1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 * 38 * $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $ 39 */ 40 41 #if !defined(IB_VERBS_H) 42 #define IB_VERBS_H 43 44 #include <linux/types.h> 45 #include <linux/device.h> 46 #include <linux/mm.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/kref.h> 49 50 #include <asm/atomic.h> 51 #include <asm/scatterlist.h> 52 #include <asm/uaccess.h> 53 54 union ib_gid { 55 u8 raw[16]; 56 struct { 57 __be64 subnet_prefix; 58 __be64 interface_id; 59 } global; 60 }; 61 62 enum rdma_node_type { 63 /* IB values map to NodeInfo:NodeType. */ 64 RDMA_NODE_IB_CA = 1, 65 RDMA_NODE_IB_SWITCH, 66 RDMA_NODE_IB_ROUTER, 67 RDMA_NODE_RNIC 68 }; 69 70 enum rdma_transport_type { 71 RDMA_TRANSPORT_IB, 72 RDMA_TRANSPORT_IWARP 73 }; 74 75 enum rdma_transport_type 76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 77 78 enum ib_device_cap_flags { 79 IB_DEVICE_RESIZE_MAX_WR = 1, 80 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 81 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 82 IB_DEVICE_RAW_MULTI = (1<<3), 83 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 84 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 85 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 86 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 87 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 88 IB_DEVICE_INIT_TYPE = (1<<9), 89 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 90 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 91 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 92 IB_DEVICE_SRQ_RESIZE = (1<<13), 93 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 94 IB_DEVICE_ZERO_STAG = (1<<15), 95 IB_DEVICE_SEND_W_INV = (1<<16), 96 IB_DEVICE_MEM_WINDOW = (1<<17) 97 }; 98 99 enum ib_atomic_cap { 100 IB_ATOMIC_NONE, 101 IB_ATOMIC_HCA, 102 IB_ATOMIC_GLOB 103 }; 104 105 struct ib_device_attr { 106 u64 fw_ver; 107 __be64 sys_image_guid; 108 u64 max_mr_size; 109 u64 page_size_cap; 110 u32 vendor_id; 111 u32 vendor_part_id; 112 u32 hw_ver; 113 int max_qp; 114 int max_qp_wr; 115 int device_cap_flags; 116 int max_sge; 117 int max_sge_rd; 118 int max_cq; 119 int max_cqe; 120 int max_mr; 121 int max_pd; 122 int max_qp_rd_atom; 123 int max_ee_rd_atom; 124 int max_res_rd_atom; 125 int max_qp_init_rd_atom; 126 int max_ee_init_rd_atom; 127 enum ib_atomic_cap atomic_cap; 128 int max_ee; 129 int max_rdd; 130 int max_mw; 131 int max_raw_ipv6_qp; 132 int max_raw_ethy_qp; 133 int max_mcast_grp; 134 int max_mcast_qp_attach; 135 int max_total_mcast_qp_attach; 136 int max_ah; 137 int max_fmr; 138 int max_map_per_fmr; 139 int max_srq; 140 int max_srq_wr; 141 int max_srq_sge; 142 u16 max_pkeys; 143 u8 local_ca_ack_delay; 144 }; 145 146 enum ib_mtu { 147 IB_MTU_256 = 1, 148 IB_MTU_512 = 2, 149 IB_MTU_1024 = 3, 150 IB_MTU_2048 = 4, 151 IB_MTU_4096 = 5 152 }; 153 154 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 155 { 156 switch (mtu) { 157 case IB_MTU_256: return 256; 158 case IB_MTU_512: return 512; 159 case IB_MTU_1024: return 1024; 160 case IB_MTU_2048: return 2048; 161 case IB_MTU_4096: return 4096; 162 default: return -1; 163 } 164 } 165 166 enum ib_port_state { 167 IB_PORT_NOP = 0, 168 IB_PORT_DOWN = 1, 169 IB_PORT_INIT = 2, 170 IB_PORT_ARMED = 3, 171 IB_PORT_ACTIVE = 4, 172 IB_PORT_ACTIVE_DEFER = 5 173 }; 174 175 enum ib_port_cap_flags { 176 IB_PORT_SM = 1 << 1, 177 IB_PORT_NOTICE_SUP = 1 << 2, 178 IB_PORT_TRAP_SUP = 1 << 3, 179 IB_PORT_OPT_IPD_SUP = 1 << 4, 180 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 181 IB_PORT_SL_MAP_SUP = 1 << 6, 182 IB_PORT_MKEY_NVRAM = 1 << 7, 183 IB_PORT_PKEY_NVRAM = 1 << 8, 184 IB_PORT_LED_INFO_SUP = 1 << 9, 185 IB_PORT_SM_DISABLED = 1 << 10, 186 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 187 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 188 IB_PORT_CM_SUP = 1 << 16, 189 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 190 IB_PORT_REINIT_SUP = 1 << 18, 191 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 192 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 193 IB_PORT_DR_NOTICE_SUP = 1 << 21, 194 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 195 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 196 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 197 IB_PORT_CLIENT_REG_SUP = 1 << 25 198 }; 199 200 enum ib_port_width { 201 IB_WIDTH_1X = 1, 202 IB_WIDTH_4X = 2, 203 IB_WIDTH_8X = 4, 204 IB_WIDTH_12X = 8 205 }; 206 207 static inline int ib_width_enum_to_int(enum ib_port_width width) 208 { 209 switch (width) { 210 case IB_WIDTH_1X: return 1; 211 case IB_WIDTH_4X: return 4; 212 case IB_WIDTH_8X: return 8; 213 case IB_WIDTH_12X: return 12; 214 default: return -1; 215 } 216 } 217 218 struct ib_port_attr { 219 enum ib_port_state state; 220 enum ib_mtu max_mtu; 221 enum ib_mtu active_mtu; 222 int gid_tbl_len; 223 u32 port_cap_flags; 224 u32 max_msg_sz; 225 u32 bad_pkey_cntr; 226 u32 qkey_viol_cntr; 227 u16 pkey_tbl_len; 228 u16 lid; 229 u16 sm_lid; 230 u8 lmc; 231 u8 max_vl_num; 232 u8 sm_sl; 233 u8 subnet_timeout; 234 u8 init_type_reply; 235 u8 active_width; 236 u8 active_speed; 237 u8 phys_state; 238 }; 239 240 enum ib_device_modify_flags { 241 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 242 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 243 }; 244 245 struct ib_device_modify { 246 u64 sys_image_guid; 247 char node_desc[64]; 248 }; 249 250 enum ib_port_modify_flags { 251 IB_PORT_SHUTDOWN = 1, 252 IB_PORT_INIT_TYPE = (1<<2), 253 IB_PORT_RESET_QKEY_CNTR = (1<<3) 254 }; 255 256 struct ib_port_modify { 257 u32 set_port_cap_mask; 258 u32 clr_port_cap_mask; 259 u8 init_type; 260 }; 261 262 enum ib_event_type { 263 IB_EVENT_CQ_ERR, 264 IB_EVENT_QP_FATAL, 265 IB_EVENT_QP_REQ_ERR, 266 IB_EVENT_QP_ACCESS_ERR, 267 IB_EVENT_COMM_EST, 268 IB_EVENT_SQ_DRAINED, 269 IB_EVENT_PATH_MIG, 270 IB_EVENT_PATH_MIG_ERR, 271 IB_EVENT_DEVICE_FATAL, 272 IB_EVENT_PORT_ACTIVE, 273 IB_EVENT_PORT_ERR, 274 IB_EVENT_LID_CHANGE, 275 IB_EVENT_PKEY_CHANGE, 276 IB_EVENT_SM_CHANGE, 277 IB_EVENT_SRQ_ERR, 278 IB_EVENT_SRQ_LIMIT_REACHED, 279 IB_EVENT_QP_LAST_WQE_REACHED, 280 IB_EVENT_CLIENT_REREGISTER 281 }; 282 283 struct ib_event { 284 struct ib_device *device; 285 union { 286 struct ib_cq *cq; 287 struct ib_qp *qp; 288 struct ib_srq *srq; 289 u8 port_num; 290 } element; 291 enum ib_event_type event; 292 }; 293 294 struct ib_event_handler { 295 struct ib_device *device; 296 void (*handler)(struct ib_event_handler *, struct ib_event *); 297 struct list_head list; 298 }; 299 300 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 301 do { \ 302 (_ptr)->device = _device; \ 303 (_ptr)->handler = _handler; \ 304 INIT_LIST_HEAD(&(_ptr)->list); \ 305 } while (0) 306 307 struct ib_global_route { 308 union ib_gid dgid; 309 u32 flow_label; 310 u8 sgid_index; 311 u8 hop_limit; 312 u8 traffic_class; 313 }; 314 315 struct ib_grh { 316 __be32 version_tclass_flow; 317 __be16 paylen; 318 u8 next_hdr; 319 u8 hop_limit; 320 union ib_gid sgid; 321 union ib_gid dgid; 322 }; 323 324 enum { 325 IB_MULTICAST_QPN = 0xffffff 326 }; 327 328 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 329 330 enum ib_ah_flags { 331 IB_AH_GRH = 1 332 }; 333 334 enum ib_rate { 335 IB_RATE_PORT_CURRENT = 0, 336 IB_RATE_2_5_GBPS = 2, 337 IB_RATE_5_GBPS = 5, 338 IB_RATE_10_GBPS = 3, 339 IB_RATE_20_GBPS = 6, 340 IB_RATE_30_GBPS = 4, 341 IB_RATE_40_GBPS = 7, 342 IB_RATE_60_GBPS = 8, 343 IB_RATE_80_GBPS = 9, 344 IB_RATE_120_GBPS = 10 345 }; 346 347 /** 348 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 349 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 350 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 351 * @rate: rate to convert. 