1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/restrack.h> 67 68 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 69 70 extern struct workqueue_struct *ib_wq; 71 extern struct workqueue_struct *ib_comp_wq; 72 73 union ib_gid { 74 u8 raw[16]; 75 struct { 76 __be64 subnet_prefix; 77 __be64 interface_id; 78 } global; 79 }; 80 81 extern union ib_gid zgid; 82 83 enum ib_gid_type { 84 /* If link layer is Ethernet, this is RoCE V1 */ 85 IB_GID_TYPE_IB = 0, 86 IB_GID_TYPE_ROCE = 0, 87 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 88 IB_GID_TYPE_SIZE 89 }; 90 91 #define ROCE_V2_UDP_DPORT 4791 92 struct ib_gid_attr { 93 enum ib_gid_type gid_type; 94 struct net_device *ndev; 95 }; 96 97 enum rdma_node_type { 98 /* IB values map to NodeInfo:NodeType. */ 99 RDMA_NODE_IB_CA = 1, 100 RDMA_NODE_IB_SWITCH, 101 RDMA_NODE_IB_ROUTER, 102 RDMA_NODE_RNIC, 103 RDMA_NODE_USNIC, 104 RDMA_NODE_USNIC_UDP, 105 }; 106 107 enum { 108 /* set the local administered indication */ 109 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 110 }; 111 112 enum rdma_transport_type { 113 RDMA_TRANSPORT_IB, 114 RDMA_TRANSPORT_IWARP, 115 RDMA_TRANSPORT_USNIC, 116 RDMA_TRANSPORT_USNIC_UDP 117 }; 118 119 enum rdma_protocol_type { 120 RDMA_PROTOCOL_IB, 121 RDMA_PROTOCOL_IBOE, 122 RDMA_PROTOCOL_IWARP, 123 RDMA_PROTOCOL_USNIC_UDP 124 }; 125 126 __attribute_const__ enum rdma_transport_type 127 rdma_node_get_transport(enum rdma_node_type node_type); 128 129 enum rdma_network_type { 130 RDMA_NETWORK_IB, 131 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 132 RDMA_NETWORK_IPV4, 133 RDMA_NETWORK_IPV6 134 }; 135 136 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 137 { 138 if (network_type == RDMA_NETWORK_IPV4 || 139 network_type == RDMA_NETWORK_IPV6) 140 return IB_GID_TYPE_ROCE_UDP_ENCAP; 141 142 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 143 return IB_GID_TYPE_IB; 144 } 145 146 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 147 union ib_gid *gid) 148 { 149 if (gid_type == IB_GID_TYPE_IB) 150 return RDMA_NETWORK_IB; 151 152 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 153 return RDMA_NETWORK_IPV4; 154 else 155 return RDMA_NETWORK_IPV6; 156 } 157 158 enum rdma_link_layer { 159 IB_LINK_LAYER_UNSPECIFIED, 160 IB_LINK_LAYER_INFINIBAND, 161 IB_LINK_LAYER_ETHERNET, 162 }; 163 164 enum ib_device_cap_flags { 165 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 166 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 167 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 168 IB_DEVICE_RAW_MULTI = (1 << 3), 169 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 170 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 171 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 172 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 173 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 174 /* Not in use, former INIT_TYPE = (1 << 9),*/ 175 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 176 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 177 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 178 IB_DEVICE_SRQ_RESIZE = (1 << 13), 179 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 180 181 /* 182 * This device supports a per-device lkey or stag that can be 183 * used without performing a memory registration for the local 184 * memory. Note that ULPs should never check this flag, but 185 * instead of use the local_dma_lkey flag in the ib_pd structure, 186 * which will always contain a usable lkey. 187 */ 188 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 189 /* Reserved, old SEND_W_INV = (1 << 16),*/ 190 IB_DEVICE_MEM_WINDOW = (1 << 17), 191 /* 192 * Devices should set IB_DEVICE_UD_IP_SUM if they support 193 * insertion of UDP and TCP checksum on outgoing UD IPoIB 194 * messages and can verify the validity of checksum for 195 * incoming messages. Setting this flag implies that the 196 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 197 */ 198 IB_DEVICE_UD_IP_CSUM = (1 << 18), 199 IB_DEVICE_UD_TSO = (1 << 19), 200 IB_DEVICE_XRC = (1 << 20), 201 202 /* 203 * This device supports the IB "base memory management extension", 204 * which includes support for fast registrations (IB_WR_REG_MR, 205 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 206 * also be set by any iWarp device which must support FRs to comply 207 * to the iWarp verbs spec. iWarp devices also support the 208 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 209 * stag. 210 */ 211 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 212 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 213 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 214 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 215 IB_DEVICE_RC_IP_CSUM = (1 << 25), 216 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 217 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 218 /* 219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 220 * support execution of WQEs that involve synchronization 221 * of I/O operations with single completion queue managed 222 * by hardware. 223 */ 224 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 230 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 231 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 232 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 233 /* The device supports padding incoming writes to cacheline. */ 234 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 235 }; 236 237 enum ib_signature_prot_cap { 238 IB_PROT_T10DIF_TYPE_1 = 1, 239 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 240 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 241 }; 242 243 enum ib_signature_guard_cap { 244 IB_GUARD_T10DIF_CRC = 1, 245 IB_GUARD_T10DIF_CSUM = 1 << 1, 246 }; 247 248 enum ib_atomic_cap { 249 IB_ATOMIC_NONE, 250 IB_ATOMIC_HCA, 251 IB_ATOMIC_GLOB 252 }; 253 254 enum ib_odp_general_cap_bits { 255 IB_ODP_SUPPORT = 1 << 0, 256 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 257 }; 258 259 enum ib_odp_transport_cap_bits { 260 IB_ODP_SUPPORT_SEND = 1 << 0, 261 IB_ODP_SUPPORT_RECV = 1 << 1, 262 IB_ODP_SUPPORT_WRITE = 1 << 2, 263 IB_ODP_SUPPORT_READ = 1 << 3, 264 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 265 }; 266 267 struct ib_odp_caps { 268 uint64_t general_caps; 269 struct { 270 uint32_t rc_odp_caps; 271 uint32_t uc_odp_caps; 272 uint32_t ud_odp_caps; 273 } per_transport_caps; 274 }; 275 276 struct ib_rss_caps { 277 /* Corresponding bit will be set if qp type from 278 * 'enum ib_qp_type' is supported, e.g. 279 * supported_qpts |= 1 << IB_QPT_UD 280 */ 281 u32 supported_qpts; 282 u32 max_rwq_indirection_tables; 283 u32 max_rwq_indirection_table_size; 284 }; 285 286 enum ib_tm_cap_flags { 287 /* Support tag matching on RC transport */ 288 IB_TM_CAP_RC = 1 << 0, 289 }; 290 291 struct ib_tm_caps { 292 /* Max size of RNDV header */ 293 u32 max_rndv_hdr_size; 294 /* Max number of entries in tag matching list */ 295 u32 max_num_tags; 296 /* From enum ib_tm_cap_flags */ 297 u32 flags; 298 /* Max number of outstanding list operations */ 299 u32 max_ops; 300 /* Max number of SGE in tag matching entry */ 301 u32 max_sge; 302 }; 303 304 struct ib_cq_init_attr { 305 unsigned int cqe; 306 int comp_vector; 307 u32 flags; 308 }; 309 310 enum ib_cq_attr_mask { 311 IB_CQ_MODERATE = 1 << 0, 312 }; 313 314 struct ib_cq_caps { 315 u16 max_cq_moderation_count; 316 u16 max_cq_moderation_period; 317 }; 318 319 struct ib_device_attr { 320 u64 fw_ver; 321 __be64 sys_image_guid; 322 u64 max_mr_size; 323 u64 page_size_cap; 324 u32 vendor_id; 325 u32 vendor_part_id; 326 u32 hw_ver; 327 int max_qp; 328 int max_qp_wr; 329 u64 device_cap_flags; 330 int max_sge; 331 int max_sge_rd; 332 int max_cq; 333 int max_cqe; 334 int max_mr; 335 int max_pd; 336 int max_qp_rd_atom; 337 int max_ee_rd_atom; 338 int max_res_rd_atom; 339 int max_qp_init_rd_atom; 340 int max_ee_init_rd_atom; 341 enum ib_atomic_cap atomic_cap; 342 enum ib_atomic_cap masked_atomic_cap; 343 int max_ee; 344 int max_rdd; 345 int max_mw; 346 int max_raw_ipv6_qp; 347 int max_raw_ethy_qp; 348 int max_mcast_grp; 349 int max_mcast_qp_attach; 350 int max_total_mcast_qp_attach; 351 int max_ah; 352 int max_fmr; 353 int max_map_per_fmr; 354 int max_srq; 355 int max_srq_wr; 356 int max_srq_sge; 357 unsigned int max_fast_reg_page_list_len; 358 u16 max_pkeys; 359 u8 local_ca_ack_delay; 360 int sig_prot_cap; 361 int sig_guard_cap; 362 struct ib_odp_caps odp_caps; 363 uint64_t timestamp_mask; 364 uint64_t hca_core_clock; /* in KHZ */ 365 struct ib_rss_caps rss_caps; 366 u32 max_wq_type_rq; 367 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 368 struct ib_tm_caps tm_caps; 369 struct ib_cq_caps cq_caps; 370 }; 371 372 enum ib_mtu { 373 IB_MTU_256 = 1, 374 IB_MTU_512 = 2, 375 IB_MTU_1024 = 3, 376 IB_MTU_2048 = 4, 377 IB_MTU_4096 = 5 378 }; 379 380 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 381 { 382 switch (mtu) { 383 case IB_MTU_256: return 256; 384 case IB_MTU_512: return 512; 385 case IB_MTU_1024: return 1024; 386 case IB_MTU_2048: return 2048; 387 case IB_MTU_4096: return 4096; 388 default: return -1; 389 } 390 } 391 392 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 393 { 394 if (mtu >= 4096) 395 return IB_MTU_4096; 396 else if (mtu >= 2048) 397 return IB_MTU_2048; 398 else if (mtu >= 1024) 399 return IB_MTU_1024; 400 else if (mtu >= 512) 401 return IB_MTU_512; 402 else 403 return IB_MTU_256; 404 } 405 406 enum ib_port_state { 407 IB_PORT_NOP = 0, 408 IB_PORT_DOWN = 1, 409 IB_PORT_INIT = 2, 410 IB_PORT_ARMED = 3, 411 IB_PORT_ACTIVE = 4, 412 IB_PORT_ACTIVE_DEFER = 5 413 }; 414 415 enum ib_port_cap_flags { 416 IB_PORT_SM = 1 << 1, 417 IB_PORT_NOTICE_SUP = 1 << 2, 418 IB_PORT_TRAP_SUP = 1 << 3, 419 IB_PORT_OPT_IPD_SUP = 1 << 4, 420 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 421 IB_PORT_SL_MAP_SUP = 1 << 6, 422 IB_PORT_MKEY_NVRAM = 1 << 7, 423 IB_PORT_PKEY_NVRAM = 1 << 8, 424 IB_PORT_LED_INFO_SUP = 1 << 9, 425 IB_PORT_SM_DISABLED = 1 << 10, 426 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 427 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 428 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 429 IB_PORT_CM_SUP = 1 << 16, 430 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 431 IB_PORT_REINIT_SUP = 1 << 18, 432 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 433 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 434 IB_PORT_DR_NOTICE_SUP = 1 << 21, 435 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 436 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 437 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 438 IB_PORT_CLIENT_REG_SUP = 1 << 25, 439 IB_PORT_IP_BASED_GIDS = 1 << 26, 440 }; 441 442 enum ib_port_width { 443 IB_WIDTH_1X = 1, 444 IB_WIDTH_4X = 2, 445 IB_WIDTH_8X = 4, 446 IB_WIDTH_12X = 8 447 }; 448 449 static inline int ib_width_enum_to_int(enum ib_port_width width) 450 { 451 switch (width) { 452 case IB_WIDTH_1X: return 1; 453 case IB_WIDTH_4X: return 4; 454 case IB_WIDTH_8X: return 8; 455 case IB_WIDTH_12X: return 12; 456 default: return -1; 457 } 458 } 459 460 enum ib_port_speed { 461 IB_SPEED_SDR = 1, 462 IB_SPEED_DDR = 2, 463 IB_SPEED_QDR = 4, 464 IB_SPEED_FDR10 = 8, 465 IB_SPEED_FDR = 16, 466 IB_SPEED_EDR = 32, 467 IB_SPEED_HDR = 64 468 }; 469 470 /** 471 * struct rdma_hw_stats 472 * @timestamp - Used by the core code to track when the last update was 473 * @lifespan - Used by the core code to determine how old the counters 474 * should be before being updated again. Stored in jiffies, defaults 475 * to 10 milliseconds, drivers can override the default be specifying 476 * their own value during their allocation routine. 477 * @name - Array of pointers to static names used for the counters in 478 * directory. 479 * @num_counters - How many hardware counters there are. If name is 480 * shorter than this number, a kernel oops will result. Driver authors 481 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 482 * in their code to prevent this. 483 * @value - Array of u64 counters that are accessed by the sysfs code and 484 * filled in by the drivers get_stats routine 485 */ 486 struct rdma_hw_stats { 487 unsigned long timestamp; 488 unsigned long lifespan; 489 const char * const *names; 490 int num_counters; 491 u64 value[]; 492 }; 493 494 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 495 /** 496 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 497 * for drivers. 