEVICE_NODE_DESC_MAX 64 724 725 struct ib_device_modify { 726 u64 sys_image_guid; 727 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 728 }; 729 730 enum ib_port_modify_flags { 731 IB_PORT_SHUTDOWN = 1, 732 IB_PORT_INIT_TYPE = (1<<2), 733 IB_PORT_RESET_QKEY_CNTR = (1<<3), 734 IB_PORT_OPA_MASK_CHG = (1<<4) 735 }; 736 737 struct ib_port_modify { 738 u32 set_port_cap_mask; 739 u32 clr_port_cap_mask; 740 u8 init_type; 741 }; 742 743 enum ib_event_type { 744 IB_EVENT_CQ_ERR, 745 IB_EVENT_QP_FATAL, 746 IB_EVENT_QP_REQ_ERR, 747 IB_EVENT_QP_ACCESS_ERR, 748 IB_EVENT_COMM_EST, 749 IB_EVENT_SQ_DRAINED, 750 IB_EVENT_PATH_MIG, 751 IB_EVENT_PATH_MIG_ERR, 752 IB_EVENT_DEVICE_FATAL, 753 IB_EVENT_PORT_ACTIVE, 754 IB_EVENT_PORT_ERR, 755 IB_EVENT_LID_CHANGE, 756 IB_EVENT_PKEY_CHANGE, 757 IB_EVENT_SM_CHANGE, 758 IB_EVENT_SRQ_ERR, 759 IB_EVENT_SRQ_LIMIT_REACHED, 760 IB_EVENT_QP_LAST_WQE_REACHED, 761 IB_EVENT_CLIENT_REREGISTER, 762 IB_EVENT_GID_CHANGE, 763 IB_EVENT_WQ_FATAL, 764 }; 765 766 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 767 768 struct ib_event { 769 struct ib_device *device; 770 union { 771 struct ib_cq *cq; 772 struct ib_qp *qp; 773 struct ib_srq *srq; 774 struct ib_wq *wq; 775 u32 port_num; 776 } element; 777 enum ib_event_type event; 778 }; 779 780 struct ib_event_handler { 781 struct ib_device *device; 782 void (*handler)(struct ib_event_handler *, struct ib_event *); 783 struct list_head list; 784 }; 785 786 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 787 do { \ 788 (_ptr)->device = _device; \ 789 (_ptr)->handler = _handler; \ 790 INIT_LIST_HEAD(&(_ptr)->list); \ 791 } while (0) 792 793 struct ib_global_route { 794 const struct ib_gid_attr *sgid_attr; 795 union ib_gid dgid; 796 u32 flow_label; 797 u8 sgid_index; 798 u8 hop_limit; 799 u8 traffic_class; 800 }; 801 802 struct ib_grh { 803 __be32 version_tclass_flow; 804 __be16 paylen; 805 u8 next_hdr; 806 u8 hop_limit; 807 union ib_gid sgid; 808 union ib_gid dgid; 809 }; 810 811 union rdma_network_hdr { 812 struct ib_grh ibgrh; 813 struct { 814 /* The IB spec states that if it's IPv4, the header 815 * is located in the last 20 bytes of the header. 816 */ 817 u8 reserved[20]; 818 struct iphdr roce4grh; 819 }; 820 }; 821 822 #define IB_QPN_MASK 0xFFFFFF 823 824 enum { 825 IB_MULTICAST_QPN = 0xffffff 826 }; 827 828 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 829 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 830 831 enum ib_ah_flags { 832 IB_AH_GRH = 1 833 }; 834 835 enum ib_rate { 836 IB_RATE_PORT_CURRENT = 0, 837 IB_RATE_2_5_GBPS = 2, 838 IB_RATE_5_GBPS = 5, 839 IB_RATE_10_GBPS = 3, 840 IB_RATE_20_GBPS = 6, 841 IB_RATE_30_GBPS = 4, 842 IB_RATE_40_GBPS = 7, 843 IB_RATE_60_GBPS = 8, 844 IB_RATE_80_GBPS = 9, 845 IB_RATE_120_GBPS = 10, 846 IB_RATE_14_GBPS = 11, 847 IB_RATE_56_GBPS = 12, 848 IB_RATE_112_GBPS = 13, 849 IB_RATE_168_GBPS = 14, 850 IB_RATE_25_GBPS = 15, 851 IB_RATE_100_GBPS = 16, 852 IB_RATE_200_GBPS = 17, 853 IB_RATE_300_GBPS = 18, 854 IB_RATE_28_GBPS = 19, 855 IB_RATE_50_GBPS = 20, 856 IB_RATE_400_GBPS = 21, 857 IB_RATE_600_GBPS = 22, 858 IB_RATE_800_GBPS = 23, 859 }; 860 861 /** 862 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 863 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 864 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 865 * @rate: rate to convert. 866 */ 867 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 868 869 /** 870 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 871 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 872 * @rate: rate to convert. 873 */ 874 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 875 876 877 /** 878 * enum ib_mr_type - memory region type 879 * @IB_MR_TYPE_MEM_REG: memory region that is used for 880 * normal registration 881 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 882 * register any arbitrary sg lists (without 883 * the normal mr constraints - see 884 * ib_map_mr_sg) 885 * @IB_MR_TYPE_DM: memory region that is used for device 886 * memory registration 887 * @IB_MR_TYPE_USER: memory region that is used for the user-space 888 * application 889 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 890 * without address translations (VA=PA) 891 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 892 * data integrity operations 893 */ 894 enum ib_mr_type { 895 IB_MR_TYPE_MEM_REG, 896 IB_MR_TYPE_SG_GAPS, 897 IB_MR_TYPE_DM, 898 IB_MR_TYPE_USER, 899 IB_MR_TYPE_DMA, 900 IB_MR_TYPE_INTEGRITY, 901 }; 902 903 enum ib_mr_status_check { 904 IB_MR_CHECK_SIG_STATUS = 1, 905 }; 906 907 /** 908 * struct ib_mr_status - Memory region status container 909 * 910 * @fail_status: Bitmask of MR checks status. For each 911 * failed check a corresponding status bit is set. 912 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 913 * failure. 914 */ 915 struct ib_mr_status { 916 u32 fail_status; 917 struct ib_sig_err sig_err; 918 }; 919 920 /** 921 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 922 * enum. 923 * @mult: multiple to convert. 924 */ 925 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 926 927 struct rdma_ah_init_attr { 928 struct rdma_ah_attr *ah_attr; 929 u32 flags; 930 struct net_device *xmit_slave; 931 }; 932 933 enum rdma_ah_attr_type { 934 RDMA_AH_ATTR_TYPE_UNDEFINED, 935 RDMA_AH_ATTR_TYPE_IB, 936 RDMA_AH_ATTR_TYPE_ROCE, 937 RDMA_AH_ATTR_TYPE_OPA, 938 }; 939 940 struct ib_ah_attr { 941 u16 dlid; 942 u8 src_path_bits; 943 }; 944 945 struct roce_ah_attr { 946 u8 dmac[ETH_ALEN]; 947 }; 948 949 struct opa_ah_attr { 950 u32 dlid; 951 u8 src_path_bits; 952 bool make_grd; 953 }; 954 955 struct rdma_ah_attr { 956 struct ib_global_route grh; 957 u8 sl; 958 u8 static_rate; 959 u32 port_num; 960 u8 ah_flags; 961 enum rdma_ah_attr_type type; 962 union { 963 struct ib_ah_attr ib; 964 struct roce_ah_attr roce; 965 struct opa_ah_attr opa; 966 }; 967 }; 968 969 enum ib_wc_status { 970 IB_WC_SUCCESS, 971 IB_WC_LOC_LEN_ERR, 972 IB_WC_LOC_QP_OP_ERR, 973 IB_WC_LOC_EEC_OP_ERR, 974 IB_WC_LOC_PROT_ERR, 975 IB_WC_WR_FLUSH_ERR, 976 IB_WC_MW_BIND_ERR, 977 IB_WC_BAD_RESP_ERR, 978 IB_WC_LOC_ACCESS_ERR, 979 IB_WC_REM_INV_REQ_ERR, 980 IB_WC_REM_ACCESS_ERR, 981 IB_WC_REM_OP_ERR, 982 IB_WC_RETRY_EXC_ERR, 983 IB_WC_RNR_RETRY_EXC_ERR, 984 IB_WC_LOC_RDD_VIOL_ERR, 985 IB_WC_REM_INV_RD_REQ_ERR, 986 IB_WC_REM_ABORT_ERR, 987 IB_WC_INV_EECN_ERR, 988 IB_WC_INV_EEC_STATE_ERR, 989 IB_WC_FATAL_ERR, 990 IB_WC_RESP_TIMEOUT_ERR, 991 IB_WC_GENERAL_ERR 992 }; 993 994 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 995 996 enum ib_wc_opcode { 997 IB_WC_SEND = IB_UVERBS_WC_SEND, 998 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 999 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 1000 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 1001 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 1002 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 1003 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 1004 IB_WC_LSO = IB_UVERBS_WC_TSO, 1005 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 1006 IB_WC_REG_MR, 1007 IB_WC_MASKED_COMP_SWAP, 1008 IB_WC_MASKED_FETCH_ADD, 1009 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 1010 /* 1011 * Set value of IB_WC_RECV so consumers can test if a completion is a 1012 * receive by testing (opcode & IB_WC_RECV). 1013 */ 1014 IB_WC_RECV = 1 << 7, 1015 IB_WC_RECV_RDMA_WITH_IMM 1016 }; 1017 1018 enum ib_wc_flags { 1019 IB_WC_GRH = 1, 1020 IB_WC_WITH_IMM = (1<<1), 1021 IB_WC_WITH_INVALIDATE = (1<<2), 1022 IB_WC_IP_CSUM_OK = (1<<3), 1023 IB_WC_WITH_SMAC = (1<<4), 1024 IB_WC_WITH_VLAN = (1<<5), 1025 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1026 }; 1027 1028 struct ib_wc { 1029 union { 1030 u64 wr_id; 1031 struct ib_cqe *wr_cqe; 1032 }; 1033 enum ib_wc_status status; 1034 enum ib_wc_opcode opcode; 1035 u32 vendor_err; 1036 u32 byte_len; 1037 struct ib_qp *qp; 1038 union { 1039 __be32 imm_data; 1040 u32 invalidate_rkey; 1041 } ex; 1042 u32 src_qp; 1043 u32 slid; 1044 int wc_flags; 1045 u16 pkey_index; 1046 u8 sl; 1047 u8 dlid_path_bits; 1048 u32 port_num; /* valid only for DR SMPs on switches */ 1049 u8 smac[ETH_ALEN]; 1050 u16 vlan_id; 1051 u8 network_hdr_type; 1052 }; 1053 1054 enum ib_cq_notify_flags { 1055 IB_CQ_SOLICITED = 1 << 0, 1056 IB_CQ_NEXT_COMP = 1 << 1, 1057 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1058 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1059 }; 1060 1061 enum ib_srq_type { 1062 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1063 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1064 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1065 }; 1066 1067 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1068 { 1069 return srq_type == IB_SRQT_XRC || 1070 srq_type == IB_SRQT_TM; 1071 } 1072 1073 enum ib_srq_attr_mask { 1074 IB_SRQ_MAX_WR = 1 << 0, 1075 IB_SRQ_LIMIT = 1 << 1, 1076 }; 1077 1078 struct ib_srq_attr { 1079 u32 max_wr; 1080 u32 max_sge; 1081 u32 srq_limit; 1082 }; 1083 1084 struct ib_srq_init_attr { 1085 void (*event_handler)(struct ib_event *, void *); 1086 void *srq_context; 1087 struct ib_srq_attr attr; 1088 enum ib_srq_type srq_type; 1089 1090 struct { 1091 struct ib_cq *cq; 1092 union { 1093 struct { 1094 struct ib_xrcd *xrcd; 1095 } xrc; 1096 1097 struct { 1098 u32 max_num_tags; 1099 } tag_matching; 1100 }; 1101 } ext; 1102 }; 1103 1104 struct ib_qp_cap { 1105 u32 max_send_wr; 1106 u32 max_recv_wr; 1107 u32 max_send_sge; 1108 u32 max_recv_sge; 1109 u32 max_inline_data; 1110 1111 /* 1112 * Maximum number of rdma_rw_ctx structures in flight at a time. 1113 * ib_create_qp() will calculate the right amount of needed WRs 1114 * and MRs based on this. 1115 */ 1116 u32 max_rdma_ctxs; 1117 }; 1118 1119 enum ib_sig_type { 1120 IB_SIGNAL_ALL_WR, 1121 IB_SIGNAL_REQ_WR 1122 }; 1123 1124 enum ib_qp_type { 1125 /* 1126 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1127 * here (and in that order) since the MAD layer uses them as 1128 * indices into a 2-entry table. 1129 */ 1130 IB_QPT_SMI, 1131 IB_QPT_GSI, 1132 1133 IB_QPT_RC = IB_UVERBS_QPT_RC, 1134 IB_QPT_UC = IB_UVERBS_QPT_UC, 1135 IB_QPT_UD = IB_UVERBS_QPT_UD, 1136 IB_QPT_RAW_IPV6, 1137 IB_QPT_RAW_ETHERTYPE, 1138 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1139 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1140 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1141 IB_QPT_MAX, 1142 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1143 /* Reserve a range for qp types internal to the low level driver. 1144 * These qp types will not be visible at the IB core layer, so the 1145 * IB_QPT_MAX usages should not be affected in the core layer 1146 */ 1147 IB_QPT_RESERVED1 = 0x1000, 1148 IB_QPT_RESERVED2, 1149 IB_QPT_RESERVED3, 1150 IB_QPT_RESERVED4, 1151 IB_QPT_RESERVED5, 1152 IB_QPT_RESERVED6, 1153 IB_QPT_RESERVED7, 1154 IB_QPT_RESERVED8, 1155 IB_QPT_RESERVED9, 1156 IB_QPT_RESERVED10, 1157 }; 1158 1159 enum ib_qp_create_flags { 1160 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1161 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1162 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1163 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1164 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1165 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1166 IB_QP_CREATE_NETIF_QP = 1 << 5, 1167 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1168 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1169 IB_QP_CREATE_SCATTER_FCS = 1170 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1171 IB_QP_CREATE_CVLAN_STRIPPING = 1172 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1173 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1174 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1175 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1176 /* reserve bits 26-31 for low level drivers' internal use */ 1177 IB_QP_CREATE_RESERVED_START = 1 << 26, 1178 IB_QP_CREATE_RESERVED_END = 1 << 31, 1179 }; 1180 1181 /* 1182 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1183 * callback to destroy the passed in QP. 1184 */ 1185 1186 struct ib_qp_init_attr { 1187 /* This callback occurs in workqueue context */ 1188 void (*event_handler)(struct ib_event *, void *); 1189 1190 void *qp_context; 1191 struct ib_cq *send_cq; 1192 struct ib_cq *recv_cq; 1193 struct ib_srq *srq; 1194 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1195 struct ib_qp_cap cap; 1196 enum ib_sig_type sq_sig_type; 1197 enum ib_qp_type qp_type; 1198 u32 create_flags; 1199 1200 /* 1201 * Only needed for special QP types, or when using the RW API. 1202 */ 1203 u32 port_num; 1204 struct ib_rwq_ind_table *rwq_ind_tbl; 1205 u32 source_qpn; 1206 }; 1207 1208 struct ib_qp_open_attr { 1209 void (*event_handler)(struct ib_event *, void *); 1210 void *qp_context; 1211 u32 qp_num; 1212 enum ib_qp_type qp_type; 1213 }; 1214 1215 enum ib_rnr_timeout { 1216 IB_RNR_TIMER_655_36 = 0, 1217 IB_RNR_TIMER_000_01 = 1, 1218 IB_RNR_TIMER_000_02 = 2, 1219 IB_RNR_TIMER_000_03 = 3, 1220 IB_RNR_TIMER_000_04 = 4, 1221 IB_RNR_TIMER_000_06 = 5, 1222 IB_RNR_TIMER_000_08 = 6, 1223 IB_RNR_TIMER_000_12 = 7, 1224 IB_RNR_TIMER_000_16 = 8, 1225 IB_RNR_TIMER_000_24 = 9, 1226 IB_RNR_TIMER_000_32 = 10, 1227 IB_RNR_TIMER_000_48 = 11, 1228 IB_RNR_TIMER_000_64 = 12, 1229 IB_RNR_TIMER_000_96 = 13, 1230 IB_RNR_TIMER_001_28 = 14, 1231 IB_RNR_TIMER_001_92 = 15, 1232 IB_RNR_TIMER_002_56 = 16, 1233 IB_RNR_TIMER_003_84 = 17, 1234 IB_RNR_TIMER_005_12 = 18, 1235 IB_RNR_TIMER_007_68 = 19, 1236 IB_RNR_TIMER_010_24 = 20, 1237 IB_RNR_TIMER_015_36 = 21, 1238 IB_RNR_TIMER_020_48 = 22, 1239 IB_RNR_TIMER_030_72 = 23, 1240 IB_RNR_TIMER_040_96 = 24, 1241 IB_RNR_TIMER_061_44 = 25, 1242 IB_RNR_TIMER_081_92 = 26, 1243 IB_RNR_TIMER_122_88 = 27, 1244 IB_RNR_TIMER_163_84 = 28, 1245 IB_RNR_TIMER_245_76 = 29, 1246 IB_RNR_TIMER_327_68 = 30, 1247 IB_RNR_TIMER_491_52 = 31 1248 }; 1249 1250 enum ib_qp_attr_mask { 1251 IB_QP_STATE = 1, 1252 IB_QP_CUR_STATE = (1<<1), 1253 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1254 IB_QP_ACCESS_FLAGS = (1<<3), 1255 IB_QP_PKEY_INDEX = (1<<4), 1256 IB_QP_PORT = (1<<5), 1257 IB_QP_QKEY = (1<<6), 1258 IB_QP_AV = (1<<7), 1259 IB_QP_PATH_MTU = (1<<8), 1260 IB_QP_TIMEOUT = (1<<9), 1261 IB_QP_RETRY_CNT = (1<<10), 1262 IB_QP_RNR_RETRY = (1<<11), 1263 IB_QP_RQ_PSN = (1<<12), 1264 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1265 IB_QP_ALT_PATH = (1<<14), 1266 IB_QP_MIN_RNR_TIMER = (1<<15), 1267 IB_QP_SQ_PSN = (1<<16), 1268 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1269 IB_QP_PATH_MIG_STATE = (1<<18), 1270 IB_QP_CAP = (1<<19), 1271 IB_QP_DEST_QPN = (1<<20), 1272 IB_QP_RESERVED1 = (1<<21), 1273 IB_QP_RESERVED2 = (1<<22), 1274 IB_QP_RESERVED3 = (1<<23), 1275 IB_QP_RESERVED4 = (1<<24), 1276 IB_QP_RATE_LIMIT = (1<<25), 1277 1278 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1279 }; 1280 1281 enum ib_qp_state { 1282 IB_QPS_RESET, 1283 IB_QPS_INIT, 1284 IB_QPS_RTR, 1285 IB_QPS_RTS, 1286 IB_QPS_SQD, 1287 IB_QPS_SQE, 1288 IB_QPS_ERR 1289 }; 1290 1291 enum ib_mig_state { 1292 IB_MIG_MIGRATED, 1293 IB_MIG_REARM, 1294 IB_MIG_ARMED 1295 }; 1296 1297 enum ib_mw_type { 1298 IB_MW_TYPE_1 = 1, 1299 IB_MW_TYPE_2 = 2 1300 }; 1301 1302 struct ib_qp_attr { 1303 enum ib_qp_state qp_state; 1304 enum ib_qp_state cur_qp_state; 1305 enum ib_mtu path_mtu; 1306 enum ib_mig_state path_mig_state; 1307 u32 qkey; 1308 u32 rq_psn; 1309 u32 sq_psn; 1310 u32 dest_qp_num; 1311 int qp_access_flags; 1312 struct ib_qp_cap cap; 1313 struct rdma_ah_attr ah_attr; 1314 struct rdma_ah_attr alt_ah_attr; 1315 u16 pkey_index; 1316 u16 alt_pkey_index; 1317 u8 en_sqd_async_notify; 1318 u8 sq_draining; 1319 u8 max_rd_atomic; 1320 u8 max_dest_rd_atomic; 1321 u8 min_rnr_timer; 1322 u32 port_num; 1323 u8 timeout; 1324 u8 retry_cnt; 1325 u8 rnr_retry; 1326 u32 alt_port_num; 1327 u8 alt_timeout; 1328 u32 rate_limit; 1329 struct net_device *xmit_slave; 1330 }; 1331 1332 enum ib_wr_opcode { 1333 /* These are shared with userspace */ 1334 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1335 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1336 IB_WR_SEND = IB_UVERBS_WR_SEND, 1337 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1338 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1339 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1340 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1341 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1342 IB_WR_LSO = IB_UVERBS_WR_TSO, 1343 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1344 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1345 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1346 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1347 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1348 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1349 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1350 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1351 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1352 1353 /* These are kernel only and can not be issued by userspace */ 1354 IB_WR_REG_MR = 0x20, 1355 IB_WR_REG_MR_INTEGRITY, 1356 1357 /* reserve values for low level drivers' internal use. 1358 * These values will not be used at all in the ib core layer. 