352 */ 353 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 354 355 /** 356 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 357 * enum. 358 * @mult: multiple to convert. 359 */ 360 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 361 362 struct ib_ah_attr { 363 struct ib_global_route grh; 364 u16 dlid; 365 u8 sl; 366 u8 src_path_bits; 367 u8 static_rate; 368 u8 ah_flags; 369 u8 port_num; 370 }; 371 372 enum ib_wc_status { 373 IB_WC_SUCCESS, 374 IB_WC_LOC_LEN_ERR, 375 IB_WC_LOC_QP_OP_ERR, 376 IB_WC_LOC_EEC_OP_ERR, 377 IB_WC_LOC_PROT_ERR, 378 IB_WC_WR_FLUSH_ERR, 379 IB_WC_MW_BIND_ERR, 380 IB_WC_BAD_RESP_ERR, 381 IB_WC_LOC_ACCESS_ERR, 382 IB_WC_REM_INV_REQ_ERR, 383 IB_WC_REM_ACCESS_ERR, 384 IB_WC_REM_OP_ERR, 385 IB_WC_RETRY_EXC_ERR, 386 IB_WC_RNR_RETRY_EXC_ERR, 387 IB_WC_LOC_RDD_VIOL_ERR, 388 IB_WC_REM_INV_RD_REQ_ERR, 389 IB_WC_REM_ABORT_ERR, 390 IB_WC_INV_EECN_ERR, 391 IB_WC_INV_EEC_STATE_ERR, 392 IB_WC_FATAL_ERR, 393 IB_WC_RESP_TIMEOUT_ERR, 394 IB_WC_GENERAL_ERR 395 }; 396 397 enum ib_wc_opcode { 398 IB_WC_SEND, 399 IB_WC_RDMA_WRITE, 400 IB_WC_RDMA_READ, 401 IB_WC_COMP_SWAP, 402 IB_WC_FETCH_ADD, 403 IB_WC_BIND_MW, 404 /* 405 * Set value of IB_WC_RECV so consumers can test if a completion is a 406 * receive by testing (opcode & IB_WC_RECV). 407 */ 408 IB_WC_RECV = 1 << 7, 409 IB_WC_RECV_RDMA_WITH_IMM 410 }; 411 412 enum ib_wc_flags { 413 IB_WC_GRH = 1, 414 IB_WC_WITH_IMM = (1<<1) 415 }; 416 417 struct ib_wc { 418 u64 wr_id; 419 enum ib_wc_status status; 420 enum ib_wc_opcode opcode; 421 u32 vendor_err; 422 u32 byte_len; 423 struct ib_qp *qp; 424 __be32 imm_data; 425 u32 src_qp; 426 int wc_flags; 427 u16 pkey_index; 428 u16 slid; 429 u8 sl; 430 u8 dlid_path_bits; 431 u8 port_num; /* valid only for DR SMPs on switches */ 432 }; 433 434 enum ib_cq_notify_flags { 435 IB_CQ_SOLICITED = 1 << 0, 436 IB_CQ_NEXT_COMP = 1 << 1, 437 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 438 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 439 }; 440 441 enum ib_srq_attr_mask { 442 IB_SRQ_MAX_WR = 1 << 0, 443 IB_SRQ_LIMIT = 1 << 1, 444 }; 445 446 struct ib_srq_attr { 447 u32 max_wr; 448 u32 max_sge; 449 u32 srq_limit; 450 }; 451 452 struct ib_srq_init_attr { 453 void (*event_handler)(struct ib_event *, void *); 454 void *srq_context; 455 struct ib_srq_attr attr; 456 }; 457 458 struct ib_qp_cap { 459 u32 max_send_wr; 460 u32 max_recv_wr; 461 u32 max_send_sge; 462 u32 max_recv_sge; 463 u32 max_inline_data; 464 }; 465 466 enum ib_sig_type { 467 IB_SIGNAL_ALL_WR, 468 IB_SIGNAL_REQ_WR 469 }; 470 471 enum ib_qp_type { 472 /* 473 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 474 * here (and in that order) since the MAD layer uses them as 475 * indices into a 2-entry table. 476 */ 477 IB_QPT_SMI, 478 IB_QPT_GSI, 479 480 IB_QPT_RC, 481 IB_QPT_UC, 482 IB_QPT_UD, 483 IB_QPT_RAW_IPV6, 484 IB_QPT_RAW_ETY 485 }; 486 487 struct ib_qp_init_attr { 488 void (*event_handler)(struct ib_event *, void *); 489 void *qp_context; 490 struct ib_cq *send_cq; 491 struct ib_cq *recv_cq; 492 struct ib_srq *srq; 493 struct ib_qp_cap cap; 494 enum ib_sig_type sq_sig_type; 495 enum ib_qp_type qp_type; 496 u8 port_num; /* special QP types only */ 497 }; 498 499 enum ib_rnr_timeout { 500 IB_RNR_TIMER_655_36 = 0, 501 IB_RNR_TIMER_000_01 = 1, 502 IB_RNR_TIMER_000_02 = 2, 503 IB_RNR_TIMER_000_03 = 3, 504 IB_RNR_TIMER_000_04 = 4, 505 IB_RNR_TIMER_000_06 = 5, 506 IB_RNR_TIMER_000_08 = 6, 507 IB_RNR_TIMER_000_12 = 7, 508 IB_RNR_TIMER_000_16 = 8, 509 IB_RNR_TIMER_000_24 = 9, 510 IB_RNR_TIMER_000_32 = 10, 511 IB_RNR_TIMER_000_48 = 11, 512 IB_RNR_TIMER_000_64 = 12, 513 IB_RNR_TIMER_000_96 = 13, 514 IB_RNR_TIMER_001_28 = 14, 515 IB_RNR_TIMER_001_92 = 15, 516 IB_RNR_TIMER_002_56 = 16, 517 IB_RNR_TIMER_003_84 = 17, 518 IB_RNR_TIMER_005_12 = 18, 519 IB_RNR_TIMER_007_68 = 19, 520 IB_RNR_TIMER_010_24 = 20, 521 IB_RNR_TIMER_015_36 = 21, 522 IB_RNR_TIMER_020_48 = 22, 523 IB_RNR_TIMER_030_72 = 23, 524 IB_RNR_TIMER_040_96 = 24, 525 IB_RNR_TIMER_061_44 = 25, 526 IB_RNR_TIMER_081_92 = 26, 527 IB_RNR_TIMER_122_88 = 27, 528 IB_RNR_TIMER_163_84 = 28, 529 IB_RNR_TIMER_245_76 = 29, 530 IB_RNR_TIMER_327_68 = 30, 531 IB_RNR_TIMER_491_52 = 31 532 }; 533 534 enum ib_qp_attr_mask { 535 IB_QP_STATE = 1, 536 IB_QP_CUR_STATE = (1<<1), 537 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 538 IB_QP_ACCESS_FLAGS = (1<<3), 539 IB_QP_PKEY_INDEX = (1<<4), 540 IB_QP_PORT = (1<<5), 541 IB_QP_QKEY = (1<<6), 542 IB_QP_AV = (1<<7), 543 IB_QP_PATH_MTU = (1<<8), 544 IB_QP_TIMEOUT = (1<<9), 545 IB_QP_RETRY_CNT = (1<<10), 546 IB_QP_RNR_RETRY = (1<<11), 547 IB_QP_RQ_PSN = (1<<12), 548 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 549 IB_QP_ALT_PATH = (1<<14), 550 IB_QP_MIN_RNR_TIMER = (1<<15), 551 IB_QP_SQ_PSN = (1<<16), 552 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 553 IB_QP_PATH_MIG_STATE = (1<<18), 554 IB_QP_CAP = (1<<19), 555 IB_QP_DEST_QPN = (1<<20) 556 }; 557 558 enum ib_qp_state { 559 IB_QPS_RESET, 560 IB_QPS_INIT, 561 IB_QPS_RTR, 562 IB_QPS_RTS, 563 IB_QPS_SQD, 564 IB_QPS_SQE, 565 IB_QPS_ERR 566 }; 567 568 enum ib_mig_state { 569 IB_MIG_MIGRATED, 570 IB_MIG_REARM, 571 IB_MIG_ARMED 572 }; 573 574 struct ib_qp_attr { 575 enum ib_qp_state qp_state; 576 enum ib_qp_state cur_qp_state; 577 enum ib_mtu path_mtu; 578 enum ib_mig_state path_mig_state; 579 u32 qkey; 580 u32 rq_psn; 581 u32 sq_psn; 582 u32 dest_qp_num; 583 int qp_access_flags; 584 struct ib_qp_cap cap; 585 struct ib_ah_attr ah_attr; 586 struct ib_ah_attr alt_ah_attr; 587 u16 pkey_index; 588 u16 alt_pkey_index; 589 u8 en_sqd_async_notify; 590 u8 sq_draining; 591 u8 max_rd_atomic; 592 u8 max_dest_rd_atomic; 593 u8 min_rnr_timer; 594 u8 port_num; 595 u8 timeout; 596 u8 retry_cnt; 597 u8 rnr_retry; 598 u8 alt_port_num; 599 u8 alt_timeout; 600 }; 601 602 enum ib_wr_opcode { 603 IB_WR_RDMA_WRITE, 604 IB_WR_RDMA_WRITE_WITH_IMM, 605 IB_WR_SEND, 606 IB_WR_SEND_WITH_IMM, 607 IB_WR_RDMA_READ, 608 IB_WR_ATOMIC_CMP_AND_SWP, 609 IB_WR_ATOMIC_FETCH_AND_ADD 610 }; 611 612 enum ib_send_flags { 613 IB_SEND_FENCE = 1, 614 