498 * @names - Array of static const char * 499 * @num_counters - How many elements in array 500 * @lifespan - How many milliseconds between updates 501 */ 502 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 503 const char * const *names, int num_counters, 504 unsigned long lifespan) 505 { 506 struct rdma_hw_stats *stats; 507 508 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 509 GFP_KERNEL); 510 if (!stats) 511 return NULL; 512 stats->names = names; 513 stats->num_counters = num_counters; 514 stats->lifespan = msecs_to_jiffies(lifespan); 515 516 return stats; 517 } 518 519 520 /* Define bits for the various functionality this port needs to be supported by 521 * the core. 522 */ 523 /* Management 0x00000FFF */ 524 #define RDMA_CORE_CAP_IB_MAD 0x00000001 525 #define RDMA_CORE_CAP_IB_SMI 0x00000002 526 #define RDMA_CORE_CAP_IB_CM 0x00000004 527 #define RDMA_CORE_CAP_IW_CM 0x00000008 528 #define RDMA_CORE_CAP_IB_SA 0x00000010 529 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 530 531 /* Address format 0x000FF000 */ 532 #define RDMA_CORE_CAP_AF_IB 0x00001000 533 #define RDMA_CORE_CAP_ETH_AH 0x00002000 534 #define RDMA_CORE_CAP_OPA_AH 0x00004000 535 536 /* Protocol 0xFFF00000 */ 537 #define RDMA_CORE_CAP_PROT_IB 0x00100000 538 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 539 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 540 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 541 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 542 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 543 544 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 545 | RDMA_CORE_CAP_IB_MAD \ 546 | RDMA_CORE_CAP_IB_SMI \ 547 | RDMA_CORE_CAP_IB_CM \ 548 | RDMA_CORE_CAP_IB_SA \ 549 | RDMA_CORE_CAP_AF_IB) 550 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 551 | RDMA_CORE_CAP_IB_MAD \ 552 | RDMA_CORE_CAP_IB_CM \ 553 | RDMA_CORE_CAP_AF_IB \ 554 | RDMA_CORE_CAP_ETH_AH) 555 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 556 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 557 | RDMA_CORE_CAP_IB_MAD \ 558 | RDMA_CORE_CAP_IB_CM \ 559 | RDMA_CORE_CAP_AF_IB \ 560 | RDMA_CORE_CAP_ETH_AH) 561 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 562 | RDMA_CORE_CAP_IW_CM) 563 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 564 | RDMA_CORE_CAP_OPA_MAD) 565 566 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 567 568 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 569 570 struct ib_port_attr { 571 u64 subnet_prefix; 572 enum ib_port_state state; 573 enum ib_mtu max_mtu; 574 enum ib_mtu active_mtu; 575 int gid_tbl_len; 576 u32 port_cap_flags; 577 u32 max_msg_sz; 578 u32 bad_pkey_cntr; 579 u32 qkey_viol_cntr; 580 u16 pkey_tbl_len; 581 u32 sm_lid; 582 u32 lid; 583 u8 lmc; 584 u8 max_vl_num; 585 u8 sm_sl; 586 u8 subnet_timeout; 587 u8 init_type_reply; 588 u8 active_width; 589 u8 active_speed; 590 u8 phys_state; 591 bool grh_required; 592 }; 593 594 enum ib_device_modify_flags { 595 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 596 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 597 }; 598 599 #define IB_DEVICE_NODE_DESC_MAX 64 600 601 struct ib_device_modify { 602 u64 sys_image_guid; 603 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 604 }; 605 606 enum ib_port_modify_flags { 607 IB_PORT_SHUTDOWN = 1, 608 IB_PORT_INIT_TYPE = (1<<2), 609 IB_PORT_RESET_QKEY_CNTR = (1<<3), 610 IB_PORT_OPA_MASK_CHG = (1<<4) 611 }; 612 613 struct ib_port_modify { 614 u32 set_port_cap_mask; 615 u32 clr_port_cap_mask; 616 u8 init_type; 617 }; 618 619 enum ib_event_type { 620 IB_EVENT_CQ_ERR, 621 IB_EVENT_QP_FATAL, 622 IB_EVENT_QP_REQ_ERR, 623 IB_EVENT_QP_ACCESS_ERR, 624 IB_EVENT_COMM_EST, 625 IB_EVENT_SQ_DRAINED, 626 IB_EVENT_PATH_MIG, 627 IB_EVENT_PATH_MIG_ERR, 628 IB_EVENT_DEVICE_FATAL, 629 IB_EVENT_PORT_ACTIVE, 630 IB_EVENT_PORT_ERR, 631 IB_EVENT_LID_CHANGE, 632 IB_EVENT_PKEY_CHANGE, 633 IB_EVENT_SM_CHANGE, 634 IB_EVENT_SRQ_ERR, 635 IB_EVENT_SRQ_LIMIT_REACHED, 636 IB_EVENT_QP_LAST_WQE_REACHED, 637 IB_EVENT_CLIENT_REREGISTER, 638 IB_EVENT_GID_CHANGE, 639 IB_EVENT_WQ_FATAL, 640 }; 641 642 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 643 644 struct ib_event { 645 struct ib_device *device; 646 union { 647 struct ib_cq *cq; 648 struct ib_qp *qp; 649 struct ib_srq *srq; 650 struct ib_wq *wq; 651 u8 port_num; 652 } element; 653 enum ib_event_type event; 654 }; 655 656 struct ib_event_handler { 657 struct ib_device *device; 658 void (*handler)(struct ib_event_handler *, struct ib_event *); 659 struct list_head list; 660 }; 661 662 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 663 do { \ 664 (_ptr)->device = _device; \ 665 (_ptr)->handler = _handler; \ 666 INIT_LIST_HEAD(&(_ptr)->list); \ 667 } while (0) 668 669 struct ib_global_route { 670 union ib_gid dgid; 671 u32 flow_label; 672 u8 sgid_index; 673 u8 hop_limit; 674 u8 traffic_class; 675 }; 676 677 struct ib_grh { 678 __be32 version_tclass_flow; 679 __be16 paylen; 680 u8 next_hdr; 681 u8 hop_limit; 682 union ib_gid sgid; 683 union ib_gid dgid; 684 }; 685 686 union rdma_network_hdr { 687 struct ib_grh ibgrh; 688 struct { 689 /* The IB spec states that if it's IPv4, the header 690 * is located in the last 20 bytes of the header. 691 */ 692 u8 reserved[20]; 693 struct iphdr roce4grh; 694 }; 695 }; 696 697 #define IB_QPN_MASK 0xFFFFFF 698 699 enum { 700 IB_MULTICAST_QPN = 0xffffff 701 }; 702 703 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 704 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 705 706 enum ib_ah_flags { 707 IB_AH_GRH = 1 708 }; 709 710 enum ib_rate { 711 IB_RATE_PORT_CURRENT = 0, 712 IB_RATE_2_5_GBPS = 2, 713 IB_RATE_5_GBPS = 5, 714 IB_RATE_10_GBPS = 3, 715 IB_RATE_20_GBPS = 6, 716 IB_RATE_30_GBPS = 4, 717 IB_RATE_40_GBPS = 7, 718 IB_RATE_60_GBPS = 8, 719 IB_RATE_80_GBPS = 9, 720 IB_RATE_120_GBPS = 10, 721 IB_RATE_14_GBPS = 11, 722 IB_RATE_56_GBPS = 12, 723 IB_RATE_112_GBPS = 13, 724 IB_RATE_168_GBPS = 14, 725 IB_RATE_25_GBPS = 15, 726 IB_RATE_100_GBPS = 16, 727 IB_RATE_200_GBPS = 17, 728 IB_RATE_300_GBPS = 18 729 }; 730 731 /** 732 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 733 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 734 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 735 * @rate: rate to convert. 736 */ 737 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 738 739 /** 740 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 741 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 742 * @rate: rate to convert. 743 */ 744 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 745 746 747 /** 748 * enum ib_mr_type - memory region type 749 * @IB_MR_TYPE_MEM_REG: memory region that is used for 750 * normal registration 751 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 752 * signature operations (data-integrity 753 * capable regions) 754 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 755 * register any arbitrary sg lists (without 756 * the normal mr constraints - see 757 * ib_map_mr_sg) 758 */ 759 enum ib_mr_type { 760 IB_MR_TYPE_MEM_REG, 761 IB_MR_TYPE_SIGNATURE, 762 IB_MR_TYPE_SG_GAPS, 763 }; 764 765 /** 766 * Signature types 767 * IB_SIG_TYPE_NONE: Unprotected. 768 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 769 */ 770 enum ib_signature_type { 771 IB_SIG_TYPE_NONE, 772 IB_SIG_TYPE_T10_DIF, 773 }; 774 775 /** 776 * Signature T10-DIF block-guard types 777 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 778 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 779 */ 780 enum ib_t10_dif_bg_type { 781 IB_T10DIF_CRC, 782 IB_T10DIF_CSUM 783 }; 784 785 /** 786 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 787 * domain. 788 * @bg_type: T10-DIF block guard type (CRC|CSUM) 789 * @pi_interval: protection information interval. 790 * @bg: seed of guard computation. 791 * @app_tag: application tag of guard block 792 * @ref_tag: initial guard block reference tag. 793 * @ref_remap: Indicate wethear the reftag increments each block 794 * @app_escape: Indicate to skip block check if apptag=0xffff 795 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 796 * @apptag_check_mask: check bitmask of application tag. 797 */ 798 struct ib_t10_dif_domain { 799 enum ib_t10_dif_bg_type bg_type; 800 u16 pi_interval; 801 u16 bg; 802 u16 app_tag; 803 u32 ref_tag; 804 bool ref_remap; 805 bool app_escape; 806 bool ref_escape; 807 u16 apptag_check_mask; 808 }; 809 810 /** 811 * struct ib_sig_domain - Parameters for signature domain 812 * @sig_type: specific signauture type 813 * @sig: union of all signature domain attributes that may 814 * be used to set domain layout. 815 */ 816 struct ib_sig_domain { 817 enum ib_signature_type sig_type; 818 union { 819 struct ib_t10_dif_domain dif; 820 } sig; 821 }; 822 823 /** 824 * struct ib_sig_attrs - Parameters for signature handover operation 825 * @check_mask: bitmask for signature byte check (8 bytes) 826 * @mem: memory domain layout desciptor. 827 * @wire: wire domain layout desciptor. 828 */ 829 struct ib_sig_attrs { 830 u8 check_mask; 831 struct ib_sig_domain mem; 832 struct ib_sig_domain wire; 833 }; 834 835 enum ib_sig_err_type { 836 IB_SIG_BAD_GUARD, 837 IB_SIG_BAD_REFTAG, 838 IB_SIG_BAD_APPTAG, 839 }; 840 841 /** 842 * struct ib_sig_err - signature error descriptor 843 */ 844 struct ib_sig_err { 845 enum ib_sig_err_type err_type; 846 u32 expected; 847 u32 actual; 848 u64 sig_err_offset; 849 u32 key; 850 }; 851 852 enum ib_mr_status_check { 853 IB_MR_CHECK_SIG_STATUS = 1, 854 }; 855 856 /** 857 * struct ib_mr_status - Memory region status container 858 * 859 * @fail_status: Bitmask of MR checks status. For each 860 * failed check a corresponding status bit is set. 861 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 862 * failure. 863 */ 864 struct ib_mr_status { 865 u32 fail_status; 866 struct ib_sig_err sig_err; 867 }; 868 869 /** 870 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 871 * enum. 872 * @mult: multiple to convert. 873 */ 874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 875 876 enum rdma_ah_attr_type { 877 RDMA_AH_ATTR_TYPE_IB, 878 RDMA_AH_ATTR_TYPE_ROCE, 879 RDMA_AH_ATTR_TYPE_OPA, 880 }; 881 882 struct ib_ah_attr { 883 u16 dlid; 884 u8 src_path_bits; 885 }; 886 887 struct roce_ah_attr { 888 u8 dmac[ETH_ALEN]; 889 }; 890 891 struct opa_ah_attr { 892 u32 dlid; 893 u8 src_path_bits; 894 bool make_grd; 895 }; 896 897 struct rdma_ah_attr { 898 struct ib_global_route grh; 899 u8 sl; 900 u8 static_rate; 901 u8 port_num; 902 u8 ah_flags; 903 enum rdma_ah_attr_type type; 904 union { 905 struct ib_ah_attr ib; 906 struct roce_ah_attr roce; 907 struct opa_ah_attr opa; 908 }; 909 }; 910 911 enum ib_wc_status { 912 IB_WC_SUCCESS, 913 IB_WC_LOC_LEN_ERR, 914 IB_WC_LOC_QP_OP_ERR, 915 IB_WC_LOC_EEC_OP_ERR, 916 IB_WC_LOC_PROT_ERR, 917 IB_WC_WR_FLUSH_ERR, 918 IB_WC_MW_BIND_ERR, 919 IB_WC_BAD_RESP_ERR, 920 IB_WC_LOC_ACCESS_ERR, 921 IB_WC_REM_INV_REQ_ERR, 922 IB_WC_REM_ACCESS_ERR, 923 IB_WC_REM_OP_ERR, 924 IB_WC_RETRY_EXC_ERR, 925 IB_WC_RNR_RETRY_EXC_ERR, 926 IB_WC_LOC_RDD_VIOL_ERR, 927 IB_WC_REM_INV_RD_REQ_ERR, 928 IB_WC_REM_ABORT_ERR, 929 IB_WC_INV_EECN_ERR, 930 IB_WC_INV_EEC_STATE_ERR, 931 IB_WC_FATAL_ERR, 932 IB_WC_RESP_TIMEOUT_ERR, 933 IB_WC_GENERAL_ERR 934 }; 935 936 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 937 938 enum ib_wc_opcode { 939 IB_WC_SEND, 940 IB_WC_RDMA_WRITE, 941 IB_WC_RDMA_READ, 942 IB_WC_COMP_SWAP, 943 IB_WC_FETCH_ADD, 944 IB_WC_LSO, 945 IB_WC_LOCAL_INV, 946 IB_WC_REG_MR, 947 IB_WC_MASKED_COMP_SWAP, 948 IB_WC_MASKED_FETCH_ADD, 949 /* 950 * Set value of IB_WC_RECV so consumers can test if a completion is a 951 * receive by testing (opcode & IB_WC_RECV). 952 */ 953 IB_WC_RECV = 1 << 7, 954 IB_WC_RECV_RDMA_WITH_IMM 955 }; 956 957 enum ib_wc_flags { 958 IB_WC_GRH = 1, 959 IB_WC_WITH_IMM = (1<<1), 960 IB_WC_WITH_INVALIDATE = (1<<2), 961 IB_WC_IP_CSUM_OK = (1<<3), 962 IB_WC_WITH_SMAC = (1<<4), 963 IB_WC_WITH_VLAN = (1<<5), 964 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 965 }; 966 967 struct ib_wc { 968 union { 969 u64 wr_id; 970 struct ib_cqe *wr_cqe; 971 }; 972 enum ib_wc_status status; 973 enum ib_wc_opcode opcode; 974 u32 vendor_err; 975 u32 byte_len; 976 struct ib_qp *qp; 977 union { 978 __be32 imm_data; 979 u32 invalidate_rkey; 980 } ex; 981 u32 src_qp; 982 u32 slid; 983 int wc_flags; 984 u16 pkey_index; 985 u8 sl; 986 u8 dlid_path_bits; 987 u8 port_num; /* valid only for DR SMPs on switches */ 988 u8 smac[ETH_ALEN]; 989 u16 vlan_id; 990 u8 network_hdr_type; 991 }; 992 993 enum ib_cq_notify_flags { 994 IB_CQ_SOLICITED = 1 << 0, 995 IB_CQ_NEXT_COMP = 1 << 1, 996 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 997 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 998 }; 999 1000 enum ib_srq_type { 1001 IB_SRQT_BASIC, 1002 IB_SRQT_XRC, 1003 IB_SRQT_TM, 1004 }; 1005 1006 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1007 { 1008 return srq_type == IB_SRQT_XRC || 1009 srq_type == IB_SRQT_TM; 1010 } 1011 1012 enum ib_srq_attr_mask { 1013 IB_SRQ_MAX_WR = 1 << 0, 1014 IB_SRQ_LIMIT = 1 << 1, 1015 }; 1016 1017 struct ib_srq_attr { 1018 u32 max_wr; 1019 u32 max_sge; 1020 u32 srq_limit; 1021 }; 1022 1023 struct ib_srq_init_attr { 1024 void (*event_handler)(struct ib_event *, void *); 1025 void *srq_context; 1026 struct ib_srq_attr attr; 1027 enum ib_srq_type srq_type; 1028 1029 struct { 1030 struct ib_cq *cq; 1031 union { 1032 struct { 1033 struct ib_xrcd *xrcd; 1034 } xrc; 1035 1036 struct { 1037 u32 max_num_tags; 1038 } tag_matching; 1039 }; 1040 } ext; 1041 }; 1042 1043 struct ib_qp_cap { 1044 u32 max_send_wr; 1045 u32 max_recv_wr; 1046 u32 max_send_sge; 1047 u32 max_recv_sge; 1048 u32 max_inline_data; 1049 1050 /* 1051 * Maximum number of rdma_rw_ctx structures in flight at a time. 1052 * ib_create_qp() will calculate the right amount of neededed WRs 1053 * and MRs based on this. 1054 */ 1055 u32 max_rdma_ctxs; 1056 }; 1057 1058 enum ib_sig_type { 1059 IB_SIGNAL_ALL_WR, 1060 IB_SIGNAL_REQ_WR 1061 }; 1062 1063 enum ib_qp_type { 1064 /* 1065 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1066 * here (and in that order) since the MAD layer uses them as 1067 * indices into a 2-entry table. 1068 */ 1069 IB_QPT_SMI, 1070 IB_QPT_GSI, 1071 1072 IB_QPT_RC, 1073 IB_QPT_UC, 1074 IB_QPT_UD, 1075 IB_QPT_RAW_IPV6, 1076 IB_QPT_RAW_ETHERTYPE, 1077 IB_QPT_RAW_PACKET = 8, 1078 IB_QPT_XRC_INI = 9, 1079 IB_QPT_XRC_TGT, 1080 IB_QPT_MAX, 1081 IB_QPT_DRIVER = 0xFF, 1082 /* Reserve a range for qp types internal to the low level driver. 