1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(3, 4) __cold 63 void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77 __printf(2, 3) __cold 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82 #define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84 #else 85 __printf(2, 3) __cold 86 static inline 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88 #endif 89 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91 do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97 } while (0) 98 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118 do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 #else 128 __printf(2, 3) __cold 129 static inline 130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131 #endif 132 133 union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139 }; 140 141 extern union ib_gid zgid; 142 143 enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148 }; 149 150 #define ROCE_V2_UDP_DPORT 4791 151 struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158 }; 159 160 enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163 }; 164 165 enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171 }; 172 173 enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178 }; 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(unsigned int node_type); 182 183 enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188 }; 189 190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191 { 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199 } 200 201 static inline enum rdma_network_type 202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203 { 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214 } 215 216 enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220 }; 221 222 enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 238 239 /* Reserved, old SEND_W_INV = 1 << 16,*/ 240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 241 /* 242 * Devices should set IB_DEVICE_UD_IP_SUM if they support 243 * insertion of UDP and TCP checksum on outgoing UD IPoIB 244 * messages and can verify the validity of checksum for 245 * incoming messages. Setting this flag implies that the 246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 247 */ 248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 250 251 /* 252 * This device supports the IB "base memory management extension", 253 * which includes support for fast registrations (IB_WR_REG_MR, 254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 255 * also be set by any iWarp device which must support FRs to comply 256 * to the iWarp verbs spec. iWarp devices also support the 257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 258 * stag. 259 */ 260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 266 IB_DEVICE_MANAGED_FLOW_STEERING = 267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 270 /* The device supports padding incoming writes to cacheline. */ 271 IB_DEVICE_PCI_WRITE_END_PADDING = 272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 273 }; 274 275 enum ib_kernel_cap_flags { 276 /* 277 * This device supports a per-device lkey or stag that can be 278 * used without performing a memory registration for the local 279 * memory. Note that ULPs should never check this flag, but 280 * instead of use the local_dma_lkey flag in the ib_pd structure, 281 * which will always contain a usable lkey. 282 */ 283 IBK_LOCAL_DMA_LKEY = 1 << 0, 284 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 285 IBK_INTEGRITY_HANDOVER = 1 << 1, 286 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 287 IBK_ON_DEMAND_PAGING = 1 << 2, 288 /* IB_MR_TYPE_SG_GAPS is supported */ 289 IBK_SG_GAPS_REG = 1 << 3, 290 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 291 IBK_ALLOW_USER_UNREG = 1 << 4, 292 293 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 294 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 295 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 296 IBK_UD_TSO = 1 << 6, 297 /* iopib will use the device ops: 298 * get_vf_config 299 * get_vf_guid 300 * get_vf_stats 301 * set_vf_guid 302 * set_vf_link_state 303 */ 304 IBK_VIRTUAL_FUNCTION = 1 << 7, 305 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 306 IBK_RDMA_NETDEV_OPA = 1 << 8, 307 }; 308 309 enum ib_atomic_cap { 310 IB_ATOMIC_NONE, 311 IB_ATOMIC_HCA, 312 IB_ATOMIC_GLOB 313 }; 314 315 enum ib_odp_general_cap_bits { 316 IB_ODP_SUPPORT = 1 << 0, 317 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 318 }; 319 320 enum ib_odp_transport_cap_bits { 321 IB_ODP_SUPPORT_SEND = 1 << 0, 322 IB_ODP_SUPPORT_RECV = 1 << 1, 323 IB_ODP_SUPPORT_WRITE = 1 << 2, 324 IB_ODP_SUPPORT_READ = 1 << 3, 325 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 326 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 327 }; 328 329 struct ib_odp_caps { 330 uint64_t general_caps; 331 struct { 332 uint32_t rc_odp_caps; 333 uint32_t uc_odp_caps; 334 uint32_t ud_odp_caps; 335 uint32_t xrc_odp_caps; 336 } per_transport_caps; 337 }; 338 339 struct ib_rss_caps { 340 /* Corresponding bit will be set if qp type from 341 * 'enum ib_qp_type' is supported, e.g. 342 * supported_qpts |= 1 << IB_QPT_UD 343 */ 344 u32 supported_qpts; 345 u32 max_rwq_indirection_tables; 346 u32 max_rwq_indirection_table_size; 347 }; 348 349 enum ib_tm_cap_flags { 350 /* Support tag matching with rendezvous offload for RC transport */ 351 IB_TM_CAP_RNDV_RC = 1 << 0, 352 }; 353 354 struct ib_tm_caps { 355 /* Max size of RNDV header */ 356 u32 max_rndv_hdr_size; 357 /* Max number of entries in tag matching list */ 358 u32 max_num_tags; 359 /* From enum ib_tm_cap_flags */ 360 u32 flags; 361 /* Max number of outstanding list operations */ 362 u32 max_ops; 363 /* Max number of SGE in tag matching entry */ 364 u32 max_sge; 365 }; 366 367 struct ib_cq_init_attr { 368 unsigned int cqe; 369 u32 comp_vector; 370 u32 flags; 371 }; 372 373 enum ib_cq_attr_mask { 374 IB_CQ_MODERATE = 1 << 0, 375 }; 376 377 struct ib_cq_caps { 378 u16 max_cq_moderation_count; 379 u16 max_cq_moderation_period; 380 }; 381 382 struct ib_dm_mr_attr { 383 u64 length; 384 u64 offset; 385 u32 access_flags; 386 }; 387 388 struct ib_dm_alloc_attr { 389 u64 length; 390 u32 alignment; 391 u32 flags; 392 }; 393 394 struct ib_device_attr { 395 u64 fw_ver; 396 __be64 sys_image_guid; 397 u64 max_mr_size; 398 u64 page_size_cap; 399 u32 vendor_id; 400 u32 vendor_part_id; 401 u32 hw_ver; 402 int max_qp; 403 int max_qp_wr; 404 u64 device_cap_flags; 405 u64 kernel_cap_flags; 406 int max_send_sge; 407 int max_recv_sge; 408 int max_sge_rd; 409 int max_cq; 410 int max_cqe; 411 int max_mr; 412 int max_pd; 413 int max_qp_rd_atom; 414 int max_ee_rd_atom; 415 int max_res_rd_atom; 416 int max_qp_init_rd_atom; 417 int max_ee_init_rd_atom; 418 enum ib_atomic_cap atomic_cap; 419 enum ib_atomic_cap masked_atomic_cap; 420 int max_ee; 421 int max_rdd; 422 int max_mw; 423 int max_raw_ipv6_qp; 424 int max_raw_ethy_qp; 425 int max_mcast_grp; 426 int max_mcast_qp_attach; 427 int max_total_mcast_qp_attach; 428 int max_ah; 429 int max_srq; 430 int max_srq_wr; 431 int max_srq_sge; 432 unsigned int max_fast_reg_page_list_len; 433 unsigned int max_pi_fast_reg_page_list_len; 434 u16 max_pkeys; 435 u8 local_ca_ack_delay; 436 int sig_prot_cap; 437 int sig_guard_cap; 438 struct ib_odp_caps odp_caps; 439 uint64_t timestamp_mask; 440 uint64_t hca_core_clock; /* in KHZ */ 441 struct ib_rss_caps rss_caps; 442 u32 max_wq_type_rq; 443 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 444 struct ib_tm_caps tm_caps; 445 struct ib_cq_caps cq_caps; 446 u64 max_dm_size; 447 /* Max entries for sgl for optimized performance per READ */ 448 u32 max_sgl_rd; 449 }; 450 451 enum ib_mtu { 452 IB_MTU_256 = 1, 453 IB_MTU_512 = 2, 454 IB_MTU_1024 = 3, 455 IB_MTU_2048 = 4, 456 IB_MTU_4096 = 5 457 }; 458 459 enum opa_mtu { 460 OPA_MTU_8192 = 6, 461 OPA_MTU_10240 = 7 462 }; 463 464 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 465 { 466 switch (mtu) { 467 case IB_MTU_256: return 256; 468 case IB_MTU_512: return 512; 469 case IB_MTU_1024: return 1024; 470 case IB_MTU_2048: return 2048; 471 case IB_MTU_4096: return 4096; 472 default: return -1; 473 } 474 } 475 476 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 477 { 478 if (mtu >= 4096) 479 return IB_MTU_4096; 480 else if (mtu >= 2048) 481 return IB_MTU_2048; 482 else if (mtu >= 1024) 483 return IB_MTU_1024; 484 else if (mtu >= 512) 485 return IB_MTU_512; 486 else 487 return IB_MTU_256; 488 } 489 490 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 491 { 492 switch (mtu) { 493 case OPA_MTU_8192: 494 return 8192; 495 case OPA_MTU_10240: 496 return 10240; 497 default: 498 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 499 } 500 } 501 502 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 503 { 504 if (mtu >= 10240) 505 return OPA_MTU_10240; 506 else if (mtu >= 8192) 507 return OPA_MTU_8192; 508 else 509 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 510 } 511 512 enum ib_port_state { 513 IB_PORT_NOP = 0, 514 IB_PORT_DOWN = 1, 515 IB_PORT_INIT = 2, 516 IB_PORT_ARMED = 3, 517 IB_PORT_ACTIVE = 4, 518 IB_PORT_ACTIVE_DEFER = 5 519 }; 520 521 enum ib_port_phys_state { 522 IB_PORT_PHYS_STATE_SLEEP = 1, 523 IB_PORT_PHYS_STATE_POLLING = 2, 524 IB_PORT_PHYS_STATE_DISABLED = 3, 525 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 526 IB_PORT_PHYS_STATE_LINK_UP = 5, 527 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 528 IB_PORT_PHYS_STATE_PHY_TEST = 7, 529 }; 530 531 enum ib_port_width { 532 IB_WIDTH_1X = 1, 533 IB_WIDTH_2X = 16, 534 IB_WIDTH_4X = 2, 535 IB_WIDTH_8X = 4, 536 IB_WIDTH_12X = 8 537 }; 538 539 static inline int ib_width_enum_to_int(enum ib_port_width width) 540 { 541 switch (width) { 542 case IB_WIDTH_1X: return 1; 543 case IB_WIDTH_2X: return 2; 544 case IB_WIDTH_4X: return 4; 545 case IB_WIDTH_8X: return 8; 546 case IB_WIDTH_12X: return 12; 547 default: return -1; 548 } 549 } 550 551 enum ib_port_speed { 552 IB_SPEED_SDR = 1, 553 IB_SPEED_DDR = 2, 554 IB_SPEED_QDR = 4, 555 IB_SPEED_FDR10 = 8, 556 IB_SPEED_FDR = 16, 557 IB_SPEED_EDR = 32, 558 IB_SPEED_HDR = 64, 559 IB_SPEED_NDR = 128, 560 }; 561 562 enum ib_stat_flag { 563 IB_STAT_FLAG_OPTIONAL = 1 << 0, 564 }; 565 566 /** 567 * struct rdma_stat_desc 568 * @name - The name of the counter 569 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 570 * @priv - Driver private information; Core code should not use 571 */ 572 struct rdma_stat_desc { 573 const char *name; 574 unsigned int flags; 575 const void *priv; 576 }; 577 578 /** 579 * struct rdma_hw_stats 580 * @lock - Mutex to protect parallel write access to lifespan and values 581 * of counters, which are 64bits and not guaranteed to be written 582 * atomicaly on 32bits systems. 583 * @timestamp - Used by the core code to track when the last update was 584 * @lifespan - Used by the core code to determine how old the counters 585 * should be before being updated again. Stored in jiffies, defaults 586 * to 10 milliseconds, drivers can override the default be specifying 587 * their own value during their allocation routine. 588 * @descs - Array of pointers to static descriptors used for the counters 589 * in directory. 590 * @is_disabled - A bitmap to indicate each counter is currently disabled 591 * or not. 592 * @num_counters - How many hardware counters there are. If name is 593 * shorter than this number, a kernel oops will result. Driver authors 594 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 595 * in their code to prevent this. 596 * @value - Array of u64 counters that are accessed by the sysfs code and 597 * filled in by the drivers get_stats routine 598 */ 599 struct rdma_hw_stats { 600 struct mutex lock; /* Protect lifespan and values[] */ 601 unsigned long timestamp; 602 unsigned long lifespan; 603 const struct rdma_stat_desc *descs; 604 unsigned long *is_disabled; 605 int num_counters; 606 u64 value[]; 607 }; 608 609 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 610 611 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 612 const struct rdma_stat_desc *descs, int num_counters, 613 unsigned long lifespan); 614 615 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 616 617 /* Define bits for the various functionality this port needs to be supported by 618 * the core. 619 */ 620 /* Management 0x00000FFF */ 621 #define RDMA_CORE_CAP_IB_MAD 0x00000001 622 #define RDMA_CORE_CAP_IB_SMI 0x00000002 623 #define RDMA_CORE_CAP_IB_CM 0x00000004 624 #define RDMA_CORE_CAP_IW_CM 0x00000008 625 #define RDMA_CORE_CAP_IB_SA 0x00000010 626 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 627 628 /* Address format 0x000FF000 */ 629 #define RDMA_CORE_CAP_AF_IB 0x00001000 630 #define RDMA_CORE_CAP_ETH_AH 0x00002000 631 #define RDMA_CORE_CAP_OPA_AH 0x00004000 632 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 633 634 /* Protocol 0xFFF00000 */ 635 #define RDMA_CORE_CAP_PROT_IB 0x00100000 636 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 637 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 638 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 639 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 640 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 641 642 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 643 | RDMA_CORE_CAP_PROT_ROCE \ 644 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 645 646 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 647 | RDMA_CORE_CAP_IB_MAD \ 648 | RDMA_CORE_CAP_IB_SMI \ 649 | RDMA_CORE_CAP_IB_CM \ 650 | RDMA_CORE_CAP_IB_SA \ 651 | RDMA_CORE_CAP_AF_IB) 652 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 653 | RDMA_CORE_CAP_IB_MAD \ 654 | RDMA_CORE_CAP_IB_CM \ 655 | RDMA_CORE_CAP_AF_IB \ 656 | RDMA_CORE_CAP_ETH_AH) 657 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 658 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 659 | RDMA_CORE_CAP_IB_MAD \ 660 | RDMA_CORE_CAP_IB_CM \ 661 | RDMA_CORE_CAP_AF_IB \ 662 | RDMA_CORE_CAP_ETH_AH) 663 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 664 | RDMA_CORE_CAP_IW_CM) 665 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 666 | RDMA_CORE_CAP_OPA_MAD) 667 668 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 669 670 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 671 672 struct ib_port_attr { 673 u64 subnet_prefix; 674 enum ib_port_state state; 675 enum ib_mtu max_mtu; 676 enum ib_mtu active_mtu; 677 u32 phys_mtu; 678 int gid_tbl_len; 679 unsigned int ip_gids:1; 680 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 681 u32 port_cap_flags; 682 u32 max_msg_sz; 683 u32 bad_pkey_cntr; 684 u32 qkey_viol_cntr; 685 u16 pkey_tbl_len; 686 u32 sm_lid; 687 u32 lid; 688 u8 lmc; 689 u8 max_vl_num; 690 u8 sm_sl; 691 u8 subnet_timeout; 692 u8 init_type_reply; 693 u8 active_width; 694 u16 active_speed; 695 u8 phys_state; 696 u16 port_cap_flags2; 697 }; 698 699 enum ib_device_modify_flags { 700 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 701 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 702 }; 703 704 #define IB_DEVICE_NODE_DESC_MAX 64 705 706 struct ib_device_modify { 707 u64 sys_image_guid; 708 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 709 }; 710 711 enum ib_port_modify_flags { 712 IB_PORT_SHUTDOWN = 1, 713 IB_PORT_INIT_TYPE = (1<<2), 714 IB_PORT_RESET_QKEY_CNTR = (1<<3), 715 IB_PORT_OPA_MASK_CHG = (1<<4) 716 }; 717 718 struct ib_port_modify { 719 u32 set_port_cap_mask; 720 u32 clr_port_cap_mask; 721 u8 init_type; 722 }; 723 724 enum ib_event_type { 725 IB_EVENT_CQ_ERR, 726 IB_EVENT_QP_FATAL, 727 IB_EVENT_QP_REQ_ERR, 728 IB_EVENT_QP_ACCESS_ERR, 729 IB_EVENT_COMM_EST, 730 IB_EVENT_SQ_DRAINED, 731 IB_EVENT_PATH_MIG, 732 IB_EVENT_PATH_MIG_ERR, 733 IB_EVENT_DEVICE_FATAL, 734 IB_EVENT_PORT_ACTIVE, 735 IB_EVENT_PORT_ERR, 736 IB_EVENT_LID_CHANGE, 737 IB_EVENT_PKEY_CHANGE, 738 IB_EVENT_SM_CHANGE, 739 IB_EVENT_SRQ_ERR, 740 IB_EVENT_SRQ_LIMIT_REACHED, 741 IB_EVENT_QP_LAST_WQE_REACHED, 742 IB_EVENT_CLIENT_REREGISTER, 743 IB_EVENT_GID_CHANGE, 744 IB_EVENT_WQ_FATAL, 745 }; 746 747 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 748 749 struct ib_event { 750 struct ib_device *device; 751 union { 752 struct ib_cq *cq; 753 struct ib_qp *qp; 754 struct ib_srq *srq; 755 struct ib_wq *wq; 756 u32 port_num; 757 } element; 758 enum ib_event_type event; 759 }; 760 761 struct ib_event_handler { 762 struct ib_device *device; 763 void (*handler)(struct ib_event_handler *, struct ib_event *); 764 struct list_head list; 765 }; 766 767 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 768 do { \ 769 (_ptr)->device = _device; \ 770 (_ptr)->handler = _handler; \ 771 INIT_LIST_HEAD(&(_ptr)->list); \ 772 } while (0) 773 774 struct ib_global_route { 775 const struct ib_gid_attr *sgid_attr; 776 union ib_gid dgid; 777 u32 flow_label; 778 u8 sgid_index; 779 u8 hop_limit; 780 u8 traffic_class; 781 }; 782 783 struct ib_grh { 784 __be32 version_tclass_flow; 785 __be16 paylen; 786 u8 next_hdr; 787 u8 hop_limit; 788 union ib_gid sgid; 789 union ib_gid dgid; 790 }; 791 792 union rdma_network_hdr { 793 struct ib_grh ibgrh; 794 struct { 795 /* The IB spec states that if it's IPv4, the header 796 * is located in the last 20 bytes of the header. 797 */ 798 u8 reserved[20]; 799 struct iphdr roce4grh; 800 }; 801 }; 802 803 #define IB_QPN_MASK 0xFFFFFF 804 805 enum { 806 IB_MULTICAST_QPN = 0xffffff 807 }; 808 809 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 810 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 811 812 enum ib_ah_flags { 813 IB_AH_GRH = 1 814 }; 815 816 enum ib_rate { 817 IB_RATE_PORT_CURRENT = 0, 818 IB_RATE_2_5_GBPS = 2, 819 IB_RATE_5_GBPS = 5, 820 IB_RATE_10_GBPS = 3, 821 IB_RATE_20_GBPS = 6, 822 IB_RATE_30_GBPS = 4, 823 IB_RATE_40_GBPS = 7, 824 IB_RATE_60_GBPS = 8, 825 IB_RATE_80_GBPS = 9, 826 IB_RATE_120_GBPS = 10, 827 IB_RATE_14_GBPS = 11, 828 IB_RATE_56_GBPS = 12, 829 IB_RATE_112_GBPS = 13, 830 IB_RATE_168_GBPS = 14, 831 IB_RATE_25_GBPS = 15, 832 IB_RATE_100_GBPS = 16, 833 IB_RATE_200_GBPS = 17, 834 IB_RATE_300_GBPS = 18, 835 IB_RATE_28_GBPS = 19, 836 IB_RATE_50_GBPS = 20, 837 IB_RATE_400_GBPS = 21, 838 IB_RATE_600_GBPS = 22, 839 }; 840 841 /** 842 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 843 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 844 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 845 * @rate: rate to convert. 