IB_SEND_SIGNALED = (1<<1), 615 IB_SEND_SOLICITED = (1<<2), 616 IB_SEND_INLINE = (1<<3) 617 }; 618 619 struct ib_sge { 620 u64 addr; 621 u32 length; 622 u32 lkey; 623 }; 624 625 struct ib_send_wr { 626 struct ib_send_wr *next; 627 u64 wr_id; 628 struct ib_sge *sg_list; 629 int num_sge; 630 enum ib_wr_opcode opcode; 631 int send_flags; 632 __be32 imm_data; 633 union { 634 struct { 635 u64 remote_addr; 636 u32 rkey; 637 } rdma; 638 struct { 639 u64 remote_addr; 640 u64 compare_add; 641 u64 swap; 642 u32 rkey; 643 } atomic; 644 struct { 645 struct ib_ah *ah; 646 u32 remote_qpn; 647 u32 remote_qkey; 648 u16 pkey_index; /* valid for GSI only */ 649 u8 port_num; /* valid for DR SMPs on switch only */ 650 } ud; 651 } wr; 652 }; 653 654 struct ib_recv_wr { 655 struct ib_recv_wr *next; 656 u64 wr_id; 657 struct ib_sge *sg_list; 658 int num_sge; 659 }; 660 661 enum ib_access_flags { 662 IB_ACCESS_LOCAL_WRITE = 1, 663 IB_ACCESS_REMOTE_WRITE = (1<<1), 664 IB_ACCESS_REMOTE_READ = (1<<2), 665 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 666 IB_ACCESS_MW_BIND = (1<<4) 667 }; 668 669 struct ib_phys_buf { 670 u64 addr; 671 u64 size; 672 }; 673 674 struct ib_mr_attr { 675 struct ib_pd *pd; 676 u64 device_virt_addr; 677 u64 size; 678 int mr_access_flags; 679 u32 lkey; 680 u32 rkey; 681 }; 682 683 enum ib_mr_rereg_flags { 684 IB_MR_REREG_TRANS = 1, 685 IB_MR_REREG_PD = (1<<1), 686 IB_MR_REREG_ACCESS = (1<<2) 687 }; 688 689 struct ib_mw_bind { 690 struct ib_mr *mr; 691 u64 wr_id; 692 u64 addr; 693 u32 length; 694 int send_flags; 695 int mw_access_flags; 696 }; 697 698 struct ib_fmr_attr { 699 int max_pages; 700 int max_maps; 701 u8 page_shift; 702 }; 703 704 struct ib_ucontext { 705 struct ib_device *device; 706 struct list_head pd_list; 707 struct list_head mr_list; 708 struct list_head mw_list; 709 struct list_head cq_list; 710 struct list_head qp_list; 711 struct list_head srq_list; 712 struct list_head ah_list; 713 }; 714 715 struct ib_uobject { 716 u64 user_handle; /* handle given to us by userspace */ 717 struct ib_ucontext *context; /* associated user context */ 718 void *object; /* containing object */ 719 struct list_head list; /* link to context's list */ 720 u32 id; /* index into kernel idr */ 721 struct kref ref; 722 struct rw_semaphore mutex; /* protects .live */ 723 int live; 724 }; 725 726 struct ib_umem { 727 unsigned long user_base; 728 unsigned long virt_base; 729 size_t length; 730 int offset; 731 int page_size; 732 int writable; 733 struct list_head chunk_list; 734 }; 735 736 struct ib_umem_chunk { 737 struct list_head list; 738 int nents; 739 int nmap; 740 struct scatterlist page_list[0]; 741 }; 742 743 struct ib_udata { 744 void __user *inbuf; 745 void __user *outbuf; 746 size_t inlen; 747 size_t outlen; 748 }; 749 750 #define IB_UMEM_MAX_PAGE_CHUNK \ 751 ((PAGE_SIZE - offsetof(struct ib_umem_chunk, page_list)) / \ 752 ((void *) &((struct ib_umem_chunk *) 0)->page_list[1] - \ 753 (void *) &((struct ib_umem_chunk *) 0)->page_list[0])) 754 755 struct ib_umem_object { 756 struct ib_uobject uobject; 757 struct ib_umem umem; 758 }; 759 760 struct ib_pd { 761 struct ib_device *device; 762 struct ib_uobject *uobject; 763 atomic_t usecnt; /* count all resources */ 764 }; 765 766 struct ib_ah { 767 struct ib_device *device; 768 struct ib_pd *pd; 769 struct ib_uobject *uobject; 770 }; 771 772 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 773 774 struct ib_cq { 775 struct ib_device *device; 776 struct ib_uobject *uobject; 777 ib_comp_handler comp_handler; 778 void (*event_handler)(struct ib_event *, void *); 779 void * cq_context; 780 int cqe; 781 atomic_t usecnt; /* count number of work queues */ 782 }; 783 784 struct ib_srq { 785 struct ib_device *device; 786 struct ib_pd *pd; 787 struct ib_uobject *uobject; 788 void (*event_handler)(struct ib_event *, void *); 789 void *srq_context; 790 atomic_t usecnt; 791 }; 792 793 struct ib_qp { 794 struct ib_device *device; 795 struct ib_pd *pd; 796 struct ib_cq *send_cq; 797 struct ib_cq *recv_cq; 798 struct ib_srq *srq; 799 struct ib_uobject *uobject; 800 void (*event_handler)(struct ib_event *, void *); 801 void *qp_context; 802 u32 qp_num; 803 enum ib_qp_type qp_type; 804 }; 805 806 struct ib_mr { 807 struct ib_device *device; 808 struct ib_pd *pd; 809 struct ib_uobject *uobject; 810 u32 lkey; 811 u32 rkey; 812 atomic_t usecnt; /* count number of MWs */ 813 }; 814 815 struct ib_mw { 816 struct ib_device *device; 817 struct ib_pd *pd; 818 struct ib_uobject *uobject; 819 u32 rkey; 820 }; 821 822 struct ib_fmr { 823 struct ib_device *device; 824 struct ib_pd *pd; 825 struct list_head list; 826 u32 lkey; 827 u32 rkey; 828 }; 829 830 struct ib_mad; 831 struct ib_grh; 832 833 enum ib_process_mad_flags { 834 IB_MAD_IGNORE_MKEY = 1, 835 IB_MAD_IGNORE_BKEY = 2, 836 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 837 }; 838 839 enum ib_mad_result { 840 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 841 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 842 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 843 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 844 }; 845 846 #define IB_DEVICE_NAME_MAX 64 847 848 struct ib_cache { 849 rwlock_t lock; 850 struct ib_event_handler event_handler; 851 struct ib_pkey_cache **pkey_cache; 852 struct ib_gid_cache **gid_cache; 853 u8 *lmc_cache; 854 }; 855 856 struct ib_dma_mapping_ops { 857 int (*mapping_error)(struct ib_device *dev, 858 u64 dma_addr); 859 u64 (*map_single)(struct ib_device *dev, 860 void *ptr, size_t size, 861 enum dma_data_direction direction); 862 void (*unmap_single)(struct ib_device *dev, 863 u64 addr, size_t size, 864 enum dma_data_direction direction); 865 u64 (*map_page)(struct ib_device *dev, 866 struct page *page, unsigned long offset, 867 size_t size, 868 enum dma_data_direction direction); 869 void (*unmap_page)(struct ib_device *dev, 870 u64 addr, size_t size, 871 enum dma_data_direction direction); 872 int (*map_sg)(struct ib_device *dev, 873 struct scatterlist *sg, int nents, 874 enum dma_data_direction direction); 875 void (*unmap_sg)(struct ib_device *dev, 876 struct scatterlist *sg, int nents, 877 enum dma_data_direction direction); 878 u64 (*dma_address)(struct ib_device *dev, 879 struct scatterlist *sg); 880 unsigned int (*dma_len)(struct ib_device *dev, 881 struct scatterlist *sg); 882 void (*sync_single_for_cpu)(struct ib_device *dev, 883 u64 dma_handle, 884 size_t size, 885 enum dma_data_direction dir); 886 void (*sync_single_for_device)(struct ib_device *dev, 887 u64 dma_handle, 888 size_t size, 889 enum dma_data_direction dir); 890 void *(*alloc_coherent)(struct ib_device *dev, 891 size_t size, 892 u64 *dma_handle, 893 gfp_t flag); 894 void (*free_coherent)(struct ib_device *dev, 895 size_t size, void *cpu_addr, 896 u64 dma_handle); 897 }; 898 899 struct iw_cm_verbs; 900 901 struct ib_device { 902 struct device *dma_device; 903 904 char name[IB_DEVICE_NAME_MAX]; 905 906 struct list_head event_handler_list; 907 spinlock_t event_handler_lock; 908 909 struct list_head core_list; 910 struct list_head client_data_list; 911 spinlock_t client_data_lock; 912 913 struct ib_cache cache; 914 915 u32 flags; 916 917 int num_comp_vectors; 918 919 struct iw_cm_verbs *iwcm; 920 921 int (*query_device)(struct ib_device *device, 922 struct ib_device_attr *device_attr); 923 int (*query_port)(struct ib_device *device, 924 u8 port_num, 925 struct ib_port_attr *port_attr); 926 int (*query_gid)(struct ib_device *device, 927 u8 port_num, int index, 928 union ib_gid *gid); 929 int (*query_pkey)(struct ib_device *device, 930 u8 port_num, u16 index, u16 *pkey); 931 int (*modify_device)(struct ib_device *device, 932 int device_modify_mask, 933 struct ib_device_modify *device_modify); 934 int (*modify_port)(struct ib_device *device, 935 u8 port_num, int port_modify_mask, 936 struct ib_port_modify *port_modify); 937 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 938 struct ib_udata *udata); 939 int (*dealloc_ucontext)(struct ib_ucontext *context); 940 int (*mmap)(struct ib_ucontext *context, 941 struct vm_area_struct *vma); 942 struct ib_pd * (*alloc_pd)(struct ib_device *device, 943 struct ib_ucontext *context, 944 struct ib_udata *udata); 945 int (*dealloc_pd)(struct ib_pd *pd); 946 struct ib_ah * (*create_ah)(struct ib_pd *pd, 947 struct ib_ah_attr *ah_attr); 948 int (*modify_ah)(struct ib_ah *ah, 949 struct ib_ah_attr *ah_attr); 950 int (*query_ah)(struct ib_ah *ah, 951 struct ib_ah_attr *ah_attr); 952 int (*destroy_ah)(struct ib_ah *ah); 953 struct ib_srq * (*create_srq)(struct ib_pd *pd, 954 struct ib_srq_init_attr *srq_init_attr, 955 struct ib_udata *udata); 956 int (*modify_srq)(struct ib_srq *srq, 957 struct ib_srq_attr *srq_attr, 958 enum ib_srq_attr_mask srq_attr_mask, 959 struct ib_udata *udata); 960 int (*query_srq)(struct ib_srq *srq, 961 struct ib_srq_attr *srq_attr); 962 int (*destroy_srq)(struct ib_srq *srq); 963 int (*post_srq_recv)(struct ib_srq *srq, 964 struct ib_recv_wr *recv_wr, 965 struct ib_recv_wr **bad_recv_wr); 966 struct ib_qp * (*create_qp)(struct ib_pd *pd, 967 struct ib_qp_init_attr *qp_init_attr, 968 struct ib_udata *udata); 969 int (*modify_qp)(struct ib_qp *qp, 970 struct ib_qp_attr *qp_attr, 971 int qp_attr_mask, 972 struct ib_udata *udata); 973 int (*query_qp)(struct ib_qp *qp, 974 struct ib_qp_attr *qp_attr, 975 int qp_attr_mask, 976 struct ib_qp_init_attr *qp_init_attr); 977 int (*destroy_qp)(struct ib_qp *qp); 978 int (*post_send)(struct ib_qp *qp, 979 struct ib_send_wr *send_wr, 980 struct ib_send_wr **bad_send_wr); 981 int (*post_recv)(struct ib_qp *qp, 982 struct ib_recv_wr *recv_wr, 983 struct ib_recv_wr **bad_recv_wr); 984 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 985 int comp_vector, 986 struct ib_ucontext *context, 987 struct ib_udata *udata); 988 int (*destroy_cq)(struct ib_cq *cq); 989 int (*resize_cq)(struct ib_cq *cq, int cqe, 990 struct ib_udata *udata); 991 int (*poll_cq)(struct ib_cq *cq, int num_entries, 992 struct ib_wc *wc); 993 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 994 int (*req_notify_cq)(struct ib_cq *cq, 995 enum ib_cq_notify_flags flags); 996 int (*req_ncomp_notif)(struct ib_cq *cq, 997 int wc_cnt); 998 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 999 int mr_access_flags); 1000 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1001 struct ib_phys_buf *phys_buf_array, 1002 int num_phys_buf, 1003 int mr_access_flags, 1004 u64 *iova_start); 1005 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1006 struct ib_umem *region, 1007 int mr_access_flags, 1008 struct ib_udata *udata); 1009 int (*query_mr)(struct ib_mr *mr, 1010 struct ib_mr_attr *mr_attr); 1011 int (*dereg_mr)(struct ib_mr *mr); 1012 int (*rereg_phys_mr)(struct ib_mr *mr, 1013 int mr_rereg_mask, 1014 struct ib_pd *pd, 1015 struct ib_phys_buf *phys_buf_array, 1016 int num_phys_buf, 1017 int mr_access_flags, 1018 u64 *iova_start); 1019 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1020 int (*bind_mw)(struct ib_qp *qp, 1021 struct ib_mw *mw, 1022 struct ib_mw_bind *mw_bind); 1023 int (*dealloc_mw)(struct ib_mw *mw); 1024 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1025 int mr_access_flags, 1026 struct ib_fmr_attr *fmr_attr); 1027 int (*map_phys_fmr)(struct ib_fmr *fmr, 1028 u64 *page_list, int list_len, 1029 u64 iova); 1030 int (*unmap_fmr)(struct list_head *fmr_list); 1031 int (*dealloc_fmr)(struct ib_fmr *fmr); 1032 int (*attach_mcast)(struct ib_qp *qp, 1033 union ib_gid *gid, 1034 u16 lid); 1035 int (*detach_mcast)(struct ib_qp *qp, 1036 union ib_gid *gid, 1037 u16 lid); 1038 int (*process_mad)(struct ib_device *device, 1039 int process_mad_flags, 1040 u8 port_num, 1041 struct ib_wc *in_wc, 1042 struct ib_grh *in_grh, 1043 struct ib_mad *in_mad, 1044 struct ib_mad *out_mad); 1045 1046 struct ib_dma_mapping_ops *dma_ops; 1047 1048 struct module *owner; 1049 struct class_device class_dev; 1050 struct kobject ports_parent; 1051 struct list_head port_list; 1052 1053 enum { 1054 IB_DEV_UNINITIALIZED, 1055 IB_DEV_REGISTERED, 1056 IB_DEV_UNREGISTERED 1057 } reg_state; 1058 1059 u64 uverbs_cmd_mask; 1060 int uverbs_abi_ver; 1061 1062 char node_desc[64]; 1063 __be64 node_guid; 1064 u8 node_type; 1065 u8 phys_port_cnt; 1066 }; 1067 1068 struct ib_client { 1069 char *name; 1070 void (*add) (struct ib_device *); 1071 void (*remove)(struct ib_device *); 1072 1073 struct list_head list; 1074 }; 1075 1076 struct ib_device *ib_alloc_device(size_t size); 1077 void ib_dealloc_device(struct ib_device *device); 1078 1079 int ib_register_device (struct ib_device *device); 1080 void ib_unregister_device(struct ib_device *device); 1081 1082 int ib_register_client (struct ib_client *client); 1083 void ib_unregister_client(struct ib_client *client); 1084 1085 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1086 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1087 void *data); 1088 1089 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1090 { 1091 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1092 } 1093 1094 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1095 { 1096 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1097 } 1098 1099 /** 1100 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1101 * contains all required attributes and no attributes not allowed for 1102 * the given QP state transition. 1103 * @cur_state: Current QP state 1104 * @next_state: Next QP state 1105 * @type: QP type 1106 * @mask: Mask of supplied QP attributes 1107 * 1108 * This function is a helper function that a low-level driver's 1109 * modify_qp method can use to validate the consumer's input. It 1110 * checks that cur_state and next_state are valid QP states, that a 1111 * transition from cur_state to next_state is allowed by the IB spec, 1112 * and that the attribute mask supplied is allowed for the transition. 