1359 */ 1360 IB_WR_RESERVED1 = 0xf0, 1361 IB_WR_RESERVED2, 1362 IB_WR_RESERVED3, 1363 IB_WR_RESERVED4, 1364 IB_WR_RESERVED5, 1365 IB_WR_RESERVED6, 1366 IB_WR_RESERVED7, 1367 IB_WR_RESERVED8, 1368 IB_WR_RESERVED9, 1369 IB_WR_RESERVED10, 1370 }; 1371 1372 enum ib_send_flags { 1373 IB_SEND_FENCE = 1, 1374 IB_SEND_SIGNALED = (1<<1), 1375 IB_SEND_SOLICITED = (1<<2), 1376 IB_SEND_INLINE = (1<<3), 1377 IB_SEND_IP_CSUM = (1<<4), 1378 1379 /* reserve bits 26-31 for low level drivers' internal use */ 1380 IB_SEND_RESERVED_START = (1 << 26), 1381 IB_SEND_RESERVED_END = (1 << 31), 1382 }; 1383 1384 struct ib_sge { 1385 u64 addr; 1386 u32 length; 1387 u32 lkey; 1388 }; 1389 1390 struct ib_cqe { 1391 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1392 }; 1393 1394 struct ib_send_wr { 1395 struct ib_send_wr *next; 1396 union { 1397 u64 wr_id; 1398 struct ib_cqe *wr_cqe; 1399 }; 1400 struct ib_sge *sg_list; 1401 int num_sge; 1402 enum ib_wr_opcode opcode; 1403 int send_flags; 1404 union { 1405 __be32 imm_data; 1406 u32 invalidate_rkey; 1407 } ex; 1408 }; 1409 1410 struct ib_rdma_wr { 1411 struct ib_send_wr wr; 1412 u64 remote_addr; 1413 u32 rkey; 1414 }; 1415 1416 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1417 { 1418 return container_of(wr, struct ib_rdma_wr, wr); 1419 } 1420 1421 struct ib_atomic_wr { 1422 struct ib_send_wr wr; 1423 u64 remote_addr; 1424 u64 compare_add; 1425 u64 swap; 1426 u64 compare_add_mask; 1427 u64 swap_mask; 1428 u32 rkey; 1429 }; 1430 1431 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1432 { 1433 return container_of(wr, struct ib_atomic_wr, wr); 1434 } 1435 1436 struct ib_ud_wr { 1437 struct ib_send_wr wr; 1438 struct ib_ah *ah; 1439 void *header; 1440 int hlen; 1441 int mss; 1442 u32 remote_qpn; 1443 u32 remote_qkey; 1444 u16 pkey_index; /* valid for GSI only */ 1445 u32 port_num; /* valid for DR SMPs on switch only */ 1446 }; 1447 1448 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1449 { 1450 return container_of(wr, struct ib_ud_wr, wr); 1451 } 1452 1453 struct ib_reg_wr { 1454 struct ib_send_wr wr; 1455 struct ib_mr *mr; 1456 u32 key; 1457 int access; 1458 }; 1459 1460 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1461 { 1462 return container_of(wr, struct ib_reg_wr, wr); 1463 } 1464 1465 struct ib_recv_wr { 1466 struct ib_recv_wr *next; 1467 union { 1468 u64 wr_id; 1469 struct ib_cqe *wr_cqe; 1470 }; 1471 struct ib_sge *sg_list; 1472 int num_sge; 1473 }; 1474 1475 enum ib_access_flags { 1476 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1477 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1478 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1479 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1480 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1481 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1482 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1483 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1484 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1485 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1486 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1487 1488 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1489 IB_ACCESS_SUPPORTED = 1490 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1491 }; 1492 1493 /* 1494 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1495 * are hidden here instead of a uapi header! 1496 */ 1497 enum ib_mr_rereg_flags { 1498 IB_MR_REREG_TRANS = 1, 1499 IB_MR_REREG_PD = (1<<1), 1500 IB_MR_REREG_ACCESS = (1<<2), 1501 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1502 }; 1503 1504 struct ib_umem; 1505 1506 enum rdma_remove_reason { 1507 /* 1508 * Userspace requested uobject deletion or initial try 1509 * to remove uobject via cleanup. Call could fail 1510 */ 1511 RDMA_REMOVE_DESTROY, 1512 /* Context deletion. This call should delete the actual object itself */ 1513 RDMA_REMOVE_CLOSE, 1514 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1515 RDMA_REMOVE_DRIVER_REMOVE, 1516 /* uobj is being cleaned-up before being committed */ 1517 RDMA_REMOVE_ABORT, 1518 /* The driver failed to destroy the uobject and is being disconnected */ 1519 RDMA_REMOVE_DRIVER_FAILURE, 1520 }; 1521 1522 struct ib_rdmacg_object { 1523 #ifdef CONFIG_CGROUP_RDMA 1524 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1525 #endif 1526 }; 1527 1528 struct ib_ucontext { 1529 struct ib_device *device; 1530 struct ib_uverbs_file *ufile; 1531 1532 struct ib_rdmacg_object cg_obj; 1533 u64 enabled_caps; 1534 /* 1535 * Implementation details of the RDMA core, don't use in drivers: 1536 */ 1537 struct rdma_restrack_entry res; 1538 struct xarray mmap_xa; 1539 }; 1540 1541 struct ib_uobject { 1542 u64 user_handle; /* handle given to us by userspace */ 1543 /* ufile & ucontext owning this object */ 1544 struct ib_uverbs_file *ufile; 1545 /* FIXME, save memory: ufile->context == context */ 1546 struct ib_ucontext *context; /* associated user context */ 1547 void *object; /* containing object */ 1548 struct list_head list; /* link to context's list */ 1549 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1550 int id; /* index into kernel idr */ 1551 struct kref ref; 1552 atomic_t usecnt; /* protects exclusive access */ 1553 struct rcu_head rcu; /* kfree_rcu() overhead */ 1554 1555 const struct uverbs_api_object *uapi_object; 1556 }; 1557 1558 struct ib_udata { 1559 const void __user *inbuf; 1560 void __user *outbuf; 1561 size_t inlen; 1562 size_t outlen; 1563 }; 1564 1565 struct ib_pd { 1566 u32 local_dma_lkey; 1567 u32 flags; 1568 struct ib_device *device; 1569 struct ib_uobject *uobject; 1570 atomic_t usecnt; /* count all resources */ 1571 1572 u32 unsafe_global_rkey; 1573 1574 /* 1575 * Implementation details of the RDMA core, don't use in drivers: 1576 */ 1577 struct ib_mr *__internal_mr; 1578 struct rdma_restrack_entry res; 1579 }; 1580 1581 struct ib_xrcd { 1582 struct ib_device *device; 1583 atomic_t usecnt; /* count all exposed resources */ 1584 struct inode *inode; 1585 struct rw_semaphore tgt_qps_rwsem; 1586 struct xarray tgt_qps; 1587 }; 1588 1589 struct ib_ah { 1590 struct ib_device *device; 1591 struct ib_pd *pd; 1592 struct ib_uobject *uobject; 1593 const struct ib_gid_attr *sgid_attr; 1594 enum rdma_ah_attr_type type; 1595 }; 1596 1597 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1598 1599 enum ib_poll_context { 1600 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1601 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1602 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1603 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1604 1605 IB_POLL_DIRECT, /* caller context, no hw completions */ 1606 }; 1607 1608 struct ib_cq { 1609 struct ib_device *device; 1610 struct ib_ucq_object *uobject; 1611 ib_comp_handler comp_handler; 1612 void (*event_handler)(struct ib_event *, void *); 1613 void *cq_context; 1614 int cqe; 1615 unsigned int cqe_used; 1616 atomic_t usecnt; /* count number of work queues */ 1617 enum ib_poll_context poll_ctx; 1618 struct ib_wc *wc; 1619 struct list_head pool_entry; 1620 union { 1621 struct irq_poll iop; 1622 struct work_struct work; 1623 }; 1624 struct workqueue_struct *comp_wq; 1625 struct dim *dim; 1626 1627 /* updated only by trace points */ 1628 ktime_t timestamp; 1629 u8 interrupt:1; 1630 u8 shared:1; 1631 unsigned int comp_vector; 1632 1633 /* 1634 * Implementation details of the RDMA core, don't use in drivers: 1635 */ 1636 struct rdma_restrack_entry res; 1637 }; 1638 1639 struct ib_srq { 1640 struct ib_device *device; 1641 struct ib_pd *pd; 1642 struct ib_usrq_object *uobject; 1643 void (*event_handler)(struct ib_event *, void *); 1644 void *srq_context; 1645 enum ib_srq_type srq_type; 1646 atomic_t usecnt; 1647 1648 struct { 1649 struct ib_cq *cq; 1650 union { 1651 struct { 1652 struct ib_xrcd *xrcd; 1653 u32 srq_num; 1654 } xrc; 1655 }; 1656 } ext; 1657 1658 /* 1659 * Implementation details of the RDMA core, don't use in drivers: 1660 */ 1661 struct rdma_restrack_entry res; 1662 }; 1663 1664 enum ib_raw_packet_caps { 1665 /* 1666 * Strip cvlan from incoming packet and report it in the matching work 1667 * completion is supported. 1668 */ 1669 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1670 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1671 /* 1672 * Scatter FCS field of an incoming packet to host memory is supported. 1673 */ 1674 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1675 /* Checksum offloads are supported (for both send and receive). */ 1676 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1677 /* 1678 * When a packet is received for an RQ with no receive WQEs, the 1679 * packet processing is delayed. 1680 */ 1681 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1682 }; 1683 1684 enum ib_wq_type { 1685 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1686 }; 1687 1688 enum ib_wq_state { 1689 IB_WQS_RESET, 1690 IB_WQS_RDY, 1691 IB_WQS_ERR 1692 }; 1693 1694 struct ib_wq { 1695 struct ib_device *device; 1696 struct ib_uwq_object *uobject; 1697 void *wq_context; 1698 void (*event_handler)(struct ib_event *, void *); 1699 struct ib_pd *pd; 1700 struct ib_cq *cq; 1701 u32 wq_num; 1702 enum ib_wq_state state; 1703 enum ib_wq_type wq_type; 1704 atomic_t usecnt; 1705 }; 1706 1707 enum ib_wq_flags { 1708 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1709 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1710 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1711 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1712 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1713 }; 1714 1715 struct ib_wq_init_attr { 1716 void *wq_context; 1717 enum ib_wq_type wq_type; 1718 u32 max_wr; 1719 u32 max_sge; 1720 struct ib_cq *cq; 1721 void (*event_handler)(struct ib_event *, void *); 1722 u32 create_flags; /* Use enum ib_wq_flags */ 1723 }; 1724 1725 enum ib_wq_attr_mask { 1726 IB_WQ_STATE = 1 << 0, 1727 IB_WQ_CUR_STATE = 1 << 1, 1728 IB_WQ_FLAGS = 1 << 2, 1729 }; 1730 1731 struct ib_wq_attr { 1732 enum ib_wq_state wq_state; 1733 enum ib_wq_state curr_wq_state; 1734 u32 flags; /* Use enum ib_wq_flags */ 1735 u32 flags_mask; /* Use enum ib_wq_flags */ 1736 }; 1737 1738 struct ib_rwq_ind_table { 1739 struct ib_device *device; 1740 struct ib_uobject *uobject; 1741 atomic_t usecnt; 1742 u32 ind_tbl_num; 1743 u32 log_ind_tbl_size; 1744 struct ib_wq **ind_tbl; 1745 }; 1746 1747 struct ib_rwq_ind_table_init_attr { 1748 u32 log_ind_tbl_size; 1749 /* Each entry is a pointer to Receive Work Queue */ 1750 struct ib_wq **ind_tbl; 1751 }; 1752 1753 enum port_pkey_state { 1754 IB_PORT_PKEY_NOT_VALID = 0, 1755 IB_PORT_PKEY_VALID = 1, 1756 IB_PORT_PKEY_LISTED = 2, 1757 }; 1758 1759 struct ib_qp_security; 1760 1761 struct ib_port_pkey { 1762 enum port_pkey_state state; 1763 u16 pkey_index; 1764 u32 port_num; 1765 struct list_head qp_list; 1766 struct list_head to_error_list; 1767 struct ib_qp_security *sec; 1768 }; 1769 1770 struct ib_ports_pkeys { 1771 struct ib_port_pkey main; 1772 struct ib_port_pkey alt; 1773 }; 1774 1775 struct ib_qp_security { 1776 struct ib_qp *qp; 1777 struct ib_device *dev; 1778 /* Hold this mutex when changing port and pkey settings. */ 1779 struct mutex mutex; 1780 struct ib_ports_pkeys *ports_pkeys; 1781 /* A list of all open shared QP handles. Required to enforce security 1782 * properly for all users of a shared QP. 1783 */ 1784 struct list_head shared_qp_list; 1785 void *security; 1786 bool destroying; 1787 atomic_t error_list_count; 1788 struct completion error_complete; 1789 int error_comps_pending; 1790 }; 1791 1792 /* 1793 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1794 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1795 */ 1796 struct ib_qp { 1797 struct ib_device *device; 1798 struct ib_pd *pd; 1799 struct ib_cq *send_cq; 1800 struct ib_cq *recv_cq; 1801 spinlock_t mr_lock; 1802 int mrs_used; 1803 struct list_head rdma_mrs; 1804 struct list_head sig_mrs; 1805 struct ib_srq *srq; 1806 struct completion srq_completion; 1807 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1808 struct list_head xrcd_list; 1809 1810 /* count times opened, mcast attaches, flow attaches */ 1811 atomic_t usecnt; 1812 struct list_head open_list; 1813 struct ib_qp *real_qp; 1814 struct ib_uqp_object *uobject; 1815 void (*event_handler)(struct ib_event *, void *); 1816 void (*registered_event_handler)(struct ib_event *, void *); 1817 void *qp_context; 1818 /* sgid_attrs associated with the AV's */ 1819 const struct ib_gid_attr *av_sgid_attr; 1820 const struct ib_gid_attr *alt_path_sgid_attr; 1821 u32 qp_num; 1822 u32 max_write_sge; 1823 u32 max_read_sge; 1824 enum ib_qp_type qp_type; 1825 struct ib_rwq_ind_table *rwq_ind_tbl; 1826 struct ib_qp_security *qp_sec; 1827 u32 port; 1828 1829 bool integrity_en; 1830 /* 1831 * Implementation details of the RDMA core, don't use in drivers: 1832 */ 1833 struct rdma_restrack_entry res; 1834 1835 /* The counter the qp is bind to */ 1836 struct rdma_counter *counter; 1837 }; 1838 1839 struct ib_dm { 1840 struct ib_device *device; 1841 u32 length; 1842 u32 flags; 1843 struct ib_uobject *uobject; 1844 atomic_t usecnt; 1845 }; 1846 1847 struct ib_mr { 1848 struct ib_device *device; 1849 struct ib_pd *pd; 1850 u32 lkey; 1851 u32 rkey; 1852 u64 iova; 1853 u64 length; 1854 unsigned int page_size; 1855 enum ib_mr_type type; 1856 bool need_inval; 1857 union { 1858 struct ib_uobject *uobject; /* user */ 1859 struct list_head qp_entry; /* FR */ 1860 }; 1861 1862 struct ib_dm *dm; 1863 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1864 /* 1865 * Implementation details of the RDMA core, don't use in drivers: 1866 */ 1867 struct rdma_restrack_entry res; 1868 }; 1869 1870 struct ib_mw { 1871 struct ib_device *device; 1872 struct ib_pd *pd; 1873 struct ib_uobject *uobject; 1874 u32 rkey; 1875 enum ib_mw_type type; 1876 }; 1877 1878 /* Supported steering options */ 1879 enum ib_flow_attr_type { 1880 /* steering according to rule specifications */ 1881 IB_FLOW_ATTR_NORMAL = 0x0, 1882 /* default unicast and multicast rule - 1883 * receive all Eth traffic which isn't steered to any QP 1884 */ 1885 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1886 /* default multicast rule - 1887 * receive all Eth multicast traffic which isn't steered to any QP 1888 */ 1889 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1890 /* sniffer rule - receive all port traffic */ 1891 IB_FLOW_ATTR_SNIFFER = 0x3 1892 }; 1893 1894 /* Supported steering header types */ 1895 enum ib_flow_spec_type { 1896 /* L2 headers*/ 1897 IB_FLOW_SPEC_ETH = 0x20, 1898 IB_FLOW_SPEC_IB = 0x22, 1899 /* L3 header*/ 1900 IB_FLOW_SPEC_IPV4 = 0x30, 1901 IB_FLOW_SPEC_IPV6 = 0x31, 1902 IB_FLOW_SPEC_ESP = 0x34, 1903 /* L4 headers*/ 1904 IB_FLOW_SPEC_TCP = 0x40, 1905 IB_FLOW_SPEC_UDP = 0x41, 1906 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1907 IB_FLOW_SPEC_GRE = 0x51, 1908 IB_FLOW_SPEC_MPLS = 0x60, 1909 IB_FLOW_SPEC_INNER = 0x100, 1910 /* Actions */ 1911 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1912 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1913 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1914 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1915 }; 1916 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1917 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1918 1919 enum ib_flow_flags { 1920 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1921 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1922 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1923 }; 1924 1925 struct ib_flow_eth_filter { 1926 u8 dst_mac[6]; 1927 u8 src_mac[6]; 1928 __be16 ether_type; 1929 __be16 vlan_tag; 1930 }; 1931 1932 struct ib_flow_spec_eth { 1933 u32 type; 1934 u16 size; 1935 struct ib_flow_eth_filter val; 1936 struct ib_flow_eth_filter mask; 1937 }; 1938 1939 struct ib_flow_ib_filter { 1940 __be16 dlid; 1941 __u8 sl; 1942 }; 1943 1944 struct ib_flow_spec_ib { 1945 u32 type; 1946 u16 size; 1947 struct ib_flow_ib_filter val; 1948 struct ib_flow_ib_filter mask; 1949 }; 1950 1951 /* IPv4 header flags */ 1952 enum ib_ipv4_flags { 1953 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1954 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1955 last have this flag set */ 1956 }; 1957 1958 struct ib_flow_ipv4_filter { 1959 __be32 src_ip; 1960 __be32 dst_ip; 1961 u8 proto; 1962 u8 tos; 1963 u8 ttl; 1964 u8 flags; 1965 }; 1966 1967 struct ib_flow_spec_ipv4 { 1968 u32 type; 1969 u16 size; 1970 struct