1083 * These qp types will not be visible at the IB core layer, so the 1084 * IB_QPT_MAX usages should not be affected in the core layer 1085 */ 1086 IB_QPT_RESERVED1 = 0x1000, 1087 IB_QPT_RESERVED2, 1088 IB_QPT_RESERVED3, 1089 IB_QPT_RESERVED4, 1090 IB_QPT_RESERVED5, 1091 IB_QPT_RESERVED6, 1092 IB_QPT_RESERVED7, 1093 IB_QPT_RESERVED8, 1094 IB_QPT_RESERVED9, 1095 IB_QPT_RESERVED10, 1096 }; 1097 1098 enum ib_qp_create_flags { 1099 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1100 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1101 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1102 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1103 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1104 IB_QP_CREATE_NETIF_QP = 1 << 5, 1105 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1106 /* FREE = 1 << 7, */ 1107 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1108 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1109 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1110 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1111 /* reserve bits 26-31 for low level drivers' internal use */ 1112 IB_QP_CREATE_RESERVED_START = 1 << 26, 1113 IB_QP_CREATE_RESERVED_END = 1 << 31, 1114 }; 1115 1116 /* 1117 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1118 * callback to destroy the passed in QP. 1119 */ 1120 1121 struct ib_qp_init_attr { 1122 void (*event_handler)(struct ib_event *, void *); 1123 void *qp_context; 1124 struct ib_cq *send_cq; 1125 struct ib_cq *recv_cq; 1126 struct ib_srq *srq; 1127 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1128 struct ib_qp_cap cap; 1129 enum ib_sig_type sq_sig_type; 1130 enum ib_qp_type qp_type; 1131 enum ib_qp_create_flags create_flags; 1132 1133 /* 1134 * Only needed for special QP types, or when using the RW API. 1135 */ 1136 u8 port_num; 1137 struct ib_rwq_ind_table *rwq_ind_tbl; 1138 u32 source_qpn; 1139 }; 1140 1141 struct ib_qp_open_attr { 1142 void (*event_handler)(struct ib_event *, void *); 1143 void *qp_context; 1144 u32 qp_num; 1145 enum ib_qp_type qp_type; 1146 }; 1147 1148 enum ib_rnr_timeout { 1149 IB_RNR_TIMER_655_36 = 0, 1150 IB_RNR_TIMER_000_01 = 1, 1151 IB_RNR_TIMER_000_02 = 2, 1152 IB_RNR_TIMER_000_03 = 3, 1153 IB_RNR_TIMER_000_04 = 4, 1154 IB_RNR_TIMER_000_06 = 5, 1155 IB_RNR_TIMER_000_08 = 6, 1156 IB_RNR_TIMER_000_12 = 7, 1157 IB_RNR_TIMER_000_16 = 8, 1158 IB_RNR_TIMER_000_24 = 9, 1159 IB_RNR_TIMER_000_32 = 10, 1160 IB_RNR_TIMER_000_48 = 11, 1161 IB_RNR_TIMER_000_64 = 12, 1162 IB_RNR_TIMER_000_96 = 13, 1163 IB_RNR_TIMER_001_28 = 14, 1164 IB_RNR_TIMER_001_92 = 15, 1165 IB_RNR_TIMER_002_56 = 16, 1166 IB_RNR_TIMER_003_84 = 17, 1167 IB_RNR_TIMER_005_12 = 18, 1168 IB_RNR_TIMER_007_68 = 19, 1169 IB_RNR_TIMER_010_24 = 20, 1170 IB_RNR_TIMER_015_36 = 21, 1171 IB_RNR_TIMER_020_48 = 22, 1172 IB_RNR_TIMER_030_72 = 23, 1173 IB_RNR_TIMER_040_96 = 24, 1174 IB_RNR_TIMER_061_44 = 25, 1175 IB_RNR_TIMER_081_92 = 26, 1176 IB_RNR_TIMER_122_88 = 27, 1177 IB_RNR_TIMER_163_84 = 28, 1178 IB_RNR_TIMER_245_76 = 29, 1179 IB_RNR_TIMER_327_68 = 30, 1180 IB_RNR_TIMER_491_52 = 31 1181 }; 1182 1183 enum ib_qp_attr_mask { 1184 IB_QP_STATE = 1, 1185 IB_QP_CUR_STATE = (1<<1), 1186 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1187 IB_QP_ACCESS_FLAGS = (1<<3), 1188 IB_QP_PKEY_INDEX = (1<<4), 1189 IB_QP_PORT = (1<<5), 1190 IB_QP_QKEY = (1<<6), 1191 IB_QP_AV = (1<<7), 1192 IB_QP_PATH_MTU = (1<<8), 1193 IB_QP_TIMEOUT = (1<<9), 1194 IB_QP_RETRY_CNT = (1<<10), 1195 IB_QP_RNR_RETRY = (1<<11), 1196 IB_QP_RQ_PSN = (1<<12), 1197 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1198 IB_QP_ALT_PATH = (1<<14), 1199 IB_QP_MIN_RNR_TIMER = (1<<15), 1200 IB_QP_SQ_PSN = (1<<16), 1201 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1202 IB_QP_PATH_MIG_STATE = (1<<18), 1203 IB_QP_CAP = (1<<19), 1204 IB_QP_DEST_QPN = (1<<20), 1205 IB_QP_RESERVED1 = (1<<21), 1206 IB_QP_RESERVED2 = (1<<22), 1207 IB_QP_RESERVED3 = (1<<23), 1208 IB_QP_RESERVED4 = (1<<24), 1209 IB_QP_RATE_LIMIT = (1<<25), 1210 }; 1211 1212 enum ib_qp_state { 1213 IB_QPS_RESET, 1214 IB_QPS_INIT, 1215 IB_QPS_RTR, 1216 IB_QPS_RTS, 1217 IB_QPS_SQD, 1218 IB_QPS_SQE, 1219 IB_QPS_ERR 1220 }; 1221 1222 enum ib_mig_state { 1223 IB_MIG_MIGRATED, 1224 IB_MIG_REARM, 1225 IB_MIG_ARMED 1226 }; 1227 1228 enum ib_mw_type { 1229 IB_MW_TYPE_1 = 1, 1230 IB_MW_TYPE_2 = 2 1231 }; 1232 1233 struct ib_qp_attr { 1234 enum ib_qp_state qp_state; 1235 enum ib_qp_state cur_qp_state; 1236 enum ib_mtu path_mtu; 1237 enum ib_mig_state path_mig_state; 1238 u32 qkey; 1239 u32 rq_psn; 1240 u32 sq_psn; 1241 u32 dest_qp_num; 1242 int qp_access_flags; 1243 struct ib_qp_cap cap; 1244 struct rdma_ah_attr ah_attr; 1245 struct rdma_ah_attr alt_ah_attr; 1246 u16 pkey_index; 1247 u16 alt_pkey_index; 1248 u8 en_sqd_async_notify; 1249 u8 sq_draining; 1250 u8 max_rd_atomic; 1251 u8 max_dest_rd_atomic; 1252 u8 min_rnr_timer; 1253 u8 port_num; 1254 u8 timeout; 1255 u8 retry_cnt; 1256 u8 rnr_retry; 1257 u8 alt_port_num; 1258 u8 alt_timeout; 1259 u32 rate_limit; 1260 }; 1261 1262 enum ib_wr_opcode { 1263 IB_WR_RDMA_WRITE, 1264 IB_WR_RDMA_WRITE_WITH_IMM, 1265 IB_WR_SEND, 1266 IB_WR_SEND_WITH_IMM, 1267 IB_WR_RDMA_READ, 1268 IB_WR_ATOMIC_CMP_AND_SWP, 1269 IB_WR_ATOMIC_FETCH_AND_ADD, 1270 IB_WR_LSO, 1271 IB_WR_SEND_WITH_INV, 1272 IB_WR_RDMA_READ_WITH_INV, 1273 IB_WR_LOCAL_INV, 1274 IB_WR_REG_MR, 1275 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1276 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1277 IB_WR_REG_SIG_MR, 1278 /* reserve values for low level drivers' internal use. 1279 * These values will not be used at all in the ib core layer. 1280 */ 1281 IB_WR_RESERVED1 = 0xf0, 1282 IB_WR_RESERVED2, 1283 IB_WR_RESERVED3, 1284 IB_WR_RESERVED4, 1285 IB_WR_RESERVED5, 1286 IB_WR_RESERVED6, 1287 IB_WR_RESERVED7, 1288 IB_WR_RESERVED8, 1289 IB_WR_RESERVED9, 1290 IB_WR_RESERVED10, 1291 }; 1292 1293 enum ib_send_flags { 1294 IB_SEND_FENCE = 1, 1295 IB_SEND_SIGNALED = (1<<1), 1296 IB_SEND_SOLICITED = (1<<2), 1297 IB_SEND_INLINE = (1<<3), 1298 IB_SEND_IP_CSUM = (1<<4), 1299 1300 /* reserve bits 26-31 for low level drivers' internal use */ 1301 IB_SEND_RESERVED_START = (1 << 26), 1302 IB_SEND_RESERVED_END = (1 << 31), 1303 }; 1304 1305 struct ib_sge { 1306 u64 addr; 1307 u32 length; 1308 u32 lkey; 1309 }; 1310 1311 struct ib_cqe { 1312 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1313 }; 1314 1315 struct ib_send_wr { 1316 struct ib_send_wr *next; 1317 union { 1318 u64 wr_id; 1319 struct ib_cqe *wr_cqe; 1320 }; 1321 struct ib_sge *sg_list; 1322 int num_sge; 1323 enum ib_wr_opcode opcode; 1324 int send_flags; 1325 union { 1326 __be32 imm_data; 1327 u32 invalidate_rkey; 1328 } ex; 1329 }; 1330 1331 struct ib_rdma_wr { 1332 struct ib_send_wr wr; 1333 u64 remote_addr; 1334 u32 rkey; 1335 }; 1336 1337 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1338 { 1339 return container_of(wr, struct ib_rdma_wr, wr); 1340 } 1341 1342 struct ib_atomic_wr { 1343 struct ib_send_wr wr; 1344 u64 remote_addr; 1345 u64 compare_add; 1346 u64 swap; 1347 u64 compare_add_mask; 1348 u64 swap_mask; 1349 u32 rkey; 1350 }; 1351 1352 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1353 { 1354 return container_of(wr, struct ib_atomic_wr, wr); 1355 } 1356 1357 struct ib_ud_wr { 1358 struct ib_send_wr wr; 1359 struct ib_ah *ah; 1360 void *header; 1361 int hlen; 1362 int mss; 1363 u32 remote_qpn; 1364 u32 remote_qkey; 1365 u16 pkey_index; /* valid for GSI only */ 1366 u8 port_num; /* valid for DR SMPs on switch only */ 1367 }; 1368 1369 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1370 { 1371 return container_of(wr, struct ib_ud_wr, wr); 1372 } 1373 1374 struct ib_reg_wr { 1375 struct ib_send_wr wr; 1376 struct ib_mr *mr; 1377 u32 key; 1378 int access; 1379 }; 1380 1381 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1382 { 1383 return container_of(wr, struct ib_reg_wr, wr); 1384 } 1385 1386 struct ib_sig_handover_wr { 1387 struct ib_send_wr wr; 1388 struct ib_sig_attrs *sig_attrs; 1389 struct ib_mr *sig_mr; 1390 int access_flags; 1391 struct ib_sge *prot; 1392 }; 1393 1394 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1395 { 1396 return container_of(wr, struct ib_sig_handover_wr, wr); 1397 } 1398 1399 struct ib_recv_wr { 1400 struct ib_recv_wr *next; 1401 union { 1402 u64 wr_id; 1403 struct ib_cqe *wr_cqe; 1404 }; 1405 struct ib_sge *sg_list; 1406 int num_sge; 1407 }; 1408 1409 enum ib_access_flags { 1410 IB_ACCESS_LOCAL_WRITE = 1, 1411 IB_ACCESS_REMOTE_WRITE = (1<<1), 1412 IB_ACCESS_REMOTE_READ = (1<<2), 1413 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1414 IB_ACCESS_MW_BIND = (1<<4), 1415 IB_ZERO_BASED = (1<<5), 1416 IB_ACCESS_ON_DEMAND = (1<<6), 1417 IB_ACCESS_HUGETLB = (1<<7), 1418 }; 1419 1420 /* 1421 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1422 * are hidden here instead of a uapi header! 1423 */ 1424 enum ib_mr_rereg_flags { 1425 IB_MR_REREG_TRANS = 1, 1426 IB_MR_REREG_PD = (1<<1), 1427 IB_MR_REREG_ACCESS = (1<<2), 1428 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1429 }; 1430 1431 struct ib_fmr_attr { 1432 int max_pages; 1433 int max_maps; 1434 u8 page_shift; 1435 }; 1436 1437 struct ib_umem; 1438 1439 enum rdma_remove_reason { 1440 /* Userspace requested uobject deletion. Call could fail */ 1441 RDMA_REMOVE_DESTROY, 1442 /* Context deletion. This call should delete the actual object itself */ 1443 RDMA_REMOVE_CLOSE, 1444 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1445 RDMA_REMOVE_DRIVER_REMOVE, 1446 /* Context is being cleaned-up, but commit was just completed */ 1447 RDMA_REMOVE_DURING_CLEANUP, 1448 }; 1449 1450 struct ib_rdmacg_object { 1451 #ifdef CONFIG_CGROUP_RDMA 1452 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1453 #endif 1454 }; 1455 1456 struct ib_ucontext { 1457 struct ib_device *device; 1458 struct ib_uverbs_file *ufile; 1459 int closing; 1460 1461 /* locking the uobjects_list */ 1462 struct mutex uobjects_lock; 1463 struct list_head uobjects; 1464 /* protects cleanup process from other actions */ 1465 struct rw_semaphore cleanup_rwsem; 1466 enum rdma_remove_reason cleanup_reason; 1467 1468 struct pid *tgid; 1469 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1470 struct rb_root_cached umem_tree; 1471 /* 1472 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1473 * mmu notifiers registration. 1474 */ 1475 struct rw_semaphore umem_rwsem; 1476 void (*invalidate_range)(struct ib_umem *umem, 1477 unsigned long start, unsigned long end); 1478 1479 struct mmu_notifier mn; 1480 atomic_t notifier_count; 1481 /* A list of umems that don't have private mmu notifier counters yet. */ 1482 struct list_head no_private_counters; 1483 int odp_mrs_count; 1484 #endif 1485 1486 struct ib_rdmacg_object cg_obj; 1487 }; 1488 1489 struct ib_uobject { 1490 u64 user_handle; /* handle given to us by userspace */ 1491 struct ib_ucontext *context; /* associated user context */ 1492 void *object; /* containing object */ 1493 struct list_head list; /* link to context's list */ 1494 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1495 int id; /* index into kernel idr */ 1496 struct kref ref; 1497 atomic_t usecnt; /* protects exclusive access */ 1498 struct rcu_head rcu; /* kfree_rcu() overhead */ 1499 1500 const struct uverbs_obj_type *type; 1501 }; 1502 1503 struct ib_uobject_file { 1504 struct ib_uobject uobj; 1505 /* ufile contains the lock between context release and file close */ 1506 struct ib_uverbs_file *ufile; 1507 }; 1508 1509 struct ib_udata { 1510 const void __user *inbuf; 1511 void __user *outbuf; 1512 size_t inlen; 1513 size_t outlen; 1514 }; 1515 1516 struct ib_pd { 1517 u32 local_dma_lkey; 1518 u32 flags; 1519 struct ib_device *device; 1520 struct ib_uobject *uobject; 1521 atomic_t usecnt; /* count all resources */ 1522 1523 u32 unsafe_global_rkey; 1524 1525 /* 1526 * Implementation details of the RDMA core, don't use in drivers: 1527 */ 1528 struct ib_mr *__internal_mr; 1529 struct rdma_restrack_entry res; 1530 }; 1531 1532 struct ib_xrcd { 1533 struct ib_device *device; 1534 atomic_t usecnt; /* count all exposed resources */ 1535 struct inode *inode; 1536 1537 struct mutex tgt_qp_mutex; 1538 struct list_head tgt_qp_list; 1539 /* 1540 * Implementation details of the RDMA core, don't use in drivers: 1541 */ 1542 struct rdma_restrack_entry res; 1543 }; 1544 1545 struct ib_ah { 1546 struct ib_device *device; 1547 struct ib_pd *pd; 1548 struct ib_uobject *uobject; 1549 enum rdma_ah_attr_type type; 1550 }; 1551 1552 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1553 1554 enum ib_poll_context { 1555 IB_POLL_DIRECT, /* caller context, no hw completions */ 1556 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1557 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1558 }; 1559 1560 struct ib_cq { 1561 struct ib_device *device; 1562 struct ib_uobject *uobject; 1563 ib_comp_handler comp_handler; 1564 void (*event_handler)(struct ib_event *, void *); 1565 void *cq_context; 1566 int cqe; 1567 atomic_t usecnt; /* count number of work queues */ 1568 enum ib_poll_context poll_ctx; 1569 struct ib_wc *wc; 1570 union { 1571 struct irq_poll iop; 1572 struct work_struct work; 1573 }; 1574 /* 1575 * Implementation details of the RDMA core, don't use in drivers: 1576 */ 1577 struct rdma_restrack_entry res; 1578 }; 1579 1580 struct ib_srq { 1581 struct ib_device *device; 1582 struct ib_pd *pd; 1583 struct ib_uobject *uobject; 1584 void (*event_handler)(struct ib_event *, void *); 1585 void *srq_context; 1586 enum ib_srq_type srq_type; 1587 atomic_t usecnt; 1588 1589 struct { 1590 struct ib_cq *cq; 1591 union { 1592 struct { 1593 struct ib_xrcd *xrcd; 1594 u32 srq_num; 1595 } xrc; 1596 }; 1597 } ext; 1598 }; 1599 1600 enum ib_raw_packet_caps { 1601 /* Strip cvlan from incoming packet and report it in the matching work 1602 * completion is supported. 1603 */ 1604 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1605 /* Scatter FCS field of an incoming packet to host memory is supported. 1606 */ 1607 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1608 /* Checksum offloads are supported (for both send and receive). */ 1609 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1610 /* When a packet is received for an RQ with no receive WQEs, the 1611 * packet processing is delayed. 1612 */ 1613 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1614 }; 1615 1616 enum ib_wq_type { 1617 IB_WQT_RQ 1618 }; 1619 1620 enum ib_wq_state { 1621 IB_WQS_RESET, 1622 IB_WQS_RDY, 1623 IB_WQS_ERR 1624 }; 1625 1626 struct ib_wq { 1627 struct ib_device *device; 1628 struct ib_uobject *uobject; 1629 void *wq_context; 1630 void (*event_handler)(struct ib_event *, void *); 1631 struct ib_pd *pd; 1632 struct ib_cq *cq; 1633 u32 wq_num; 1634 enum ib_wq_state state; 1635 enum ib_wq_type wq_type; 1636 atomic_t usecnt; 1637 }; 1638 1639 enum ib_wq_flags { 1640 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1641 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1642 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1643 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1644 }; 1645 1646 struct ib_wq_init_attr { 1647 void *wq_context; 1648 enum ib_wq_type wq_type; 1649 u32 max_wr; 1650 u32 max_sge; 1651 struct ib_cq *cq; 1652 void (*event_handler)(struct ib_event *, void *); 1653 u32 create_flags; /* Use enum ib_wq_flags */ 1654 }; 1655 1656 enum ib_wq_attr_mask { 1657 IB_WQ_STATE = 1 << 0, 1658 IB_WQ_CUR_STATE = 1 << 1, 1659 IB_WQ_FLAGS = 1 << 2, 1660 }; 1661 1662 struct ib_wq_attr { 1663 enum ib_wq_state wq_state; 1664 enum ib_wq_state curr_wq_state; 1665 u32 flags; /* Use enum ib_wq_flags */ 1666 u32 flags_mask; /* Use enum ib_wq_flags */ 1667 }; 1668 1669 struct ib_rwq_ind_table { 1670 struct ib_device *device; 1671 struct ib_uobject *uobject; 1672 atomic_t usecnt; 1673 u32 ind_tbl_num; 1674 u32 log_ind_tbl_size; 1675 struct ib_wq **ind_tbl; 1676 }; 1677 1678 struct ib_rwq_ind_table_init_attr { 1679 u32 log_ind_tbl_size; 1680 /* Each entry is a pointer to Receive Work Queue */ 1681 struct ib_wq **ind_tbl; 1682 }; 1683 1684 enum port_pkey_state { 1685 IB_PORT_PKEY_NOT_VALID = 0, 1686 IB_PORT_PKEY_VALID = 1, 1687 IB_PORT_PKEY_LISTED = 2, 1688 }; 1689 1690 struct ib_qp_security; 1691 1692 struct ib_port_pkey { 1693 enum port_pkey_state state; 1694 u16 pkey_index; 1695 u8 port_num; 1696 struct list_head qp_list; 1697 struct list_head to_error_list; 1698 struct ib_qp_security *sec; 1699 }; 1700 1701 struct ib_ports_pkeys { 1702 struct ib_port_pkey main; 1703 struct ib_port_pkey alt; 1704 }; 1705 1706 struct ib_qp_security { 1707 struct ib_qp *qp; 1708 struct ib_device *dev; 1709 /* Hold this mutex when changing port and pkey