1113 */ 1114 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1115 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1116 1117 int ib_register_event_handler (struct ib_event_handler *event_handler); 1118 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1119 void ib_dispatch_event(struct ib_event *event); 1120 1121 int ib_query_device(struct ib_device *device, 1122 struct ib_device_attr *device_attr); 1123 1124 int ib_query_port(struct ib_device *device, 1125 u8 port_num, struct ib_port_attr *port_attr); 1126 1127 int ib_query_gid(struct ib_device *device, 1128 u8 port_num, int index, union ib_gid *gid); 1129 1130 int ib_query_pkey(struct ib_device *device, 1131 u8 port_num, u16 index, u16 *pkey); 1132 1133 int ib_modify_device(struct ib_device *device, 1134 int device_modify_mask, 1135 struct ib_device_modify *device_modify); 1136 1137 int ib_modify_port(struct ib_device *device, 1138 u8 port_num, int port_modify_mask, 1139 struct ib_port_modify *port_modify); 1140 1141 /** 1142 * ib_alloc_pd - Allocates an unused protection domain. 1143 * @device: The device on which to allocate the protection domain. 1144 * 1145 * A protection domain object provides an association between QPs, shared 1146 * receive queues, address handles, memory regions, and memory windows. 1147 */ 1148 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1149 1150 /** 1151 * ib_dealloc_pd - Deallocates a protection domain. 1152 * @pd: The protection domain to deallocate. 1153 */ 1154 int ib_dealloc_pd(struct ib_pd *pd); 1155 1156 /** 1157 * ib_create_ah - Creates an address handle for the given address vector. 1158 * @pd: The protection domain associated with the address handle. 1159 * @ah_attr: The attributes of the address vector. 1160 * 1161 * The address handle is used to reference a local or global destination 1162 * in all UD QP post sends. 1163 */ 1164 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1165 1166 /** 1167 * ib_init_ah_from_wc - Initializes address handle attributes from a 1168 * work completion. 1169 * @device: Device on which the received message arrived. 1170 * @port_num: Port on which the received message arrived. 1171 * @wc: Work completion associated with the received message. 1172 * @grh: References the received global route header. This parameter is 1173 * ignored unless the work completion indicates that the GRH is valid. 1174 * @ah_attr: Returned attributes that can be used when creating an address 1175 * handle for replying to the message. 1176 */ 1177 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1178 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1179 1180 /** 1181 * ib_create_ah_from_wc - Creates an address handle associated with the 1182 * sender of the specified work completion. 1183 * @pd: The protection domain associated with the address handle. 1184 * @wc: Work completion information associated with a received message. 1185 * @grh: References the received global route header. This parameter is 1186 * ignored unless the work completion indicates that the GRH is valid. 1187 * @port_num: The outbound port number to associate with the address. 1188 * 1189 * The address handle is used to reference a local or global destination 1190 * in all UD QP post sends. 1191 */ 1192 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1193 struct ib_grh *grh, u8 port_num); 1194 1195 /** 1196 * ib_modify_ah - Modifies the address vector associated with an address 1197 * handle. 1198 * @ah: The address handle to modify. 1199 * @ah_attr: The new address vector attributes to associate with the 1200 * address handle. 1201 */ 1202 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1203 1204 /** 1205 * ib_query_ah - Queries the address vector associated with an address 1206 * handle. 1207 * @ah: The address handle to query. 1208 * @ah_attr: The address vector attributes associated with the address 1209 * handle. 1210 */ 1211 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1212 1213 /** 1214 * ib_destroy_ah - Destroys an address handle. 1215 * @ah: The address handle to destroy. 1216 */ 1217 int ib_destroy_ah(struct ib_ah *ah); 1218 1219 /** 1220 * ib_create_srq - Creates a SRQ associated with the specified protection 1221 * domain. 1222 * @pd: The protection domain associated with the SRQ. 1223 * @srq_init_attr: A list of initial attributes required to create the 1224 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1225 * the actual capabilities of the created SRQ. 1226 * 1227 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1228 * requested size of the SRQ, and set to the actual values allocated 1229 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1230 * will always be at least as large as the requested values. 1231 */ 1232 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1233 struct ib_srq_init_attr *srq_init_attr); 1234 1235 /** 1236 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1237 * @srq: The SRQ to modify. 1238 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1239 * the current values of selected SRQ attributes are returned. 1240 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1241 * are being modified. 1242 * 1243 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1244 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1245 * the number of receives queued drops below the limit. 1246 */ 1247 int ib_modify_srq(struct ib_srq *srq, 1248 struct ib_srq_attr *srq_attr, 1249 enum ib_srq_attr_mask srq_attr_mask); 1250 1251 /** 1252 * ib_query_srq - Returns the attribute list and current values for the 1253 * specified SRQ. 1254 * @srq: The SRQ to query. 1255 * @srq_attr: The attributes of the specified SRQ. 1256 */ 1257 int ib_query_srq(struct ib_srq *srq, 1258 struct ib_srq_attr *srq_attr); 1259 1260 /** 1261 * ib_destroy_srq - Destroys the specified SRQ. 1262 * @srq: The SRQ to destroy. 1263 */ 1264 int ib_destroy_srq(struct ib_srq *srq); 1265 1266 /** 1267 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1268 * @srq: The SRQ to post the work request on. 1269 * @recv_wr: A list of work requests to post on the receive queue. 1270 * @bad_recv_wr: On an immediate failure, this parameter will reference 1271 * the work request that failed to be posted on the QP. 1272 */ 1273 static inline int ib_post_srq_recv(struct ib_srq *srq, 1274 struct ib_recv_wr *recv_wr, 1275 struct ib_recv_wr **bad_recv_wr) 1276 { 1277 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1278 } 1279 1280 /** 1281 * ib_create_qp - Creates a QP associated with the specified protection 1282 * domain. 