846 */ 847 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 848 849 /** 850 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 851 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 852 * @rate: rate to convert. 853 */ 854 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 855 856 857 /** 858 * enum ib_mr_type - memory region type 859 * @IB_MR_TYPE_MEM_REG: memory region that is used for 860 * normal registration 861 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 862 * register any arbitrary sg lists (without 863 * the normal mr constraints - see 864 * ib_map_mr_sg) 865 * @IB_MR_TYPE_DM: memory region that is used for device 866 * memory registration 867 * @IB_MR_TYPE_USER: memory region that is used for the user-space 868 * application 869 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 870 * without address translations (VA=PA) 871 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 872 * data integrity operations 873 */ 874 enum ib_mr_type { 875 IB_MR_TYPE_MEM_REG, 876 IB_MR_TYPE_SG_GAPS, 877 IB_MR_TYPE_DM, 878 IB_MR_TYPE_USER, 879 IB_MR_TYPE_DMA, 880 IB_MR_TYPE_INTEGRITY, 881 }; 882 883 enum ib_mr_status_check { 884 IB_MR_CHECK_SIG_STATUS = 1, 885 }; 886 887 /** 888 * struct ib_mr_status - Memory region status container 889 * 890 * @fail_status: Bitmask of MR checks status. For each 891 * failed check a corresponding status bit is set. 892 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 893 * failure. 894 */ 895 struct ib_mr_status { 896 u32 fail_status; 897 struct ib_sig_err sig_err; 898 }; 899 900 /** 901 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 902 * enum. 903 * @mult: multiple to convert. 904 */ 905 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 906 907 struct rdma_ah_init_attr { 908 struct rdma_ah_attr *ah_attr; 909 u32 flags; 910 struct net_device *xmit_slave; 911 }; 912 913 enum rdma_ah_attr_type { 914 RDMA_AH_ATTR_TYPE_UNDEFINED, 915 RDMA_AH_ATTR_TYPE_IB, 916 RDMA_AH_ATTR_TYPE_ROCE, 917 RDMA_AH_ATTR_TYPE_OPA, 918 }; 919 920 struct ib_ah_attr { 921 u16 dlid; 922 u8 src_path_bits; 923 }; 924 925 struct roce_ah_attr { 926 u8 dmac[ETH_ALEN]; 927 }; 928 929 struct opa_ah_attr { 930 u32 dlid; 931 u8 src_path_bits; 932 bool make_grd; 933 }; 934 935 struct rdma_ah_attr { 936 struct ib_global_route grh; 937 u8 sl; 938 u8 static_rate; 939 u32 port_num; 940 u8 ah_flags; 941 enum rdma_ah_attr_type type; 942 union { 943 struct ib_ah_attr ib; 944 struct roce_ah_attr roce; 945 struct opa_ah_attr opa; 946 }; 947 }; 948 949 enum ib_wc_status { 950 IB_WC_SUCCESS, 951 IB_WC_LOC_LEN_ERR, 952 IB_WC_LOC_QP_OP_ERR, 953 IB_WC_LOC_EEC_OP_ERR, 954 IB_WC_LOC_PROT_ERR, 955 IB_WC_WR_FLUSH_ERR, 956 IB_WC_MW_BIND_ERR, 957 IB_WC_BAD_RESP_ERR, 958 IB_WC_LOC_ACCESS_ERR, 959 IB_WC_REM_INV_REQ_ERR, 960 IB_WC_REM_ACCESS_ERR, 961 IB_WC_REM_OP_ERR, 962 IB_WC_RETRY_EXC_ERR, 963 IB_WC_RNR_RETRY_EXC_ERR, 964 IB_WC_LOC_RDD_VIOL_ERR, 965 IB_WC_REM_INV_RD_REQ_ERR, 966 IB_WC_REM_ABORT_ERR, 967 IB_WC_INV_EECN_ERR, 968 IB_WC_INV_EEC_STATE_ERR, 969 IB_WC_FATAL_ERR, 970 IB_WC_RESP_TIMEOUT_ERR, 971 IB_WC_GENERAL_ERR 972 }; 973 974 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 975 976 enum ib_wc_opcode { 977 IB_WC_SEND = IB_UVERBS_WC_SEND, 978 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 979 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 980 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 981 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 982 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 983 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 984 IB_WC_LSO = IB_UVERBS_WC_TSO, 985 IB_WC_REG_MR, 986 IB_WC_MASKED_COMP_SWAP, 987 IB_WC_MASKED_FETCH_ADD, 988 /* 989 * Set value of IB_WC_RECV so consumers can test if a completion is a 990 * receive by testing (opcode & IB_WC_RECV). 991 */ 992 IB_WC_RECV = 1 << 7, 993 IB_WC_RECV_RDMA_WITH_IMM 994 }; 995 996 enum ib_wc_flags { 997 IB_WC_GRH = 1, 998 IB_WC_WITH_IMM = (1<<1), 999 IB_WC_WITH_INVALIDATE = (1<<2), 1000 IB_WC_IP_CSUM_OK = (1<<3), 1001 IB_WC_WITH_SMAC = (1<<4), 1002 IB_WC_WITH_VLAN = (1<<5), 1003 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1004 }; 1005 1006 struct ib_wc { 1007 union { 1008 u64 wr_id; 1009 struct ib_cqe *wr_cqe; 1010 }; 1011 enum ib_wc_status status; 1012 enum ib_wc_opcode opcode; 1013 u32 vendor_err; 1014 u32 byte_len; 1015 struct ib_qp *qp; 1016 union { 1017 __be32 imm_data; 1018 u32 invalidate_rkey; 1019 } ex; 1020 u32 src_qp; 1021 u32 slid; 1022 int wc_flags; 1023 u16 pkey_index; 1024 u8 sl; 1025 u8 dlid_path_bits; 1026 u32 port_num; /* valid only for DR SMPs on switches */ 1027 u8 smac[ETH_ALEN]; 1028 u16 vlan_id; 1029 u8 network_hdr_type; 1030 }; 1031 1032 enum ib_cq_notify_flags { 1033 IB_CQ_SOLICITED = 1 << 0, 1034 IB_CQ_NEXT_COMP = 1 << 1, 1035 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1036 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1037 }; 1038 1039 enum ib_srq_type { 1040 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1041 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1042 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1043 }; 1044 1045 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1046 { 1047 return srq_type == IB_SRQT_XRC || 1048 srq_type == IB_SRQT_TM; 1049 } 1050 1051 enum ib_srq_attr_mask { 1052 IB_SRQ_MAX_WR = 1 << 0, 1053 IB_SRQ_LIMIT = 1 << 1, 1054 }; 1055 1056 struct ib_srq_attr { 1057 u32 max_wr; 1058 u32 max_sge; 1059 u32 srq_limit; 1060 }; 1061 1062 struct ib_srq_init_attr { 1063 void (*event_handler)(struct ib_event *, void *); 1064 void *srq_context; 1065 struct ib_srq_attr attr; 1066 enum ib_srq_type srq_type; 1067 1068 struct { 1069 struct ib_cq *cq; 1070 union { 1071 struct { 1072 struct ib_xrcd *xrcd; 1073 } xrc; 1074 1075 struct { 1076 u32 max_num_tags; 1077 } tag_matching; 1078 }; 1079 } ext; 1080 }; 1081 1082 struct ib_qp_cap { 1083 u32 max_send_wr; 1084 u32 max_recv_wr; 1085 u32 max_send_sge; 1086 u32 max_recv_sge; 1087 u32 max_inline_data; 1088 1089 /* 1090 * Maximum number of rdma_rw_ctx structures in flight at a time. 1091 * ib_create_qp() will calculate the right amount of neededed WRs 1092 * and MRs based on this. 1093 */ 1094 u32 max_rdma_ctxs; 1095 }; 1096 1097 enum ib_sig_type { 1098 IB_SIGNAL_ALL_WR, 1099 IB_SIGNAL_REQ_WR 1100 }; 1101 1102 enum ib_qp_type { 1103 /* 1104 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1105 * here (and in that order) since the MAD layer uses them as 1106 * indices into a 2-entry table. 1107 */ 1108 IB_QPT_SMI, 1109 IB_QPT_GSI, 1110 1111 IB_QPT_RC = IB_UVERBS_QPT_RC, 1112 IB_QPT_UC = IB_UVERBS_QPT_UC, 1113 IB_QPT_UD = IB_UVERBS_QPT_UD, 1114 IB_QPT_RAW_IPV6, 1115 IB_QPT_RAW_ETHERTYPE, 1116 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1117 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1118 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1119 IB_QPT_MAX, 1120 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1121 /* Reserve a range for qp types internal to the low level driver. 1122 * These qp types will not be visible at the IB core layer, so the 1123 * IB_QPT_MAX usages should not be affected in the core layer 1124 */ 1125 IB_QPT_RESERVED1 = 0x1000, 1126 IB_QPT_RESERVED2, 1127 IB_QPT_RESERVED3, 1128 IB_QPT_RESERVED4, 1129 IB_QPT_RESERVED5, 1130 IB_QPT_RESERVED6, 1131 IB_QPT_RESERVED7, 1132 IB_QPT_RESERVED8, 1133 IB_QPT_RESERVED9, 1134 IB_QPT_RESERVED10, 1135 }; 1136 1137 enum ib_qp_create_flags { 1138 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1139 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1140 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1141 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1142 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1143 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1144 IB_QP_CREATE_NETIF_QP = 1 << 5, 1145 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1146 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1147 IB_QP_CREATE_SCATTER_FCS = 1148 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1149 IB_QP_CREATE_CVLAN_STRIPPING = 1150 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1151 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1152 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1153 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1154 /* reserve bits 26-31 for low level drivers' internal use */ 1155 IB_QP_CREATE_RESERVED_START = 1 << 26, 1156 IB_QP_CREATE_RESERVED_END = 1 << 31, 1157 }; 1158 1159 /* 1160 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1161 * callback to destroy the passed in QP. 1162 */ 1163 1164 struct ib_qp_init_attr { 1165 /* Consumer's event_handler callback must not block */ 1166 void (*event_handler)(struct ib_event *, void *); 1167 1168 void *qp_context; 1169 struct ib_cq *send_cq; 1170 struct ib_cq *recv_cq; 1171 struct ib_srq *srq; 1172 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1173 struct ib_qp_cap cap; 1174 enum ib_sig_type sq_sig_type; 1175 enum ib_qp_type qp_type; 1176 u32 create_flags; 1177 1178 /* 1179 * Only needed for special QP types, or when using the RW API. 1180 */ 1181 u32 port_num; 1182 struct ib_rwq_ind_table *rwq_ind_tbl; 1183 u32 source_qpn; 1184 }; 1185 1186 struct ib_qp_open_attr { 1187 void (*event_handler)(struct ib_event *, void *); 1188 void *qp_context; 1189 u32 qp_num; 1190 enum ib_qp_type qp_type; 1191 }; 1192 1193 enum ib_rnr_timeout { 1194 IB_RNR_TIMER_655_36 = 0, 1195 IB_RNR_TIMER_000_01 = 1, 1196 IB_RNR_TIMER_000_02 = 2, 1197 IB_RNR_TIMER_000_03 = 3, 1198 IB_RNR_TIMER_000_04 = 4, 1199 IB_RNR_TIMER_000_06 = 5, 1200 IB_RNR_TIMER_000_08 = 6, 1201 IB_RNR_TIMER_000_12 = 7, 1202 IB_RNR_TIMER_000_16 = 8, 1203 IB_RNR_TIMER_000_24 = 9, 1204 IB_RNR_TIMER_000_32 = 10, 1205 IB_RNR_TIMER_000_48 = 11, 1206 IB_RNR_TIMER_000_64 = 12, 1207 IB_RNR_TIMER_000_96 = 13, 1208 IB_RNR_TIMER_001_28 = 14, 1209 IB_RNR_TIMER_001_92 = 15, 1210 IB_RNR_TIMER_002_56 = 16, 1211 IB_RNR_TIMER_003_84 = 17, 1212 IB_RNR_TIMER_005_12 = 18, 1213 IB_RNR_TIMER_007_68 = 19, 1214 IB_RNR_TIMER_010_24 = 20, 1215 IB_RNR_TIMER_015_36 = 21, 1216 IB_RNR_TIMER_020_48 = 22, 1217 IB_RNR_TIMER_030_72 = 23, 1218 IB_RNR_TIMER_040_96 = 24, 1219 IB_RNR_TIMER_061_44 = 25, 1220 IB_RNR_TIMER_081_92 = 26, 1221 IB_RNR_TIMER_122_88 = 27, 1222 IB_RNR_TIMER_163_84 = 28, 1223 IB_RNR_TIMER_245_76 = 29, 1224 IB_RNR_TIMER_327_68 = 30, 1225 IB_RNR_TIMER_491_52 = 31 1226 }; 1227 1228 enum ib_qp_attr_mask { 1229 IB_QP_STATE = 1, 1230 IB_QP_CUR_STATE = (1<<1), 1231 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1232 IB_QP_ACCESS_FLAGS = (1<<3), 1233 IB_QP_PKEY_INDEX = (1<<4), 1234 IB_QP_PORT = (1<<5), 1235 IB_QP_QKEY = (1<<6), 1236 IB_QP_AV = (1<<7), 1237 IB_QP_PATH_MTU = (1<<8), 1238 IB_QP_TIMEOUT = (1<<9), 1239 IB_QP_RETRY_CNT = (1<<10), 1240 IB_QP_RNR_RETRY = (1<<11), 1241 IB_QP_RQ_PSN = (1<<12), 1242 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1243 IB_QP_ALT_PATH = (1<<14), 1244 IB_QP_MIN_RNR_TIMER = (1<<15), 1245 IB_QP_SQ_PSN = (1<<16), 1246 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1247 IB_QP_PATH_MIG_STATE = (1<<18), 1248 IB_QP_CAP = (1<<19), 1249 IB_QP_DEST_QPN = (1<<20), 1250 IB_QP_RESERVED1 = (1<<21), 1251 IB_QP_RESERVED2 = (1<<22), 1252 IB_QP_RESERVED3 = (1<<23), 1253 IB_QP_RESERVED4 = (1<<24), 1254 IB_QP_RATE_LIMIT = (1<<25), 1255 1256 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1257 }; 1258 1259 enum ib_qp_state { 1260 IB_QPS_RESET, 1261 IB_QPS_INIT, 1262 IB_QPS_RTR, 1263 IB_QPS_RTS, 1264 IB_QPS_SQD, 1265 IB_QPS_SQE, 1266 IB_QPS_ERR 1267 }; 1268 1269 enum ib_mig_state { 1270 IB_MIG_MIGRATED, 1271 IB_MIG_REARM, 1272 IB_MIG_ARMED 1273 }; 1274 1275 enum ib_mw_type { 1276 IB_MW_TYPE_1 = 1, 1277 IB_MW_TYPE_2 = 2 1278 }; 1279 1280 struct ib_qp_attr { 1281 enum ib_qp_state qp_state; 1282 enum ib_qp_state cur_qp_state; 1283 enum ib_mtu path_mtu; 1284 enum ib_mig_state path_mig_state; 1285 u32 qkey; 1286 u32 rq_psn; 1287 u32 sq_psn; 1288 u32 dest_qp_num; 1289 int qp_access_flags; 1290 struct ib_qp_cap cap; 1291 struct rdma_ah_attr ah_attr; 1292 struct rdma_ah_attr alt_ah_attr; 1293 u16 pkey_index; 1294 u16 alt_pkey_index; 1295 u8 en_sqd_async_notify; 1296 u8 sq_draining; 1297 u8 max_rd_atomic; 1298 u8 max_dest_rd_atomic; 1299 u8 min_rnr_timer; 1300 u32 port_num; 1301 u8 timeout; 1302 u8 retry_cnt; 1303 u8 rnr_retry; 1304 u32 alt_port_num; 1305 u8 alt_timeout; 1306 u32 rate_limit; 1307 struct net_device *xmit_slave; 1308 }; 1309 1310 enum ib_wr_opcode { 1311 /* These are shared with userspace */ 1312 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1313 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1314 IB_WR_SEND = IB_UVERBS_WR_SEND, 1315 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1316 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1317 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1318 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1319 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1320 IB_WR_LSO = IB_UVERBS_WR_TSO, 1321 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1322 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1323 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1324 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1325 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1326 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1327 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1328 1329 /* These are kernel only and can not be issued by userspace */ 1330 IB_WR_REG_MR = 0x20, 1331 IB_WR_REG_MR_INTEGRITY, 1332 1333 /* reserve values for low level drivers' internal use. 1334 * These values will not be used at all in the ib core layer. 1335 */ 1336 IB_WR_RESERVED1 = 0xf0, 1337 IB_WR_RESERVED2, 1338 IB_WR_RESERVED3, 1339 IB_WR_RESERVED4, 1340 IB_WR_RESERVED5, 1341 IB_WR_RESERVED6, 1342 IB_WR_RESERVED7, 1343 IB_WR_RESERVED8, 1344 IB_WR_RESERVED9, 1345 IB_WR_RESERVED10, 1346 }; 1347 1348 enum ib_send_flags { 1349 IB_SEND_FENCE = 1, 1350 IB_SEND_SIGNALED = (1<<1), 1351 IB_SEND_SOLICITED = (1<<2), 1352 IB_SEND_INLINE = (1<<3), 1353 IB_SEND_IP_CSUM = (1<<4), 1354 1355 /* reserve bits 26-31 for low level drivers' internal use */ 1356 IB_SEND_RESERVED_START = (1 << 26), 1357 IB_SEND_RESERVED_END = (1 << 31), 1358 }; 1359 1360 struct ib_sge { 1361 u64 addr; 1362 u32 length; 1363 u32 lkey; 1364 }; 1365 1366 struct ib_cqe { 1367 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1368 }; 1369 1370 struct ib_send_wr { 1371 struct ib_send_wr *next; 1372 union { 1373 u64 wr_id; 1374 struct ib_cqe *wr_cqe; 1375 }; 1376 struct ib_sge *sg_list; 1377 int num_sge; 1378 enum ib_wr_opcode opcode; 1379 int send_flags; 1380 union { 1381 __be32 imm_data; 1382 u32 invalidate_rkey; 1383 } ex; 1384 }; 1385 1386 struct ib_rdma_wr { 1387 struct ib_send_wr wr; 1388 u64 remote_addr; 1389 u32 rkey; 1390 }; 1391 1392 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1393 { 1394 return container_of(wr, struct ib_rdma_wr, wr); 1395 } 1396 1397 struct ib_atomic_wr { 1398 struct ib_send_wr wr; 1399 u64 remote_addr; 1400 u64 compare_add; 1401 u64 swap; 1402 u64 compare_add_mask; 1403 u64 swap_mask; 1404 u32 rkey; 1405 }; 1406 1407 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1408 { 1409 return container_of(wr, struct ib_atomic_wr, wr); 1410 } 1411 1412 struct ib_ud_wr { 1413 struct ib_send_wr wr; 1414 struct ib_ah *ah; 1415 void *header; 1416 int hlen; 1417 int mss; 1418 u32 remote_qpn; 1419 u32 remote_qkey; 1420 u16 pkey_index; /* valid for GSI only */ 1421 u32 port_num; /* valid for DR SMPs on switch only */ 1422 }; 1423 1424 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1425 { 1426 return container_of(wr, struct ib_ud_wr, wr); 1427 } 1428 1429 struct ib_reg_wr { 1430 struct ib_send_wr wr; 1431 struct ib_mr *mr; 1432 u32 key; 1433 int access; 1434 }; 1435 1436 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1437 { 1438 return container_of(wr, struct ib_reg_wr, wr); 1439 } 1440 1441 struct ib_recv_wr { 1442 struct ib_recv_wr *next; 1443 union { 1444 u64 wr_id; 1445 struct ib_cqe *wr_cqe; 1446 }; 1447 struct ib_sge *sg_list; 1448 int num_sge; 1449 }; 1450 1451 enum ib_access_flags { 1452 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1453 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1454 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1455 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1456 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1457 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1458 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1459 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1460 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1461 1462 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1463 IB_ACCESS_SUPPORTED = 1464 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1465 }; 1466 1467 /* 1468 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1469 * are hidden here instead of a uapi header! 