1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 #include <linux/pci-tph.h> 46 47 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 48 49 struct ib_umem_odp; 50 struct ib_uqp_object; 51 struct ib_usrq_object; 52 struct ib_uwq_object; 53 struct rdma_cm_id; 54 struct ib_port; 55 struct hw_stats_device_data; 56 57 extern struct workqueue_struct *ib_wq; 58 extern struct workqueue_struct *ib_comp_wq; 59 extern struct workqueue_struct *ib_comp_unbound_wq; 60 61 struct ib_ucq_object; 62 63 __printf(2, 3) __cold 64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 77 78 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 79 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 80 #define ibdev_dbg(__dev, format, args...) \ 81 dynamic_ibdev_dbg(__dev, format, ##args) 82 #else 83 __printf(2, 3) __cold 84 static inline 85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 86 #endif 87 88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 89 do { \ 90 static DEFINE_RATELIMIT_STATE(_rs, \ 91 DEFAULT_RATELIMIT_INTERVAL, \ 92 DEFAULT_RATELIMIT_BURST); \ 93 if (__ratelimit(&_rs)) \ 94 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 95 } while (0) 96 97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 98 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 111 112 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 113 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 116 do { \ 117 static DEFINE_RATELIMIT_STATE(_rs, \ 118 DEFAULT_RATELIMIT_INTERVAL, \ 119 DEFAULT_RATELIMIT_BURST); \ 120 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 121 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 122 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 123 ##__VA_ARGS__); \ 124 } while (0) 125 #else 126 __printf(2, 3) __cold 127 static inline 128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 129 #endif 130 131 union ib_gid { 132 u8 raw[16]; 133 struct { 134 __be64 subnet_prefix; 135 __be64 interface_id; 136 } global; 137 }; 138 139 extern union ib_gid zgid; 140 141 enum ib_gid_type { 142 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 143 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 144 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 145 IB_GID_TYPE_SIZE 146 }; 147 148 #define ROCE_V2_UDP_DPORT 4791 149 struct ib_gid_attr { 150 struct net_device __rcu *ndev; 151 struct ib_device *device; 152 union ib_gid gid; 153 enum ib_gid_type gid_type; 154 u16 index; 155 u32 port_num; 156 }; 157 158 enum { 159 /* set the local administered indication */ 160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 161 }; 162 163 enum rdma_transport_type { 164 RDMA_TRANSPORT_IB, 165 RDMA_TRANSPORT_IWARP, 166 RDMA_TRANSPORT_USNIC, 167 RDMA_TRANSPORT_USNIC_UDP, 168 RDMA_TRANSPORT_UNSPECIFIED, 169 }; 170 171 enum rdma_protocol_type { 172 RDMA_PROTOCOL_IB, 173 RDMA_PROTOCOL_IBOE, 174 RDMA_PROTOCOL_IWARP, 175 RDMA_PROTOCOL_USNIC_UDP 176 }; 177 178 __attribute_const__ enum rdma_transport_type 179 rdma_node_get_transport(unsigned int node_type); 180 181 enum rdma_network_type { 182 RDMA_NETWORK_IB, 183 RDMA_NETWORK_ROCE_V1, 184 RDMA_NETWORK_IPV4, 185 RDMA_NETWORK_IPV6 186 }; 187 188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 189 { 190 if (network_type == RDMA_NETWORK_IPV4 || 191 network_type == RDMA_NETWORK_IPV6) 192 return IB_GID_TYPE_ROCE_UDP_ENCAP; 193 else if (network_type == RDMA_NETWORK_ROCE_V1) 194 return IB_GID_TYPE_ROCE; 195 else 196 return IB_GID_TYPE_IB; 197 } 198 199 static inline enum rdma_network_type 200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 201 { 202 if (attr->gid_type == IB_GID_TYPE_IB) 203 return RDMA_NETWORK_IB; 204 205 if (attr->gid_type == IB_GID_TYPE_ROCE) 206 return RDMA_NETWORK_ROCE_V1; 207 208 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 209 return RDMA_NETWORK_IPV4; 210 else 211 return RDMA_NETWORK_IPV6; 212 } 213 214 enum rdma_link_layer { 215 IB_LINK_LAYER_UNSPECIFIED, 216 IB_LINK_LAYER_INFINIBAND, 217 IB_LINK_LAYER_ETHERNET, 218 }; 219 220 enum ib_device_cap_flags { 221 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 222 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 223 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 224 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 225 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 226 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 227 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 228 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 229 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 230 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 231 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 232 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 233 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 234 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 235 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 236 237 /* Reserved, old SEND_W_INV = 1 << 16,*/ 238 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 239 /* 240 * Devices should set IB_DEVICE_UD_IP_SUM if they support 241 * insertion of UDP and TCP checksum on outgoing UD IPoIB 242 * messages and can verify the validity of checksum for 243 * incoming messages. Setting this flag implies that the 244 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 245 */ 246 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 247 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 248 249 /* 250 * This device supports the IB "base memory management extension", 251 * which includes support for fast registrations (IB_WR_REG_MR, 252 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 253 * also be set by any iWarp device which must support FRs to comply 254 * to the iWarp verbs spec. iWarp devices also support the 255 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 256 * stag. 257 */ 258 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 259 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 260 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 261 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 262 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 263 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 264 IB_DEVICE_MANAGED_FLOW_STEERING = 265 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 266 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 267 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 268 /* The device supports padding incoming writes to cacheline. */ 269 IB_DEVICE_PCI_WRITE_END_PADDING = 270 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 271 /* Placement type attributes */ 272 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 273 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 274 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 275 }; 276 277 enum ib_kernel_cap_flags { 278 /* 279 * This device supports a per-device lkey or stag that can be 280 * used without performing a memory registration for the local 281 * memory. Note that ULPs should never check this flag, but 282 * instead of use the local_dma_lkey flag in the ib_pd structure, 283 * which will always contain a usable lkey. 284 */ 285 IBK_LOCAL_DMA_LKEY = 1 << 0, 286 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 287 IBK_INTEGRITY_HANDOVER = 1 << 1, 288 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 289 IBK_ON_DEMAND_PAGING = 1 << 2, 290 /* IB_MR_TYPE_SG_GAPS is supported */ 291 IBK_SG_GAPS_REG = 1 << 3, 292 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 293 IBK_ALLOW_USER_UNREG = 1 << 4, 294 295 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 296 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 297 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 298 IBK_UD_TSO = 1 << 6, 299 /* iopib will use the device ops: 300 * get_vf_config 301 * get_vf_guid 302 * get_vf_stats 303 * set_vf_guid 304 * set_vf_link_state 305 */ 306 IBK_VIRTUAL_FUNCTION = 1 << 7, 307 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 308 IBK_RDMA_NETDEV_OPA = 1 << 8, 309 }; 310 311 enum ib_atomic_cap { 312 IB_ATOMIC_NONE, 313 IB_ATOMIC_HCA, 314 IB_ATOMIC_GLOB 315 }; 316 317 enum ib_odp_general_cap_bits { 318 IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT, 319 IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT, 320 }; 321 322 enum ib_odp_transport_cap_bits { 323 IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND, 324 IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV, 325 IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE, 326 IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ, 327 IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC, 328 IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV, 329 IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH, 330 IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE, 331 }; 332 333 struct ib_odp_caps { 334 uint64_t general_caps; 335 struct { 336 uint32_t rc_odp_caps; 337 uint32_t uc_odp_caps; 338 uint32_t ud_odp_caps; 339 uint32_t xrc_odp_caps; 340 } per_transport_caps; 341 }; 342 343 struct ib_rss_caps { 344 /* Corresponding bit will be set if qp type from 345 * 'enum ib_qp_type' is supported, e.g. 346 * supported_qpts |= 1 << IB_QPT_UD 347 */ 348 u32 supported_qpts; 349 u32 max_rwq_indirection_tables; 350 u32 max_rwq_indirection_table_size; 351 }; 352 353 enum ib_tm_cap_flags { 354 /* Support tag matching with rendezvous offload for RC transport */ 355 IB_TM_CAP_RNDV_RC = 1 << 0, 356 }; 357 358 struct ib_tm_caps { 359 /* Max size of RNDV header */ 360 u32 max_rndv_hdr_size; 361 /* Max number of entries in tag matching list */ 362 u32 max_num_tags; 363 /* From enum ib_tm_cap_flags */ 364 u32 flags; 365 /* Max number of outstanding list operations */ 366 u32 max_ops; 367 /* Max number of SGE in tag matching entry */ 368 u32 max_sge; 369 }; 370 371 struct ib_cq_init_attr { 372 unsigned int cqe; 373 u32 comp_vector; 374 u32 flags; 375 }; 376 377 enum ib_cq_attr_mask { 378 IB_CQ_MODERATE = 1 << 0, 379 }; 380 381 struct ib_cq_caps { 382 u16 max_cq_moderation_count; 383 u16 max_cq_moderation_period; 384 }; 385 386 struct ib_dm_mr_attr { 387 u64 length; 388 u64 offset; 389 u32 access_flags; 390 }; 391 392 struct ib_dm_alloc_attr { 393 u64 length; 394 u32 alignment; 395 u32 flags; 396 }; 397 398 struct ib_device_attr { 399 u64 fw_ver; 400 __be64 sys_image_guid; 401 u64 max_mr_size; 402 u64 page_size_cap; 403 u32 vendor_id; 404 u32 vendor_part_id; 405 u32 hw_ver; 406 int max_qp; 407 int max_qp_wr; 408 u64 device_cap_flags; 409 u64 kernel_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_srq; 434 int max_srq_wr; 435 int max_srq_sge; 436 unsigned int max_fast_reg_page_list_len; 437 unsigned int max_pi_fast_reg_page_list_len; 438 u16 max_pkeys; 439 u8 local_ca_ack_delay; 440 int sig_prot_cap; 441 int sig_guard_cap; 442 struct ib_odp_caps odp_caps; 443 uint64_t timestamp_mask; 444 uint64_t hca_core_clock; /* in KHZ */ 445 struct ib_rss_caps rss_caps; 446 u32 max_wq_type_rq; 447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 448 struct ib_tm_caps tm_caps; 449 struct ib_cq_caps cq_caps; 450 u64 max_dm_size; 451 /* Max entries for sgl for optimized performance per READ */ 452 u32 max_sgl_rd; 453 }; 454 455 enum ib_mtu { 456 IB_MTU_256 = 1, 457 IB_MTU_512 = 2, 458 IB_MTU_1024 = 3, 459 IB_MTU_2048 = 4, 460 IB_MTU_4096 = 5 461 }; 462 463 enum opa_mtu { 464 OPA_MTU_8192 = 6, 465 OPA_MTU_10240 = 7 466 }; 467 468 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 469 { 470 switch (mtu) { 471 case IB_MTU_256: return 256; 472 case IB_MTU_512: return 512; 473 case IB_MTU_1024: return 1024; 474 case IB_MTU_2048: return 2048; 475 case IB_MTU_4096: return 4096; 476 default: return -1; 477 } 478 } 479 480 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 481 { 482 if (mtu >= 4096) 483 return IB_MTU_4096; 484 else if (mtu >= 2048) 485 return IB_MTU_2048; 486 else if (mtu >= 1024) 487 return IB_MTU_1024; 488 else if (mtu >= 512) 489 return IB_MTU_512; 490 else 491 return IB_MTU_256; 492 } 493 494 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 495 { 496 switch (mtu) { 497 case OPA_MTU_8192: 498 return 8192; 499 case OPA_MTU_10240: 500 return 10240; 501 default: 502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 503 } 504 } 505 506 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 507 { 508 if (mtu >= 10240) 509 return OPA_MTU_10240; 510 else if (mtu >= 8192) 511 return OPA_MTU_8192; 512 else 513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 514 } 515 516 enum ib_port_state { 517 IB_PORT_NOP = 0, 518 IB_PORT_DOWN = 1, 519 IB_PORT_INIT = 2, 520 IB_PORT_ARMED = 3, 521 IB_PORT_ACTIVE = 4, 522 IB_PORT_ACTIVE_DEFER = 5 523 }; 524 525 static inline const char *__attribute_const__ 526 ib_port_state_to_str(enum ib_port_state state) 527 { 528 const char * const states[] = { 529 [IB_PORT_NOP] = "NOP", 530 [IB_PORT_DOWN] = "DOWN", 531 [IB_PORT_INIT] = "INIT", 532 [IB_PORT_ARMED] = "ARMED", 533 [IB_PORT_ACTIVE] = "ACTIVE", 534 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER", 535 }; 536 537 if (state < ARRAY_SIZE(states)) 538 return states[state]; 539 return "UNKNOWN"; 540 } 541 542 enum ib_port_phys_state { 543 IB_PORT_PHYS_STATE_SLEEP = 1, 544 IB_PORT_PHYS_STATE_POLLING = 2, 545 IB_PORT_PHYS_STATE_DISABLED = 3, 546 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 547 IB_PORT_PHYS_STATE_LINK_UP = 5, 548 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 549 IB_PORT_PHYS_STATE_PHY_TEST = 7, 550 }; 551 552 enum ib_port_width { 553 IB_WIDTH_1X = 1, 554 IB_WIDTH_2X = 16, 555 IB_WIDTH_4X = 2, 556 IB_WIDTH_8X = 4, 557 IB_WIDTH_12X = 8 558 }; 559 560 static inline int ib_width_enum_to_int(enum ib_port_width width) 561 { 562 switch (width) { 563 case IB_WIDTH_1X: return 1; 564 case IB_WIDTH_2X: return 2; 565 case IB_WIDTH_4X: return 4; 566 case IB_WIDTH_8X: return 8; 567 case IB_WIDTH_12X: return 12; 568 default: return -1; 569 } 570 } 571 572 enum ib_port_speed { 573 IB_SPEED_SDR = 1, 574 IB_SPEED_DDR = 2, 575 IB_SPEED_QDR = 4, 576 IB_SPEED_FDR10 = 8, 577 IB_SPEED_FDR = 16, 578 IB_SPEED_EDR = 32, 579 IB_SPEED_HDR = 64, 580 IB_SPEED_NDR = 128, 581 IB_SPEED_XDR = 256, 582 }; 583 584 enum ib_stat_flag { 585 IB_STAT_FLAG_OPTIONAL = 1 << 0, 586 }; 587 588 /** 589 * struct rdma_stat_desc - description of one rdma stat/counter 590 * @name: The name of the counter 591 * @flags: Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 592 * @priv: Driver private information; Core code should not use 593 */ 594 struct rdma_stat_desc { 595 const char *name; 596 unsigned int flags; 597 const void *priv; 598 }; 599 600 /** 601 * struct rdma_hw_stats - collection of hardware stats and their management 602 * @lock: Mutex to protect parallel write access to lifespan and values 603 * of counters, which are 64bits and not guaranteed to be written 604 * atomicaly on 32bits systems. 605 * @timestamp: Used by the core code to track when the last update was 606 * @lifespan: Used by the core code to determine how old the counters 607 * should be before being updated again. Stored in jiffies, defaults 608 * to 10 milliseconds, drivers can override the default be specifying 609 * their own value during their allocation routine. 610 * @descs: Array of pointers to static descriptors used for the counters 611 * in directory. 612 * @is_disabled: A bitmap to indicate each counter is currently disabled 613 * or not. 614 * @num_counters: How many hardware counters there are. If name is 615 * shorter than this number, a kernel oops will result. Driver authors 616 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 617 * in their code to prevent this. 618 * @value: Array of u64 counters that are accessed by the sysfs code and 619 * filled in by the drivers get_stats routine 620 */ 621 struct rdma_hw_stats { 622 struct mutex lock; /* Protect lifespan and values[] */ 623 unsigned long timestamp; 624 unsigned long lifespan; 625 const struct rdma_stat_desc *descs; 626 unsigned long *is_disabled; 627 int num_counters; 628 u64 value[] __counted_by(num_counters); 629 }; 630 631 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 632 633 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 634 const struct rdma_stat_desc *descs, int num_counters, 635 unsigned long lifespan); 636 637 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 638 639 /* Define bits for the various functionality this port needs to be supported by 640 * the core. 641 */ 642 /* Management 0x00000FFF */ 643 #define RDMA_CORE_CAP_IB_MAD 0x00000001 644 #define RDMA_CORE_CAP_IB_SMI 0x00000002 645 #define RDMA_CORE_CAP_IB_CM 0x00000004 646 #define RDMA_CORE_CAP_IW_CM 0x00000008 647 #define RDMA_CORE_CAP_IB_SA 0x00000010 648 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 649 650 /* Address format 0x000FF000 */ 651 #define RDMA_CORE_CAP_AF_IB 0x00001000 652 #define RDMA_CORE_CAP_ETH_AH 0x00002000 653 #define RDMA_CORE_CAP_OPA_AH 0x00004000 654 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 655 656 /* Protocol 0xFFF00000 */ 657 #define RDMA_CORE_CAP_PROT_IB 0x00100000 658 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 659 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 660 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 661 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 662 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 663 664 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 665 | RDMA_CORE_CAP_PROT_ROCE \ 666 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 667 668 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 669 | RDMA_CORE_CAP_IB_MAD \ 670 | RDMA_CORE_CAP_IB_SMI \ 671 | RDMA_CORE_CAP_IB_CM \ 672 | RDMA_CORE_CAP_IB_SA \ 673 | RDMA_CORE_CAP_AF_IB) 674 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 675 | RDMA_CORE_CAP_IB_MAD \ 676 | RDMA_CORE_CAP_IB_CM \ 677 | RDMA_CORE_CAP_AF_IB \ 678 | RDMA_CORE_CAP_ETH_AH) 679 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 680 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 681 | RDMA_CORE_CAP_IB_MAD \ 682 | RDMA_CORE_CAP_IB_CM \ 683 | RDMA_CORE_CAP_AF_IB \ 684 | RDMA_CORE_CAP_ETH_AH) 685 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 686 | RDMA_CORE_CAP_IW_CM) 687 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 688 | RDMA_CORE_CAP_OPA_MAD) 689 690 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 691 692 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 693 694 struct ib_port_attr { 695 u64 subnet_prefix; 696 enum ib_port_state state; 697 enum ib_mtu max_mtu; 698 enum ib_mtu active_mtu; 699 u32 phys_mtu; 700 int gid_tbl_len; 701 unsigned int ip_gids:1; 702 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 703 u32 port_cap_flags; 704 u32 max_msg_sz; 705 u32 bad_pkey_cntr; 706 u32 qkey_viol_cntr; 707 u16 pkey_tbl_len; 708 u32 sm_lid; 709 u32 lid; 710 u8 lmc; 711 u8 max_vl_num; 712 u8 sm_sl; 713 u8 subnet_timeout; 714 u8 init_type_reply; 715 u8 active_width; 716 u16 active_speed; 717 u8 phys_state; 718 u16 port_cap_flags2; 719 }; 720 721 enum ib_device_modify_flags { 722 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 723 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 724 }; 725 726 #define IB_DEVICE_NODE_DESC_MAX 64 727 728 struct ib_device_modify { 729 u64 sys_image_guid; 730 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 731 }; 732 733 enum ib_port_modify_flags { 734 IB_PORT_SHUTDOWN = 1, 735 IB_PORT_INIT_TYPE = (1<<2), 736 IB_PORT_RESET_QKEY_CNTR = (1<<3), 737 IB_PORT_OPA_MASK_CHG = (1<<4) 738 }; 739 740 struct ib_port_modify { 741 u32 set_port_cap_mask; 742 u32 clr_port_cap_mask; 743 u8 init_type; 744 }; 745 746 enum ib_event_type { 747 IB_EVENT_CQ_ERR, 748 IB_EVENT_QP_FATAL, 749 IB_EVENT_QP_REQ_ERR, 750 IB_EVENT_QP_ACCESS_ERR, 751 IB_EVENT_COMM_EST, 752 IB_EVENT_SQ_DRAINED, 753 IB_EVENT_PATH_MIG, 754 IB_EVENT_PATH_MIG_ERR, 755 IB_EVENT_DEVICE_FATAL, 756 IB_EVENT_PORT_ACTIVE, 757 IB_EVENT_PORT_ERR, 758 IB_EVENT_LID_CHANGE, 759 IB_EVENT_PKEY_CHANGE, 760 IB_EVENT_SM_CHANGE, 761 IB_EVENT_SRQ_ERR, 762 IB_EVENT_SRQ_LIMIT_REACHED, 763 IB_EVENT_QP_LAST_WQE_REACHED, 764 IB_EVENT_CLIENT_REREGISTER, 765 IB_EVENT_GID_CHANGE, 766 IB_EVENT_WQ_FATAL, 767 }; 768 769 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 770 771 struct ib_event { 772 struct ib_device *device; 773 union { 774 struct ib_cq *cq; 775 struct ib_qp *qp; 776 struct ib_srq *srq; 777 struct ib_wq *wq; 778 u32 port_num; 779 } element; 780 enum ib_event_type event; 781 }; 782 783 struct ib_event_handler { 784 struct ib_device *device; 785 void (*handler)(struct ib_event_handler *, struct ib_event *); 786 struct list_head list; 787 }; 788 789 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 790 do { \ 791 (_ptr)->device = _device; \ 792 (_ptr)->handler = _handler; \ 793 INIT_LIST_HEAD(&(_ptr)->list); \ 794 } while (0) 795 796 struct ib_global_route { 797 const struct ib_gid_attr *sgid_attr; 798 union ib_gid dgid; 799 u32 flow_label; 800 u8 sgid_index; 801 u8 hop_limit; 802 u8 traffic_class; 803 }; 804 805 struct ib_grh { 806 __be32 version_tclass_flow; 807 __be16 paylen; 808 u8 next_hdr; 809 u8 hop_limit; 810 union ib_gid sgid; 811 union ib_gid dgid; 812 }; 813 814 union rdma_network_hdr { 815 struct ib_grh ibgrh; 816 struct { 817 /* The IB spec states that if it's IPv4, the header 818 * is located in the last 20 bytes of the header. 