1283 * @pd: The protection domain associated with the QP. 1284 * @qp_init_attr: A list of initial attributes required to create the 1285 * QP. If QP creation succeeds, then the attributes are updated to 1286 * the actual capabilities of the created QP. 1287 */ 1288 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1289 struct ib_qp_init_attr *qp_init_attr); 1290 1291 /** 1292 * ib_modify_qp - Modifies the attributes for the specified QP and then 1293 * transitions the QP to the given state. 1294 * @qp: The QP to modify. 1295 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1296 * the current values of selected QP attributes are returned. 1297 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1298 * are being modified. 1299 */ 1300 int ib_modify_qp(struct ib_qp *qp, 1301 struct ib_qp_attr *qp_attr, 1302 int qp_attr_mask); 1303 1304 /** 1305 * ib_query_qp - Returns the attribute list and current values for the 1306 * specified QP. 1307 * @qp: The QP to query. 1308 * @qp_attr: The attributes of the specified QP. 1309 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1310 * @qp_init_attr: Additional attributes of the selected QP. 1311 * 1312 * The qp_attr_mask may be used to limit the query to gathering only the 1313 * selected attributes. 1314 */ 1315 int ib_query_qp(struct ib_qp *qp, 1316 struct ib_qp_attr *qp_attr, 1317 int qp_attr_mask, 1318 struct ib_qp_init_attr *qp_init_attr); 1319 1320 /** 1321 * ib_destroy_qp - Destroys the specified QP. 1322 * @qp: The QP to destroy. 1323 */ 1324 int ib_destroy_qp(struct ib_qp *qp); 1325 1326 /** 1327 * ib_post_send - Posts a list of work requests to the send queue of 1328 * the specified QP. 1329 * @qp: The QP to post the work request on. 1330 * @send_wr: A list of work requests to post on the send queue. 1331 * @bad_send_wr: On an immediate failure, this parameter will reference 1332 * the work request that failed to be posted on the QP. 1333 */ 1334 static inline int ib_post_send(struct ib_qp *qp, 1335 struct ib_send_wr *send_wr, 1336 struct ib_send_wr **bad_send_wr) 1337 { 1338 return qp->device->post_send(qp, send_wr, bad_send_wr); 1339 } 1340 1341 /** 1342 * ib_post_recv - Posts a list of work requests to the receive queue of 1343 * the specified QP. 1344 * @qp: The QP to post the work request on. 1345 * @recv_wr: A list of work requests to post on the receive queue. 1346 * @bad_recv_wr: On an immediate failure, this parameter will reference 1347 * the work request that failed to be posted on the QP. 1348 */ 1349 static inline int ib_post_recv(struct ib_qp *qp, 1350 struct ib_recv_wr *recv_wr, 1351 struct ib_recv_wr **bad_recv_wr) 1352 { 1353 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1354 } 1355 1356 /** 1357 * ib_create_cq - Creates a CQ on the specified device. 1358 * @device: The device on which to create the CQ. 1359 * @comp_handler: A user-specified callback that is invoked when a 1360 * completion event occurs on the CQ. 1361 * @event_handler: A user-specified callback that is invoked when an 1362 * asynchronous event not associated with a completion occurs on the CQ. 1363 * @cq_context: Context associated with the CQ returned to the user via 1364 * the associated completion and event handlers. 1365 * @cqe: The minimum size of the CQ. 1366 * @comp_vector - Completion vector used to signal completion events. 1367 * Must be >= 0 and < context->num_comp_vectors. 1368 * 1369 * Users can examine the cq structure to determine the actual CQ size. 1370 */ 1371 struct ib_cq *ib_create_cq(struct ib_device *device, 1372 ib_comp_handler comp_handler, 1373 void (*event_handler)(struct ib_event *, void *), 1374 void *cq_context, int cqe, int comp_vector); 1375 1376 /** 1377 * ib_resize_cq - Modifies the capacity of the CQ. 1378 * @cq: The CQ to resize. 1379 * @cqe: The minimum size of the CQ. 1380 * 1381 * Users can examine the cq structure to determine the actual CQ size. 1382 */ 1383 int ib_resize_cq(struct ib_cq *cq, int cqe); 1384 1385 /** 1386 * ib_destroy_cq - Destroys the specified CQ. 1387 * @cq: The CQ to destroy. 1388 */ 1389 int ib_destroy_cq(struct ib_cq *cq); 1390 1391 /** 1392 * ib_poll_cq - poll a CQ for completion(s) 1393 * @cq:the CQ being polled 1394 * @num_entries:maximum number of completions to return 1395 * @wc:array of at least @num_entries &struct ib_wc where completions 1396 * will be returned 1397 * 1398 * Poll a CQ for (possibly multiple) completions. If the return value 1399 * is < 0, an error occurred. If the return value is >= 0, it is the 1400 * number of completions returned. If the return value is 1401 * non-negative and < num_entries, then the CQ was emptied. 1402 */ 1403 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1404 struct ib_wc *wc) 1405 { 1406 return cq->device->poll_cq(cq, num_entries, wc); 1407 } 1408 1409 /** 1410 * ib_peek_cq - Returns the number of unreaped completions currently 1411 * on the specified CQ. 1412 * @cq: The CQ to peek. 1413 * @wc_cnt: A minimum number of unreaped completions to check for. 1414 * 1415 * If the number of unreaped completions is greater than or equal to wc_cnt, 1416 * this function returns wc_cnt, otherwise, it returns the actual number of 1417 * unreaped completions. 1418 */ 1419 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1420 1421 /** 1422 * ib_req_notify_cq - Request completion notification on a CQ. 1423 * @cq: The CQ to generate an event for. 1424 * @flags: 1425 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1426 * to request an event on the next solicited event or next work 1427 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1428 * may also be |ed in to request a hint about missed events, as 1429 * described below. 1430 * 1431 * Return Value: 1432 * < 0 means an error occurred while requesting notification 1433 * == 0 means notification was requested successfully, and if 1434 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1435 * were missed and it is safe to wait for another event. In 1436 * this case is it guaranteed that any work completions added 1437 * to the CQ since the last CQ poll will trigger a completion 1438 * notification event. 1439 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1440 * in. It means that the consumer must poll the CQ again to 1441 * make sure it is empty to avoid missing an event because of a 1442 * race between requesting notification and an entry being 1443 * added to the CQ. This return value means it is possible 1444 * (but not guaranteed) that a work completion has been added 1445 * to the CQ since the last poll without triggering a 1446 * completion notification event. 1447 */ 1448 static inline int ib_req_notify_cq(struct ib_cq *cq, 1449 enum ib_cq_notify_flags flags) 1450 { 1451 return cq->device->req_notify_cq(cq, flags); 1452 } 1453 1454 /** 1455 * ib_req_ncomp_notif - Request completion notification when there are 1456 * at least the specified number of unreaped completions on the CQ. 1457 * @cq: The CQ to generate an event for. 1458 * @wc_cnt: The number of unreaped completions that should be on the 1459 * CQ before an event is generated. 