1470 */ 1471 enum ib_mr_rereg_flags { 1472 IB_MR_REREG_TRANS = 1, 1473 IB_MR_REREG_PD = (1<<1), 1474 IB_MR_REREG_ACCESS = (1<<2), 1475 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1476 }; 1477 1478 struct ib_umem; 1479 1480 enum rdma_remove_reason { 1481 /* 1482 * Userspace requested uobject deletion or initial try 1483 * to remove uobject via cleanup. Call could fail 1484 */ 1485 RDMA_REMOVE_DESTROY, 1486 /* Context deletion. This call should delete the actual object itself */ 1487 RDMA_REMOVE_CLOSE, 1488 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1489 RDMA_REMOVE_DRIVER_REMOVE, 1490 /* uobj is being cleaned-up before being committed */ 1491 RDMA_REMOVE_ABORT, 1492 /* The driver failed to destroy the uobject and is being disconnected */ 1493 RDMA_REMOVE_DRIVER_FAILURE, 1494 }; 1495 1496 struct ib_rdmacg_object { 1497 #ifdef CONFIG_CGROUP_RDMA 1498 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1499 #endif 1500 }; 1501 1502 struct ib_ucontext { 1503 struct ib_device *device; 1504 struct ib_uverbs_file *ufile; 1505 1506 struct ib_rdmacg_object cg_obj; 1507 /* 1508 * Implementation details of the RDMA core, don't use in drivers: 1509 */ 1510 struct rdma_restrack_entry res; 1511 struct xarray mmap_xa; 1512 }; 1513 1514 struct ib_uobject { 1515 u64 user_handle; /* handle given to us by userspace */ 1516 /* ufile & ucontext owning this object */ 1517 struct ib_uverbs_file *ufile; 1518 /* FIXME, save memory: ufile->context == context */ 1519 struct ib_ucontext *context; /* associated user context */ 1520 void *object; /* containing object */ 1521 struct list_head list; /* link to context's list */ 1522 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1523 int id; /* index into kernel idr */ 1524 struct kref ref; 1525 atomic_t usecnt; /* protects exclusive access */ 1526 struct rcu_head rcu; /* kfree_rcu() overhead */ 1527 1528 const struct uverbs_api_object *uapi_object; 1529 }; 1530 1531 struct ib_udata { 1532 const void __user *inbuf; 1533 void __user *outbuf; 1534 size_t inlen; 1535 size_t outlen; 1536 }; 1537 1538 struct ib_pd { 1539 u32 local_dma_lkey; 1540 u32 flags; 1541 struct ib_device *device; 1542 struct ib_uobject *uobject; 1543 atomic_t usecnt; /* count all resources */ 1544 1545 u32 unsafe_global_rkey; 1546 1547 /* 1548 * Implementation details of the RDMA core, don't use in drivers: 1549 */ 1550 struct ib_mr *__internal_mr; 1551 struct rdma_restrack_entry res; 1552 }; 1553 1554 struct ib_xrcd { 1555 struct ib_device *device; 1556 atomic_t usecnt; /* count all exposed resources */ 1557 struct inode *inode; 1558 struct rw_semaphore tgt_qps_rwsem; 1559 struct xarray tgt_qps; 1560 }; 1561 1562 struct ib_ah { 1563 struct ib_device *device; 1564 struct ib_pd *pd; 1565 struct ib_uobject *uobject; 1566 const struct ib_gid_attr *sgid_attr; 1567 enum rdma_ah_attr_type type; 1568 }; 1569 1570 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1571 1572 enum ib_poll_context { 1573 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1574 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1575 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1576 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1577 1578 IB_POLL_DIRECT, /* caller context, no hw completions */ 1579 }; 1580 1581 struct ib_cq { 1582 struct ib_device *device; 1583 struct ib_ucq_object *uobject; 1584 ib_comp_handler comp_handler; 1585 void (*event_handler)(struct ib_event *, void *); 1586 void *cq_context; 1587 int cqe; 1588 unsigned int cqe_used; 1589 atomic_t usecnt; /* count number of work queues */ 1590 enum ib_poll_context poll_ctx; 1591 struct ib_wc *wc; 1592 struct list_head pool_entry; 1593 union { 1594 struct irq_poll iop; 1595 struct work_struct work; 1596 }; 1597 struct workqueue_struct *comp_wq; 1598 struct dim *dim; 1599 1600 /* updated only by trace points */ 1601 ktime_t timestamp; 1602 u8 interrupt:1; 1603 u8 shared:1; 1604 unsigned int comp_vector; 1605 1606 /* 1607 * Implementation details of the RDMA core, don't use in drivers: 1608 */ 1609 struct rdma_restrack_entry res; 1610 }; 1611 1612 struct ib_srq { 1613 struct ib_device *device; 1614 struct ib_pd *pd; 1615 struct ib_usrq_object *uobject; 1616 void (*event_handler)(struct ib_event *, void *); 1617 void *srq_context; 1618 enum ib_srq_type srq_type; 1619 atomic_t usecnt; 1620 1621 struct { 1622 struct ib_cq *cq; 1623 union { 1624 struct { 1625 struct ib_xrcd *xrcd; 1626 u32 srq_num; 1627 } xrc; 1628 }; 1629 } ext; 1630 1631 /* 1632 * Implementation details of the RDMA core, don't use in drivers: 1633 */ 1634 struct rdma_restrack_entry res; 1635 }; 1636 1637 enum ib_raw_packet_caps { 1638 /* 1639 * Strip cvlan from incoming packet and report it in the matching work 1640 * completion is supported. 1641 */ 1642 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1643 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1644 /* 1645 * Scatter FCS field of an incoming packet to host memory is supported. 1646 */ 1647 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1648 /* Checksum offloads are supported (for both send and receive). */ 1649 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1650 /* 1651 * When a packet is received for an RQ with no receive WQEs, the 1652 * packet processing is delayed. 1653 */ 1654 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1655 }; 1656 1657 enum ib_wq_type { 1658 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1659 }; 1660 1661 enum ib_wq_state { 1662 IB_WQS_RESET, 1663 IB_WQS_RDY, 1664 IB_WQS_ERR 1665 }; 1666 1667 struct ib_wq { 1668 struct ib_device *device; 1669 struct ib_uwq_object *uobject; 1670 void *wq_context; 1671 void (*event_handler)(struct ib_event *, void *); 1672 struct ib_pd *pd; 1673 struct ib_cq *cq; 1674 u32 wq_num; 1675 enum ib_wq_state state; 1676 enum ib_wq_type wq_type; 1677 atomic_t usecnt; 1678 }; 1679 1680 enum ib_wq_flags { 1681 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1682 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1683 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1684 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1685 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1686 }; 1687 1688 struct ib_wq_init_attr { 1689 void *wq_context; 1690 enum ib_wq_type wq_type; 1691 u32 max_wr; 1692 u32 max_sge; 1693 struct ib_cq *cq; 1694 void (*event_handler)(struct ib_event *, void *); 1695 u32 create_flags; /* Use enum ib_wq_flags */ 1696 }; 1697 1698 enum ib_wq_attr_mask { 1699 IB_WQ_STATE = 1 << 0, 1700 IB_WQ_CUR_STATE = 1 << 1, 1701 IB_WQ_FLAGS = 1 << 2, 1702 }; 1703 1704 struct ib_wq_attr { 1705 enum ib_wq_state wq_state; 1706 enum ib_wq_state curr_wq_state; 1707 u32 flags; /* Use enum ib_wq_flags */ 1708 u32 flags_mask; /* Use enum ib_wq_flags */ 1709 }; 1710 1711 struct ib_rwq_ind_table { 1712 struct ib_device *device; 1713 struct ib_uobject *uobject; 1714 atomic_t usecnt; 1715 u32 ind_tbl_num; 1716 u32 log_ind_tbl_size; 1717 struct ib_wq **ind_tbl; 1718 }; 1719 1720 struct ib_rwq_ind_table_init_attr { 1721 u32 log_ind_tbl_size; 1722 /* Each entry is a pointer to Receive Work Queue */ 1723 struct ib_wq **ind_tbl; 1724 }; 1725 1726 enum port_pkey_state { 1727 IB_PORT_PKEY_NOT_VALID = 0, 1728 IB_PORT_PKEY_VALID = 1, 1729 IB_PORT_PKEY_LISTED = 2, 1730 }; 1731 1732 struct ib_qp_security; 1733 1734 struct ib_port_pkey { 1735 enum port_pkey_state state; 1736 u16 pkey_index; 1737 u32 port_num; 1738 struct list_head qp_list; 1739 struct list_head to_error_list; 1740 struct ib_qp_security *sec; 1741 }; 1742 1743 struct ib_ports_pkeys { 1744 struct ib_port_pkey main; 1745 struct ib_port_pkey alt; 1746 }; 1747 1748 struct ib_qp_security { 1749 struct ib_qp *qp; 1750 struct ib_device *dev; 1751 /* Hold this mutex when changing port and pkey settings. */ 1752 struct mutex mutex; 1753 struct ib_ports_pkeys *ports_pkeys; 1754 /* A list of all open shared QP handles. Required to enforce security 1755 * properly for all users of a shared QP. 1756 */ 1757 struct list_head shared_qp_list; 1758 void *security; 1759 bool destroying; 1760 atomic_t error_list_count; 1761 struct completion error_complete; 1762 int error_comps_pending; 1763 }; 1764 1765 /* 1766 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1767 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1768 */ 1769 struct ib_qp { 1770 struct ib_device *device; 1771 struct ib_pd *pd; 1772 struct ib_cq *send_cq; 1773 struct ib_cq *recv_cq; 1774 spinlock_t mr_lock; 1775 int mrs_used; 1776 struct list_head rdma_mrs; 1777 struct list_head sig_mrs; 1778 struct ib_srq *srq; 1779 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1780 struct list_head xrcd_list; 1781 1782 /* count times opened, mcast attaches, flow attaches */ 1783 atomic_t usecnt; 1784 struct list_head open_list; 1785 struct ib_qp *real_qp; 1786 struct ib_uqp_object *uobject; 1787 void (*event_handler)(struct ib_event *, void *); 1788 void *qp_context; 1789 /* sgid_attrs associated with the AV's */ 1790 const struct ib_gid_attr *av_sgid_attr; 1791 const struct ib_gid_attr *alt_path_sgid_attr; 1792 u32 qp_num; 1793 u32 max_write_sge; 1794 u32 max_read_sge; 1795 enum ib_qp_type qp_type; 1796 struct ib_rwq_ind_table *rwq_ind_tbl; 1797 struct ib_qp_security *qp_sec; 1798 u32 port; 1799 1800 bool integrity_en; 1801 /* 1802 * Implementation details of the RDMA core, don't use in drivers: 1803 */ 1804 struct rdma_restrack_entry res; 1805 1806 /* The counter the qp is bind to */ 1807 struct rdma_counter *counter; 1808 }; 1809 1810 struct ib_dm { 1811 struct ib_device *device; 1812 u32 length; 1813 u32 flags; 1814 struct ib_uobject *uobject; 1815 atomic_t usecnt; 1816 }; 1817 1818 struct ib_mr { 1819 struct ib_device *device; 1820 struct ib_pd *pd; 1821 u32 lkey; 1822 u32 rkey; 1823 u64 iova; 1824 u64 length; 1825 unsigned int page_size; 1826 enum ib_mr_type type; 1827 bool need_inval; 1828 union { 1829 struct ib_uobject *uobject; /* user */ 1830 struct list_head qp_entry; /* FR */ 1831 }; 1832 1833 struct ib_dm *dm; 1834 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1835 /* 1836 * Implementation details of the RDMA core, don't use in drivers: 1837 */ 1838 struct rdma_restrack_entry res; 1839 }; 1840 1841 struct ib_mw { 1842 struct ib_device *device; 1843 struct ib_pd *pd; 1844 struct ib_uobject *uobject; 1845 u32 rkey; 1846 enum ib_mw_type type; 1847 }; 1848 1849 /* Supported steering options */ 1850 enum ib_flow_attr_type { 1851 /* steering according to rule specifications */ 1852 IB_FLOW_ATTR_NORMAL = 0x0, 1853 /* default unicast and multicast rule - 1854 * receive all Eth traffic which isn't steered to any QP 1855 */ 1856 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1857 /* default multicast rule - 1858 * receive all Eth multicast traffic which isn't steered to any QP 1859 */ 1860 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1861 /* sniffer rule - receive all port traffic */ 1862 IB_FLOW_ATTR_SNIFFER = 0x3 1863 }; 1864 1865 /* Supported steering header types */ 1866 enum ib_flow_spec_type { 1867 /* L2 headers*/ 1868 IB_FLOW_SPEC_ETH = 0x20, 1869 IB_FLOW_SPEC_IB = 0x22, 1870 /* L3 header*/ 1871 IB_FLOW_SPEC_IPV4 = 0x30, 1872 IB_FLOW_SPEC_IPV6 = 0x31, 1873 IB_FLOW_SPEC_ESP = 0x34, 1874 /* L4 headers*/ 1875 IB_FLOW_SPEC_TCP = 0x40, 1876 IB_FLOW_SPEC_UDP = 0x41, 1877 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1878 IB_FLOW_SPEC_GRE = 0x51, 1879 IB_FLOW_SPEC_MPLS = 0x60, 1880 IB_FLOW_SPEC_INNER = 0x100, 1881 /* Actions */ 1882 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1883 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1884 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1885 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1886 }; 1887 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1888 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1889 1890 enum ib_flow_flags { 1891 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1892 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1893 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1894 }; 1895 1896 struct ib_flow_eth_filter { 1897 u8 dst_mac[6]; 1898 u8 src_mac[6]; 1899 __be16 ether_type; 1900 __be16 vlan_tag; 1901 /* Must be last */ 1902 u8 real_sz[]; 1903 }; 1904 1905 struct ib_flow_spec_eth { 1906 u32 type; 1907 u16 size; 1908 struct ib_flow_eth_filter val; 1909 struct ib_flow_eth_filter mask; 1910 }; 1911 1912 struct ib_flow_ib_filter { 1913 __be16 dlid; 1914 __u8 sl; 1915 /* Must be last */ 1916 u8 real_sz[]; 1917 }; 1918 1919 struct ib_flow_spec_ib { 1920 u32 type; 1921 u16 size; 1922 struct ib_flow_ib_filter val; 1923 struct ib_flow_ib_filter mask; 1924 }; 1925 1926 /* IPv4 header flags */ 1927 enum ib_ipv4_flags { 1928 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1929 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1930 last have this flag set */ 1931 }; 1932 1933 struct ib_flow_ipv4_filter { 1934 __be32 src_ip; 1935 __be32 dst_ip; 1936 u8 proto; 1937 u8 tos; 1938 u8 ttl; 1939 u8 flags; 1940 /* Must be last */ 1941 u8 real_sz[]; 1942 }; 1943 1944 struct ib_flow_spec_ipv4 { 1945 u32 type; 1946 u16 size; 1947 struct ib_flow_ipv4_filter val; 1948 struct ib_flow_ipv4_filter mask; 1949 }; 1950 1951 struct ib_flow_ipv6_filter { 1952 u8 src_ip[16]; 1953 u8 dst_ip[16]; 1954 __be32 flow_label; 1955 u8 next_hdr; 1956 u8 traffic_class; 1957 u8 hop_limit; 1958 /* Must be last */ 1959 u8 real_sz[]; 1960 }; 1961 1962 struct ib_flow_spec_ipv6 { 1963 u32 type; 1964 u16 size; 1965 struct ib_flow_ipv6_filter val; 1966 struct ib_flow_ipv6_filter mask; 1967 }; 1968 1969 struct ib_flow_tcp_udp_filter { 1970 __be16 dst_port; 1971 __be16 src_port; 1972 /* Must be last */ 1973 u8 real_sz[]; 1974 }; 1975 1976 struct ib_flow_spec_tcp_udp { 1977 u32 type; 1978 u16 size; 1979 struct ib_flow_tcp_udp_filter val; 1980 struct ib_flow_tcp_udp_filter mask; 1981 }; 1982 1983 struct ib_flow_tunnel_filter { 1984 __be32 tunnel_id; 1985 u8 real_sz[]; 1986 }; 1987 1988 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1989 * the tunnel_id from val has the vni value 1990 */ 1991 struct ib_flow_spec_tunnel { 1992 u32 type; 1993 u16 size; 1994 struct ib_flow_tunnel_filter val; 1995 struct ib_flow_tunnel_filter mask; 1996 }; 1997 1998 struct ib_flow_esp_filter { 1999 __be32 spi; 2000 __be32 seq; 2001 /* Must be last */ 2002 u8 real_sz[]; 2003 }; 2004 2005 struct ib_flow_spec_esp { 2006 u32 type; 2007 u16 size; 2008 struct ib_flow_esp_filter val; 2009 struct ib_flow_esp_filter mask; 2010 }; 2011 2012 struct ib_flow_gre_filter { 2013 __be16 c_ks_res0_ver; 2014 __be16 protocol; 2015 __be32 key; 2016 /* Must be last */ 2017 u8 real_sz[]; 2018 }; 2019 2020 struct ib_flow_spec_gre { 2021 u32 type; 2022 u16 size; 2023 struct ib_flow_gre_filter val; 2024 struct ib_flow_gre_filter mask; 2025 }; 2026 2027 struct ib_flow_mpls_filter { 2028 __be32 tag; 2029 /* Must be last */ 2030 u8 real_sz[]; 2031 }; 2032 2033 struct ib_flow_spec_mpls { 2034 u32 type; 2035 u16 size; 2036 struct ib_flow_mpls_filter val; 2037 struct ib_flow_mpls_filter mask; 2038 }; 2039 2040 struct ib_flow_spec_action_tag { 2041 enum ib_flow_spec_type type; 2042 u16 size; 2043 u32 tag_id; 2044 }; 2045 2046 struct ib_flow_spec_action_drop { 2047 enum ib_flow_spec_type type; 2048 u16 size; 2049 }; 2050 2051 struct ib_flow_spec_action_handle { 2052 enum ib_flow_spec_type type; 2053 u16 size; 2054 struct ib_flow_action *act; 2055 }; 2056 2057 enum ib_counters_description { 2058 IB_COUNTER_PACKETS, 2059 IB_COUNTER_BYTES, 2060 }; 2061 2062 struct ib_flow_spec_action_count { 2063 enum ib_flow_spec_type type; 2064 u16 size; 2065 struct ib_counters *counters; 2066 }; 2067 2068 union ib_flow_spec { 2069 struct { 2070 u32 type; 2071 u16 size; 2072 }; 2073 struct ib_flow_spec_eth eth; 2074 struct ib_flow_spec_ib ib; 2075 struct ib_flow_spec_ipv4 ipv4; 2076 struct ib_flow_spec_tcp_udp tcp_udp; 2077 struct ib_flow_spec_ipv6 ipv6; 2078 struct ib_flow_spec_tunnel tunnel; 2079 struct ib_flow_spec_esp esp; 2080 struct ib_flow_spec_gre gre; 2081 struct ib_flow_spec_mpls mpls; 2082 struct ib_flow_spec_action_tag flow_tag; 2083 struct ib_flow_spec_action_drop drop; 2084 struct ib_flow_spec_action_handle action; 2085 struct ib_flow_spec_action_count flow_count; 2086 }; 2087 2088 struct ib_flow_attr { 2089 enum ib_flow_attr_type type; 2090 u16 size; 2091 u16 priority; 2092 u32 flags; 2093 u8 num_of_specs; 2094 u32 port; 2095 union ib_flow_spec flows[]; 2096 }; 2097 2098 struct ib_flow { 2099 struct ib_qp *qp; 2100 struct ib_device *device; 2101 struct ib_uobject *uobject; 2102 }; 2103 2104 enum ib_flow_action_type { 2105 IB_FLOW_ACTION_UNSPECIFIED, 2106 IB_FLOW_ACTION_ESP = 1, 2107 }; 2108 2109 struct ib_flow_action_attrs_esp_keymats { 2110 enum ib_uverbs_flow_action_esp_keymat protocol; 2111 union { 2112 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2113 } keymat; 2114 }; 2115 2116 struct ib_flow_action_attrs_esp_replays { 2117 enum ib_uverbs_flow_action_esp_replay protocol; 2118 union { 2119 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2120 } replay; 2121 }; 2122 2123 enum ib_flow_action_attrs_esp_flags { 2124 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2125 * This is done in order to share the same flags between user-space and 2126 * kernel and spare an unnecessary translation. 2127 */ 2128 2129 /* Kernel flags */ 2130 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2131 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2132 }; 2133 2134 struct ib_flow_spec_list { 2135 struct ib_flow_spec_list *next; 2136 union ib_flow_spec spec; 2137 }; 2138 2139 struct ib_flow_action_attrs_esp { 2140 struct ib_flow_action_attrs_esp_keymats *keymat; 2141 struct ib_flow_action_attrs_esp_replays *replay; 2142 struct ib_flow_spec_list *encap; 2143 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2144 * Value of 0 is a valid value. 2145 */ 2146 u32 esn; 2147 u32 spi; 2148 u32 seq; 2149 u32 tfc_pad; 2150 /* Use enum ib_flow_action_attrs_esp_flags */ 2151 u64 flags; 2152 u64 hard_limit_pkts; 2153 }; 2154 2155 struct ib_flow_action { 2156 struct ib_device *device; 2157 struct ib_uobject *uobject; 2158 enum ib_flow_action_type type; 2159 atomic_t usecnt; 2160 }; 2161 2162 struct ib_mad; 2163 2164 enum ib_process_mad_flags { 2165 IB_MAD_IGNORE_MKEY = 1, 2166 IB_MAD_IGNORE_BKEY = 2, 2167 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2168 }; 2169 2170 enum ib_mad_result { 2171 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2172 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2173 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2174 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2175 }; 2176 2177 struct ib_port_cache { 2178 u64 subnet_prefix; 2179 struct ib_pkey_cache *pkey; 2180 struct ib_gid_table *gid; 2181 u8 lmc; 2182 enum ib_port_state port_state; 2183 }; 2184 2185 struct ib_port_immutable { 2186 int pkey_tbl_len; 2187 int gid_tbl_len; 2188 u32 core_cap_flags; 2189 u32 max_mad_size; 2190 }; 2191 2192 struct ib_port_data { 2193 struct ib_device *ib_dev; 2194 2195 struct ib_port_immutable immutable; 2196 2197 spinlock_t pkey_list_lock; 2198 2199 spinlock_t netdev_lock; 2200 2201 struct list_head pkey_list; 2202 2203 struct ib_port_cache cache; 2204 2205 struct net_device __rcu *netdev; 2206 struct hlist_node ndev_hash_link; 2207 struct rdma_port_counter port_counter; 2208 struct ib_port *sysfs; 2209 }; 2210 2211 /* rdma netdev type - specifies protocol type */ 2212 enum rdma_netdev_t { 2213 RDMA_NETDEV_OPA_VNIC, 2214 RDMA_NETDEV_IPOIB, 2215 }; 2216 2217 /** 2218 * struct rdma_netdev - rdma netdev 2219 * For cases where netstack interfacing is required. 