1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(2, 3) __cold 63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 64 __printf(2, 3) __cold 65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 66 __printf(2, 3) __cold 67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 68 __printf(2, 3) __cold 69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 70 __printf(2, 3) __cold 71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 72 __printf(2, 3) __cold 73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 74 __printf(2, 3) __cold 75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 76 77 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 79 #define ibdev_dbg(__dev, format, args...) \ 80 dynamic_ibdev_dbg(__dev, format, ##args) 81 #else 82 __printf(2, 3) __cold 83 static inline 84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 85 #endif 86 87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 88 do { \ 89 static DEFINE_RATELIMIT_STATE(_rs, \ 90 DEFAULT_RATELIMIT_INTERVAL, \ 91 DEFAULT_RATELIMIT_BURST); \ 92 if (__ratelimit(&_rs)) \ 93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 94 } while (0) 95 96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 110 111 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 115 do { \ 116 static DEFINE_RATELIMIT_STATE(_rs, \ 117 DEFAULT_RATELIMIT_INTERVAL, \ 118 DEFAULT_RATELIMIT_BURST); \ 119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 122 ##__VA_ARGS__); \ 123 } while (0) 124 #else 125 __printf(2, 3) __cold 126 static inline 127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 128 #endif 129 130 union ib_gid { 131 u8 raw[16]; 132 struct { 133 __be64 subnet_prefix; 134 __be64 interface_id; 135 } global; 136 }; 137 138 extern union ib_gid zgid; 139 140 enum ib_gid_type { 141 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 142 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 143 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 144 IB_GID_TYPE_SIZE 145 }; 146 147 #define ROCE_V2_UDP_DPORT 4791 148 struct ib_gid_attr { 149 struct net_device __rcu *ndev; 150 struct ib_device *device; 151 union ib_gid gid; 152 enum ib_gid_type gid_type; 153 u16 index; 154 u32 port_num; 155 }; 156 157 enum { 158 /* set the local administered indication */ 159 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 160 }; 161 162 enum rdma_transport_type { 163 RDMA_TRANSPORT_IB, 164 RDMA_TRANSPORT_IWARP, 165 RDMA_TRANSPORT_USNIC, 166 RDMA_TRANSPORT_USNIC_UDP, 167 RDMA_TRANSPORT_UNSPECIFIED, 168 }; 169 170 enum rdma_protocol_type { 171 RDMA_PROTOCOL_IB, 172 RDMA_PROTOCOL_IBOE, 173 RDMA_PROTOCOL_IWARP, 174 RDMA_PROTOCOL_USNIC_UDP 175 }; 176 177 __attribute_const__ enum rdma_transport_type 178 rdma_node_get_transport(unsigned int node_type); 179 180 enum rdma_network_type { 181 RDMA_NETWORK_IB, 182 RDMA_NETWORK_ROCE_V1, 183 RDMA_NETWORK_IPV4, 184 RDMA_NETWORK_IPV6 185 }; 186 187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 188 { 189 if (network_type == RDMA_NETWORK_IPV4 || 190 network_type == RDMA_NETWORK_IPV6) 191 return IB_GID_TYPE_ROCE_UDP_ENCAP; 192 else if (network_type == RDMA_NETWORK_ROCE_V1) 193 return IB_GID_TYPE_ROCE; 194 else 195 return IB_GID_TYPE_IB; 196 } 197 198 static inline enum rdma_network_type 199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 200 { 201 if (attr->gid_type == IB_GID_TYPE_IB) 202 return RDMA_NETWORK_IB; 203 204 if (attr->gid_type == IB_GID_TYPE_ROCE) 205 return RDMA_NETWORK_ROCE_V1; 206 207 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 208 return RDMA_NETWORK_IPV4; 209 else 210 return RDMA_NETWORK_IPV6; 211 } 212 213 enum rdma_link_layer { 214 IB_LINK_LAYER_UNSPECIFIED, 215 IB_LINK_LAYER_INFINIBAND, 216 IB_LINK_LAYER_ETHERNET, 217 }; 218 219 enum ib_device_cap_flags { 220 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 221 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 222 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 223 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 224 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 225 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 226 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 227 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 228 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 229 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 230 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 231 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 232 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 233 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 234 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 235 236 /* Reserved, old SEND_W_INV = 1 << 16,*/ 237 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 238 /* 239 * Devices should set IB_DEVICE_UD_IP_SUM if they support 240 * insertion of UDP and TCP checksum on outgoing UD IPoIB 241 * messages and can verify the validity of checksum for 242 * incoming messages. Setting this flag implies that the 243 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 244 */ 245 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 246 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 247 248 /* 249 * This device supports the IB "base memory management extension", 250 * which includes support for fast registrations (IB_WR_REG_MR, 251 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 252 * also be set by any iWarp device which must support FRs to comply 253 * to the iWarp verbs spec. iWarp devices also support the 254 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 255 * stag. 256 */ 257 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 258 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 259 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 260 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 261 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 262 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 263 IB_DEVICE_MANAGED_FLOW_STEERING = 264 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 265 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 266 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 267 /* The device supports padding incoming writes to cacheline. */ 268 IB_DEVICE_PCI_WRITE_END_PADDING = 269 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 270 /* Placement type attributes */ 271 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 272 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 273 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 274 }; 275 276 enum ib_kernel_cap_flags { 277 /* 278 * This device supports a per-device lkey or stag that can be 279 * used without performing a memory registration for the local 280 * memory. Note that ULPs should never check this flag, but 281 * instead of use the local_dma_lkey flag in the ib_pd structure, 282 * which will always contain a usable lkey. 283 */ 284 IBK_LOCAL_DMA_LKEY = 1 << 0, 285 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 286 IBK_INTEGRITY_HANDOVER = 1 << 1, 287 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 288 IBK_ON_DEMAND_PAGING = 1 << 2, 289 /* IB_MR_TYPE_SG_GAPS is supported */ 290 IBK_SG_GAPS_REG = 1 << 3, 291 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 292 IBK_ALLOW_USER_UNREG = 1 << 4, 293 294 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 295 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 296 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 297 IBK_UD_TSO = 1 << 6, 298 /* iopib will use the device ops: 299 * get_vf_config 300 * get_vf_guid 301 * get_vf_stats 302 * set_vf_guid 303 * set_vf_link_state 304 */ 305 IBK_VIRTUAL_FUNCTION = 1 << 7, 306 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 307 IBK_RDMA_NETDEV_OPA = 1 << 8, 308 }; 309 310 enum ib_atomic_cap { 311 IB_ATOMIC_NONE, 312 IB_ATOMIC_HCA, 313 IB_ATOMIC_GLOB 314 }; 315 316 enum ib_odp_general_cap_bits { 317 IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT, 318 IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT, 319 }; 320 321 enum ib_odp_transport_cap_bits { 322 IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND, 323 IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV, 324 IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE, 325 IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ, 326 IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC, 327 IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV, 328 IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH, 329 IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE, 330 }; 331 332 struct ib_odp_caps { 333 uint64_t general_caps; 334 struct { 335 uint32_t rc_odp_caps; 336 uint32_t uc_odp_caps; 337 uint32_t ud_odp_caps; 338 uint32_t xrc_odp_caps; 339 } per_transport_caps; 340 }; 341 342 struct ib_rss_caps { 343 /* Corresponding bit will be set if qp type from 344 * 'enum ib_qp_type' is supported, e.g. 345 * supported_qpts |= 1 << IB_QPT_UD 346 */ 347 u32 supported_qpts; 348 u32 max_rwq_indirection_tables; 349 u32 max_rwq_indirection_table_size; 350 }; 351 352 enum ib_tm_cap_flags { 353 /* Support tag matching with rendezvous offload for RC transport */ 354 IB_TM_CAP_RNDV_RC = 1 << 0, 355 }; 356 357 struct ib_tm_caps { 358 /* Max size of RNDV header */ 359 u32 max_rndv_hdr_size; 360 /* Max number of entries in tag matching list */ 361 u32 max_num_tags; 362 /* From enum ib_tm_cap_flags */ 363 u32 flags; 364 /* Max number of outstanding list operations */ 365 u32 max_ops; 366 /* Max number of SGE in tag matching entry */ 367 u32 max_sge; 368 }; 369 370 struct ib_cq_init_attr { 371 unsigned int cqe; 372 u32 comp_vector; 373 u32 flags; 374 }; 375 376 enum ib_cq_attr_mask { 377 IB_CQ_MODERATE = 1 << 0, 378 }; 379 380 struct ib_cq_caps { 381 u16 max_cq_moderation_count; 382 u16 max_cq_moderation_period; 383 }; 384 385 struct ib_dm_mr_attr { 386 u64 length; 387 u64 offset; 388 u32 access_flags; 389 }; 390 391 struct ib_dm_alloc_attr { 392 u64 length; 393 u32 alignment; 394 u32 flags; 395 }; 396 397 struct ib_device_attr { 398 u64 fw_ver; 399 __be64 sys_image_guid; 400 u64 max_mr_size; 401 u64 page_size_cap; 402 u32 vendor_id; 403 u32 vendor_part_id; 404 u32 hw_ver; 405 int max_qp; 406 int max_qp_wr; 407 u64 device_cap_flags; 408 u64 kernel_cap_flags; 409 int max_send_sge; 410 int max_recv_sge; 411 int max_sge_rd; 412 int max_cq; 413 int max_cqe; 414 int max_mr; 415 int max_pd; 416 int max_qp_rd_atom; 417 int max_ee_rd_atom; 418 int max_res_rd_atom; 419 int max_qp_init_rd_atom; 420 int max_ee_init_rd_atom; 421 enum ib_atomic_cap atomic_cap; 422 enum ib_atomic_cap masked_atomic_cap; 423 int max_ee; 424 int max_rdd; 425 int max_mw; 426 int max_raw_ipv6_qp; 427 int max_raw_ethy_qp; 428 int max_mcast_grp; 429 int max_mcast_qp_attach; 430 int max_total_mcast_qp_attach; 431 int max_ah; 432 int max_srq; 433 int max_srq_wr; 434 int max_srq_sge; 435 unsigned int max_fast_reg_page_list_len; 436 unsigned int max_pi_fast_reg_page_list_len; 437 u16 max_pkeys; 438 u8 local_ca_ack_delay; 439 int sig_prot_cap; 440 int sig_guard_cap; 441 struct ib_odp_caps odp_caps; 442 uint64_t timestamp_mask; 443 uint64_t hca_core_clock; /* in KHZ */ 444 struct ib_rss_caps rss_caps; 445 u32 max_wq_type_rq; 446 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 447 struct ib_tm_caps tm_caps; 448 struct ib_cq_caps cq_caps; 449 u64 max_dm_size; 450 /* Max entries for sgl for optimized performance per READ */ 451 u32 max_sgl_rd; 452 }; 453 454 enum ib_mtu { 455 IB_MTU_256 = 1, 456 IB_MTU_512 = 2, 457 IB_MTU_1024 = 3, 458 IB_MTU_2048 = 4, 459 IB_MTU_4096 = 5 460 }; 461 462 enum opa_mtu { 463 OPA_MTU_8192 = 6, 464 OPA_MTU_10240 = 7 465 }; 466 467 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 468 { 469 switch (mtu) { 470 case IB_MTU_256: return 256; 471 case IB_MTU_512: return 512; 472 case IB_MTU_1024: return 1024; 473 case IB_MTU_2048: return 2048; 474 case IB_MTU_4096: return 4096; 475 default: return -1; 476 } 477 } 478 479 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 480 { 481 if (mtu >= 4096) 482 return IB_MTU_4096; 483 else if (mtu >= 2048) 484 return IB_MTU_2048; 485 else if (mtu >= 1024) 486 return IB_MTU_1024; 487 else if (mtu >= 512) 488 return IB_MTU_512; 489 else 490 return IB_MTU_256; 491 } 492 493 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 494 { 495 switch (mtu) { 496 case OPA_MTU_8192: 497 return 8192; 498 case OPA_MTU_10240: 499 return 10240; 500 default: 501 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 502 } 503 } 504 505 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 506 { 507 if (mtu >= 10240) 508 return OPA_MTU_10240; 509 else if (mtu >= 8192) 510 return OPA_MTU_8192; 511 else 512 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 513 } 514 515 enum ib_port_state { 516 IB_PORT_NOP = 0, 517 IB_PORT_DOWN = 1, 518 IB_PORT_INIT = 2, 519 IB_PORT_ARMED = 3, 520 IB_PORT_ACTIVE = 4, 521 IB_PORT_ACTIVE_DEFER = 5 522 }; 523 524 static inline const char *__attribute_const__ 525 ib_port_state_to_str(enum ib_port_state state) 526 { 527 const char * const states[] = { 528 [IB_PORT_NOP] = "NOP", 529 [IB_PORT_DOWN] = "DOWN", 530 [IB_PORT_INIT] = "INIT", 531 [IB_PORT_ARMED] = "ARMED", 532 [IB_PORT_ACTIVE] = "ACTIVE", 533 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER", 534 }; 535 536 if (state < ARRAY_SIZE(states)) 537 return states[state]; 538 return "UNKNOWN"; 539 } 540 541 enum ib_port_phys_state { 542 IB_PORT_PHYS_STATE_SLEEP = 1, 543 IB_PORT_PHYS_STATE_POLLING = 2, 544 IB_PORT_PHYS_STATE_DISABLED = 3, 545 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 546 IB_PORT_PHYS_STATE_LINK_UP = 5, 547 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 548 IB_PORT_PHYS_STATE_PHY_TEST = 7, 549 }; 550 551 enum ib_port_width { 552 IB_WIDTH_1X = 1, 553 IB_WIDTH_2X = 16, 554 IB_WIDTH_4X = 2, 555 IB_WIDTH_8X = 4, 556 IB_WIDTH_12X = 8 557 }; 558 559 static inline int ib_width_enum_to_int(enum ib_port_width width) 560 { 561 switch (width) { 562 case IB_WIDTH_1X: return 1; 563 case IB_WIDTH_2X: return 2; 564 case IB_WIDTH_4X: return 4; 565 case IB_WIDTH_8X: return 8; 566 case IB_WIDTH_12X: return 12; 567 default: return -1; 568 } 569 } 570 571 enum ib_port_speed { 572 IB_SPEED_SDR = 1, 573 IB_SPEED_DDR = 2, 574 IB_SPEED_QDR = 4, 575 IB_SPEED_FDR10 = 8, 576 IB_SPEED_FDR = 16, 577 IB_SPEED_EDR = 32, 578 IB_SPEED_HDR = 64, 579 IB_SPEED_NDR = 128, 580 IB_SPEED_XDR = 256, 581 }; 582 583 enum ib_stat_flag { 584 IB_STAT_FLAG_OPTIONAL = 1 << 0, 585 }; 586 587 /** 588 * struct rdma_stat_desc 589 * @name - The name of the counter 590 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 591 * @priv - Driver private information; Core code should not use 592 */ 593 struct rdma_stat_desc { 594 const char *name; 595 unsigned int flags; 596 const void *priv; 597 }; 598 599 /** 600 * struct rdma_hw_stats 601 * @lock - Mutex to protect parallel write access to lifespan and values 602 * of counters, which are 64bits and not guaranteed to be written 603 * atomicaly on 32bits systems. 604 * @timestamp - Used by the core code to track when the last update was 605 * @lifespan - Used by the core code to determine how old the counters 606 * should be before being updated again. Stored in jiffies, defaults 607 * to 10 milliseconds, drivers can override the default be specifying 608 * their own value during their allocation routine. 609 * @descs - Array of pointers to static descriptors used for the counters 610 * in directory. 611 * @is_disabled - A bitmap to indicate each counter is currently disabled 612 * or not. 613 * @num_counters - How many hardware counters there are. If name is 614 * shorter than this number, a kernel oops will result. Driver authors 615 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 616 * in their code to prevent this. 617 * @value - Array of u64 counters that are accessed by the sysfs code and 618 * filled in by the drivers get_stats routine 619 */ 620 struct rdma_hw_stats { 621 struct mutex lock; /* Protect lifespan and values[] */ 622 unsigned long timestamp; 623 unsigned long lifespan; 624 const struct rdma_stat_desc *descs; 625 unsigned long *is_disabled; 626 int num_counters; 627 u64 value[] __counted_by(num_counters); 628 }; 629 630 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 631 632 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 633 const struct rdma_stat_desc *descs, int num_counters, 634 unsigned long lifespan); 635 636 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 637 638 /* Define bits for the various functionality this port needs to be supported by 639 * the core. 640 */ 641 /* Management 0x00000FFF */ 642 #define RDMA_CORE_CAP_IB_MAD 0x00000001 643 #define RDMA_CORE_CAP_IB_SMI 0x00000002 644 #define RDMA_CORE_CAP_IB_CM 0x00000004 645 #define RDMA_CORE_CAP_IW_CM 0x00000008 646 #define RDMA_CORE_CAP_IB_SA 0x00000010 647 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 648 649 /* Address format 0x000FF000 */ 650 #define RDMA_CORE_CAP_AF_IB 0x00001000 651 #define RDMA_CORE_CAP_ETH_AH 0x00002000 652 #define RDMA_CORE_CAP_OPA_AH 0x00004000 653 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 654 655 /* Protocol 0xFFF00000 */ 656 #define RDMA_CORE_CAP_PROT_IB 0x00100000 657 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 658 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 659 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 660 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 661 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 662 663 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 664 | RDMA_CORE_CAP_PROT_ROCE \ 665 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 666 667 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 668 | RDMA_CORE_CAP_IB_MAD \ 669 | RDMA_CORE_CAP_IB_SMI \ 670 | RDMA_CORE_CAP_IB_CM \ 671 | RDMA_CORE_CAP_IB_SA \ 672 | RDMA_CORE_CAP_AF_IB) 673 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 674 | RDMA_CORE_CAP_IB_MAD \ 675 | RDMA_CORE_CAP_IB_CM \ 676 | RDMA_CORE_CAP_AF_IB \ 677 | RDMA_CORE_CAP_ETH_AH) 678 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 679 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 680 | RDMA_CORE_CAP_IB_MAD \ 681 | RDMA_CORE_CAP_IB_CM \ 682 | RDMA_CORE_CAP_AF_IB \ 683 | RDMA_CORE_CAP_ETH_AH) 684 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 685 | RDMA_CORE_CAP_IW_CM) 686 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 687 | RDMA_CORE_CAP_OPA_MAD) 688 689 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 690 691 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 692 693 struct ib_port_attr { 694 u64 subnet_prefix; 695 enum ib_port_state state; 696 enum ib_mtu max_mtu; 697 enum ib_mtu active_mtu; 698 u32 phys_mtu; 699 int gid_tbl_len; 700 unsigned int ip_gids:1; 701 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 702 u32 port_cap_flags; 703 u32 max_msg_sz; 704 u32 bad_pkey_cntr; 705 u32 qkey_viol_cntr; 706 u16 pkey_tbl_len; 707 u32 sm_lid; 708 u32 lid; 709 u8 lmc; 710 u8 max_vl_num; 711 u8 sm_sl; 712 u8 subnet_timeout; 713 u8 init_type_reply; 714 u8 active_width; 715 u16 active_speed; 716 u8 phys_state; 717 u16 port_cap_flags2; 718 }; 719 720 enum ib_device_modify_flags { 721 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 722 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 723 }; 724 725 #define IB_DEVICE_NODE_DESC_MAX 64 726 727 struct ib_device_modify { 728 u64 sys_image_guid; 729 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 730 }; 731 732 enum ib_port_modify_flags { 733 IB_PORT_SHUTDOWN = 1, 734 IB_PORT_INIT_TYPE = (1<<2), 735 IB_PORT_RESET_QKEY_CNTR = (1<<3), 736 IB_PORT_OPA_MASK_CHG = (1<<4) 737 }; 738 739 struct ib_port_modify { 740 u32 set_port_cap_mask; 741 u32 clr_port_cap_mask; 742 u8 init_type; 743 }; 744 745 enum ib_event_type { 746 IB_EVENT_CQ_ERR, 747 IB_EVENT_QP_FATAL, 748 IB_EVENT_QP_REQ_ERR, 749 IB_EVENT_QP_ACCESS_ERR, 750 IB_EVENT_COMM_EST, 751 IB_EVENT_SQ_DRAINED, 752 IB_EVENT_PATH_MIG, 753 IB_EVENT_PATH_MIG_ERR, 754 IB_EVENT_DEVICE_FATAL, 755 IB_EVENT_PORT_ACTIVE, 756 IB_EVENT_PORT_ERR, 757 IB_EVENT_LID_CHANGE, 758 IB_EVENT_PKEY_CHANGE, 759 IB_EVENT_SM_CHANGE, 760 IB_EVENT_SRQ_ERR, 761 IB_EVENT_SRQ_LIMIT_REACHED, 762 IB_EVENT_QP_LAST_WQE_REACHED, 763 IB_EVENT_CLIENT_REREGISTER, 764 IB_EVENT_GID_CHANGE, 765 IB_EVENT_WQ_FATAL, 766 }; 767 768 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 769 770 struct ib_event { 771 struct ib_device *device; 772 union { 773 struct ib_cq *cq; 774 struct ib_qp *qp; 775 struct ib_srq *srq; 776 struct ib_wq *wq; 777 u32 port_num; 778 } element; 779 enum ib_event_type event; 780 }; 781 782 struct ib_event_handler { 783 struct ib_device *device; 784 void (*handler)(struct ib_event_handler *, struct ib_event *); 785 struct list_head list; 786 }; 787 788 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 789 do { \ 790 (_ptr)->device = _device; \ 791 (_ptr)->handler = _handler; \ 792 INIT_LIST_HEAD(&(_ptr)->list); \ 793 } while (0) 794 795 struct ib_global_route { 796 const struct ib_gid_attr *sgid_attr; 797 union ib_gid dgid; 798 u32 flow_label; 799 u8 sgid_index; 800 u8 hop_limit; 801 u8 traffic_class; 802 }; 803 804 struct ib_grh { 805 __be32 version_tclass_flow; 806 __be16 paylen; 807 u8 next_hdr; 808 u8 hop_limit; 809 union ib_gid sgid; 810 union ib_gid dgid; 811 }; 812 813 union rdma_network_hdr { 814 struct ib_grh ibgrh; 815 struct { 816 /* The IB spec states that if it's IPv4, the header 817 * is located in the last 20 bytes of the header. 