819 */ 820 u8 reserved[20]; 821 struct iphdr roce4grh; 822 }; 823 }; 824 825 #define IB_QPN_MASK 0xFFFFFF 826 827 enum { 828 IB_MULTICAST_QPN = 0xffffff 829 }; 830 831 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 832 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 833 834 enum ib_ah_flags { 835 IB_AH_GRH = 1 836 }; 837 838 enum ib_rate { 839 IB_RATE_PORT_CURRENT = 0, 840 IB_RATE_2_5_GBPS = 2, 841 IB_RATE_5_GBPS = 5, 842 IB_RATE_10_GBPS = 3, 843 IB_RATE_20_GBPS = 6, 844 IB_RATE_30_GBPS = 4, 845 IB_RATE_40_GBPS = 7, 846 IB_RATE_60_GBPS = 8, 847 IB_RATE_80_GBPS = 9, 848 IB_RATE_120_GBPS = 10, 849 IB_RATE_14_GBPS = 11, 850 IB_RATE_56_GBPS = 12, 851 IB_RATE_112_GBPS = 13, 852 IB_RATE_168_GBPS = 14, 853 IB_RATE_25_GBPS = 15, 854 IB_RATE_100_GBPS = 16, 855 IB_RATE_200_GBPS = 17, 856 IB_RATE_300_GBPS = 18, 857 IB_RATE_28_GBPS = 19, 858 IB_RATE_50_GBPS = 20, 859 IB_RATE_400_GBPS = 21, 860 IB_RATE_600_GBPS = 22, 861 IB_RATE_800_GBPS = 23, 862 IB_RATE_1600_GBPS = 25, 863 }; 864 865 /** 866 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 867 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 868 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 869 * @rate: rate to convert. 870 */ 871 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 872 873 /** 874 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 875 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 876 * @rate: rate to convert. 877 */ 878 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 879 880 881 /** 882 * enum ib_mr_type - memory region type 883 * @IB_MR_TYPE_MEM_REG: memory region that is used for 884 * normal registration 885 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 886 * register any arbitrary sg lists (without 887 * the normal mr constraints - see 888 * ib_map_mr_sg) 889 * @IB_MR_TYPE_DM: memory region that is used for device 890 * memory registration 891 * @IB_MR_TYPE_USER: memory region that is used for the user-space 892 * application 893 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 894 * without address translations (VA=PA) 895 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 896 * data integrity operations 897 */ 898 enum ib_mr_type { 899 IB_MR_TYPE_MEM_REG, 900 IB_MR_TYPE_SG_GAPS, 901 IB_MR_TYPE_DM, 902 IB_MR_TYPE_USER, 903 IB_MR_TYPE_DMA, 904 IB_MR_TYPE_INTEGRITY, 905 }; 906 907 enum ib_mr_status_check { 908 IB_MR_CHECK_SIG_STATUS = 1, 909 }; 910 911 /** 912 * struct ib_mr_status - Memory region status container 913 * 914 * @fail_status: Bitmask of MR checks status. For each 915 * failed check a corresponding status bit is set. 916 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 917 * failure. 918 */ 919 struct ib_mr_status { 920 u32 fail_status; 921 struct ib_sig_err sig_err; 922 }; 923 924 /** 925 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 926 * enum. 927 * @mult: multiple to convert. 928 */ 929 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 930 931 struct rdma_ah_init_attr { 932 struct rdma_ah_attr *ah_attr; 933 u32 flags; 934 struct net_device *xmit_slave; 935 }; 936 937 enum rdma_ah_attr_type { 938 RDMA_AH_ATTR_TYPE_UNDEFINED, 939 RDMA_AH_ATTR_TYPE_IB, 940 RDMA_AH_ATTR_TYPE_ROCE, 941 RDMA_AH_ATTR_TYPE_OPA, 942 }; 943 944 struct ib_ah_attr { 945 u16 dlid; 946 u8 src_path_bits; 947 }; 948 949 struct roce_ah_attr { 950 u8 dmac[ETH_ALEN]; 951 }; 952 953 struct opa_ah_attr { 954 u32 dlid; 955 u8 src_path_bits; 956 bool make_grd; 957 }; 958 959 struct rdma_ah_attr { 960 struct ib_global_route grh; 961 u8 sl; 962 u8 static_rate; 963 u32 port_num; 964 u8 ah_flags; 965 enum rdma_ah_attr_type type; 966 union { 967 struct ib_ah_attr ib; 968 struct roce_ah_attr roce; 969 struct opa_ah_attr opa; 970 }; 971 }; 972 973 enum ib_wc_status { 974 IB_WC_SUCCESS, 975 IB_WC_LOC_LEN_ERR, 976 IB_WC_LOC_QP_OP_ERR, 977 IB_WC_LOC_EEC_OP_ERR, 978 IB_WC_LOC_PROT_ERR, 979 IB_WC_WR_FLUSH_ERR, 980 IB_WC_MW_BIND_ERR, 981 IB_WC_BAD_RESP_ERR, 982 IB_WC_LOC_ACCESS_ERR, 983 IB_WC_REM_INV_REQ_ERR, 984 IB_WC_REM_ACCESS_ERR, 985 IB_WC_REM_OP_ERR, 986 IB_WC_RETRY_EXC_ERR, 987 IB_WC_RNR_RETRY_EXC_ERR, 988 IB_WC_LOC_RDD_VIOL_ERR, 989 IB_WC_REM_INV_RD_REQ_ERR, 990 IB_WC_REM_ABORT_ERR, 991 IB_WC_INV_EECN_ERR, 992 IB_WC_INV_EEC_STATE_ERR, 993 IB_WC_FATAL_ERR, 994 IB_WC_RESP_TIMEOUT_ERR, 995 IB_WC_GENERAL_ERR 996 }; 997 998 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 999 1000 enum ib_wc_opcode { 1001 IB_WC_SEND = IB_UVERBS_WC_SEND, 1002 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 1003 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 1004 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 1005 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 1006 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 1007 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 1008 IB_WC_LSO = IB_UVERBS_WC_TSO, 1009 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 1010 IB_WC_REG_MR, 1011 IB_WC_MASKED_COMP_SWAP, 1012 IB_WC_MASKED_FETCH_ADD, 1013 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 1014 /* 1015 * Set value of IB_WC_RECV so consumers can test if a completion is a 1016 * receive by testing (opcode & IB_WC_RECV). 1017 */ 1018 IB_WC_RECV = 1 << 7, 1019 IB_WC_RECV_RDMA_WITH_IMM 1020 }; 1021 1022 enum ib_wc_flags { 1023 IB_WC_GRH = 1, 1024 IB_WC_WITH_IMM = (1<<1), 1025 IB_WC_WITH_INVALIDATE = (1<<2), 1026 IB_WC_IP_CSUM_OK = (1<<3), 1027 IB_WC_WITH_SMAC = (1<<4), 1028 IB_WC_WITH_VLAN = (1<<5), 1029 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1030 }; 1031 1032 struct ib_wc { 1033 union { 1034 u64 wr_id; 1035 struct ib_cqe *wr_cqe; 1036 }; 1037 enum ib_wc_status status; 1038 enum ib_wc_opcode opcode; 1039 u32 vendor_err; 1040 u32 byte_len; 1041 struct ib_qp *qp; 1042 union { 1043 __be32 imm_data; 1044 u32 invalidate_rkey; 1045 } ex; 1046 u32 src_qp; 1047 u32 slid; 1048 int wc_flags; 1049 u16 pkey_index; 1050 u8 sl; 1051 u8 dlid_path_bits; 1052 u32 port_num; /* valid only for DR SMPs on switches */ 1053 u8 smac[ETH_ALEN]; 1054 u16 vlan_id; 1055 u8 network_hdr_type; 1056 }; 1057 1058 enum ib_cq_notify_flags { 1059 IB_CQ_SOLICITED = 1 << 0, 1060 IB_CQ_NEXT_COMP = 1 << 1, 1061 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1062 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1063 }; 1064 1065 enum ib_srq_type { 1066 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1067 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1068 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1069 }; 1070 1071 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1072 { 1073 return srq_type == IB_SRQT_XRC || 1074 srq_type == IB_SRQT_TM; 1075 } 1076 1077 enum ib_srq_attr_mask { 1078 IB_SRQ_MAX_WR = 1 << 0, 1079 IB_SRQ_LIMIT = 1 << 1, 1080 }; 1081 1082 struct ib_srq_attr { 1083 u32 max_wr; 1084 u32 max_sge; 1085 u32 srq_limit; 1086 }; 1087 1088 struct ib_srq_init_attr { 1089 void (*event_handler)(struct ib_event *, void *); 1090 void *srq_context; 1091 struct ib_srq_attr attr; 1092 enum ib_srq_type srq_type; 1093 1094 struct { 1095 struct ib_cq *cq; 1096 union { 1097 struct { 1098 struct ib_xrcd *xrcd; 1099 } xrc; 1100 1101 struct { 1102 u32 max_num_tags; 1103 } tag_matching; 1104 }; 1105 } ext; 1106 }; 1107 1108 struct ib_qp_cap { 1109 u32 max_send_wr; 1110 u32 max_recv_wr; 1111 u32 max_send_sge; 1112 u32 max_recv_sge; 1113 u32 max_inline_data; 1114 1115 /* 1116 * Maximum number of rdma_rw_ctx structures in flight at a time. 1117 * ib_create_qp() will calculate the right amount of needed WRs 1118 * and MRs based on this. 1119 */ 1120 u32 max_rdma_ctxs; 1121 }; 1122 1123 enum ib_sig_type { 1124 IB_SIGNAL_ALL_WR, 1125 IB_SIGNAL_REQ_WR 1126 }; 1127 1128 enum ib_qp_type { 1129 /* 1130 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1131 * here (and in that order) since the MAD layer uses them as 1132 * indices into a 2-entry table. 1133 */ 1134 IB_QPT_SMI, 1135 IB_QPT_GSI, 1136 1137 IB_QPT_RC = IB_UVERBS_QPT_RC, 1138 IB_QPT_UC = IB_UVERBS_QPT_UC, 1139 IB_QPT_UD = IB_UVERBS_QPT_UD, 1140 IB_QPT_RAW_IPV6, 1141 IB_QPT_RAW_ETHERTYPE, 1142 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1143 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1144 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1145 IB_QPT_MAX, 1146 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1147 /* Reserve a range for qp types internal to the low level driver. 1148 * These qp types will not be visible at the IB core layer, so the 1149 * IB_QPT_MAX usages should not be affected in the core layer 1150 */ 1151 IB_QPT_RESERVED1 = 0x1000, 1152 IB_QPT_RESERVED2, 1153 IB_QPT_RESERVED3, 1154 IB_QPT_RESERVED4, 1155 IB_QPT_RESERVED5, 1156 IB_QPT_RESERVED6, 1157 IB_QPT_RESERVED7, 1158 IB_QPT_RESERVED8, 1159 IB_QPT_RESERVED9, 1160 IB_QPT_RESERVED10, 1161 }; 1162 1163 enum ib_qp_create_flags { 1164 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1165 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1166 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1167 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1168 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1169 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1170 IB_QP_CREATE_NETIF_QP = 1 << 5, 1171 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1172 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1173 IB_QP_CREATE_SCATTER_FCS = 1174 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1175 IB_QP_CREATE_CVLAN_STRIPPING = 1176 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1177 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1178 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1179 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1180 /* reserve bits 26-31 for low level drivers' internal use */ 1181 IB_QP_CREATE_RESERVED_START = 1 << 26, 1182 IB_QP_CREATE_RESERVED_END = 1 << 31, 1183 }; 1184 1185 /* 1186 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1187 * callback to destroy the passed in QP. 1188 */ 1189 1190 struct ib_qp_init_attr { 1191 /* This callback occurs in workqueue context */ 1192 void (*event_handler)(struct ib_event *, void *); 1193 1194 void *qp_context; 1195 struct ib_cq *send_cq; 1196 struct ib_cq *recv_cq; 1197 struct ib_srq *srq; 1198 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1199 struct ib_qp_cap cap; 1200 enum ib_sig_type sq_sig_type; 1201 enum ib_qp_type qp_type; 1202 u32 create_flags; 1203 1204 /* 1205 * Only needed for special QP types, or when using the RW API. 1206 */ 1207 u32 port_num; 1208 struct ib_rwq_ind_table *rwq_ind_tbl; 1209 u32 source_qpn; 1210 }; 1211 1212 struct ib_qp_open_attr { 1213 void (*event_handler)(struct ib_event *, void *); 1214 void *qp_context; 1215 u32 qp_num; 1216 enum ib_qp_type qp_type; 1217 }; 1218 1219 enum ib_rnr_timeout { 1220 IB_RNR_TIMER_655_36 = 0, 1221 IB_RNR_TIMER_000_01 = 1, 1222 IB_RNR_TIMER_000_02 = 2, 1223 IB_RNR_TIMER_000_03 = 3, 1224 IB_RNR_TIMER_000_04 = 4, 1225 IB_RNR_TIMER_000_06 = 5, 1226 IB_RNR_TIMER_000_08 = 6, 1227 IB_RNR_TIMER_000_12 = 7, 1228 IB_RNR_TIMER_000_16 = 8, 1229 IB_RNR_TIMER_000_24 = 9, 1230 IB_RNR_TIMER_000_32 = 10, 1231 IB_RNR_TIMER_000_48 = 11, 1232 IB_RNR_TIMER_000_64 = 12, 1233 IB_RNR_TIMER_000_96 = 13, 1234 IB_RNR_TIMER_001_28 = 14, 1235 IB_RNR_TIMER_001_92 = 15, 1236 IB_RNR_TIMER_002_56 = 16, 1237 IB_RNR_TIMER_003_84 = 17, 1238 IB_RNR_TIMER_005_12 = 18, 1239 IB_RNR_TIMER_007_68 = 19, 1240 IB_RNR_TIMER_010_24 = 20, 1241 IB_RNR_TIMER_015_36 = 21, 1242 IB_RNR_TIMER_020_48 = 22, 1243 IB_RNR_TIMER_030_72 = 23, 1244 IB_RNR_TIMER_040_96 = 24, 1245 IB_RNR_TIMER_061_44 = 25, 1246 IB_RNR_TIMER_081_92 = 26, 1247 IB_RNR_TIMER_122_88 = 27, 1248 IB_RNR_TIMER_163_84 = 28, 1249 IB_RNR_TIMER_245_76 = 29, 1250 IB_RNR_TIMER_327_68 = 30, 1251 IB_RNR_TIMER_491_52 = 31 1252 }; 1253 1254 enum ib_qp_attr_mask { 1255 IB_QP_STATE = 1, 1256 IB_QP_CUR_STATE = (1<<1), 1257 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1258 IB_QP_ACCESS_FLAGS = (1<<3), 1259 IB_QP_PKEY_INDEX = (1<<4), 1260 IB_QP_PORT = (1<<5), 1261 IB_QP_QKEY = (1<<6), 1262 IB_QP_AV = (1<<7), 1263 IB_QP_PATH_MTU = (1<<8), 1264 IB_QP_TIMEOUT = (1<<9), 1265 IB_QP_RETRY_CNT = (1<<10), 1266 IB_QP_RNR_RETRY = (1<<11), 1267 IB_QP_RQ_PSN = (1<<12), 1268 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1269 IB_QP_ALT_PATH = (1<<14), 1270 IB_QP_MIN_RNR_TIMER = (1<<15), 1271 IB_QP_SQ_PSN = (1<<16), 1272 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1273 IB_QP_PATH_MIG_STATE = (1<<18), 1274 IB_QP_CAP = (1<<19), 1275 IB_QP_DEST_QPN = (1<<20), 1276 IB_QP_RESERVED1 = (1<<21), 1277 IB_QP_RESERVED2 = (1<<22), 1278 IB_QP_RESERVED3 = (1<<23), 1279 IB_QP_RESERVED4 = (1<<24), 1280 IB_QP_RATE_LIMIT = (1<<25), 1281 1282 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1283 }; 1284 1285 enum ib_qp_state { 1286 IB_QPS_RESET, 1287 IB_QPS_INIT, 1288 IB_QPS_RTR, 1289 IB_QPS_RTS, 1290 IB_QPS_SQD, 1291 IB_QPS_SQE, 1292 IB_QPS_ERR 1293 }; 1294 1295 enum ib_mig_state { 1296 IB_MIG_MIGRATED, 1297 IB_MIG_REARM, 1298 IB_MIG_ARMED 1299 }; 1300 1301 enum ib_mw_type { 1302 IB_MW_TYPE_1 = 1, 1303 IB_MW_TYPE_2 = 2 1304 }; 1305 1306 struct ib_qp_attr { 1307 enum ib_qp_state qp_state; 1308 enum ib_qp_state cur_qp_state; 1309 enum ib_mtu path_mtu; 1310 enum ib_mig_state path_mig_state; 1311 u32 qkey; 1312 u32 rq_psn; 1313 u32 sq_psn; 1314 u32 dest_qp_num; 1315 int qp_access_flags; 1316 struct ib_qp_cap cap; 1317 struct rdma_ah_attr ah_attr; 1318 struct rdma_ah_attr alt_ah_attr; 1319 u16 pkey_index; 1320 u16 alt_pkey_index; 1321 u8 en_sqd_async_notify; 1322 u8 sq_draining; 1323 u8 max_rd_atomic; 1324 u8 max_dest_rd_atomic; 1325 u8 min_rnr_timer; 1326 u32 port_num; 1327 u8 timeout; 1328 u8 retry_cnt; 1329 u8 rnr_retry; 1330 u32 alt_port_num; 1331 u8 alt_timeout; 1332 u32 rate_limit; 1333 struct net_device *xmit_slave; 1334 }; 1335 1336 enum ib_wr_opcode { 1337 /* These are shared with userspace */ 1338 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1339 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1340 IB_WR_SEND = IB_UVERBS_WR_SEND, 1341 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1342 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1343 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1344 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1345 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1346 IB_WR_LSO = IB_UVERBS_WR_TSO, 1347 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1348 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1349 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1350 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1351 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1352 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1353 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1354 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1355 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1356 1357 /* These are kernel only and can not be issued by userspace */ 1358 IB_WR_REG_MR = 0x20, 1359 IB_WR_REG_MR_INTEGRITY, 1360 1361 /* reserve values for low level drivers' internal use. 1362 * These values will not be used at all in the ib core layer. 1363 */ 1364 IB_WR_RESERVED1 = 0xf0, 1365 IB_WR_RESERVED2, 1366 IB_WR_RESERVED3, 1367 IB_WR_RESERVED4, 1368 IB_WR_RESERVED5, 1369 IB_WR_RESERVED6, 1370 IB_WR_RESERVED7, 1371 IB_WR_RESERVED8, 1372 IB_WR_RESERVED9, 1373 IB_WR_RESERVED10, 1374 }; 1375 1376 enum ib_send_flags { 1377 IB_SEND_FENCE = 1, 1378 IB_SEND_SIGNALED = (1<<1), 1379 IB_SEND_SOLICITED = (1<<2), 1380 IB_SEND_INLINE = (1<<3), 1381 IB_SEND_IP_CSUM = (1<<4), 1382 1383 /* reserve bits 26-31 for low level drivers' internal use */ 1384 IB_SEND_RESERVED_START = (1 << 26), 1385 IB_SEND_RESERVED_END = (1 << 31), 1386 }; 1387 1388 struct ib_sge { 1389 u64 addr; 1390 u32 length; 1391 u32 lkey; 1392 }; 1393 1394 struct ib_cqe { 1395 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1396 }; 1397 1398 struct ib_send_wr { 1399 struct ib_send_wr *next; 1400 union { 1401 u64 wr_id; 1402 struct ib_cqe *wr_cqe; 1403 }; 1404 struct ib_sge *sg_list; 1405 int num_sge; 1406 enum ib_wr_opcode opcode; 1407 int send_flags; 1408 union { 1409 __be32 imm_data; 1410 u32 invalidate_rkey; 1411 } ex; 1412 }; 1413 1414 struct ib_rdma_wr { 1415 struct ib_send_wr wr; 1416 u64 remote_addr; 1417 u32 rkey; 1418 }; 1419 1420 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1421 { 1422 return container_of(wr, struct ib_rdma_wr, wr); 1423 } 1424 1425 struct ib_atomic_wr { 1426 struct ib_send_wr wr; 1427 u64 remote_addr; 1428 u64 compare_add; 1429 u64 swap; 1430 u64 compare_add_mask; 1431 u64 swap_mask; 1432 u32 rkey; 1433 }; 1434 1435 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1436 { 1437 return container_of(wr, struct ib_atomic_wr, wr); 1438 } 1439 1440 struct ib_ud_wr { 1441 struct ib_send_wr wr; 1442 struct ib_ah *ah; 1443 void *header; 1444 int hlen; 1445 int mss; 1446 u32 remote_qpn; 1447 u32 remote_qkey; 1448 u16 pkey_index; /* valid for GSI only */ 1449 u32 port_num; /* valid for DR SMPs on switch only */ 1450 }; 1451 1452 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1453 { 1454 return container_of(wr, struct ib_ud_wr, wr); 1455 } 1456 1457 struct ib_reg_wr { 1458 struct ib_send_wr wr; 1459 struct ib_mr *mr; 1460 u32 key; 1461 int access; 1462 }; 1463 1464 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1465 { 1466 return container_of(wr, struct ib_reg_wr, wr); 1467 } 1468 1469 struct ib_recv_wr { 1470 struct ib_recv_wr *next; 1471 union { 1472 u64 wr_id; 1473 struct ib_cqe *wr_cqe; 1474 }; 1475 struct ib_sge *sg_list; 1476 int num_sge; 1477 }; 1478 1479 enum ib_access_flags { 1480 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1481 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1482 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1483 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1484 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1485 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1486 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1487 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1488 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1489 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1490 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1491 1492 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1493 IB_ACCESS_SUPPORTED = 1494 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1495 }; 1496 1497 /* 1498 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1499 * are hidden here instead of a uapi header! 