2220 */ 2221 struct rdma_netdev { 2222 void *clnt_priv; 2223 struct ib_device *hca; 2224 u32 port_num; 2225 int mtu; 2226 2227 /* 2228 * cleanup function must be specified. 2229 * FIXME: This is only used for OPA_VNIC and that usage should be 2230 * removed too. 2231 */ 2232 void (*free_rdma_netdev)(struct net_device *netdev); 2233 2234 /* control functions */ 2235 void (*set_id)(struct net_device *netdev, int id); 2236 /* send packet */ 2237 int (*send)(struct net_device *dev, struct sk_buff *skb, 2238 struct ib_ah *address, u32 dqpn); 2239 /* multicast */ 2240 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2241 union ib_gid *gid, u16 mlid, 2242 int set_qkey, u32 qkey); 2243 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2244 union ib_gid *gid, u16 mlid); 2245 /* timeout */ 2246 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2247 }; 2248 2249 struct rdma_netdev_alloc_params { 2250 size_t sizeof_priv; 2251 unsigned int txqs; 2252 unsigned int rxqs; 2253 void *param; 2254 2255 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2256 struct net_device *netdev, void *param); 2257 }; 2258 2259 struct ib_odp_counters { 2260 atomic64_t faults; 2261 atomic64_t invalidations; 2262 atomic64_t prefetch; 2263 }; 2264 2265 struct ib_counters { 2266 struct ib_device *device; 2267 struct ib_uobject *uobject; 2268 /* num of objects attached */ 2269 atomic_t usecnt; 2270 }; 2271 2272 struct ib_counters_read_attr { 2273 u64 *counters_buff; 2274 u32 ncounters; 2275 u32 flags; /* use enum ib_read_counters_flags */ 2276 }; 2277 2278 struct uverbs_attr_bundle; 2279 struct iw_cm_id; 2280 struct iw_cm_conn_param; 2281 2282 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2283 .size_##ib_struct = \ 2284 (sizeof(struct drv_struct) + \ 2285 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2286 BUILD_BUG_ON_ZERO( \ 2287 !__same_type(((struct drv_struct *)NULL)->member, \ 2288 struct ib_struct))) 2289 2290 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2291 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2292 gfp, false)) 2293 2294 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2295 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2296 GFP_KERNEL, true)) 2297 2298 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2299 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2300 2301 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2302 2303 struct rdma_user_mmap_entry { 2304 struct kref ref; 2305 struct ib_ucontext *ucontext; 2306 unsigned long start_pgoff; 2307 size_t npages; 2308 bool driver_removed; 2309 }; 2310 2311 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2312 static inline u64 2313 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2314 { 2315 return (u64)entry->start_pgoff << PAGE_SHIFT; 2316 } 2317 2318 /** 2319 * struct ib_device_ops - InfiniBand device operations 2320 * This structure defines all the InfiniBand device operations, providers will 2321 * need to define the supported operations, otherwise they will be set to null. 2322 */ 2323 struct ib_device_ops { 2324 struct module *owner; 2325 enum rdma_driver_id driver_id; 2326 u32 uverbs_abi_ver; 2327 unsigned int uverbs_no_driver_id_binding:1; 2328 2329 /* 2330 * NOTE: New drivers should not make use of device_group; instead new 2331 * device parameter should be exposed via netlink command. This 2332 * mechanism exists only for existing drivers. 2333 */ 2334 const struct attribute_group *device_group; 2335 const struct attribute_group **port_groups; 2336 2337 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2338 const struct ib_send_wr **bad_send_wr); 2339 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2340 const struct ib_recv_wr **bad_recv_wr); 2341 void (*drain_rq)(struct ib_qp *qp); 2342 void (*drain_sq)(struct ib_qp *qp); 2343 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2344 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2345 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2346 int (*post_srq_recv)(struct ib_srq *srq, 2347 const struct ib_recv_wr *recv_wr, 2348 const struct ib_recv_wr **bad_recv_wr); 2349 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2350 u32 port_num, const struct ib_wc *in_wc, 2351 const struct ib_grh *in_grh, 2352 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2353 size_t *out_mad_size, u16 *out_mad_pkey_index); 2354 int (*query_device)(struct ib_device *device, 2355 struct ib_device_attr *device_attr, 2356 struct ib_udata *udata); 2357 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2358 struct ib_device_modify *device_modify); 2359 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2360 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2361 int comp_vector); 2362 int (*query_port)(struct ib_device *device, u32 port_num, 2363 struct ib_port_attr *port_attr); 2364 int (*modify_port)(struct ib_device *device, u32 port_num, 2365 int port_modify_mask, 2366 struct ib_port_modify *port_modify); 2367 /** 2368 * The following mandatory functions are used only at device 2369 * registration. Keep functions such as these at the end of this 2370 * structure to avoid cache line misses when accessing struct ib_device 2371 * in fast paths. 2372 */ 2373 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2374 struct ib_port_immutable *immutable); 2375 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2376 u32 port_num); 2377 /** 2378 * When calling get_netdev, the HW vendor's driver should return the 2379 * net device of device @device at port @port_num or NULL if such 2380 * a net device doesn't exist. The vendor driver should call dev_hold 2381 * on this net device. The HW vendor's device driver must guarantee 2382 * that this function returns NULL before the net device has finished 2383 * NETDEV_UNREGISTER state. 2384 */ 2385 struct net_device *(*get_netdev)(struct ib_device *device, 2386 u32 port_num); 2387 /** 2388 * rdma netdev operation 2389 * 2390 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2391 * must return -EOPNOTSUPP if it doesn't support the specified type. 2392 */ 2393 struct net_device *(*alloc_rdma_netdev)( 2394 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2395 const char *name, unsigned char name_assign_type, 2396 void (*setup)(struct net_device *)); 2397 2398 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2399 enum rdma_netdev_t type, 2400 struct rdma_netdev_alloc_params *params); 2401 /** 2402 * query_gid should be return GID value for @device, when @port_num 2403 * link layer is either IB or iWarp. It is no-op if @port_num port 2404 * is RoCE link layer. 2405 */ 2406 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2407 union ib_gid *gid); 2408 /** 2409 * When calling add_gid, the HW vendor's driver should add the gid 2410 * of device of port at gid index available at @attr. Meta-info of 2411 * that gid (for example, the network device related to this gid) is 2412 * available at @attr. @context allows the HW vendor driver to store 2413 * extra information together with a GID entry. The HW vendor driver may 2414 * allocate memory to contain this information and store it in @context 2415 * when a new GID entry is written to. Params are consistent until the 2416 * next call of add_gid or delete_gid. The function should return 0 on 2417 * success or error otherwise. The function could be called 2418 * concurrently for different ports. This function is only called when 2419 * roce_gid_table is used. 2420 */ 2421 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2422 /** 2423 * When calling del_gid, the HW vendor's driver should delete the 2424 * gid of device @device at gid index gid_index of port port_num 2425 * available in @attr. 2426 * Upon the deletion of a GID entry, the HW vendor must free any 2427 * allocated memory. The caller will clear @context afterwards. 2428 * This function is only called when roce_gid_table is used. 2429 */ 2430 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2431 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2432 u16 *pkey); 2433 int (*alloc_ucontext)(struct ib_ucontext *context, 2434 struct ib_udata *udata); 2435 void (*dealloc_ucontext)(struct ib_ucontext *context); 2436 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2437 /** 2438 * This will be called once refcount of an entry in mmap_xa reaches 2439 * zero. The type of the memory that was mapped may differ between 2440 * entries and is opaque to the rdma_user_mmap interface. 2441 * Therefore needs to be implemented by the driver in mmap_free. 2442 */ 2443 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2444 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2445 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2446 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2447 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2448 struct ib_udata *udata); 2449 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2450 struct ib_udata *udata); 2451 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2452 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2453 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2454 int (*create_srq)(struct ib_srq *srq, 2455 struct ib_srq_init_attr *srq_init_attr, 2456 struct ib_udata *udata); 2457 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2458 enum ib_srq_attr_mask srq_attr_mask, 2459 struct ib_udata *udata); 2460 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2461 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2462 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2463 struct ib_udata *udata); 2464 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2465 int qp_attr_mask, struct ib_udata *udata); 2466 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2467 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2468 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2469 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2470 struct ib_udata *udata); 2471 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2472 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2473 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2474 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2475 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2476 u64 virt_addr, int mr_access_flags, 2477 struct ib_udata *udata); 2478 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2479 u64 length, u64 virt_addr, int fd, 2480 int mr_access_flags, 2481 struct ib_udata *udata); 2482 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2483 u64 length, u64 virt_addr, 2484 int mr_access_flags, struct ib_pd *pd, 2485 struct ib_udata *udata); 2486 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2487 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2488 u32 max_num_sg); 2489 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2490 u32 max_num_data_sg, 2491 u32 max_num_meta_sg); 2492 int (*advise_mr)(struct ib_pd *pd, 2493 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2494 struct ib_sge *sg_list, u32 num_sge, 2495 struct uverbs_attr_bundle *attrs); 2496 2497 /* 2498 * Kernel users should universally support relaxed ordering (RO), as 2499 * they are designed to read data only after observing the CQE and use 2500 * the DMA API correctly. 2501 * 2502 * Some drivers implicitly enable RO if platform supports it. 2503 */ 2504 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2505 unsigned int *sg_offset); 2506 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2507 struct ib_mr_status *mr_status); 2508 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2509 int (*dealloc_mw)(struct ib_mw *mw); 2510 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2511 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2512 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2513 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2514 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2515 struct ib_flow_attr *flow_attr, 2516 struct ib_udata *udata); 2517 int (*destroy_flow)(struct ib_flow *flow_id); 2518 int (*destroy_flow_action)(struct ib_flow_action *action); 2519 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2520 int state); 2521 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2522 struct ifla_vf_info *ivf); 2523 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2524 struct ifla_vf_stats *stats); 2525 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2526 struct ifla_vf_guid *node_guid, 2527 struct ifla_vf_guid *port_guid); 2528 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2529 int type); 2530 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2531 struct ib_wq_init_attr *init_attr, 2532 struct ib_udata *udata); 2533 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2534 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2535 u32 wq_attr_mask, struct ib_udata *udata); 2536 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2537 struct ib_rwq_ind_table_init_attr *init_attr, 2538 struct ib_udata *udata); 2539 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2540 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2541 struct ib_ucontext *context, 2542 struct ib_dm_alloc_attr *attr, 2543 struct uverbs_attr_bundle *attrs); 2544 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2545 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2546 struct ib_dm_mr_attr *attr, 2547 struct uverbs_attr_bundle *attrs); 2548 int (*create_counters)(struct ib_counters *counters, 2549 struct uverbs_attr_bundle *attrs); 2550 int (*destroy_counters)(struct ib_counters *counters); 2551 int (*read_counters)(struct ib_counters *counters, 2552 struct ib_counters_read_attr *counters_read_attr, 2553 struct uverbs_attr_bundle *attrs); 2554 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2555 int data_sg_nents, unsigned int *data_sg_offset, 2556 struct scatterlist *meta_sg, int meta_sg_nents, 2557 unsigned int *meta_sg_offset); 2558 2559 /** 2560 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2561 * fill in the driver initialized data. The struct is kfree()'ed by 2562 * the sysfs core when the device is removed. A lifespan of -1 in the 2563 * return struct tells the core to set a default lifespan. 2564 */ 2565 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2566 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2567 u32 port_num); 2568 /** 2569 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2570 * @index - The index in the value array we wish to have updated, or 2571 * num_counters if we want all stats updated 2572 * Return codes - 2573 * < 0 - Error, no counters updated 2574 * index - Updated the single counter pointed to by index 2575 * num_counters - Updated all counters (will reset the timestamp 2576 * and prevent further calls for lifespan milliseconds) 2577 * Drivers are allowed to update all counters in leiu of just the 2578 * one given in index at their option 2579 */ 2580 int (*get_hw_stats)(struct ib_device *device, 2581 struct rdma_hw_stats *stats, u32 port, int index); 2582 2583 /** 2584 * modify_hw_stat - Modify the counter configuration 2585 * @enable: true/false when enable/disable a counter 2586 * Return codes - 0 on success or error code otherwise. 2587 */ 2588 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2589 unsigned int counter_index, bool enable); 2590 /** 2591 * Allows rdma drivers to add their own restrack attributes. 2592 */ 2593 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2594 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2595 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2596 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2597 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2598 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2599 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2600 2601 /* Device lifecycle callbacks */ 2602 /* 2603 * Called after the device becomes registered, before clients are 2604 * attached 2605 */ 2606 int (*enable_driver)(struct ib_device *dev); 2607 /* 2608 * This is called as part of ib_dealloc_device(). 2609 */ 2610 void (*dealloc_driver)(struct ib_device *dev); 2611 2612 /* iWarp CM callbacks */ 2613 void (*iw_add_ref)(struct ib_qp *qp); 2614 void (*iw_rem_ref)(struct ib_qp *qp); 2615 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2616 int (*iw_connect)(struct iw_cm_id *cm_id, 2617 struct iw_cm_conn_param *conn_param); 2618 int (*iw_accept)(struct iw_cm_id *cm_id, 2619 struct iw_cm_conn_param *conn_param); 2620 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2621 u8 pdata_len); 2622 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2623 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2624 /** 2625 * counter_bind_qp - Bind a QP to a counter. 2626 * @counter - The counter to be bound. If counter->id is zero then 2627 * the driver needs to allocate a new counter and set counter->id 2628 */ 2629 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2630 /** 2631 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2632 * counter and bind it onto the default one 2633 */ 2634 int (*counter_unbind_qp)(struct ib_qp *qp); 2635 /** 2636 * counter_dealloc -De-allocate the hw counter 2637 */ 2638 int (*counter_dealloc)(struct rdma_counter *counter); 2639 /** 2640 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2641 * the driver initialized data. 2642 */ 2643 struct rdma_hw_stats *(*counter_alloc_stats)( 2644 struct rdma_counter *counter); 2645 /** 2646 * counter_update_stats - Query the stats value of this counter 2647 */ 2648 int (*counter_update_stats)(struct rdma_counter *counter); 2649 2650 /** 2651 * Allows rdma drivers to add their own restrack attributes 2652 * dumped via 'rdma stat' iproute2 command. 