ib_flow_ipv4_filter val; 1971 struct ib_flow_ipv4_filter mask; 1972 }; 1973 1974 struct ib_flow_ipv6_filter { 1975 u8 src_ip[16]; 1976 u8 dst_ip[16]; 1977 __be32 flow_label; 1978 u8 next_hdr; 1979 u8 traffic_class; 1980 u8 hop_limit; 1981 } __packed; 1982 1983 struct ib_flow_spec_ipv6 { 1984 u32 type; 1985 u16 size; 1986 struct ib_flow_ipv6_filter val; 1987 struct ib_flow_ipv6_filter mask; 1988 }; 1989 1990 struct ib_flow_tcp_udp_filter { 1991 __be16 dst_port; 1992 __be16 src_port; 1993 }; 1994 1995 struct ib_flow_spec_tcp_udp { 1996 u32 type; 1997 u16 size; 1998 struct ib_flow_tcp_udp_filter val; 1999 struct ib_flow_tcp_udp_filter mask; 2000 }; 2001 2002 struct ib_flow_tunnel_filter { 2003 __be32 tunnel_id; 2004 }; 2005 2006 /* ib_flow_spec_tunnel describes the Vxlan tunnel 2007 * the tunnel_id from val has the vni value 2008 */ 2009 struct ib_flow_spec_tunnel { 2010 u32 type; 2011 u16 size; 2012 struct ib_flow_tunnel_filter val; 2013 struct ib_flow_tunnel_filter mask; 2014 }; 2015 2016 struct ib_flow_esp_filter { 2017 __be32 spi; 2018 __be32 seq; 2019 }; 2020 2021 struct ib_flow_spec_esp { 2022 u32 type; 2023 u16 size; 2024 struct ib_flow_esp_filter val; 2025 struct ib_flow_esp_filter mask; 2026 }; 2027 2028 struct ib_flow_gre_filter { 2029 __be16 c_ks_res0_ver; 2030 __be16 protocol; 2031 __be32 key; 2032 }; 2033 2034 struct ib_flow_spec_gre { 2035 u32 type; 2036 u16 size; 2037 struct ib_flow_gre_filter val; 2038 struct ib_flow_gre_filter mask; 2039 }; 2040 2041 struct ib_flow_mpls_filter { 2042 __be32 tag; 2043 }; 2044 2045 struct ib_flow_spec_mpls { 2046 u32 type; 2047 u16 size; 2048 struct ib_flow_mpls_filter val; 2049 struct ib_flow_mpls_filter mask; 2050 }; 2051 2052 struct ib_flow_spec_action_tag { 2053 enum ib_flow_spec_type type; 2054 u16 size; 2055 u32 tag_id; 2056 }; 2057 2058 struct ib_flow_spec_action_drop { 2059 enum ib_flow_spec_type type; 2060 u16 size; 2061 }; 2062 2063 struct ib_flow_spec_action_handle { 2064 enum ib_flow_spec_type type; 2065 u16 size; 2066 struct ib_flow_action *act; 2067 }; 2068 2069 enum ib_counters_description { 2070 IB_COUNTER_PACKETS, 2071 IB_COUNTER_BYTES, 2072 }; 2073 2074 struct ib_flow_spec_action_count { 2075 enum ib_flow_spec_type type; 2076 u16 size; 2077 struct ib_counters *counters; 2078 }; 2079 2080 union ib_flow_spec { 2081 struct { 2082 u32 type; 2083 u16 size; 2084 }; 2085 struct ib_flow_spec_eth eth; 2086 struct ib_flow_spec_ib ib; 2087 struct ib_flow_spec_ipv4 ipv4; 2088 struct ib_flow_spec_tcp_udp tcp_udp; 2089 struct ib_flow_spec_ipv6 ipv6; 2090 struct ib_flow_spec_tunnel tunnel; 2091 struct ib_flow_spec_esp esp; 2092 struct ib_flow_spec_gre gre; 2093 struct ib_flow_spec_mpls mpls; 2094 struct ib_flow_spec_action_tag flow_tag; 2095 struct ib_flow_spec_action_drop drop; 2096 struct ib_flow_spec_action_handle action; 2097 struct ib_flow_spec_action_count flow_count; 2098 }; 2099 2100 struct ib_flow_attr { 2101 enum ib_flow_attr_type type; 2102 u16 size; 2103 u16 priority; 2104 u32 flags; 2105 u8 num_of_specs; 2106 u32 port; 2107 union ib_flow_spec flows[]; 2108 }; 2109 2110 struct ib_flow { 2111 struct ib_qp *qp; 2112 struct ib_device *device; 2113 struct ib_uobject *uobject; 2114 }; 2115 2116 enum ib_flow_action_type { 2117 IB_FLOW_ACTION_UNSPECIFIED, 2118 IB_FLOW_ACTION_ESP = 1, 2119 }; 2120 2121 struct ib_flow_action_attrs_esp_keymats { 2122 enum ib_uverbs_flow_action_esp_keymat protocol; 2123 union { 2124 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2125 } keymat; 2126 }; 2127 2128 struct ib_flow_action_attrs_esp_replays { 2129 enum ib_uverbs_flow_action_esp_replay protocol; 2130 union { 2131 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2132 } replay; 2133 }; 2134 2135 enum ib_flow_action_attrs_esp_flags { 2136 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2137 * This is done in order to share the same flags between user-space and 2138 * kernel and spare an unnecessary translation. 2139 */ 2140 2141 /* Kernel flags */ 2142 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2143 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2144 }; 2145 2146 struct ib_flow_spec_list { 2147 struct ib_flow_spec_list *next; 2148 union ib_flow_spec spec; 2149 }; 2150 2151 struct ib_flow_action_attrs_esp { 2152 struct ib_flow_action_attrs_esp_keymats *keymat; 2153 struct ib_flow_action_attrs_esp_replays *replay; 2154 struct ib_flow_spec_list *encap; 2155 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2156 * Value of 0 is a valid value. 2157 */ 2158 u32 esn; 2159 u32 spi; 2160 u32 seq; 2161 u32 tfc_pad; 2162 /* Use enum ib_flow_action_attrs_esp_flags */ 2163 u64 flags; 2164 u64 hard_limit_pkts; 2165 }; 2166 2167 struct ib_flow_action { 2168 struct ib_device *device; 2169 struct ib_uobject *uobject; 2170 enum ib_flow_action_type type; 2171 atomic_t usecnt; 2172 }; 2173 2174 struct ib_mad; 2175 2176 enum ib_process_mad_flags { 2177 IB_MAD_IGNORE_MKEY = 1, 2178 IB_MAD_IGNORE_BKEY = 2, 2179 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2180 }; 2181 2182 enum ib_mad_result { 2183 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2184 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2185 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2186 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2187 }; 2188 2189 struct ib_port_cache { 2190 u64 subnet_prefix; 2191 struct ib_pkey_cache *pkey; 2192 struct ib_gid_table *gid; 2193 u8 lmc; 2194 enum ib_port_state port_state; 2195 enum ib_port_state last_port_state; 2196 }; 2197 2198 struct ib_port_immutable { 2199 int pkey_tbl_len; 2200 int gid_tbl_len; 2201 u32 core_cap_flags; 2202 u32 max_mad_size; 2203 }; 2204 2205 struct ib_port_data { 2206 struct ib_device *ib_dev; 2207 2208 struct ib_port_immutable immutable; 2209 2210 spinlock_t pkey_list_lock; 2211 2212 spinlock_t netdev_lock; 2213 2214 struct list_head pkey_list; 2215 2216 struct ib_port_cache cache; 2217 2218 struct net_device __rcu *netdev; 2219 netdevice_tracker netdev_tracker; 2220 struct hlist_node ndev_hash_link; 2221 struct rdma_port_counter port_counter; 2222 struct ib_port *sysfs; 2223 }; 2224 2225 /* rdma netdev type - specifies protocol type */ 2226 enum rdma_netdev_t { 2227 RDMA_NETDEV_OPA_VNIC, 2228 RDMA_NETDEV_IPOIB, 2229 }; 2230 2231 /** 2232 * struct rdma_netdev - rdma netdev 2233 * For cases where netstack interfacing is required. 2234 */ 2235 struct rdma_netdev { 2236 void *clnt_priv; 2237 struct ib_device *hca; 2238 u32 port_num; 2239 int mtu; 2240 2241 /* 2242 * cleanup function must be specified. 2243 * FIXME: This is only used for OPA_VNIC and that usage should be 2244 * removed too. 2245 */ 2246 void (*free_rdma_netdev)(struct net_device *netdev); 2247 2248 /* control functions */ 2249 void (*set_id)(struct net_device *netdev, int id); 2250 /* send packet */ 2251 int (*send)(struct net_device *dev, struct sk_buff *skb, 2252 struct ib_ah *address, u32 dqpn); 2253 /* multicast */ 2254 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2255 union ib_gid *gid, u16 mlid, 2256 int set_qkey, u32 qkey); 2257 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2258 union ib_gid *gid, u16 mlid); 2259 /* timeout */ 2260 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2261 }; 2262 2263 struct rdma_netdev_alloc_params { 2264 size_t sizeof_priv; 2265 unsigned int txqs; 2266 unsigned int rxqs; 2267 void *param; 2268 2269 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2270 struct net_device *netdev, void *param); 2271 }; 2272 2273 struct ib_odp_counters { 2274 atomic64_t faults; 2275 atomic64_t faults_handled; 2276 atomic64_t invalidations; 2277 atomic64_t invalidations_handled; 2278 atomic64_t prefetch; 2279 }; 2280 2281 struct ib_counters { 2282 struct ib_device *device; 2283 struct ib_uobject *uobject; 2284 /* num of objects attached */ 2285 atomic_t usecnt; 2286 }; 2287 2288 struct ib_counters_read_attr { 2289 u64 *counters_buff; 2290 u32 ncounters; 2291 u32 flags; /* use enum ib_read_counters_flags */ 2292 }; 2293 2294 struct uverbs_attr_bundle; 2295 struct iw_cm_id; 2296 struct iw_cm_conn_param; 2297 2298 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2299 .size_##ib_struct = \ 2300 (sizeof(struct drv_struct) + \ 2301 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2302 BUILD_BUG_ON_ZERO( \ 2303 !__same_type(((struct drv_struct *)NULL)->member, \ 2304 struct ib_struct))) 2305 2306 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2307 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2308 gfp, false)) 2309 2310 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2311 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2312 GFP_KERNEL, true)) 2313 2314 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2315 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2316 2317 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2318 2319 struct rdma_user_mmap_entry { 2320 struct kref ref; 2321 struct ib_ucontext *ucontext; 2322 unsigned long start_pgoff; 2323 size_t npages; 2324 bool driver_removed; 2325 }; 2326 2327 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2328 static inline u64 2329 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2330 { 2331 return (u64)entry->start_pgoff << PAGE_SHIFT; 2332 } 2333 2334 /** 2335 * struct ib_device_ops - InfiniBand device operations 2336 * This structure defines all the InfiniBand device operations, providers will 2337 * need to define the supported operations, otherwise they will be set to null. 2338 */ 2339 struct ib_device_ops { 2340 struct module *owner; 2341 enum rdma_driver_id driver_id; 2342 u32 uverbs_abi_ver; 2343 unsigned int uverbs_no_driver_id_binding:1; 2344 2345 /* 2346 * NOTE: New drivers should not make use of device_group; instead new 2347 * device parameter should be exposed via netlink command. This 2348 * mechanism exists only for existing drivers. 2349 */ 2350 const struct attribute_group *device_group; 2351 const struct attribute_group **port_groups; 2352 2353 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2354 const struct ib_send_wr **bad_send_wr); 2355 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2356 const struct ib_recv_wr **bad_recv_wr); 2357 void (*drain_rq)(struct ib_qp *qp); 2358 void (*drain_sq)(struct ib_qp *qp); 2359 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2360 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2361 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2362 int (*post_srq_recv)(struct ib_srq *srq, 2363 const struct ib_recv_wr *recv_wr, 2364 const struct ib_recv_wr **bad_recv_wr); 2365 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2366 u32 port_num, const struct ib_wc *in_wc, 2367 const struct ib_grh *in_grh, 2368 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2369 size_t *out_mad_size, u16 *out_mad_pkey_index); 2370 int (*query_device)(struct ib_device *device, 2371 struct ib_device_attr *device_attr, 2372 struct ib_udata *udata); 2373 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2374 struct ib_device_modify *device_modify); 2375 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2376 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2377 int comp_vector); 2378 int (*query_port)(struct ib_device *device, u32 port_num, 2379 struct ib_port_attr *port_attr); 2380 int (*modify_port)(struct ib_device *device, u32 port_num, 2381 int port_modify_mask, 2382 struct ib_port_modify *port_modify); 2383 /** 2384 * The following mandatory functions are used only at device 2385 * registration. Keep functions such as these at the end of this 2386 * structure to avoid cache line misses when accessing struct ib_device 2387 * in fast paths. 2388 */ 2389 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2390 struct ib_port_immutable *immutable); 2391 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2392 u32 port_num); 2393 /** 2394 * When calling get_netdev, the HW vendor's driver should return the 2395 * net device of device @device at port @port_num or NULL if such 2396 * a net device doesn't exist. The vendor driver should call dev_hold 2397 * on this net device. The HW vendor's device driver must guarantee 2398 * that this function returns NULL before the net device has finished 2399 * NETDEV_UNREGISTER state. 2400 */ 2401 struct net_device *(*get_netdev)(struct ib_device *device, 2402 u32 port_num); 2403 /** 2404 * rdma netdev operation 2405 * 2406 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2407 * must return -EOPNOTSUPP if it doesn't support the specified type. 2408 */ 2409 struct net_device *(*alloc_rdma_netdev)( 2410 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2411 const char *name, unsigned char name_assign_type, 2412 void (*setup)(struct net_device *)); 2413 2414 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2415 enum rdma_netdev_t type, 2416 struct rdma_netdev_alloc_params *params); 2417 /** 2418 * query_gid should be return GID value for @device, when @port_num 2419 * link layer is either IB or iWarp. It is no-op if @port_num port 2420 * is RoCE link layer. 2421 */ 2422 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2423 union ib_gid *gid); 2424 /** 2425 * When calling add_gid, the HW vendor's driver should add the gid 2426 * of device of port at gid index available at @attr. Meta-info of 2427 * that gid (for example, the network device related to this gid) is 2428 * available at @attr. @context allows the HW vendor driver to store 2429 * extra information together with a GID entry. The HW vendor driver may 2430 * allocate memory to contain this information and store it in @context 2431 * when a new GID entry is written to. Params are consistent until the 2432 * next call of add_gid or delete_gid. The function should return 0 on 2433 * success or error otherwise. The function could be called 2434 * concurrently for different ports. This function is only called when 2435 * roce_gid_table is used. 2436 */ 2437 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2438 /** 2439 * When calling del_gid, the HW vendor's driver should delete the 2440 * gid of device @device at gid index gid_index of port port_num 2441 * available in @attr. 2442 * Upon the deletion of a GID entry, the HW vendor must free any 2443 * allocated memory. The caller will clear @context afterwards. 2444 * This function is only called when roce_gid_table is used. 2445 */ 2446 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2447 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2448 u16 *pkey); 2449 int (*alloc_ucontext)(struct ib_ucontext *context, 2450 struct ib_udata *udata); 2451 void (*dealloc_ucontext)(struct ib_ucontext *context); 2452 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2453 /** 2454 * This will be called once refcount of an entry in mmap_xa reaches 2455 * zero. The type of the memory that was mapped may differ between 2456 * entries and is opaque to the rdma_user_mmap interface. 2457 * Therefore needs to be implemented by the driver in mmap_free. 2458 */ 2459 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2460 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2461 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2462 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2463 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2464 struct ib_udata *udata); 2465 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2466 struct ib_udata *udata); 2467 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2468 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2469 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2470 int (*create_srq)(struct ib_srq *srq, 2471 struct ib_srq_init_attr *srq_init_attr, 2472 struct ib_udata *udata); 2473 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2474 enum ib_srq_attr_mask srq_attr_mask, 2475 struct ib_udata *udata); 2476 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2477 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2478 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2479 struct ib_udata *udata); 2480 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2481 int qp_attr_mask, struct ib_udata *udata); 2482 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2483 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2484 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2485 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2486 struct uverbs_attr_bundle *attrs); 2487 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2488 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2489 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2490 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2491 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2492 u64 virt_addr, int mr_access_flags, 2493 struct ib_udata *udata); 2494 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2495 u64 length, u64 virt_addr, int fd, 2496 int mr_access_flags, 2497 struct uverbs_attr_bundle *attrs); 2498 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2499 u64 length, u64 virt_addr, 2500 int mr_access_flags, struct ib_pd *pd, 2501 struct ib_udata *udata); 2502 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2503 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2504 u32 max_num_sg); 2505 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2506 u32 max_num_data_sg, 2507 u32 max_num_meta_sg); 2508 int (*advise_mr)(struct ib_pd *pd, 2509 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2510 struct ib_sge *sg_list, u32 num_sge, 2511 struct uverbs_attr_bundle *attrs); 2512 2513 /* 2514 * Kernel users should universally support relaxed ordering (RO), as 2515 * they are designed to read data only after observing the CQE and use 2516 * the DMA API correctly. 