1500 */ 1501 enum ib_mr_rereg_flags { 1502 IB_MR_REREG_TRANS = 1, 1503 IB_MR_REREG_PD = (1<<1), 1504 IB_MR_REREG_ACCESS = (1<<2), 1505 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1506 }; 1507 1508 struct ib_umem; 1509 1510 enum rdma_remove_reason { 1511 /* 1512 * Userspace requested uobject deletion or initial try 1513 * to remove uobject via cleanup. Call could fail 1514 */ 1515 RDMA_REMOVE_DESTROY, 1516 /* Context deletion. This call should delete the actual object itself */ 1517 RDMA_REMOVE_CLOSE, 1518 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1519 RDMA_REMOVE_DRIVER_REMOVE, 1520 /* uobj is being cleaned-up before being committed */ 1521 RDMA_REMOVE_ABORT, 1522 /* The driver failed to destroy the uobject and is being disconnected */ 1523 RDMA_REMOVE_DRIVER_FAILURE, 1524 }; 1525 1526 struct ib_rdmacg_object { 1527 #ifdef CONFIG_CGROUP_RDMA 1528 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1529 #endif 1530 }; 1531 1532 struct ib_ucontext { 1533 struct ib_device *device; 1534 struct ib_uverbs_file *ufile; 1535 1536 struct ib_rdmacg_object cg_obj; 1537 u64 enabled_caps; 1538 /* 1539 * Implementation details of the RDMA core, don't use in drivers: 1540 */ 1541 struct rdma_restrack_entry res; 1542 struct xarray mmap_xa; 1543 }; 1544 1545 struct ib_uobject { 1546 u64 user_handle; /* handle given to us by userspace */ 1547 /* ufile & ucontext owning this object */ 1548 struct ib_uverbs_file *ufile; 1549 /* FIXME, save memory: ufile->context == context */ 1550 struct ib_ucontext *context; /* associated user context */ 1551 void *object; /* containing object */ 1552 struct list_head list; /* link to context's list */ 1553 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1554 int id; /* index into kernel idr */ 1555 struct kref ref; 1556 atomic_t usecnt; /* protects exclusive access */ 1557 struct rcu_head rcu; /* kfree_rcu() overhead */ 1558 1559 const struct uverbs_api_object *uapi_object; 1560 }; 1561 1562 struct ib_udata { 1563 const void __user *inbuf; 1564 void __user *outbuf; 1565 size_t inlen; 1566 size_t outlen; 1567 }; 1568 1569 struct ib_pd { 1570 u32 local_dma_lkey; 1571 u32 flags; 1572 struct ib_device *device; 1573 struct ib_uobject *uobject; 1574 atomic_t usecnt; /* count all resources */ 1575 1576 u32 unsafe_global_rkey; 1577 1578 /* 1579 * Implementation details of the RDMA core, don't use in drivers: 1580 */ 1581 struct ib_mr *__internal_mr; 1582 struct rdma_restrack_entry res; 1583 }; 1584 1585 struct ib_xrcd { 1586 struct ib_device *device; 1587 atomic_t usecnt; /* count all exposed resources */ 1588 struct inode *inode; 1589 struct rw_semaphore tgt_qps_rwsem; 1590 struct xarray tgt_qps; 1591 }; 1592 1593 struct ib_ah { 1594 struct ib_device *device; 1595 struct ib_pd *pd; 1596 struct ib_uobject *uobject; 1597 const struct ib_gid_attr *sgid_attr; 1598 enum rdma_ah_attr_type type; 1599 }; 1600 1601 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1602 1603 enum ib_poll_context { 1604 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1605 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1606 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1607 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1608 1609 IB_POLL_DIRECT, /* caller context, no hw completions */ 1610 }; 1611 1612 struct ib_cq { 1613 struct ib_device *device; 1614 struct ib_ucq_object *uobject; 1615 ib_comp_handler comp_handler; 1616 void (*event_handler)(struct ib_event *, void *); 1617 void *cq_context; 1618 int cqe; 1619 unsigned int cqe_used; 1620 atomic_t usecnt; /* count number of work queues */ 1621 enum ib_poll_context poll_ctx; 1622 struct ib_wc *wc; 1623 struct list_head pool_entry; 1624 union { 1625 struct irq_poll iop; 1626 struct work_struct work; 1627 }; 1628 struct workqueue_struct *comp_wq; 1629 struct dim *dim; 1630 1631 /* updated only by trace points */ 1632 ktime_t timestamp; 1633 u8 interrupt:1; 1634 u8 shared:1; 1635 unsigned int comp_vector; 1636 1637 /* 1638 * Implementation details of the RDMA core, don't use in drivers: 1639 */ 1640 struct rdma_restrack_entry res; 1641 }; 1642 1643 struct ib_srq { 1644 struct ib_device *device; 1645 struct ib_pd *pd; 1646 struct ib_usrq_object *uobject; 1647 void (*event_handler)(struct ib_event *, void *); 1648 void *srq_context; 1649 enum ib_srq_type srq_type; 1650 atomic_t usecnt; 1651 1652 struct { 1653 struct ib_cq *cq; 1654 union { 1655 struct { 1656 struct ib_xrcd *xrcd; 1657 u32 srq_num; 1658 } xrc; 1659 }; 1660 } ext; 1661 1662 /* 1663 * Implementation details of the RDMA core, don't use in drivers: 1664 */ 1665 struct rdma_restrack_entry res; 1666 }; 1667 1668 enum ib_raw_packet_caps { 1669 /* 1670 * Strip cvlan from incoming packet and report it in the matching work 1671 * completion is supported. 1672 */ 1673 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1674 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1675 /* 1676 * Scatter FCS field of an incoming packet to host memory is supported. 1677 */ 1678 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1679 /* Checksum offloads are supported (for both send and receive). */ 1680 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1681 /* 1682 * When a packet is received for an RQ with no receive WQEs, the 1683 * packet processing is delayed. 1684 */ 1685 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1686 }; 1687 1688 enum ib_wq_type { 1689 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1690 }; 1691 1692 enum ib_wq_state { 1693 IB_WQS_RESET, 1694 IB_WQS_RDY, 1695 IB_WQS_ERR 1696 }; 1697 1698 struct ib_wq { 1699 struct ib_device *device; 1700 struct ib_uwq_object *uobject; 1701 void *wq_context; 1702 void (*event_handler)(struct ib_event *, void *); 1703 struct ib_pd *pd; 1704 struct ib_cq *cq; 1705 u32 wq_num; 1706 enum ib_wq_state state; 1707 enum ib_wq_type wq_type; 1708 atomic_t usecnt; 1709 }; 1710 1711 enum ib_wq_flags { 1712 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1713 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1714 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1715 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1716 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1717 }; 1718 1719 struct ib_wq_init_attr { 1720 void *wq_context; 1721 enum ib_wq_type wq_type; 1722 u32 max_wr; 1723 u32 max_sge; 1724 struct ib_cq *cq; 1725 void (*event_handler)(struct ib_event *, void *); 1726 u32 create_flags; /* Use enum ib_wq_flags */ 1727 }; 1728 1729 enum ib_wq_attr_mask { 1730 IB_WQ_STATE = 1 << 0, 1731 IB_WQ_CUR_STATE = 1 << 1, 1732 IB_WQ_FLAGS = 1 << 2, 1733 }; 1734 1735 struct ib_wq_attr { 1736 enum ib_wq_state wq_state; 1737 enum ib_wq_state curr_wq_state; 1738 u32 flags; /* Use enum ib_wq_flags */ 1739 u32 flags_mask; /* Use enum ib_wq_flags */ 1740 }; 1741 1742 struct ib_rwq_ind_table { 1743 struct ib_device *device; 1744 struct ib_uobject *uobject; 1745 atomic_t usecnt; 1746 u32 ind_tbl_num; 1747 u32 log_ind_tbl_size; 1748 struct ib_wq **ind_tbl; 1749 }; 1750 1751 struct ib_rwq_ind_table_init_attr { 1752 u32 log_ind_tbl_size; 1753 /* Each entry is a pointer to Receive Work Queue */ 1754 struct ib_wq **ind_tbl; 1755 }; 1756 1757 enum port_pkey_state { 1758 IB_PORT_PKEY_NOT_VALID = 0, 1759 IB_PORT_PKEY_VALID = 1, 1760 IB_PORT_PKEY_LISTED = 2, 1761 }; 1762 1763 struct ib_qp_security; 1764 1765 struct ib_port_pkey { 1766 enum port_pkey_state state; 1767 u16 pkey_index; 1768 u32 port_num; 1769 struct list_head qp_list; 1770 struct list_head to_error_list; 1771 struct ib_qp_security *sec; 1772 }; 1773 1774 struct ib_ports_pkeys { 1775 struct ib_port_pkey main; 1776 struct ib_port_pkey alt; 1777 }; 1778 1779 struct ib_qp_security { 1780 struct ib_qp *qp; 1781 struct ib_device *dev; 1782 /* Hold this mutex when changing port and pkey settings. */ 1783 struct mutex mutex; 1784 struct ib_ports_pkeys *ports_pkeys; 1785 /* A list of all open shared QP handles. Required to enforce security 1786 * properly for all users of a shared QP. 1787 */ 1788 struct list_head shared_qp_list; 1789 void *security; 1790 bool destroying; 1791 atomic_t error_list_count; 1792 struct completion error_complete; 1793 int error_comps_pending; 1794 }; 1795 1796 /* 1797 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1798 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1799 */ 1800 struct ib_qp { 1801 struct ib_device *device; 1802 struct ib_pd *pd; 1803 struct ib_cq *send_cq; 1804 struct ib_cq *recv_cq; 1805 spinlock_t mr_lock; 1806 int mrs_used; 1807 struct list_head rdma_mrs; 1808 struct list_head sig_mrs; 1809 struct ib_srq *srq; 1810 struct completion srq_completion; 1811 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1812 struct list_head xrcd_list; 1813 1814 /* count times opened, mcast attaches, flow attaches */ 1815 atomic_t usecnt; 1816 struct list_head open_list; 1817 struct ib_qp *real_qp; 1818 struct ib_uqp_object *uobject; 1819 void (*event_handler)(struct ib_event *, void *); 1820 void (*registered_event_handler)(struct ib_event *, void *); 1821 void *qp_context; 1822 /* sgid_attrs associated with the AV's */ 1823 const struct ib_gid_attr *av_sgid_attr; 1824 const struct ib_gid_attr *alt_path_sgid_attr; 1825 u32 qp_num; 1826 u32 max_write_sge; 1827 u32 max_read_sge; 1828 enum ib_qp_type qp_type; 1829 struct ib_rwq_ind_table *rwq_ind_tbl; 1830 struct ib_qp_security *qp_sec; 1831 u32 port; 1832 1833 bool integrity_en; 1834 /* 1835 * Implementation details of the RDMA core, don't use in drivers: 1836 */ 1837 struct rdma_restrack_entry res; 1838 1839 /* The counter the qp is bind to */ 1840 struct rdma_counter *counter; 1841 }; 1842 1843 struct ib_dm { 1844 struct ib_device *device; 1845 u32 length; 1846 u32 flags; 1847 struct ib_uobject *uobject; 1848 atomic_t usecnt; 1849 }; 1850 1851 /* bit values to mark existence of ib_dmah fields */ 1852 enum { 1853 IB_DMAH_CPU_ID_EXISTS, 1854 IB_DMAH_MEM_TYPE_EXISTS, 1855 IB_DMAH_PH_EXISTS, 1856 }; 1857 1858 struct ib_dmah { 1859 struct ib_device *device; 1860 struct ib_uobject *uobject; 1861 /* 1862 * Implementation details of the RDMA core, don't use in drivers: 1863 */ 1864 struct rdma_restrack_entry res; 1865 u32 cpu_id; 1866 enum tph_mem_type mem_type; 1867 atomic_t usecnt; 1868 u8 ph; 1869 u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */ 1870 }; 1871 1872 struct ib_mr { 1873 struct ib_device *device; 1874 struct ib_pd *pd; 1875 u32 lkey; 1876 u32 rkey; 1877 u64 iova; 1878 u64 length; 1879 unsigned int page_size; 1880 enum ib_mr_type type; 1881 bool need_inval; 1882 union { 1883 struct ib_uobject *uobject; /* user */ 1884 struct list_head qp_entry; /* FR */ 1885 }; 1886 1887 struct ib_dm *dm; 1888 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1889 struct ib_dmah *dmah; 1890 /* 1891 * Implementation details of the RDMA core, don't use in drivers: 1892 */ 1893 struct rdma_restrack_entry res; 1894 }; 1895 1896 struct ib_mw { 1897 struct ib_device *device; 1898 struct ib_pd *pd; 1899 struct ib_uobject *uobject; 1900 u32 rkey; 1901 enum ib_mw_type type; 1902 }; 1903 1904 /* Supported steering options */ 1905 enum ib_flow_attr_type { 1906 /* steering according to rule specifications */ 1907 IB_FLOW_ATTR_NORMAL = 0x0, 1908 /* default unicast and multicast rule - 1909 * receive all Eth traffic which isn't steered to any QP 1910 */ 1911 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1912 /* default multicast rule - 1913 * receive all Eth multicast traffic which isn't steered to any QP 1914 */ 1915 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1916 /* sniffer rule - receive all port traffic */ 1917 IB_FLOW_ATTR_SNIFFER = 0x3 1918 }; 1919 1920 /* Supported steering header types */ 1921 enum ib_flow_spec_type { 1922 /* L2 headers*/ 1923 IB_FLOW_SPEC_ETH = 0x20, 1924 IB_FLOW_SPEC_IB = 0x22, 1925 /* L3 header*/ 1926 IB_FLOW_SPEC_IPV4 = 0x30, 1927 IB_FLOW_SPEC_IPV6 = 0x31, 1928 IB_FLOW_SPEC_ESP = 0x34, 1929 /* L4 headers*/ 1930 IB_FLOW_SPEC_TCP = 0x40, 1931 IB_FLOW_SPEC_UDP = 0x41, 1932 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1933 IB_FLOW_SPEC_GRE = 0x51, 1934 IB_FLOW_SPEC_MPLS = 0x60, 1935 IB_FLOW_SPEC_INNER = 0x100, 1936 /* Actions */ 1937 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1938 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1939 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1940 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1941 }; 1942 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1943 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1944 1945 enum ib_flow_flags { 1946 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1947 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1948 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1949 }; 1950 1951 struct ib_flow_eth_filter { 1952 u8 dst_mac[6]; 1953 u8 src_mac[6]; 1954 __be16 ether_type; 1955 __be16 vlan_tag; 1956 }; 1957 1958 struct ib_flow_spec_eth { 1959 u32 type; 1960 u16 size; 1961 struct ib_flow_eth_filter val; 1962 struct ib_flow_eth_filter mask; 1963 }; 1964 1965 struct ib_flow_ib_filter { 1966 __be16 dlid; 1967 __u8 sl; 1968 }; 1969 1970 struct ib_flow_spec_ib { 1971 u32 type; 1972 u16 size; 1973 struct ib_flow_ib_filter val; 1974 struct ib_flow_ib_filter mask; 1975 }; 1976 1977 /* IPv4 header flags */ 1978 enum ib_ipv4_flags { 1979 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1980 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1981 last have this flag set */ 1982 }; 1983 1984 struct ib_flow_ipv4_filter { 1985 __be32 src_ip; 1986 __be32 dst_ip; 1987 u8 proto; 1988 u8 tos; 1989 u8 ttl; 1990 u8 flags; 1991 }; 1992 1993 struct ib_flow_spec_ipv4 { 1994 u32 type; 1995 u16 size; 1996 struct ib_flow_ipv4_filter val; 1997 struct ib_flow_ipv4_filter mask; 1998 }; 1999 2000 struct ib_flow_ipv6_filter { 2001 u8 src_ip[16]; 2002 u8 dst_ip[16]; 2003 __be32 flow_label; 2004 u8 next_hdr; 2005 u8 traffic_class; 2006 u8 hop_limit; 2007 } __packed; 2008 2009 struct ib_flow_spec_ipv6 { 2010 u32 type; 2011 u16 size; 2012 struct ib_flow_ipv6_filter val; 2013 struct ib_flow_ipv6_filter mask; 2014 }; 2015 2016 struct ib_flow_tcp_udp_filter { 2017 __be16 dst_port; 2018 __be16 src_port; 2019 }; 2020 2021 struct ib_flow_spec_tcp_udp { 2022 u32 type; 2023 u16 size; 2024 struct ib_flow_tcp_udp_filter val; 2025 struct ib_flow_tcp_udp_filter mask; 2026 }; 2027 2028 struct ib_flow_tunnel_filter { 2029 __be32 tunnel_id; 2030 }; 2031 2032 /* ib_flow_spec_tunnel describes the Vxlan tunnel 2033 * the tunnel_id from val has the vni value 2034 */ 2035 struct ib_flow_spec_tunnel { 2036 u32 type; 2037 u16 size; 2038 struct ib_flow_tunnel_filter val; 2039 struct ib_flow_tunnel_filter mask; 2040 }; 2041 2042 struct ib_flow_esp_filter { 2043 __be32 spi; 2044 __be32 seq; 2045 }; 2046 2047 struct ib_flow_spec_esp { 2048 u32 type; 2049 u16 size; 2050 struct ib_flow_esp_filter val; 2051 struct ib_flow_esp_filter mask; 2052 }; 2053 2054 struct ib_flow_gre_filter { 2055 __be16 c_ks_res0_ver; 2056 __be16 protocol; 2057 __be32 key; 2058 }; 2059 2060 struct ib_flow_spec_gre { 2061 u32 type; 2062 u16 size; 2063 struct ib_flow_gre_filter val; 2064 struct ib_flow_gre_filter mask; 2065 }; 2066 2067 struct ib_flow_mpls_filter { 2068 __be32 tag; 2069 }; 2070 2071 struct ib_flow_spec_mpls { 2072 u32 type; 2073 u16 size; 2074 struct ib_flow_mpls_filter val; 2075 struct ib_flow_mpls_filter mask; 2076 }; 2077 2078 struct ib_flow_spec_action_tag { 2079 enum ib_flow_spec_type type; 2080 u16 size; 2081 u32 tag_id; 2082 }; 2083 2084 struct ib_flow_spec_action_drop { 2085 enum ib_flow_spec_type type; 2086 u16 size; 2087 }; 2088 2089 struct ib_flow_spec_action_handle { 2090 enum ib_flow_spec_type type; 2091 u16 size; 2092 struct ib_flow_action *act; 2093 }; 2094 2095 enum ib_counters_description { 2096 IB_COUNTER_PACKETS, 2097 IB_COUNTER_BYTES, 2098 }; 2099 2100 struct ib_flow_spec_action_count { 2101 enum ib_flow_spec_type type; 2102 u16 size; 2103 struct ib_counters *counters; 2104 }; 2105 2106 union ib_flow_spec { 2107 struct { 2108 u32 type; 2109 u16 size; 2110 }; 2111 struct ib_flow_spec_eth eth; 2112 struct ib_flow_spec_ib ib; 2113 struct ib_flow_spec_ipv4 ipv4; 2114 struct ib_flow_spec_tcp_udp tcp_udp; 2115 struct ib_flow_spec_ipv6 ipv6; 2116 struct ib_flow_spec_tunnel tunnel; 2117 struct ib_flow_spec_esp esp; 2118 struct ib_flow_spec_gre gre; 2119 struct ib_flow_spec_mpls mpls; 2120 struct ib_flow_spec_action_tag flow_tag; 2121 struct ib_flow_spec_action_drop drop; 2122 struct ib_flow_spec_action_handle action; 2123 struct ib_flow_spec_action_count flow_count; 2124 }; 2125 2126 struct ib_flow_attr { 2127 enum ib_flow_attr_type type; 2128 u16 size; 2129 u16 priority; 2130 u32 flags; 2131 u8 num_of_specs; 2132 u32 port; 2133 union ib_flow_spec flows[]; 2134 }; 2135 2136 struct ib_flow { 2137 struct ib_qp *qp; 2138 struct ib_device *device; 2139 struct ib_uobject *uobject; 2140 }; 2141 2142 enum ib_flow_action_type { 2143 IB_FLOW_ACTION_UNSPECIFIED, 2144 IB_FLOW_ACTION_ESP = 1, 2145 }; 2146 2147 struct ib_flow_action_attrs_esp_keymats { 2148 enum ib_uverbs_flow_action_esp_keymat protocol; 2149 union { 2150 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2151 } keymat; 2152 }; 2153 2154 struct ib_flow_action_attrs_esp_replays { 2155 enum ib_uverbs_flow_action_esp_replay protocol; 2156 union { 2157 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2158 } replay; 2159 }; 2160 2161 enum ib_flow_action_attrs_esp_flags { 2162 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2163 * This is done in order to share the same flags between user-space and 2164 * kernel and spare an unnecessary translation. 2165 */ 2166 2167 /* Kernel flags */ 2168 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2169 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2170 }; 2171 2172 struct ib_flow_spec_list { 2173 struct ib_flow_spec_list *next; 2174 union ib_flow_spec spec; 2175 }; 2176 2177 struct ib_flow_action_attrs_esp { 2178 struct ib_flow_action_attrs_esp_keymats *keymat; 2179 struct ib_flow_action_attrs_esp_replays *replay; 2180 struct ib_flow_spec_list *encap; 2181 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2182 * Value of 0 is a valid value. 