2653 */ 2654 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2655 2656 /* query driver for its ucontext properties */ 2657 int (*query_ucontext)(struct ib_ucontext *context, 2658 struct uverbs_attr_bundle *attrs); 2659 2660 /* 2661 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2662 * Everyone else relies on Linux memory management model. 2663 */ 2664 int (*get_numa_node)(struct ib_device *dev); 2665 2666 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2667 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2668 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2669 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2670 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2671 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2672 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2673 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2674 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2675 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2676 }; 2677 2678 struct ib_core_device { 2679 /* device must be the first element in structure until, 2680 * union of ib_core_device and device exists in ib_device. 2681 */ 2682 struct device dev; 2683 possible_net_t rdma_net; 2684 struct kobject *ports_kobj; 2685 struct list_head port_list; 2686 struct ib_device *owner; /* reach back to owner ib_device */ 2687 }; 2688 2689 struct rdma_restrack_root; 2690 struct ib_device { 2691 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2692 struct device *dma_device; 2693 struct ib_device_ops ops; 2694 char name[IB_DEVICE_NAME_MAX]; 2695 struct rcu_head rcu_head; 2696 2697 struct list_head event_handler_list; 2698 /* Protects event_handler_list */ 2699 struct rw_semaphore event_handler_rwsem; 2700 2701 /* Protects QP's event_handler calls and open_qp list */ 2702 spinlock_t qp_open_list_lock; 2703 2704 struct rw_semaphore client_data_rwsem; 2705 struct xarray client_data; 2706 struct mutex unregistration_lock; 2707 2708 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2709 rwlock_t cache_lock; 2710 /** 2711 * port_data is indexed by port number 2712 */ 2713 struct ib_port_data *port_data; 2714 2715 int num_comp_vectors; 2716 2717 union { 2718 struct device dev; 2719 struct ib_core_device coredev; 2720 }; 2721 2722 /* First group is for device attributes, 2723 * Second group is for driver provided attributes (optional). 2724 * Third group is for the hw_stats 2725 * It is a NULL terminated array. 2726 */ 2727 const struct attribute_group *groups[4]; 2728 2729 u64 uverbs_cmd_mask; 2730 2731 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2732 __be64 node_guid; 2733 u32 local_dma_lkey; 2734 u16 is_switch:1; 2735 /* Indicates kernel verbs support, should not be used in drivers */ 2736 u16 kverbs_provider:1; 2737 /* CQ adaptive moderation (RDMA DIM) */ 2738 u16 use_cq_dim:1; 2739 u8 node_type; 2740 u32 phys_port_cnt; 2741 struct ib_device_attr attrs; 2742 struct hw_stats_device_data *hw_stats_data; 2743 2744 #ifdef CONFIG_CGROUP_RDMA 2745 struct rdmacg_device cg_device; 2746 #endif 2747 2748 u32 index; 2749 2750 spinlock_t cq_pools_lock; 2751 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2752 2753 struct rdma_restrack_root *res; 2754 2755 const struct uapi_definition *driver_def; 2756 2757 /* 2758 * Positive refcount indicates that the device is currently 2759 * registered and cannot be unregistered. 2760 */ 2761 refcount_t refcount; 2762 struct completion unreg_completion; 2763 struct work_struct unregistration_work; 2764 2765 const struct rdma_link_ops *link_ops; 2766 2767 /* Protects compat_devs xarray modifications */ 2768 struct mutex compat_devs_mutex; 2769 /* Maintains compat devices for each net namespace */ 2770 struct xarray compat_devs; 2771 2772 /* Used by iWarp CM */ 2773 char iw_ifname[IFNAMSIZ]; 2774 u32 iw_driver_flags; 2775 u32 lag_flags; 2776 }; 2777 2778 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2779 gfp_t gfp, bool is_numa_aware) 2780 { 2781 if (is_numa_aware && dev->ops.get_numa_node) 2782 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2783 2784 return kzalloc(size, gfp); 2785 } 2786 2787 struct ib_client_nl_info; 2788 struct ib_client { 2789 const char *name; 2790 int (*add)(struct ib_device *ibdev); 2791 void (*remove)(struct ib_device *, void *client_data); 2792 void (*rename)(struct ib_device *dev, void *client_data); 2793 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2794 struct ib_client_nl_info *res); 2795 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2796 2797 /* Returns the net_dev belonging to this ib_client and matching the 2798 * given parameters. 2799 * @dev: An RDMA device that the net_dev use for communication. 2800 * @port: A physical port number on the RDMA device. 2801 * @pkey: P_Key that the net_dev uses if applicable. 2802 * @gid: A GID that the net_dev uses to communicate. 2803 * @addr: An IP address the net_dev is configured with. 2804 * @client_data: The device's client data set by ib_set_client_data(). 2805 * 2806 * An ib_client that implements a net_dev on top of RDMA devices 2807 * (such as IP over IB) should implement this callback, allowing the 2808 * rdma_cm module to find the right net_dev for a given request. 2809 * 2810 * The caller is responsible for calling dev_put on the returned 2811 * netdev. */ 2812 struct net_device *(*get_net_dev_by_params)( 2813 struct ib_device *dev, 2814 u32 port, 2815 u16 pkey, 2816 const union ib_gid *gid, 2817 const struct sockaddr *addr, 2818 void *client_data); 2819 2820 refcount_t uses; 2821 struct completion uses_zero; 2822 u32 client_id; 2823 2824 /* kverbs are not required by the client */ 2825 u8 no_kverbs_req:1; 2826 }; 2827 2828 /* 2829 * IB block DMA iterator 2830 * 2831 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2832 * to a HW supported page size. 2833 */ 2834 struct ib_block_iter { 2835 /* internal states */ 2836 struct scatterlist *__sg; /* sg holding the current aligned block */ 2837 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2838 unsigned int __sg_nents; /* number of SG entries */ 2839 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2840 unsigned int __pg_bit; /* alignment of current block */ 2841 }; 2842 2843 struct ib_device *_ib_alloc_device(size_t size); 2844 #define ib_alloc_device(drv_struct, member) \ 2845 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2846 BUILD_BUG_ON_ZERO(offsetof( \ 2847 struct drv_struct, member))), \ 2848 struct drv_struct, member) 2849 2850 void ib_dealloc_device(struct ib_device *device); 2851 2852 void ib_get_device_fw_str(struct ib_device *device, char *str); 2853 2854 int ib_register_device(struct ib_device *device, const char *name, 2855 struct device *dma_device); 2856 void ib_unregister_device(struct ib_device *device); 2857 void ib_unregister_driver(enum rdma_driver_id driver_id); 2858 void ib_unregister_device_and_put(struct ib_device *device); 2859 void ib_unregister_device_queued(struct ib_device *ib_dev); 2860 2861 int ib_register_client (struct ib_client *client); 2862 void ib_unregister_client(struct ib_client *client); 2863 2864 void __rdma_block_iter_start(struct ib_block_iter *biter, 2865 struct scatterlist *sglist, 2866 unsigned int nents, 2867 unsigned long pgsz); 2868 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2869 2870 /** 2871 * rdma_block_iter_dma_address - get the aligned dma address of the current 2872 * block held by the block iterator. 2873 * @biter: block iterator holding the memory block 2874 */ 2875 static inline dma_addr_t 2876 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2877 { 2878 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2879 } 2880 2881 /** 2882 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2883 * @sglist: sglist to iterate over 2884 * @biter: block iterator holding the memory block 2885 * @nents: maximum number of sg entries to iterate over 2886 * @pgsz: best HW supported page size to use 2887 * 2888 * Callers may use rdma_block_iter_dma_address() to get each 2889 * blocks aligned DMA address. 2890 */ 2891 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2892 for (__rdma_block_iter_start(biter, sglist, nents, \ 2893 pgsz); \ 2894 __rdma_block_iter_next(biter);) 2895 2896 /** 2897 * ib_get_client_data - Get IB client context 2898 * @device:Device to get context for 2899 * @client:Client to get context for 2900 * 2901 * ib_get_client_data() returns the client context data set with 2902 * ib_set_client_data(). This can only be called while the client is 2903 * registered to the device, once the ib_client remove() callback returns this 2904 * cannot be called. 2905 */ 2906 static inline void *ib_get_client_data(struct ib_device *device, 2907 struct ib_client *client) 2908 { 2909 return xa_load(&device->client_data, client->client_id); 2910 } 2911 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2912 void *data); 2913 void ib_set_device_ops(struct ib_device *device, 2914 const struct ib_device_ops *ops); 2915 2916 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2917 unsigned long pfn, unsigned long size, pgprot_t prot, 2918 struct rdma_user_mmap_entry *entry); 2919 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2920 struct rdma_user_mmap_entry *entry, 2921 size_t length); 2922 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2923 struct rdma_user_mmap_entry *entry, 2924 size_t length, u32 min_pgoff, 2925 u32 max_pgoff); 2926 2927 static inline int 2928 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2929 struct rdma_user_mmap_entry *entry, 2930 size_t length, u32 pgoff) 2931 { 2932 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2933 pgoff); 2934 } 2935 2936 struct rdma_user_mmap_entry * 2937 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2938 unsigned long pgoff); 2939 struct rdma_user_mmap_entry * 2940 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2941 struct vm_area_struct *vma); 2942 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2943 2944 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2945 2946 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2947 { 2948 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2949 } 2950 2951 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2952 { 2953 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2954 } 2955 2956 static inline bool ib_is_buffer_cleared(const void __user *p, 2957 size_t len) 2958 { 2959 bool ret; 2960 u8 *buf; 2961 2962 if (len > USHRT_MAX) 2963 return false; 2964 2965 buf = memdup_user(p, len); 2966 if (IS_ERR(buf)) 2967 return false; 2968 2969 ret = !memchr_inv(buf, 0, len); 2970 kfree(buf); 2971 return ret; 2972 } 2973 2974 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2975 size_t offset, 2976 size_t len) 2977 { 2978 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2979 } 2980 2981 /** 2982 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2983 * contains all required attributes and no attributes not allowed for 2984 * the given QP state transition. 2985 * @cur_state: Current QP state 2986 * @next_state: Next QP state 2987 * @type: QP type 2988 * @mask: Mask of supplied QP attributes 2989 * 2990 * This function is a helper function that a low-level driver's 2991 * modify_qp method can use to validate the consumer's input. It 2992 * checks that cur_state and next_state are valid QP states, that a 2993 * transition from cur_state to next_state is allowed by the IB spec, 2994 * and that the attribute mask supplied is allowed for the transition. 2995 */ 2996 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2997 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2998 2999 void ib_register_event_handler(struct ib_event_handler *event_handler); 3000 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3001 void ib_dispatch_event(const struct ib_event *event); 3002 3003 int ib_query_port(struct ib_device *device, 3004 u32 port_num, struct ib_port_attr *port_attr); 3005 3006 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3007 u32 port_num); 3008 3009 /** 3010 * rdma_cap_ib_switch - Check if the device is IB switch 3011 * @device: Device to check 3012 * 3013 * Device driver is responsible for setting is_switch bit on 3014 * in ib_device structure at init time. 3015 * 3016 * Return: true if the device is IB switch. 3017 */ 3018 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3019 { 3020 return device->is_switch; 3021 } 3022 3023 /** 3024 * rdma_start_port - Return the first valid port number for the device 3025 * specified 3026 * 3027 * @device: Device to be checked 3028 * 3029 * Return start port number 3030 */ 3031 static inline u32 rdma_start_port(const struct ib_device *device) 3032 { 3033 return rdma_cap_ib_switch(device) ? 0 : 1; 3034 } 3035 3036 /** 3037 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3038 * @device - The struct ib_device * to iterate over 3039 * @iter - The unsigned int to store the port number 3040 */ 3041 #define rdma_for_each_port(device, iter) \ 3042 for (iter = rdma_start_port(device + \ 3043 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3044 iter))); \ 3045 iter <= rdma_end_port(device); iter++) 3046 3047 /** 3048 * rdma_end_port - Return the last valid port number for the device 3049 * specified 3050 * 3051 * @device: Device to be checked 3052 * 3053 * Return last port number 3054 */ 3055 static inline u32 rdma_end_port(const struct ib_device *device) 3056 { 3057 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3058 } 3059 3060 static inline int rdma_is_port_valid(const struct ib_device *device, 3061 unsigned int port) 3062 { 3063 return (port >= rdma_start_port(device) && 3064 port <= rdma_end_port(device)); 3065 } 3066 3067 static inline bool rdma_is_grh_required(const struct ib_device *device, 3068 u32 port_num) 3069 { 3070 return device->port_data[port_num].immutable.core_cap_flags & 3071 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3072 } 3073 3074 static inline bool rdma_protocol_ib(const struct ib_device *device, 3075 u32 port_num) 3076 { 3077 return device->port_data[port_num].immutable.core_cap_flags & 3078 RDMA_CORE_CAP_PROT_IB; 3079 } 3080 3081 static inline bool rdma_protocol_roce(const struct ib_device *device, 3082 u32 port_num) 3083 { 3084 return device->port_data[port_num].immutable.core_cap_flags & 3085 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3086 } 3087 3088 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3089 u32 port_num) 3090 { 3091 return device->port_data[port_num].immutable.core_cap_flags & 3092 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3093 } 3094 3095 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3096 u32 port_num) 3097 { 3098 return device->port_data[port_num].immutable.core_cap_flags & 3099 RDMA_CORE_CAP_PROT_ROCE; 3100 } 3101 3102 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3103 u32 port_num) 3104 { 3105 return device->port_data[port_num].immutable.core_cap_flags & 3106 RDMA_CORE_CAP_PROT_IWARP; 3107 } 3108 3109 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3110 u32 port_num) 3111 { 3112 return rdma_protocol_ib(device, port_num) || 3113 rdma_protocol_roce(device, port_num); 3114 } 3115 3116 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3117 u32 port_num) 3118 { 3119 return device->port_data[port_num].immutable.core_cap_flags & 3120 RDMA_CORE_CAP_PROT_RAW_PACKET; 3121 } 3122 3123 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3124 u32 port_num) 3125 { 3126 return device->port_data[port_num].immutable.core_cap_flags & 3127 RDMA_CORE_CAP_PROT_USNIC; 3128 } 3129 3130 /** 3131 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3132 * Management Datagrams. 3133 * @device: Device to check 3134 * @port_num: Port number to check 3135 * 3136 * Management Datagrams (MAD) are a required part of the InfiniBand 3137 * specification and are supported on all InfiniBand devices. A slightly 3138 * extended version are also supported on OPA interfaces. 3139 * 3140 * Return: true if the port supports sending/receiving of MAD packets. 3141 */ 3142 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3143 { 3144 return device->port_data[port_num].immutable.core_cap_flags & 3145 RDMA_CORE_CAP_IB_MAD; 3146 } 3147 3148 /** 3149 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3150 * Management Datagrams. 3151 * @device: Device to check 3152 * @port_num: Port number to check 3153 * 3154 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3155 * datagrams with their own versions. These OPA MADs share many but not all of 3156 * the characteristics of InfiniBand MADs. 3157 * 3158 * OPA MADs differ in the following ways: 3159 * 3160 * 1) MADs are variable size up to 2K 3161 * IBTA defined MADs remain fixed at 256 bytes 3162 * 2) OPA SMPs must carry valid PKeys 3163 * 3) OPA SMP packets are a different format 3164 * 3165 * Return: true if the port supports OPA MAD packet formats. 3166 */ 3167 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3168 { 3169 return device->port_data[port_num].immutable.core_cap_flags & 3170 RDMA_CORE_CAP_OPA_MAD; 3171 } 3172 3173 /** 3174 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3175 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3176 * @device: Device to check 3177 * @port_num: Port number to check 3178 * 3179 * Each InfiniBand node is required to provide a Subnet Management Agent 3180 * that the subnet manager can access. Prior to the fabric being fully 3181 * configured by the subnet manager, the SMA is accessed via a well known 3182 * interface called the Subnet Management Interface (SMI). This interface 3183 * uses directed route packets to communicate with the SM to get around the 3184 * chicken and egg problem of the SM needing to know what's on the fabric 3185 * in order to configure the fabric, and needing to configure the fabric in 3186 * order to send packets to the devices on the fabric. These directed 3187 * route packets do not need the fabric fully configured in order to reach 3188 * their destination. The SMI is the only method allowed to send 3189 * directed route packets on an InfiniBand fabric. 