settings. */ 1710 struct mutex mutex; 1711 struct ib_ports_pkeys *ports_pkeys; 1712 /* A list of all open shared QP handles. Required to enforce security 1713 * properly for all users of a shared QP. 1714 */ 1715 struct list_head shared_qp_list; 1716 void *security; 1717 bool destroying; 1718 atomic_t error_list_count; 1719 struct completion error_complete; 1720 int error_comps_pending; 1721 }; 1722 1723 /* 1724 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1725 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1726 */ 1727 struct ib_qp { 1728 struct ib_device *device; 1729 struct ib_pd *pd; 1730 struct ib_cq *send_cq; 1731 struct ib_cq *recv_cq; 1732 spinlock_t mr_lock; 1733 int mrs_used; 1734 struct list_head rdma_mrs; 1735 struct list_head sig_mrs; 1736 struct ib_srq *srq; 1737 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1738 struct list_head xrcd_list; 1739 1740 /* count times opened, mcast attaches, flow attaches */ 1741 atomic_t usecnt; 1742 struct list_head open_list; 1743 struct ib_qp *real_qp; 1744 struct ib_uobject *uobject; 1745 void (*event_handler)(struct ib_event *, void *); 1746 void *qp_context; 1747 u32 qp_num; 1748 u32 max_write_sge; 1749 u32 max_read_sge; 1750 enum ib_qp_type qp_type; 1751 struct ib_rwq_ind_table *rwq_ind_tbl; 1752 struct ib_qp_security *qp_sec; 1753 u8 port; 1754 1755 /* 1756 * Implementation details of the RDMA core, don't use in drivers: 1757 */ 1758 struct rdma_restrack_entry res; 1759 }; 1760 1761 struct ib_mr { 1762 struct ib_device *device; 1763 struct ib_pd *pd; 1764 u32 lkey; 1765 u32 rkey; 1766 u64 iova; 1767 u64 length; 1768 unsigned int page_size; 1769 bool need_inval; 1770 union { 1771 struct ib_uobject *uobject; /* user */ 1772 struct list_head qp_entry; /* FR */ 1773 }; 1774 }; 1775 1776 struct ib_mw { 1777 struct ib_device *device; 1778 struct ib_pd *pd; 1779 struct ib_uobject *uobject; 1780 u32 rkey; 1781 enum ib_mw_type type; 1782 }; 1783 1784 struct ib_fmr { 1785 struct ib_device *device; 1786 struct ib_pd *pd; 1787 struct list_head list; 1788 u32 lkey; 1789 u32 rkey; 1790 }; 1791 1792 /* Supported steering options */ 1793 enum ib_flow_attr_type { 1794 /* steering according to rule specifications */ 1795 IB_FLOW_ATTR_NORMAL = 0x0, 1796 /* default unicast and multicast rule - 1797 * receive all Eth traffic which isn't steered to any QP 1798 */ 1799 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1800 /* default multicast rule - 1801 * receive all Eth multicast traffic which isn't steered to any QP 1802 */ 1803 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1804 /* sniffer rule - receive all port traffic */ 1805 IB_FLOW_ATTR_SNIFFER = 0x3 1806 }; 1807 1808 /* Supported steering header types */ 1809 enum ib_flow_spec_type { 1810 /* L2 headers*/ 1811 IB_FLOW_SPEC_ETH = 0x20, 1812 IB_FLOW_SPEC_IB = 0x22, 1813 /* L3 header*/ 1814 IB_FLOW_SPEC_IPV4 = 0x30, 1815 IB_FLOW_SPEC_IPV6 = 0x31, 1816 /* L4 headers*/ 1817 IB_FLOW_SPEC_TCP = 0x40, 1818 IB_FLOW_SPEC_UDP = 0x41, 1819 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1820 IB_FLOW_SPEC_INNER = 0x100, 1821 /* Actions */ 1822 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1823 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1824 }; 1825 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1826 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1827 1828 /* Flow steering rule priority is set according to it's domain. 1829 * Lower domain value means higher priority. 1830 */ 1831 enum ib_flow_domain { 1832 IB_FLOW_DOMAIN_USER, 1833 IB_FLOW_DOMAIN_ETHTOOL, 1834 IB_FLOW_DOMAIN_RFS, 1835 IB_FLOW_DOMAIN_NIC, 1836 IB_FLOW_DOMAIN_NUM /* Must be last */ 1837 }; 1838 1839 enum ib_flow_flags { 1840 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1841 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1842 }; 1843 1844 struct ib_flow_eth_filter { 1845 u8 dst_mac[6]; 1846 u8 src_mac[6]; 1847 __be16 ether_type; 1848 __be16 vlan_tag; 1849 /* Must be last */ 1850 u8 real_sz[0]; 1851 }; 1852 1853 struct ib_flow_spec_eth { 1854 u32 type; 1855 u16 size; 1856 struct ib_flow_eth_filter val; 1857 struct ib_flow_eth_filter mask; 1858 }; 1859 1860 struct ib_flow_ib_filter { 1861 __be16 dlid; 1862 __u8 sl; 1863 /* Must be last */ 1864 u8 real_sz[0]; 1865 }; 1866 1867 struct ib_flow_spec_ib { 1868 u32 type; 1869 u16 size; 1870 struct ib_flow_ib_filter val; 1871 struct ib_flow_ib_filter mask; 1872 }; 1873 1874 /* IPv4 header flags */ 1875 enum ib_ipv4_flags { 1876 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1877 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1878 last have this flag set */ 1879 }; 1880 1881 struct ib_flow_ipv4_filter { 1882 __be32 src_ip; 1883 __be32 dst_ip; 1884 u8 proto; 1885 u8 tos; 1886 u8 ttl; 1887 u8 flags; 1888 /* Must be last */ 1889 u8 real_sz[0]; 1890 }; 1891 1892 struct ib_flow_spec_ipv4 { 1893 u32 type; 1894 u16 size; 1895 struct ib_flow_ipv4_filter val; 1896 struct ib_flow_ipv4_filter mask; 1897 }; 1898 1899 struct ib_flow_ipv6_filter { 1900 u8 src_ip[16]; 1901 u8 dst_ip[16]; 1902 __be32 flow_label; 1903 u8 next_hdr; 1904 u8 traffic_class; 1905 u8 hop_limit; 1906 /* Must be last */ 1907 u8 real_sz[0]; 1908 }; 1909 1910 struct ib_flow_spec_ipv6 { 1911 u32 type; 1912 u16 size; 1913 struct ib_flow_ipv6_filter val; 1914 struct ib_flow_ipv6_filter mask; 1915 }; 1916 1917 struct ib_flow_tcp_udp_filter { 1918 __be16 dst_port; 1919 __be16 src_port; 1920 /* Must be last */ 1921 u8 real_sz[0]; 1922 }; 1923 1924 struct ib_flow_spec_tcp_udp { 1925 u32 type; 1926 u16 size; 1927 struct ib_flow_tcp_udp_filter val; 1928 struct ib_flow_tcp_udp_filter mask; 1929 }; 1930 1931 struct ib_flow_tunnel_filter { 1932 __be32 tunnel_id; 1933 u8 real_sz[0]; 1934 }; 1935 1936 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1937 * the tunnel_id from val has the vni value 1938 */ 1939 struct ib_flow_spec_tunnel { 1940 u32 type; 1941 u16 size; 1942 struct ib_flow_tunnel_filter val; 1943 struct ib_flow_tunnel_filter mask; 1944 }; 1945 1946 struct ib_flow_spec_action_tag { 1947 enum ib_flow_spec_type type; 1948 u16 size; 1949 u32 tag_id; 1950 }; 1951 1952 struct ib_flow_spec_action_drop { 1953 enum ib_flow_spec_type type; 1954 u16 size; 1955 }; 1956 1957 union ib_flow_spec { 1958 struct { 1959 u32 type; 1960 u16 size; 1961 }; 1962 struct ib_flow_spec_eth eth; 1963 struct ib_flow_spec_ib ib; 1964 struct ib_flow_spec_ipv4 ipv4; 1965 struct ib_flow_spec_tcp_udp tcp_udp; 1966 struct ib_flow_spec_ipv6 ipv6; 1967 struct ib_flow_spec_tunnel tunnel; 1968 struct ib_flow_spec_action_tag flow_tag; 1969 struct ib_flow_spec_action_drop drop; 1970 }; 1971 1972 struct ib_flow_attr { 1973 enum ib_flow_attr_type type; 1974 u16 size; 1975 u16 priority; 1976 u32 flags; 1977 u8 num_of_specs; 1978 u8 port; 1979 /* Following are the optional layers according to user request 1980 * struct ib_flow_spec_xxx 1981 * struct ib_flow_spec_yyy 1982 */ 1983 }; 1984 1985 struct ib_flow { 1986 struct ib_qp *qp; 1987 struct ib_uobject *uobject; 1988 }; 1989 1990 struct ib_mad_hdr; 1991 struct ib_grh; 1992 1993 enum ib_process_mad_flags { 1994 IB_MAD_IGNORE_MKEY = 1, 1995 IB_MAD_IGNORE_BKEY = 2, 1996 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1997 }; 1998 1999 enum ib_mad_result { 2000 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2001 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2002 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2003 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2004 }; 2005 2006 struct ib_port_cache { 2007 u64 subnet_prefix; 2008 struct ib_pkey_cache *pkey; 2009 struct ib_gid_table *gid; 2010 u8 lmc; 2011 enum ib_port_state port_state; 2012 }; 2013 2014 struct ib_cache { 2015 rwlock_t lock; 2016 struct ib_event_handler event_handler; 2017 struct ib_port_cache *ports; 2018 }; 2019 2020 struct iw_cm_verbs; 2021 2022 struct ib_port_immutable { 2023 int pkey_tbl_len; 2024 int gid_tbl_len; 2025 u32 core_cap_flags; 2026 u32 max_mad_size; 2027 }; 2028 2029 /* rdma netdev type - specifies protocol type */ 2030 enum rdma_netdev_t { 2031 RDMA_NETDEV_OPA_VNIC, 2032 RDMA_NETDEV_IPOIB, 2033 }; 2034 2035 /** 2036 * struct rdma_netdev - rdma netdev 2037 * For cases where netstack interfacing is required. 2038 */ 2039 struct rdma_netdev { 2040 void *clnt_priv; 2041 struct ib_device *hca; 2042 u8 port_num; 2043 2044 /* cleanup function must be specified */ 2045 void (*free_rdma_netdev)(struct net_device *netdev); 2046 2047 /* control functions */ 2048 void (*set_id)(struct net_device *netdev, int id); 2049 /* send packet */ 2050 int (*send)(struct net_device *dev, struct sk_buff *skb, 2051 struct ib_ah *address, u32 dqpn); 2052 /* multicast */ 2053 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2054 union ib_gid *gid, u16 mlid, 2055 int set_qkey, u32 qkey); 2056 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2057 union ib_gid *gid, u16 mlid); 2058 }; 2059 2060 struct ib_port_pkey_list { 2061 /* Lock to hold while modifying the list. */ 2062 spinlock_t list_lock; 2063 struct list_head pkey_list; 2064 }; 2065 2066 struct ib_device { 2067 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2068 struct device *dma_device; 2069 2070 char name[IB_DEVICE_NAME_MAX]; 2071 2072 struct list_head event_handler_list; 2073 spinlock_t event_handler_lock; 2074 2075 spinlock_t client_data_lock; 2076 struct list_head core_list; 2077 /* Access to the client_data_list is protected by the client_data_lock 2078 * spinlock and the lists_rwsem read-write semaphore */ 2079 struct list_head client_data_list; 2080 2081 struct ib_cache cache; 2082 /** 2083 * port_immutable is indexed by port number 2084 */ 2085 struct ib_port_immutable *port_immutable; 2086 2087 int num_comp_vectors; 2088 2089 struct ib_port_pkey_list *port_pkey_list; 2090 2091 struct iw_cm_verbs *iwcm; 2092 2093 /** 2094 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2095 * driver initialized data. The struct is kfree()'ed by the sysfs 2096 * core when the device is removed. A lifespan of -1 in the return 2097 * struct tells the core to set a default lifespan. 2098 */ 2099 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2100 u8 port_num); 2101 /** 2102 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2103 * @index - The index in the value array we wish to have updated, or 2104 * num_counters if we want all stats updated 2105 * Return codes - 2106 * < 0 - Error, no counters updated 2107 * index - Updated the single counter pointed to by index 2108 * num_counters - Updated all counters (will reset the timestamp 2109 * and prevent further calls for lifespan milliseconds) 2110 * Drivers are allowed to update all counters in leiu of just the 2111 * one given in index at their option 2112 */ 2113 int (*get_hw_stats)(struct ib_device *device, 2114 struct rdma_hw_stats *stats, 2115 u8 port, int index); 2116 int (*query_device)(struct ib_device *device, 2117 struct ib_device_attr *device_attr, 2118 struct ib_udata *udata); 2119 int (*query_port)(struct ib_device *device, 2120 u8 port_num, 2121 struct ib_port_attr *port_attr); 2122 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2123 u8 port_num); 2124 /* When calling get_netdev, the HW vendor's driver should return the 2125 * net device of device @device at port @port_num or NULL if such 2126 * a net device doesn't exist. The vendor driver should call dev_hold 2127 * on this net device. The HW vendor's device driver must guarantee 2128 * that this function returns NULL before the net device reaches 2129 * NETDEV_UNREGISTER_FINAL state. 2130 */ 2131 struct net_device *(*get_netdev)(struct ib_device *device, 2132 u8 port_num); 2133 int (*query_gid)(struct ib_device *device, 2134 u8 port_num, int index, 2135 union ib_gid *gid); 2136 /* When calling add_gid, the HW vendor's driver should 2137 * add the gid of device @device at gid index @index of 2138 * port @port_num to be @gid. Meta-info of that gid (for example, 2139 * the network device related to this gid is available 2140 * at @attr. @context allows the HW vendor driver to store extra 2141 * information together with a GID entry. The HW vendor may allocate 2142 * memory to contain this information and store it in @context when a 2143 * new GID entry is written to. Params are consistent until the next 2144 * call of add_gid or delete_gid. The function should return 0 on 2145 * success or error otherwise. The function could be called 2146 * concurrently for different ports. This function is only called 2147 * when roce_gid_table is used. 2148 */ 2149 int (*add_gid)(struct ib_device *device, 2150 u8 port_num, 2151 unsigned int index, 2152 const union ib_gid *gid, 2153 const struct ib_gid_attr *attr, 2154 void **context); 2155 /* When calling del_gid, the HW vendor's driver should delete the 2156 * gid of device @device at gid index @index of port @port_num. 2157 * Upon the deletion of a GID entry, the HW vendor must free any 2158 * allocated memory. The caller will clear @context afterwards. 