2183 */ 2184 u32 esn; 2185 u32 spi; 2186 u32 seq; 2187 u32 tfc_pad; 2188 /* Use enum ib_flow_action_attrs_esp_flags */ 2189 u64 flags; 2190 u64 hard_limit_pkts; 2191 }; 2192 2193 struct ib_flow_action { 2194 struct ib_device *device; 2195 struct ib_uobject *uobject; 2196 enum ib_flow_action_type type; 2197 atomic_t usecnt; 2198 }; 2199 2200 struct ib_mad; 2201 2202 enum ib_process_mad_flags { 2203 IB_MAD_IGNORE_MKEY = 1, 2204 IB_MAD_IGNORE_BKEY = 2, 2205 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2206 }; 2207 2208 enum ib_mad_result { 2209 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2210 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2211 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2212 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2213 }; 2214 2215 struct ib_port_cache { 2216 u64 subnet_prefix; 2217 struct ib_pkey_cache *pkey; 2218 struct ib_gid_table *gid; 2219 u8 lmc; 2220 enum ib_port_state port_state; 2221 enum ib_port_state last_port_state; 2222 }; 2223 2224 struct ib_port_immutable { 2225 int pkey_tbl_len; 2226 int gid_tbl_len; 2227 u32 core_cap_flags; 2228 u32 max_mad_size; 2229 }; 2230 2231 struct ib_port_data { 2232 struct ib_device *ib_dev; 2233 2234 struct ib_port_immutable immutable; 2235 2236 spinlock_t pkey_list_lock; 2237 2238 spinlock_t netdev_lock; 2239 2240 struct list_head pkey_list; 2241 2242 struct ib_port_cache cache; 2243 2244 struct net_device __rcu *netdev; 2245 netdevice_tracker netdev_tracker; 2246 struct hlist_node ndev_hash_link; 2247 struct rdma_port_counter port_counter; 2248 struct ib_port *sysfs; 2249 }; 2250 2251 /* rdma netdev type - specifies protocol type */ 2252 enum rdma_netdev_t { 2253 RDMA_NETDEV_OPA_VNIC, 2254 RDMA_NETDEV_IPOIB, 2255 }; 2256 2257 /** 2258 * struct rdma_netdev - rdma netdev 2259 * For cases where netstack interfacing is required. 2260 */ 2261 struct rdma_netdev { 2262 void *clnt_priv; 2263 struct ib_device *hca; 2264 u32 port_num; 2265 int mtu; 2266 2267 /* 2268 * cleanup function must be specified. 2269 * FIXME: This is only used for OPA_VNIC and that usage should be 2270 * removed too. 2271 */ 2272 void (*free_rdma_netdev)(struct net_device *netdev); 2273 2274 /* control functions */ 2275 void (*set_id)(struct net_device *netdev, int id); 2276 /* send packet */ 2277 int (*send)(struct net_device *dev, struct sk_buff *skb, 2278 struct ib_ah *address, u32 dqpn); 2279 /* multicast */ 2280 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2281 union ib_gid *gid, u16 mlid, 2282 int set_qkey, u32 qkey); 2283 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2284 union ib_gid *gid, u16 mlid); 2285 /* timeout */ 2286 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2287 }; 2288 2289 struct rdma_netdev_alloc_params { 2290 size_t sizeof_priv; 2291 unsigned int txqs; 2292 unsigned int rxqs; 2293 void *param; 2294 2295 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2296 struct net_device *netdev, void *param); 2297 }; 2298 2299 struct ib_odp_counters { 2300 atomic64_t faults; 2301 atomic64_t faults_handled; 2302 atomic64_t invalidations; 2303 atomic64_t invalidations_handled; 2304 atomic64_t prefetch; 2305 }; 2306 2307 struct ib_counters { 2308 struct ib_device *device; 2309 struct ib_uobject *uobject; 2310 /* num of objects attached */ 2311 atomic_t usecnt; 2312 }; 2313 2314 struct ib_counters_read_attr { 2315 u64 *counters_buff; 2316 u32 ncounters; 2317 u32 flags; /* use enum ib_read_counters_flags */ 2318 }; 2319 2320 struct uverbs_attr_bundle; 2321 struct iw_cm_id; 2322 struct iw_cm_conn_param; 2323 2324 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2325 .size_##ib_struct = \ 2326 (sizeof(struct drv_struct) + \ 2327 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2328 BUILD_BUG_ON_ZERO( \ 2329 !__same_type(((struct drv_struct *)NULL)->member, \ 2330 struct ib_struct))) 2331 2332 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2333 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2334 gfp, false)) 2335 2336 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2337 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2338 GFP_KERNEL, true)) 2339 2340 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2341 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2342 2343 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2344 2345 struct rdma_user_mmap_entry { 2346 struct kref ref; 2347 struct ib_ucontext *ucontext; 2348 unsigned long start_pgoff; 2349 size_t npages; 2350 bool driver_removed; 2351 }; 2352 2353 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2354 static inline u64 2355 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2356 { 2357 return (u64)entry->start_pgoff << PAGE_SHIFT; 2358 } 2359 2360 /** 2361 * struct ib_device_ops - InfiniBand device operations 2362 * This structure defines all the InfiniBand device operations, providers will 2363 * need to define the supported operations, otherwise they will be set to null. 2364 */ 2365 struct ib_device_ops { 2366 struct module *owner; 2367 enum rdma_driver_id driver_id; 2368 u32 uverbs_abi_ver; 2369 unsigned int uverbs_no_driver_id_binding:1; 2370 2371 /* 2372 * NOTE: New drivers should not make use of device_group; instead new 2373 * device parameter should be exposed via netlink command. This 2374 * mechanism exists only for existing drivers. 2375 */ 2376 const struct attribute_group *device_group; 2377 const struct attribute_group **port_groups; 2378 2379 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2380 const struct ib_send_wr **bad_send_wr); 2381 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2382 const struct ib_recv_wr **bad_recv_wr); 2383 void (*drain_rq)(struct ib_qp *qp); 2384 void (*drain_sq)(struct ib_qp *qp); 2385 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2386 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2387 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2388 int (*post_srq_recv)(struct ib_srq *srq, 2389 const struct ib_recv_wr *recv_wr, 2390 const struct ib_recv_wr **bad_recv_wr); 2391 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2392 u32 port_num, const struct ib_wc *in_wc, 2393 const struct ib_grh *in_grh, 2394 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2395 size_t *out_mad_size, u16 *out_mad_pkey_index); 2396 int (*query_device)(struct ib_device *device, 2397 struct ib_device_attr *device_attr, 2398 struct ib_udata *udata); 2399 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2400 struct ib_device_modify *device_modify); 2401 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2402 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2403 int comp_vector); 2404 int (*query_port)(struct ib_device *device, u32 port_num, 2405 struct ib_port_attr *port_attr); 2406 int (*modify_port)(struct ib_device *device, u32 port_num, 2407 int port_modify_mask, 2408 struct ib_port_modify *port_modify); 2409 /* 2410 * The following mandatory functions are used only at device 2411 * registration. Keep functions such as these at the end of this 2412 * structure to avoid cache line misses when accessing struct ib_device 2413 * in fast paths. 2414 */ 2415 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2416 struct ib_port_immutable *immutable); 2417 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2418 u32 port_num); 2419 /* 2420 * When calling get_netdev, the HW vendor's driver should return the 2421 * net device of device @device at port @port_num or NULL if such 2422 * a net device doesn't exist. The vendor driver should call dev_hold 2423 * on this net device. The HW vendor's device driver must guarantee 2424 * that this function returns NULL before the net device has finished 2425 * NETDEV_UNREGISTER state. 2426 */ 2427 struct net_device *(*get_netdev)(struct ib_device *device, 2428 u32 port_num); 2429 /* 2430 * rdma netdev operation 2431 * 2432 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2433 * must return -EOPNOTSUPP if it doesn't support the specified type. 2434 */ 2435 struct net_device *(*alloc_rdma_netdev)( 2436 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2437 const char *name, unsigned char name_assign_type, 2438 void (*setup)(struct net_device *)); 2439 2440 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2441 enum rdma_netdev_t type, 2442 struct rdma_netdev_alloc_params *params); 2443 /* 2444 * query_gid should be return GID value for @device, when @port_num 2445 * link layer is either IB or iWarp. It is no-op if @port_num port 2446 * is RoCE link layer. 2447 */ 2448 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2449 union ib_gid *gid); 2450 /* 2451 * When calling add_gid, the HW vendor's driver should add the gid 2452 * of device of port at gid index available at @attr. Meta-info of 2453 * that gid (for example, the network device related to this gid) is 2454 * available at @attr. @context allows the HW vendor driver to store 2455 * extra information together with a GID entry. The HW vendor driver may 2456 * allocate memory to contain this information and store it in @context 2457 * when a new GID entry is written to. Params are consistent until the 2458 * next call of add_gid or delete_gid. The function should return 0 on 2459 * success or error otherwise. The function could be called 2460 * concurrently for different ports. This function is only called when 2461 * roce_gid_table is used. 2462 */ 2463 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2464 /* 2465 * When calling del_gid, the HW vendor's driver should delete the 2466 * gid of device @device at gid index gid_index of port port_num 2467 * available in @attr. 2468 * Upon the deletion of a GID entry, the HW vendor must free any 2469 * allocated memory. The caller will clear @context afterwards. 2470 * This function is only called when roce_gid_table is used. 2471 */ 2472 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2473 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2474 u16 *pkey); 2475 int (*alloc_ucontext)(struct ib_ucontext *context, 2476 struct ib_udata *udata); 2477 void (*dealloc_ucontext)(struct ib_ucontext *context); 2478 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2479 /* 2480 * This will be called once refcount of an entry in mmap_xa reaches 2481 * zero. The type of the memory that was mapped may differ between 2482 * entries and is opaque to the rdma_user_mmap interface. 2483 * Therefore needs to be implemented by the driver in mmap_free. 2484 */ 2485 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2486 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2487 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2488 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2489 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2490 struct ib_udata *udata); 2491 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2492 struct ib_udata *udata); 2493 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2494 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2495 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2496 int (*create_srq)(struct ib_srq *srq, 2497 struct ib_srq_init_attr *srq_init_attr, 2498 struct ib_udata *udata); 2499 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2500 enum ib_srq_attr_mask srq_attr_mask, 2501 struct ib_udata *udata); 2502 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2503 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2504 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2505 struct ib_udata *udata); 2506 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2507 int qp_attr_mask, struct ib_udata *udata); 2508 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2509 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2510 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2511 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2512 struct uverbs_attr_bundle *attrs); 2513 int (*create_cq_umem)(struct ib_cq *cq, 2514 const struct ib_cq_init_attr *attr, 2515 struct ib_umem *umem, 2516 struct uverbs_attr_bundle *attrs); 2517 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2518 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2519 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2520 /* 2521 * pre_destroy_cq - Prevent a cq from generating any new work 2522 * completions, but not free any kernel resources 2523 */ 2524 int (*pre_destroy_cq)(struct ib_cq *cq); 2525 /* 2526 * post_destroy_cq - Free all kernel resources 2527 */ 2528 void (*post_destroy_cq)(struct ib_cq *cq); 2529 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2530 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2531 u64 virt_addr, int mr_access_flags, 2532 struct ib_dmah *dmah, 2533 struct ib_udata *udata); 2534 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2535 u64 length, u64 virt_addr, int fd, 2536 int mr_access_flags, 2537 struct ib_dmah *dmah, 2538 struct uverbs_attr_bundle *attrs); 2539 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2540 u64 length, u64 virt_addr, 2541 int mr_access_flags, struct ib_pd *pd, 2542 struct ib_udata *udata); 2543 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2544 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2545 u32 max_num_sg); 2546 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2547 u32 max_num_data_sg, 2548 u32 max_num_meta_sg); 2549 int (*advise_mr)(struct ib_pd *pd, 2550 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2551 struct ib_sge *sg_list, u32 num_sge, 2552 struct uverbs_attr_bundle *attrs); 2553 2554 /* 2555 * Kernel users should universally support relaxed ordering (RO), as 2556 * they are designed to read data only after observing the CQE and use 2557 * the DMA API correctly. 2558 * 2559 * Some drivers implicitly enable RO if platform supports it. 2560 */ 2561 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2562 unsigned int *sg_offset); 2563 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2564 struct ib_mr_status *mr_status); 2565 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2566 int (*dealloc_mw)(struct ib_mw *mw); 2567 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2568 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2569 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2570 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2571 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2572 struct ib_flow_attr *flow_attr, 2573 struct ib_udata *udata); 2574 int (*destroy_flow)(struct ib_flow *flow_id); 2575 int (*destroy_flow_action)(struct ib_flow_action *action); 2576 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2577 int state); 2578 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2579 struct ifla_vf_info *ivf); 2580 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2581 struct ifla_vf_stats *stats); 2582 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2583 struct ifla_vf_guid *node_guid, 2584 struct ifla_vf_guid *port_guid); 2585 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2586 int type); 2587 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2588 struct ib_wq_init_attr *init_attr, 2589 struct ib_udata *udata); 2590 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2591 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2592 u32 wq_attr_mask, struct ib_udata *udata); 2593 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2594 struct ib_rwq_ind_table_init_attr *init_attr, 2595 struct ib_udata *udata); 2596 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2597 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2598 struct ib_ucontext *context, 2599 struct ib_dm_alloc_attr *attr, 2600 struct uverbs_attr_bundle *attrs); 2601 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2602 int (*alloc_dmah)(struct ib_dmah *ibdmah, 2603 struct uverbs_attr_bundle *attrs); 2604 int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs); 2605 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2606 struct ib_dm_mr_attr *attr, 2607 struct uverbs_attr_bundle *attrs); 2608 int (*create_counters)(struct ib_counters *counters, 2609 struct uverbs_attr_bundle *attrs); 2610 int (*destroy_counters)(struct ib_counters *counters); 2611 int (*read_counters)(struct ib_counters *counters, 2612 struct ib_counters_read_attr *counters_read_attr, 2613 struct uverbs_attr_bundle *attrs); 2614 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2615 int data_sg_nents, unsigned int *data_sg_offset, 2616 struct scatterlist *meta_sg, int meta_sg_nents, 2617 unsigned int *meta_sg_offset); 2618 2619 /* 2620 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2621 * fill in the driver initialized data. The struct is kfree()'ed by 2622 * the sysfs core when the device is removed. A lifespan of -1 in the 2623 * return struct tells the core to set a default lifespan. 2624 */ 2625 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2626 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2627 u32 port_num); 2628 /* 2629 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2630 * @index - The index in the value array we wish to have updated, or 2631 * num_counters if we want all stats updated 2632 * Return codes - 2633 * < 0 - Error, no counters updated 2634 * index - Updated the single counter pointed to by index 2635 * num_counters - Updated all counters (will reset the timestamp 2636 * and prevent further calls for lifespan milliseconds) 2637 * Drivers are allowed to update all counters in leiu of just the 2638 * one given in index at their option 2639 */ 2640 int (*get_hw_stats)(struct ib_device *device, 2641 struct rdma_hw_stats *stats, u32 port, int index); 2642 2643 /* 2644 * modify_hw_stat - Modify the counter configuration 2645 * @enable: true/false when enable/disable a counter 2646 * Return codes - 0 on success or error code otherwise. 2647 */ 2648 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2649 unsigned int counter_index, bool enable); 2650 /* 2651 * Allows rdma drivers to add their own restrack attributes. 2652 */ 2653 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2654 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2655 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2656 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2657 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2658 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2659 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2660 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq); 2661 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq); 2662 2663 /* Device lifecycle callbacks */ 2664 /* 2665 * Called after the device becomes registered, before clients are 2666 * attached 2667 */ 2668 int (*enable_driver)(struct ib_device *dev); 2669 /* 2670 * This is called as part of ib_dealloc_device(). 2671 */ 2672 void (*dealloc_driver)(struct ib_device *dev); 2673 2674 /* iWarp CM callbacks */ 2675 void (*iw_add_ref)(struct ib_qp *qp); 2676 void (*iw_rem_ref)(struct ib_qp *qp); 2677 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2678 int (*iw_connect)(struct iw_cm_id *cm_id, 2679 struct iw_cm_conn_param *conn_param); 2680 int (*iw_accept)(struct iw_cm_id *cm_id, 2681 struct iw_cm_conn_param *conn_param); 2682 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2683 u8 pdata_len); 2684 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2685 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2686 /* 2687 * counter_bind_qp - Bind a QP to a counter. 2688 * @counter - The counter to be bound. If counter->id is zero then 2689 * the driver needs to allocate a new counter and set counter->id 2690 */ 2691 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp, 2692 u32 port); 2693 /* 2694 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2695 * counter and bind it onto the default one 2696 */ 2697 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port); 2698 /* 2699 * counter_dealloc -De-allocate the hw counter 2700 */ 2701 int (*counter_dealloc)(struct rdma_counter *counter); 2702 /* 2703 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2704 * the driver initialized data. 2705 */ 2706 struct rdma_hw_stats *(*counter_alloc_stats)( 2707 struct rdma_counter *counter); 2708 /* 2709 * counter_update_stats - Query the stats value of this counter 2710 */ 2711 int (*counter_update_stats)(struct rdma_counter *counter); 2712 2713 /* 2714 * counter_init - Initialize the driver specific rdma counter struct. 