3190 * 3191 * Return: true if the port provides an SMI. 3192 */ 3193 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3194 { 3195 return device->port_data[port_num].immutable.core_cap_flags & 3196 RDMA_CORE_CAP_IB_SMI; 3197 } 3198 3199 /** 3200 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3201 * Communication Manager. 3202 * @device: Device to check 3203 * @port_num: Port number to check 3204 * 3205 * The InfiniBand Communication Manager is one of many pre-defined General 3206 * Service Agents (GSA) that are accessed via the General Service 3207 * Interface (GSI). It's role is to facilitate establishment of connections 3208 * between nodes as well as other management related tasks for established 3209 * connections. 3210 * 3211 * Return: true if the port supports an IB CM (this does not guarantee that 3212 * a CM is actually running however). 3213 */ 3214 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3215 { 3216 return device->port_data[port_num].immutable.core_cap_flags & 3217 RDMA_CORE_CAP_IB_CM; 3218 } 3219 3220 /** 3221 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3222 * Communication Manager. 3223 * @device: Device to check 3224 * @port_num: Port number to check 3225 * 3226 * Similar to above, but specific to iWARP connections which have a different 3227 * managment protocol than InfiniBand. 3228 * 3229 * Return: true if the port supports an iWARP CM (this does not guarantee that 3230 * a CM is actually running however). 3231 */ 3232 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3233 { 3234 return device->port_data[port_num].immutable.core_cap_flags & 3235 RDMA_CORE_CAP_IW_CM; 3236 } 3237 3238 /** 3239 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3240 * Subnet Administration. 3241 * @device: Device to check 3242 * @port_num: Port number to check 3243 * 3244 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3245 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3246 * fabrics, devices should resolve routes to other hosts by contacting the 3247 * SA to query the proper route. 3248 * 3249 * Return: true if the port should act as a client to the fabric Subnet 3250 * Administration interface. This does not imply that the SA service is 3251 * running locally. 3252 */ 3253 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3254 { 3255 return device->port_data[port_num].immutable.core_cap_flags & 3256 RDMA_CORE_CAP_IB_SA; 3257 } 3258 3259 /** 3260 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3261 * Multicast. 3262 * @device: Device to check 3263 * @port_num: Port number to check 3264 * 3265 * InfiniBand multicast registration is more complex than normal IPv4 or 3266 * IPv6 multicast registration. Each Host Channel Adapter must register 3267 * with the Subnet Manager when it wishes to join a multicast group. It 3268 * should do so only once regardless of how many queue pairs it subscribes 3269 * to this group. And it should leave the group only after all queue pairs 3270 * attached to the group have been detached. 3271 * 3272 * Return: true if the port must undertake the additional adminstrative 3273 * overhead of registering/unregistering with the SM and tracking of the 3274 * total number of queue pairs attached to the multicast group. 3275 */ 3276 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3277 u32 port_num) 3278 { 3279 return rdma_cap_ib_sa(device, port_num); 3280 } 3281 3282 /** 3283 * rdma_cap_af_ib - Check if the port of device has the capability 3284 * Native Infiniband Address. 3285 * @device: Device to check 3286 * @port_num: Port number to check 3287 * 3288 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3289 * GID. RoCE uses a different mechanism, but still generates a GID via 3290 * a prescribed mechanism and port specific data. 3291 * 3292 * Return: true if the port uses a GID address to identify devices on the 3293 * network. 3294 */ 3295 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3296 { 3297 return device->port_data[port_num].immutable.core_cap_flags & 3298 RDMA_CORE_CAP_AF_IB; 3299 } 3300 3301 /** 3302 * rdma_cap_eth_ah - Check if the port of device has the capability 3303 * Ethernet Address Handle. 3304 * @device: Device to check 3305 * @port_num: Port number to check 3306 * 3307 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3308 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3309 * port. Normally, packet headers are generated by the sending host 3310 * adapter, but when sending connectionless datagrams, we must manually 3311 * inject the proper headers for the fabric we are communicating over. 3312 * 3313 * Return: true if we are running as a RoCE port and must force the 3314 * addition of a Global Route Header built from our Ethernet Address 3315 * Handle into our header list for connectionless packets. 3316 */ 3317 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3318 { 3319 return device->port_data[port_num].immutable.core_cap_flags & 3320 RDMA_CORE_CAP_ETH_AH; 3321 } 3322 3323 /** 3324 * rdma_cap_opa_ah - Check if the port of device supports 3325 * OPA Address handles 3326 * @device: Device to check 3327 * @port_num: Port number to check 3328 * 3329 * Return: true if we are running on an OPA device which supports 3330 * the extended OPA addressing. 3331 */ 3332 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3333 { 3334 return (device->port_data[port_num].immutable.core_cap_flags & 3335 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3336 } 3337 3338 /** 3339 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3340 * 3341 * @device: Device 3342 * @port_num: Port number 3343 * 3344 * This MAD size includes the MAD headers and MAD payload. No other headers 3345 * are included. 3346 * 3347 * Return the max MAD size required by the Port. Will return 0 if the port 3348 * does not support MADs 3349 */ 3350 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3351 u32 port_num) 3352 { 3353 return device->port_data[port_num].immutable.max_mad_size; 3354 } 3355 3356 /** 3357 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3358 * @device: Device to check 3359 * @port_num: Port number to check 3360 * 3361 * RoCE GID table mechanism manages the various GIDs for a device. 3362 * 3363 * NOTE: if allocating the port's GID table has failed, this call will still 3364 * return true, but any RoCE GID table API will fail. 3365 * 3366 * Return: true if the port uses RoCE GID table mechanism in order to manage 3367 * its GIDs. 3368 */ 3369 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3370 u32 port_num) 3371 { 3372 return rdma_protocol_roce(device, port_num) && 3373 device->ops.add_gid && device->ops.del_gid; 3374 } 3375 3376 /* 3377 * Check if the device supports READ W/ INVALIDATE. 3378 */ 3379 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3380 { 3381 /* 3382 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3383 * has support for it yet. 3384 */ 3385 return rdma_protocol_iwarp(dev, port_num); 3386 } 3387 3388 /** 3389 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3390 * @device: Device 3391 * @port_num: 1 based Port number 3392 * 3393 * Return true if port is an Intel OPA port , false if not 3394 */ 3395 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3396 u32 port_num) 3397 { 3398 return (device->port_data[port_num].immutable.core_cap_flags & 3399 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3400 } 3401 3402 /** 3403 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3404 * @device: Device 3405 * @port_num: Port number 3406 * @mtu: enum value of MTU 3407 * 3408 * Return the MTU size supported by the port as an integer value. Will return 3409 * -1 if enum value of mtu is not supported. 3410 */ 3411 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3412 int mtu) 3413 { 3414 if (rdma_core_cap_opa_port(device, port)) 3415 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3416 else 3417 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3418 } 3419 3420 /** 3421 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3422 * @device: Device 3423 * @port_num: Port number 3424 * @attr: port attribute 3425 * 3426 * Return the MTU size supported by the port as an integer value. 3427 */ 3428 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3429 struct ib_port_attr *attr) 3430 { 3431 if (rdma_core_cap_opa_port(device, port)) 3432 return attr->phys_mtu; 3433 else 3434 return ib_mtu_enum_to_int(attr->max_mtu); 3435 } 3436 3437 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3438 int state); 3439 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3440 struct ifla_vf_info *info); 3441 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3442 struct ifla_vf_stats *stats); 3443 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3444 struct ifla_vf_guid *node_guid, 3445 struct ifla_vf_guid *port_guid); 3446 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3447 int type); 3448 3449 int ib_query_pkey(struct ib_device *device, 3450 u32 port_num, u16 index, u16 *pkey); 3451 3452 int ib_modify_device(struct ib_device *device, 3453 int device_modify_mask, 3454 struct ib_device_modify *device_modify); 3455 3456 int ib_modify_port(struct ib_device *device, 3457 u32 port_num, int port_modify_mask, 3458 struct ib_port_modify *port_modify); 3459 3460 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3461 u32 *port_num, u16 *index); 3462 3463 int ib_find_pkey(struct ib_device *device, 3464 u32 port_num, u16 pkey, u16 *index); 3465 3466 enum ib_pd_flags { 3467 /* 3468 * Create a memory registration for all memory in the system and place 3469 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3470 * ULPs to avoid the overhead of dynamic MRs. 3471 * 3472 * This flag is generally considered unsafe and must only be used in 3473 * extremly trusted environments. Every use of it will log a warning 3474 * in the kernel log. 3475 */ 3476 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3477 }; 3478 3479 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3480 const char *caller); 3481 3482 /** 3483 * ib_alloc_pd - Allocates an unused protection domain. 3484 * @device: The device on which to allocate the protection domain. 3485 * @flags: protection domain flags 3486 * 3487 * A protection domain object provides an association between QPs, shared 3488 * receive queues, address handles, memory regions, and memory windows. 3489 * 3490 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3491 * memory operations. 3492 */ 3493 #define ib_alloc_pd(device, flags) \ 3494 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3495 3496 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3497 3498 /** 3499 * ib_dealloc_pd - Deallocate kernel PD 3500 * @pd: The protection domain 3501 * 3502 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3503 */ 3504 static inline void ib_dealloc_pd(struct ib_pd *pd) 3505 { 3506 int ret = ib_dealloc_pd_user(pd, NULL); 3507 3508 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3509 } 3510 3511 enum rdma_create_ah_flags { 3512 /* In a sleepable context */ 3513 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3514 }; 3515 3516 /** 3517 * rdma_create_ah - Creates an address handle for the given address vector. 3518 * @pd: The protection domain associated with the address handle. 3519 * @ah_attr: The attributes of the address vector. 3520 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3521 * 3522 * The address handle is used to reference a local or global destination 3523 * in all UD QP post sends. 3524 */ 3525 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3526 u32 flags); 3527 3528 /** 3529 * rdma_create_user_ah - Creates an address handle for the given address vector. 3530 * It resolves destination mac address for ah attribute of RoCE type. 3531 * @pd: The protection domain associated with the address handle. 3532 * @ah_attr: The attributes of the address vector. 3533 * @udata: pointer to user's input output buffer information need by 3534 * provider driver. 3535 * 3536 * It returns 0 on success and returns appropriate error code on error. 3537 * The address handle is used to reference a local or global destination 3538 * in all UD QP post sends. 3539 */ 3540 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3541 struct rdma_ah_attr *ah_attr, 3542 struct ib_udata *udata); 3543 /** 3544 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3545 * work completion. 3546 * @hdr: the L3 header to parse 3547 * @net_type: type of header to parse 3548 * @sgid: place to store source gid 3549 * @dgid: place to store destination gid 3550 */ 3551 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3552 enum rdma_network_type net_type, 3553 union ib_gid *sgid, union ib_gid *dgid); 3554 3555 /** 3556 * ib_get_rdma_header_version - Get the header version 3557 * @hdr: the L3 header to parse 3558 */ 3559 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3560 3561 /** 3562 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3563 * work completion. 3564 * @device: Device on which the received message arrived. 3565 * @port_num: Port on which the received message arrived. 3566 * @wc: Work completion associated with the received message. 3567 * @grh: References the received global route header. This parameter is 3568 * ignored unless the work completion indicates that the GRH is valid. 3569 * @ah_attr: Returned attributes that can be used when creating an address 3570 * handle for replying to the message. 3571 * When ib_init_ah_attr_from_wc() returns success, 3572 * (a) for IB link layer it optionally contains a reference to SGID attribute 3573 * when GRH is present for IB link layer. 3574 * (b) for RoCE link layer it contains a reference to SGID attribute. 3575 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3576 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3577 * 3578 */ 3579 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3580 const struct ib_wc *wc, const struct ib_grh *grh, 3581 struct rdma_ah_attr *ah_attr); 3582 3583 /** 3584 * ib_create_ah_from_wc - Creates an address handle associated with the 3585 * sender of the specified work completion. 3586 * @pd: The protection domain associated with the address handle. 3587 * @wc: Work completion information associated with a received message. 3588 * @grh: References the received global route header. This parameter is 3589 * ignored unless the work completion indicates that the GRH is valid. 3590 * @port_num: The outbound port number to associate with the address. 3591 * 3592 * The address handle is used to reference a local or global destination 3593 * in all UD QP post sends. 3594 */ 3595 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3596 const struct ib_grh *grh, u32 port_num); 3597 3598 /** 3599 * rdma_modify_ah - Modifies the address vector associated with an address 3600 * handle. 3601 * @ah: The address handle to modify. 3602 * @ah_attr: The new address vector attributes to associate with the 3603 * address handle. 3604 */ 3605 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3606 3607 /** 3608 * rdma_query_ah - Queries the address vector associated with an address 3609 * handle. 3610 * @ah: The address handle to query. 3611 * @ah_attr: The address vector attributes associated with the address 3612 * handle. 3613 */ 3614 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3615 3616 enum rdma_destroy_ah_flags { 3617 /* In a sleepable context */ 3618 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3619 }; 3620 3621 /** 3622 * rdma_destroy_ah_user - Destroys an address handle. 3623 * @ah: The address handle to destroy. 3624 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3625 * @udata: Valid user data or NULL for kernel objects 3626 */ 3627 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3628 3629 /** 3630 * rdma_destroy_ah - Destroys an kernel address handle. 3631 * @ah: The address handle to destroy. 3632 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3633 * 3634 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3635 */ 3636 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3637 { 3638 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3639 3640 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3641 } 3642 3643 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3644 struct ib_srq_init_attr *srq_init_attr, 3645 struct ib_usrq_object *uobject, 3646 struct ib_udata *udata); 3647 static inline struct ib_srq * 3648 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3649 { 3650 if (!pd->device->ops.create_srq) 3651 return ERR_PTR(-EOPNOTSUPP); 3652 3653 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3654 } 3655 3656 /** 3657 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3658 * @srq: The SRQ to modify. 3659 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3660 * the current values of selected SRQ attributes are returned. 3661 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3662 * are being modified. 3663 * 3664 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3665 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3666 * the number of receives queued drops below the limit. 3667 */ 3668 int ib_modify_srq(struct ib_srq *srq, 3669 struct ib_srq_attr *srq_attr, 3670 enum ib_srq_attr_mask srq_attr_mask); 3671 3672 /** 3673 * ib_query_srq - Returns the attribute list and current values for the 3674 * specified SRQ. 3675 * @srq: The SRQ to query. 3676 * @srq_attr: The attributes of the specified SRQ. 3677 */ 3678 int ib_query_srq(struct ib_srq *srq, 3679 struct ib_srq_attr *srq_attr); 3680 3681 /** 3682 * ib_destroy_srq_user - Destroys the specified SRQ. 3683 * @srq: The SRQ to destroy. 3684 * @udata: Valid user data or NULL for kernel objects 3685 */ 3686 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3687 3688 /** 3689 * ib_destroy_srq - Destroys the specified kernel SRQ. 3690 * @srq: The SRQ to destroy. 3691 * 3692 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3693 */ 3694 static inline void ib_destroy_srq(struct ib_srq *srq) 3695 { 3696 int ret = ib_destroy_srq_user(srq, NULL); 3697 3698 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3699 } 3700 3701 /** 3702 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3703 * @srq: The SRQ to post the work request on. 3704 * @recv_wr: A list of work requests to post on the receive queue. 