818 */ 819 u8 reserved[20]; 820 struct iphdr roce4grh; 821 }; 822 }; 823 824 #define IB_QPN_MASK 0xFFFFFF 825 826 enum { 827 IB_MULTICAST_QPN = 0xffffff 828 }; 829 830 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 831 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 832 833 enum ib_ah_flags { 834 IB_AH_GRH = 1 835 }; 836 837 enum ib_rate { 838 IB_RATE_PORT_CURRENT = 0, 839 IB_RATE_2_5_GBPS = 2, 840 IB_RATE_5_GBPS = 5, 841 IB_RATE_10_GBPS = 3, 842 IB_RATE_20_GBPS = 6, 843 IB_RATE_30_GBPS = 4, 844 IB_RATE_40_GBPS = 7, 845 IB_RATE_60_GBPS = 8, 846 IB_RATE_80_GBPS = 9, 847 IB_RATE_120_GBPS = 10, 848 IB_RATE_14_GBPS = 11, 849 IB_RATE_56_GBPS = 12, 850 IB_RATE_112_GBPS = 13, 851 IB_RATE_168_GBPS = 14, 852 IB_RATE_25_GBPS = 15, 853 IB_RATE_100_GBPS = 16, 854 IB_RATE_200_GBPS = 17, 855 IB_RATE_300_GBPS = 18, 856 IB_RATE_28_GBPS = 19, 857 IB_RATE_50_GBPS = 20, 858 IB_RATE_400_GBPS = 21, 859 IB_RATE_600_GBPS = 22, 860 IB_RATE_800_GBPS = 23, 861 }; 862 863 /** 864 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 865 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 866 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 867 * @rate: rate to convert. 868 */ 869 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 870 871 /** 872 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 873 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 874 * @rate: rate to convert. 875 */ 876 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 877 878 879 /** 880 * enum ib_mr_type - memory region type 881 * @IB_MR_TYPE_MEM_REG: memory region that is used for 882 * normal registration 883 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 884 * register any arbitrary sg lists (without 885 * the normal mr constraints - see 886 * ib_map_mr_sg) 887 * @IB_MR_TYPE_DM: memory region that is used for device 888 * memory registration 889 * @IB_MR_TYPE_USER: memory region that is used for the user-space 890 * application 891 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 892 * without address translations (VA=PA) 893 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 894 * data integrity operations 895 */ 896 enum ib_mr_type { 897 IB_MR_TYPE_MEM_REG, 898 IB_MR_TYPE_SG_GAPS, 899 IB_MR_TYPE_DM, 900 IB_MR_TYPE_USER, 901 IB_MR_TYPE_DMA, 902 IB_MR_TYPE_INTEGRITY, 903 }; 904 905 enum ib_mr_status_check { 906 IB_MR_CHECK_SIG_STATUS = 1, 907 }; 908 909 /** 910 * struct ib_mr_status - Memory region status container 911 * 912 * @fail_status: Bitmask of MR checks status. For each 913 * failed check a corresponding status bit is set. 914 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 915 * failure. 916 */ 917 struct ib_mr_status { 918 u32 fail_status; 919 struct ib_sig_err sig_err; 920 }; 921 922 /** 923 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 924 * enum. 925 * @mult: multiple to convert. 926 */ 927 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 928 929 struct rdma_ah_init_attr { 930 struct rdma_ah_attr *ah_attr; 931 u32 flags; 932 struct net_device *xmit_slave; 933 }; 934 935 enum rdma_ah_attr_type { 936 RDMA_AH_ATTR_TYPE_UNDEFINED, 937 RDMA_AH_ATTR_TYPE_IB, 938 RDMA_AH_ATTR_TYPE_ROCE, 939 RDMA_AH_ATTR_TYPE_OPA, 940 }; 941 942 struct ib_ah_attr { 943 u16 dlid; 944 u8 src_path_bits; 945 }; 946 947 struct roce_ah_attr { 948 u8 dmac[ETH_ALEN]; 949 }; 950 951 struct opa_ah_attr { 952 u32 dlid; 953 u8 src_path_bits; 954 bool make_grd; 955 }; 956 957 struct rdma_ah_attr { 958 struct ib_global_route grh; 959 u8 sl; 960 u8 static_rate; 961 u32 port_num; 962 u8 ah_flags; 963 enum rdma_ah_attr_type type; 964 union { 965 struct ib_ah_attr ib; 966 struct roce_ah_attr roce; 967 struct opa_ah_attr opa; 968 }; 969 }; 970 971 enum ib_wc_status { 972 IB_WC_SUCCESS, 973 IB_WC_LOC_LEN_ERR, 974 IB_WC_LOC_QP_OP_ERR, 975 IB_WC_LOC_EEC_OP_ERR, 976 IB_WC_LOC_PROT_ERR, 977 IB_WC_WR_FLUSH_ERR, 978 IB_WC_MW_BIND_ERR, 979 IB_WC_BAD_RESP_ERR, 980 IB_WC_LOC_ACCESS_ERR, 981 IB_WC_REM_INV_REQ_ERR, 982 IB_WC_REM_ACCESS_ERR, 983 IB_WC_REM_OP_ERR, 984 IB_WC_RETRY_EXC_ERR, 985 IB_WC_RNR_RETRY_EXC_ERR, 986 IB_WC_LOC_RDD_VIOL_ERR, 987 IB_WC_REM_INV_RD_REQ_ERR, 988 IB_WC_REM_ABORT_ERR, 989 IB_WC_INV_EECN_ERR, 990 IB_WC_INV_EEC_STATE_ERR, 991 IB_WC_FATAL_ERR, 992 IB_WC_RESP_TIMEOUT_ERR, 993 IB_WC_GENERAL_ERR 994 }; 995 996 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 997 998 enum ib_wc_opcode { 999 IB_WC_SEND = IB_UVERBS_WC_SEND, 1000 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 1001 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 1002 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 1003 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 1004 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 1005 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 1006 IB_WC_LSO = IB_UVERBS_WC_TSO, 1007 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 1008 IB_WC_REG_MR, 1009 IB_WC_MASKED_COMP_SWAP, 1010 IB_WC_MASKED_FETCH_ADD, 1011 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 1012 /* 1013 * Set value of IB_WC_RECV so consumers can test if a completion is a 1014 * receive by testing (opcode & IB_WC_RECV). 1015 */ 1016 IB_WC_RECV = 1 << 7, 1017 IB_WC_RECV_RDMA_WITH_IMM 1018 }; 1019 1020 enum ib_wc_flags { 1021 IB_WC_GRH = 1, 1022 IB_WC_WITH_IMM = (1<<1), 1023 IB_WC_WITH_INVALIDATE = (1<<2), 1024 IB_WC_IP_CSUM_OK = (1<<3), 1025 IB_WC_WITH_SMAC = (1<<4), 1026 IB_WC_WITH_VLAN = (1<<5), 1027 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1028 }; 1029 1030 struct ib_wc { 1031 union { 1032 u64 wr_id; 1033 struct ib_cqe *wr_cqe; 1034 }; 1035 enum ib_wc_status status; 1036 enum ib_wc_opcode opcode; 1037 u32 vendor_err; 1038 u32 byte_len; 1039 struct ib_qp *qp; 1040 union { 1041 __be32 imm_data; 1042 u32 invalidate_rkey; 1043 } ex; 1044 u32 src_qp; 1045 u32 slid; 1046 int wc_flags; 1047 u16 pkey_index; 1048 u8 sl; 1049 u8 dlid_path_bits; 1050 u32 port_num; /* valid only for DR SMPs on switches */ 1051 u8 smac[ETH_ALEN]; 1052 u16 vlan_id; 1053 u8 network_hdr_type; 1054 }; 1055 1056 enum ib_cq_notify_flags { 1057 IB_CQ_SOLICITED = 1 << 0, 1058 IB_CQ_NEXT_COMP = 1 << 1, 1059 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1060 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1061 }; 1062 1063 enum ib_srq_type { 1064 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1065 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1066 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1067 }; 1068 1069 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1070 { 1071 return srq_type == IB_SRQT_XRC || 1072 srq_type == IB_SRQT_TM; 1073 } 1074 1075 enum ib_srq_attr_mask { 1076 IB_SRQ_MAX_WR = 1 << 0, 1077 IB_SRQ_LIMIT = 1 << 1, 1078 }; 1079 1080 struct ib_srq_attr { 1081 u32 max_wr; 1082 u32 max_sge; 1083 u32 srq_limit; 1084 }; 1085 1086 struct ib_srq_init_attr { 1087 void (*event_handler)(struct ib_event *, void *); 1088 void *srq_context; 1089 struct ib_srq_attr attr; 1090 enum ib_srq_type srq_type; 1091 1092 struct { 1093 struct ib_cq *cq; 1094 union { 1095 struct { 1096 struct ib_xrcd *xrcd; 1097 } xrc; 1098 1099 struct { 1100 u32 max_num_tags; 1101 } tag_matching; 1102 }; 1103 } ext; 1104 }; 1105 1106 struct ib_qp_cap { 1107 u32 max_send_wr; 1108 u32 max_recv_wr; 1109 u32 max_send_sge; 1110 u32 max_recv_sge; 1111 u32 max_inline_data; 1112 1113 /* 1114 * Maximum number of rdma_rw_ctx structures in flight at a time. 1115 * ib_create_qp() will calculate the right amount of needed WRs 1116 * and MRs based on this. 1117 */ 1118 u32 max_rdma_ctxs; 1119 }; 1120 1121 enum ib_sig_type { 1122 IB_SIGNAL_ALL_WR, 1123 IB_SIGNAL_REQ_WR 1124 }; 1125 1126 enum ib_qp_type { 1127 /* 1128 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1129 * here (and in that order) since the MAD layer uses them as 1130 * indices into a 2-entry table. 1131 */ 1132 IB_QPT_SMI, 1133 IB_QPT_GSI, 1134 1135 IB_QPT_RC = IB_UVERBS_QPT_RC, 1136 IB_QPT_UC = IB_UVERBS_QPT_UC, 1137 IB_QPT_UD = IB_UVERBS_QPT_UD, 1138 IB_QPT_RAW_IPV6, 1139 IB_QPT_RAW_ETHERTYPE, 1140 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1141 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1142 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1143 IB_QPT_MAX, 1144 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1145 /* Reserve a range for qp types internal to the low level driver. 1146 * These qp types will not be visible at the IB core layer, so the 1147 * IB_QPT_MAX usages should not be affected in the core layer 1148 */ 1149 IB_QPT_RESERVED1 = 0x1000, 1150 IB_QPT_RESERVED2, 1151 IB_QPT_RESERVED3, 1152 IB_QPT_RESERVED4, 1153 IB_QPT_RESERVED5, 1154 IB_QPT_RESERVED6, 1155 IB_QPT_RESERVED7, 1156 IB_QPT_RESERVED8, 1157 IB_QPT_RESERVED9, 1158 IB_QPT_RESERVED10, 1159 }; 1160 1161 enum ib_qp_create_flags { 1162 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1163 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1164 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1165 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1166 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1167 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1168 IB_QP_CREATE_NETIF_QP = 1 << 5, 1169 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1170 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1171 IB_QP_CREATE_SCATTER_FCS = 1172 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1173 IB_QP_CREATE_CVLAN_STRIPPING = 1174 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1175 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1176 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1177 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1178 /* reserve bits 26-31 for low level drivers' internal use */ 1179 IB_QP_CREATE_RESERVED_START = 1 << 26, 1180 IB_QP_CREATE_RESERVED_END = 1 << 31, 1181 }; 1182 1183 /* 1184 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1185 * callback to destroy the passed in QP. 1186 */ 1187 1188 struct ib_qp_init_attr { 1189 /* This callback occurs in workqueue context */ 1190 void (*event_handler)(struct ib_event *, void *); 1191 1192 void *qp_context; 1193 struct ib_cq *send_cq; 1194 struct ib_cq *recv_cq; 1195 struct ib_srq *srq; 1196 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1197 struct ib_qp_cap cap; 1198 enum ib_sig_type sq_sig_type; 1199 enum ib_qp_type qp_type; 1200 u32 create_flags; 1201 1202 /* 1203 * Only needed for special QP types, or when using the RW API. 1204 */ 1205 u32 port_num; 1206 struct ib_rwq_ind_table *rwq_ind_tbl; 1207 u32 source_qpn; 1208 }; 1209 1210 struct ib_qp_open_attr { 1211 void (*event_handler)(struct ib_event *, void *); 1212 void *qp_context; 1213 u32 qp_num; 1214 enum ib_qp_type qp_type; 1215 }; 1216 1217 enum ib_rnr_timeout { 1218 IB_RNR_TIMER_655_36 = 0, 1219 IB_RNR_TIMER_000_01 = 1, 1220 IB_RNR_TIMER_000_02 = 2, 1221 IB_RNR_TIMER_000_03 = 3, 1222 IB_RNR_TIMER_000_04 = 4, 1223 IB_RNR_TIMER_000_06 = 5, 1224 IB_RNR_TIMER_000_08 = 6, 1225 IB_RNR_TIMER_000_12 = 7, 1226 IB_RNR_TIMER_000_16 = 8, 1227 IB_RNR_TIMER_000_24 = 9, 1228 IB_RNR_TIMER_000_32 = 10, 1229 IB_RNR_TIMER_000_48 = 11, 1230 IB_RNR_TIMER_000_64 = 12, 1231 IB_RNR_TIMER_000_96 = 13, 1232 IB_RNR_TIMER_001_28 = 14, 1233 IB_RNR_TIMER_001_92 = 15, 1234 IB_RNR_TIMER_002_56 = 16, 1235 IB_RNR_TIMER_003_84 = 17, 1236 IB_RNR_TIMER_005_12 = 18, 1237 IB_RNR_TIMER_007_68 = 19, 1238 IB_RNR_TIMER_010_24 = 20, 1239 IB_RNR_TIMER_015_36 = 21, 1240 IB_RNR_TIMER_020_48 = 22, 1241 IB_RNR_TIMER_030_72 = 23, 1242 IB_RNR_TIMER_040_96 = 24, 1243 IB_RNR_TIMER_061_44 = 25, 1244 IB_RNR_TIMER_081_92 = 26, 1245 IB_RNR_TIMER_122_88 = 27, 1246 IB_RNR_TIMER_163_84 = 28, 1247 IB_RNR_TIMER_245_76 = 29, 1248 IB_RNR_TIMER_327_68 = 30, 1249 IB_RNR_TIMER_491_52 = 31 1250 }; 1251 1252 enum ib_qp_attr_mask { 1253 IB_QP_STATE = 1, 1254 IB_QP_CUR_STATE = (1<<1), 1255 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1256 IB_QP_ACCESS_FLAGS = (1<<3), 1257 IB_QP_PKEY_INDEX = (1<<4), 1258 IB_QP_PORT = (1<<5), 1259 IB_QP_QKEY = (1<<6), 1260 IB_QP_AV = (1<<7), 1261 IB_QP_PATH_MTU = (1<<8), 1262 IB_QP_TIMEOUT = (1<<9), 1263 IB_QP_RETRY_CNT = (1<<10), 1264 IB_QP_RNR_RETRY = (1<<11), 1265 IB_QP_RQ_PSN = (1<<12), 1266 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1267 IB_QP_ALT_PATH = (1<<14), 1268 IB_QP_MIN_RNR_TIMER = (1<<15), 1269 IB_QP_SQ_PSN = (1<<16), 1270 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1271 IB_QP_PATH_MIG_STATE = (1<<18), 1272 IB_QP_CAP = (1<<19), 1273 IB_QP_DEST_QPN = (1<<20), 1274 IB_QP_RESERVED1 = (1<<21), 1275 IB_QP_RESERVED2 = (1<<22), 1276 IB_QP_RESERVED3 = (1<<23), 1277 IB_QP_RESERVED4 = (1<<24), 1278 IB_QP_RATE_LIMIT = (1<<25), 1279 1280 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1281 }; 1282 1283 enum ib_qp_state { 1284 IB_QPS_RESET, 1285 IB_QPS_INIT, 1286 IB_QPS_RTR, 1287 IB_QPS_RTS, 1288 IB_QPS_SQD, 1289 IB_QPS_SQE, 1290 IB_QPS_ERR 1291 }; 1292 1293 enum ib_mig_state { 1294 IB_MIG_MIGRATED, 1295 IB_MIG_REARM, 1296 IB_MIG_ARMED 1297 }; 1298 1299 enum ib_mw_type { 1300 IB_MW_TYPE_1 = 1, 1301 IB_MW_TYPE_2 = 2 1302 }; 1303 1304 struct ib_qp_attr { 1305 enum ib_qp_state qp_state; 1306 enum ib_qp_state cur_qp_state; 1307 enum ib_mtu path_mtu; 1308 enum ib_mig_state path_mig_state; 1309 u32 qkey; 1310 u32 rq_psn; 1311 u32 sq_psn; 1312 u32 dest_qp_num; 1313 int qp_access_flags; 1314 struct ib_qp_cap cap; 1315 struct rdma_ah_attr ah_attr; 1316 struct rdma_ah_attr alt_ah_attr; 1317 u16 pkey_index; 1318 u16 alt_pkey_index; 1319 u8 en_sqd_async_notify; 1320 u8 sq_draining; 1321 u8 max_rd_atomic; 1322 u8 max_dest_rd_atomic; 1323 u8 min_rnr_timer; 1324 u32 port_num; 1325 u8 timeout; 1326 u8 retry_cnt; 1327 u8 rnr_retry; 1328 u32 alt_port_num; 1329 u8 alt_timeout; 1330 u32 rate_limit; 1331 struct net_device *xmit_slave; 1332 }; 1333 1334 enum ib_wr_opcode { 1335 /* These are shared with userspace */ 1336 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1337 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1338 IB_WR_SEND = IB_UVERBS_WR_SEND, 1339 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1340 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1341 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1342 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1343 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1344 IB_WR_LSO = IB_UVERBS_WR_TSO, 1345 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1346 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1347 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1348 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1349 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1350 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1351 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1352 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1353 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1354 1355 /* These are kernel only and can not be issued by userspace */ 1356 IB_WR_REG_MR = 0x20, 1357 IB_WR_REG_MR_INTEGRITY, 1358 1359 /* reserve values for low level drivers' internal use. 1360 * These values will not be used at all in the ib core layer. 1361 */ 1362 IB_WR_RESERVED1 = 0xf0, 1363 IB_WR_RESERVED2, 1364 IB_WR_RESERVED3, 1365 IB_WR_RESERVED4, 1366 IB_WR_RESERVED5, 1367 IB_WR_RESERVED6, 1368 IB_WR_RESERVED7, 1369 IB_WR_RESERVED8, 1370 IB_WR_RESERVED9, 1371 IB_WR_RESERVED10, 1372 }; 1373 1374 enum ib_send_flags { 1375 IB_SEND_FENCE = 1, 1376 IB_SEND_SIGNALED = (1<<1), 1377 IB_SEND_SOLICITED = (1<<2), 1378 IB_SEND_INLINE = (1<<3), 1379 IB_SEND_IP_CSUM = (1<<4), 1380 1381 /* reserve bits 26-31 for low level drivers' internal use */ 1382 IB_SEND_RESERVED_START = (1 << 26), 1383 IB_SEND_RESERVED_END = (1 << 31), 1384 }; 1385 1386 struct ib_sge { 1387 u64 addr; 1388 u32 length; 1389 u32 lkey; 1390 }; 1391 1392 struct ib_cqe { 1393 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1394 }; 1395 1396 struct ib_send_wr { 1397 struct ib_send_wr *next; 1398 union { 1399 u64 wr_id; 1400 struct ib_cqe *wr_cqe; 1401 }; 1402 struct ib_sge *sg_list; 1403 int num_sge; 1404 enum ib_wr_opcode opcode; 1405 int send_flags; 1406 union { 1407 __be32 imm_data; 1408 u32 invalidate_rkey; 1409 } ex; 1410 }; 1411 1412 struct ib_rdma_wr { 1413 struct ib_send_wr wr; 1414 u64 remote_addr; 1415 u32 rkey; 1416 }; 1417 1418 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1419 { 1420 return container_of(wr, struct ib_rdma_wr, wr); 1421 } 1422 1423 struct ib_atomic_wr { 1424 struct ib_send_wr wr; 1425 u64 remote_addr; 1426 u64 compare_add; 1427 u64 swap; 1428 u64 compare_add_mask; 1429 u64 swap_mask; 1430 u32 rkey; 1431 }; 1432 1433 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1434 { 1435 return container_of(wr, struct ib_atomic_wr, wr); 1436 } 1437 1438 struct ib_ud_wr { 1439 struct ib_send_wr wr; 1440 struct ib_ah *ah; 1441 void *header; 1442 int hlen; 1443 int mss; 1444 u32 remote_qpn; 1445 u32 remote_qkey; 1446 u16 pkey_index; /* valid for GSI only */ 1447 u32 port_num; /* valid for DR SMPs on switch only */ 1448 }; 1449 1450 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1451 { 1452 return container_of(wr, struct ib_ud_wr, wr); 1453 } 1454 1455 struct ib_reg_wr { 1456 struct ib_send_wr wr; 1457 struct ib_mr *mr; 1458 u32 key; 1459 int access; 1460 }; 1461 1462 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1463 { 1464 return container_of(wr, struct ib_reg_wr, wr); 1465 } 1466 1467 struct ib_recv_wr { 1468 struct ib_recv_wr *next; 1469 union { 1470 u64 wr_id; 1471 struct ib_cqe *wr_cqe; 1472 }; 1473 struct ib_sge *sg_list; 1474 int num_sge; 1475 }; 1476 1477 enum ib_access_flags { 1478 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1479 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1480 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1481 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1482 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1483 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1484 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1485 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1486 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1487 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1488 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1489 1490 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1491 IB_ACCESS_SUPPORTED = 1492 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1493 }; 1494 1495 /* 1496 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1497 * are hidden here instead of a uapi header! 