2715 */ 2716 void (*counter_init)(struct rdma_counter *counter); 2717 2718 /* 2719 * Allows rdma drivers to add their own restrack attributes 2720 * dumped via 'rdma stat' iproute2 command. 2721 */ 2722 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2723 2724 /* query driver for its ucontext properties */ 2725 int (*query_ucontext)(struct ib_ucontext *context, 2726 struct uverbs_attr_bundle *attrs); 2727 2728 /* 2729 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2730 * Everyone else relies on Linux memory management model. 2731 */ 2732 int (*get_numa_node)(struct ib_device *dev); 2733 2734 /* 2735 * add_sub_dev - Add a sub IB device 2736 */ 2737 struct ib_device *(*add_sub_dev)(struct ib_device *parent, 2738 enum rdma_nl_dev_type type, 2739 const char *name); 2740 2741 /* 2742 * del_sub_dev - Delete a sub IB device 2743 */ 2744 void (*del_sub_dev)(struct ib_device *sub_dev); 2745 2746 /* 2747 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside 2748 * the ufile. 2749 */ 2750 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile); 2751 2752 /* 2753 * report_port_event - Drivers need to implement this if they have 2754 * some private stuff to handle when link status changes. 2755 */ 2756 void (*report_port_event)(struct ib_device *ibdev, 2757 struct net_device *ndev, unsigned long event); 2758 2759 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2760 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2761 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2762 DECLARE_RDMA_OBJ_SIZE(ib_dmah); 2763 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2764 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2765 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2766 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2767 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2768 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2769 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2770 DECLARE_RDMA_OBJ_SIZE(rdma_counter); 2771 }; 2772 2773 struct ib_core_device { 2774 /* device must be the first element in structure until, 2775 * union of ib_core_device and device exists in ib_device. 2776 */ 2777 struct device dev; 2778 possible_net_t rdma_net; 2779 struct kobject *ports_kobj; 2780 struct list_head port_list; 2781 struct ib_device *owner; /* reach back to owner ib_device */ 2782 }; 2783 2784 struct rdma_restrack_root; 2785 struct ib_device { 2786 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2787 struct device *dma_device; 2788 struct ib_device_ops ops; 2789 char name[IB_DEVICE_NAME_MAX]; 2790 struct rcu_head rcu_head; 2791 2792 struct list_head event_handler_list; 2793 /* Protects event_handler_list */ 2794 struct rw_semaphore event_handler_rwsem; 2795 2796 /* Protects QP's event_handler calls and open_qp list */ 2797 spinlock_t qp_open_list_lock; 2798 2799 struct rw_semaphore client_data_rwsem; 2800 struct xarray client_data; 2801 struct mutex unregistration_lock; 2802 2803 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2804 rwlock_t cache_lock; 2805 /** 2806 * port_data is indexed by port number 2807 */ 2808 struct ib_port_data *port_data; 2809 2810 int num_comp_vectors; 2811 2812 union { 2813 struct device dev; 2814 struct ib_core_device coredev; 2815 }; 2816 2817 /* First group is for device attributes, 2818 * Second group is for driver provided attributes (optional). 2819 * Third group is for the hw_stats 2820 * It is a NULL terminated array. 2821 */ 2822 const struct attribute_group *groups[4]; 2823 u8 hw_stats_attr_index; 2824 2825 u64 uverbs_cmd_mask; 2826 2827 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2828 __be64 node_guid; 2829 u32 local_dma_lkey; 2830 u16 is_switch:1; 2831 /* Indicates kernel verbs support, should not be used in drivers */ 2832 u16 kverbs_provider:1; 2833 /* CQ adaptive moderation (RDMA DIM) */ 2834 u16 use_cq_dim:1; 2835 u8 node_type; 2836 u32 phys_port_cnt; 2837 struct ib_device_attr attrs; 2838 struct hw_stats_device_data *hw_stats_data; 2839 2840 #ifdef CONFIG_CGROUP_RDMA 2841 struct rdmacg_device cg_device; 2842 #endif 2843 2844 u32 index; 2845 2846 spinlock_t cq_pools_lock; 2847 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2848 2849 struct rdma_restrack_root *res; 2850 2851 const struct uapi_definition *driver_def; 2852 2853 /* 2854 * Positive refcount indicates that the device is currently 2855 * registered and cannot be unregistered. 2856 */ 2857 refcount_t refcount; 2858 struct completion unreg_completion; 2859 struct work_struct unregistration_work; 2860 2861 const struct rdma_link_ops *link_ops; 2862 2863 /* Protects compat_devs xarray modifications */ 2864 struct mutex compat_devs_mutex; 2865 /* Maintains compat devices for each net namespace */ 2866 struct xarray compat_devs; 2867 2868 /* Used by iWarp CM */ 2869 char iw_ifname[IFNAMSIZ]; 2870 u32 iw_driver_flags; 2871 u32 lag_flags; 2872 2873 /* A parent device has a list of sub-devices */ 2874 struct mutex subdev_lock; 2875 struct list_head subdev_list_head; 2876 2877 /* A sub device has a type and a parent */ 2878 enum rdma_nl_dev_type type; 2879 struct ib_device *parent; 2880 struct list_head subdev_list; 2881 2882 enum rdma_nl_name_assign_type name_assign_type; 2883 }; 2884 2885 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2886 gfp_t gfp, bool is_numa_aware) 2887 { 2888 if (is_numa_aware && dev->ops.get_numa_node) 2889 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2890 2891 return kzalloc(size, gfp); 2892 } 2893 2894 struct ib_client_nl_info; 2895 struct ib_client { 2896 const char *name; 2897 int (*add)(struct ib_device *ibdev); 2898 void (*remove)(struct ib_device *, void *client_data); 2899 void (*rename)(struct ib_device *dev, void *client_data); 2900 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2901 struct ib_client_nl_info *res); 2902 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2903 2904 /* Returns the net_dev belonging to this ib_client and matching the 2905 * given parameters. 2906 * @dev: An RDMA device that the net_dev use for communication. 2907 * @port: A physical port number on the RDMA device. 2908 * @pkey: P_Key that the net_dev uses if applicable. 2909 * @gid: A GID that the net_dev uses to communicate. 2910 * @addr: An IP address the net_dev is configured with. 2911 * @client_data: The device's client data set by ib_set_client_data(). 2912 * 2913 * An ib_client that implements a net_dev on top of RDMA devices 2914 * (such as IP over IB) should implement this callback, allowing the 2915 * rdma_cm module to find the right net_dev for a given request. 2916 * 2917 * The caller is responsible for calling dev_put on the returned 2918 * netdev. */ 2919 struct net_device *(*get_net_dev_by_params)( 2920 struct ib_device *dev, 2921 u32 port, 2922 u16 pkey, 2923 const union ib_gid *gid, 2924 const struct sockaddr *addr, 2925 void *client_data); 2926 2927 refcount_t uses; 2928 struct completion uses_zero; 2929 u32 client_id; 2930 2931 /* kverbs are not required by the client */ 2932 u8 no_kverbs_req:1; 2933 }; 2934 2935 /* 2936 * IB block DMA iterator 2937 * 2938 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2939 * to a HW supported page size. 2940 */ 2941 struct ib_block_iter { 2942 /* internal states */ 2943 struct scatterlist *__sg; /* sg holding the current aligned block */ 2944 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2945 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */ 2946 unsigned int __sg_nents; /* number of SG entries */ 2947 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2948 unsigned int __pg_bit; /* alignment of current block */ 2949 }; 2950 2951 struct ib_device *_ib_alloc_device(size_t size, struct net *net); 2952 #define ib_alloc_device(drv_struct, member) \ 2953 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2954 BUILD_BUG_ON_ZERO(offsetof( \ 2955 struct drv_struct, member)), \ 2956 &init_net), \ 2957 struct drv_struct, member) 2958 2959 #define ib_alloc_device_with_net(drv_struct, member, net) \ 2960 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2961 BUILD_BUG_ON_ZERO(offsetof( \ 2962 struct drv_struct, member)), net), \ 2963 struct drv_struct, member) 2964 2965 void ib_dealloc_device(struct ib_device *device); 2966 2967 void ib_get_device_fw_str(struct ib_device *device, char *str); 2968 2969 int ib_register_device(struct ib_device *device, const char *name, 2970 struct device *dma_device); 2971 void ib_unregister_device(struct ib_device *device); 2972 void ib_unregister_driver(enum rdma_driver_id driver_id); 2973 void ib_unregister_device_and_put(struct ib_device *device); 2974 void ib_unregister_device_queued(struct ib_device *ib_dev); 2975 2976 int ib_register_client (struct ib_client *client); 2977 void ib_unregister_client(struct ib_client *client); 2978 2979 void __rdma_block_iter_start(struct ib_block_iter *biter, 2980 struct scatterlist *sglist, 2981 unsigned int nents, 2982 unsigned long pgsz); 2983 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2984 2985 /** 2986 * rdma_block_iter_dma_address - get the aligned dma address of the current 2987 * block held by the block iterator. 2988 * @biter: block iterator holding the memory block 2989 */ 2990 static inline dma_addr_t 2991 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2992 { 2993 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2994 } 2995 2996 /** 2997 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2998 * @sglist: sglist to iterate over 2999 * @biter: block iterator holding the memory block 3000 * @nents: maximum number of sg entries to iterate over 3001 * @pgsz: best HW supported page size to use 3002 * 3003 * Callers may use rdma_block_iter_dma_address() to get each 3004 * blocks aligned DMA address. 3005 */ 3006 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 3007 for (__rdma_block_iter_start(biter, sglist, nents, \ 3008 pgsz); \ 3009 __rdma_block_iter_next(biter);) 3010 3011 /** 3012 * ib_get_client_data - Get IB client context 3013 * @device:Device to get context for 3014 * @client:Client to get context for 3015 * 3016 * ib_get_client_data() returns the client context data set with 3017 * ib_set_client_data(). This can only be called while the client is 3018 * registered to the device, once the ib_client remove() callback returns this 3019 * cannot be called. 3020 */ 3021 static inline void *ib_get_client_data(struct ib_device *device, 3022 struct ib_client *client) 3023 { 3024 return xa_load(&device->client_data, client->client_id); 3025 } 3026 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 3027 void *data); 3028 void ib_set_device_ops(struct ib_device *device, 3029 const struct ib_device_ops *ops); 3030 3031 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 3032 unsigned long pfn, unsigned long size, pgprot_t prot, 3033 struct rdma_user_mmap_entry *entry); 3034 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 3035 struct rdma_user_mmap_entry *entry, 3036 size_t length); 3037 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 3038 struct rdma_user_mmap_entry *entry, 3039 size_t length, u32 min_pgoff, 3040 u32 max_pgoff); 3041 3042 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 3043 void rdma_user_mmap_disassociate(struct ib_device *device); 3044 #else 3045 static inline void rdma_user_mmap_disassociate(struct ib_device *device) 3046 { 3047 } 3048 #endif 3049 3050 static inline int 3051 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 3052 struct rdma_user_mmap_entry *entry, 3053 size_t length, u32 pgoff) 3054 { 3055 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 3056 pgoff); 3057 } 3058 3059 struct rdma_user_mmap_entry * 3060 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 3061 unsigned long pgoff); 3062 struct rdma_user_mmap_entry * 3063 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 3064 struct vm_area_struct *vma); 3065 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 3066 3067 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 3068 3069 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 3070 { 3071 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 3072 } 3073 3074 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 3075 { 3076 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 3077 } 3078 3079 static inline bool ib_is_buffer_cleared(const void __user *p, 3080 size_t len) 3081 { 3082 bool ret; 3083 u8 *buf; 3084 3085 if (len > USHRT_MAX) 3086 return false; 3087 3088 buf = memdup_user(p, len); 3089 if (IS_ERR(buf)) 3090 return false; 3091 3092 ret = !memchr_inv(buf, 0, len); 3093 kfree(buf); 3094 return ret; 3095 } 3096 3097 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 3098 size_t offset, 3099 size_t len) 3100 { 3101 return ib_is_buffer_cleared(udata->inbuf + offset, len); 3102 } 3103 3104 /** 3105 * ib_modify_qp_is_ok - Check that the supplied attribute mask 3106 * contains all required attributes and no attributes not allowed for 3107 * the given QP state transition. 3108 * @cur_state: Current QP state 3109 * @next_state: Next QP state 3110 * @type: QP type 3111 * @mask: Mask of supplied QP attributes 3112 * 3113 * This function is a helper function that a low-level driver's 3114 * modify_qp method can use to validate the consumer's input. It 3115 * checks that cur_state and next_state are valid QP states, that a 3116 * transition from cur_state to next_state is allowed by the IB spec, 3117 * and that the attribute mask supplied is allowed for the transition. 3118 */ 3119 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3120 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3121 3122 void ib_register_event_handler(struct ib_event_handler *event_handler); 3123 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3124 void ib_dispatch_event(const struct ib_event *event); 3125 3126 int ib_query_port(struct ib_device *device, 3127 u32 port_num, struct ib_port_attr *port_attr); 3128 3129 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3130 u32 port_num); 3131 3132 /** 3133 * rdma_cap_ib_switch - Check if the device is IB switch 3134 * @device: Device to check 3135 * 3136 * Device driver is responsible for setting is_switch bit on 3137 * in ib_device structure at init time. 3138 * 3139 * Return: true if the device is IB switch. 3140 */ 3141 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3142 { 3143 return device->is_switch; 3144 } 3145 3146 /** 3147 * rdma_start_port - Return the first valid port number for the device 3148 * specified 3149 * 3150 * @device: Device to be checked 3151 * 3152 * Return start port number 3153 */ 3154 static inline u32 rdma_start_port(const struct ib_device *device) 3155 { 3156 return rdma_cap_ib_switch(device) ? 0 : 1; 3157 } 3158 3159 /** 3160 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3161 * @device: The struct ib_device * to iterate over 3162 * @iter: The unsigned int to store the port number 3163 */ 3164 #define rdma_for_each_port(device, iter) \ 3165 for (iter = rdma_start_port(device + \ 3166 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3167 iter))); \ 3168 iter <= rdma_end_port(device); iter++) 3169 3170 /** 3171 * rdma_end_port - Return the last valid port number for the device 3172 * specified 3173 * 3174 * @device: Device to be checked 3175 * 3176 * Return last port number 3177 */ 3178 static inline u32 rdma_end_port(const struct ib_device *device) 3179 { 3180 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3181 } 3182 3183 static inline int rdma_is_port_valid(const struct ib_device *device, 3184 unsigned int port) 3185 { 3186 return (port >= rdma_start_port(device) && 3187 port <= rdma_end_port(device)); 3188 } 3189 3190 static inline bool rdma_is_grh_required(const struct ib_device *device, 3191 u32 port_num) 3192 { 3193 return device->port_data[port_num].immutable.core_cap_flags & 3194 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3195 } 3196 3197 static inline bool rdma_protocol_ib(const struct ib_device *device, 3198 u32 port_num) 3199 { 3200 return device->port_data[port_num].immutable.core_cap_flags & 3201 RDMA_CORE_CAP_PROT_IB; 3202 } 3203 3204 static inline bool rdma_protocol_roce(const struct ib_device *device, 3205 u32 port_num) 3206 { 3207 return device->port_data[port_num].immutable.core_cap_flags & 3208 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3209 } 3210 3211 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3212 u32 port_num) 3213 { 3214 return device->port_data[port_num].immutable.core_cap_flags & 3215 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3216 } 3217 3218 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3219 u32 port_num) 3220 { 3221 return device->port_data[port_num].immutable.core_cap_flags & 3222 RDMA_CORE_CAP_PROT_ROCE; 3223 } 3224 3225 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3226 u32 port_num) 3227 { 3228 return device->port_data[port_num].immutable.core_cap_flags & 3229 RDMA_CORE_CAP_PROT_IWARP; 3230 } 3231 3232 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3233 u32 port_num) 3234 { 3235 return rdma_protocol_ib(device, port_num) || 3236 rdma_protocol_roce(device, port_num); 3237 } 3238 3239 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3240 u32 port_num) 3241 { 3242 return device->port_data[port_num].immutable.core_cap_flags & 3243 RDMA_CORE_CAP_PROT_RAW_PACKET; 3244 } 3245 3246 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3247 u32 port_num) 3248 { 3249 return device->port_data[port_num].immutable.core_cap_flags & 3250 RDMA_CORE_CAP_PROT_USNIC; 3251 } 3252 3253 /** 3254 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3255 * Management Datagrams. 3256 * @device: Device to check 3257 * @port_num: Port number to check 3258 * 3259 * Management Datagrams (MAD) are a required part of the InfiniBand 3260 * specification and are supported on all InfiniBand devices. A slightly 3261 * extended version are also supported on OPA interfaces. 3262 * 3263 * Return: true if the port supports sending/receiving of MAD packets. 3264 */ 3265 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3266 { 3267 return device->port_data[port_num].immutable.core_cap_flags & 3268 RDMA_CORE_CAP_IB_MAD; 3269 } 3270 3271 /** 3272 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3273 * Management Datagrams. 3274 * @device: Device to check 3275 * @port_num: Port number to check 3276 * 3277 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3278 * datagrams with their own versions. These OPA MADs share many but not all of 3279 * the characteristics of InfiniBand MADs. 3280 * 3281 * OPA MADs differ in the following ways: 3282 * 3283 * 1) MADs are variable size up to 2K 3284 * IBTA defined MADs remain fixed at 256 bytes 3285 * 2) OPA SMPs must carry valid PKeys 3286 * 3) OPA SMP packets are a different format 3287 * 3288 * Return: true if the port supports OPA MAD packet formats. 