3705 * @bad_recv_wr: On an immediate failure, this parameter will reference 3706 * the work request that failed to be posted on the QP. 3707 */ 3708 static inline int ib_post_srq_recv(struct ib_srq *srq, 3709 const struct ib_recv_wr *recv_wr, 3710 const struct ib_recv_wr **bad_recv_wr) 3711 { 3712 const struct ib_recv_wr *dummy; 3713 3714 return srq->device->ops.post_srq_recv(srq, recv_wr, 3715 bad_recv_wr ? : &dummy); 3716 } 3717 3718 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3719 struct ib_qp_init_attr *qp_init_attr, 3720 const char *caller); 3721 /** 3722 * ib_create_qp - Creates a kernel QP associated with the specific protection 3723 * domain. 3724 * @pd: The protection domain associated with the QP. 3725 * @init_attr: A list of initial attributes required to create the 3726 * QP. If QP creation succeeds, then the attributes are updated to 3727 * the actual capabilities of the created QP. 3728 */ 3729 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3730 struct ib_qp_init_attr *init_attr) 3731 { 3732 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3733 } 3734 3735 /** 3736 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3737 * @qp: The QP to modify. 3738 * @attr: On input, specifies the QP attributes to modify. On output, 3739 * the current values of selected QP attributes are returned. 3740 * @attr_mask: A bit-mask used to specify which attributes of the QP 3741 * are being modified. 3742 * @udata: pointer to user's input output buffer information 3743 * are being modified. 3744 * It returns 0 on success and returns appropriate error code on error. 3745 */ 3746 int ib_modify_qp_with_udata(struct ib_qp *qp, 3747 struct ib_qp_attr *attr, 3748 int attr_mask, 3749 struct ib_udata *udata); 3750 3751 /** 3752 * ib_modify_qp - Modifies the attributes for the specified QP and then 3753 * transitions the QP to the given state. 3754 * @qp: The QP to modify. 3755 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3756 * the current values of selected QP attributes are returned. 3757 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3758 * are being modified. 3759 */ 3760 int ib_modify_qp(struct ib_qp *qp, 3761 struct ib_qp_attr *qp_attr, 3762 int qp_attr_mask); 3763 3764 /** 3765 * ib_query_qp - Returns the attribute list and current values for the 3766 * specified QP. 3767 * @qp: The QP to query. 3768 * @qp_attr: The attributes of the specified QP. 3769 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3770 * @qp_init_attr: Additional attributes of the selected QP. 3771 * 3772 * The qp_attr_mask may be used to limit the query to gathering only the 3773 * selected attributes. 3774 */ 3775 int ib_query_qp(struct ib_qp *qp, 3776 struct ib_qp_attr *qp_attr, 3777 int qp_attr_mask, 3778 struct ib_qp_init_attr *qp_init_attr); 3779 3780 /** 3781 * ib_destroy_qp - Destroys the specified QP. 3782 * @qp: The QP to destroy. 3783 * @udata: Valid udata or NULL for kernel objects 3784 */ 3785 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3786 3787 /** 3788 * ib_destroy_qp - Destroys the specified kernel QP. 3789 * @qp: The QP to destroy. 3790 * 3791 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3792 */ 3793 static inline int ib_destroy_qp(struct ib_qp *qp) 3794 { 3795 return ib_destroy_qp_user(qp, NULL); 3796 } 3797 3798 /** 3799 * ib_open_qp - Obtain a reference to an existing sharable QP. 3800 * @xrcd - XRC domain 3801 * @qp_open_attr: Attributes identifying the QP to open. 3802 * 3803 * Returns a reference to a sharable QP. 3804 */ 3805 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3806 struct ib_qp_open_attr *qp_open_attr); 3807 3808 /** 3809 * ib_close_qp - Release an external reference to a QP. 3810 * @qp: The QP handle to release 3811 * 3812 * The opened QP handle is released by the caller. The underlying 3813 * shared QP is not destroyed until all internal references are released. 3814 */ 3815 int ib_close_qp(struct ib_qp *qp); 3816 3817 /** 3818 * ib_post_send - Posts a list of work requests to the send queue of 3819 * the specified QP. 3820 * @qp: The QP to post the work request on. 3821 * @send_wr: A list of work requests to post on the send queue. 3822 * @bad_send_wr: On an immediate failure, this parameter will reference 3823 * the work request that failed to be posted on the QP. 3824 * 3825 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3826 * error is returned, the QP state shall not be affected, 3827 * ib_post_send() will return an immediate error after queueing any 3828 * earlier work requests in the list. 3829 */ 3830 static inline int ib_post_send(struct ib_qp *qp, 3831 const struct ib_send_wr *send_wr, 3832 const struct ib_send_wr **bad_send_wr) 3833 { 3834 const struct ib_send_wr *dummy; 3835 3836 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3837 } 3838 3839 /** 3840 * ib_post_recv - Posts a list of work requests to the receive queue of 3841 * the specified QP. 3842 * @qp: The QP to post the work request on. 3843 * @recv_wr: A list of work requests to post on the receive queue. 3844 * @bad_recv_wr: On an immediate failure, this parameter will reference 3845 * the work request that failed to be posted on the QP. 3846 */ 3847 static inline int ib_post_recv(struct ib_qp *qp, 3848 const struct ib_recv_wr *recv_wr, 3849 const struct ib_recv_wr **bad_recv_wr) 3850 { 3851 const struct ib_recv_wr *dummy; 3852 3853 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3854 } 3855 3856 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3857 int comp_vector, enum ib_poll_context poll_ctx, 3858 const char *caller); 3859 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3860 int nr_cqe, int comp_vector, 3861 enum ib_poll_context poll_ctx) 3862 { 3863 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3864 KBUILD_MODNAME); 3865 } 3866 3867 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3868 int nr_cqe, enum ib_poll_context poll_ctx, 3869 const char *caller); 3870 3871 /** 3872 * ib_alloc_cq_any: Allocate kernel CQ 3873 * @dev: The IB device 3874 * @private: Private data attached to the CQE 3875 * @nr_cqe: Number of CQEs in the CQ 3876 * @poll_ctx: Context used for polling the CQ 3877 */ 3878 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3879 void *private, int nr_cqe, 3880 enum ib_poll_context poll_ctx) 3881 { 3882 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3883 KBUILD_MODNAME); 3884 } 3885 3886 void ib_free_cq(struct ib_cq *cq); 3887 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3888 3889 /** 3890 * ib_create_cq - Creates a CQ on the specified device. 3891 * @device: The device on which to create the CQ. 3892 * @comp_handler: A user-specified callback that is invoked when a 3893 * completion event occurs on the CQ. 3894 * @event_handler: A user-specified callback that is invoked when an 3895 * asynchronous event not associated with a completion occurs on the CQ. 3896 * @cq_context: Context associated with the CQ returned to the user via 3897 * the associated completion and event handlers. 3898 * @cq_attr: The attributes the CQ should be created upon. 3899 * 3900 * Users can examine the cq structure to determine the actual CQ size. 3901 */ 3902 struct ib_cq *__ib_create_cq(struct ib_device *device, 3903 ib_comp_handler comp_handler, 3904 void (*event_handler)(struct ib_event *, void *), 3905 void *cq_context, 3906 const struct ib_cq_init_attr *cq_attr, 3907 const char *caller); 3908 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3909 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3910 3911 /** 3912 * ib_resize_cq - Modifies the capacity of the CQ. 3913 * @cq: The CQ to resize. 3914 * @cqe: The minimum size of the CQ. 3915 * 3916 * Users can examine the cq structure to determine the actual CQ size. 3917 */ 3918 int ib_resize_cq(struct ib_cq *cq, int cqe); 3919 3920 /** 3921 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3922 * @cq: The CQ to modify. 3923 * @cq_count: number of CQEs that will trigger an event 3924 * @cq_period: max period of time in usec before triggering an event 3925 * 3926 */ 3927 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3928 3929 /** 3930 * ib_destroy_cq_user - Destroys the specified CQ. 3931 * @cq: The CQ to destroy. 3932 * @udata: Valid user data or NULL for kernel objects 3933 */ 3934 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3935 3936 /** 3937 * ib_destroy_cq - Destroys the specified kernel CQ. 3938 * @cq: The CQ to destroy. 3939 * 3940 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3941 */ 3942 static inline void ib_destroy_cq(struct ib_cq *cq) 3943 { 3944 int ret = ib_destroy_cq_user(cq, NULL); 3945 3946 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3947 } 3948 3949 /** 3950 * ib_poll_cq - poll a CQ for completion(s) 3951 * @cq:the CQ being polled 3952 * @num_entries:maximum number of completions to return 3953 * @wc:array of at least @num_entries &struct ib_wc where completions 3954 * will be returned 3955 * 3956 * Poll a CQ for (possibly multiple) completions. If the return value 3957 * is < 0, an error occurred. If the return value is >= 0, it is the 3958 * number of completions returned. If the return value is 3959 * non-negative and < num_entries, then the CQ was emptied. 3960 */ 3961 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3962 struct ib_wc *wc) 3963 { 3964 return cq->device->ops.poll_cq(cq, num_entries, wc); 3965 } 3966 3967 /** 3968 * ib_req_notify_cq - Request completion notification on a CQ. 3969 * @cq: The CQ to generate an event for. 3970 * @flags: 3971 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3972 * to request an event on the next solicited event or next work 3973 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3974 * may also be |ed in to request a hint about missed events, as 3975 * described below. 3976 * 3977 * Return Value: 3978 * < 0 means an error occurred while requesting notification 3979 * == 0 means notification was requested successfully, and if 3980 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3981 * were missed and it is safe to wait for another event. In 3982 * this case is it guaranteed that any work completions added 3983 * to the CQ since the last CQ poll will trigger a completion 3984 * notification event. 3985 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3986 * in. It means that the consumer must poll the CQ again to 3987 * make sure it is empty to avoid missing an event because of a 3988 * race between requesting notification and an entry being 3989 * added to the CQ. This return value means it is possible 3990 * (but not guaranteed) that a work completion has been added 3991 * to the CQ since the last poll without triggering a 3992 * completion notification event. 3993 */ 3994 static inline int ib_req_notify_cq(struct ib_cq *cq, 3995 enum ib_cq_notify_flags flags) 3996 { 3997 return cq->device->ops.req_notify_cq(cq, flags); 3998 } 3999 4000 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4001 int comp_vector_hint, 4002 enum ib_poll_context poll_ctx); 4003 4004 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4005 4006 /* 4007 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4008 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4009 * address into the dma address. 4010 */ 4011 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4012 { 4013 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4014 } 4015 4016 /* 4017 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4018 */ 4019 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4020 { 4021 if (ib_uses_virt_dma(dev)) 4022 return false; 4023 4024 return dma_pci_p2pdma_supported(dev->dma_device); 4025 } 4026 4027 /** 4028 * ib_dma_mapping_error - check a DMA addr for error 4029 * @dev: The device for which the dma_addr was created 4030 * @dma_addr: The DMA address to check 4031 */ 4032 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4033 { 4034 if (ib_uses_virt_dma(dev)) 4035 return 0; 4036 return dma_mapping_error(dev->dma_device, dma_addr); 4037 } 4038 4039 /** 4040 * ib_dma_map_single - Map a kernel virtual address to DMA address 4041 * @dev: The device for which the dma_addr is to be created 4042 * @cpu_addr: The kernel virtual address 4043 * @size: The size of the region in bytes 4044 * @direction: The direction of the DMA 4045 */ 4046 static inline u64 ib_dma_map_single(struct ib_device *dev, 4047 void *cpu_addr, size_t size, 4048 enum dma_data_direction direction) 4049 { 4050 if (ib_uses_virt_dma(dev)) 4051 return (uintptr_t)cpu_addr; 4052 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4053 } 4054 4055 /** 4056 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4057 * @dev: The device for which the DMA address was created 4058 * @addr: The DMA address 4059 * @size: The size of the region in bytes 4060 * @direction: The direction of the DMA 4061 */ 4062 static inline void ib_dma_unmap_single(struct ib_device *dev, 4063 u64 addr, size_t size, 4064 enum dma_data_direction direction) 4065 { 4066 if (!ib_uses_virt_dma(dev)) 4067 dma_unmap_single(dev->dma_device, addr, size, direction); 4068 } 4069 4070 /** 4071 * ib_dma_map_page - Map a physical page to DMA address 4072 * @dev: The device for which the dma_addr is to be created 4073 * @page: The page to be mapped 4074 * @offset: The offset within the page 4075 * @size: The size of the region in bytes 4076 * @direction: The direction of the DMA 4077 */ 4078 static inline u64 ib_dma_map_page(struct ib_device *dev, 4079 struct page *page, 4080 unsigned long offset, 4081 size_t size, 4082 enum dma_data_direction direction) 4083 { 4084 if (ib_uses_virt_dma(dev)) 4085 return (uintptr_t)(page_address(page) + offset); 4086 return dma_map_page(dev->dma_device, page, offset, size, direction); 4087 } 4088 4089 /** 4090 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4091 * @dev: The device for which the DMA address was created 4092 * @addr: The DMA address 4093 * @size: The size of the region in bytes 4094 * @direction: The direction of the DMA 4095 */ 4096 static inline void ib_dma_unmap_page(struct ib_device *dev, 4097 u64 addr, size_t size, 4098 enum dma_data_direction direction) 4099 { 4100 if (!ib_uses_virt_dma(dev)) 4101 dma_unmap_page(dev->dma_device, addr, size, direction); 4102 } 4103 4104 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4105 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4106 struct scatterlist *sg, int nents, 4107 enum dma_data_direction direction, 4108 unsigned long dma_attrs) 4109 { 4110 if (ib_uses_virt_dma(dev)) 4111 return ib_dma_virt_map_sg(dev, sg, nents); 4112 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4113 dma_attrs); 4114 } 4115 4116 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4117 struct scatterlist *sg, int nents, 4118 enum dma_data_direction direction, 4119 unsigned long dma_attrs) 4120 { 4121 if (!ib_uses_virt_dma(dev)) 4122 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4123 dma_attrs); 4124 } 4125 4126 /** 4127 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4128 * @dev: The device for which the DMA addresses are to be created 4129 * @sg: The sg_table object describing the buffer 4130 * @direction: The direction of the DMA 4131 * @attrs: Optional DMA attributes for the map operation 4132 */ 4133 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4134 struct sg_table *sgt, 4135 enum dma_data_direction direction, 4136 unsigned long dma_attrs) 4137 { 4138 int nents; 4139 4140 if (ib_uses_virt_dma(dev)) { 4141 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4142 if (!nents) 4143 return -EIO; 4144 sgt->nents = nents; 4145 return 0; 4146 } 4147 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4148 } 4149 4150 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4151 struct sg_table *sgt, 4152 enum dma_data_direction direction, 4153 unsigned long dma_attrs) 4154 { 4155 if (!ib_uses_virt_dma(dev)) 4156 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4157 } 4158 4159 /** 4160 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4161 * @dev: The device for which the DMA addresses are to be created 4162 * @sg: The array of scatter/gather entries 4163 * @nents: The number of scatter/gather entries 4164 * @direction: The direction of the DMA 4165 */ 4166 static inline int ib_dma_map_sg(struct ib_device *dev, 4167 struct scatterlist *sg, int nents, 4168 enum dma_data_direction direction) 4169 { 4170 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4171 } 4172 4173 /** 4174 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4175 * @dev: The device for which the DMA addresses were created 4176 * @sg: The array of scatter/gather entries 4177 * @nents: The number of scatter/gather entries 4178 * @direction: The direction of the DMA 4179 */ 4180 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4181 struct scatterlist *sg, int nents, 4182 enum dma_data_direction direction) 4183 { 4184 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4185 } 4186 4187 /** 4188 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4189 * @dev: The device to query 4190 * 4191 * The returned value represents a size in bytes. 