2159 * This function is only called when roce_gid_table is used. 2160 */ 2161 int (*del_gid)(struct ib_device *device, 2162 u8 port_num, 2163 unsigned int index, 2164 void **context); 2165 int (*query_pkey)(struct ib_device *device, 2166 u8 port_num, u16 index, u16 *pkey); 2167 int (*modify_device)(struct ib_device *device, 2168 int device_modify_mask, 2169 struct ib_device_modify *device_modify); 2170 int (*modify_port)(struct ib_device *device, 2171 u8 port_num, int port_modify_mask, 2172 struct ib_port_modify *port_modify); 2173 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2174 struct ib_udata *udata); 2175 int (*dealloc_ucontext)(struct ib_ucontext *context); 2176 int (*mmap)(struct ib_ucontext *context, 2177 struct vm_area_struct *vma); 2178 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2179 struct ib_ucontext *context, 2180 struct ib_udata *udata); 2181 int (*dealloc_pd)(struct ib_pd *pd); 2182 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2183 struct rdma_ah_attr *ah_attr, 2184 struct ib_udata *udata); 2185 int (*modify_ah)(struct ib_ah *ah, 2186 struct rdma_ah_attr *ah_attr); 2187 int (*query_ah)(struct ib_ah *ah, 2188 struct rdma_ah_attr *ah_attr); 2189 int (*destroy_ah)(struct ib_ah *ah); 2190 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2191 struct ib_srq_init_attr *srq_init_attr, 2192 struct ib_udata *udata); 2193 int (*modify_srq)(struct ib_srq *srq, 2194 struct ib_srq_attr *srq_attr, 2195 enum ib_srq_attr_mask srq_attr_mask, 2196 struct ib_udata *udata); 2197 int (*query_srq)(struct ib_srq *srq, 2198 struct ib_srq_attr *srq_attr); 2199 int (*destroy_srq)(struct ib_srq *srq); 2200 int (*post_srq_recv)(struct ib_srq *srq, 2201 struct ib_recv_wr *recv_wr, 2202 struct ib_recv_wr **bad_recv_wr); 2203 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2204 struct ib_qp_init_attr *qp_init_attr, 2205 struct ib_udata *udata); 2206 int (*modify_qp)(struct ib_qp *qp, 2207 struct ib_qp_attr *qp_attr, 2208 int qp_attr_mask, 2209 struct ib_udata *udata); 2210 int (*query_qp)(struct ib_qp *qp, 2211 struct ib_qp_attr *qp_attr, 2212 int qp_attr_mask, 2213 struct ib_qp_init_attr *qp_init_attr); 2214 int (*destroy_qp)(struct ib_qp *qp); 2215 int (*post_send)(struct ib_qp *qp, 2216 struct ib_send_wr *send_wr, 2217 struct ib_send_wr **bad_send_wr); 2218 int (*post_recv)(struct ib_qp *qp, 2219 struct ib_recv_wr *recv_wr, 2220 struct ib_recv_wr **bad_recv_wr); 2221 struct ib_cq * (*create_cq)(struct ib_device *device, 2222 const struct ib_cq_init_attr *attr, 2223 struct ib_ucontext *context, 2224 struct ib_udata *udata); 2225 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2226 u16 cq_period); 2227 int (*destroy_cq)(struct ib_cq *cq); 2228 int (*resize_cq)(struct ib_cq *cq, int cqe, 2229 struct ib_udata *udata); 2230 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2231 struct ib_wc *wc); 2232 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2233 int (*req_notify_cq)(struct ib_cq *cq, 2234 enum ib_cq_notify_flags flags); 2235 int (*req_ncomp_notif)(struct ib_cq *cq, 2236 int wc_cnt); 2237 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2238 int mr_access_flags); 2239 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2240 u64 start, u64 length, 2241 u64 virt_addr, 2242 int mr_access_flags, 2243 struct ib_udata *udata); 2244 int (*rereg_user_mr)(struct ib_mr *mr, 2245 int flags, 2246 u64 start, u64 length, 2247 u64 virt_addr, 2248 int mr_access_flags, 2249 struct ib_pd *pd, 2250 struct ib_udata *udata); 2251 int (*dereg_mr)(struct ib_mr *mr); 2252 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2253 enum ib_mr_type mr_type, 2254 u32 max_num_sg); 2255 int (*map_mr_sg)(struct ib_mr *mr, 2256 struct scatterlist *sg, 2257 int sg_nents, 2258 unsigned int *sg_offset); 2259 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2260 enum ib_mw_type type, 2261 struct ib_udata *udata); 2262 int (*dealloc_mw)(struct ib_mw *mw); 2263 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2264 int mr_access_flags, 2265 struct ib_fmr_attr *fmr_attr); 2266 int (*map_phys_fmr)(struct ib_fmr *fmr, 2267 u64 *page_list, int list_len, 2268 u64 iova); 2269 int (*unmap_fmr)(struct list_head *fmr_list); 2270 int (*dealloc_fmr)(struct ib_fmr *fmr); 2271 int (*attach_mcast)(struct ib_qp *qp, 2272 union ib_gid *gid, 2273 u16 lid); 2274 int (*detach_mcast)(struct ib_qp *qp, 2275 union ib_gid *gid, 2276 u16 lid); 2277 int (*process_mad)(struct ib_device *device, 2278 int process_mad_flags, 2279 u8 port_num, 2280 const struct ib_wc *in_wc, 2281 const struct ib_grh *in_grh, 2282 const struct ib_mad_hdr *in_mad, 2283 size_t in_mad_size, 2284 struct ib_mad_hdr *out_mad, 2285 size_t *out_mad_size, 2286 u16 *out_mad_pkey_index); 2287 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2288 struct ib_ucontext *ucontext, 2289 struct ib_udata *udata); 2290 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2291 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2292 struct ib_flow_attr 2293 *flow_attr, 2294 int domain); 2295 int (*destroy_flow)(struct ib_flow *flow_id); 2296 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2297 struct ib_mr_status *mr_status); 2298 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2299 void (*drain_rq)(struct ib_qp *qp); 2300 void (*drain_sq)(struct ib_qp *qp); 2301 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2302 int state); 2303 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2304 struct ifla_vf_info *ivf); 2305 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2306 struct ifla_vf_stats *stats); 2307 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2308 int type); 2309 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2310 struct ib_wq_init_attr *init_attr, 2311 struct ib_udata *udata); 2312 int (*destroy_wq)(struct ib_wq *wq); 2313 int (*modify_wq)(struct ib_wq *wq, 2314 struct ib_wq_attr *attr, 2315 u32 wq_attr_mask, 2316 struct ib_udata *udata); 2317 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2318 struct ib_rwq_ind_table_init_attr *init_attr, 2319 struct ib_udata *udata); 2320 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2321 /** 2322 * rdma netdev operation 2323 * 2324 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it 2325 * doesn't support the specified rdma netdev type. 2326 */ 2327 struct net_device *(*alloc_rdma_netdev)( 2328 struct ib_device *device, 2329 u8 port_num, 2330 enum rdma_netdev_t type, 2331 const char *name, 2332 unsigned char name_assign_type, 2333 void (*setup)(struct net_device *)); 2334 2335 struct module *owner; 2336 struct device dev; 2337 struct kobject *ports_parent; 2338 struct list_head port_list; 2339 2340 enum { 2341 IB_DEV_UNINITIALIZED, 2342 IB_DEV_REGISTERED, 2343 IB_DEV_UNREGISTERED 2344 } reg_state; 2345 2346 int uverbs_abi_ver; 2347 u64 uverbs_cmd_mask; 2348 u64 uverbs_ex_cmd_mask; 2349 2350 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2351 __be64 node_guid; 2352 u32 local_dma_lkey; 2353 u16 is_switch:1; 2354 u8 node_type; 2355 u8 phys_port_cnt; 2356 struct ib_device_attr attrs; 2357 struct attribute_group *hw_stats_ag; 2358 struct rdma_hw_stats *hw_stats; 2359 2360 #ifdef CONFIG_CGROUP_RDMA 2361 struct rdmacg_device cg_device; 2362 #endif 2363 2364 u32 index; 2365 /* 2366 * Implementation details of the RDMA core, don't use in drivers 2367 */ 2368 struct rdma_restrack_root res; 2369 2370 /** 2371 * The following mandatory functions are used only at device 2372 * registration. Keep functions such as these at the end of this 2373 * structure to avoid cache line misses when accessing struct ib_device 2374 * in fast paths. 2375 */ 2376 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2377 void (*get_dev_fw_str)(struct ib_device *, char *str); 2378 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2379 int comp_vector); 2380 2381 struct uverbs_root_spec *specs_root; 2382 }; 2383 2384 struct ib_client { 2385 char *name; 2386 void (*add) (struct ib_device *); 2387 void (*remove)(struct ib_device *, void *client_data); 2388 2389 /* Returns the net_dev belonging to this ib_client and matching the 2390 * given parameters. 2391 * @dev: An RDMA device that the net_dev use for communication. 2392 * @port: A physical port number on the RDMA device. 2393 * @pkey: P_Key that the net_dev uses if applicable. 2394 * @gid: A GID that the net_dev uses to communicate. 2395 * @addr: An IP address the net_dev is configured with. 2396 * @client_data: The device's client data set by ib_set_client_data(). 2397 * 2398 * An ib_client that implements a net_dev on top of RDMA devices 2399 * (such as IP over IB) should implement this callback, allowing the 2400 * rdma_cm module to find the right net_dev for a given request. 2401 * 2402 * The caller is responsible for calling dev_put on the returned 2403 * netdev. */ 2404 struct net_device *(*get_net_dev_by_params)( 2405 struct ib_device *dev, 2406 u8 port, 2407 u16 pkey, 2408 const union ib_gid *gid, 2409 const struct sockaddr *addr, 2410 void *client_data); 2411 struct list_head list; 2412 }; 2413 2414 struct ib_device *ib_alloc_device(size_t size); 2415 void ib_dealloc_device(struct ib_device *device); 2416 2417 void ib_get_device_fw_str(struct ib_device *device, char *str); 2418 2419 int ib_register_device(struct ib_device *device, 2420 int (*port_callback)(struct ib_device *, 2421 u8, struct kobject *)); 2422 void ib_unregister_device(struct ib_device *device); 2423 2424 int ib_register_client (struct ib_client *client); 2425 void ib_unregister_client(struct ib_client *client); 2426 2427 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2428 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2429 void *data); 2430 2431 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2432 { 2433 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2434 } 2435 2436 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2437 { 2438 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2439 } 2440 2441 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2442 size_t offset, 2443 size_t len) 2444 { 2445 const void __user *p = udata->inbuf + offset; 2446 bool ret; 2447 u8 *buf; 2448 2449 if (len > USHRT_MAX) 2450 return false; 2451 2452 buf = memdup_user(p, len); 2453 if (IS_ERR(buf)) 2454 return false; 2455 2456 ret = !memchr_inv(buf, 0, len); 2457 kfree(buf); 2458 return ret; 2459 } 2460 2461 /** 2462 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2463 * contains all required attributes and no attributes not allowed for 2464 * the given QP state transition. 2465 * @cur_state: Current QP state 2466 * @next_state: Next QP state 2467 * @type: QP type 2468 * @mask: Mask of supplied QP attributes 2469 * @ll : link layer of port 2470 * 2471 * This function is a helper function that a low-level driver's 2472 * modify_qp method can use to validate the consumer's input. It 2473 * checks that cur_state and next_state are valid QP states, that a 2474 * transition from cur_state to next_state is allowed by the IB spec, 2475 * and that the attribute mask supplied is allowed for the transition. 2476 */ 2477 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2478 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2479 enum rdma_link_layer ll); 2480 2481 void ib_register_event_handler(struct ib_event_handler *event_handler); 2482 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2483 void ib_dispatch_event(struct ib_event *event); 2484 2485 int ib_query_port(struct ib_device *device, 2486 u8 port_num, struct ib_port_attr *port_attr); 2487 2488 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2489 u8 port_num); 2490 2491 /** 2492 * rdma_cap_ib_switch - Check if the device is IB switch 2493 * @device: Device to check 2494 * 2495 * Device driver is responsible for setting is_switch bit on 2496 * in ib_device structure at init time. 2497 * 2498 * Return: true if the device is IB switch. 2499 */ 2500 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2501 { 2502 return device->is_switch; 2503 } 2504 2505 /** 2506 * rdma_start_port - Return the first valid port number for the device 2507 * specified 2508 * 2509 * @device: Device to be checked 2510 * 2511 * Return start port number 2512 */ 2513 static inline u8 rdma_start_port(const struct ib_device *device) 2514 { 2515 return rdma_cap_ib_switch(device) ? 0 : 1; 2516 } 2517 2518 /** 2519 * rdma_end_port - Return the last valid port number for the device 2520 * specified 2521 * 2522 * @device: Device to be checked 2523 * 2524 * Return last port number 2525 */ 2526 static inline u8 rdma_end_port(const struct ib_device *device) 2527 { 2528 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2529 } 2530 2531 static inline int rdma_is_port_valid(const struct ib_device *device, 2532 unsigned int port) 2533 { 2534 return (port >= rdma_start_port(device) && 2535 port <= rdma_end_port(device)); 2536 } 2537 2538 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2539 { 2540 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2541 } 2542 2543 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2544 { 2545 return device->port_immutable[port_num].core_cap_flags & 2546 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2547 } 2548 2549 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2550 { 2551 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2552 } 2553 2554 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2555 { 2556 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2557 } 2558 2559 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2560 { 2561 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2562 } 2563 2564 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2565 { 2566 return rdma_protocol_ib(device, port_num) || 2567 rdma_protocol_roce(device, port_num); 2568 } 2569 2570 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2571 { 2572 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2573 } 2574 2575 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2576 { 2577 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2578 } 2579 2580 /** 2581 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2582 * Management Datagrams. 2583 * @device: Device to check 2584 * @port_num: Port number to check 2585 * 2586 * Management Datagrams (MAD) are a required part of the InfiniBand 2587 * specification and are supported on all InfiniBand devices. A slightly 2588 * extended version are also supported on OPA interfaces. 2589 * 2590 * Return: true if the port supports sending/receiving of MAD packets. 2591 */ 2592 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2593 { 2594 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2595 } 2596 2597 /** 2598 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2599 * Management Datagrams. 2600 * @device: Device to check 2601 * @port_num: Port number to check 2602 * 2603 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2604 * datagrams with their own versions. These OPA MADs share many but not all of 2605 * the characteristics of InfiniBand MADs. 2606 * 2607 * OPA MADs differ in the following ways: 2608 * 2609 * 1) MADs are variable size up to 2K 2610 * IBTA defined MADs remain fixed at 256 bytes 2611 * 2) OPA SMPs must carry valid PKeys 2612 * 3) OPA SMP packets are a different format 2613 * 2614 * Return: true if the port supports OPA MAD packet formats. 2615 */ 2616 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2617 { 2618 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2619 == RDMA_CORE_CAP_OPA_MAD; 2620 } 2621 2622 /** 2623 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2624 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2625 * @device: Device to check 2626 * @port_num: Port number to check 2627 * 2628 * Each InfiniBand node is required to provide a Subnet Management Agent 2629 * that the subnet manager can access. Prior to the fabric being fully 2630 * configured by the subnet manager, the SMA is accessed via a well known 2631 * interface called the Subnet Management Interface (SMI). This interface 2632 * uses directed route packets to communicate with the SM to get around the 2633 * chicken and egg problem of the SM needing to know what's on the fabric 2634 * in order to configure the fabric, and needing to configure the fabric in 2635 * order to send packets to the devices on the fabric. These directed 2636 * route packets do not need the fabric fully configured in order to reach 2637 * their destination. The SMI is the only method allowed to send 2638 * directed route packets on an InfiniBand fabric. 