3289 */ 3290 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3291 { 3292 return device->port_data[port_num].immutable.core_cap_flags & 3293 RDMA_CORE_CAP_OPA_MAD; 3294 } 3295 3296 /** 3297 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3298 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3299 * @device: Device to check 3300 * @port_num: Port number to check 3301 * 3302 * Each InfiniBand node is required to provide a Subnet Management Agent 3303 * that the subnet manager can access. Prior to the fabric being fully 3304 * configured by the subnet manager, the SMA is accessed via a well known 3305 * interface called the Subnet Management Interface (SMI). This interface 3306 * uses directed route packets to communicate with the SM to get around the 3307 * chicken and egg problem of the SM needing to know what's on the fabric 3308 * in order to configure the fabric, and needing to configure the fabric in 3309 * order to send packets to the devices on the fabric. These directed 3310 * route packets do not need the fabric fully configured in order to reach 3311 * their destination. The SMI is the only method allowed to send 3312 * directed route packets on an InfiniBand fabric. 3313 * 3314 * Return: true if the port provides an SMI. 3315 */ 3316 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3317 { 3318 return device->port_data[port_num].immutable.core_cap_flags & 3319 RDMA_CORE_CAP_IB_SMI; 3320 } 3321 3322 /** 3323 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3324 * Communication Manager. 3325 * @device: Device to check 3326 * @port_num: Port number to check 3327 * 3328 * The InfiniBand Communication Manager is one of many pre-defined General 3329 * Service Agents (GSA) that are accessed via the General Service 3330 * Interface (GSI). It's role is to facilitate establishment of connections 3331 * between nodes as well as other management related tasks for established 3332 * connections. 3333 * 3334 * Return: true if the port supports an IB CM (this does not guarantee that 3335 * a CM is actually running however). 3336 */ 3337 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3338 { 3339 return device->port_data[port_num].immutable.core_cap_flags & 3340 RDMA_CORE_CAP_IB_CM; 3341 } 3342 3343 /** 3344 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3345 * Communication Manager. 3346 * @device: Device to check 3347 * @port_num: Port number to check 3348 * 3349 * Similar to above, but specific to iWARP connections which have a different 3350 * managment protocol than InfiniBand. 3351 * 3352 * Return: true if the port supports an iWARP CM (this does not guarantee that 3353 * a CM is actually running however). 3354 */ 3355 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3356 { 3357 return device->port_data[port_num].immutable.core_cap_flags & 3358 RDMA_CORE_CAP_IW_CM; 3359 } 3360 3361 /** 3362 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3363 * Subnet Administration. 3364 * @device: Device to check 3365 * @port_num: Port number to check 3366 * 3367 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3368 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3369 * fabrics, devices should resolve routes to other hosts by contacting the 3370 * SA to query the proper route. 3371 * 3372 * Return: true if the port should act as a client to the fabric Subnet 3373 * Administration interface. This does not imply that the SA service is 3374 * running locally. 3375 */ 3376 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3377 { 3378 return device->port_data[port_num].immutable.core_cap_flags & 3379 RDMA_CORE_CAP_IB_SA; 3380 } 3381 3382 /** 3383 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3384 * Multicast. 3385 * @device: Device to check 3386 * @port_num: Port number to check 3387 * 3388 * InfiniBand multicast registration is more complex than normal IPv4 or 3389 * IPv6 multicast registration. Each Host Channel Adapter must register 3390 * with the Subnet Manager when it wishes to join a multicast group. It 3391 * should do so only once regardless of how many queue pairs it subscribes 3392 * to this group. And it should leave the group only after all queue pairs 3393 * attached to the group have been detached. 3394 * 3395 * Return: true if the port must undertake the additional adminstrative 3396 * overhead of registering/unregistering with the SM and tracking of the 3397 * total number of queue pairs attached to the multicast group. 3398 */ 3399 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3400 u32 port_num) 3401 { 3402 return rdma_cap_ib_sa(device, port_num); 3403 } 3404 3405 /** 3406 * rdma_cap_af_ib - Check if the port of device has the capability 3407 * Native Infiniband Address. 3408 * @device: Device to check 3409 * @port_num: Port number to check 3410 * 3411 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3412 * GID. RoCE uses a different mechanism, but still generates a GID via 3413 * a prescribed mechanism and port specific data. 3414 * 3415 * Return: true if the port uses a GID address to identify devices on the 3416 * network. 3417 */ 3418 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3419 { 3420 return device->port_data[port_num].immutable.core_cap_flags & 3421 RDMA_CORE_CAP_AF_IB; 3422 } 3423 3424 /** 3425 * rdma_cap_eth_ah - Check if the port of device has the capability 3426 * Ethernet Address Handle. 3427 * @device: Device to check 3428 * @port_num: Port number to check 3429 * 3430 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3431 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3432 * port. Normally, packet headers are generated by the sending host 3433 * adapter, but when sending connectionless datagrams, we must manually 3434 * inject the proper headers for the fabric we are communicating over. 3435 * 3436 * Return: true if we are running as a RoCE port and must force the 3437 * addition of a Global Route Header built from our Ethernet Address 3438 * Handle into our header list for connectionless packets. 3439 */ 3440 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3441 { 3442 return device->port_data[port_num].immutable.core_cap_flags & 3443 RDMA_CORE_CAP_ETH_AH; 3444 } 3445 3446 /** 3447 * rdma_cap_opa_ah - Check if the port of device supports 3448 * OPA Address handles 3449 * @device: Device to check 3450 * @port_num: Port number to check 3451 * 3452 * Return: true if we are running on an OPA device which supports 3453 * the extended OPA addressing. 3454 */ 3455 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3456 { 3457 return (device->port_data[port_num].immutable.core_cap_flags & 3458 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3459 } 3460 3461 /** 3462 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3463 * 3464 * @device: Device 3465 * @port_num: Port number 3466 * 3467 * This MAD size includes the MAD headers and MAD payload. No other headers 3468 * are included. 3469 * 3470 * Return the max MAD size required by the Port. Will return 0 if the port 3471 * does not support MADs 3472 */ 3473 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3474 u32 port_num) 3475 { 3476 return device->port_data[port_num].immutable.max_mad_size; 3477 } 3478 3479 /** 3480 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3481 * @device: Device to check 3482 * @port_num: Port number to check 3483 * 3484 * RoCE GID table mechanism manages the various GIDs for a device. 3485 * 3486 * NOTE: if allocating the port's GID table has failed, this call will still 3487 * return true, but any RoCE GID table API will fail. 3488 * 3489 * Return: true if the port uses RoCE GID table mechanism in order to manage 3490 * its GIDs. 3491 */ 3492 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3493 u32 port_num) 3494 { 3495 return rdma_protocol_roce(device, port_num) && 3496 device->ops.add_gid && device->ops.del_gid; 3497 } 3498 3499 /* 3500 * Check if the device supports READ W/ INVALIDATE. 3501 */ 3502 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3503 { 3504 /* 3505 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3506 * has support for it yet. 3507 */ 3508 return rdma_protocol_iwarp(dev, port_num); 3509 } 3510 3511 /** 3512 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3513 * @device: Device 3514 * @port_num: 1 based Port number 3515 * 3516 * Return true if port is an Intel OPA port , false if not 3517 */ 3518 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3519 u32 port_num) 3520 { 3521 return (device->port_data[port_num].immutable.core_cap_flags & 3522 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3523 } 3524 3525 /** 3526 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3527 * @device: Device 3528 * @port: Port number 3529 * @mtu: enum value of MTU 3530 * 3531 * Return the MTU size supported by the port as an integer value. Will return 3532 * -1 if enum value of mtu is not supported. 3533 */ 3534 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3535 int mtu) 3536 { 3537 if (rdma_core_cap_opa_port(device, port)) 3538 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3539 else 3540 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3541 } 3542 3543 /** 3544 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3545 * @device: Device 3546 * @port: Port number 3547 * @attr: port attribute 3548 * 3549 * Return the MTU size supported by the port as an integer value. 3550 */ 3551 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3552 struct ib_port_attr *attr) 3553 { 3554 if (rdma_core_cap_opa_port(device, port)) 3555 return attr->phys_mtu; 3556 else 3557 return ib_mtu_enum_to_int(attr->max_mtu); 3558 } 3559 3560 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3561 int state); 3562 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3563 struct ifla_vf_info *info); 3564 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3565 struct ifla_vf_stats *stats); 3566 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3567 struct ifla_vf_guid *node_guid, 3568 struct ifla_vf_guid *port_guid); 3569 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3570 int type); 3571 3572 int ib_query_pkey(struct ib_device *device, 3573 u32 port_num, u16 index, u16 *pkey); 3574 3575 int ib_modify_device(struct ib_device *device, 3576 int device_modify_mask, 3577 struct ib_device_modify *device_modify); 3578 3579 int ib_modify_port(struct ib_device *device, 3580 u32 port_num, int port_modify_mask, 3581 struct ib_port_modify *port_modify); 3582 3583 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3584 u32 *port_num, u16 *index); 3585 3586 int ib_find_pkey(struct ib_device *device, 3587 u32 port_num, u16 pkey, u16 *index); 3588 3589 enum ib_pd_flags { 3590 /* 3591 * Create a memory registration for all memory in the system and place 3592 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3593 * ULPs to avoid the overhead of dynamic MRs. 3594 * 3595 * This flag is generally considered unsafe and must only be used in 3596 * extremly trusted environments. Every use of it will log a warning 3597 * in the kernel log. 3598 */ 3599 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3600 }; 3601 3602 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3603 const char *caller); 3604 3605 /** 3606 * ib_alloc_pd - Allocates an unused protection domain. 3607 * @device: The device on which to allocate the protection domain. 3608 * @flags: protection domain flags 3609 * 3610 * A protection domain object provides an association between QPs, shared 3611 * receive queues, address handles, memory regions, and memory windows. 3612 * 3613 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3614 * memory operations. 3615 */ 3616 #define ib_alloc_pd(device, flags) \ 3617 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3618 3619 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3620 3621 /** 3622 * ib_dealloc_pd - Deallocate kernel PD 3623 * @pd: The protection domain 3624 * 3625 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3626 */ 3627 static inline void ib_dealloc_pd(struct ib_pd *pd) 3628 { 3629 int ret = ib_dealloc_pd_user(pd, NULL); 3630 3631 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3632 } 3633 3634 enum rdma_create_ah_flags { 3635 /* In a sleepable context */ 3636 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3637 }; 3638 3639 /** 3640 * rdma_create_ah - Creates an address handle for the given address vector. 3641 * @pd: The protection domain associated with the address handle. 3642 * @ah_attr: The attributes of the address vector. 3643 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3644 * 3645 * The address handle is used to reference a local or global destination 3646 * in all UD QP post sends. 3647 */ 3648 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3649 u32 flags); 3650 3651 /** 3652 * rdma_create_user_ah - Creates an address handle for the given address vector. 3653 * It resolves destination mac address for ah attribute of RoCE type. 3654 * @pd: The protection domain associated with the address handle. 3655 * @ah_attr: The attributes of the address vector. 3656 * @udata: pointer to user's input output buffer information need by 3657 * provider driver. 3658 * 3659 * It returns 0 on success and returns appropriate error code on error. 3660 * The address handle is used to reference a local or global destination 3661 * in all UD QP post sends. 3662 */ 3663 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3664 struct rdma_ah_attr *ah_attr, 3665 struct ib_udata *udata); 3666 /** 3667 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3668 * work completion. 3669 * @hdr: the L3 header to parse 3670 * @net_type: type of header to parse 3671 * @sgid: place to store source gid 3672 * @dgid: place to store destination gid 3673 */ 3674 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3675 enum rdma_network_type net_type, 3676 union ib_gid *sgid, union ib_gid *dgid); 3677 3678 /** 3679 * ib_get_rdma_header_version - Get the header version 3680 * @hdr: the L3 header to parse 3681 */ 3682 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3683 3684 /** 3685 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3686 * work completion. 3687 * @device: Device on which the received message arrived. 3688 * @port_num: Port on which the received message arrived. 3689 * @wc: Work completion associated with the received message. 3690 * @grh: References the received global route header. This parameter is 3691 * ignored unless the work completion indicates that the GRH is valid. 3692 * @ah_attr: Returned attributes that can be used when creating an address 3693 * handle for replying to the message. 3694 * When ib_init_ah_attr_from_wc() returns success, 3695 * (a) for IB link layer it optionally contains a reference to SGID attribute 3696 * when GRH is present for IB link layer. 3697 * (b) for RoCE link layer it contains a reference to SGID attribute. 3698 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3699 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3700 * 3701 */ 3702 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3703 const struct ib_wc *wc, const struct ib_grh *grh, 3704 struct rdma_ah_attr *ah_attr); 3705 3706 /** 3707 * ib_create_ah_from_wc - Creates an address handle associated with the 3708 * sender of the specified work completion. 3709 * @pd: The protection domain associated with the address handle. 3710 * @wc: Work completion information associated with a received message. 3711 * @grh: References the received global route header. This parameter is 3712 * ignored unless the work completion indicates that the GRH is valid. 3713 * @port_num: The outbound port number to associate with the address. 3714 * 3715 * The address handle is used to reference a local or global destination 3716 * in all UD QP post sends. 3717 */ 3718 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3719 const struct ib_grh *grh, u32 port_num); 3720 3721 /** 3722 * rdma_modify_ah - Modifies the address vector associated with an address 3723 * handle. 3724 * @ah: The address handle to modify. 3725 * @ah_attr: The new address vector attributes to associate with the 3726 * address handle. 3727 */ 3728 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3729 3730 /** 3731 * rdma_query_ah - Queries the address vector associated with an address 3732 * handle. 3733 * @ah: The address handle to query. 3734 * @ah_attr: The address vector attributes associated with the address 3735 * handle. 3736 */ 3737 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3738 3739 enum rdma_destroy_ah_flags { 3740 /* In a sleepable context */ 3741 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3742 }; 3743 3744 /** 3745 * rdma_destroy_ah_user - Destroys an address handle. 3746 * @ah: The address handle to destroy. 3747 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3748 * @udata: Valid user data or NULL for kernel objects 3749 */ 3750 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3751 3752 /** 3753 * rdma_destroy_ah - Destroys an kernel address handle. 3754 * @ah: The address handle to destroy. 3755 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3756 * 3757 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3758 */ 3759 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3760 { 3761 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3762 3763 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3764 } 3765 3766 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3767 struct ib_srq_init_attr *srq_init_attr, 3768 struct ib_usrq_object *uobject, 3769 struct ib_udata *udata); 3770 static inline struct ib_srq * 3771 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3772 { 3773 if (!pd->device->ops.create_srq) 3774 return ERR_PTR(-EOPNOTSUPP); 3775 3776 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3777 } 3778 3779 /** 3780 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3781 * @srq: The SRQ to modify. 3782 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3783 * the current values of selected SRQ attributes are returned. 3784 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3785 * are being modified. 3786 * 3787 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3788 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3789 * the number of receives queued drops below the limit. 3790 */ 3791 int ib_modify_srq(struct ib_srq *srq, 3792 struct ib_srq_attr *srq_attr, 3793 enum ib_srq_attr_mask srq_attr_mask); 3794 3795 /** 3796 * ib_query_srq - Returns the attribute list and current values for the 3797 * specified SRQ. 3798 * @srq: The SRQ to query. 3799 * @srq_attr: The attributes of the specified SRQ. 3800 */ 3801 int ib_query_srq(struct ib_srq *srq, 3802 struct ib_srq_attr *srq_attr); 3803 3804 /** 3805 * ib_destroy_srq_user - Destroys the specified SRQ. 3806 * @srq: The SRQ to destroy. 3807 * @udata: Valid user data or NULL for kernel objects 3808 */ 3809 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3810 3811 /** 3812 * ib_destroy_srq - Destroys the specified kernel SRQ. 3813 * @srq: The SRQ to destroy. 3814 * 3815 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3816 */ 3817 static inline void ib_destroy_srq(struct ib_srq *srq) 3818 { 3819 int ret = ib_destroy_srq_user(srq, NULL); 3820 3821 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3822 } 3823 3824 /** 3825 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3826 * @srq: The SRQ to post the work request on. 3827 * @recv_wr: A list of work requests to post on the receive queue. 