1460 */ 1461 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1462 { 1463 return cq->device->req_ncomp_notif ? 1464 cq->device->req_ncomp_notif(cq, wc_cnt) : 1465 -ENOSYS; 1466 } 1467 1468 /** 1469 * ib_get_dma_mr - Returns a memory region for system memory that is 1470 * usable for DMA. 1471 * @pd: The protection domain associated with the memory region. 1472 * @mr_access_flags: Specifies the memory access rights. 1473 * 1474 * Note that the ib_dma_*() functions defined below must be used 1475 * to create/destroy addresses used with the Lkey or Rkey returned 1476 * by ib_get_dma_mr(). 1477 */ 1478 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1479 1480 /** 1481 * ib_dma_mapping_error - check a DMA addr for error 1482 * @dev: The device for which the dma_addr was created 1483 * @dma_addr: The DMA address to check 1484 */ 1485 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1486 { 1487 if (dev->dma_ops) 1488 return dev->dma_ops->mapping_error(dev, dma_addr); 1489 return dma_mapping_error(dma_addr); 1490 } 1491 1492 /** 1493 * ib_dma_map_single - Map a kernel virtual address to DMA address 1494 * @dev: The device for which the dma_addr is to be created 1495 * @cpu_addr: The kernel virtual address 1496 * @size: The size of the region in bytes 1497 * @direction: The direction of the DMA 1498 */ 1499 static inline u64 ib_dma_map_single(struct ib_device *dev, 1500 void *cpu_addr, size_t size, 1501 enum dma_data_direction direction) 1502 { 1503 if (dev->dma_ops) 1504 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1505 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1506 } 1507 1508 /** 1509 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1510 * @dev: The device for which the DMA address was created 1511 * @addr: The DMA address 1512 * @size: The size of the region in bytes 1513 * @direction: The direction of the DMA 1514 */ 1515 static inline void ib_dma_unmap_single(struct ib_device *dev, 1516 u64 addr, size_t size, 1517 enum dma_data_direction direction) 1518 { 1519 if (dev->dma_ops) 1520 dev->dma_ops->unmap_single(dev, addr, size, direction); 1521 else 1522 dma_unmap_single(dev->dma_device, addr, size, direction); 1523 } 1524 1525 /** 1526 * ib_dma_map_page - Map a physical page to DMA address 1527 * @dev: The device for which the dma_addr is to be created 1528 * @page: The page to be mapped 1529 * @offset: The offset within the page 1530 * @size: The size of the region in bytes 1531 * @direction: The direction of the DMA 1532 */ 1533 static inline u64 ib_dma_map_page(struct ib_device *dev, 1534 struct page *page, 1535 unsigned long offset, 1536 size_t size, 1537 enum dma_data_direction direction) 1538 { 1539 if (dev->dma_ops) 1540 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1541 return dma_map_page(dev->dma_device, page, offset, size, direction); 1542 } 1543 1544 /** 1545 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1546 * @dev: The device for which the DMA address was created 1547 * @addr: The DMA address 1548 * @size: The size of the region in bytes 1549 * @direction: The direction of the DMA 1550 */ 1551 static inline void ib_dma_unmap_page(struct ib_device *dev, 1552 u64 addr, size_t size, 1553 enum dma_data_direction direction) 1554 { 1555 if (dev->dma_ops) 1556 dev->dma_ops->unmap_page(dev, addr, size, direction); 1557 else 1558 dma_unmap_page(dev->dma_device, addr, size, direction); 1559 } 1560 1561 /** 1562 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1563 * @dev: The device for which the DMA addresses are to be created 1564 * @sg: The array of scatter/gather entries 1565 * @nents: The number of scatter/gather entries 1566 * @direction: The direction of the DMA 1567 */ 1568 static inline int ib_dma_map_sg(struct ib_device *dev, 1569 struct scatterlist *sg, int nents, 1570 enum dma_data_direction direction) 1571 { 1572 if (dev->dma_ops) 1573 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1574 return dma_map_sg(dev->dma_device, sg, nents, direction); 1575 } 1576 1577 /** 1578 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1579 * @dev: The device for which the DMA addresses were created 1580 * @sg: The array of scatter/gather entries 1581 * @nents: The number of scatter/gather entries 1582 * @direction: The direction of the DMA 1583 */ 1584 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1585 struct scatterlist *sg, int nents, 1586 enum dma_data_direction direction) 1587 { 1588 if (dev->dma_ops) 1589 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1590 else 1591 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1592 } 1593 1594 /** 1595 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1596 * @dev: The device for which the DMA addresses were created 1597 * @sg: The scatter/gather entry 1598 */ 1599 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1600 struct scatterlist *sg) 1601 { 1602 if (dev->dma_ops) 1603 return dev->dma_ops->dma_address(dev, sg); 1604 return sg_dma_address(sg); 1605 } 1606 1607 /** 1608 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1609 * @dev: The device for which the DMA addresses were created 1610 * @sg: The scatter/gather entry 1611 */ 1612 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1613 struct scatterlist *sg) 1614 { 1615 if (dev->dma_ops) 1616 return dev->dma_ops->dma_len(dev, sg); 1617 return sg_dma_len(sg); 1618 } 1619 1620 /** 1621 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1622 * @dev: The device for which the DMA address was created 1623 * @addr: The DMA address 1624 * @size: The size of the region in bytes 1625 * @dir: The direction of the DMA 1626 */ 1627 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1628 u64 addr, 1629 size_t size, 1630 enum dma_data_direction dir) 1631 { 1632 if (dev->dma_ops) 1633 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1634 else 1635 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1636 } 1637 1638 /** 1639 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1640 * @dev: The device for which the DMA address was created 1641 * @addr: The DMA address 1642 * @size: The size of the region in bytes 1643 * @dir: The direction of the DMA 1644 */ 1645 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1646 u64 addr, 1647 size_t size, 1648 enum dma_data_direction dir) 1649 { 1650 if (dev->dma_ops) 1651 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1652 else 1653 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1654 } 1655 1656 /** 1657 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1658 * @dev: The device for which the DMA address is requested 1659 * @size: The size of the region to allocate in bytes 1660 * @dma_handle: A pointer for returning the DMA address of the region 1661 * @flag: memory allocator flags 1662 */ 1663 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1664 