1498 */ 1499 enum ib_mr_rereg_flags { 1500 IB_MR_REREG_TRANS = 1, 1501 IB_MR_REREG_PD = (1<<1), 1502 IB_MR_REREG_ACCESS = (1<<2), 1503 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1504 }; 1505 1506 struct ib_umem; 1507 1508 enum rdma_remove_reason { 1509 /* 1510 * Userspace requested uobject deletion or initial try 1511 * to remove uobject via cleanup. Call could fail 1512 */ 1513 RDMA_REMOVE_DESTROY, 1514 /* Context deletion. This call should delete the actual object itself */ 1515 RDMA_REMOVE_CLOSE, 1516 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1517 RDMA_REMOVE_DRIVER_REMOVE, 1518 /* uobj is being cleaned-up before being committed */ 1519 RDMA_REMOVE_ABORT, 1520 /* The driver failed to destroy the uobject and is being disconnected */ 1521 RDMA_REMOVE_DRIVER_FAILURE, 1522 }; 1523 1524 struct ib_rdmacg_object { 1525 #ifdef CONFIG_CGROUP_RDMA 1526 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1527 #endif 1528 }; 1529 1530 struct ib_ucontext { 1531 struct ib_device *device; 1532 struct ib_uverbs_file *ufile; 1533 1534 struct ib_rdmacg_object cg_obj; 1535 u64 enabled_caps; 1536 /* 1537 * Implementation details of the RDMA core, don't use in drivers: 1538 */ 1539 struct rdma_restrack_entry res; 1540 struct xarray mmap_xa; 1541 }; 1542 1543 struct ib_uobject { 1544 u64 user_handle; /* handle given to us by userspace */ 1545 /* ufile & ucontext owning this object */ 1546 struct ib_uverbs_file *ufile; 1547 /* FIXME, save memory: ufile->context == context */ 1548 struct ib_ucontext *context; /* associated user context */ 1549 void *object; /* containing object */ 1550 struct list_head list; /* link to context's list */ 1551 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1552 int id; /* index into kernel idr */ 1553 struct kref ref; 1554 atomic_t usecnt; /* protects exclusive access */ 1555 struct rcu_head rcu; /* kfree_rcu() overhead */ 1556 1557 const struct uverbs_api_object *uapi_object; 1558 }; 1559 1560 struct ib_udata { 1561 const void __user *inbuf; 1562 void __user *outbuf; 1563 size_t inlen; 1564 size_t outlen; 1565 }; 1566 1567 struct ib_pd { 1568 u32 local_dma_lkey; 1569 u32 flags; 1570 struct ib_device *device; 1571 struct ib_uobject *uobject; 1572 atomic_t usecnt; /* count all resources */ 1573 1574 u32 unsafe_global_rkey; 1575 1576 /* 1577 * Implementation details of the RDMA core, don't use in drivers: 1578 */ 1579 struct ib_mr *__internal_mr; 1580 struct rdma_restrack_entry res; 1581 }; 1582 1583 struct ib_xrcd { 1584 struct ib_device *device; 1585 atomic_t usecnt; /* count all exposed resources */ 1586 struct inode *inode; 1587 struct rw_semaphore tgt_qps_rwsem; 1588 struct xarray tgt_qps; 1589 }; 1590 1591 struct ib_ah { 1592 struct ib_device *device; 1593 struct ib_pd *pd; 1594 struct ib_uobject *uobject; 1595 const struct ib_gid_attr *sgid_attr; 1596 enum rdma_ah_attr_type type; 1597 }; 1598 1599 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1600 1601 enum ib_poll_context { 1602 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1603 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1604 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1605 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1606 1607 IB_POLL_DIRECT, /* caller context, no hw completions */ 1608 }; 1609 1610 struct ib_cq { 1611 struct ib_device *device; 1612 struct ib_ucq_object *uobject; 1613 ib_comp_handler comp_handler; 1614 void (*event_handler)(struct ib_event *, void *); 1615 void *cq_context; 1616 int cqe; 1617 unsigned int cqe_used; 1618 atomic_t usecnt; /* count number of work queues */ 1619 enum ib_poll_context poll_ctx; 1620 struct ib_wc *wc; 1621 struct list_head pool_entry; 1622 union { 1623 struct irq_poll iop; 1624 struct work_struct work; 1625 }; 1626 struct workqueue_struct *comp_wq; 1627 struct dim *dim; 1628 1629 /* updated only by trace points */ 1630 ktime_t timestamp; 1631 u8 interrupt:1; 1632 u8 shared:1; 1633 unsigned int comp_vector; 1634 1635 /* 1636 * Implementation details of the RDMA core, don't use in drivers: 1637 */ 1638 struct rdma_restrack_entry res; 1639 }; 1640 1641 struct ib_srq { 1642 struct ib_device *device; 1643 struct ib_pd *pd; 1644 struct ib_usrq_object *uobject; 1645 void (*event_handler)(struct ib_event *, void *); 1646 void *srq_context; 1647 enum ib_srq_type srq_type; 1648 atomic_t usecnt; 1649 1650 struct { 1651 struct ib_cq *cq; 1652 union { 1653 struct { 1654 struct ib_xrcd *xrcd; 1655 u32 srq_num; 1656 } xrc; 1657 }; 1658 } ext; 1659 1660 /* 1661 * Implementation details of the RDMA core, don't use in drivers: 1662 */ 1663 struct rdma_restrack_entry res; 1664 }; 1665 1666 enum ib_raw_packet_caps { 1667 /* 1668 * Strip cvlan from incoming packet and report it in the matching work 1669 * completion is supported. 1670 */ 1671 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1672 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1673 /* 1674 * Scatter FCS field of an incoming packet to host memory is supported. 1675 */ 1676 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1677 /* Checksum offloads are supported (for both send and receive). */ 1678 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1679 /* 1680 * When a packet is received for an RQ with no receive WQEs, the 1681 * packet processing is delayed. 1682 */ 1683 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1684 }; 1685 1686 enum ib_wq_type { 1687 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1688 }; 1689 1690 enum ib_wq_state { 1691 IB_WQS_RESET, 1692 IB_WQS_RDY, 1693 IB_WQS_ERR 1694 }; 1695 1696 struct ib_wq { 1697 struct ib_device *device; 1698 struct ib_uwq_object *uobject; 1699 void *wq_context; 1700 void (*event_handler)(struct ib_event *, void *); 1701 struct ib_pd *pd; 1702 struct ib_cq *cq; 1703 u32 wq_num; 1704 enum ib_wq_state state; 1705 enum ib_wq_type wq_type; 1706 atomic_t usecnt; 1707 }; 1708 1709 enum ib_wq_flags { 1710 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1711 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1712 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1713 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1714 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1715 }; 1716 1717 struct ib_wq_init_attr { 1718 void *wq_context; 1719 enum ib_wq_type wq_type; 1720 u32 max_wr; 1721 u32 max_sge; 1722 struct ib_cq *cq; 1723 void (*event_handler)(struct ib_event *, void *); 1724 u32 create_flags; /* Use enum ib_wq_flags */ 1725 }; 1726 1727 enum ib_wq_attr_mask { 1728 IB_WQ_STATE = 1 << 0, 1729 IB_WQ_CUR_STATE = 1 << 1, 1730 IB_WQ_FLAGS = 1 << 2, 1731 }; 1732 1733 struct ib_wq_attr { 1734 enum ib_wq_state wq_state; 1735 enum ib_wq_state curr_wq_state; 1736 u32 flags; /* Use enum ib_wq_flags */ 1737 u32 flags_mask; /* Use enum ib_wq_flags */ 1738 }; 1739 1740 struct ib_rwq_ind_table { 1741 struct ib_device *device; 1742 struct ib_uobject *uobject; 1743 atomic_t usecnt; 1744 u32 ind_tbl_num; 1745 u32 log_ind_tbl_size; 1746 struct ib_wq **ind_tbl; 1747 }; 1748 1749 struct ib_rwq_ind_table_init_attr { 1750 u32 log_ind_tbl_size; 1751 /* Each entry is a pointer to Receive Work Queue */ 1752 struct ib_wq **ind_tbl; 1753 }; 1754 1755 enum port_pkey_state { 1756 IB_PORT_PKEY_NOT_VALID = 0, 1757 IB_PORT_PKEY_VALID = 1, 1758 IB_PORT_PKEY_LISTED = 2, 1759 }; 1760 1761 struct ib_qp_security; 1762 1763 struct ib_port_pkey { 1764 enum port_pkey_state state; 1765 u16 pkey_index; 1766 u32 port_num; 1767 struct list_head qp_list; 1768 struct list_head to_error_list; 1769 struct ib_qp_security *sec; 1770 }; 1771 1772 struct ib_ports_pkeys { 1773 struct ib_port_pkey main; 1774 struct ib_port_pkey alt; 1775 }; 1776 1777 struct ib_qp_security { 1778 struct ib_qp *qp; 1779 struct ib_device *dev; 1780 /* Hold this mutex when changing port and pkey settings. */ 1781 struct mutex mutex; 1782 struct ib_ports_pkeys *ports_pkeys; 1783 /* A list of all open shared QP handles. Required to enforce security 1784 * properly for all users of a shared QP. 1785 */ 1786 struct list_head shared_qp_list; 1787 void *security; 1788 bool destroying; 1789 atomic_t error_list_count; 1790 struct completion error_complete; 1791 int error_comps_pending; 1792 }; 1793 1794 /* 1795 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1796 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1797 */ 1798 struct ib_qp { 1799 struct ib_device *device; 1800 struct ib_pd *pd; 1801 struct ib_cq *send_cq; 1802 struct ib_cq *recv_cq; 1803 spinlock_t mr_lock; 1804 int mrs_used; 1805 struct list_head rdma_mrs; 1806 struct list_head sig_mrs; 1807 struct ib_srq *srq; 1808 struct completion srq_completion; 1809 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1810 struct list_head xrcd_list; 1811 1812 /* count times opened, mcast attaches, flow attaches */ 1813 atomic_t usecnt; 1814 struct list_head open_list; 1815 struct ib_qp *real_qp; 1816 struct ib_uqp_object *uobject; 1817 void (*event_handler)(struct ib_event *, void *); 1818 void (*registered_event_handler)(struct ib_event *, void *); 1819 void *qp_context; 1820 /* sgid_attrs associated with the AV's */ 1821 const struct ib_gid_attr *av_sgid_attr; 1822 const struct ib_gid_attr *alt_path_sgid_attr; 1823 u32 qp_num; 1824 u32 max_write_sge; 1825 u32 max_read_sge; 1826 enum ib_qp_type qp_type; 1827 struct ib_rwq_ind_table *rwq_ind_tbl; 1828 struct ib_qp_security *qp_sec; 1829 u32 port; 1830 1831 bool integrity_en; 1832 /* 1833 * Implementation details of the RDMA core, don't use in drivers: 1834 */ 1835 struct rdma_restrack_entry res; 1836 1837 /* The counter the qp is bind to */ 1838 struct rdma_counter *counter; 1839 }; 1840 1841 struct ib_dm { 1842 struct ib_device *device; 1843 u32 length; 1844 u32 flags; 1845 struct ib_uobject *uobject; 1846 atomic_t usecnt; 1847 }; 1848 1849 struct ib_mr { 1850 struct ib_device *device; 1851 struct ib_pd *pd; 1852 u32 lkey; 1853 u32 rkey; 1854 u64 iova; 1855 u64 length; 1856 unsigned int page_size; 1857 enum ib_mr_type type; 1858 bool need_inval; 1859 union { 1860 struct ib_uobject *uobject; /* user */ 1861 struct list_head qp_entry; /* FR */ 1862 }; 1863 1864 struct ib_dm *dm; 1865 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1866 /* 1867 * Implementation details of the RDMA core, don't use in drivers: 1868 */ 1869 struct rdma_restrack_entry res; 1870 }; 1871 1872 struct ib_mw { 1873 struct ib_device *device; 1874 struct ib_pd *pd; 1875 struct ib_uobject *uobject; 1876 u32 rkey; 1877 enum ib_mw_type type; 1878 }; 1879 1880 /* Supported steering options */ 1881 enum ib_flow_attr_type { 1882 /* steering according to rule specifications */ 1883 IB_FLOW_ATTR_NORMAL = 0x0, 1884 /* default unicast and multicast rule - 1885 * receive all Eth traffic which isn't steered to any QP 1886 */ 1887 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1888 /* default multicast rule - 1889 * receive all Eth multicast traffic which isn't steered to any QP 1890 */ 1891 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1892 /* sniffer rule - receive all port traffic */ 1893 IB_FLOW_ATTR_SNIFFER = 0x3 1894 }; 1895 1896 /* Supported steering header types */ 1897 enum ib_flow_spec_type { 1898 /* L2 headers*/ 1899 IB_FLOW_SPEC_ETH = 0x20, 1900 IB_FLOW_SPEC_IB = 0x22, 1901 /* L3 header*/ 1902 IB_FLOW_SPEC_IPV4 = 0x30, 1903 IB_FLOW_SPEC_IPV6 = 0x31, 1904 IB_FLOW_SPEC_ESP = 0x34, 1905 /* L4 headers*/ 1906 IB_FLOW_SPEC_TCP = 0x40, 1907 IB_FLOW_SPEC_UDP = 0x41, 1908 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1909 IB_FLOW_SPEC_GRE = 0x51, 1910 IB_FLOW_SPEC_MPLS = 0x60, 1911 IB_FLOW_SPEC_INNER = 0x100, 1912 /* Actions */ 1913 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1914 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1915 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1916 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1917 }; 1918 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1919 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1920 1921 enum ib_flow_flags { 1922 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1923 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1924 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1925 }; 1926 1927 struct ib_flow_eth_filter { 1928 u8 dst_mac[6]; 1929 u8 src_mac[6]; 1930 __be16 ether_type; 1931 __be16 vlan_tag; 1932 }; 1933 1934 struct ib_flow_spec_eth { 1935 u32 type; 1936 u16 size; 1937 struct ib_flow_eth_filter val; 1938 struct ib_flow_eth_filter mask; 1939 }; 1940 1941 struct ib_flow_ib_filter { 1942 __be16 dlid; 1943 __u8 sl; 1944 }; 1945 1946 struct ib_flow_spec_ib { 1947 u32 type; 1948 u16 size; 1949 struct ib_flow_ib_filter val; 1950 struct ib_flow_ib_filter mask; 1951 }; 1952 1953 /* IPv4 header flags */ 1954 enum ib_ipv4_flags { 1955 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1956 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1957 last have this flag set */ 1958 }; 1959 1960 struct ib_flow_ipv4_filter { 1961 __be32 src_ip; 1962 __be32 dst_ip; 1963 u8 proto; 1964 u8 tos; 1965 u8 ttl; 1966 u8 flags; 1967 }; 1968 1969 struct ib_flow_spec_ipv4 { 1970 u32 type; 1971 u16 size; 1972 struct ib_flow_ipv4_filter val; 1973 struct ib_flow_ipv4_filter mask; 1974 }; 1975 1976 struct ib_flow_ipv6_filter { 1977 u8 src_ip[16]; 1978 u8 dst_ip[16]; 1979 __be32 flow_label; 1980 u8 next_hdr; 1981 u8 traffic_class; 1982 u8 hop_limit; 1983 } __packed; 1984 1985 struct ib_flow_spec_ipv6 { 1986 u32 type; 1987 u16 size; 1988 struct ib_flow_ipv6_filter val; 1989 struct ib_flow_ipv6_filter mask; 1990 }; 1991 1992 struct ib_flow_tcp_udp_filter { 1993 __be16 dst_port; 1994 __be16 src_port; 1995 }; 1996 1997 struct ib_flow_spec_tcp_udp { 1998 u32 type; 1999 u16 size; 2000 struct ib_flow_tcp_udp_filter val; 2001 struct ib_flow_tcp_udp_filter mask; 2002 }; 2003 2004 struct ib_flow_tunnel_filter { 2005 __be32 tunnel_id; 2006 }; 2007 2008 /* ib_flow_spec_tunnel describes the Vxlan tunnel 2009 * the tunnel_id from val has the vni value 2010 */ 2011 struct ib_flow_spec_tunnel { 2012 u32 type; 2013 u16 size; 2014 struct ib_flow_tunnel_filter val; 2015 struct ib_flow_tunnel_filter mask; 2016 }; 2017 2018 struct ib_flow_esp_filter { 2019 __be32 spi; 2020 __be32 seq; 2021 }; 2022 2023 struct ib_flow_spec_esp { 2024 u32 type; 2025 u16 size; 2026 struct ib_flow_esp_filter val; 2027 struct ib_flow_esp_filter mask; 2028 }; 2029 2030 struct ib_flow_gre_filter { 2031 __be16 c_ks_res0_ver; 2032 __be16 protocol; 2033 __be32 key; 2034 }; 2035 2036 struct ib_flow_spec_gre { 2037 u32 type; 2038 u16 size; 2039 struct ib_flow_gre_filter val; 2040 struct ib_flow_gre_filter mask; 2041 }; 2042 2043 struct ib_flow_mpls_filter { 2044 __be32 tag; 2045 }; 2046 2047 struct ib_flow_spec_mpls { 2048 u32 type; 2049 u16 size; 2050 struct ib_flow_mpls_filter val; 2051 struct ib_flow_mpls_filter mask; 2052 }; 2053 2054 struct ib_flow_spec_action_tag { 2055 enum ib_flow_spec_type type; 2056 u16 size; 2057 u32 tag_id; 2058 }; 2059 2060 struct ib_flow_spec_action_drop { 2061 enum ib_flow_spec_type type; 2062 u16 size; 2063 }; 2064 2065 struct ib_flow_spec_action_handle { 2066 enum ib_flow_spec_type type; 2067 u16 size; 2068 struct ib_flow_action *act; 2069 }; 2070 2071 enum ib_counters_description { 2072 IB_COUNTER_PACKETS, 2073 IB_COUNTER_BYTES, 2074 }; 2075 2076 struct ib_flow_spec_action_count { 2077 enum ib_flow_spec_type type; 2078 u16 size; 2079 struct ib_counters *counters; 2080 }; 2081 2082 union ib_flow_spec { 2083 struct { 2084 u32 type; 2085 u16 size; 2086 }; 2087 struct ib_flow_spec_eth eth; 2088 struct ib_flow_spec_ib ib; 2089 struct ib_flow_spec_ipv4 ipv4; 2090 struct ib_flow_spec_tcp_udp tcp_udp; 2091 struct ib_flow_spec_ipv6 ipv6; 2092 struct ib_flow_spec_tunnel tunnel; 2093 struct ib_flow_spec_esp esp; 2094 struct ib_flow_spec_gre gre; 2095 struct ib_flow_spec_mpls mpls; 2096 struct ib_flow_spec_action_tag flow_tag; 2097 struct ib_flow_spec_action_drop drop; 2098 struct ib_flow_spec_action_handle action; 2099 struct ib_flow_spec_action_count flow_count; 2100 }; 2101 2102 struct ib_flow_attr { 2103 enum ib_flow_attr_type type; 2104 u16 size; 2105 u16 priority; 2106 u32 flags; 2107 u8 num_of_specs; 2108 u32 port; 2109 union ib_flow_spec flows[]; 2110 }; 2111 2112 struct ib_flow { 2113 struct ib_qp *qp; 2114 struct ib_device *device; 2115 struct ib_uobject *uobject; 2116 }; 2117 2118 enum ib_flow_action_type { 2119 IB_FLOW_ACTION_UNSPECIFIED, 2120 IB_FLOW_ACTION_ESP = 1, 2121 }; 2122 2123 struct ib_flow_action_attrs_esp_keymats { 2124 enum ib_uverbs_flow_action_esp_keymat protocol; 2125 union { 2126 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2127 } keymat; 2128 }; 2129 2130 struct ib_flow_action_attrs_esp_replays { 2131 enum ib_uverbs_flow_action_esp_replay protocol; 2132 union { 2133 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2134 } replay; 2135 }; 2136 2137 enum ib_flow_action_attrs_esp_flags { 2138 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2139 * This is done in order to share the same flags between user-space and 2140 * kernel and spare an unnecessary translation. 2141 */ 2142 2143 /* Kernel flags */ 2144 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2145 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2146 }; 2147 2148 struct ib_flow_spec_list { 2149 struct ib_flow_spec_list *next; 2150 union ib_flow_spec spec; 2151 }; 2152 2153 struct ib_flow_action_attrs_esp { 2154 struct ib_flow_action_attrs_esp_keymats *keymat; 2155 struct ib_flow_action_attrs_esp_replays *replay; 2156 struct ib_flow_spec_list *encap; 2157 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2158 * Value of 0 is a valid value. 