3828 * @bad_recv_wr: On an immediate failure, this parameter will reference 3829 * the work request that failed to be posted on the QP. 3830 */ 3831 static inline int ib_post_srq_recv(struct ib_srq *srq, 3832 const struct ib_recv_wr *recv_wr, 3833 const struct ib_recv_wr **bad_recv_wr) 3834 { 3835 const struct ib_recv_wr *dummy; 3836 3837 return srq->device->ops.post_srq_recv(srq, recv_wr, 3838 bad_recv_wr ? : &dummy); 3839 } 3840 3841 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3842 struct ib_qp_init_attr *qp_init_attr, 3843 const char *caller); 3844 /** 3845 * ib_create_qp - Creates a kernel QP associated with the specific protection 3846 * domain. 3847 * @pd: The protection domain associated with the QP. 3848 * @init_attr: A list of initial attributes required to create the 3849 * QP. If QP creation succeeds, then the attributes are updated to 3850 * the actual capabilities of the created QP. 3851 */ 3852 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3853 struct ib_qp_init_attr *init_attr) 3854 { 3855 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3856 } 3857 3858 /** 3859 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3860 * @qp: The QP to modify. 3861 * @attr: On input, specifies the QP attributes to modify. On output, 3862 * the current values of selected QP attributes are returned. 3863 * @attr_mask: A bit-mask used to specify which attributes of the QP 3864 * are being modified. 3865 * @udata: pointer to user's input output buffer information 3866 * are being modified. 3867 * It returns 0 on success and returns appropriate error code on error. 3868 */ 3869 int ib_modify_qp_with_udata(struct ib_qp *qp, 3870 struct ib_qp_attr *attr, 3871 int attr_mask, 3872 struct ib_udata *udata); 3873 3874 /** 3875 * ib_modify_qp - Modifies the attributes for the specified QP and then 3876 * transitions the QP to the given state. 3877 * @qp: The QP to modify. 3878 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3879 * the current values of selected QP attributes are returned. 3880 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3881 * are being modified. 3882 */ 3883 int ib_modify_qp(struct ib_qp *qp, 3884 struct ib_qp_attr *qp_attr, 3885 int qp_attr_mask); 3886 3887 /** 3888 * ib_query_qp - Returns the attribute list and current values for the 3889 * specified QP. 3890 * @qp: The QP to query. 3891 * @qp_attr: The attributes of the specified QP. 3892 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3893 * @qp_init_attr: Additional attributes of the selected QP. 3894 * 3895 * The qp_attr_mask may be used to limit the query to gathering only the 3896 * selected attributes. 3897 */ 3898 int ib_query_qp(struct ib_qp *qp, 3899 struct ib_qp_attr *qp_attr, 3900 int qp_attr_mask, 3901 struct ib_qp_init_attr *qp_init_attr); 3902 3903 /** 3904 * ib_destroy_qp - Destroys the specified QP. 3905 * @qp: The QP to destroy. 3906 * @udata: Valid udata or NULL for kernel objects 3907 */ 3908 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3909 3910 /** 3911 * ib_destroy_qp - Destroys the specified kernel QP. 3912 * @qp: The QP to destroy. 3913 * 3914 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3915 */ 3916 static inline int ib_destroy_qp(struct ib_qp *qp) 3917 { 3918 return ib_destroy_qp_user(qp, NULL); 3919 } 3920 3921 /** 3922 * ib_open_qp - Obtain a reference to an existing sharable QP. 3923 * @xrcd: XRC domain 3924 * @qp_open_attr: Attributes identifying the QP to open. 3925 * 3926 * Returns a reference to a sharable QP. 3927 */ 3928 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3929 struct ib_qp_open_attr *qp_open_attr); 3930 3931 /** 3932 * ib_close_qp - Release an external reference to a QP. 3933 * @qp: The QP handle to release 3934 * 3935 * The opened QP handle is released by the caller. The underlying 3936 * shared QP is not destroyed until all internal references are released. 3937 */ 3938 int ib_close_qp(struct ib_qp *qp); 3939 3940 /** 3941 * ib_post_send - Posts a list of work requests to the send queue of 3942 * the specified QP. 3943 * @qp: The QP to post the work request on. 3944 * @send_wr: A list of work requests to post on the send queue. 3945 * @bad_send_wr: On an immediate failure, this parameter will reference 3946 * the work request that failed to be posted on the QP. 3947 * 3948 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3949 * error is returned, the QP state shall not be affected, 3950 * ib_post_send() will return an immediate error after queueing any 3951 * earlier work requests in the list. 3952 */ 3953 static inline int ib_post_send(struct ib_qp *qp, 3954 const struct ib_send_wr *send_wr, 3955 const struct ib_send_wr **bad_send_wr) 3956 { 3957 const struct ib_send_wr *dummy; 3958 3959 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3960 } 3961 3962 /** 3963 * ib_post_recv - Posts a list of work requests to the receive queue of 3964 * the specified QP. 3965 * @qp: The QP to post the work request on. 3966 * @recv_wr: A list of work requests to post on the receive queue. 3967 * @bad_recv_wr: On an immediate failure, this parameter will reference 3968 * the work request that failed to be posted on the QP. 3969 */ 3970 static inline int ib_post_recv(struct ib_qp *qp, 3971 const struct ib_recv_wr *recv_wr, 3972 const struct ib_recv_wr **bad_recv_wr) 3973 { 3974 const struct ib_recv_wr *dummy; 3975 3976 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3977 } 3978 3979 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3980 int comp_vector, enum ib_poll_context poll_ctx, 3981 const char *caller); 3982 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3983 int nr_cqe, int comp_vector, 3984 enum ib_poll_context poll_ctx) 3985 { 3986 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3987 KBUILD_MODNAME); 3988 } 3989 3990 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3991 int nr_cqe, enum ib_poll_context poll_ctx, 3992 const char *caller); 3993 3994 /** 3995 * ib_alloc_cq_any: Allocate kernel CQ 3996 * @dev: The IB device 3997 * @private: Private data attached to the CQE 3998 * @nr_cqe: Number of CQEs in the CQ 3999 * @poll_ctx: Context used for polling the CQ 4000 */ 4001 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 4002 void *private, int nr_cqe, 4003 enum ib_poll_context poll_ctx) 4004 { 4005 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 4006 KBUILD_MODNAME); 4007 } 4008 4009 void ib_free_cq(struct ib_cq *cq); 4010 int ib_process_cq_direct(struct ib_cq *cq, int budget); 4011 4012 /** 4013 * ib_create_cq - Creates a CQ on the specified device. 4014 * @device: The device on which to create the CQ. 4015 * @comp_handler: A user-specified callback that is invoked when a 4016 * completion event occurs on the CQ. 4017 * @event_handler: A user-specified callback that is invoked when an 4018 * asynchronous event not associated with a completion occurs on the CQ. 4019 * @cq_context: Context associated with the CQ returned to the user via 4020 * the associated completion and event handlers. 4021 * @cq_attr: The attributes the CQ should be created upon. 4022 * 4023 * Users can examine the cq structure to determine the actual CQ size. 4024 */ 4025 struct ib_cq *__ib_create_cq(struct ib_device *device, 4026 ib_comp_handler comp_handler, 4027 void (*event_handler)(struct ib_event *, void *), 4028 void *cq_context, 4029 const struct ib_cq_init_attr *cq_attr, 4030 const char *caller); 4031 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 4032 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 4033 4034 /** 4035 * ib_resize_cq - Modifies the capacity of the CQ. 4036 * @cq: The CQ to resize. 4037 * @cqe: The minimum size of the CQ. 4038 * 4039 * Users can examine the cq structure to determine the actual CQ size. 4040 */ 4041 int ib_resize_cq(struct ib_cq *cq, int cqe); 4042 4043 /** 4044 * rdma_set_cq_moderation - Modifies moderation params of the CQ 4045 * @cq: The CQ to modify. 4046 * @cq_count: number of CQEs that will trigger an event 4047 * @cq_period: max period of time in usec before triggering an event 4048 * 4049 */ 4050 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 4051 4052 /** 4053 * ib_destroy_cq_user - Destroys the specified CQ. 4054 * @cq: The CQ to destroy. 4055 * @udata: Valid user data or NULL for kernel objects 4056 */ 4057 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 4058 4059 /** 4060 * ib_destroy_cq - Destroys the specified kernel CQ. 4061 * @cq: The CQ to destroy. 4062 * 4063 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 4064 */ 4065 static inline void ib_destroy_cq(struct ib_cq *cq) 4066 { 4067 int ret = ib_destroy_cq_user(cq, NULL); 4068 4069 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 4070 } 4071 4072 /** 4073 * ib_poll_cq - poll a CQ for completion(s) 4074 * @cq:the CQ being polled 4075 * @num_entries:maximum number of completions to return 4076 * @wc:array of at least @num_entries &struct ib_wc where completions 4077 * will be returned 4078 * 4079 * Poll a CQ for (possibly multiple) completions. If the return value 4080 * is < 0, an error occurred. If the return value is >= 0, it is the 4081 * number of completions returned. If the return value is 4082 * non-negative and < num_entries, then the CQ was emptied. 4083 */ 4084 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 4085 struct ib_wc *wc) 4086 { 4087 return cq->device->ops.poll_cq(cq, num_entries, wc); 4088 } 4089 4090 /** 4091 * ib_req_notify_cq - Request completion notification on a CQ. 4092 * @cq: The CQ to generate an event for. 4093 * @flags: 4094 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 4095 * to request an event on the next solicited event or next work 4096 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 4097 * may also be |ed in to request a hint about missed events, as 4098 * described below. 4099 * 4100 * Return Value: 4101 * < 0 means an error occurred while requesting notification 4102 * == 0 means notification was requested successfully, and if 4103 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 4104 * were missed and it is safe to wait for another event. In 4105 * this case is it guaranteed that any work completions added 4106 * to the CQ since the last CQ poll will trigger a completion 4107 * notification event. 4108 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 4109 * in. It means that the consumer must poll the CQ again to 4110 * make sure it is empty to avoid missing an event because of a 4111 * race between requesting notification and an entry being 4112 * added to the CQ. This return value means it is possible 4113 * (but not guaranteed) that a work completion has been added 4114 * to the CQ since the last poll without triggering a 4115 * completion notification event. 4116 */ 4117 static inline int ib_req_notify_cq(struct ib_cq *cq, 4118 enum ib_cq_notify_flags flags) 4119 { 4120 return cq->device->ops.req_notify_cq(cq, flags); 4121 } 4122 4123 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4124 int comp_vector_hint, 4125 enum ib_poll_context poll_ctx); 4126 4127 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4128 4129 /* 4130 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4131 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4132 * address into the dma address. 4133 */ 4134 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4135 { 4136 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4137 } 4138 4139 /* 4140 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4141 */ 4142 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4143 { 4144 if (ib_uses_virt_dma(dev)) 4145 return false; 4146 4147 return dma_pci_p2pdma_supported(dev->dma_device); 4148 } 4149 4150 /** 4151 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4152 * @dma_addr: The DMA address 4153 * 4154 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4155 * going through the dma_addr marshalling. 4156 */ 4157 static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4158 { 4159 /* virt_dma mode maps the kvs's directly into the dma addr */ 4160 return (void *)(uintptr_t)dma_addr; 4161 } 4162 4163 /** 4164 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4165 * @dma_addr: The DMA address 4166 * 4167 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4168 * through the dma_addr marshalling. 4169 */ 4170 static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4171 { 4172 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4173 } 4174 4175 /** 4176 * ib_dma_mapping_error - check a DMA addr for error 4177 * @dev: The device for which the dma_addr was created 4178 * @dma_addr: The DMA address to check 4179 */ 4180 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4181 { 4182 if (ib_uses_virt_dma(dev)) 4183 return 0; 4184 return dma_mapping_error(dev->dma_device, dma_addr); 4185 } 4186 4187 /** 4188 * ib_dma_map_single - Map a kernel virtual address to DMA address 4189 * @dev: The device for which the dma_addr is to be created 4190 * @cpu_addr: The kernel virtual address 4191 * @size: The size of the region in bytes 4192 * @direction: The direction of the DMA 4193 */ 4194 static inline u64 ib_dma_map_single(struct ib_device *dev, 4195 void *cpu_addr, size_t size, 4196 enum dma_data_direction direction) 4197 { 4198 if (ib_uses_virt_dma(dev)) 4199 return (uintptr_t)cpu_addr; 4200 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4201 } 4202 4203 /** 4204 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4205 * @dev: The device for which the DMA address was created 4206 * @addr: The DMA address 4207 * @size: The size of the region in bytes 4208 * @direction: The direction of the DMA 4209 */ 4210 static inline void ib_dma_unmap_single(struct ib_device *dev, 4211 u64 addr, size_t size, 4212 enum dma_data_direction direction) 4213 { 4214 if (!ib_uses_virt_dma(dev)) 4215 dma_unmap_single(dev->dma_device, addr, size, direction); 4216 } 4217 4218 /** 4219 * ib_dma_map_page - Map a physical page to DMA address 4220 * @dev: The device for which the dma_addr is to be created 4221 * @page: The page to be mapped 4222 * @offset: The offset within the page 4223 * @size: The size of the region in bytes 4224 * @direction: The direction of the DMA 4225 */ 4226 static inline u64 ib_dma_map_page(struct ib_device *dev, 4227 struct page *page, 4228 unsigned long offset, 4229 size_t size, 4230 enum dma_data_direction direction) 4231 { 4232 if (ib_uses_virt_dma(dev)) 4233 return (uintptr_t)(page_address(page) + offset); 4234 return dma_map_page(dev->dma_device, page, offset, size, direction); 4235 } 4236 4237 /** 4238 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4239 * @dev: The device for which the DMA address was created 4240 * @addr: The DMA address 4241 * @size: The size of the region in bytes 4242 * @direction: The direction of the DMA 4243 */ 4244 static inline void ib_dma_unmap_page(struct ib_device *dev, 4245 u64 addr, size_t size, 4246 enum dma_data_direction direction) 4247 { 4248 if (!ib_uses_virt_dma(dev)) 4249 dma_unmap_page(dev->dma_device, addr, size, direction); 4250 } 4251 4252 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4253 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4254 struct scatterlist *sg, int nents, 4255 enum dma_data_direction direction, 4256 unsigned long dma_attrs) 4257 { 4258 if (ib_uses_virt_dma(dev)) 4259 return ib_dma_virt_map_sg(dev, sg, nents); 4260 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4261 dma_attrs); 4262 } 4263 4264 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4265 struct scatterlist *sg, int nents, 4266 enum dma_data_direction direction, 4267 unsigned long dma_attrs) 4268 { 4269 if (!ib_uses_virt_dma(dev)) 4270 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4271 dma_attrs); 4272 } 4273 4274 /** 4275 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4276 * @dev: The device for which the DMA addresses are to be created 4277 * @sgt: The sg_table object describing the buffer 4278 * @direction: The direction of the DMA 4279 * @dma_attrs: Optional DMA attributes for the map operation 4280 */ 4281 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4282 struct sg_table *sgt, 4283 enum dma_data_direction direction, 4284 unsigned long dma_attrs) 4285 { 4286 int nents; 4287 4288 if (ib_uses_virt_dma(dev)) { 4289 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4290 if (!nents) 4291 return -EIO; 4292 sgt->nents = nents; 4293 return 0; 4294 } 4295 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4296 } 4297 4298 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4299 struct sg_table *sgt, 4300 enum dma_data_direction direction, 4301 unsigned long dma_attrs) 4302 { 4303 if (!ib_uses_virt_dma(dev)) 4304 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4305 } 4306 4307 /** 4308 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4309 * @dev: The device for which the DMA addresses are to be created 4310 * @sg: The array of scatter/gather entries 4311 * @nents: The number of scatter/gather entries 4312 * @direction: The direction of the DMA 4313 */ 4314 static inline int ib_dma_map_sg(struct ib_device *dev, 4315 struct scatterlist *sg, int nents, 4316 enum dma_data_direction direction) 4317 { 4318 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4319 } 4320 4321 /** 4322 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4323 * @dev: The device for which the DMA addresses were created 4324 * @sg: The array of scatter/gather entries 4325 * @nents: The number of scatter/gather entries 4326 * @direction: The direction of the DMA 4327 */ 4328 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4329 struct scatterlist *sg, int nents, 4330 enum dma_data_direction direction) 4331 { 4332 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4333 } 4334 4335 /** 4336 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4337 * @dev: The device to query 4338 * 4339 * The returned value represents a size in bytes. 4340 */ 4341 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4342 { 4343 if (ib_uses_virt_dma(dev)) 4344 return UINT_MAX; 4345 return dma_get_max_seg_size(dev->dma_device); 4346 } 4347 4348 /** 4349 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4350 * @dev: The device for which the DMA address was created 4351 * @addr: The DMA address 4352 * @size: The size of the region in bytes 4353 * @dir: The direction of the DMA 4354 */ 4355 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4356 u64 addr, 4357 size_t size, 4358 enum dma_data_direction dir) 4359 { 4360 if (!ib_uses_virt_dma(dev)) 4361 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4362 } 4363 4364 /** 4365 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4366 * @dev: The device for which the DMA address was created 4367 * @addr: The DMA address 4368 * @size: The size of the region in bytes 4369 * @dir: The direction of the DMA 4370 */ 4371 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4372 u64 addr, 4373 size_t size, 4374 enum dma_data_direction dir) 4375 { 4376 if (!ib_uses_virt_dma(dev)) 4377 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4378 } 4379 4380 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4381 * space. This function should be called when 'current' is the owning MM. 4382 */ 4383 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4384 u64 virt_addr, int mr_access_flags); 4385 4386 /* ib_advise_mr - give an advice about an address range in a memory region */ 4387 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4388 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4389 /** 4390 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4391 * HCA translation table. 4392 * @mr: The memory region to deregister. 