4192 */ 4193 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4194 { 4195 if (ib_uses_virt_dma(dev)) 4196 return UINT_MAX; 4197 return dma_get_max_seg_size(dev->dma_device); 4198 } 4199 4200 /** 4201 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4202 * @dev: The device for which the DMA address was created 4203 * @addr: The DMA address 4204 * @size: The size of the region in bytes 4205 * @dir: The direction of the DMA 4206 */ 4207 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4208 u64 addr, 4209 size_t size, 4210 enum dma_data_direction dir) 4211 { 4212 if (!ib_uses_virt_dma(dev)) 4213 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4214 } 4215 4216 /** 4217 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4218 * @dev: The device for which the DMA address was created 4219 * @addr: The DMA address 4220 * @size: The size of the region in bytes 4221 * @dir: The direction of the DMA 4222 */ 4223 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4224 u64 addr, 4225 size_t size, 4226 enum dma_data_direction dir) 4227 { 4228 if (!ib_uses_virt_dma(dev)) 4229 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4230 } 4231 4232 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4233 * space. This function should be called when 'current' is the owning MM. 4234 */ 4235 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4236 u64 virt_addr, int mr_access_flags); 4237 4238 /* ib_advise_mr - give an advice about an address range in a memory region */ 4239 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4240 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4241 /** 4242 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4243 * HCA translation table. 4244 * @mr: The memory region to deregister. 4245 * @udata: Valid user data or NULL for kernel object 4246 * 4247 * This function can fail, if the memory region has memory windows bound to it. 4248 */ 4249 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4250 4251 /** 4252 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4253 * HCA translation table. 4254 * @mr: The memory region to deregister. 4255 * 4256 * This function can fail, if the memory region has memory windows bound to it. 4257 * 4258 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4259 */ 4260 static inline int ib_dereg_mr(struct ib_mr *mr) 4261 { 4262 return ib_dereg_mr_user(mr, NULL); 4263 } 4264 4265 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4266 u32 max_num_sg); 4267 4268 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4269 u32 max_num_data_sg, 4270 u32 max_num_meta_sg); 4271 4272 /** 4273 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4274 * R_Key and L_Key. 4275 * @mr - struct ib_mr pointer to be updated. 4276 * @newkey - new key to be used. 4277 */ 4278 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4279 { 4280 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4281 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4282 } 4283 4284 /** 4285 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4286 * for calculating a new rkey for type 2 memory windows. 4287 * @rkey - the rkey to increment. 4288 */ 4289 static inline u32 ib_inc_rkey(u32 rkey) 4290 { 4291 const u32 mask = 0x000000ff; 4292 return ((rkey + 1) & mask) | (rkey & ~mask); 4293 } 4294 4295 /** 4296 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4297 * @qp: QP to attach to the multicast group. The QP must be type 4298 * IB_QPT_UD. 4299 * @gid: Multicast group GID. 4300 * @lid: Multicast group LID in host byte order. 4301 * 4302 * In order to send and receive multicast packets, subnet 4303 * administration must have created the multicast group and configured 4304 * the fabric appropriately. The port associated with the specified 4305 * QP must also be a member of the multicast group. 4306 */ 4307 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4308 4309 /** 4310 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4311 * @qp: QP to detach from the multicast group. 4312 * @gid: Multicast group GID. 4313 * @lid: Multicast group LID in host byte order. 4314 */ 4315 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4316 4317 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4318 struct inode *inode, struct ib_udata *udata); 4319 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4320 4321 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4322 unsigned int flags) 4323 { 4324 /* 4325 * Local write permission is required if remote write or 4326 * remote atomic permission is also requested. 4327 */ 4328 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4329 !(flags & IB_ACCESS_LOCAL_WRITE)) 4330 return -EINVAL; 4331 4332 if (flags & ~IB_ACCESS_SUPPORTED) 4333 return -EINVAL; 4334 4335 if (flags & IB_ACCESS_ON_DEMAND && 4336 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4337 return -EINVAL; 4338 return 0; 4339 } 4340 4341 static inline bool ib_access_writable(int access_flags) 4342 { 4343 /* 4344 * We have writable memory backing the MR if any of the following 4345 * access flags are set. "Local write" and "remote write" obviously 4346 * require write access. "Remote atomic" can do things like fetch and 4347 * add, which will modify memory, and "MW bind" can change permissions 4348 * by binding a window. 4349 */ 4350 return access_flags & 4351 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4352 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4353 } 4354 4355 /** 4356 * ib_check_mr_status: lightweight check of MR status. 4357 * This routine may provide status checks on a selected 4358 * ib_mr. first use is for signature status check. 4359 * 4360 * @mr: A memory region. 4361 * @check_mask: Bitmask of which checks to perform from 4362 * ib_mr_status_check enumeration. 4363 * @mr_status: The container of relevant status checks. 4364 * failed checks will be indicated in the status bitmask 4365 * and the relevant info shall be in the error item. 4366 */ 4367 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4368 struct ib_mr_status *mr_status); 4369 4370 /** 4371 * ib_device_try_get: Hold a registration lock 4372 * device: The device to lock 4373 * 4374 * A device under an active registration lock cannot become unregistered. It 4375 * is only possible to obtain a registration lock on a device that is fully 4376 * registered, otherwise this function returns false. 4377 * 4378 * The registration lock is only necessary for actions which require the 4379 * device to still be registered. Uses that only require the device pointer to 4380 * be valid should use get_device(&ibdev->dev) to hold the memory. 4381 * 4382 */ 4383 static inline bool ib_device_try_get(struct ib_device *dev) 4384 { 4385 return refcount_inc_not_zero(&dev->refcount); 4386 } 4387 4388 void ib_device_put(struct ib_device *device); 4389 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4390 enum rdma_driver_id driver_id); 4391 struct ib_device *ib_device_get_by_name(const char *name, 4392 enum rdma_driver_id driver_id); 4393 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4394 u16 pkey, const union ib_gid *gid, 4395 const struct sockaddr *addr); 4396 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4397 unsigned int port); 4398 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port); 4399 4400 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4401 struct ib_wq_init_attr *init_attr); 4402 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4403 4404 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4405 unsigned int *sg_offset, unsigned int page_size); 4406 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4407 int data_sg_nents, unsigned int *data_sg_offset, 4408 struct scatterlist *meta_sg, int meta_sg_nents, 4409 unsigned int *meta_sg_offset, unsigned int page_size); 4410 4411 static inline int 4412 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4413 unsigned int *sg_offset, unsigned int page_size) 4414 { 4415 int n; 4416 4417 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4418 mr->iova = 0; 4419 4420 return n; 4421 } 4422 4423 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4424 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4425 4426 void ib_drain_rq(struct ib_qp *qp); 4427 void ib_drain_sq(struct ib_qp *qp); 4428 void ib_drain_qp(struct ib_qp *qp); 4429 4430 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4431 u8 *width); 4432 4433 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4434 { 4435 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4436 return attr->roce.dmac; 4437 return NULL; 4438 } 4439 4440 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4441 { 4442 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4443 attr->ib.dlid = (u16)dlid; 4444 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4445 attr->opa.dlid = dlid; 4446 } 4447 4448 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4449 { 4450 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4451 return attr->ib.dlid; 4452 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4453 return attr->opa.dlid; 4454 return 0; 4455 } 4456 4457 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4458 { 4459 attr->sl = sl; 4460 } 4461 4462 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4463 { 4464 return attr->sl; 4465 } 4466 4467 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4468 u8 src_path_bits) 4469 { 4470 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4471 attr->ib.src_path_bits = src_path_bits; 4472 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4473 attr->opa.src_path_bits = src_path_bits; 4474 } 4475 4476 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4477 { 4478 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4479 return attr->ib.src_path_bits; 4480 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4481 return attr->opa.src_path_bits; 4482 return 0; 4483 } 4484 4485 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4486 bool make_grd) 4487 { 4488 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4489 attr->opa.make_grd = make_grd; 4490 } 4491 4492 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4493 { 4494 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4495 return attr->opa.make_grd; 4496 return false; 4497 } 4498 4499 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4500 { 4501 attr->port_num = port_num; 4502 } 4503 4504 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4505 { 4506 return attr->port_num; 4507 } 4508 4509 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4510 u8 static_rate) 4511 { 4512 attr->static_rate = static_rate; 4513 } 4514 4515 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4516 { 4517 return attr->static_rate; 4518 } 4519 4520 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4521 enum ib_ah_flags flag) 4522 { 4523 attr->ah_flags = flag; 4524 } 4525 4526 static inline enum ib_ah_flags 4527 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4528 { 4529 return attr->ah_flags; 4530 } 4531 4532 static inline const struct ib_global_route 4533 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4534 { 4535 return &attr->grh; 4536 } 4537 4538 /*To retrieve and modify the grh */ 4539 static inline struct ib_global_route 4540 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4541 { 4542 return &attr->grh; 4543 } 4544 4545 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4546 { 4547 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4548 4549 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4550 } 4551 4552 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4553 __be64 prefix) 4554 { 4555 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4556 4557 grh->dgid.global.subnet_prefix = prefix; 4558 } 4559 4560 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4561 __be64 if_id) 4562 { 4563 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4564 4565 grh->dgid.global.interface_id = if_id; 4566 } 4567 4568 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4569 union ib_gid *dgid, u32 flow_label, 4570 u8 sgid_index, u8 hop_limit, 4571 u8 traffic_class) 4572 { 4573 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4574 4575 attr->ah_flags = IB_AH_GRH; 4576 if (dgid) 4577 grh->dgid = *dgid; 4578 grh->flow_label = flow_label; 4579 grh->sgid_index = sgid_index; 4580 grh->hop_limit = hop_limit; 4581 grh->traffic_class = traffic_class; 4582 grh->sgid_attr = NULL; 4583 } 4584 4585 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4586 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4587 u32 flow_label, u8 hop_limit, u8 traffic_class, 4588 const struct ib_gid_attr *sgid_attr); 4589 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4590 const struct rdma_ah_attr *src); 4591 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4592 const struct rdma_ah_attr *new); 4593 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4594 4595 /** 4596 * rdma_ah_find_type - Return address handle type. 4597 * 4598 * @dev: Device to be checked 4599 * @port_num: Port number 4600 */ 4601 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4602 u32 port_num) 4603 { 4604 if (rdma_protocol_roce(dev, port_num)) 4605 return RDMA_AH_ATTR_TYPE_ROCE; 4606 if (rdma_protocol_ib(dev, port_num)) { 4607 if (rdma_cap_opa_ah(dev, port_num)) 4608 return RDMA_AH_ATTR_TYPE_OPA; 4609 return RDMA_AH_ATTR_TYPE_IB; 4610 } 4611 4612 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4613 } 4614 4615 /** 4616 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4617 * In the current implementation the only way to 4618 * get the 32bit lid is from other sources for OPA. 4619 * For IB, lids will always be 16bits so cast the 4620 * value accordingly. 4621 * 4622 * @lid: A 32bit LID 4623 */ 4624 static inline u16 ib_lid_cpu16(u32 lid) 4625 { 4626 WARN_ON_ONCE(lid & 0xFFFF0000); 4627 return (u16)lid; 4628 } 4629 4630 /** 4631 * ib_lid_be16 - Return lid in 16bit BE encoding. 4632 * 4633 * @lid: A 32bit LID 4634 */ 4635 static inline __be16 ib_lid_be16(u32 lid) 4636 { 4637 WARN_ON_ONCE(lid & 0xFFFF0000); 4638 return cpu_to_be16((u16)lid); 4639 } 4640 4641 /** 4642 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4643 * vector 4644 * @device: the rdma device 4645 * @comp_vector: index of completion vector 4646 * 4647 * Returns NULL on failure, otherwise a corresponding cpu map of the 4648 * completion vector (returns all-cpus map if the device driver doesn't 4649 * implement get_vector_affinity). 4650 */ 4651 static inline const struct cpumask * 4652 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4653 { 4654 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4655 !device->ops.get_vector_affinity) 4656 return NULL; 4657 4658 return device->ops.get_vector_affinity(device, comp_vector); 4659 4660 } 4661 4662 /** 4663 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4664 * and add their gids, as needed, to the relevant RoCE devices. 4665 * 4666 * @device: the rdma device 4667 */ 4668 void rdma_roce_rescan_device(struct ib_device *ibdev); 4669 4670 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4671 4672 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4673 4674 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4675 enum rdma_netdev_t type, const char *name, 4676 unsigned char name_assign_type, 4677 void (*setup)(struct net_device *)); 4678 4679 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4680 enum rdma_netdev_t type, const char *name, 4681 unsigned char name_assign_type, 4682 void (*setup)(struct net_device *), 4683 struct net_device *netdev); 4684 4685 /** 4686 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4687 * 4688 * @device: device pointer for which ib_device pointer to retrieve 4689 * 4690 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4691 * 4692 */ 4693 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4694 { 4695 struct ib_core_device *coredev = 4696 container_of(device, struct ib_core_device, dev); 4697 4698 return coredev->owner; 4699 } 4700 4701 /** 4702 * ibdev_to_node - return the NUMA node for a given ib_device 4703 * @dev: device to get the NUMA node for. 4704 */ 4705 static inline int ibdev_to_node(struct ib_device *ibdev) 4706 { 4707 struct device *parent = ibdev->dev.parent; 4708 4709 if (!parent) 4710 return NUMA_NO_NODE; 4711 return dev_to_node(parent); 4712 } 4713 4714 /** 4715 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4716 * ib_device holder structure from device pointer. 4717 * 4718 * NOTE: New drivers should not make use of this API; This API is only for 4719 * existing drivers who have exposed sysfs entries using 4720 * ops->device_group. 4721 */ 4722 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4723 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4724 4725 bool rdma_dev_access_netns(const struct ib_device *device, 4726 const struct net *net); 4727 4728 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4729 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4730 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4731 4732 /** 4733 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4734 * on the flow_label 4735 * 4736 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4737 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4738 * convention. 4739 */ 4740 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4741 { 4742 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4743 4744 fl_low ^= fl_high >> 14; 4745 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4746 } 4747 4748 /** 4749 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4750 * local and remote qpn values 4751 * 4752 * This function folded the multiplication results of two qpns, 24 bit each, 4753 * fields, and converts it to a 20 bit results. 4754 * 4755 * This function will create symmetric flow_label value based on the local 4756 * and remote qpn values. this will allow both the requester and responder 4757 * to calculate the same flow_label for a given connection. 4758 * 4759 * This helper function should be used by driver in case the upper layer 4760 * provide a zero flow_label value. This is to improve entropy of RDMA 4761 * traffic in the network. 4762 */ 4763 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4764 { 4765 u64 v = (u64)lqpn * rqpn; 4766 4767 v ^= v >> 20; 4768 v ^= v >> 40; 4769 4770 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4771 } 4772 4773 /** 4774 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4775 * label. If flow label is not defined in GRH then 4776 * calculate it based on lqpn/rqpn. 4777 * 4778 * @fl: flow label from GRH 4779 * @lqpn: local qp number 4780 * @rqpn: remote qp number 4781 */ 4782 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4783 { 4784 if (!fl) 4785 fl = rdma_calc_flow_label(lqpn, rqpn); 4786 4787 return rdma_flow_label_to_udp_sport(fl); 4788 } 4789 4790 const struct ib_port_immutable* 4791 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4792 #endif /* IB_VERBS_H */ 4793