2517 * 2518 * Some drivers implicitly enable RO if platform supports it. 2519 */ 2520 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2521 unsigned int *sg_offset); 2522 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2523 struct ib_mr_status *mr_status); 2524 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2525 int (*dealloc_mw)(struct ib_mw *mw); 2526 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2527 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2528 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2529 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2530 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2531 struct ib_flow_attr *flow_attr, 2532 struct ib_udata *udata); 2533 int (*destroy_flow)(struct ib_flow *flow_id); 2534 int (*destroy_flow_action)(struct ib_flow_action *action); 2535 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2536 int state); 2537 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2538 struct ifla_vf_info *ivf); 2539 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2540 struct ifla_vf_stats *stats); 2541 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2542 struct ifla_vf_guid *node_guid, 2543 struct ifla_vf_guid *port_guid); 2544 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2545 int type); 2546 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2547 struct ib_wq_init_attr *init_attr, 2548 struct ib_udata *udata); 2549 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2550 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2551 u32 wq_attr_mask, struct ib_udata *udata); 2552 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2553 struct ib_rwq_ind_table_init_attr *init_attr, 2554 struct ib_udata *udata); 2555 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2556 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2557 struct ib_ucontext *context, 2558 struct ib_dm_alloc_attr *attr, 2559 struct uverbs_attr_bundle *attrs); 2560 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2561 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2562 struct ib_dm_mr_attr *attr, 2563 struct uverbs_attr_bundle *attrs); 2564 int (*create_counters)(struct ib_counters *counters, 2565 struct uverbs_attr_bundle *attrs); 2566 int (*destroy_counters)(struct ib_counters *counters); 2567 int (*read_counters)(struct ib_counters *counters, 2568 struct ib_counters_read_attr *counters_read_attr, 2569 struct uverbs_attr_bundle *attrs); 2570 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2571 int data_sg_nents, unsigned int *data_sg_offset, 2572 struct scatterlist *meta_sg, int meta_sg_nents, 2573 unsigned int *meta_sg_offset); 2574 2575 /** 2576 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2577 * fill in the driver initialized data. The struct is kfree()'ed by 2578 * the sysfs core when the device is removed. A lifespan of -1 in the 2579 * return struct tells the core to set a default lifespan. 2580 */ 2581 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2582 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2583 u32 port_num); 2584 /** 2585 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2586 * @index - The index in the value array we wish to have updated, or 2587 * num_counters if we want all stats updated 2588 * Return codes - 2589 * < 0 - Error, no counters updated 2590 * index - Updated the single counter pointed to by index 2591 * num_counters - Updated all counters (will reset the timestamp 2592 * and prevent further calls for lifespan milliseconds) 2593 * Drivers are allowed to update all counters in leiu of just the 2594 * one given in index at their option 2595 */ 2596 int (*get_hw_stats)(struct ib_device *device, 2597 struct rdma_hw_stats *stats, u32 port, int index); 2598 2599 /** 2600 * modify_hw_stat - Modify the counter configuration 2601 * @enable: true/false when enable/disable a counter 2602 * Return codes - 0 on success or error code otherwise. 2603 */ 2604 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2605 unsigned int counter_index, bool enable); 2606 /** 2607 * Allows rdma drivers to add their own restrack attributes. 2608 */ 2609 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2610 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2611 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2612 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2613 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2614 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2615 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2616 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq); 2617 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq); 2618 2619 /* Device lifecycle callbacks */ 2620 /* 2621 * Called after the device becomes registered, before clients are 2622 * attached 2623 */ 2624 int (*enable_driver)(struct ib_device *dev); 2625 /* 2626 * This is called as part of ib_dealloc_device(). 2627 */ 2628 void (*dealloc_driver)(struct ib_device *dev); 2629 2630 /* iWarp CM callbacks */ 2631 void (*iw_add_ref)(struct ib_qp *qp); 2632 void (*iw_rem_ref)(struct ib_qp *qp); 2633 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2634 int (*iw_connect)(struct iw_cm_id *cm_id, 2635 struct iw_cm_conn_param *conn_param); 2636 int (*iw_accept)(struct iw_cm_id *cm_id, 2637 struct iw_cm_conn_param *conn_param); 2638 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2639 u8 pdata_len); 2640 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2641 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2642 /** 2643 * counter_bind_qp - Bind a QP to a counter. 2644 * @counter - The counter to be bound. If counter->id is zero then 2645 * the driver needs to allocate a new counter and set counter->id 2646 */ 2647 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp, 2648 u32 port); 2649 /** 2650 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2651 * counter and bind it onto the default one 2652 */ 2653 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port); 2654 /** 2655 * counter_dealloc -De-allocate the hw counter 2656 */ 2657 int (*counter_dealloc)(struct rdma_counter *counter); 2658 /** 2659 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2660 * the driver initialized data. 2661 */ 2662 struct rdma_hw_stats *(*counter_alloc_stats)( 2663 struct rdma_counter *counter); 2664 /** 2665 * counter_update_stats - Query the stats value of this counter 2666 */ 2667 int (*counter_update_stats)(struct rdma_counter *counter); 2668 2669 /** 2670 * counter_init - Initialize the driver specific rdma counter struct. 2671 */ 2672 void (*counter_init)(struct rdma_counter *counter); 2673 2674 /** 2675 * Allows rdma drivers to add their own restrack attributes 2676 * dumped via 'rdma stat' iproute2 command. 2677 */ 2678 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2679 2680 /* query driver for its ucontext properties */ 2681 int (*query_ucontext)(struct ib_ucontext *context, 2682 struct uverbs_attr_bundle *attrs); 2683 2684 /* 2685 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2686 * Everyone else relies on Linux memory management model. 2687 */ 2688 int (*get_numa_node)(struct ib_device *dev); 2689 2690 /** 2691 * add_sub_dev - Add a sub IB device 2692 */ 2693 struct ib_device *(*add_sub_dev)(struct ib_device *parent, 2694 enum rdma_nl_dev_type type, 2695 const char *name); 2696 2697 /** 2698 * del_sub_dev - Delete a sub IB device 2699 */ 2700 void (*del_sub_dev)(struct ib_device *sub_dev); 2701 2702 /** 2703 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside 2704 * the ufile. 2705 */ 2706 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile); 2707 2708 /** 2709 * report_port_event - Drivers need to implement this if they have 2710 * some private stuff to handle when link status changes. 2711 */ 2712 void (*report_port_event)(struct ib_device *ibdev, 2713 struct net_device *ndev, unsigned long event); 2714 2715 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2716 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2717 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2718 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2719 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2720 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2721 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2722 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2723 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2724 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2725 DECLARE_RDMA_OBJ_SIZE(rdma_counter); 2726 }; 2727 2728 struct ib_core_device { 2729 /* device must be the first element in structure until, 2730 * union of ib_core_device and device exists in ib_device. 2731 */ 2732 struct device dev; 2733 possible_net_t rdma_net; 2734 struct kobject *ports_kobj; 2735 struct list_head port_list; 2736 struct ib_device *owner; /* reach back to owner ib_device */ 2737 }; 2738 2739 struct rdma_restrack_root; 2740 struct ib_device { 2741 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2742 struct device *dma_device; 2743 struct ib_device_ops ops; 2744 char name[IB_DEVICE_NAME_MAX]; 2745 struct rcu_head rcu_head; 2746 2747 struct list_head event_handler_list; 2748 /* Protects event_handler_list */ 2749 struct rw_semaphore event_handler_rwsem; 2750 2751 /* Protects QP's event_handler calls and open_qp list */ 2752 spinlock_t qp_open_list_lock; 2753 2754 struct rw_semaphore client_data_rwsem; 2755 struct xarray client_data; 2756 struct mutex unregistration_lock; 2757 2758 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2759 rwlock_t cache_lock; 2760 /** 2761 * port_data is indexed by port number 2762 */ 2763 struct ib_port_data *port_data; 2764 2765 int num_comp_vectors; 2766 2767 union { 2768 struct device dev; 2769 struct ib_core_device coredev; 2770 }; 2771 2772 /* First group is for device attributes, 2773 * Second group is for driver provided attributes (optional). 2774 * Third group is for the hw_stats 2775 * It is a NULL terminated array. 2776 */ 2777 const struct attribute_group *groups[4]; 2778 u8 hw_stats_attr_index; 2779 2780 u64 uverbs_cmd_mask; 2781 2782 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2783 __be64 node_guid; 2784 u32 local_dma_lkey; 2785 u16 is_switch:1; 2786 /* Indicates kernel verbs support, should not be used in drivers */ 2787 u16 kverbs_provider:1; 2788 /* CQ adaptive moderation (RDMA DIM) */ 2789 u16 use_cq_dim:1; 2790 u8 node_type; 2791 u32 phys_port_cnt; 2792 struct ib_device_attr attrs; 2793 struct hw_stats_device_data *hw_stats_data; 2794 2795 #ifdef CONFIG_CGROUP_RDMA 2796 struct rdmacg_device cg_device; 2797 #endif 2798 2799 u32 index; 2800 2801 spinlock_t cq_pools_lock; 2802 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2803 2804 struct rdma_restrack_root *res; 2805 2806 const struct uapi_definition *driver_def; 2807 2808 /* 2809 * Positive refcount indicates that the device is currently 2810 * registered and cannot be unregistered. 2811 */ 2812 refcount_t refcount; 2813 struct completion unreg_completion; 2814 struct work_struct unregistration_work; 2815 2816 const struct rdma_link_ops *link_ops; 2817 2818 /* Protects compat_devs xarray modifications */ 2819 struct mutex compat_devs_mutex; 2820 /* Maintains compat devices for each net namespace */ 2821 struct xarray compat_devs; 2822 2823 /* Used by iWarp CM */ 2824 char iw_ifname[IFNAMSIZ]; 2825 u32 iw_driver_flags; 2826 u32 lag_flags; 2827 2828 /* A parent device has a list of sub-devices */ 2829 struct mutex subdev_lock; 2830 struct list_head subdev_list_head; 2831 2832 /* A sub device has a type and a parent */ 2833 enum rdma_nl_dev_type type; 2834 struct ib_device *parent; 2835 struct list_head subdev_list; 2836 2837 enum rdma_nl_name_assign_type name_assign_type; 2838 }; 2839 2840 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2841 gfp_t gfp, bool is_numa_aware) 2842 { 2843 if (is_numa_aware && dev->ops.get_numa_node) 2844 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2845 2846 return kzalloc(size, gfp); 2847 } 2848 2849 struct ib_client_nl_info; 2850 struct ib_client { 2851 const char *name; 2852 int (*add)(struct ib_device *ibdev); 2853 void (*remove)(struct ib_device *, void *client_data); 2854 void (*rename)(struct ib_device *dev, void *client_data); 2855 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2856 struct ib_client_nl_info *res); 2857 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2858 2859 /* Returns the net_dev belonging to this ib_client and matching the 2860 * given parameters. 2861 * @dev: An RDMA device that the net_dev use for communication. 2862 * @port: A physical port number on the RDMA device. 2863 * @pkey: P_Key that the net_dev uses if applicable. 2864 * @gid: A GID that the net_dev uses to communicate. 2865 * @addr: An IP address the net_dev is configured with. 2866 * @client_data: The device's client data set by ib_set_client_data(). 2867 * 2868 * An ib_client that implements a net_dev on top of RDMA devices 2869 * (such as IP over IB) should implement this callback, allowing the 2870 * rdma_cm module to find the right net_dev for a given request. 2871 * 2872 * The caller is responsible for calling dev_put on the returned 2873 * netdev. */ 2874 struct net_device *(*get_net_dev_by_params)( 2875 struct ib_device *dev, 2876 u32 port, 2877 u16 pkey, 2878 const union ib_gid *gid, 2879 const struct sockaddr *addr, 2880 void *client_data); 2881 2882 refcount_t uses; 2883 struct completion uses_zero; 2884 u32 client_id; 2885 2886 /* kverbs are not required by the client */ 2887 u8 no_kverbs_req:1; 2888 }; 2889 2890 /* 2891 * IB block DMA iterator 2892 * 2893 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2894 * to a HW supported page size. 2895 */ 2896 struct ib_block_iter { 2897 /* internal states */ 2898 struct scatterlist *__sg; /* sg holding the current aligned block */ 2899 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2900 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */ 2901 unsigned int __sg_nents; /* number of SG entries */ 2902 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2903 unsigned int __pg_bit; /* alignment of current block */ 2904 }; 2905 2906 struct ib_device *_ib_alloc_device(size_t size); 2907 #define ib_alloc_device(drv_struct, member) \ 2908 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2909 BUILD_BUG_ON_ZERO(offsetof( \ 2910 struct drv_struct, member))), \ 2911 struct drv_struct, member) 2912 2913 void ib_dealloc_device(struct ib_device *device); 2914 2915 void ib_get_device_fw_str(struct ib_device *device, char *str); 2916 2917 int ib_register_device(struct ib_device *device, const char *name, 2918 struct device *dma_device); 2919 void ib_unregister_device(struct ib_device *device); 2920 void ib_unregister_driver(enum rdma_driver_id driver_id); 2921 void ib_unregister_device_and_put(struct ib_device *device); 2922 void ib_unregister_device_queued(struct ib_device *ib_dev); 2923 2924 int ib_register_client (struct ib_client *client); 2925 void ib_unregister_client(struct ib_client *client); 2926 2927 void __rdma_block_iter_start(struct ib_block_iter *biter, 2928 struct scatterlist *sglist, 2929 unsigned int nents, 2930 unsigned long pgsz); 2931 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2932 2933 /** 2934 * rdma_block_iter_dma_address - get the aligned dma address of the current 2935 * block held by the block iterator. 2936 * @biter: block iterator holding the memory block 2937 */ 2938 static inline dma_addr_t 2939 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2940 { 2941 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2942 } 2943 2944 /** 2945 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2946 * @sglist: sglist to iterate over 2947 * @biter: block iterator holding the memory block 2948 * @nents: maximum number of sg entries to iterate over 2949 * @pgsz: best HW supported page size to use 2950 * 2951 * Callers may use rdma_block_iter_dma_address() to get each 2952 * blocks aligned DMA address. 