2639 * 2640 * Return: true if the port provides an SMI. 2641 */ 2642 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2643 { 2644 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2645 } 2646 2647 /** 2648 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2649 * Communication Manager. 2650 * @device: Device to check 2651 * @port_num: Port number to check 2652 * 2653 * The InfiniBand Communication Manager is one of many pre-defined General 2654 * Service Agents (GSA) that are accessed via the General Service 2655 * Interface (GSI). It's role is to facilitate establishment of connections 2656 * between nodes as well as other management related tasks for established 2657 * connections. 2658 * 2659 * Return: true if the port supports an IB CM (this does not guarantee that 2660 * a CM is actually running however). 2661 */ 2662 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2663 { 2664 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2665 } 2666 2667 /** 2668 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2669 * Communication Manager. 2670 * @device: Device to check 2671 * @port_num: Port number to check 2672 * 2673 * Similar to above, but specific to iWARP connections which have a different 2674 * managment protocol than InfiniBand. 2675 * 2676 * Return: true if the port supports an iWARP CM (this does not guarantee that 2677 * a CM is actually running however). 2678 */ 2679 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2680 { 2681 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2682 } 2683 2684 /** 2685 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2686 * Subnet Administration. 2687 * @device: Device to check 2688 * @port_num: Port number to check 2689 * 2690 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2691 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2692 * fabrics, devices should resolve routes to other hosts by contacting the 2693 * SA to query the proper route. 2694 * 2695 * Return: true if the port should act as a client to the fabric Subnet 2696 * Administration interface. This does not imply that the SA service is 2697 * running locally. 2698 */ 2699 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2700 { 2701 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2702 } 2703 2704 /** 2705 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2706 * Multicast. 2707 * @device: Device to check 2708 * @port_num: Port number to check 2709 * 2710 * InfiniBand multicast registration is more complex than normal IPv4 or 2711 * IPv6 multicast registration. Each Host Channel Adapter must register 2712 * with the Subnet Manager when it wishes to join a multicast group. It 2713 * should do so only once regardless of how many queue pairs it subscribes 2714 * to this group. And it should leave the group only after all queue pairs 2715 * attached to the group have been detached. 2716 * 2717 * Return: true if the port must undertake the additional adminstrative 2718 * overhead of registering/unregistering with the SM and tracking of the 2719 * total number of queue pairs attached to the multicast group. 2720 */ 2721 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2722 { 2723 return rdma_cap_ib_sa(device, port_num); 2724 } 2725 2726 /** 2727 * rdma_cap_af_ib - Check if the port of device has the capability 2728 * Native Infiniband Address. 2729 * @device: Device to check 2730 * @port_num: Port number to check 2731 * 2732 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2733 * GID. RoCE uses a different mechanism, but still generates a GID via 2734 * a prescribed mechanism and port specific data. 2735 * 2736 * Return: true if the port uses a GID address to identify devices on the 2737 * network. 2738 */ 2739 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2740 { 2741 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2742 } 2743 2744 /** 2745 * rdma_cap_eth_ah - Check if the port of device has the capability 2746 * Ethernet Address Handle. 2747 * @device: Device to check 2748 * @port_num: Port number to check 2749 * 2750 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2751 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2752 * port. Normally, packet headers are generated by the sending host 2753 * adapter, but when sending connectionless datagrams, we must manually 2754 * inject the proper headers for the fabric we are communicating over. 2755 * 2756 * Return: true if we are running as a RoCE port and must force the 2757 * addition of a Global Route Header built from our Ethernet Address 2758 * Handle into our header list for connectionless packets. 2759 */ 2760 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2761 { 2762 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2763 } 2764 2765 /** 2766 * rdma_cap_opa_ah - Check if the port of device supports 2767 * OPA Address handles 2768 * @device: Device to check 2769 * @port_num: Port number to check 2770 * 2771 * Return: true if we are running on an OPA device which supports 2772 * the extended OPA addressing. 2773 */ 2774 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 2775 { 2776 return (device->port_immutable[port_num].core_cap_flags & 2777 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 2778 } 2779 2780 /** 2781 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2782 * 2783 * @device: Device 2784 * @port_num: Port number 2785 * 2786 * This MAD size includes the MAD headers and MAD payload. No other headers 2787 * are included. 2788 * 2789 * Return the max MAD size required by the Port. Will return 0 if the port 2790 * does not support MADs 2791 */ 2792 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2793 { 2794 return device->port_immutable[port_num].max_mad_size; 2795 } 2796 2797 /** 2798 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2799 * @device: Device to check 2800 * @port_num: Port number to check 2801 * 2802 * RoCE GID table mechanism manages the various GIDs for a device. 2803 * 2804 * NOTE: if allocating the port's GID table has failed, this call will still 2805 * return true, but any RoCE GID table API will fail. 2806 * 2807 * Return: true if the port uses RoCE GID table mechanism in order to manage 2808 * its GIDs. 2809 */ 2810 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2811 u8 port_num) 2812 { 2813 return rdma_protocol_roce(device, port_num) && 2814 device->add_gid && device->del_gid; 2815 } 2816 2817 /* 2818 * Check if the device supports READ W/ INVALIDATE. 2819 */ 2820 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2821 { 2822 /* 2823 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2824 * has support for it yet. 2825 */ 2826 return rdma_protocol_iwarp(dev, port_num); 2827 } 2828 2829 int ib_query_gid(struct ib_device *device, 2830 u8 port_num, int index, union ib_gid *gid, 2831 struct ib_gid_attr *attr); 2832 2833 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2834 int state); 2835 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2836 struct ifla_vf_info *info); 2837 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2838 struct ifla_vf_stats *stats); 2839 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2840 int type); 2841 2842 int ib_query_pkey(struct ib_device *device, 2843 u8 port_num, u16 index, u16 *pkey); 2844 2845 int ib_modify_device(struct ib_device *device, 2846 int device_modify_mask, 2847 struct ib_device_modify *device_modify); 2848 2849 int ib_modify_port(struct ib_device *device, 2850 u8 port_num, int port_modify_mask, 2851 struct ib_port_modify *port_modify); 2852 2853 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2854 struct net_device *ndev, u8 *port_num, u16 *index); 2855 2856 int ib_find_pkey(struct ib_device *device, 2857 u8 port_num, u16 pkey, u16 *index); 2858 2859 enum ib_pd_flags { 2860 /* 2861 * Create a memory registration for all memory in the system and place 2862 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2863 * ULPs to avoid the overhead of dynamic MRs. 2864 * 2865 * This flag is generally considered unsafe and must only be used in 2866 * extremly trusted environments. Every use of it will log a warning 2867 * in the kernel log. 2868 */ 2869 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2870 }; 2871 2872 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2873 const char *caller); 2874 #define ib_alloc_pd(device, flags) \ 2875 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 2876 void ib_dealloc_pd(struct ib_pd *pd); 2877 2878 /** 2879 * rdma_create_ah - Creates an address handle for the given address vector. 2880 * @pd: The protection domain associated with the address handle. 2881 * @ah_attr: The attributes of the address vector. 2882 * 2883 * The address handle is used to reference a local or global destination 2884 * in all UD QP post sends. 2885 */ 2886 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 2887 2888 /** 2889 * rdma_create_user_ah - Creates an address handle for the given address vector. 2890 * It resolves destination mac address for ah attribute of RoCE type. 2891 * @pd: The protection domain associated with the address handle. 2892 * @ah_attr: The attributes of the address vector. 2893 * @udata: pointer to user's input output buffer information need by 2894 * provider driver. 2895 * 2896 * It returns 0 on success and returns appropriate error code on error. 2897 * The address handle is used to reference a local or global destination 2898 * in all UD QP post sends. 2899 */ 2900 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 2901 struct rdma_ah_attr *ah_attr, 2902 struct ib_udata *udata); 2903 /** 2904 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2905 * work completion. 2906 * @hdr: the L3 header to parse 2907 * @net_type: type of header to parse 2908 * @sgid: place to store source gid 2909 * @dgid: place to store destination gid 2910 */ 2911 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2912 enum rdma_network_type net_type, 2913 union ib_gid *sgid, union ib_gid *dgid); 2914 2915 /** 2916 * ib_get_rdma_header_version - Get the header version 2917 * @hdr: the L3 header to parse 2918 */ 2919 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2920 2921 /** 2922 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 2923 * work completion. 2924 * @device: Device on which the received message arrived. 2925 * @port_num: Port on which the received message arrived. 2926 * @wc: Work completion associated with the received message. 2927 * @grh: References the received global route header. This parameter is 2928 * ignored unless the work completion indicates that the GRH is valid. 2929 * @ah_attr: Returned attributes that can be used when creating an address 2930 * handle for replying to the message. 2931 */ 2932 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 2933 const struct ib_wc *wc, const struct ib_grh *grh, 2934 struct rdma_ah_attr *ah_attr); 2935 2936 /** 2937 * ib_create_ah_from_wc - Creates an address handle associated with the 2938 * sender of the specified work completion. 2939 * @pd: The protection domain associated with the address handle. 2940 * @wc: Work completion information associated with a received message. 2941 * @grh: References the received global route header. This parameter is 2942 * ignored unless the work completion indicates that the GRH is valid. 2943 * @port_num: The outbound port number to associate with the address. 2944 * 2945 * The address handle is used to reference a local or global destination 2946 * in all UD QP post sends. 2947 */ 2948 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2949 const struct ib_grh *grh, u8 port_num); 2950 2951 /** 2952 * rdma_modify_ah - Modifies the address vector associated with an address 2953 * handle. 2954 * @ah: The address handle to modify. 2955 * @ah_attr: The new address vector attributes to associate with the 2956 * address handle. 2957 */ 2958 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2959 2960 /** 2961 * rdma_query_ah - Queries the address vector associated with an address 2962 * handle. 2963 * @ah: The address handle to query. 2964 * @ah_attr: The address vector attributes associated with the address 2965 * handle. 2966 */ 2967 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2968 2969 /** 2970 * rdma_destroy_ah - Destroys an address handle. 2971 * @ah: The address handle to destroy. 2972 */ 2973 int rdma_destroy_ah(struct ib_ah *ah); 2974 2975 /** 2976 * ib_create_srq - Creates a SRQ associated with the specified protection 2977 * domain. 2978 * @pd: The protection domain associated with the SRQ. 2979 * @srq_init_attr: A list of initial attributes required to create the 2980 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2981 * the actual capabilities of the created SRQ. 2982 * 2983 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2984 * requested size of the SRQ, and set to the actual values allocated 2985 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2986 * will always be at least as large as the requested values. 2987 */ 2988 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2989 struct ib_srq_init_attr *srq_init_attr); 2990 2991 /** 2992 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2993 * @srq: The SRQ to modify. 2994 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2995 * the current values of selected SRQ attributes are returned. 2996 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2997 * are being modified. 2998 * 2999 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3000 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3001 * the number of receives queued drops below the limit. 3002 */ 3003 int ib_modify_srq(struct ib_srq *srq, 3004 struct ib_srq_attr *srq_attr, 3005 enum ib_srq_attr_mask srq_attr_mask); 3006 3007 /** 3008 * ib_query_srq - Returns the attribute list and current values for the 3009 * specified SRQ. 3010 * @srq: The SRQ to query. 3011 * @srq_attr: The attributes of the specified SRQ. 3012 */ 3013 int ib_query_srq(struct ib_srq *srq, 3014 struct ib_srq_attr *srq_attr); 3015 3016 /** 3017 * ib_destroy_srq - Destroys the specified SRQ. 3018 * @srq: The SRQ to destroy. 