2159 */ 2160 u32 esn; 2161 u32 spi; 2162 u32 seq; 2163 u32 tfc_pad; 2164 /* Use enum ib_flow_action_attrs_esp_flags */ 2165 u64 flags; 2166 u64 hard_limit_pkts; 2167 }; 2168 2169 struct ib_flow_action { 2170 struct ib_device *device; 2171 struct ib_uobject *uobject; 2172 enum ib_flow_action_type type; 2173 atomic_t usecnt; 2174 }; 2175 2176 struct ib_mad; 2177 2178 enum ib_process_mad_flags { 2179 IB_MAD_IGNORE_MKEY = 1, 2180 IB_MAD_IGNORE_BKEY = 2, 2181 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2182 }; 2183 2184 enum ib_mad_result { 2185 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2186 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2187 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2188 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2189 }; 2190 2191 struct ib_port_cache { 2192 u64 subnet_prefix; 2193 struct ib_pkey_cache *pkey; 2194 struct ib_gid_table *gid; 2195 u8 lmc; 2196 enum ib_port_state port_state; 2197 enum ib_port_state last_port_state; 2198 }; 2199 2200 struct ib_port_immutable { 2201 int pkey_tbl_len; 2202 int gid_tbl_len; 2203 u32 core_cap_flags; 2204 u32 max_mad_size; 2205 }; 2206 2207 struct ib_port_data { 2208 struct ib_device *ib_dev; 2209 2210 struct ib_port_immutable immutable; 2211 2212 spinlock_t pkey_list_lock; 2213 2214 spinlock_t netdev_lock; 2215 2216 struct list_head pkey_list; 2217 2218 struct ib_port_cache cache; 2219 2220 struct net_device __rcu *netdev; 2221 netdevice_tracker netdev_tracker; 2222 struct hlist_node ndev_hash_link; 2223 struct rdma_port_counter port_counter; 2224 struct ib_port *sysfs; 2225 }; 2226 2227 /* rdma netdev type - specifies protocol type */ 2228 enum rdma_netdev_t { 2229 RDMA_NETDEV_OPA_VNIC, 2230 RDMA_NETDEV_IPOIB, 2231 }; 2232 2233 /** 2234 * struct rdma_netdev - rdma netdev 2235 * For cases where netstack interfacing is required. 2236 */ 2237 struct rdma_netdev { 2238 void *clnt_priv; 2239 struct ib_device *hca; 2240 u32 port_num; 2241 int mtu; 2242 2243 /* 2244 * cleanup function must be specified. 2245 * FIXME: This is only used for OPA_VNIC and that usage should be 2246 * removed too. 2247 */ 2248 void (*free_rdma_netdev)(struct net_device *netdev); 2249 2250 /* control functions */ 2251 void (*set_id)(struct net_device *netdev, int id); 2252 /* send packet */ 2253 int (*send)(struct net_device *dev, struct sk_buff *skb, 2254 struct ib_ah *address, u32 dqpn); 2255 /* multicast */ 2256 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2257 union ib_gid *gid, u16 mlid, 2258 int set_qkey, u32 qkey); 2259 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2260 union ib_gid *gid, u16 mlid); 2261 /* timeout */ 2262 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2263 }; 2264 2265 struct rdma_netdev_alloc_params { 2266 size_t sizeof_priv; 2267 unsigned int txqs; 2268 unsigned int rxqs; 2269 void *param; 2270 2271 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2272 struct net_device *netdev, void *param); 2273 }; 2274 2275 struct ib_odp_counters { 2276 atomic64_t faults; 2277 atomic64_t faults_handled; 2278 atomic64_t invalidations; 2279 atomic64_t invalidations_handled; 2280 atomic64_t prefetch; 2281 }; 2282 2283 struct ib_counters { 2284 struct ib_device *device; 2285 struct ib_uobject *uobject; 2286 /* num of objects attached */ 2287 atomic_t usecnt; 2288 }; 2289 2290 struct ib_counters_read_attr { 2291 u64 *counters_buff; 2292 u32 ncounters; 2293 u32 flags; /* use enum ib_read_counters_flags */ 2294 }; 2295 2296 struct uverbs_attr_bundle; 2297 struct iw_cm_id; 2298 struct iw_cm_conn_param; 2299 2300 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2301 .size_##ib_struct = \ 2302 (sizeof(struct drv_struct) + \ 2303 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2304 BUILD_BUG_ON_ZERO( \ 2305 !__same_type(((struct drv_struct *)NULL)->member, \ 2306 struct ib_struct))) 2307 2308 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2309 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2310 gfp, false)) 2311 2312 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2313 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2314 GFP_KERNEL, true)) 2315 2316 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2317 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2318 2319 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2320 2321 struct rdma_user_mmap_entry { 2322 struct kref ref; 2323 struct ib_ucontext *ucontext; 2324 unsigned long start_pgoff; 2325 size_t npages; 2326 bool driver_removed; 2327 }; 2328 2329 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2330 static inline u64 2331 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2332 { 2333 return (u64)entry->start_pgoff << PAGE_SHIFT; 2334 } 2335 2336 /** 2337 * struct ib_device_ops - InfiniBand device operations 2338 * This structure defines all the InfiniBand device operations, providers will 2339 * need to define the supported operations, otherwise they will be set to null. 2340 */ 2341 struct ib_device_ops { 2342 struct module *owner; 2343 enum rdma_driver_id driver_id; 2344 u32 uverbs_abi_ver; 2345 unsigned int uverbs_no_driver_id_binding:1; 2346 2347 /* 2348 * NOTE: New drivers should not make use of device_group; instead new 2349 * device parameter should be exposed via netlink command. This 2350 * mechanism exists only for existing drivers. 2351 */ 2352 const struct attribute_group *device_group; 2353 const struct attribute_group **port_groups; 2354 2355 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2356 const struct ib_send_wr **bad_send_wr); 2357 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2358 const struct ib_recv_wr **bad_recv_wr); 2359 void (*drain_rq)(struct ib_qp *qp); 2360 void (*drain_sq)(struct ib_qp *qp); 2361 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2362 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2363 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2364 int (*post_srq_recv)(struct ib_srq *srq, 2365 const struct ib_recv_wr *recv_wr, 2366 const struct ib_recv_wr **bad_recv_wr); 2367 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2368 u32 port_num, const struct ib_wc *in_wc, 2369 const struct ib_grh *in_grh, 2370 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2371 size_t *out_mad_size, u16 *out_mad_pkey_index); 2372 int (*query_device)(struct ib_device *device, 2373 struct ib_device_attr *device_attr, 2374 struct ib_udata *udata); 2375 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2376 struct ib_device_modify *device_modify); 2377 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2378 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2379 int comp_vector); 2380 int (*query_port)(struct ib_device *device, u32 port_num, 2381 struct ib_port_attr *port_attr); 2382 int (*modify_port)(struct ib_device *device, u32 port_num, 2383 int port_modify_mask, 2384 struct ib_port_modify *port_modify); 2385 /** 2386 * The following mandatory functions are used only at device 2387 * registration. Keep functions such as these at the end of this 2388 * structure to avoid cache line misses when accessing struct ib_device 2389 * in fast paths. 2390 */ 2391 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2392 struct ib_port_immutable *immutable); 2393 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2394 u32 port_num); 2395 /** 2396 * When calling get_netdev, the HW vendor's driver should return the 2397 * net device of device @device at port @port_num or NULL if such 2398 * a net device doesn't exist. The vendor driver should call dev_hold 2399 * on this net device. The HW vendor's device driver must guarantee 2400 * that this function returns NULL before the net device has finished 2401 * NETDEV_UNREGISTER state. 2402 */ 2403 struct net_device *(*get_netdev)(struct ib_device *device, 2404 u32 port_num); 2405 /** 2406 * rdma netdev operation 2407 * 2408 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2409 * must return -EOPNOTSUPP if it doesn't support the specified type. 2410 */ 2411 struct net_device *(*alloc_rdma_netdev)( 2412 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2413 const char *name, unsigned char name_assign_type, 2414 void (*setup)(struct net_device *)); 2415 2416 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2417 enum rdma_netdev_t type, 2418 struct rdma_netdev_alloc_params *params); 2419 /** 2420 * query_gid should be return GID value for @device, when @port_num 2421 * link layer is either IB or iWarp. It is no-op if @port_num port 2422 * is RoCE link layer. 2423 */ 2424 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2425 union ib_gid *gid); 2426 /** 2427 * When calling add_gid, the HW vendor's driver should add the gid 2428 * of device of port at gid index available at @attr. Meta-info of 2429 * that gid (for example, the network device related to this gid) is 2430 * available at @attr. @context allows the HW vendor driver to store 2431 * extra information together with a GID entry. The HW vendor driver may 2432 * allocate memory to contain this information and store it in @context 2433 * when a new GID entry is written to. Params are consistent until the 2434 * next call of add_gid or delete_gid. The function should return 0 on 2435 * success or error otherwise. The function could be called 2436 * concurrently for different ports. This function is only called when 2437 * roce_gid_table is used. 2438 */ 2439 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2440 /** 2441 * When calling del_gid, the HW vendor's driver should delete the 2442 * gid of device @device at gid index gid_index of port port_num 2443 * available in @attr. 2444 * Upon the deletion of a GID entry, the HW vendor must free any 2445 * allocated memory. The caller will clear @context afterwards. 2446 * This function is only called when roce_gid_table is used. 2447 */ 2448 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2449 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2450 u16 *pkey); 2451 int (*alloc_ucontext)(struct ib_ucontext *context, 2452 struct ib_udata *udata); 2453 void (*dealloc_ucontext)(struct ib_ucontext *context); 2454 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2455 /** 2456 * This will be called once refcount of an entry in mmap_xa reaches 2457 * zero. The type of the memory that was mapped may differ between 2458 * entries and is opaque to the rdma_user_mmap interface. 2459 * Therefore needs to be implemented by the driver in mmap_free. 2460 */ 2461 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2462 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2463 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2464 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2465 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2466 struct ib_udata *udata); 2467 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2468 struct ib_udata *udata); 2469 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2470 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2471 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2472 int (*create_srq)(struct ib_srq *srq, 2473 struct ib_srq_init_attr *srq_init_attr, 2474 struct ib_udata *udata); 2475 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2476 enum ib_srq_attr_mask srq_attr_mask, 2477 struct ib_udata *udata); 2478 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2479 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2480 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2481 struct ib_udata *udata); 2482 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2483 int qp_attr_mask, struct ib_udata *udata); 2484 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2485 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2486 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2487 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2488 struct uverbs_attr_bundle *attrs); 2489 int (*create_cq_umem)(struct ib_cq *cq, 2490 const struct ib_cq_init_attr *attr, 2491 struct ib_umem *umem, 2492 struct uverbs_attr_bundle *attrs); 2493 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2494 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2495 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2496 /** 2497 * pre_destroy_cq - Prevent a cq from generating any new work 2498 * completions, but not free any kernel resources 2499 */ 2500 int (*pre_destroy_cq)(struct ib_cq *cq); 2501 /** 2502 * post_destroy_cq - Free all kernel resources 2503 */ 2504 void (*post_destroy_cq)(struct ib_cq *cq); 2505 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2506 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2507 u64 virt_addr, int mr_access_flags, 2508 struct ib_udata *udata); 2509 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2510 u64 length, u64 virt_addr, int fd, 2511 int mr_access_flags, 2512 struct uverbs_attr_bundle *attrs); 2513 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2514 u64 length, u64 virt_addr, 2515 int mr_access_flags, struct ib_pd *pd, 2516 struct ib_udata *udata); 2517 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2518 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2519 u32 max_num_sg); 2520 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2521 u32 max_num_data_sg, 2522 u32 max_num_meta_sg); 2523 int (*advise_mr)(struct ib_pd *pd, 2524 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2525 struct ib_sge *sg_list, u32 num_sge, 2526 struct uverbs_attr_bundle *attrs); 2527 2528 /* 2529 * Kernel users should universally support relaxed ordering (RO), as 2530 * they are designed to read data only after observing the CQE and use 2531 * the DMA API correctly. 2532 * 2533 * Some drivers implicitly enable RO if platform supports it. 2534 */ 2535 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2536 unsigned int *sg_offset); 2537 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2538 struct ib_mr_status *mr_status); 2539 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2540 int (*dealloc_mw)(struct ib_mw *mw); 2541 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2542 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2543 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2544 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2545 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2546 struct ib_flow_attr *flow_attr, 2547 struct ib_udata *udata); 2548 int (*destroy_flow)(struct ib_flow *flow_id); 2549 int (*destroy_flow_action)(struct ib_flow_action *action); 2550 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2551 int state); 2552 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2553 struct ifla_vf_info *ivf); 2554 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2555 struct ifla_vf_stats *stats); 2556 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2557 struct ifla_vf_guid *node_guid, 2558 struct ifla_vf_guid *port_guid); 2559 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2560 int type); 2561 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2562 struct ib_wq_init_attr *init_attr, 2563 struct ib_udata *udata); 2564 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2565 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2566 u32 wq_attr_mask, struct ib_udata *udata); 2567 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2568 struct ib_rwq_ind_table_init_attr *init_attr, 2569 struct ib_udata *udata); 2570 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2571 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2572 struct ib_ucontext *context, 2573 struct ib_dm_alloc_attr *attr, 2574 struct uverbs_attr_bundle *attrs); 2575 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2576 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2577 struct ib_dm_mr_attr *attr, 2578 struct uverbs_attr_bundle *attrs); 2579 int (*create_counters)(struct ib_counters *counters, 2580 struct uverbs_attr_bundle *attrs); 2581 int (*destroy_counters)(struct ib_counters *counters); 2582 int (*read_counters)(struct ib_counters *counters, 2583 struct ib_counters_read_attr *counters_read_attr, 2584 struct uverbs_attr_bundle *attrs); 2585 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2586 int data_sg_nents, unsigned int *data_sg_offset, 2587 struct scatterlist *meta_sg, int meta_sg_nents, 2588 unsigned int *meta_sg_offset); 2589 2590 /** 2591 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2592 * fill in the driver initialized data. The struct is kfree()'ed by 2593 * the sysfs core when the device is removed. A lifespan of -1 in the 2594 * return struct tells the core to set a default lifespan. 2595 */ 2596 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2597 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2598 u32 port_num); 2599 /** 2600 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2601 * @index - The index in the value array we wish to have updated, or 2602 * num_counters if we want all stats updated 2603 * Return codes - 2604 * < 0 - Error, no counters updated 2605 * index - Updated the single counter pointed to by index 2606 * num_counters - Updated all counters (will reset the timestamp 2607 * and prevent further calls for lifespan milliseconds) 2608 * Drivers are allowed to update all counters in leiu of just the 2609 * one given in index at their option 2610 */ 2611 int (*get_hw_stats)(struct ib_device *device, 2612 struct rdma_hw_stats *stats, u32 port, int index); 2613 2614 /** 2615 * modify_hw_stat - Modify the counter configuration 2616 * @enable: true/false when enable/disable a counter 2617 * Return codes - 0 on success or error code otherwise. 2618 */ 2619 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2620 unsigned int counter_index, bool enable); 2621 /** 2622 * Allows rdma drivers to add their own restrack attributes. 2623 */ 2624 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2625 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2626 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2627 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2628 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2629 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2630 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2631 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq); 2632 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq); 2633 2634 /* Device lifecycle callbacks */ 2635 /* 2636 * Called after the device becomes registered, before clients are 2637 * attached 2638 */ 2639 int (*enable_driver)(struct ib_device *dev); 2640 /* 2641 * This is called as part of ib_dealloc_device(). 2642 */ 2643 void (*dealloc_driver)(struct ib_device *dev); 2644 2645 /* iWarp CM callbacks */ 2646 void (*iw_add_ref)(struct ib_qp *qp); 2647 void (*iw_rem_ref)(struct ib_qp *qp); 2648 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2649 int (*iw_connect)(struct iw_cm_id *cm_id, 2650 struct iw_cm_conn_param *conn_param); 2651 int (*iw_accept)(struct iw_cm_id *cm_id, 2652 struct iw_cm_conn_param *conn_param); 2653 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2654 u8 pdata_len); 2655 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2656 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2657 /** 2658 * counter_bind_qp - Bind a QP to a counter. 2659 * @counter - The counter to be bound. If counter->id is zero then 2660 * the driver needs to allocate a new counter and set counter->id 2661 */ 2662 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp, 2663 u32 port); 2664 /** 2665 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2666 * counter and bind it onto the default one 2667 */ 2668 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port); 2669 /** 2670 * counter_dealloc -De-allocate the hw counter 2671 */ 2672 int (*counter_dealloc)(struct rdma_counter *counter); 2673 /** 2674 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2675 * the driver initialized data. 2676 */ 2677 struct rdma_hw_stats *(*counter_alloc_stats)( 2678 struct rdma_counter *counter); 2679 /** 2680 * counter_update_stats - Query the stats value of this counter 2681 */ 2682 int (*counter_update_stats)(struct rdma_counter *counter); 2683 2684 /** 2685 * counter_init - Initialize the driver specific rdma counter struct. 