2953 */ 2954 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2955 for (__rdma_block_iter_start(biter, sglist, nents, \ 2956 pgsz); \ 2957 __rdma_block_iter_next(biter);) 2958 2959 /** 2960 * ib_get_client_data - Get IB client context 2961 * @device:Device to get context for 2962 * @client:Client to get context for 2963 * 2964 * ib_get_client_data() returns the client context data set with 2965 * ib_set_client_data(). This can only be called while the client is 2966 * registered to the device, once the ib_client remove() callback returns this 2967 * cannot be called. 2968 */ 2969 static inline void *ib_get_client_data(struct ib_device *device, 2970 struct ib_client *client) 2971 { 2972 return xa_load(&device->client_data, client->client_id); 2973 } 2974 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2975 void *data); 2976 void ib_set_device_ops(struct ib_device *device, 2977 const struct ib_device_ops *ops); 2978 2979 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2980 unsigned long pfn, unsigned long size, pgprot_t prot, 2981 struct rdma_user_mmap_entry *entry); 2982 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2983 struct rdma_user_mmap_entry *entry, 2984 size_t length); 2985 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2986 struct rdma_user_mmap_entry *entry, 2987 size_t length, u32 min_pgoff, 2988 u32 max_pgoff); 2989 2990 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 2991 void rdma_user_mmap_disassociate(struct ib_device *device); 2992 #else 2993 static inline void rdma_user_mmap_disassociate(struct ib_device *device) 2994 { 2995 } 2996 #endif 2997 2998 static inline int 2999 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 3000 struct rdma_user_mmap_entry *entry, 3001 size_t length, u32 pgoff) 3002 { 3003 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 3004 pgoff); 3005 } 3006 3007 struct rdma_user_mmap_entry * 3008 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 3009 unsigned long pgoff); 3010 struct rdma_user_mmap_entry * 3011 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 3012 struct vm_area_struct *vma); 3013 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 3014 3015 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 3016 3017 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 3018 { 3019 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 3020 } 3021 3022 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 3023 { 3024 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 3025 } 3026 3027 static inline bool ib_is_buffer_cleared(const void __user *p, 3028 size_t len) 3029 { 3030 bool ret; 3031 u8 *buf; 3032 3033 if (len > USHRT_MAX) 3034 return false; 3035 3036 buf = memdup_user(p, len); 3037 if (IS_ERR(buf)) 3038 return false; 3039 3040 ret = !memchr_inv(buf, 0, len); 3041 kfree(buf); 3042 return ret; 3043 } 3044 3045 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 3046 size_t offset, 3047 size_t len) 3048 { 3049 return ib_is_buffer_cleared(udata->inbuf + offset, len); 3050 } 3051 3052 /** 3053 * ib_modify_qp_is_ok - Check that the supplied attribute mask 3054 * contains all required attributes and no attributes not allowed for 3055 * the given QP state transition. 3056 * @cur_state: Current QP state 3057 * @next_state: Next QP state 3058 * @type: QP type 3059 * @mask: Mask of supplied QP attributes 3060 * 3061 * This function is a helper function that a low-level driver's 3062 * modify_qp method can use to validate the consumer's input. It 3063 * checks that cur_state and next_state are valid QP states, that a 3064 * transition from cur_state to next_state is allowed by the IB spec, 3065 * and that the attribute mask supplied is allowed for the transition. 3066 */ 3067 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3068 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3069 3070 void ib_register_event_handler(struct ib_event_handler *event_handler); 3071 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3072 void ib_dispatch_event(const struct ib_event *event); 3073 3074 int ib_query_port(struct ib_device *device, 3075 u32 port_num, struct ib_port_attr *port_attr); 3076 3077 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3078 u32 port_num); 3079 3080 /** 3081 * rdma_cap_ib_switch - Check if the device is IB switch 3082 * @device: Device to check 3083 * 3084 * Device driver is responsible for setting is_switch bit on 3085 * in ib_device structure at init time. 3086 * 3087 * Return: true if the device is IB switch. 3088 */ 3089 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3090 { 3091 return device->is_switch; 3092 } 3093 3094 /** 3095 * rdma_start_port - Return the first valid port number for the device 3096 * specified 3097 * 3098 * @device: Device to be checked 3099 * 3100 * Return start port number 3101 */ 3102 static inline u32 rdma_start_port(const struct ib_device *device) 3103 { 3104 return rdma_cap_ib_switch(device) ? 0 : 1; 3105 } 3106 3107 /** 3108 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3109 * @device - The struct ib_device * to iterate over 3110 * @iter - The unsigned int to store the port number 3111 */ 3112 #define rdma_for_each_port(device, iter) \ 3113 for (iter = rdma_start_port(device + \ 3114 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3115 iter))); \ 3116 iter <= rdma_end_port(device); iter++) 3117 3118 /** 3119 * rdma_end_port - Return the last valid port number for the device 3120 * specified 3121 * 3122 * @device: Device to be checked 3123 * 3124 * Return last port number 3125 */ 3126 static inline u32 rdma_end_port(const struct ib_device *device) 3127 { 3128 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3129 } 3130 3131 static inline int rdma_is_port_valid(const struct ib_device *device, 3132 unsigned int port) 3133 { 3134 return (port >= rdma_start_port(device) && 3135 port <= rdma_end_port(device)); 3136 } 3137 3138 static inline bool rdma_is_grh_required(const struct ib_device *device, 3139 u32 port_num) 3140 { 3141 return device->port_data[port_num].immutable.core_cap_flags & 3142 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3143 } 3144 3145 static inline bool rdma_protocol_ib(const struct ib_device *device, 3146 u32 port_num) 3147 { 3148 return device->port_data[port_num].immutable.core_cap_flags & 3149 RDMA_CORE_CAP_PROT_IB; 3150 } 3151 3152 static inline bool rdma_protocol_roce(const struct ib_device *device, 3153 u32 port_num) 3154 { 3155 return device->port_data[port_num].immutable.core_cap_flags & 3156 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3157 } 3158 3159 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3160 u32 port_num) 3161 { 3162 return device->port_data[port_num].immutable.core_cap_flags & 3163 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3164 } 3165 3166 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3167 u32 port_num) 3168 { 3169 return device->port_data[port_num].immutable.core_cap_flags & 3170 RDMA_CORE_CAP_PROT_ROCE; 3171 } 3172 3173 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3174 u32 port_num) 3175 { 3176 return device->port_data[port_num].immutable.core_cap_flags & 3177 RDMA_CORE_CAP_PROT_IWARP; 3178 } 3179 3180 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3181 u32 port_num) 3182 { 3183 return rdma_protocol_ib(device, port_num) || 3184 rdma_protocol_roce(device, port_num); 3185 } 3186 3187 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3188 u32 port_num) 3189 { 3190 return device->port_data[port_num].immutable.core_cap_flags & 3191 RDMA_CORE_CAP_PROT_RAW_PACKET; 3192 } 3193 3194 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3195 u32 port_num) 3196 { 3197 return device->port_data[port_num].immutable.core_cap_flags & 3198 RDMA_CORE_CAP_PROT_USNIC; 3199 } 3200 3201 /** 3202 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3203 * Management Datagrams. 3204 * @device: Device to check 3205 * @port_num: Port number to check 3206 * 3207 * Management Datagrams (MAD) are a required part of the InfiniBand 3208 * specification and are supported on all InfiniBand devices. A slightly 3209 * extended version are also supported on OPA interfaces. 3210 * 3211 * Return: true if the port supports sending/receiving of MAD packets. 3212 */ 3213 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3214 { 3215 return device->port_data[port_num].immutable.core_cap_flags & 3216 RDMA_CORE_CAP_IB_MAD; 3217 } 3218 3219 /** 3220 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3221 * Management Datagrams. 3222 * @device: Device to check 3223 * @port_num: Port number to check 3224 * 3225 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3226 * datagrams with their own versions. These OPA MADs share many but not all of 3227 * the characteristics of InfiniBand MADs. 3228 * 3229 * OPA MADs differ in the following ways: 3230 * 3231 * 1) MADs are variable size up to 2K 3232 * IBTA defined MADs remain fixed at 256 bytes 3233 * 2) OPA SMPs must carry valid PKeys 3234 * 3) OPA SMP packets are a different format 3235 * 3236 * Return: true if the port supports OPA MAD packet formats. 3237 */ 3238 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3239 { 3240 return device->port_data[port_num].immutable.core_cap_flags & 3241 RDMA_CORE_CAP_OPA_MAD; 3242 } 3243 3244 /** 3245 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3246 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3247 * @device: Device to check 3248 * @port_num: Port number to check 3249 * 3250 * Each InfiniBand node is required to provide a Subnet Management Agent 3251 * that the subnet manager can access. Prior to the fabric being fully 3252 * configured by the subnet manager, the SMA is accessed via a well known 3253 * interface called the Subnet Management Interface (SMI). This interface 3254 * uses directed route packets to communicate with the SM to get around the 3255 * chicken and egg problem of the SM needing to know what's on the fabric 3256 * in order to configure the fabric, and needing to configure the fabric in 3257 * order to send packets to the devices on the fabric. These directed 3258 * route packets do not need the fabric fully configured in order to reach 3259 * their destination. The SMI is the only method allowed to send 3260 * directed route packets on an InfiniBand fabric. 3261 * 3262 * Return: true if the port provides an SMI. 3263 */ 3264 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3265 { 3266 return device->port_data[port_num].immutable.core_cap_flags & 3267 RDMA_CORE_CAP_IB_SMI; 3268 } 3269 3270 /** 3271 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3272 * Communication Manager. 3273 * @device: Device to check 3274 * @port_num: Port number to check 3275 * 3276 * The InfiniBand Communication Manager is one of many pre-defined General 3277 * Service Agents (GSA) that are accessed via the General Service 3278 * Interface (GSI). It's role is to facilitate establishment of connections 3279 * between nodes as well as other management related tasks for established 3280 * connections. 3281 * 3282 * Return: true if the port supports an IB CM (this does not guarantee that 3283 * a CM is actually running however). 3284 */ 3285 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3286 { 3287 return device->port_data[port_num].immutable.core_cap_flags & 3288 RDMA_CORE_CAP_IB_CM; 3289 } 3290 3291 /** 3292 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3293 * Communication Manager. 3294 * @device: Device to check 3295 * @port_num: Port number to check 3296 * 3297 * Similar to above, but specific to iWARP connections which have a different 3298 * managment protocol than InfiniBand. 3299 * 3300 * Return: true if the port supports an iWARP CM (this does not guarantee that 3301 * a CM is actually running however). 3302 */ 3303 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3304 { 3305 return device->port_data[port_num].immutable.core_cap_flags & 3306 RDMA_CORE_CAP_IW_CM; 3307 } 3308 3309 /** 3310 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3311 * Subnet Administration. 3312 * @device: Device to check 3313 * @port_num: Port number to check 3314 * 3315 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3316 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3317 * fabrics, devices should resolve routes to other hosts by contacting the 3318 * SA to query the proper route. 3319 * 3320 * Return: true if the port should act as a client to the fabric Subnet 3321 * Administration interface. This does not imply that the SA service is 3322 * running locally. 3323 */ 3324 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3325 { 3326 return device->port_data[port_num].immutable.core_cap_flags & 3327 RDMA_CORE_CAP_IB_SA; 3328 } 3329 3330 /** 3331 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3332 * Multicast. 3333 * @device: Device to check 3334 * @port_num: Port number to check 3335 * 3336 * InfiniBand multicast registration is more complex than normal IPv4 or 3337 * IPv6 multicast registration. Each Host Channel Adapter must register 3338 * with the Subnet Manager when it wishes to join a multicast group. It 3339 * should do so only once regardless of how many queue pairs it subscribes 3340 * to this group. And it should leave the group only after all queue pairs 3341 * attached to the group have been detached. 3342 * 3343 * Return: true if the port must undertake the additional adminstrative 3344 * overhead of registering/unregistering with the SM and tracking of the 3345 * total number of queue pairs attached to the multicast group. 3346 */ 3347 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3348 u32 port_num) 3349 { 3350 return rdma_cap_ib_sa(device, port_num); 3351 } 3352 3353 /** 3354 * rdma_cap_af_ib - Check if the port of device has the capability 3355 * Native Infiniband Address. 3356 * @device: Device to check 3357 * @port_num: Port number to check 3358 * 3359 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3360 * GID. RoCE uses a different mechanism, but still generates a GID via 3361 * a prescribed mechanism and port specific data. 3362 * 3363 * Return: true if the port uses a GID address to identify devices on the 3364 * network. 3365 */ 3366 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3367 { 3368 return device->port_data[port_num].immutable.core_cap_flags & 3369 RDMA_CORE_CAP_AF_IB; 3370 } 3371 3372 /** 3373 * rdma_cap_eth_ah - Check if the port of device has the capability 3374 * Ethernet Address Handle. 3375 * @device: Device to check 3376 * @port_num: Port number to check 3377 * 3378 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3379 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3380 * port. Normally, packet headers are generated by the sending host 3381 * adapter, but when sending connectionless datagrams, we must manually 3382 * inject the proper headers for the fabric we are communicating over. 3383 * 3384 * Return: true if we are running as a RoCE port and must force the 3385 * addition of a Global Route Header built from our Ethernet Address 3386 * Handle into our header list for connectionless packets. 3387 */ 3388 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3389 { 3390 return device->port_data[port_num].immutable.core_cap_flags & 3391 RDMA_CORE_CAP_ETH_AH; 3392 } 3393 3394 /** 3395 * rdma_cap_opa_ah - Check if the port of device supports 3396 * OPA Address handles 3397 * @device: Device to check 3398 * @port_num: Port number to check 3399 * 3400 * Return: true if we are running on an OPA device which supports 3401 * the extended OPA addressing. 3402 */ 3403 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3404 { 3405 return (device->port_data[port_num].immutable.core_cap_flags & 3406 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3407 } 3408 3409 /** 3410 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3411 * 3412 * @device: Device 3413 * @port_num: Port number 3414 * 3415 * This MAD size includes the MAD headers and MAD payload. No other headers 3416 * are included. 3417 * 3418 * Return the max MAD size required by the Port. Will return 0 if the port 3419 * does not support MADs 3420 */ 3421 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3422 u32 port_num) 3423 { 3424 return device->port_data[port_num].immutable.max_mad_size; 3425 } 3426 3427 /** 3428 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3429 * @device: Device to check 3430 * @port_num: Port number to check 3431 * 3432 * RoCE GID table mechanism manages the various GIDs for a device. 3433 * 3434 * NOTE: if allocating the port's GID table has failed, this call will still 3435 * return true, but any RoCE GID table API will fail. 3436 * 3437 * Return: true if the port uses RoCE GID table mechanism in order to manage 3438 * its GIDs. 3439 */ 3440 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3441 u32 port_num) 3442 { 3443 return rdma_protocol_roce(device, port_num) && 3444 device->ops.add_gid && device->ops.del_gid; 3445 } 3446 3447 /* 3448 * Check if the device supports READ W/ INVALIDATE. 