size_t size, 1665 u64 *dma_handle, 1666 gfp_t flag) 1667 { 1668 if (dev->dma_ops) 1669 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1670 else { 1671 dma_addr_t handle; 1672 void *ret; 1673 1674 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1675 *dma_handle = handle; 1676 return ret; 1677 } 1678 } 1679 1680 /** 1681 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1682 * @dev: The device for which the DMA addresses were allocated 1683 * @size: The size of the region 1684 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1685 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1686 */ 1687 static inline void ib_dma_free_coherent(struct ib_device *dev, 1688 size_t size, void *cpu_addr, 1689 u64 dma_handle) 1690 { 1691 if (dev->dma_ops) 1692 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1693 else 1694 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1695 } 1696 1697 /** 1698 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1699 * by an HCA. 1700 * @pd: The protection domain associated assigned to the registered region. 1701 * @phys_buf_array: Specifies a list of physical buffers to use in the 1702 * memory region. 1703 * @num_phys_buf: Specifies the size of the phys_buf_array. 1704 * @mr_access_flags: Specifies the memory access rights. 1705 * @iova_start: The offset of the region's starting I/O virtual address. 1706 */ 1707 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1708 struct ib_phys_buf *phys_buf_array, 1709 int num_phys_buf, 1710 int mr_access_flags, 1711 u64 *iova_start); 1712 1713 /** 1714 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1715 * Conceptually, this call performs the functions deregister memory region 1716 * followed by register physical memory region. Where possible, 1717 * resources are reused instead of deallocated and reallocated. 1718 * @mr: The memory region to modify. 1719 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1720 * properties of the memory region are being modified. 1721 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1722 * the new protection domain to associated with the memory region, 1723 * otherwise, this parameter is ignored. 1724 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1725 * field specifies a list of physical buffers to use in the new 1726 * translation, otherwise, this parameter is ignored. 1727 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1728 * field specifies the size of the phys_buf_array, otherwise, this 1729 * parameter is ignored. 1730 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1731 * field specifies the new memory access rights, otherwise, this 1732 * parameter is ignored. 1733 * @iova_start: The offset of the region's starting I/O virtual address. 1734 */ 1735 int ib_rereg_phys_mr(struct ib_mr *mr, 1736 int mr_rereg_mask, 1737 struct ib_pd *pd, 1738 struct ib_phys_buf *phys_buf_array, 1739 int num_phys_buf, 1740 int mr_access_flags, 1741 u64 *iova_start); 1742 1743 /** 1744 * ib_query_mr - Retrieves information about a specific memory region. 1745 * @mr: The memory region to retrieve information about. 1746 * @mr_attr: The attributes of the specified memory region. 1747 */ 1748 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1749 1750 /** 1751 * ib_dereg_mr - Deregisters a memory region and removes it from the 1752 * HCA translation table. 1753 * @mr: The memory region to deregister. 1754 */ 1755 int ib_dereg_mr(struct ib_mr *mr); 1756 1757 /** 1758 * ib_alloc_mw - Allocates a memory window. 1759 * @pd: The protection domain associated with the memory window. 1760 */ 1761 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1762 1763 /** 1764 * ib_bind_mw - Posts a work request to the send queue of the specified 1765 * QP, which binds the memory window to the given address range and 1766 * remote access attributes. 1767 * @qp: QP to post the bind work request on. 1768 * @mw: The memory window to bind. 1769 * @mw_bind: Specifies information about the memory window, including 1770 * its address range, remote access rights, and associated memory region. 1771 */ 1772 static inline int ib_bind_mw(struct ib_qp *qp, 1773 struct ib_mw *mw, 1774 struct ib_mw_bind *mw_bind) 1775 { 1776 /* XXX reference counting in corresponding MR? */ 1777 return mw->device->bind_mw ? 1778 mw->device->bind_mw(qp, mw, mw_bind) : 1779 -ENOSYS; 1780 } 1781 1782 /** 1783 * ib_dealloc_mw - Deallocates a memory window. 1784 * @mw: The memory window to deallocate. 1785 */ 1786 int ib_dealloc_mw(struct ib_mw *mw); 1787 1788 /** 1789 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1790 * @pd: The protection domain associated with the unmapped region. 1791 * @mr_access_flags: Specifies the memory access rights. 1792 * @fmr_attr: Attributes of the unmapped region. 1793 * 1794 * A fast memory region must be mapped before it can be used as part of 1795 * a work request. 1796 */ 1797 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1798 int mr_access_flags, 1799 struct ib_fmr_attr *fmr_attr); 1800 1801 /** 1802 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1803 * @fmr: The fast memory region to associate with the pages. 1804 * @page_list: An array of physical pages to map to the fast memory region. 1805 * @list_len: The number of pages in page_list. 1806 * @iova: The I/O virtual address to use with the mapped region. 1807 */ 1808 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1809 u64 *page_list, int list_len, 1810 u64 iova) 1811 { 1812 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1813 } 1814 1815 /** 1816 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 1817 * @fmr_list: A linked list of fast memory regions to unmap. 1818 */ 1819 int ib_unmap_fmr(struct list_head *fmr_list); 1820 1821 /** 1822 * ib_dealloc_fmr - Deallocates a fast memory region. 1823 * @fmr: The fast memory region to deallocate. 1824 */ 1825 int ib_dealloc_fmr(struct ib_fmr *fmr); 1826 1827 /** 1828 * ib_attach_mcast - Attaches the specified QP to a multicast group. 1829 * @qp: QP to attach to the multicast group. The QP must be type 1830 * IB_QPT_UD. 1831 * @gid: Multicast group GID. 1832 * @lid: Multicast group LID in host byte order. 1833 * 1834 * In order to send and receive multicast packets, subnet 1835 * administration must have created the multicast group and configured 1836 * the fabric appropriately. The port associated with the specified 1837 * QP must also be a member of the multicast group. 1838 */ 1839 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1840 1841 /** 1842 * ib_detach_mcast - Detaches the specified QP from a multicast group. 1843 * @qp: QP to detach from the multicast group. 1844 * @gid: Multicast group GID. 1845 * @lid: Multicast group LID in host byte order. 1846 */ 1847 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 1848 1849 #endif /* IB_VERBS_H */ 1850