2686 */ 2687 void (*counter_init)(struct rdma_counter *counter); 2688 2689 /** 2690 * Allows rdma drivers to add their own restrack attributes 2691 * dumped via 'rdma stat' iproute2 command. 2692 */ 2693 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2694 2695 /* query driver for its ucontext properties */ 2696 int (*query_ucontext)(struct ib_ucontext *context, 2697 struct uverbs_attr_bundle *attrs); 2698 2699 /* 2700 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2701 * Everyone else relies on Linux memory management model. 2702 */ 2703 int (*get_numa_node)(struct ib_device *dev); 2704 2705 /** 2706 * add_sub_dev - Add a sub IB device 2707 */ 2708 struct ib_device *(*add_sub_dev)(struct ib_device *parent, 2709 enum rdma_nl_dev_type type, 2710 const char *name); 2711 2712 /** 2713 * del_sub_dev - Delete a sub IB device 2714 */ 2715 void (*del_sub_dev)(struct ib_device *sub_dev); 2716 2717 /** 2718 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside 2719 * the ufile. 2720 */ 2721 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile); 2722 2723 /** 2724 * report_port_event - Drivers need to implement this if they have 2725 * some private stuff to handle when link status changes. 2726 */ 2727 void (*report_port_event)(struct ib_device *ibdev, 2728 struct net_device *ndev, unsigned long event); 2729 2730 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2731 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2732 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2733 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2734 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2735 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2736 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2737 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2738 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2739 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2740 DECLARE_RDMA_OBJ_SIZE(rdma_counter); 2741 }; 2742 2743 struct ib_core_device { 2744 /* device must be the first element in structure until, 2745 * union of ib_core_device and device exists in ib_device. 2746 */ 2747 struct device dev; 2748 possible_net_t rdma_net; 2749 struct kobject *ports_kobj; 2750 struct list_head port_list; 2751 struct ib_device *owner; /* reach back to owner ib_device */ 2752 }; 2753 2754 struct rdma_restrack_root; 2755 struct ib_device { 2756 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2757 struct device *dma_device; 2758 struct ib_device_ops ops; 2759 char name[IB_DEVICE_NAME_MAX]; 2760 struct rcu_head rcu_head; 2761 2762 struct list_head event_handler_list; 2763 /* Protects event_handler_list */ 2764 struct rw_semaphore event_handler_rwsem; 2765 2766 /* Protects QP's event_handler calls and open_qp list */ 2767 spinlock_t qp_open_list_lock; 2768 2769 struct rw_semaphore client_data_rwsem; 2770 struct xarray client_data; 2771 struct mutex unregistration_lock; 2772 2773 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2774 rwlock_t cache_lock; 2775 /** 2776 * port_data is indexed by port number 2777 */ 2778 struct ib_port_data *port_data; 2779 2780 int num_comp_vectors; 2781 2782 union { 2783 struct device dev; 2784 struct ib_core_device coredev; 2785 }; 2786 2787 /* First group is for device attributes, 2788 * Second group is for driver provided attributes (optional). 2789 * Third group is for the hw_stats 2790 * It is a NULL terminated array. 2791 */ 2792 const struct attribute_group *groups[4]; 2793 u8 hw_stats_attr_index; 2794 2795 u64 uverbs_cmd_mask; 2796 2797 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2798 __be64 node_guid; 2799 u32 local_dma_lkey; 2800 u16 is_switch:1; 2801 /* Indicates kernel verbs support, should not be used in drivers */ 2802 u16 kverbs_provider:1; 2803 /* CQ adaptive moderation (RDMA DIM) */ 2804 u16 use_cq_dim:1; 2805 u8 node_type; 2806 u32 phys_port_cnt; 2807 struct ib_device_attr attrs; 2808 struct hw_stats_device_data *hw_stats_data; 2809 2810 #ifdef CONFIG_CGROUP_RDMA 2811 struct rdmacg_device cg_device; 2812 #endif 2813 2814 u32 index; 2815 2816 spinlock_t cq_pools_lock; 2817 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2818 2819 struct rdma_restrack_root *res; 2820 2821 const struct uapi_definition *driver_def; 2822 2823 /* 2824 * Positive refcount indicates that the device is currently 2825 * registered and cannot be unregistered. 2826 */ 2827 refcount_t refcount; 2828 struct completion unreg_completion; 2829 struct work_struct unregistration_work; 2830 2831 const struct rdma_link_ops *link_ops; 2832 2833 /* Protects compat_devs xarray modifications */ 2834 struct mutex compat_devs_mutex; 2835 /* Maintains compat devices for each net namespace */ 2836 struct xarray compat_devs; 2837 2838 /* Used by iWarp CM */ 2839 char iw_ifname[IFNAMSIZ]; 2840 u32 iw_driver_flags; 2841 u32 lag_flags; 2842 2843 /* A parent device has a list of sub-devices */ 2844 struct mutex subdev_lock; 2845 struct list_head subdev_list_head; 2846 2847 /* A sub device has a type and a parent */ 2848 enum rdma_nl_dev_type type; 2849 struct ib_device *parent; 2850 struct list_head subdev_list; 2851 2852 enum rdma_nl_name_assign_type name_assign_type; 2853 }; 2854 2855 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2856 gfp_t gfp, bool is_numa_aware) 2857 { 2858 if (is_numa_aware && dev->ops.get_numa_node) 2859 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2860 2861 return kzalloc(size, gfp); 2862 } 2863 2864 struct ib_client_nl_info; 2865 struct ib_client { 2866 const char *name; 2867 int (*add)(struct ib_device *ibdev); 2868 void (*remove)(struct ib_device *, void *client_data); 2869 void (*rename)(struct ib_device *dev, void *client_data); 2870 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2871 struct ib_client_nl_info *res); 2872 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2873 2874 /* Returns the net_dev belonging to this ib_client and matching the 2875 * given parameters. 2876 * @dev: An RDMA device that the net_dev use for communication. 2877 * @port: A physical port number on the RDMA device. 2878 * @pkey: P_Key that the net_dev uses if applicable. 2879 * @gid: A GID that the net_dev uses to communicate. 2880 * @addr: An IP address the net_dev is configured with. 2881 * @client_data: The device's client data set by ib_set_client_data(). 2882 * 2883 * An ib_client that implements a net_dev on top of RDMA devices 2884 * (such as IP over IB) should implement this callback, allowing the 2885 * rdma_cm module to find the right net_dev for a given request. 2886 * 2887 * The caller is responsible for calling dev_put on the returned 2888 * netdev. */ 2889 struct net_device *(*get_net_dev_by_params)( 2890 struct ib_device *dev, 2891 u32 port, 2892 u16 pkey, 2893 const union ib_gid *gid, 2894 const struct sockaddr *addr, 2895 void *client_data); 2896 2897 refcount_t uses; 2898 struct completion uses_zero; 2899 u32 client_id; 2900 2901 /* kverbs are not required by the client */ 2902 u8 no_kverbs_req:1; 2903 }; 2904 2905 /* 2906 * IB block DMA iterator 2907 * 2908 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2909 * to a HW supported page size. 2910 */ 2911 struct ib_block_iter { 2912 /* internal states */ 2913 struct scatterlist *__sg; /* sg holding the current aligned block */ 2914 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2915 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */ 2916 unsigned int __sg_nents; /* number of SG entries */ 2917 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2918 unsigned int __pg_bit; /* alignment of current block */ 2919 }; 2920 2921 struct ib_device *_ib_alloc_device(size_t size, struct net *net); 2922 #define ib_alloc_device(drv_struct, member) \ 2923 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2924 BUILD_BUG_ON_ZERO(offsetof( \ 2925 struct drv_struct, member)), \ 2926 &init_net), \ 2927 struct drv_struct, member) 2928 2929 #define ib_alloc_device_with_net(drv_struct, member, net) \ 2930 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2931 BUILD_BUG_ON_ZERO(offsetof( \ 2932 struct drv_struct, member)), net), \ 2933 struct drv_struct, member) 2934 2935 void ib_dealloc_device(struct ib_device *device); 2936 2937 void ib_get_device_fw_str(struct ib_device *device, char *str); 2938 2939 int ib_register_device(struct ib_device *device, const char *name, 2940 struct device *dma_device); 2941 void ib_unregister_device(struct ib_device *device); 2942 void ib_unregister_driver(enum rdma_driver_id driver_id); 2943 void ib_unregister_device_and_put(struct ib_device *device); 2944 void ib_unregister_device_queued(struct ib_device *ib_dev); 2945 2946 int ib_register_client (struct ib_client *client); 2947 void ib_unregister_client(struct ib_client *client); 2948 2949 void __rdma_block_iter_start(struct ib_block_iter *biter, 2950 struct scatterlist *sglist, 2951 unsigned int nents, 2952 unsigned long pgsz); 2953 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2954 2955 /** 2956 * rdma_block_iter_dma_address - get the aligned dma address of the current 2957 * block held by the block iterator. 2958 * @biter: block iterator holding the memory block 2959 */ 2960 static inline dma_addr_t 2961 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2962 { 2963 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2964 } 2965 2966 /** 2967 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2968 * @sglist: sglist to iterate over 2969 * @biter: block iterator holding the memory block 2970 * @nents: maximum number of sg entries to iterate over 2971 * @pgsz: best HW supported page size to use 2972 * 2973 * Callers may use rdma_block_iter_dma_address() to get each 2974 * blocks aligned DMA address. 2975 */ 2976 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2977 for (__rdma_block_iter_start(biter, sglist, nents, \ 2978 pgsz); \ 2979 __rdma_block_iter_next(biter);) 2980 2981 /** 2982 * ib_get_client_data - Get IB client context 2983 * @device:Device to get context for 2984 * @client:Client to get context for 2985 * 2986 * ib_get_client_data() returns the client context data set with 2987 * ib_set_client_data(). This can only be called while the client is 2988 * registered to the device, once the ib_client remove() callback returns this 2989 * cannot be called. 2990 */ 2991 static inline void *ib_get_client_data(struct ib_device *device, 2992 struct ib_client *client) 2993 { 2994 return xa_load(&device->client_data, client->client_id); 2995 } 2996 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2997 void *data); 2998 void ib_set_device_ops(struct ib_device *device, 2999 const struct ib_device_ops *ops); 3000 3001 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 3002 unsigned long pfn, unsigned long size, pgprot_t prot, 3003 struct rdma_user_mmap_entry *entry); 3004 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 3005 struct rdma_user_mmap_entry *entry, 3006 size_t length); 3007 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 3008 struct rdma_user_mmap_entry *entry, 3009 size_t length, u32 min_pgoff, 3010 u32 max_pgoff); 3011 3012 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 3013 void rdma_user_mmap_disassociate(struct ib_device *device); 3014 #else 3015 static inline void rdma_user_mmap_disassociate(struct ib_device *device) 3016 { 3017 } 3018 #endif 3019 3020 static inline int 3021 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 3022 struct rdma_user_mmap_entry *entry, 3023 size_t length, u32 pgoff) 3024 { 3025 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 3026 pgoff); 3027 } 3028 3029 struct rdma_user_mmap_entry * 3030 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 3031 unsigned long pgoff); 3032 struct rdma_user_mmap_entry * 3033 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 3034 struct vm_area_struct *vma); 3035 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 3036 3037 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 3038 3039 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 3040 { 3041 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 3042 } 3043 3044 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 3045 { 3046 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 3047 } 3048 3049 static inline bool ib_is_buffer_cleared(const void __user *p, 3050 size_t len) 3051 { 3052 bool ret; 3053 u8 *buf; 3054 3055 if (len > USHRT_MAX) 3056 return false; 3057 3058 buf = memdup_user(p, len); 3059 if (IS_ERR(buf)) 3060 return false; 3061 3062 ret = !memchr_inv(buf, 0, len); 3063 kfree(buf); 3064 return ret; 3065 } 3066 3067 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 3068 size_t offset, 3069 size_t len) 3070 { 3071 return ib_is_buffer_cleared(udata->inbuf + offset, len); 3072 } 3073 3074 /** 3075 * ib_modify_qp_is_ok - Check that the supplied attribute mask 3076 * contains all required attributes and no attributes not allowed for 3077 * the given QP state transition. 3078 * @cur_state: Current QP state 3079 * @next_state: Next QP state 3080 * @type: QP type 3081 * @mask: Mask of supplied QP attributes 3082 * 3083 * This function is a helper function that a low-level driver's 3084 * modify_qp method can use to validate the consumer's input. It 3085 * checks that cur_state and next_state are valid QP states, that a 3086 * transition from cur_state to next_state is allowed by the IB spec, 3087 * and that the attribute mask supplied is allowed for the transition. 3088 */ 3089 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3090 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3091 3092 void ib_register_event_handler(struct ib_event_handler *event_handler); 3093 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3094 void ib_dispatch_event(const struct ib_event *event); 3095 3096 int ib_query_port(struct ib_device *device, 3097 u32 port_num, struct ib_port_attr *port_attr); 3098 3099 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3100 u32 port_num); 3101 3102 /** 3103 * rdma_cap_ib_switch - Check if the device is IB switch 3104 * @device: Device to check 3105 * 3106 * Device driver is responsible for setting is_switch bit on 3107 * in ib_device structure at init time. 3108 * 3109 * Return: true if the device is IB switch. 3110 */ 3111 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3112 { 3113 return device->is_switch; 3114 } 3115 3116 /** 3117 * rdma_start_port - Return the first valid port number for the device 3118 * specified 3119 * 3120 * @device: Device to be checked 3121 * 3122 * Return start port number 3123 */ 3124 static inline u32 rdma_start_port(const struct ib_device *device) 3125 { 3126 return rdma_cap_ib_switch(device) ? 0 : 1; 3127 } 3128 3129 /** 3130 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3131 * @device - The struct ib_device * to iterate over 3132 * @iter - The unsigned int to store the port number 3133 */ 3134 #define rdma_for_each_port(device, iter) \ 3135 for (iter = rdma_start_port(device + \ 3136 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3137 iter))); \ 3138 iter <= rdma_end_port(device); iter++) 3139 3140 /** 3141 * rdma_end_port - Return the last valid port number for the device 3142 * specified 3143 * 3144 * @device: Device to be checked 3145 * 3146 * Return last port number 3147 */ 3148 static inline u32 rdma_end_port(const struct ib_device *device) 3149 { 3150 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3151 } 3152 3153 static inline int rdma_is_port_valid(const struct ib_device *device, 3154 unsigned int port) 3155 { 3156 return (port >= rdma_start_port(device) && 3157 port <= rdma_end_port(device)); 3158 } 3159 3160 static inline bool rdma_is_grh_required(const struct ib_device *device, 3161 u32 port_num) 3162 { 3163 return device->port_data[port_num].immutable.core_cap_flags & 3164 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3165 } 3166 3167 static inline bool rdma_protocol_ib(const struct ib_device *device, 3168 u32 port_num) 3169 { 3170 return device->port_data[port_num].immutable.core_cap_flags & 3171 RDMA_CORE_CAP_PROT_IB; 3172 } 3173 3174 static inline bool rdma_protocol_roce(const struct ib_device *device, 3175 u32 port_num) 3176 { 3177 return device->port_data[port_num].immutable.core_cap_flags & 3178 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3179 } 3180 3181 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3182 u32 port_num) 3183 { 3184 return device->port_data[port_num].immutable.core_cap_flags & 3185 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3186 } 3187 3188 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3189 u32 port_num) 3190 { 3191 return device->port_data[port_num].immutable.core_cap_flags & 3192 RDMA_CORE_CAP_PROT_ROCE; 3193 } 3194 3195 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3196 u32 port_num) 3197 { 3198 return device->port_data[port_num].immutable.core_cap_flags & 3199 RDMA_CORE_CAP_PROT_IWARP; 3200 } 3201 3202 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3203 u32 port_num) 3204 { 3205 return rdma_protocol_ib(device, port_num) || 3206 rdma_protocol_roce(device, port_num); 3207 } 3208 3209 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3210 u32 port_num) 3211 { 3212 return device->port_data[port_num].immutable.core_cap_flags & 3213 RDMA_CORE_CAP_PROT_RAW_PACKET; 3214 } 3215 3216 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3217 u32 port_num) 3218 { 3219 return device->port_data[port_num].immutable.core_cap_flags & 3220 RDMA_CORE_CAP_PROT_USNIC; 3221 } 3222 3223 /** 3224 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3225 * Management Datagrams. 3226 * @device: Device to check 3227 * @port_num: Port number to check 3228 * 3229 * Management Datagrams (MAD) are a required part of the InfiniBand 3230 * specification and are supported on all InfiniBand devices. A slightly 3231 * extended version are also supported on OPA interfaces. 3232 * 3233 * Return: true if the port supports sending/receiving of MAD packets. 3234 */ 3235 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3236 { 3237 return device->port_data[port_num].immutable.core_cap_flags & 3238 RDMA_CORE_CAP_IB_MAD; 3239 } 3240 3241 /** 3242 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3243 * Management Datagrams. 3244 * @device: Device to check 3245 * @port_num: Port number to check 3246 * 3247 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3248 * datagrams with their own versions. These OPA MADs share many but not all of 3249 * the characteristics of InfiniBand MADs. 3250 * 3251 * OPA MADs differ in the following ways: 3252 * 3253 * 1) MADs are variable size up to 2K 3254 * IBTA defined MADs remain fixed at 256 bytes 3255 * 2) OPA SMPs must carry valid PKeys 3256 * 3) OPA SMP packets are a different format 3257 * 3258 * Return: true if the port supports OPA MAD packet formats. 