3449 */ 3450 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3451 { 3452 /* 3453 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3454 * has support for it yet. 3455 */ 3456 return rdma_protocol_iwarp(dev, port_num); 3457 } 3458 3459 /** 3460 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3461 * @device: Device 3462 * @port_num: 1 based Port number 3463 * 3464 * Return true if port is an Intel OPA port , false if not 3465 */ 3466 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3467 u32 port_num) 3468 { 3469 return (device->port_data[port_num].immutable.core_cap_flags & 3470 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3471 } 3472 3473 /** 3474 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3475 * @device: Device 3476 * @port_num: Port number 3477 * @mtu: enum value of MTU 3478 * 3479 * Return the MTU size supported by the port as an integer value. Will return 3480 * -1 if enum value of mtu is not supported. 3481 */ 3482 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3483 int mtu) 3484 { 3485 if (rdma_core_cap_opa_port(device, port)) 3486 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3487 else 3488 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3489 } 3490 3491 /** 3492 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3493 * @device: Device 3494 * @port_num: Port number 3495 * @attr: port attribute 3496 * 3497 * Return the MTU size supported by the port as an integer value. 3498 */ 3499 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3500 struct ib_port_attr *attr) 3501 { 3502 if (rdma_core_cap_opa_port(device, port)) 3503 return attr->phys_mtu; 3504 else 3505 return ib_mtu_enum_to_int(attr->max_mtu); 3506 } 3507 3508 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3509 int state); 3510 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3511 struct ifla_vf_info *info); 3512 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3513 struct ifla_vf_stats *stats); 3514 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3515 struct ifla_vf_guid *node_guid, 3516 struct ifla_vf_guid *port_guid); 3517 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3518 int type); 3519 3520 int ib_query_pkey(struct ib_device *device, 3521 u32 port_num, u16 index, u16 *pkey); 3522 3523 int ib_modify_device(struct ib_device *device, 3524 int device_modify_mask, 3525 struct ib_device_modify *device_modify); 3526 3527 int ib_modify_port(struct ib_device *device, 3528 u32 port_num, int port_modify_mask, 3529 struct ib_port_modify *port_modify); 3530 3531 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3532 u32 *port_num, u16 *index); 3533 3534 int ib_find_pkey(struct ib_device *device, 3535 u32 port_num, u16 pkey, u16 *index); 3536 3537 enum ib_pd_flags { 3538 /* 3539 * Create a memory registration for all memory in the system and place 3540 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3541 * ULPs to avoid the overhead of dynamic MRs. 3542 * 3543 * This flag is generally considered unsafe and must only be used in 3544 * extremly trusted environments. Every use of it will log a warning 3545 * in the kernel log. 3546 */ 3547 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3548 }; 3549 3550 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3551 const char *caller); 3552 3553 /** 3554 * ib_alloc_pd - Allocates an unused protection domain. 3555 * @device: The device on which to allocate the protection domain. 3556 * @flags: protection domain flags 3557 * 3558 * A protection domain object provides an association between QPs, shared 3559 * receive queues, address handles, memory regions, and memory windows. 3560 * 3561 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3562 * memory operations. 3563 */ 3564 #define ib_alloc_pd(device, flags) \ 3565 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3566 3567 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3568 3569 /** 3570 * ib_dealloc_pd - Deallocate kernel PD 3571 * @pd: The protection domain 3572 * 3573 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3574 */ 3575 static inline void ib_dealloc_pd(struct ib_pd *pd) 3576 { 3577 int ret = ib_dealloc_pd_user(pd, NULL); 3578 3579 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3580 } 3581 3582 enum rdma_create_ah_flags { 3583 /* In a sleepable context */ 3584 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3585 }; 3586 3587 /** 3588 * rdma_create_ah - Creates an address handle for the given address vector. 3589 * @pd: The protection domain associated with the address handle. 3590 * @ah_attr: The attributes of the address vector. 3591 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3592 * 3593 * The address handle is used to reference a local or global destination 3594 * in all UD QP post sends. 3595 */ 3596 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3597 u32 flags); 3598 3599 /** 3600 * rdma_create_user_ah - Creates an address handle for the given address vector. 3601 * It resolves destination mac address for ah attribute of RoCE type. 3602 * @pd: The protection domain associated with the address handle. 3603 * @ah_attr: The attributes of the address vector. 3604 * @udata: pointer to user's input output buffer information need by 3605 * provider driver. 3606 * 3607 * It returns 0 on success and returns appropriate error code on error. 3608 * The address handle is used to reference a local or global destination 3609 * in all UD QP post sends. 3610 */ 3611 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3612 struct rdma_ah_attr *ah_attr, 3613 struct ib_udata *udata); 3614 /** 3615 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3616 * work completion. 3617 * @hdr: the L3 header to parse 3618 * @net_type: type of header to parse 3619 * @sgid: place to store source gid 3620 * @dgid: place to store destination gid 3621 */ 3622 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3623 enum rdma_network_type net_type, 3624 union ib_gid *sgid, union ib_gid *dgid); 3625 3626 /** 3627 * ib_get_rdma_header_version - Get the header version 3628 * @hdr: the L3 header to parse 3629 */ 3630 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3631 3632 /** 3633 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3634 * work completion. 3635 * @device: Device on which the received message arrived. 3636 * @port_num: Port on which the received message arrived. 3637 * @wc: Work completion associated with the received message. 3638 * @grh: References the received global route header. This parameter is 3639 * ignored unless the work completion indicates that the GRH is valid. 3640 * @ah_attr: Returned attributes that can be used when creating an address 3641 * handle for replying to the message. 3642 * When ib_init_ah_attr_from_wc() returns success, 3643 * (a) for IB link layer it optionally contains a reference to SGID attribute 3644 * when GRH is present for IB link layer. 3645 * (b) for RoCE link layer it contains a reference to SGID attribute. 3646 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3647 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3648 * 3649 */ 3650 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3651 const struct ib_wc *wc, const struct ib_grh *grh, 3652 struct rdma_ah_attr *ah_attr); 3653 3654 /** 3655 * ib_create_ah_from_wc - Creates an address handle associated with the 3656 * sender of the specified work completion. 3657 * @pd: The protection domain associated with the address handle. 3658 * @wc: Work completion information associated with a received message. 3659 * @grh: References the received global route header. This parameter is 3660 * ignored unless the work completion indicates that the GRH is valid. 3661 * @port_num: The outbound port number to associate with the address. 3662 * 3663 * The address handle is used to reference a local or global destination 3664 * in all UD QP post sends. 3665 */ 3666 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3667 const struct ib_grh *grh, u32 port_num); 3668 3669 /** 3670 * rdma_modify_ah - Modifies the address vector associated with an address 3671 * handle. 3672 * @ah: The address handle to modify. 3673 * @ah_attr: The new address vector attributes to associate with the 3674 * address handle. 3675 */ 3676 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3677 3678 /** 3679 * rdma_query_ah - Queries the address vector associated with an address 3680 * handle. 3681 * @ah: The address handle to query. 3682 * @ah_attr: The address vector attributes associated with the address 3683 * handle. 3684 */ 3685 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3686 3687 enum rdma_destroy_ah_flags { 3688 /* In a sleepable context */ 3689 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3690 }; 3691 3692 /** 3693 * rdma_destroy_ah_user - Destroys an address handle. 3694 * @ah: The address handle to destroy. 3695 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3696 * @udata: Valid user data or NULL for kernel objects 3697 */ 3698 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3699 3700 /** 3701 * rdma_destroy_ah - Destroys an kernel address handle. 3702 * @ah: The address handle to destroy. 3703 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3704 * 3705 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3706 */ 3707 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3708 { 3709 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3710 3711 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3712 } 3713 3714 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3715 struct ib_srq_init_attr *srq_init_attr, 3716 struct ib_usrq_object *uobject, 3717 struct ib_udata *udata); 3718 static inline struct ib_srq * 3719 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3720 { 3721 if (!pd->device->ops.create_srq) 3722 return ERR_PTR(-EOPNOTSUPP); 3723 3724 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3725 } 3726 3727 /** 3728 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3729 * @srq: The SRQ to modify. 3730 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3731 * the current values of selected SRQ attributes are returned. 3732 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3733 * are being modified. 3734 * 3735 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3736 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3737 * the number of receives queued drops below the limit. 3738 */ 3739 int ib_modify_srq(struct ib_srq *srq, 3740 struct ib_srq_attr *srq_attr, 3741 enum ib_srq_attr_mask srq_attr_mask); 3742 3743 /** 3744 * ib_query_srq - Returns the attribute list and current values for the 3745 * specified SRQ. 3746 * @srq: The SRQ to query. 3747 * @srq_attr: The attributes of the specified SRQ. 3748 */ 3749 int ib_query_srq(struct ib_srq *srq, 3750 struct ib_srq_attr *srq_attr); 3751 3752 /** 3753 * ib_destroy_srq_user - Destroys the specified SRQ. 3754 * @srq: The SRQ to destroy. 3755 * @udata: Valid user data or NULL for kernel objects 3756 */ 3757 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3758 3759 /** 3760 * ib_destroy_srq - Destroys the specified kernel SRQ. 3761 * @srq: The SRQ to destroy. 3762 * 3763 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3764 */ 3765 static inline void ib_destroy_srq(struct ib_srq *srq) 3766 { 3767 int ret = ib_destroy_srq_user(srq, NULL); 3768 3769 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3770 } 3771 3772 /** 3773 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3774 * @srq: The SRQ to post the work request on. 3775 * @recv_wr: A list of work requests to post on the receive queue. 3776 * @bad_recv_wr: On an immediate failure, this parameter will reference 3777 * the work request that failed to be posted on the QP. 3778 */ 3779 static inline int ib_post_srq_recv(struct ib_srq *srq, 3780 const struct ib_recv_wr *recv_wr, 3781 const struct ib_recv_wr **bad_recv_wr) 3782 { 3783 const struct ib_recv_wr *dummy; 3784 3785 return srq->device->ops.post_srq_recv(srq, recv_wr, 3786 bad_recv_wr ? : &dummy); 3787 } 3788 3789 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3790 struct ib_qp_init_attr *qp_init_attr, 3791 const char *caller); 3792 /** 3793 * ib_create_qp - Creates a kernel QP associated with the specific protection 3794 * domain. 3795 * @pd: The protection domain associated with the QP. 3796 * @init_attr: A list of initial attributes required to create the 3797 * QP. If QP creation succeeds, then the attributes are updated to 3798 * the actual capabilities of the created QP. 3799 */ 3800 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3801 struct ib_qp_init_attr *init_attr) 3802 { 3803 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3804 } 3805 3806 /** 3807 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3808 * @qp: The QP to modify. 3809 * @attr: On input, specifies the QP attributes to modify. On output, 3810 * the current values of selected QP attributes are returned. 3811 * @attr_mask: A bit-mask used to specify which attributes of the QP 3812 * are being modified. 3813 * @udata: pointer to user's input output buffer information 3814 * are being modified. 3815 * It returns 0 on success and returns appropriate error code on error. 3816 */ 3817 int ib_modify_qp_with_udata(struct ib_qp *qp, 3818 struct ib_qp_attr *attr, 3819 int attr_mask, 3820 struct ib_udata *udata); 3821 3822 /** 3823 * ib_modify_qp - Modifies the attributes for the specified QP and then 3824 * transitions the QP to the given state. 3825 * @qp: The QP to modify. 3826 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3827 * the current values of selected QP attributes are returned. 3828 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3829 * are being modified. 3830 */ 3831 int ib_modify_qp(struct ib_qp *qp, 3832 struct ib_qp_attr *qp_attr, 3833 int qp_attr_mask); 3834 3835 /** 3836 * ib_query_qp - Returns the attribute list and current values for the 3837 * specified QP. 3838 * @qp: The QP to query. 3839 * @qp_attr: The attributes of the specified QP. 3840 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3841 * @qp_init_attr: Additional attributes of the selected QP. 3842 * 3843 * The qp_attr_mask may be used to limit the query to gathering only the 3844 * selected attributes. 3845 */ 3846 int ib_query_qp(struct ib_qp *qp, 3847 struct ib_qp_attr *qp_attr, 3848 int qp_attr_mask, 3849 struct ib_qp_init_attr *qp_init_attr); 3850 3851 /** 3852 * ib_destroy_qp - Destroys the specified QP. 3853 * @qp: The QP to destroy. 3854 * @udata: Valid udata or NULL for kernel objects 3855 */ 3856 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3857 3858 /** 3859 * ib_destroy_qp - Destroys the specified kernel QP. 3860 * @qp: The QP to destroy. 3861 * 3862 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3863 */ 3864 static inline int ib_destroy_qp(struct ib_qp *qp) 3865 { 3866 return ib_destroy_qp_user(qp, NULL); 3867 } 3868 3869 /** 3870 * ib_open_qp - Obtain a reference to an existing sharable QP. 3871 * @xrcd - XRC domain 3872 * @qp_open_attr: Attributes identifying the QP to open. 3873 * 3874 * Returns a reference to a sharable QP. 3875 */ 3876 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3877 struct ib_qp_open_attr *qp_open_attr); 3878 3879 /** 3880 * ib_close_qp - Release an external reference to a QP. 3881 * @qp: The QP handle to release 3882 * 3883 * The opened QP handle is released by the caller. The underlying 3884 * shared QP is not destroyed until all internal references are released. 3885 */ 3886 int ib_close_qp(struct ib_qp *qp); 3887 3888 /** 3889 * ib_post_send - Posts a list of work requests to the send queue of 3890 * the specified QP. 3891 * @qp: The QP to post the work request on. 3892 * @send_wr: A list of work requests to post on the send queue. 3893 * @bad_send_wr: On an immediate failure, this parameter will reference 3894 * the work request that failed to be posted on the QP. 3895 * 3896 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3897 * error is returned, the QP state shall not be affected, 3898 * ib_post_send() will return an immediate error after queueing any 3899 * earlier work requests in the list. 3900 */ 3901 static inline int ib_post_send(struct ib_qp *qp, 3902 const struct ib_send_wr *send_wr, 3903 const struct ib_send_wr **bad_send_wr) 3904 { 3905 const struct ib_send_wr *dummy; 3906 3907 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3908 } 3909 3910 /** 3911 * ib_post_recv - Posts a list of work requests to the receive queue of 3912 * the specified QP. 3913 * @qp: The QP to post the work request on. 3914 * @recv_wr: A list of work requests to post on the receive queue. 