3019 */ 3020 int ib_destroy_srq(struct ib_srq *srq); 3021 3022 /** 3023 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3024 * @srq: The SRQ to post the work request on. 3025 * @recv_wr: A list of work requests to post on the receive queue. 3026 * @bad_recv_wr: On an immediate failure, this parameter will reference 3027 * the work request that failed to be posted on the QP. 3028 */ 3029 static inline int ib_post_srq_recv(struct ib_srq *srq, 3030 struct ib_recv_wr *recv_wr, 3031 struct ib_recv_wr **bad_recv_wr) 3032 { 3033 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 3034 } 3035 3036 /** 3037 * ib_create_qp - Creates a QP associated with the specified protection 3038 * domain. 3039 * @pd: The protection domain associated with the QP. 3040 * @qp_init_attr: A list of initial attributes required to create the 3041 * QP. If QP creation succeeds, then the attributes are updated to 3042 * the actual capabilities of the created QP. 3043 */ 3044 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3045 struct ib_qp_init_attr *qp_init_attr); 3046 3047 /** 3048 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3049 * @qp: The QP to modify. 3050 * @attr: On input, specifies the QP attributes to modify. On output, 3051 * the current values of selected QP attributes are returned. 3052 * @attr_mask: A bit-mask used to specify which attributes of the QP 3053 * are being modified. 3054 * @udata: pointer to user's input output buffer information 3055 * are being modified. 3056 * It returns 0 on success and returns appropriate error code on error. 3057 */ 3058 int ib_modify_qp_with_udata(struct ib_qp *qp, 3059 struct ib_qp_attr *attr, 3060 int attr_mask, 3061 struct ib_udata *udata); 3062 3063 /** 3064 * ib_modify_qp - Modifies the attributes for the specified QP and then 3065 * transitions the QP to the given state. 3066 * @qp: The QP to modify. 3067 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3068 * the current values of selected QP attributes are returned. 3069 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3070 * are being modified. 3071 */ 3072 int ib_modify_qp(struct ib_qp *qp, 3073 struct ib_qp_attr *qp_attr, 3074 int qp_attr_mask); 3075 3076 /** 3077 * ib_query_qp - Returns the attribute list and current values for the 3078 * specified QP. 3079 * @qp: The QP to query. 3080 * @qp_attr: The attributes of the specified QP. 3081 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3082 * @qp_init_attr: Additional attributes of the selected QP. 3083 * 3084 * The qp_attr_mask may be used to limit the query to gathering only the 3085 * selected attributes. 3086 */ 3087 int ib_query_qp(struct ib_qp *qp, 3088 struct ib_qp_attr *qp_attr, 3089 int qp_attr_mask, 3090 struct ib_qp_init_attr *qp_init_attr); 3091 3092 /** 3093 * ib_destroy_qp - Destroys the specified QP. 3094 * @qp: The QP to destroy. 3095 */ 3096 int ib_destroy_qp(struct ib_qp *qp); 3097 3098 /** 3099 * ib_open_qp - Obtain a reference to an existing sharable QP. 3100 * @xrcd - XRC domain 3101 * @qp_open_attr: Attributes identifying the QP to open. 3102 * 3103 * Returns a reference to a sharable QP. 3104 */ 3105 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3106 struct ib_qp_open_attr *qp_open_attr); 3107 3108 /** 3109 * ib_close_qp - Release an external reference to a QP. 3110 * @qp: The QP handle to release 3111 * 3112 * The opened QP handle is released by the caller. The underlying 3113 * shared QP is not destroyed until all internal references are released. 3114 */ 3115 int ib_close_qp(struct ib_qp *qp); 3116 3117 /** 3118 * ib_post_send - Posts a list of work requests to the send queue of 3119 * the specified QP. 3120 * @qp: The QP to post the work request on. 3121 * @send_wr: A list of work requests to post on the send queue. 3122 * @bad_send_wr: On an immediate failure, this parameter will reference 3123 * the work request that failed to be posted on the QP. 3124 * 3125 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3126 * error is returned, the QP state shall not be affected, 3127 * ib_post_send() will return an immediate error after queueing any 3128 * earlier work requests in the list. 3129 */ 3130 static inline int ib_post_send(struct ib_qp *qp, 3131 struct ib_send_wr *send_wr, 3132 struct ib_send_wr **bad_send_wr) 3133 { 3134 return qp->device->post_send(qp, send_wr, bad_send_wr); 3135 } 3136 3137 /** 3138 * ib_post_recv - Posts a list of work requests to the receive queue of 3139 * the specified QP. 3140 * @qp: The QP to post the work request on. 3141 * @recv_wr: A list of work requests to post on the receive queue. 3142 * @bad_recv_wr: On an immediate failure, this parameter will reference 3143 * the work request that failed to be posted on the QP. 3144 */ 3145 static inline int ib_post_recv(struct ib_qp *qp, 3146 struct ib_recv_wr *recv_wr, 3147 struct ib_recv_wr **bad_recv_wr) 3148 { 3149 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3150 } 3151 3152 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, 3153 int nr_cqe, int comp_vector, 3154 enum ib_poll_context poll_ctx, const char *caller); 3155 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \ 3156 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME) 3157 3158 void ib_free_cq(struct ib_cq *cq); 3159 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3160 3161 /** 3162 * ib_create_cq - Creates a CQ on the specified device. 3163 * @device: The device on which to create the CQ. 3164 * @comp_handler: A user-specified callback that is invoked when a 3165 * completion event occurs on the CQ. 3166 * @event_handler: A user-specified callback that is invoked when an 3167 * asynchronous event not associated with a completion occurs on the CQ. 3168 * @cq_context: Context associated with the CQ returned to the user via 3169 * the associated completion and event handlers. 3170 * @cq_attr: The attributes the CQ should be created upon. 3171 * 3172 * Users can examine the cq structure to determine the actual CQ size. 3173 */ 3174 struct ib_cq *ib_create_cq(struct ib_device *device, 3175 ib_comp_handler comp_handler, 3176 void (*event_handler)(struct ib_event *, void *), 3177 void *cq_context, 3178 const struct ib_cq_init_attr *cq_attr); 3179 3180 /** 3181 * ib_resize_cq - Modifies the capacity of the CQ. 3182 * @cq: The CQ to resize. 3183 * @cqe: The minimum size of the CQ. 3184 * 3185 * Users can examine the cq structure to determine the actual CQ size. 3186 */ 3187 int ib_resize_cq(struct ib_cq *cq, int cqe); 3188 3189 /** 3190 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3191 * @cq: The CQ to modify. 3192 * @cq_count: number of CQEs that will trigger an event 3193 * @cq_period: max period of time in usec before triggering an event 3194 * 3195 */ 3196 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3197 3198 /** 3199 * ib_destroy_cq - Destroys the specified CQ. 3200 * @cq: The CQ to destroy. 3201 */ 3202 int ib_destroy_cq(struct ib_cq *cq); 3203 3204 /** 3205 * ib_poll_cq - poll a CQ for completion(s) 3206 * @cq:the CQ being polled 3207 * @num_entries:maximum number of completions to return 3208 * @wc:array of at least @num_entries &struct ib_wc where completions 3209 * will be returned 3210 * 3211 * Poll a CQ for (possibly multiple) completions. If the return value 3212 * is < 0, an error occurred. If the return value is >= 0, it is the 3213 * number of completions returned. If the return value is 3214 * non-negative and < num_entries, then the CQ was emptied. 3215 */ 3216 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3217 struct ib_wc *wc) 3218 { 3219 return cq->device->poll_cq(cq, num_entries, wc); 3220 } 3221 3222 /** 3223 * ib_peek_cq - Returns the number of unreaped completions currently 3224 * on the specified CQ. 3225 * @cq: The CQ to peek. 3226 * @wc_cnt: A minimum number of unreaped completions to check for. 3227 * 3228 * If the number of unreaped completions is greater than or equal to wc_cnt, 3229 * this function returns wc_cnt, otherwise, it returns the actual number of 3230 * unreaped completions. 3231 */ 3232 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3233 3234 /** 3235 * ib_req_notify_cq - Request completion notification on a CQ. 3236 * @cq: The CQ to generate an event for. 3237 * @flags: 3238 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3239 * to request an event on the next solicited event or next work 3240 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3241 * may also be |ed in to request a hint about missed events, as 3242 * described below. 3243 * 3244 * Return Value: 3245 * < 0 means an error occurred while requesting notification 3246 * == 0 means notification was requested successfully, and if 3247 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3248 * were missed and it is safe to wait for another event. In 3249 * this case is it guaranteed that any work completions added 3250 * to the CQ since the last CQ poll will trigger a completion 3251 * notification event. 3252 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3253 * in. It means that the consumer must poll the CQ again to 3254 * make sure it is empty to avoid missing an event because of a 3255 * race between requesting notification and an entry being 3256 * added to the CQ. This return value means it is possible 3257 * (but not guaranteed) that a work completion has been added 3258 * to the CQ since the last poll without triggering a 3259 * completion notification event. 3260 */ 3261 static inline int ib_req_notify_cq(struct ib_cq *cq, 3262 enum ib_cq_notify_flags flags) 3263 { 3264 return cq->device->req_notify_cq(cq, flags); 3265 } 3266 3267 /** 3268 * ib_req_ncomp_notif - Request completion notification when there are 3269 * at least the specified number of unreaped completions on the CQ. 3270 * @cq: The CQ to generate an event for. 3271 * @wc_cnt: The number of unreaped completions that should be on the 3272 * CQ before an event is generated. 3273 */ 3274 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3275 { 3276 return cq->device->req_ncomp_notif ? 3277 cq->device->req_ncomp_notif(cq, wc_cnt) : 3278 -ENOSYS; 3279 } 3280 3281 /** 3282 * ib_dma_mapping_error - check a DMA addr for error 3283 * @dev: The device for which the dma_addr was created 3284 * @dma_addr: The DMA address to check 3285 */ 3286 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3287 { 3288 return dma_mapping_error(dev->dma_device, dma_addr); 3289 } 3290 3291 /** 3292 * ib_dma_map_single - Map a kernel virtual address to DMA address 3293 * @dev: The device for which the dma_addr is to be created 3294 * @cpu_addr: The kernel virtual address 3295 * @size: The size of the region in bytes 3296 * @direction: The direction of the DMA 3297 */ 3298 static inline u64 ib_dma_map_single(struct ib_device *dev, 3299 void *cpu_addr, size_t size, 3300 enum dma_data_direction direction) 3301 { 3302 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3303 } 3304 3305 /** 3306 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3307 * @dev: The device for which the DMA address was created 3308 * @addr: The DMA address 3309 * @size: The size of the region in bytes 3310 * @direction: The direction of the DMA 3311 */ 3312 static inline void ib_dma_unmap_single(struct ib_device *dev, 3313 u64 addr, size_t size, 3314 enum dma_data_direction direction) 3315 { 3316 dma_unmap_single(dev->dma_device, addr, size, direction); 3317 } 3318 3319 /** 3320 * ib_dma_map_page - Map a physical page to DMA address 3321 * @dev: The device for which the dma_addr is to be created 3322 * @page: The page to be mapped 3323 * @offset: The offset within the page 3324 * @size: The size of the region in bytes 3325 * @direction: The direction of the DMA 3326 */ 3327 static inline u64 ib_dma_map_page(struct ib_device *dev, 3328 struct page *page, 3329 unsigned long offset, 3330 size_t size, 3331 enum dma_data_direction direction) 3332 { 3333 return dma_map_page(dev->dma_device, page, offset, size, direction); 3334 } 3335 3336 /** 3337 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3338 * @dev: The device for which the DMA address was created 3339 * @addr: The DMA address 3340 * @size: The size of the region in bytes 3341 * @direction: The direction of the DMA 3342 */ 3343 static inline void ib_dma_unmap_page(struct ib_device *dev, 3344 u64 addr, size_t size, 3345 enum dma_data_direction direction) 3346 { 3347 dma_unmap_page(dev->dma_device, addr, size, direction); 3348 } 3349 3350 /** 3351 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3352 * @dev: The device for which the DMA addresses are to be created 3353 * @sg: The array of scatter/gather entries 3354 * @nents: The number of scatter/gather entries 3355 * @direction: The direction of the DMA 3356 */ 3357 static inline int ib_dma_map_sg(struct ib_device *dev, 3358 struct scatterlist *sg, int nents, 3359 enum dma_data_direction direction) 3360 { 3361 return dma_map_sg(dev->dma_device, sg, nents, direction); 3362 } 3363 3364 /** 3365 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3366 * @dev: The device for which the DMA addresses were created 3367 * @sg: The array of scatter/gather entries 3368 * @nents: The number of scatter/gather entries 3369 * @direction: The direction of the DMA 3370 */ 3371 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3372 struct scatterlist *sg, int nents, 3373 enum dma_data_direction direction) 3374 { 3375 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3376 } 3377 3378 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3379 struct scatterlist *sg, int nents, 3380 enum dma_data_direction direction, 3381 unsigned long dma_attrs) 3382 { 3383 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3384 dma_attrs); 3385 } 3386 3387 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3388 struct scatterlist *sg, int nents, 3389 enum dma_data_direction direction, 3390 unsigned long dma_attrs) 3391 { 3392 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3393 } 3394 /** 3395 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3396 * @dev: The device for which the DMA addresses were created 3397 * @sg: The scatter/gather entry 3398 * 3399 * Note: this function is obsolete. To do: change all occurrences of 3400 * ib_sg_dma_address() into sg_dma_address(). 3401 */ 3402 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3403 struct scatterlist *sg) 3404 { 3405 return sg_dma_address(sg); 3406 } 3407 3408 /** 3409 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3410 * @dev: The device for which the DMA addresses were created 3411 * @sg: The scatter/gather entry 3412 * 3413 * Note: this function is obsolete. To do: change all occurrences of 3414 * ib_sg_dma_len() into sg_dma_len(). 