3259 */ 3260 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3261 { 3262 return device->port_data[port_num].immutable.core_cap_flags & 3263 RDMA_CORE_CAP_OPA_MAD; 3264 } 3265 3266 /** 3267 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3268 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3269 * @device: Device to check 3270 * @port_num: Port number to check 3271 * 3272 * Each InfiniBand node is required to provide a Subnet Management Agent 3273 * that the subnet manager can access. Prior to the fabric being fully 3274 * configured by the subnet manager, the SMA is accessed via a well known 3275 * interface called the Subnet Management Interface (SMI). This interface 3276 * uses directed route packets to communicate with the SM to get around the 3277 * chicken and egg problem of the SM needing to know what's on the fabric 3278 * in order to configure the fabric, and needing to configure the fabric in 3279 * order to send packets to the devices on the fabric. These directed 3280 * route packets do not need the fabric fully configured in order to reach 3281 * their destination. The SMI is the only method allowed to send 3282 * directed route packets on an InfiniBand fabric. 3283 * 3284 * Return: true if the port provides an SMI. 3285 */ 3286 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3287 { 3288 return device->port_data[port_num].immutable.core_cap_flags & 3289 RDMA_CORE_CAP_IB_SMI; 3290 } 3291 3292 /** 3293 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3294 * Communication Manager. 3295 * @device: Device to check 3296 * @port_num: Port number to check 3297 * 3298 * The InfiniBand Communication Manager is one of many pre-defined General 3299 * Service Agents (GSA) that are accessed via the General Service 3300 * Interface (GSI). It's role is to facilitate establishment of connections 3301 * between nodes as well as other management related tasks for established 3302 * connections. 3303 * 3304 * Return: true if the port supports an IB CM (this does not guarantee that 3305 * a CM is actually running however). 3306 */ 3307 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3308 { 3309 return device->port_data[port_num].immutable.core_cap_flags & 3310 RDMA_CORE_CAP_IB_CM; 3311 } 3312 3313 /** 3314 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3315 * Communication Manager. 3316 * @device: Device to check 3317 * @port_num: Port number to check 3318 * 3319 * Similar to above, but specific to iWARP connections which have a different 3320 * managment protocol than InfiniBand. 3321 * 3322 * Return: true if the port supports an iWARP CM (this does not guarantee that 3323 * a CM is actually running however). 3324 */ 3325 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3326 { 3327 return device->port_data[port_num].immutable.core_cap_flags & 3328 RDMA_CORE_CAP_IW_CM; 3329 } 3330 3331 /** 3332 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3333 * Subnet Administration. 3334 * @device: Device to check 3335 * @port_num: Port number to check 3336 * 3337 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3338 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3339 * fabrics, devices should resolve routes to other hosts by contacting the 3340 * SA to query the proper route. 3341 * 3342 * Return: true if the port should act as a client to the fabric Subnet 3343 * Administration interface. This does not imply that the SA service is 3344 * running locally. 3345 */ 3346 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3347 { 3348 return device->port_data[port_num].immutable.core_cap_flags & 3349 RDMA_CORE_CAP_IB_SA; 3350 } 3351 3352 /** 3353 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3354 * Multicast. 3355 * @device: Device to check 3356 * @port_num: Port number to check 3357 * 3358 * InfiniBand multicast registration is more complex than normal IPv4 or 3359 * IPv6 multicast registration. Each Host Channel Adapter must register 3360 * with the Subnet Manager when it wishes to join a multicast group. It 3361 * should do so only once regardless of how many queue pairs it subscribes 3362 * to this group. And it should leave the group only after all queue pairs 3363 * attached to the group have been detached. 3364 * 3365 * Return: true if the port must undertake the additional adminstrative 3366 * overhead of registering/unregistering with the SM and tracking of the 3367 * total number of queue pairs attached to the multicast group. 3368 */ 3369 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3370 u32 port_num) 3371 { 3372 return rdma_cap_ib_sa(device, port_num); 3373 } 3374 3375 /** 3376 * rdma_cap_af_ib - Check if the port of device has the capability 3377 * Native Infiniband Address. 3378 * @device: Device to check 3379 * @port_num: Port number to check 3380 * 3381 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3382 * GID. RoCE uses a different mechanism, but still generates a GID via 3383 * a prescribed mechanism and port specific data. 3384 * 3385 * Return: true if the port uses a GID address to identify devices on the 3386 * network. 3387 */ 3388 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3389 { 3390 return device->port_data[port_num].immutable.core_cap_flags & 3391 RDMA_CORE_CAP_AF_IB; 3392 } 3393 3394 /** 3395 * rdma_cap_eth_ah - Check if the port of device has the capability 3396 * Ethernet Address Handle. 3397 * @device: Device to check 3398 * @port_num: Port number to check 3399 * 3400 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3401 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3402 * port. Normally, packet headers are generated by the sending host 3403 * adapter, but when sending connectionless datagrams, we must manually 3404 * inject the proper headers for the fabric we are communicating over. 3405 * 3406 * Return: true if we are running as a RoCE port and must force the 3407 * addition of a Global Route Header built from our Ethernet Address 3408 * Handle into our header list for connectionless packets. 3409 */ 3410 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3411 { 3412 return device->port_data[port_num].immutable.core_cap_flags & 3413 RDMA_CORE_CAP_ETH_AH; 3414 } 3415 3416 /** 3417 * rdma_cap_opa_ah - Check if the port of device supports 3418 * OPA Address handles 3419 * @device: Device to check 3420 * @port_num: Port number to check 3421 * 3422 * Return: true if we are running on an OPA device which supports 3423 * the extended OPA addressing. 3424 */ 3425 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3426 { 3427 return (device->port_data[port_num].immutable.core_cap_flags & 3428 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3429 } 3430 3431 /** 3432 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3433 * 3434 * @device: Device 3435 * @port_num: Port number 3436 * 3437 * This MAD size includes the MAD headers and MAD payload. No other headers 3438 * are included. 3439 * 3440 * Return the max MAD size required by the Port. Will return 0 if the port 3441 * does not support MADs 3442 */ 3443 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3444 u32 port_num) 3445 { 3446 return device->port_data[port_num].immutable.max_mad_size; 3447 } 3448 3449 /** 3450 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3451 * @device: Device to check 3452 * @port_num: Port number to check 3453 * 3454 * RoCE GID table mechanism manages the various GIDs for a device. 3455 * 3456 * NOTE: if allocating the port's GID table has failed, this call will still 3457 * return true, but any RoCE GID table API will fail. 3458 * 3459 * Return: true if the port uses RoCE GID table mechanism in order to manage 3460 * its GIDs. 3461 */ 3462 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3463 u32 port_num) 3464 { 3465 return rdma_protocol_roce(device, port_num) && 3466 device->ops.add_gid && device->ops.del_gid; 3467 } 3468 3469 /* 3470 * Check if the device supports READ W/ INVALIDATE. 3471 */ 3472 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3473 { 3474 /* 3475 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3476 * has support for it yet. 3477 */ 3478 return rdma_protocol_iwarp(dev, port_num); 3479 } 3480 3481 /** 3482 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3483 * @device: Device 3484 * @port_num: 1 based Port number 3485 * 3486 * Return true if port is an Intel OPA port , false if not 3487 */ 3488 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3489 u32 port_num) 3490 { 3491 return (device->port_data[port_num].immutable.core_cap_flags & 3492 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3493 } 3494 3495 /** 3496 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3497 * @device: Device 3498 * @port_num: Port number 3499 * @mtu: enum value of MTU 3500 * 3501 * Return the MTU size supported by the port as an integer value. Will return 3502 * -1 if enum value of mtu is not supported. 3503 */ 3504 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3505 int mtu) 3506 { 3507 if (rdma_core_cap_opa_port(device, port)) 3508 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3509 else 3510 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3511 } 3512 3513 /** 3514 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3515 * @device: Device 3516 * @port_num: Port number 3517 * @attr: port attribute 3518 * 3519 * Return the MTU size supported by the port as an integer value. 3520 */ 3521 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3522 struct ib_port_attr *attr) 3523 { 3524 if (rdma_core_cap_opa_port(device, port)) 3525 return attr->phys_mtu; 3526 else 3527 return ib_mtu_enum_to_int(attr->max_mtu); 3528 } 3529 3530 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3531 int state); 3532 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3533 struct ifla_vf_info *info); 3534 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3535 struct ifla_vf_stats *stats); 3536 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3537 struct ifla_vf_guid *node_guid, 3538 struct ifla_vf_guid *port_guid); 3539 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3540 int type); 3541 3542 int ib_query_pkey(struct ib_device *device, 3543 u32 port_num, u16 index, u16 *pkey); 3544 3545 int ib_modify_device(struct ib_device *device, 3546 int device_modify_mask, 3547 struct ib_device_modify *device_modify); 3548 3549 int ib_modify_port(struct ib_device *device, 3550 u32 port_num, int port_modify_mask, 3551 struct ib_port_modify *port_modify); 3552 3553 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3554 u32 *port_num, u16 *index); 3555 3556 int ib_find_pkey(struct ib_device *device, 3557 u32 port_num, u16 pkey, u16 *index); 3558 3559 enum ib_pd_flags { 3560 /* 3561 * Create a memory registration for all memory in the system and place 3562 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3563 * ULPs to avoid the overhead of dynamic MRs. 3564 * 3565 * This flag is generally considered unsafe and must only be used in 3566 * extremly trusted environments. Every use of it will log a warning 3567 * in the kernel log. 3568 */ 3569 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3570 }; 3571 3572 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3573 const char *caller); 3574 3575 /** 3576 * ib_alloc_pd - Allocates an unused protection domain. 3577 * @device: The device on which to allocate the protection domain. 3578 * @flags: protection domain flags 3579 * 3580 * A protection domain object provides an association between QPs, shared 3581 * receive queues, address handles, memory regions, and memory windows. 3582 * 3583 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3584 * memory operations. 3585 */ 3586 #define ib_alloc_pd(device, flags) \ 3587 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3588 3589 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3590 3591 /** 3592 * ib_dealloc_pd - Deallocate kernel PD 3593 * @pd: The protection domain 3594 * 3595 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3596 */ 3597 static inline void ib_dealloc_pd(struct ib_pd *pd) 3598 { 3599 int ret = ib_dealloc_pd_user(pd, NULL); 3600 3601 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3602 } 3603 3604 enum rdma_create_ah_flags { 3605 /* In a sleepable context */ 3606 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3607 }; 3608 3609 /** 3610 * rdma_create_ah - Creates an address handle for the given address vector. 3611 * @pd: The protection domain associated with the address handle. 3612 * @ah_attr: The attributes of the address vector. 3613 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3614 * 3615 * The address handle is used to reference a local or global destination 3616 * in all UD QP post sends. 3617 */ 3618 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3619 u32 flags); 3620 3621 /** 3622 * rdma_create_user_ah - Creates an address handle for the given address vector. 3623 * It resolves destination mac address for ah attribute of RoCE type. 3624 * @pd: The protection domain associated with the address handle. 3625 * @ah_attr: The attributes of the address vector. 3626 * @udata: pointer to user's input output buffer information need by 3627 * provider driver. 3628 * 3629 * It returns 0 on success and returns appropriate error code on error. 3630 * The address handle is used to reference a local or global destination 3631 * in all UD QP post sends. 3632 */ 3633 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3634 struct rdma_ah_attr *ah_attr, 3635 struct ib_udata *udata); 3636 /** 3637 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3638 * work completion. 3639 * @hdr: the L3 header to parse 3640 * @net_type: type of header to parse 3641 * @sgid: place to store source gid 3642 * @dgid: place to store destination gid 3643 */ 3644 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3645 enum rdma_network_type net_type, 3646 union ib_gid *sgid, union ib_gid *dgid); 3647 3648 /** 3649 * ib_get_rdma_header_version - Get the header version 3650 * @hdr: the L3 header to parse 3651 */ 3652 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3653 3654 /** 3655 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3656 * work completion. 3657 * @device: Device on which the received message arrived. 3658 * @port_num: Port on which the received message arrived. 3659 * @wc: Work completion associated with the received message. 3660 * @grh: References the received global route header. This parameter is 3661 * ignored unless the work completion indicates that the GRH is valid. 3662 * @ah_attr: Returned attributes that can be used when creating an address 3663 * handle for replying to the message. 3664 * When ib_init_ah_attr_from_wc() returns success, 3665 * (a) for IB link layer it optionally contains a reference to SGID attribute 3666 * when GRH is present for IB link layer. 3667 * (b) for RoCE link layer it contains a reference to SGID attribute. 3668 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3669 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3670 * 3671 */ 3672 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3673 const struct ib_wc *wc, const struct ib_grh *grh, 3674 struct rdma_ah_attr *ah_attr); 3675 3676 /** 3677 * ib_create_ah_from_wc - Creates an address handle associated with the 3678 * sender of the specified work completion. 3679 * @pd: The protection domain associated with the address handle. 3680 * @wc: Work completion information associated with a received message. 3681 * @grh: References the received global route header. This parameter is 3682 * ignored unless the work completion indicates that the GRH is valid. 3683 * @port_num: The outbound port number to associate with the address. 3684 * 3685 * The address handle is used to reference a local or global destination 3686 * in all UD QP post sends. 3687 */ 3688 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3689 const struct ib_grh *grh, u32 port_num); 3690 3691 /** 3692 * rdma_modify_ah - Modifies the address vector associated with an address 3693 * handle. 3694 * @ah: The address handle to modify. 3695 * @ah_attr: The new address vector attributes to associate with the 3696 * address handle. 3697 */ 3698 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3699 3700 /** 3701 * rdma_query_ah - Queries the address vector associated with an address 3702 * handle. 3703 * @ah: The address handle to query. 3704 * @ah_attr: The address vector attributes associated with the address 3705 * handle. 3706 */ 3707 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3708 3709 enum rdma_destroy_ah_flags { 3710 /* In a sleepable context */ 3711 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3712 }; 3713 3714 /** 3715 * rdma_destroy_ah_user - Destroys an address handle. 3716 * @ah: The address handle to destroy. 3717 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3718 * @udata: Valid user data or NULL for kernel objects 3719 */ 3720 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3721 3722 /** 3723 * rdma_destroy_ah - Destroys an kernel address handle. 3724 * @ah: The address handle to destroy. 3725 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3726 * 3727 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3728 */ 3729 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3730 { 3731 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3732 3733 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3734 } 3735 3736 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3737 struct ib_srq_init_attr *srq_init_attr, 3738 struct ib_usrq_object *uobject, 3739 struct ib_udata *udata); 3740 static inline struct ib_srq * 3741 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3742 { 3743 if (!pd->device->ops.create_srq) 3744 return ERR_PTR(-EOPNOTSUPP); 3745 3746 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3747 } 3748 3749 /** 3750 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3751 * @srq: The SRQ to modify. 3752 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3753 * the current values of selected SRQ attributes are returned. 3754 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3755 * are being modified. 3756 * 3757 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3758 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3759 * the number of receives queued drops below the limit. 3760 */ 3761 int ib_modify_srq(struct ib_srq *srq, 3762 struct ib_srq_attr *srq_attr, 3763 enum ib_srq_attr_mask srq_attr_mask); 3764 3765 /** 3766 * ib_query_srq - Returns the attribute list and current values for the 3767 * specified SRQ. 3768 * @srq: The SRQ to query. 3769 * @srq_attr: The attributes of the specified SRQ. 3770 */ 3771 int ib_query_srq(struct ib_srq *srq, 3772 struct ib_srq_attr *srq_attr); 3773 3774 /** 3775 * ib_destroy_srq_user - Destroys the specified SRQ. 3776 * @srq: The SRQ to destroy. 3777 * @udata: Valid user data or NULL for kernel objects 3778 */ 3779 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3780 3781 /** 3782 * ib_destroy_srq - Destroys the specified kernel SRQ. 3783 * @srq: The SRQ to destroy. 3784 * 3785 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3786 */ 3787 static inline void ib_destroy_srq(struct ib_srq *srq) 3788 { 3789 int ret = ib_destroy_srq_user(srq, NULL); 3790 3791 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3792 } 3793 3794 /** 3795 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3796 * @srq: The SRQ to post the work request on. 3797 * @recv_wr: A list of work requests to post on the receive queue. 3798 * @bad_recv_wr: On an immediate failure, this parameter will reference 3799 * the work request that failed to be posted on the QP. 3800 */ 3801 static inline int ib_post_srq_recv(struct ib_srq *srq, 3802 const struct ib_recv_wr *recv_wr, 3803 const struct ib_recv_wr **bad_recv_wr) 3804 { 3805 const struct ib_recv_wr *dummy; 3806 3807 return srq->device->ops.post_srq_recv(srq, recv_wr, 3808 bad_recv_wr ? : &dummy); 3809 } 3810 3811 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3812 struct ib_qp_init_attr *qp_init_attr, 3813 const char *caller); 3814 /** 3815 * ib_create_qp - Creates a kernel QP associated with the specific protection 3816 * domain. 