3915 * @bad_recv_wr: On an immediate failure, this parameter will reference 3916 * the work request that failed to be posted on the QP. 3917 */ 3918 static inline int ib_post_recv(struct ib_qp *qp, 3919 const struct ib_recv_wr *recv_wr, 3920 const struct ib_recv_wr **bad_recv_wr) 3921 { 3922 const struct ib_recv_wr *dummy; 3923 3924 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3925 } 3926 3927 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3928 int comp_vector, enum ib_poll_context poll_ctx, 3929 const char *caller); 3930 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3931 int nr_cqe, int comp_vector, 3932 enum ib_poll_context poll_ctx) 3933 { 3934 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3935 KBUILD_MODNAME); 3936 } 3937 3938 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3939 int nr_cqe, enum ib_poll_context poll_ctx, 3940 const char *caller); 3941 3942 /** 3943 * ib_alloc_cq_any: Allocate kernel CQ 3944 * @dev: The IB device 3945 * @private: Private data attached to the CQE 3946 * @nr_cqe: Number of CQEs in the CQ 3947 * @poll_ctx: Context used for polling the CQ 3948 */ 3949 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3950 void *private, int nr_cqe, 3951 enum ib_poll_context poll_ctx) 3952 { 3953 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3954 KBUILD_MODNAME); 3955 } 3956 3957 void ib_free_cq(struct ib_cq *cq); 3958 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3959 3960 /** 3961 * ib_create_cq - Creates a CQ on the specified device. 3962 * @device: The device on which to create the CQ. 3963 * @comp_handler: A user-specified callback that is invoked when a 3964 * completion event occurs on the CQ. 3965 * @event_handler: A user-specified callback that is invoked when an 3966 * asynchronous event not associated with a completion occurs on the CQ. 3967 * @cq_context: Context associated with the CQ returned to the user via 3968 * the associated completion and event handlers. 3969 * @cq_attr: The attributes the CQ should be created upon. 3970 * 3971 * Users can examine the cq structure to determine the actual CQ size. 3972 */ 3973 struct ib_cq *__ib_create_cq(struct ib_device *device, 3974 ib_comp_handler comp_handler, 3975 void (*event_handler)(struct ib_event *, void *), 3976 void *cq_context, 3977 const struct ib_cq_init_attr *cq_attr, 3978 const char *caller); 3979 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3980 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3981 3982 /** 3983 * ib_resize_cq - Modifies the capacity of the CQ. 3984 * @cq: The CQ to resize. 3985 * @cqe: The minimum size of the CQ. 3986 * 3987 * Users can examine the cq structure to determine the actual CQ size. 3988 */ 3989 int ib_resize_cq(struct ib_cq *cq, int cqe); 3990 3991 /** 3992 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3993 * @cq: The CQ to modify. 3994 * @cq_count: number of CQEs that will trigger an event 3995 * @cq_period: max period of time in usec before triggering an event 3996 * 3997 */ 3998 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3999 4000 /** 4001 * ib_destroy_cq_user - Destroys the specified CQ. 4002 * @cq: The CQ to destroy. 4003 * @udata: Valid user data or NULL for kernel objects 4004 */ 4005 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 4006 4007 /** 4008 * ib_destroy_cq - Destroys the specified kernel CQ. 4009 * @cq: The CQ to destroy. 4010 * 4011 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 4012 */ 4013 static inline void ib_destroy_cq(struct ib_cq *cq) 4014 { 4015 int ret = ib_destroy_cq_user(cq, NULL); 4016 4017 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 4018 } 4019 4020 /** 4021 * ib_poll_cq - poll a CQ for completion(s) 4022 * @cq:the CQ being polled 4023 * @num_entries:maximum number of completions to return 4024 * @wc:array of at least @num_entries &struct ib_wc where completions 4025 * will be returned 4026 * 4027 * Poll a CQ for (possibly multiple) completions. If the return value 4028 * is < 0, an error occurred. If the return value is >= 0, it is the 4029 * number of completions returned. If the return value is 4030 * non-negative and < num_entries, then the CQ was emptied. 4031 */ 4032 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 4033 struct ib_wc *wc) 4034 { 4035 return cq->device->ops.poll_cq(cq, num_entries, wc); 4036 } 4037 4038 /** 4039 * ib_req_notify_cq - Request completion notification on a CQ. 4040 * @cq: The CQ to generate an event for. 4041 * @flags: 4042 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 4043 * to request an event on the next solicited event or next work 4044 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 4045 * may also be |ed in to request a hint about missed events, as 4046 * described below. 4047 * 4048 * Return Value: 4049 * < 0 means an error occurred while requesting notification 4050 * == 0 means notification was requested successfully, and if 4051 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 4052 * were missed and it is safe to wait for another event. In 4053 * this case is it guaranteed that any work completions added 4054 * to the CQ since the last CQ poll will trigger a completion 4055 * notification event. 4056 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4057 * in. It means that the consumer must poll the CQ again to 4058 * make sure it is empty to avoid missing an event because of a 4059 * race between requesting notification and an entry being 4060 * added to the CQ. This return value means it is possible 4061 * (but not guaranteed) that a work completion has been added 4062 * to the CQ since the last poll without triggering a 4063 * completion notification event. 4064 */ 4065 static inline int ib_req_notify_cq(struct ib_cq *cq, 4066 enum ib_cq_notify_flags flags) 4067 { 4068 return cq->device->ops.req_notify_cq(cq, flags); 4069 } 4070 4071 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4072 int comp_vector_hint, 4073 enum ib_poll_context poll_ctx); 4074 4075 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4076 4077 /* 4078 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4079 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4080 * address into the dma address. 4081 */ 4082 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4083 { 4084 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4085 } 4086 4087 /* 4088 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4089 */ 4090 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4091 { 4092 if (ib_uses_virt_dma(dev)) 4093 return false; 4094 4095 return dma_pci_p2pdma_supported(dev->dma_device); 4096 } 4097 4098 /** 4099 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4100 * @dma_addr: The DMA address 4101 * 4102 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4103 * going through the dma_addr marshalling. 4104 */ 4105 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4106 { 4107 /* virt_dma mode maps the kvs's directly into the dma addr */ 4108 return (void *)(uintptr_t)dma_addr; 4109 } 4110 4111 /** 4112 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4113 * @dma_addr: The DMA address 4114 * 4115 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4116 * through the dma_addr marshalling. 4117 */ 4118 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4119 { 4120 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4121 } 4122 4123 /** 4124 * ib_dma_mapping_error - check a DMA addr for error 4125 * @dev: The device for which the dma_addr was created 4126 * @dma_addr: The DMA address to check 4127 */ 4128 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4129 { 4130 if (ib_uses_virt_dma(dev)) 4131 return 0; 4132 return dma_mapping_error(dev->dma_device, dma_addr); 4133 } 4134 4135 /** 4136 * ib_dma_map_single - Map a kernel virtual address to DMA address 4137 * @dev: The device for which the dma_addr is to be created 4138 * @cpu_addr: The kernel virtual address 4139 * @size: The size of the region in bytes 4140 * @direction: The direction of the DMA 4141 */ 4142 static inline u64 ib_dma_map_single(struct ib_device *dev, 4143 void *cpu_addr, size_t size, 4144 enum dma_data_direction direction) 4145 { 4146 if (ib_uses_virt_dma(dev)) 4147 return (uintptr_t)cpu_addr; 4148 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4149 } 4150 4151 /** 4152 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4153 * @dev: The device for which the DMA address was created 4154 * @addr: The DMA address 4155 * @size: The size of the region in bytes 4156 * @direction: The direction of the DMA 4157 */ 4158 static inline void ib_dma_unmap_single(struct ib_device *dev, 4159 u64 addr, size_t size, 4160 enum dma_data_direction direction) 4161 { 4162 if (!ib_uses_virt_dma(dev)) 4163 dma_unmap_single(dev->dma_device, addr, size, direction); 4164 } 4165 4166 /** 4167 * ib_dma_map_page - Map a physical page to DMA address 4168 * @dev: The device for which the dma_addr is to be created 4169 * @page: The page to be mapped 4170 * @offset: The offset within the page 4171 * @size: The size of the region in bytes 4172 * @direction: The direction of the DMA 4173 */ 4174 static inline u64 ib_dma_map_page(struct ib_device *dev, 4175 struct page *page, 4176 unsigned long offset, 4177 size_t size, 4178 enum dma_data_direction direction) 4179 { 4180 if (ib_uses_virt_dma(dev)) 4181 return (uintptr_t)(page_address(page) + offset); 4182 return dma_map_page(dev->dma_device, page, offset, size, direction); 4183 } 4184 4185 /** 4186 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4187 * @dev: The device for which the DMA address was created 4188 * @addr: The DMA address 4189 * @size: The size of the region in bytes 4190 * @direction: The direction of the DMA 4191 */ 4192 static inline void ib_dma_unmap_page(struct ib_device *dev, 4193 u64 addr, size_t size, 4194 enum dma_data_direction direction) 4195 { 4196 if (!ib_uses_virt_dma(dev)) 4197 dma_unmap_page(dev->dma_device, addr, size, direction); 4198 } 4199 4200 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4201 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4202 struct scatterlist *sg, int nents, 4203 enum dma_data_direction direction, 4204 unsigned long dma_attrs) 4205 { 4206 if (ib_uses_virt_dma(dev)) 4207 return ib_dma_virt_map_sg(dev, sg, nents); 4208 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4209 dma_attrs); 4210 } 4211 4212 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4213 struct scatterlist *sg, int nents, 4214 enum dma_data_direction direction, 4215 unsigned long dma_attrs) 4216 { 4217 if (!ib_uses_virt_dma(dev)) 4218 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4219 dma_attrs); 4220 } 4221 4222 /** 4223 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4224 * @dev: The device for which the DMA addresses are to be created 4225 * @sg: The sg_table object describing the buffer 4226 * @direction: The direction of the DMA 4227 * @attrs: Optional DMA attributes for the map operation 4228 */ 4229 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4230 struct sg_table *sgt, 4231 enum dma_data_direction direction, 4232 unsigned long dma_attrs) 4233 { 4234 int nents; 4235 4236 if (ib_uses_virt_dma(dev)) { 4237 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4238 if (!nents) 4239 return -EIO; 4240 sgt->nents = nents; 4241 return 0; 4242 } 4243 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4244 } 4245 4246 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4247 struct sg_table *sgt, 4248 enum dma_data_direction direction, 4249 unsigned long dma_attrs) 4250 { 4251 if (!ib_uses_virt_dma(dev)) 4252 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4253 } 4254 4255 /** 4256 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4257 * @dev: The device for which the DMA addresses are to be created 4258 * @sg: The array of scatter/gather entries 4259 * @nents: The number of scatter/gather entries 4260 * @direction: The direction of the DMA 4261 */ 4262 static inline int ib_dma_map_sg(struct ib_device *dev, 4263 struct scatterlist *sg, int nents, 4264 enum dma_data_direction direction) 4265 { 4266 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4267 } 4268 4269 /** 4270 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4271 * @dev: The device for which the DMA addresses were created 4272 * @sg: The array of scatter/gather entries 4273 * @nents: The number of scatter/gather entries 4274 * @direction: The direction of the DMA 4275 */ 4276 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4277 struct scatterlist *sg, int nents, 4278 enum dma_data_direction direction) 4279 { 4280 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4281 } 4282 4283 /** 4284 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4285 * @dev: The device to query 4286 * 4287 * The returned value represents a size in bytes. 4288 */ 4289 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4290 { 4291 if (ib_uses_virt_dma(dev)) 4292 return UINT_MAX; 4293 return dma_get_max_seg_size(dev->dma_device); 4294 } 4295 4296 /** 4297 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4298 * @dev: The device for which the DMA address was created 4299 * @addr: The DMA address 4300 * @size: The size of the region in bytes 4301 * @dir: The direction of the DMA 4302 */ 4303 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4304 u64 addr, 4305 size_t size, 4306 enum dma_data_direction dir) 4307 { 4308 if (!ib_uses_virt_dma(dev)) 4309 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4310 } 4311 4312 /** 4313 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4314 * @dev: The device for which the DMA address was created 4315 * @addr: The DMA address 4316 * @size: The size of the region in bytes 4317 * @dir: The direction of the DMA 4318 */ 4319 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4320 u64 addr, 4321 size_t size, 4322 enum dma_data_direction dir) 4323 { 4324 if (!ib_uses_virt_dma(dev)) 4325 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4326 } 4327 4328 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4329 * space. This function should be called when 'current' is the owning MM. 4330 */ 4331 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4332 u64 virt_addr, int mr_access_flags); 4333 4334 /* ib_advise_mr - give an advice about an address range in a memory region */ 4335 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4336 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4337 /** 4338 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4339 * HCA translation table. 4340 * @mr: The memory region to deregister. 4341 * @udata: Valid user data or NULL for kernel object 4342 * 4343 * This function can fail, if the memory region has memory windows bound to it. 4344 */ 4345 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4346 4347 /** 4348 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4349 * HCA translation table. 4350 * @mr: The memory region to deregister. 4351 * 4352 * This function can fail, if the memory region has memory windows bound to it. 4353 * 4354 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4355 */ 4356 static inline int ib_dereg_mr(struct ib_mr *mr) 4357 { 4358 return ib_dereg_mr_user(mr, NULL); 4359 } 4360 4361 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4362 u32 max_num_sg); 4363 4364 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4365 u32 max_num_data_sg, 4366 u32 max_num_meta_sg); 4367 4368 /** 4369 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4370 * R_Key and L_Key. 4371 * @mr - struct ib_mr pointer to be updated. 4372 * @newkey - new key to be used. 4373 */ 4374 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4375 { 4376 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4377 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4378 } 4379 4380 /** 4381 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4382 * for calculating a new rkey for type 2 memory windows. 4383 * @rkey - the rkey to increment. 4384 */ 4385 static inline u32 ib_inc_rkey(u32 rkey) 4386 { 4387 const u32 mask = 0x000000ff; 4388 return ((rkey + 1) & mask) | (rkey & ~mask); 4389 } 4390 4391 /** 4392 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4393 * @qp: QP to attach to the multicast group. The QP must be type 4394 * IB_QPT_UD. 4395 * @gid: Multicast group GID. 4396 * @lid: Multicast group LID in host byte order. 4397 * 4398 * In order to send and receive multicast packets, subnet 4399 * administration must have created the multicast group and configured 4400 * the fabric appropriately. The port associated with the specified 4401 * QP must also be a member of the multicast group. 4402 */ 4403 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4404 4405 /** 4406 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4407 * @qp: QP to detach from the multicast group. 