4393 * @udata: Valid user data or NULL for kernel object 4394 * 4395 * This function can fail, if the memory region has memory windows bound to it. 4396 */ 4397 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4398 4399 /** 4400 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4401 * HCA translation table. 4402 * @mr: The memory region to deregister. 4403 * 4404 * This function can fail, if the memory region has memory windows bound to it. 4405 * 4406 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4407 */ 4408 static inline int ib_dereg_mr(struct ib_mr *mr) 4409 { 4410 return ib_dereg_mr_user(mr, NULL); 4411 } 4412 4413 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4414 u32 max_num_sg); 4415 4416 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4417 u32 max_num_data_sg, 4418 u32 max_num_meta_sg); 4419 4420 /** 4421 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4422 * R_Key and L_Key. 4423 * @mr: struct ib_mr pointer to be updated. 4424 * @newkey: new key to be used. 4425 */ 4426 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4427 { 4428 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4429 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4430 } 4431 4432 /** 4433 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4434 * for calculating a new rkey for type 2 memory windows. 4435 * @rkey: the rkey to increment. 4436 */ 4437 static inline u32 ib_inc_rkey(u32 rkey) 4438 { 4439 const u32 mask = 0x000000ff; 4440 return ((rkey + 1) & mask) | (rkey & ~mask); 4441 } 4442 4443 /** 4444 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4445 * @qp: QP to attach to the multicast group. The QP must be type 4446 * IB_QPT_UD. 4447 * @gid: Multicast group GID. 4448 * @lid: Multicast group LID in host byte order. 4449 * 4450 * In order to send and receive multicast packets, subnet 4451 * administration must have created the multicast group and configured 4452 * the fabric appropriately. The port associated with the specified 4453 * QP must also be a member of the multicast group. 4454 */ 4455 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4456 4457 /** 4458 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4459 * @qp: QP to detach from the multicast group. 4460 * @gid: Multicast group GID. 4461 * @lid: Multicast group LID in host byte order. 4462 */ 4463 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4464 4465 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4466 struct inode *inode, struct ib_udata *udata); 4467 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4468 4469 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4470 unsigned int flags) 4471 { 4472 u64 device_cap = ib_dev->attrs.device_cap_flags; 4473 4474 /* 4475 * Local write permission is required if remote write or 4476 * remote atomic permission is also requested. 4477 */ 4478 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4479 !(flags & IB_ACCESS_LOCAL_WRITE)) 4480 return -EINVAL; 4481 4482 if (flags & ~IB_ACCESS_SUPPORTED) 4483 return -EINVAL; 4484 4485 if (flags & IB_ACCESS_ON_DEMAND && 4486 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4487 return -EOPNOTSUPP; 4488 4489 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4490 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4491 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4492 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4493 return -EOPNOTSUPP; 4494 4495 return 0; 4496 } 4497 4498 static inline bool ib_access_writable(int access_flags) 4499 { 4500 /* 4501 * We have writable memory backing the MR if any of the following 4502 * access flags are set. "Local write" and "remote write" obviously 4503 * require write access. "Remote atomic" can do things like fetch and 4504 * add, which will modify memory, and "MW bind" can change permissions 4505 * by binding a window. 4506 */ 4507 return access_flags & 4508 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4509 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4510 } 4511 4512 /** 4513 * ib_check_mr_status: lightweight check of MR status. 4514 * This routine may provide status checks on a selected 4515 * ib_mr. first use is for signature status check. 4516 * 4517 * @mr: A memory region. 4518 * @check_mask: Bitmask of which checks to perform from 4519 * ib_mr_status_check enumeration. 4520 * @mr_status: The container of relevant status checks. 4521 * failed checks will be indicated in the status bitmask 4522 * and the relevant info shall be in the error item. 4523 */ 4524 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4525 struct ib_mr_status *mr_status); 4526 4527 /** 4528 * ib_device_try_get: Hold a registration lock 4529 * @dev: The device to lock 4530 * 4531 * A device under an active registration lock cannot become unregistered. It 4532 * is only possible to obtain a registration lock on a device that is fully 4533 * registered, otherwise this function returns false. 4534 * 4535 * The registration lock is only necessary for actions which require the 4536 * device to still be registered. Uses that only require the device pointer to 4537 * be valid should use get_device(&ibdev->dev) to hold the memory. 4538 * 4539 */ 4540 static inline bool ib_device_try_get(struct ib_device *dev) 4541 { 4542 return refcount_inc_not_zero(&dev->refcount); 4543 } 4544 4545 void ib_device_put(struct ib_device *device); 4546 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4547 enum rdma_driver_id driver_id); 4548 struct ib_device *ib_device_get_by_name(const char *name, 4549 enum rdma_driver_id driver_id); 4550 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4551 u16 pkey, const union ib_gid *gid, 4552 const struct sockaddr *addr); 4553 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4554 unsigned int port); 4555 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev, 4556 u32 port); 4557 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev, 4558 u32 *port); 4559 4560 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev) 4561 { 4562 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ? 4563 IB_PORT_ACTIVE : IB_PORT_DOWN; 4564 } 4565 4566 void ib_dispatch_port_state_event(struct ib_device *ibdev, 4567 struct net_device *ndev); 4568 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4569 struct ib_wq_init_attr *init_attr); 4570 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4571 4572 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4573 unsigned int *sg_offset, unsigned int page_size); 4574 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4575 int data_sg_nents, unsigned int *data_sg_offset, 4576 struct scatterlist *meta_sg, int meta_sg_nents, 4577 unsigned int *meta_sg_offset, unsigned int page_size); 4578 4579 static inline int 4580 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4581 unsigned int *sg_offset, unsigned int page_size) 4582 { 4583 int n; 4584 4585 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4586 mr->iova = 0; 4587 4588 return n; 4589 } 4590 4591 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4592 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4593 4594 void ib_drain_rq(struct ib_qp *qp); 4595 void ib_drain_sq(struct ib_qp *qp); 4596 void ib_drain_qp(struct ib_qp *qp); 4597 4598 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4599 u8 *width); 4600 4601 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4602 { 4603 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4604 return attr->roce.dmac; 4605 return NULL; 4606 } 4607 4608 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4609 { 4610 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4611 attr->ib.dlid = (u16)dlid; 4612 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4613 attr->opa.dlid = dlid; 4614 } 4615 4616 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4617 { 4618 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4619 return attr->ib.dlid; 4620 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4621 return attr->opa.dlid; 4622 return 0; 4623 } 4624 4625 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4626 { 4627 attr->sl = sl; 4628 } 4629 4630 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4631 { 4632 return attr->sl; 4633 } 4634 4635 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4636 u8 src_path_bits) 4637 { 4638 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4639 attr->ib.src_path_bits = src_path_bits; 4640 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4641 attr->opa.src_path_bits = src_path_bits; 4642 } 4643 4644 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4645 { 4646 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4647 return attr->ib.src_path_bits; 4648 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4649 return attr->opa.src_path_bits; 4650 return 0; 4651 } 4652 4653 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4654 bool make_grd) 4655 { 4656 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4657 attr->opa.make_grd = make_grd; 4658 } 4659 4660 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4661 { 4662 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4663 return attr->opa.make_grd; 4664 return false; 4665 } 4666 4667 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4668 { 4669 attr->port_num = port_num; 4670 } 4671 4672 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4673 { 4674 return attr->port_num; 4675 } 4676 4677 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4678 u8 static_rate) 4679 { 4680 attr->static_rate = static_rate; 4681 } 4682 4683 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4684 { 4685 return attr->static_rate; 4686 } 4687 4688 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4689 enum ib_ah_flags flag) 4690 { 4691 attr->ah_flags = flag; 4692 } 4693 4694 static inline enum ib_ah_flags 4695 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4696 { 4697 return attr->ah_flags; 4698 } 4699 4700 static inline const struct ib_global_route 4701 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4702 { 4703 return &attr->grh; 4704 } 4705 4706 /*To retrieve and modify the grh */ 4707 static inline struct ib_global_route 4708 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4709 { 4710 return &attr->grh; 4711 } 4712 4713 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4714 { 4715 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4716 4717 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4718 } 4719 4720 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4721 __be64 prefix) 4722 { 4723 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4724 4725 grh->dgid.global.subnet_prefix = prefix; 4726 } 4727 4728 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4729 __be64 if_id) 4730 { 4731 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4732 4733 grh->dgid.global.interface_id = if_id; 4734 } 4735 4736 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4737 union ib_gid *dgid, u32 flow_label, 4738 u8 sgid_index, u8 hop_limit, 4739 u8 traffic_class) 4740 { 4741 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4742 4743 attr->ah_flags = IB_AH_GRH; 4744 if (dgid) 4745 grh->dgid = *dgid; 4746 grh->flow_label = flow_label; 4747 grh->sgid_index = sgid_index; 4748 grh->hop_limit = hop_limit; 4749 grh->traffic_class = traffic_class; 4750 grh->sgid_attr = NULL; 4751 } 4752 4753 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4754 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4755 u32 flow_label, u8 hop_limit, u8 traffic_class, 4756 const struct ib_gid_attr *sgid_attr); 4757 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4758 const struct rdma_ah_attr *src); 4759 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4760 const struct rdma_ah_attr *new); 4761 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4762 4763 /** 4764 * rdma_ah_find_type - Return address handle type. 4765 * 4766 * @dev: Device to be checked 4767 * @port_num: Port number 4768 */ 4769 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4770 u32 port_num) 4771 { 4772 if (rdma_protocol_roce(dev, port_num)) 4773 return RDMA_AH_ATTR_TYPE_ROCE; 4774 if (rdma_protocol_ib(dev, port_num)) { 4775 if (rdma_cap_opa_ah(dev, port_num)) 4776 return RDMA_AH_ATTR_TYPE_OPA; 4777 return RDMA_AH_ATTR_TYPE_IB; 4778 } 4779 if (dev->type == RDMA_DEVICE_TYPE_SMI) 4780 return RDMA_AH_ATTR_TYPE_IB; 4781 4782 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4783 } 4784 4785 /** 4786 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4787 * In the current implementation the only way to 4788 * get the 32bit lid is from other sources for OPA. 4789 * For IB, lids will always be 16bits so cast the 4790 * value accordingly. 4791 * 4792 * @lid: A 32bit LID 4793 */ 4794 static inline u16 ib_lid_cpu16(u32 lid) 4795 { 4796 WARN_ON_ONCE(lid & 0xFFFF0000); 4797 return (u16)lid; 4798 } 4799 4800 /** 4801 * ib_lid_be16 - Return lid in 16bit BE encoding. 4802 * 4803 * @lid: A 32bit LID 4804 */ 4805 static inline __be16 ib_lid_be16(u32 lid) 4806 { 4807 WARN_ON_ONCE(lid & 0xFFFF0000); 4808 return cpu_to_be16((u16)lid); 4809 } 4810 4811 /** 4812 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4813 * vector 4814 * @device: the rdma device 4815 * @comp_vector: index of completion vector 4816 * 4817 * Returns NULL on failure, otherwise a corresponding cpu map of the 4818 * completion vector (returns all-cpus map if the device driver doesn't 4819 * implement get_vector_affinity). 4820 */ 4821 static inline const struct cpumask * 4822 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4823 { 4824 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4825 !device->ops.get_vector_affinity) 4826 return NULL; 4827 4828 return device->ops.get_vector_affinity(device, comp_vector); 4829 4830 } 4831 4832 /** 4833 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4834 * and add their gids, as needed, to the relevant RoCE devices. 4835 * 4836 * @ibdev: the rdma device 4837 */ 4838 void rdma_roce_rescan_device(struct ib_device *ibdev); 4839 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port); 4840 void roce_del_all_netdev_gids(struct ib_device *ib_dev, 4841 u32 port, struct net_device *ndev); 4842 4843 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4844 4845 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 4846 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4847 bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs); 4848 #else 4849 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs) 4850 { 4851 return 0; 4852 } 4853 static inline bool 4854 rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs) 4855 { 4856 return false; 4857 } 4858 #endif 4859 4860 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4861 enum rdma_netdev_t type, const char *name, 4862 unsigned char name_assign_type, 4863 void (*setup)(struct net_device *)); 4864 4865 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4866 enum rdma_netdev_t type, const char *name, 4867 unsigned char name_assign_type, 4868 void (*setup)(struct net_device *), 4869 struct net_device *netdev); 4870 4871 /** 4872 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4873 * 4874 * @device: device pointer for which ib_device pointer to retrieve 4875 * 4876 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4877 * 4878 */ 4879 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4880 { 4881 struct ib_core_device *coredev = 4882 container_of(device, struct ib_core_device, dev); 4883 4884 return coredev->owner; 4885 } 4886 4887 /** 4888 * ibdev_to_node - return the NUMA node for a given ib_device 4889 * @ibdev: device to get the NUMA node for. 4890 */ 4891 static inline int ibdev_to_node(struct ib_device *ibdev) 4892 { 4893 struct device *parent = ibdev->dev.parent; 4894 4895 if (!parent) 4896 return NUMA_NO_NODE; 4897 return dev_to_node(parent); 4898 } 4899 4900 /** 4901 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4902 * ib_device holder structure from device pointer. 4903 * 4904 * NOTE: New drivers should not make use of this API; This API is only for 4905 * existing drivers who have exposed sysfs entries using 4906 * ops->device_group. 4907 */ 4908 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4909 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4910 4911 bool rdma_dev_access_netns(const struct ib_device *device, 4912 const struct net *net); 4913 4914 bool rdma_dev_has_raw_cap(const struct ib_device *dev); 4915 static inline struct net *rdma_dev_net(struct ib_device *device) 4916 { 4917 return read_pnet(&device->coredev.rdma_net); 4918 } 4919 4920 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4921 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4922 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4923 4924 /** 4925 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4926 * on the flow_label 4927 * @fl: flow_label value 4928 * 4929 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4930 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4931 * convention. 4932 */ 4933 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4934 { 4935 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4936 4937 fl_low ^= fl_high >> 14; 4938 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4939 } 4940 4941 /** 4942 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4943 * local and remote qpn values 4944 * 4945 * This function folded the multiplication results of two qpns, 24 bit each, 4946 * fields, and converts it to a 20 bit results. 4947 * 4948 * This function will create symmetric flow_label value based on the local 4949 * and remote qpn values. this will allow both the requester and responder 4950 * to calculate the same flow_label for a given connection. 4951 * 4952 * This helper function should be used by driver in case the upper layer 4953 * provide a zero flow_label value. This is to improve entropy of RDMA 4954 * traffic in the network. 4955 */ 4956 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4957 { 4958 u64 v = (u64)lqpn * rqpn; 4959 4960 v ^= v >> 20; 4961 v ^= v >> 40; 4962 4963 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4964 } 4965 4966 /** 4967 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4968 * label. If flow label is not defined in GRH then 4969 * calculate it based on lqpn/rqpn. 4970 * 4971 * @fl: flow label from GRH 4972 * @lqpn: local qp number 4973 * @rqpn: remote qp number 4974 */ 4975 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4976 { 4977 if (!fl) 4978 fl = rdma_calc_flow_label(lqpn, rqpn); 4979 4980 return rdma_flow_label_to_udp_sport(fl); 4981 } 4982 4983 const struct ib_port_immutable* 4984 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4985 4986 /** ib_add_sub_device - Add a sub IB device on an existing one 4987 * 4988 * @parent: The IB device that needs to add a sub device 4989 * @type: The type of the new sub device 4990 * @name: The name of the new sub device 4991 * 4992 * 4993 * Return 0 on success, an error code otherwise 4994 */ 4995 int ib_add_sub_device(struct ib_device *parent, 4996 enum rdma_nl_dev_type type, 4997 const char *name); 4998 4999 5000 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get' 5001 * 5002 * @sub: The sub device that is going to be deleted 5003 * 5004 * Return 0 on success, an error code otherwise 5005 */ 5006 int ib_del_sub_device_and_put(struct ib_device *sub); 5007 5008 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev) 5009 { 5010 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER; 5011 } 5012 5013 #endif /* IB_VERBS_H */ 5014