3817 * @pd: The protection domain associated with the QP. 3818 * @init_attr: A list of initial attributes required to create the 3819 * QP. If QP creation succeeds, then the attributes are updated to 3820 * the actual capabilities of the created QP. 3821 */ 3822 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3823 struct ib_qp_init_attr *init_attr) 3824 { 3825 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3826 } 3827 3828 /** 3829 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3830 * @qp: The QP to modify. 3831 * @attr: On input, specifies the QP attributes to modify. On output, 3832 * the current values of selected QP attributes are returned. 3833 * @attr_mask: A bit-mask used to specify which attributes of the QP 3834 * are being modified. 3835 * @udata: pointer to user's input output buffer information 3836 * are being modified. 3837 * It returns 0 on success and returns appropriate error code on error. 3838 */ 3839 int ib_modify_qp_with_udata(struct ib_qp *qp, 3840 struct ib_qp_attr *attr, 3841 int attr_mask, 3842 struct ib_udata *udata); 3843 3844 /** 3845 * ib_modify_qp - Modifies the attributes for the specified QP and then 3846 * transitions the QP to the given state. 3847 * @qp: The QP to modify. 3848 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3849 * the current values of selected QP attributes are returned. 3850 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3851 * are being modified. 3852 */ 3853 int ib_modify_qp(struct ib_qp *qp, 3854 struct ib_qp_attr *qp_attr, 3855 int qp_attr_mask); 3856 3857 /** 3858 * ib_query_qp - Returns the attribute list and current values for the 3859 * specified QP. 3860 * @qp: The QP to query. 3861 * @qp_attr: The attributes of the specified QP. 3862 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3863 * @qp_init_attr: Additional attributes of the selected QP. 3864 * 3865 * The qp_attr_mask may be used to limit the query to gathering only the 3866 * selected attributes. 3867 */ 3868 int ib_query_qp(struct ib_qp *qp, 3869 struct ib_qp_attr *qp_attr, 3870 int qp_attr_mask, 3871 struct ib_qp_init_attr *qp_init_attr); 3872 3873 /** 3874 * ib_destroy_qp - Destroys the specified QP. 3875 * @qp: The QP to destroy. 3876 * @udata: Valid udata or NULL for kernel objects 3877 */ 3878 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3879 3880 /** 3881 * ib_destroy_qp - Destroys the specified kernel QP. 3882 * @qp: The QP to destroy. 3883 * 3884 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3885 */ 3886 static inline int ib_destroy_qp(struct ib_qp *qp) 3887 { 3888 return ib_destroy_qp_user(qp, NULL); 3889 } 3890 3891 /** 3892 * ib_open_qp - Obtain a reference to an existing sharable QP. 3893 * @xrcd - XRC domain 3894 * @qp_open_attr: Attributes identifying the QP to open. 3895 * 3896 * Returns a reference to a sharable QP. 3897 */ 3898 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3899 struct ib_qp_open_attr *qp_open_attr); 3900 3901 /** 3902 * ib_close_qp - Release an external reference to a QP. 3903 * @qp: The QP handle to release 3904 * 3905 * The opened QP handle is released by the caller. The underlying 3906 * shared QP is not destroyed until all internal references are released. 3907 */ 3908 int ib_close_qp(struct ib_qp *qp); 3909 3910 /** 3911 * ib_post_send - Posts a list of work requests to the send queue of 3912 * the specified QP. 3913 * @qp: The QP to post the work request on. 3914 * @send_wr: A list of work requests to post on the send queue. 3915 * @bad_send_wr: On an immediate failure, this parameter will reference 3916 * the work request that failed to be posted on the QP. 3917 * 3918 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3919 * error is returned, the QP state shall not be affected, 3920 * ib_post_send() will return an immediate error after queueing any 3921 * earlier work requests in the list. 3922 */ 3923 static inline int ib_post_send(struct ib_qp *qp, 3924 const struct ib_send_wr *send_wr, 3925 const struct ib_send_wr **bad_send_wr) 3926 { 3927 const struct ib_send_wr *dummy; 3928 3929 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3930 } 3931 3932 /** 3933 * ib_post_recv - Posts a list of work requests to the receive queue of 3934 * the specified QP. 3935 * @qp: The QP to post the work request on. 3936 * @recv_wr: A list of work requests to post on the receive queue. 3937 * @bad_recv_wr: On an immediate failure, this parameter will reference 3938 * the work request that failed to be posted on the QP. 3939 */ 3940 static inline int ib_post_recv(struct ib_qp *qp, 3941 const struct ib_recv_wr *recv_wr, 3942 const struct ib_recv_wr **bad_recv_wr) 3943 { 3944 const struct ib_recv_wr *dummy; 3945 3946 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3947 } 3948 3949 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3950 int comp_vector, enum ib_poll_context poll_ctx, 3951 const char *caller); 3952 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3953 int nr_cqe, int comp_vector, 3954 enum ib_poll_context poll_ctx) 3955 { 3956 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3957 KBUILD_MODNAME); 3958 } 3959 3960 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3961 int nr_cqe, enum ib_poll_context poll_ctx, 3962 const char *caller); 3963 3964 /** 3965 * ib_alloc_cq_any: Allocate kernel CQ 3966 * @dev: The IB device 3967 * @private: Private data attached to the CQE 3968 * @nr_cqe: Number of CQEs in the CQ 3969 * @poll_ctx: Context used for polling the CQ 3970 */ 3971 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3972 void *private, int nr_cqe, 3973 enum ib_poll_context poll_ctx) 3974 { 3975 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3976 KBUILD_MODNAME); 3977 } 3978 3979 void ib_free_cq(struct ib_cq *cq); 3980 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3981 3982 /** 3983 * ib_create_cq - Creates a CQ on the specified device. 3984 * @device: The device on which to create the CQ. 3985 * @comp_handler: A user-specified callback that is invoked when a 3986 * completion event occurs on the CQ. 3987 * @event_handler: A user-specified callback that is invoked when an 3988 * asynchronous event not associated with a completion occurs on the CQ. 3989 * @cq_context: Context associated with the CQ returned to the user via 3990 * the associated completion and event handlers. 3991 * @cq_attr: The attributes the CQ should be created upon. 3992 * 3993 * Users can examine the cq structure to determine the actual CQ size. 3994 */ 3995 struct ib_cq *__ib_create_cq(struct ib_device *device, 3996 ib_comp_handler comp_handler, 3997 void (*event_handler)(struct ib_event *, void *), 3998 void *cq_context, 3999 const struct ib_cq_init_attr *cq_attr, 4000 const char *caller); 4001 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 4002 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 4003 4004 /** 4005 * ib_resize_cq - Modifies the capacity of the CQ. 4006 * @cq: The CQ to resize. 4007 * @cqe: The minimum size of the CQ. 4008 * 4009 * Users can examine the cq structure to determine the actual CQ size. 4010 */ 4011 int ib_resize_cq(struct ib_cq *cq, int cqe); 4012 4013 /** 4014 * rdma_set_cq_moderation - Modifies moderation params of the CQ 4015 * @cq: The CQ to modify. 4016 * @cq_count: number of CQEs that will trigger an event 4017 * @cq_period: max period of time in usec before triggering an event 4018 * 4019 */ 4020 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 4021 4022 /** 4023 * ib_destroy_cq_user - Destroys the specified CQ. 4024 * @cq: The CQ to destroy. 4025 * @udata: Valid user data or NULL for kernel objects 4026 */ 4027 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 4028 4029 /** 4030 * ib_destroy_cq - Destroys the specified kernel CQ. 4031 * @cq: The CQ to destroy. 4032 * 4033 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 4034 */ 4035 static inline void ib_destroy_cq(struct ib_cq *cq) 4036 { 4037 int ret = ib_destroy_cq_user(cq, NULL); 4038 4039 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 4040 } 4041 4042 /** 4043 * ib_poll_cq - poll a CQ for completion(s) 4044 * @cq:the CQ being polled 4045 * @num_entries:maximum number of completions to return 4046 * @wc:array of at least @num_entries &struct ib_wc where completions 4047 * will be returned 4048 * 4049 * Poll a CQ for (possibly multiple) completions. If the return value 4050 * is < 0, an error occurred. If the return value is >= 0, it is the 4051 * number of completions returned. If the return value is 4052 * non-negative and < num_entries, then the CQ was emptied. 4053 */ 4054 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 4055 struct ib_wc *wc) 4056 { 4057 return cq->device->ops.poll_cq(cq, num_entries, wc); 4058 } 4059 4060 /** 4061 * ib_req_notify_cq - Request completion notification on a CQ. 4062 * @cq: The CQ to generate an event for. 4063 * @flags: 4064 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 4065 * to request an event on the next solicited event or next work 4066 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 4067 * may also be |ed in to request a hint about missed events, as 4068 * described below. 4069 * 4070 * Return Value: 4071 * < 0 means an error occurred while requesting notification 4072 * == 0 means notification was requested successfully, and if 4073 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 4074 * were missed and it is safe to wait for another event. In 4075 * this case is it guaranteed that any work completions added 4076 * to the CQ since the last CQ poll will trigger a completion 4077 * notification event. 4078 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4079 * in. It means that the consumer must poll the CQ again to 4080 * make sure it is empty to avoid missing an event because of a 4081 * race between requesting notification and an entry being 4082 * added to the CQ. This return value means it is possible 4083 * (but not guaranteed) that a work completion has been added 4084 * to the CQ since the last poll without triggering a 4085 * completion notification event. 4086 */ 4087 static inline int ib_req_notify_cq(struct ib_cq *cq, 4088 enum ib_cq_notify_flags flags) 4089 { 4090 return cq->device->ops.req_notify_cq(cq, flags); 4091 } 4092 4093 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4094 int comp_vector_hint, 4095 enum ib_poll_context poll_ctx); 4096 4097 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4098 4099 /* 4100 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4101 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4102 * address into the dma address. 4103 */ 4104 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4105 { 4106 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4107 } 4108 4109 /* 4110 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4111 */ 4112 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4113 { 4114 if (ib_uses_virt_dma(dev)) 4115 return false; 4116 4117 return dma_pci_p2pdma_supported(dev->dma_device); 4118 } 4119 4120 /** 4121 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4122 * @dma_addr: The DMA address 4123 * 4124 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4125 * going through the dma_addr marshalling. 4126 */ 4127 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4128 { 4129 /* virt_dma mode maps the kvs's directly into the dma addr */ 4130 return (void *)(uintptr_t)dma_addr; 4131 } 4132 4133 /** 4134 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4135 * @dma_addr: The DMA address 4136 * 4137 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4138 * through the dma_addr marshalling. 4139 */ 4140 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4141 { 4142 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4143 } 4144 4145 /** 4146 * ib_dma_mapping_error - check a DMA addr for error 4147 * @dev: The device for which the dma_addr was created 4148 * @dma_addr: The DMA address to check 4149 */ 4150 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4151 { 4152 if (ib_uses_virt_dma(dev)) 4153 return 0; 4154 return dma_mapping_error(dev->dma_device, dma_addr); 4155 } 4156 4157 /** 4158 * ib_dma_map_single - Map a kernel virtual address to DMA address 4159 * @dev: The device for which the dma_addr is to be created 4160 * @cpu_addr: The kernel virtual address 4161 * @size: The size of the region in bytes 4162 * @direction: The direction of the DMA 4163 */ 4164 static inline u64 ib_dma_map_single(struct ib_device *dev, 4165 void *cpu_addr, size_t size, 4166 enum dma_data_direction direction) 4167 { 4168 if (ib_uses_virt_dma(dev)) 4169 return (uintptr_t)cpu_addr; 4170 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4171 } 4172 4173 /** 4174 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4175 * @dev: The device for which the DMA address was created 4176 * @addr: The DMA address 4177 * @size: The size of the region in bytes 4178 * @direction: The direction of the DMA 4179 */ 4180 static inline void ib_dma_unmap_single(struct ib_device *dev, 4181 u64 addr, size_t size, 4182 enum dma_data_direction direction) 4183 { 4184 if (!ib_uses_virt_dma(dev)) 4185 dma_unmap_single(dev->dma_device, addr, size, direction); 4186 } 4187 4188 /** 4189 * ib_dma_map_page - Map a physical page to DMA address 4190 * @dev: The device for which the dma_addr is to be created 4191 * @page: The page to be mapped 4192 * @offset: The offset within the page 4193 * @size: The size of the region in bytes 4194 * @direction: The direction of the DMA 4195 */ 4196 static inline u64 ib_dma_map_page(struct ib_device *dev, 4197 struct page *page, 4198 unsigned long offset, 4199 size_t size, 4200 enum dma_data_direction direction) 4201 { 4202 if (ib_uses_virt_dma(dev)) 4203 return (uintptr_t)(page_address(page) + offset); 4204 return dma_map_page(dev->dma_device, page, offset, size, direction); 4205 } 4206 4207 /** 4208 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4209 * @dev: The device for which the DMA address was created 4210 * @addr: The DMA address 4211 * @size: The size of the region in bytes 4212 * @direction: The direction of the DMA 4213 */ 4214 static inline void ib_dma_unmap_page(struct ib_device *dev, 4215 u64 addr, size_t size, 4216 enum dma_data_direction direction) 4217 { 4218 if (!ib_uses_virt_dma(dev)) 4219 dma_unmap_page(dev->dma_device, addr, size, direction); 4220 } 4221 4222 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4223 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4224 struct scatterlist *sg, int nents, 4225 enum dma_data_direction direction, 4226 unsigned long dma_attrs) 4227 { 4228 if (ib_uses_virt_dma(dev)) 4229 return ib_dma_virt_map_sg(dev, sg, nents); 4230 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4231 dma_attrs); 4232 } 4233 4234 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4235 struct scatterlist *sg, int nents, 4236 enum dma_data_direction direction, 4237 unsigned long dma_attrs) 4238 { 4239 if (!ib_uses_virt_dma(dev)) 4240 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4241 dma_attrs); 4242 } 4243 4244 /** 4245 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4246 * @dev: The device for which the DMA addresses are to be created 4247 * @sg: The sg_table object describing the buffer 4248 * @direction: The direction of the DMA 4249 * @attrs: Optional DMA attributes for the map operation 4250 */ 4251 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4252 struct sg_table *sgt, 4253 enum dma_data_direction direction, 4254 unsigned long dma_attrs) 4255 { 4256 int nents; 4257 4258 if (ib_uses_virt_dma(dev)) { 4259 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4260 if (!nents) 4261 return -EIO; 4262 sgt->nents = nents; 4263 return 0; 4264 } 4265 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4266 } 4267 4268 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4269 struct sg_table *sgt, 4270 enum dma_data_direction direction, 4271 unsigned long dma_attrs) 4272 { 4273 if (!ib_uses_virt_dma(dev)) 4274 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4275 } 4276 4277 /** 4278 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4279 * @dev: The device for which the DMA addresses are to be created 4280 * @sg: The array of scatter/gather entries 4281 * @nents: The number of scatter/gather entries 4282 * @direction: The direction of the DMA 4283 */ 4284 static inline int ib_dma_map_sg(struct ib_device *dev, 4285 struct scatterlist *sg, int nents, 4286 enum dma_data_direction direction) 4287 { 4288 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4289 } 4290 4291 /** 4292 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4293 * @dev: The device for which the DMA addresses were created 4294 * @sg: The array of scatter/gather entries 4295 * @nents: The number of scatter/gather entries 4296 * @direction: The direction of the DMA 4297 */ 4298 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4299 struct scatterlist *sg, int nents, 4300 enum dma_data_direction direction) 4301 { 4302 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4303 } 4304 4305 /** 4306 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4307 * @dev: The device to query 4308 * 4309 * The returned value represents a size in bytes. 4310 */ 4311 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4312 { 4313 if (ib_uses_virt_dma(dev)) 4314 return UINT_MAX; 4315 return dma_get_max_seg_size(dev->dma_device); 4316 } 4317 4318 /** 4319 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4320 * @dev: The device for which the DMA address was created 4321 * @addr: The DMA address 4322 * @size: The size of the region in bytes 4323 * @dir: The direction of the DMA 4324 */ 4325 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4326 u64 addr, 4327 size_t size, 4328 enum dma_data_direction dir) 4329 { 4330 if (!ib_uses_virt_dma(dev)) 4331 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4332 } 4333 4334 /** 4335 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4336 * @dev: The device for which the DMA address was created 4337 * @addr: The DMA address 4338 * @size: The size of the region in bytes 4339 * @dir: The direction of the DMA 4340 */ 4341 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4342 u64 addr, 4343 size_t size, 4344 enum dma_data_direction dir) 4345 { 4346 if (!ib_uses_virt_dma(dev)) 4347 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4348 } 4349 4350 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4351 * space. This function should be called when 'current' is the owning MM. 4352 */ 4353 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4354 u64 virt_addr, int mr_access_flags); 4355 4356 /* ib_advise_mr - give an advice about an address range in a memory region */ 4357 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4358 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4359 /** 4360 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4361 * HCA translation table. 4362 * @mr: The memory region to deregister. 