4408 * @gid: Multicast group GID. 4409 * @lid: Multicast group LID in host byte order. 4410 */ 4411 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4412 4413 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4414 struct inode *inode, struct ib_udata *udata); 4415 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4416 4417 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4418 unsigned int flags) 4419 { 4420 u64 device_cap = ib_dev->attrs.device_cap_flags; 4421 4422 /* 4423 * Local write permission is required if remote write or 4424 * remote atomic permission is also requested. 4425 */ 4426 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4427 !(flags & IB_ACCESS_LOCAL_WRITE)) 4428 return -EINVAL; 4429 4430 if (flags & ~IB_ACCESS_SUPPORTED) 4431 return -EINVAL; 4432 4433 if (flags & IB_ACCESS_ON_DEMAND && 4434 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4435 return -EOPNOTSUPP; 4436 4437 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4438 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4439 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4440 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4441 return -EOPNOTSUPP; 4442 4443 return 0; 4444 } 4445 4446 static inline bool ib_access_writable(int access_flags) 4447 { 4448 /* 4449 * We have writable memory backing the MR if any of the following 4450 * access flags are set. "Local write" and "remote write" obviously 4451 * require write access. "Remote atomic" can do things like fetch and 4452 * add, which will modify memory, and "MW bind" can change permissions 4453 * by binding a window. 4454 */ 4455 return access_flags & 4456 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4457 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4458 } 4459 4460 /** 4461 * ib_check_mr_status: lightweight check of MR status. 4462 * This routine may provide status checks on a selected 4463 * ib_mr. first use is for signature status check. 4464 * 4465 * @mr: A memory region. 4466 * @check_mask: Bitmask of which checks to perform from 4467 * ib_mr_status_check enumeration. 4468 * @mr_status: The container of relevant status checks. 4469 * failed checks will be indicated in the status bitmask 4470 * and the relevant info shall be in the error item. 4471 */ 4472 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4473 struct ib_mr_status *mr_status); 4474 4475 /** 4476 * ib_device_try_get: Hold a registration lock 4477 * device: The device to lock 4478 * 4479 * A device under an active registration lock cannot become unregistered. It 4480 * is only possible to obtain a registration lock on a device that is fully 4481 * registered, otherwise this function returns false. 4482 * 4483 * The registration lock is only necessary for actions which require the 4484 * device to still be registered. Uses that only require the device pointer to 4485 * be valid should use get_device(&ibdev->dev) to hold the memory. 4486 * 4487 */ 4488 static inline bool ib_device_try_get(struct ib_device *dev) 4489 { 4490 return refcount_inc_not_zero(&dev->refcount); 4491 } 4492 4493 void ib_device_put(struct ib_device *device); 4494 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4495 enum rdma_driver_id driver_id); 4496 struct ib_device *ib_device_get_by_name(const char *name, 4497 enum rdma_driver_id driver_id); 4498 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4499 u16 pkey, const union ib_gid *gid, 4500 const struct sockaddr *addr); 4501 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4502 unsigned int port); 4503 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 4504 u32 port); 4505 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev, 4506 u32 *port); 4507 4508 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev) 4509 { 4510 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ? 4511 IB_PORT_ACTIVE : IB_PORT_DOWN; 4512 } 4513 4514 void ib_dispatch_port_state_event(struct ib_device *ibdev, 4515 struct net_device *ndev); 4516 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4517 struct ib_wq_init_attr *init_attr); 4518 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4519 4520 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4521 unsigned int *sg_offset, unsigned int page_size); 4522 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4523 int data_sg_nents, unsigned int *data_sg_offset, 4524 struct scatterlist *meta_sg, int meta_sg_nents, 4525 unsigned int *meta_sg_offset, unsigned int page_size); 4526 4527 static inline int 4528 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4529 unsigned int *sg_offset, unsigned int page_size) 4530 { 4531 int n; 4532 4533 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4534 mr->iova = 0; 4535 4536 return n; 4537 } 4538 4539 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4540 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4541 4542 void ib_drain_rq(struct ib_qp *qp); 4543 void ib_drain_sq(struct ib_qp *qp); 4544 void ib_drain_qp(struct ib_qp *qp); 4545 4546 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4547 u8 *width); 4548 4549 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4550 { 4551 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4552 return attr->roce.dmac; 4553 return NULL; 4554 } 4555 4556 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4557 { 4558 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4559 attr->ib.dlid = (u16)dlid; 4560 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4561 attr->opa.dlid = dlid; 4562 } 4563 4564 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4565 { 4566 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4567 return attr->ib.dlid; 4568 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4569 return attr->opa.dlid; 4570 return 0; 4571 } 4572 4573 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4574 { 4575 attr->sl = sl; 4576 } 4577 4578 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4579 { 4580 return attr->sl; 4581 } 4582 4583 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4584 u8 src_path_bits) 4585 { 4586 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4587 attr->ib.src_path_bits = src_path_bits; 4588 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4589 attr->opa.src_path_bits = src_path_bits; 4590 } 4591 4592 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4593 { 4594 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4595 return attr->ib.src_path_bits; 4596 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4597 return attr->opa.src_path_bits; 4598 return 0; 4599 } 4600 4601 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4602 bool make_grd) 4603 { 4604 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4605 attr->opa.make_grd = make_grd; 4606 } 4607 4608 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4609 { 4610 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4611 return attr->opa.make_grd; 4612 return false; 4613 } 4614 4615 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4616 { 4617 attr->port_num = port_num; 4618 } 4619 4620 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4621 { 4622 return attr->port_num; 4623 } 4624 4625 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4626 u8 static_rate) 4627 { 4628 attr->static_rate = static_rate; 4629 } 4630 4631 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4632 { 4633 return attr->static_rate; 4634 } 4635 4636 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4637 enum ib_ah_flags flag) 4638 { 4639 attr->ah_flags = flag; 4640 } 4641 4642 static inline enum ib_ah_flags 4643 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4644 { 4645 return attr->ah_flags; 4646 } 4647 4648 static inline const struct ib_global_route 4649 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4650 { 4651 return &attr->grh; 4652 } 4653 4654 /*To retrieve and modify the grh */ 4655 static inline struct ib_global_route 4656 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4657 { 4658 return &attr->grh; 4659 } 4660 4661 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4662 { 4663 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4664 4665 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4666 } 4667 4668 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4669 __be64 prefix) 4670 { 4671 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4672 4673 grh->dgid.global.subnet_prefix = prefix; 4674 } 4675 4676 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4677 __be64 if_id) 4678 { 4679 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4680 4681 grh->dgid.global.interface_id = if_id; 4682 } 4683 4684 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4685 union ib_gid *dgid, u32 flow_label, 4686 u8 sgid_index, u8 hop_limit, 4687 u8 traffic_class) 4688 { 4689 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4690 4691 attr->ah_flags = IB_AH_GRH; 4692 if (dgid) 4693 grh->dgid = *dgid; 4694 grh->flow_label = flow_label; 4695 grh->sgid_index = sgid_index; 4696 grh->hop_limit = hop_limit; 4697 grh->traffic_class = traffic_class; 4698 grh->sgid_attr = NULL; 4699 } 4700 4701 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4702 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4703 u32 flow_label, u8 hop_limit, u8 traffic_class, 4704 const struct ib_gid_attr *sgid_attr); 4705 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4706 const struct rdma_ah_attr *src); 4707 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4708 const struct rdma_ah_attr *new); 4709 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4710 4711 /** 4712 * rdma_ah_find_type - Return address handle type. 4713 * 4714 * @dev: Device to be checked 4715 * @port_num: Port number 4716 */ 4717 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4718 u32 port_num) 4719 { 4720 if (rdma_protocol_roce(dev, port_num)) 4721 return RDMA_AH_ATTR_TYPE_ROCE; 4722 if (rdma_protocol_ib(dev, port_num)) { 4723 if (rdma_cap_opa_ah(dev, port_num)) 4724 return RDMA_AH_ATTR_TYPE_OPA; 4725 return RDMA_AH_ATTR_TYPE_IB; 4726 } 4727 if (dev->type == RDMA_DEVICE_TYPE_SMI) 4728 return RDMA_AH_ATTR_TYPE_IB; 4729 4730 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4731 } 4732 4733 /** 4734 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4735 * In the current implementation the only way to 4736 * get the 32bit lid is from other sources for OPA. 4737 * For IB, lids will always be 16bits so cast the 4738 * value accordingly. 4739 * 4740 * @lid: A 32bit LID 4741 */ 4742 static inline u16 ib_lid_cpu16(u32 lid) 4743 { 4744 WARN_ON_ONCE(lid & 0xFFFF0000); 4745 return (u16)lid; 4746 } 4747 4748 /** 4749 * ib_lid_be16 - Return lid in 16bit BE encoding. 4750 * 4751 * @lid: A 32bit LID 4752 */ 4753 static inline __be16 ib_lid_be16(u32 lid) 4754 { 4755 WARN_ON_ONCE(lid & 0xFFFF0000); 4756 return cpu_to_be16((u16)lid); 4757 } 4758 4759 /** 4760 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4761 * vector 4762 * @device: the rdma device 4763 * @comp_vector: index of completion vector 4764 * 4765 * Returns NULL on failure, otherwise a corresponding cpu map of the 4766 * completion vector (returns all-cpus map if the device driver doesn't 4767 * implement get_vector_affinity). 4768 */ 4769 static inline const struct cpumask * 4770 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4771 { 4772 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4773 !device->ops.get_vector_affinity) 4774 return NULL; 4775 4776 return device->ops.get_vector_affinity(device, comp_vector); 4777 4778 } 4779 4780 /** 4781 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4782 * and add their gids, as needed, to the relevant RoCE devices. 4783 * 4784 * @device: the rdma device 4785 */ 4786 void rdma_roce_rescan_device(struct ib_device *ibdev); 4787 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port); 4788 void roce_del_all_netdev_gids(struct ib_device *ib_dev, 4789 u32 port, struct net_device *ndev); 4790 4791 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4792 4793 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 4794 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4795 #else 4796 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs) 4797 { 4798 return 0; 4799 } 4800 #endif 4801 4802 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4803 enum rdma_netdev_t type, const char *name, 4804 unsigned char name_assign_type, 4805 void (*setup)(struct net_device *)); 4806 4807 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4808 enum rdma_netdev_t type, const char *name, 4809 unsigned char name_assign_type, 4810 void (*setup)(struct net_device *), 4811 struct net_device *netdev); 4812 4813 /** 4814 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4815 * 4816 * @device: device pointer for which ib_device pointer to retrieve 4817 * 4818 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4819 * 4820 */ 4821 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4822 { 4823 struct ib_core_device *coredev = 4824 container_of(device, struct ib_core_device, dev); 4825 4826 return coredev->owner; 4827 } 4828 4829 /** 4830 * ibdev_to_node - return the NUMA node for a given ib_device 4831 * @dev: device to get the NUMA node for. 4832 */ 4833 static inline int ibdev_to_node(struct ib_device *ibdev) 4834 { 4835 struct device *parent = ibdev->dev.parent; 4836 4837 if (!parent) 4838 return NUMA_NO_NODE; 4839 return dev_to_node(parent); 4840 } 4841 4842 /** 4843 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4844 * ib_device holder structure from device pointer. 4845 * 4846 * NOTE: New drivers should not make use of this API; This API is only for 4847 * existing drivers who have exposed sysfs entries using 4848 * ops->device_group. 4849 */ 4850 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4851 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4852 4853 bool rdma_dev_access_netns(const struct ib_device *device, 4854 const struct net *net); 4855 4856 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4857 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4858 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4859 4860 /** 4861 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4862 * on the flow_label 4863 * 4864 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4865 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4866 * convention. 4867 */ 4868 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4869 { 4870 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4871 4872 fl_low ^= fl_high >> 14; 4873 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4874 } 4875 4876 /** 4877 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4878 * local and remote qpn values 4879 * 4880 * This function folded the multiplication results of two qpns, 24 bit each, 4881 * fields, and converts it to a 20 bit results. 4882 * 4883 * This function will create symmetric flow_label value based on the local 4884 * and remote qpn values. this will allow both the requester and responder 4885 * to calculate the same flow_label for a given connection. 4886 * 4887 * This helper function should be used by driver in case the upper layer 4888 * provide a zero flow_label value. This is to improve entropy of RDMA 4889 * traffic in the network. 4890 */ 4891 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4892 { 4893 u64 v = (u64)lqpn * rqpn; 4894 4895 v ^= v >> 20; 4896 v ^= v >> 40; 4897 4898 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4899 } 4900 4901 /** 4902 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4903 * label. If flow label is not defined in GRH then 4904 * calculate it based on lqpn/rqpn. 4905 * 4906 * @fl: flow label from GRH 4907 * @lqpn: local qp number 4908 * @rqpn: remote qp number 4909 */ 4910 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4911 { 4912 if (!fl) 4913 fl = rdma_calc_flow_label(lqpn, rqpn); 4914 4915 return rdma_flow_label_to_udp_sport(fl); 4916 } 4917 4918 const struct ib_port_immutable* 4919 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4920 4921 /** ib_add_sub_device - Add a sub IB device on an existing one 4922 * 4923 * @parent: The IB device that needs to add a sub device 4924 * @type: The type of the new sub device 4925 * @name: The name of the new sub device 4926 * 4927 * 4928 * Return 0 on success, an error code otherwise 4929 */ 4930 int ib_add_sub_device(struct ib_device *parent, 4931 enum rdma_nl_dev_type type, 4932 const char *name); 4933 4934 4935 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get' 4936 * 4937 * @sub: The sub device that is going to be deleted 4938 * 4939 * Return 0 on success, an error code otherwise 4940 */ 4941 int ib_del_sub_device_and_put(struct ib_device *sub); 4942 4943 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev) 4944 { 4945 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER; 4946 } 4947 4948 #endif /* IB_VERBS_H */ 4949