3415 */ 3416 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3417 struct scatterlist *sg) 3418 { 3419 return sg_dma_len(sg); 3420 } 3421 3422 /** 3423 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3424 * @dev: The device for which the DMA address was created 3425 * @addr: The DMA address 3426 * @size: The size of the region in bytes 3427 * @dir: The direction of the DMA 3428 */ 3429 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3430 u64 addr, 3431 size_t size, 3432 enum dma_data_direction dir) 3433 { 3434 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3435 } 3436 3437 /** 3438 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3439 * @dev: The device for which the DMA address was created 3440 * @addr: The DMA address 3441 * @size: The size of the region in bytes 3442 * @dir: The direction of the DMA 3443 */ 3444 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3445 u64 addr, 3446 size_t size, 3447 enum dma_data_direction dir) 3448 { 3449 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3450 } 3451 3452 /** 3453 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3454 * @dev: The device for which the DMA address is requested 3455 * @size: The size of the region to allocate in bytes 3456 * @dma_handle: A pointer for returning the DMA address of the region 3457 * @flag: memory allocator flags 3458 */ 3459 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3460 size_t size, 3461 dma_addr_t *dma_handle, 3462 gfp_t flag) 3463 { 3464 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3465 } 3466 3467 /** 3468 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3469 * @dev: The device for which the DMA addresses were allocated 3470 * @size: The size of the region 3471 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3472 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3473 */ 3474 static inline void ib_dma_free_coherent(struct ib_device *dev, 3475 size_t size, void *cpu_addr, 3476 dma_addr_t dma_handle) 3477 { 3478 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3479 } 3480 3481 /** 3482 * ib_dereg_mr - Deregisters a memory region and removes it from the 3483 * HCA translation table. 3484 * @mr: The memory region to deregister. 3485 * 3486 * This function can fail, if the memory region has memory windows bound to it. 3487 */ 3488 int ib_dereg_mr(struct ib_mr *mr); 3489 3490 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3491 enum ib_mr_type mr_type, 3492 u32 max_num_sg); 3493 3494 /** 3495 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3496 * R_Key and L_Key. 3497 * @mr - struct ib_mr pointer to be updated. 3498 * @newkey - new key to be used. 3499 */ 3500 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3501 { 3502 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3503 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3504 } 3505 3506 /** 3507 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3508 * for calculating a new rkey for type 2 memory windows. 3509 * @rkey - the rkey to increment. 3510 */ 3511 static inline u32 ib_inc_rkey(u32 rkey) 3512 { 3513 const u32 mask = 0x000000ff; 3514 return ((rkey + 1) & mask) | (rkey & ~mask); 3515 } 3516 3517 /** 3518 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3519 * @pd: The protection domain associated with the unmapped region. 3520 * @mr_access_flags: Specifies the memory access rights. 3521 * @fmr_attr: Attributes of the unmapped region. 3522 * 3523 * A fast memory region must be mapped before it can be used as part of 3524 * a work request. 3525 */ 3526 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3527 int mr_access_flags, 3528 struct ib_fmr_attr *fmr_attr); 3529 3530 /** 3531 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3532 * @fmr: The fast memory region to associate with the pages. 3533 * @page_list: An array of physical pages to map to the fast memory region. 3534 * @list_len: The number of pages in page_list. 3535 * @iova: The I/O virtual address to use with the mapped region. 3536 */ 3537 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3538 u64 *page_list, int list_len, 3539 u64 iova) 3540 { 3541 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3542 } 3543 3544 /** 3545 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3546 * @fmr_list: A linked list of fast memory regions to unmap. 3547 */ 3548 int ib_unmap_fmr(struct list_head *fmr_list); 3549 3550 /** 3551 * ib_dealloc_fmr - Deallocates a fast memory region. 3552 * @fmr: The fast memory region to deallocate. 3553 */ 3554 int ib_dealloc_fmr(struct ib_fmr *fmr); 3555 3556 /** 3557 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3558 * @qp: QP to attach to the multicast group. The QP must be type 3559 * IB_QPT_UD. 3560 * @gid: Multicast group GID. 3561 * @lid: Multicast group LID in host byte order. 3562 * 3563 * In order to send and receive multicast packets, subnet 3564 * administration must have created the multicast group and configured 3565 * the fabric appropriately. The port associated with the specified 3566 * QP must also be a member of the multicast group. 3567 */ 3568 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3569 3570 /** 3571 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3572 * @qp: QP to detach from the multicast group. 3573 * @gid: Multicast group GID. 3574 * @lid: Multicast group LID in host byte order. 3575 */ 3576 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3577 3578 /** 3579 * ib_alloc_xrcd - Allocates an XRC domain. 3580 * @device: The device on which to allocate the XRC domain. 3581 * @caller: Module name for kernel consumers 3582 */ 3583 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3584 #define ib_alloc_xrcd(device) \ 3585 __ib_alloc_xrcd((device), KBUILD_MODNAME) 3586 3587 /** 3588 * ib_dealloc_xrcd - Deallocates an XRC domain. 3589 * @xrcd: The XRC domain to deallocate. 3590 */ 3591 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3592 3593 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3594 struct ib_flow_attr *flow_attr, int domain); 3595 int ib_destroy_flow(struct ib_flow *flow_id); 3596 3597 static inline int ib_check_mr_access(int flags) 3598 { 3599 /* 3600 * Local write permission is required if remote write or 3601 * remote atomic permission is also requested. 3602 */ 3603 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3604 !(flags & IB_ACCESS_LOCAL_WRITE)) 3605 return -EINVAL; 3606 3607 return 0; 3608 } 3609 3610 /** 3611 * ib_check_mr_status: lightweight check of MR status. 3612 * This routine may provide status checks on a selected 3613 * ib_mr. first use is for signature status check. 3614 * 3615 * @mr: A memory region. 3616 * @check_mask: Bitmask of which checks to perform from 3617 * ib_mr_status_check enumeration. 3618 * @mr_status: The container of relevant status checks. 3619 * failed checks will be indicated in the status bitmask 3620 * and the relevant info shall be in the error item. 3621 */ 3622 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3623 struct ib_mr_status *mr_status); 3624 3625 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3626 u16 pkey, const union ib_gid *gid, 3627 const struct sockaddr *addr); 3628 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3629 struct ib_wq_init_attr *init_attr); 3630 int ib_destroy_wq(struct ib_wq *wq); 3631 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3632 u32 wq_attr_mask); 3633 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3634 struct ib_rwq_ind_table_init_attr* 3635 wq_ind_table_init_attr); 3636 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3637 3638 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3639 unsigned int *sg_offset, unsigned int page_size); 3640 3641 static inline int 3642 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3643 unsigned int *sg_offset, unsigned int page_size) 3644 { 3645 int n; 3646 3647 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3648 mr->iova = 0; 3649 3650 return n; 3651 } 3652 3653 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3654 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3655 3656 void ib_drain_rq(struct ib_qp *qp); 3657 void ib_drain_sq(struct ib_qp *qp); 3658 void ib_drain_qp(struct ib_qp *qp); 3659 3660 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3661 3662 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3663 { 3664 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3665 return attr->roce.dmac; 3666 return NULL; 3667 } 3668 3669 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3670 { 3671 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3672 attr->ib.dlid = (u16)dlid; 3673 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3674 attr->opa.dlid = dlid; 3675 } 3676 3677 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3678 { 3679 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3680 return attr->ib.dlid; 3681 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3682 return attr->opa.dlid; 3683 return 0; 3684 } 3685 3686 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3687 { 3688 attr->sl = sl; 3689 } 3690 3691 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 3692 { 3693 return attr->sl; 3694 } 3695 3696 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 3697 u8 src_path_bits) 3698 { 3699 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3700 attr->ib.src_path_bits = src_path_bits; 3701 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3702 attr->opa.src_path_bits = src_path_bits; 3703 } 3704 3705 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 3706 { 3707 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3708 return attr->ib.src_path_bits; 3709 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3710 return attr->opa.src_path_bits; 3711 return 0; 3712 } 3713 3714 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 3715 bool make_grd) 3716 { 3717 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3718 attr->opa.make_grd = make_grd; 3719 } 3720 3721 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 3722 { 3723 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3724 return attr->opa.make_grd; 3725 return false; 3726 } 3727 3728 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 3729 { 3730 attr->port_num = port_num; 3731 } 3732 3733 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 3734 { 3735 return attr->port_num; 3736 } 3737 3738 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 3739 u8 static_rate) 3740 { 3741 attr->static_rate = static_rate; 3742 } 3743 3744 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 3745 { 3746 return attr->static_rate; 3747 } 3748 3749 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 3750 enum ib_ah_flags flag) 3751 { 3752 attr->ah_flags = flag; 3753 } 3754 3755 static inline enum ib_ah_flags 3756 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 3757 { 3758 return attr->ah_flags; 3759 } 3760 3761 static inline const struct ib_global_route 3762 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 3763 { 3764 return &attr->grh; 3765 } 3766 3767 /*To retrieve and modify the grh */ 3768 static inline struct ib_global_route 3769 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 3770 { 3771 return &attr->grh; 3772 } 3773 3774 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 3775 { 3776 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3777 3778 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 3779 } 3780 3781 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 3782 __be64 prefix) 3783 { 3784 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3785 3786 grh->dgid.global.subnet_prefix = prefix; 3787 } 3788 3789 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 3790 __be64 if_id) 3791 { 3792 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3793 3794 grh->dgid.global.interface_id = if_id; 3795 } 3796 3797 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 3798 union ib_gid *dgid, u32 flow_label, 3799 u8 sgid_index, u8 hop_limit, 3800 u8 traffic_class) 3801 { 3802 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3803 3804 attr->ah_flags = IB_AH_GRH; 3805 if (dgid) 3806 grh->dgid = *dgid; 3807 grh->flow_label = flow_label; 3808 grh->sgid_index = sgid_index; 3809 grh->hop_limit = hop_limit; 3810 grh->traffic_class = traffic_class; 3811 } 3812 3813 /*Get AH type */ 3814 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 3815 u32 port_num) 3816 { 3817 if (rdma_protocol_roce(dev, port_num)) 3818 return RDMA_AH_ATTR_TYPE_ROCE; 3819 else if ((rdma_protocol_ib(dev, port_num)) && 3820 (rdma_cap_opa_ah(dev, port_num))) 3821 return RDMA_AH_ATTR_TYPE_OPA; 3822 else 3823 return RDMA_AH_ATTR_TYPE_IB; 3824 } 3825 3826 /** 3827 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 3828 * In the current implementation the only way to get 3829 * get the 32bit lid is from other sources for OPA. 3830 * For IB, lids will always be 16bits so cast the 3831 * value accordingly. 3832 * 3833 * @lid: A 32bit LID 3834 */ 3835 static inline u16 ib_lid_cpu16(u32 lid) 3836 { 3837 WARN_ON_ONCE(lid & 0xFFFF0000); 3838 return (u16)lid; 3839 } 3840 3841 /** 3842 * ib_lid_be16 - Return lid in 16bit BE encoding. 3843 * 3844 * @lid: A 32bit LID 3845 */ 3846 static inline __be16 ib_lid_be16(u32 lid) 3847 { 3848 WARN_ON_ONCE(lid & 0xFFFF0000); 3849 return cpu_to_be16((u16)lid); 3850 } 3851 3852 /** 3853 * ib_get_vector_affinity - Get the affinity mappings of a given completion 3854 * vector 3855 * @device: the rdma device 3856 * @comp_vector: index of completion vector 3857 * 3858 * Returns NULL on failure, otherwise a corresponding cpu map of the 3859 * completion vector (returns all-cpus map if the device driver doesn't 3860 * implement get_vector_affinity). 3861 */ 3862 static inline const struct cpumask * 3863 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 3864 { 3865 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 3866 !device->get_vector_affinity) 3867 return NULL; 3868 3869 return device->get_vector_affinity(device, comp_vector); 3870 3871 } 3872 3873 /** 3874 * rdma_roce_rescan_device - Rescan all of the network devices in the system 3875 * and add their gids, as needed, to the relevant RoCE devices. 3876 * 3877 * @device: the rdma device 3878 */ 3879 void rdma_roce_rescan_device(struct ib_device *ibdev); 3880 3881 #endif /* IB_VERBS_H */ 3882