4363 * @udata: Valid user data or NULL for kernel object 4364 * 4365 * This function can fail, if the memory region has memory windows bound to it. 4366 */ 4367 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4368 4369 /** 4370 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4371 * HCA translation table. 4372 * @mr: The memory region to deregister. 4373 * 4374 * This function can fail, if the memory region has memory windows bound to it. 4375 * 4376 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4377 */ 4378 static inline int ib_dereg_mr(struct ib_mr *mr) 4379 { 4380 return ib_dereg_mr_user(mr, NULL); 4381 } 4382 4383 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4384 u32 max_num_sg); 4385 4386 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4387 u32 max_num_data_sg, 4388 u32 max_num_meta_sg); 4389 4390 /** 4391 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4392 * R_Key and L_Key. 4393 * @mr - struct ib_mr pointer to be updated. 4394 * @newkey - new key to be used. 4395 */ 4396 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4397 { 4398 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4399 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4400 } 4401 4402 /** 4403 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4404 * for calculating a new rkey for type 2 memory windows. 4405 * @rkey - the rkey to increment. 4406 */ 4407 static inline u32 ib_inc_rkey(u32 rkey) 4408 { 4409 const u32 mask = 0x000000ff; 4410 return ((rkey + 1) & mask) | (rkey & ~mask); 4411 } 4412 4413 /** 4414 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4415 * @qp: QP to attach to the multicast group. The QP must be type 4416 * IB_QPT_UD. 4417 * @gid: Multicast group GID. 4418 * @lid: Multicast group LID in host byte order. 4419 * 4420 * In order to send and receive multicast packets, subnet 4421 * administration must have created the multicast group and configured 4422 * the fabric appropriately. The port associated with the specified 4423 * QP must also be a member of the multicast group. 4424 */ 4425 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4426 4427 /** 4428 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4429 * @qp: QP to detach from the multicast group. 4430 * @gid: Multicast group GID. 4431 * @lid: Multicast group LID in host byte order. 4432 */ 4433 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4434 4435 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4436 struct inode *inode, struct ib_udata *udata); 4437 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4438 4439 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4440 unsigned int flags) 4441 { 4442 u64 device_cap = ib_dev->attrs.device_cap_flags; 4443 4444 /* 4445 * Local write permission is required if remote write or 4446 * remote atomic permission is also requested. 4447 */ 4448 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4449 !(flags & IB_ACCESS_LOCAL_WRITE)) 4450 return -EINVAL; 4451 4452 if (flags & ~IB_ACCESS_SUPPORTED) 4453 return -EINVAL; 4454 4455 if (flags & IB_ACCESS_ON_DEMAND && 4456 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4457 return -EOPNOTSUPP; 4458 4459 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4460 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4461 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4462 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4463 return -EOPNOTSUPP; 4464 4465 return 0; 4466 } 4467 4468 static inline bool ib_access_writable(int access_flags) 4469 { 4470 /* 4471 * We have writable memory backing the MR if any of the following 4472 * access flags are set. "Local write" and "remote write" obviously 4473 * require write access. "Remote atomic" can do things like fetch and 4474 * add, which will modify memory, and "MW bind" can change permissions 4475 * by binding a window. 4476 */ 4477 return access_flags & 4478 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4479 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4480 } 4481 4482 /** 4483 * ib_check_mr_status: lightweight check of MR status. 4484 * This routine may provide status checks on a selected 4485 * ib_mr. first use is for signature status check. 4486 * 4487 * @mr: A memory region. 4488 * @check_mask: Bitmask of which checks to perform from 4489 * ib_mr_status_check enumeration. 4490 * @mr_status: The container of relevant status checks. 4491 * failed checks will be indicated in the status bitmask 4492 * and the relevant info shall be in the error item. 4493 */ 4494 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4495 struct ib_mr_status *mr_status); 4496 4497 /** 4498 * ib_device_try_get: Hold a registration lock 4499 * device: The device to lock 4500 * 4501 * A device under an active registration lock cannot become unregistered. It 4502 * is only possible to obtain a registration lock on a device that is fully 4503 * registered, otherwise this function returns false. 4504 * 4505 * The registration lock is only necessary for actions which require the 4506 * device to still be registered. Uses that only require the device pointer to 4507 * be valid should use get_device(&ibdev->dev) to hold the memory. 4508 * 4509 */ 4510 static inline bool ib_device_try_get(struct ib_device *dev) 4511 { 4512 return refcount_inc_not_zero(&dev->refcount); 4513 } 4514 4515 void ib_device_put(struct ib_device *device); 4516 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4517 enum rdma_driver_id driver_id); 4518 struct ib_device *ib_device_get_by_name(const char *name, 4519 enum rdma_driver_id driver_id); 4520 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4521 u16 pkey, const union ib_gid *gid, 4522 const struct sockaddr *addr); 4523 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4524 unsigned int port); 4525 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 4526 u32 port); 4527 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev, 4528 u32 *port); 4529 4530 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev) 4531 { 4532 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ? 4533 IB_PORT_ACTIVE : IB_PORT_DOWN; 4534 } 4535 4536 void ib_dispatch_port_state_event(struct ib_device *ibdev, 4537 struct net_device *ndev); 4538 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4539 struct ib_wq_init_attr *init_attr); 4540 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4541 4542 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4543 unsigned int *sg_offset, unsigned int page_size); 4544 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4545 int data_sg_nents, unsigned int *data_sg_offset, 4546 struct scatterlist *meta_sg, int meta_sg_nents, 4547 unsigned int *meta_sg_offset, unsigned int page_size); 4548 4549 static inline int 4550 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4551 unsigned int *sg_offset, unsigned int page_size) 4552 { 4553 int n; 4554 4555 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4556 mr->iova = 0; 4557 4558 return n; 4559 } 4560 4561 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4562 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4563 4564 void ib_drain_rq(struct ib_qp *qp); 4565 void ib_drain_sq(struct ib_qp *qp); 4566 void ib_drain_qp(struct ib_qp *qp); 4567 4568 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4569 u8 *width); 4570 4571 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4572 { 4573 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4574 return attr->roce.dmac; 4575 return NULL; 4576 } 4577 4578 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4579 { 4580 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4581 attr->ib.dlid = (u16)dlid; 4582 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4583 attr->opa.dlid = dlid; 4584 } 4585 4586 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4587 { 4588 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4589 return attr->ib.dlid; 4590 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4591 return attr->opa.dlid; 4592 return 0; 4593 } 4594 4595 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4596 { 4597 attr->sl = sl; 4598 } 4599 4600 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4601 { 4602 return attr->sl; 4603 } 4604 4605 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4606 u8 src_path_bits) 4607 { 4608 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4609 attr->ib.src_path_bits = src_path_bits; 4610 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4611 attr->opa.src_path_bits = src_path_bits; 4612 } 4613 4614 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4615 { 4616 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4617 return attr->ib.src_path_bits; 4618 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4619 return attr->opa.src_path_bits; 4620 return 0; 4621 } 4622 4623 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4624 bool make_grd) 4625 { 4626 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4627 attr->opa.make_grd = make_grd; 4628 } 4629 4630 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4631 { 4632 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4633 return attr->opa.make_grd; 4634 return false; 4635 } 4636 4637 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4638 { 4639 attr->port_num = port_num; 4640 } 4641 4642 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4643 { 4644 return attr->port_num; 4645 } 4646 4647 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4648 u8 static_rate) 4649 { 4650 attr->static_rate = static_rate; 4651 } 4652 4653 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4654 { 4655 return attr->static_rate; 4656 } 4657 4658 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4659 enum ib_ah_flags flag) 4660 { 4661 attr->ah_flags = flag; 4662 } 4663 4664 static inline enum ib_ah_flags 4665 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4666 { 4667 return attr->ah_flags; 4668 } 4669 4670 static inline const struct ib_global_route 4671 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4672 { 4673 return &attr->grh; 4674 } 4675 4676 /*To retrieve and modify the grh */ 4677 static inline struct ib_global_route 4678 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4679 { 4680 return &attr->grh; 4681 } 4682 4683 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4684 { 4685 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4686 4687 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4688 } 4689 4690 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4691 __be64 prefix) 4692 { 4693 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4694 4695 grh->dgid.global.subnet_prefix = prefix; 4696 } 4697 4698 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4699 __be64 if_id) 4700 { 4701 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4702 4703 grh->dgid.global.interface_id = if_id; 4704 } 4705 4706 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4707 union ib_gid *dgid, u32 flow_label, 4708 u8 sgid_index, u8 hop_limit, 4709 u8 traffic_class) 4710 { 4711 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4712 4713 attr->ah_flags = IB_AH_GRH; 4714 if (dgid) 4715 grh->dgid = *dgid; 4716 grh->flow_label = flow_label; 4717 grh->sgid_index = sgid_index; 4718 grh->hop_limit = hop_limit; 4719 grh->traffic_class = traffic_class; 4720 grh->sgid_attr = NULL; 4721 } 4722 4723 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4724 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4725 u32 flow_label, u8 hop_limit, u8 traffic_class, 4726 const struct ib_gid_attr *sgid_attr); 4727 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4728 const struct rdma_ah_attr *src); 4729 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4730 const struct rdma_ah_attr *new); 4731 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4732 4733 /** 4734 * rdma_ah_find_type - Return address handle type. 4735 * 4736 * @dev: Device to be checked 4737 * @port_num: Port number 4738 */ 4739 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4740 u32 port_num) 4741 { 4742 if (rdma_protocol_roce(dev, port_num)) 4743 return RDMA_AH_ATTR_TYPE_ROCE; 4744 if (rdma_protocol_ib(dev, port_num)) { 4745 if (rdma_cap_opa_ah(dev, port_num)) 4746 return RDMA_AH_ATTR_TYPE_OPA; 4747 return RDMA_AH_ATTR_TYPE_IB; 4748 } 4749 if (dev->type == RDMA_DEVICE_TYPE_SMI) 4750 return RDMA_AH_ATTR_TYPE_IB; 4751 4752 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4753 } 4754 4755 /** 4756 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4757 * In the current implementation the only way to 4758 * get the 32bit lid is from other sources for OPA. 4759 * For IB, lids will always be 16bits so cast the 4760 * value accordingly. 4761 * 4762 * @lid: A 32bit LID 4763 */ 4764 static inline u16 ib_lid_cpu16(u32 lid) 4765 { 4766 WARN_ON_ONCE(lid & 0xFFFF0000); 4767 return (u16)lid; 4768 } 4769 4770 /** 4771 * ib_lid_be16 - Return lid in 16bit BE encoding. 4772 * 4773 * @lid: A 32bit LID 4774 */ 4775 static inline __be16 ib_lid_be16(u32 lid) 4776 { 4777 WARN_ON_ONCE(lid & 0xFFFF0000); 4778 return cpu_to_be16((u16)lid); 4779 } 4780 4781 /** 4782 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4783 * vector 4784 * @device: the rdma device 4785 * @comp_vector: index of completion vector 4786 * 4787 * Returns NULL on failure, otherwise a corresponding cpu map of the 4788 * completion vector (returns all-cpus map if the device driver doesn't 4789 * implement get_vector_affinity). 4790 */ 4791 static inline const struct cpumask * 4792 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4793 { 4794 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4795 !device->ops.get_vector_affinity) 4796 return NULL; 4797 4798 return device->ops.get_vector_affinity(device, comp_vector); 4799 4800 } 4801 4802 /** 4803 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4804 * and add their gids, as needed, to the relevant RoCE devices. 4805 * 4806 * @device: the rdma device 4807 */ 4808 void rdma_roce_rescan_device(struct ib_device *ibdev); 4809 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port); 4810 void roce_del_all_netdev_gids(struct ib_device *ib_dev, 4811 u32 port, struct net_device *ndev); 4812 4813 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4814 4815 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 4816 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4817 bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs); 4818 #else 4819 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs) 4820 { 4821 return 0; 4822 } 4823 static inline bool 4824 rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs) 4825 { 4826 return false; 4827 } 4828 #endif 4829 4830 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4831 enum rdma_netdev_t type, const char *name, 4832 unsigned char name_assign_type, 4833 void (*setup)(struct net_device *)); 4834 4835 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4836 enum rdma_netdev_t type, const char *name, 4837 unsigned char name_assign_type, 4838 void (*setup)(struct net_device *), 4839 struct net_device *netdev); 4840 4841 /** 4842 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4843 * 4844 * @device: device pointer for which ib_device pointer to retrieve 4845 * 4846 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4847 * 4848 */ 4849 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4850 { 4851 struct ib_core_device *coredev = 4852 container_of(device, struct ib_core_device, dev); 4853 4854 return coredev->owner; 4855 } 4856 4857 /** 4858 * ibdev_to_node - return the NUMA node for a given ib_device 4859 * @dev: device to get the NUMA node for. 4860 */ 4861 static inline int ibdev_to_node(struct ib_device *ibdev) 4862 { 4863 struct device *parent = ibdev->dev.parent; 4864 4865 if (!parent) 4866 return NUMA_NO_NODE; 4867 return dev_to_node(parent); 4868 } 4869 4870 /** 4871 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4872 * ib_device holder structure from device pointer. 4873 * 4874 * NOTE: New drivers should not make use of this API; This API is only for 4875 * existing drivers who have exposed sysfs entries using 4876 * ops->device_group. 4877 */ 4878 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4879 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4880 4881 bool rdma_dev_access_netns(const struct ib_device *device, 4882 const struct net *net); 4883 4884 bool rdma_dev_has_raw_cap(const struct ib_device *dev); 4885 static inline struct net *rdma_dev_net(struct ib_device *device) 4886 { 4887 return read_pnet(&device->coredev.rdma_net); 4888 } 4889 4890 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4891 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4892 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4893 4894 /** 4895 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4896 * on the flow_label 4897 * 4898 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4899 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4900 * convention. 4901 */ 4902 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4903 { 4904 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4905 4906 fl_low ^= fl_high >> 14; 4907 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4908 } 4909 4910 /** 4911 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4912 * local and remote qpn values 4913 * 4914 * This function folded the multiplication results of two qpns, 24 bit each, 4915 * fields, and converts it to a 20 bit results. 4916 * 4917 * This function will create symmetric flow_label value based on the local 4918 * and remote qpn values. this will allow both the requester and responder 4919 * to calculate the same flow_label for a given connection. 4920 * 4921 * This helper function should be used by driver in case the upper layer 4922 * provide a zero flow_label value. This is to improve entropy of RDMA 4923 * traffic in the network. 4924 */ 4925 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4926 { 4927 u64 v = (u64)lqpn * rqpn; 4928 4929 v ^= v >> 20; 4930 v ^= v >> 40; 4931 4932 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4933 } 4934 4935 /** 4936 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4937 * label. If flow label is not defined in GRH then 4938 * calculate it based on lqpn/rqpn. 4939 * 4940 * @fl: flow label from GRH 4941 * @lqpn: local qp number 4942 * @rqpn: remote qp number 4943 */ 4944 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4945 { 4946 if (!fl) 4947 fl = rdma_calc_flow_label(lqpn, rqpn); 4948 4949 return rdma_flow_label_to_udp_sport(fl); 4950 } 4951 4952 const struct ib_port_immutable* 4953 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4954 4955 /** ib_add_sub_device - Add a sub IB device on an existing one 4956 * 4957 * @parent: The IB device that needs to add a sub device 4958 * @type: The type of the new sub device 4959 * @name: The name of the new sub device 4960 * 4961 * 4962 * Return 0 on success, an error code otherwise 4963 */ 4964 int ib_add_sub_device(struct ib_device *parent, 4965 enum rdma_nl_dev_type type, 4966 const char *name); 4967 4968 4969 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get' 4970 * 4971 * @sub: The sub device that is going to be deleted 4972 * 4973 * Return 0 on success, an error code otherwise 4974 */ 4975 int ib_del_sub_device_and_put(struct ib_device *sub); 4976 4977 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev) 4978 { 4979 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER; 4980 } 4981 4982 #endif /* IB_VERBS_H */ 4983