1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 struct ib_rss_caps { 265 /* Corresponding bit will be set if qp type from 266 * 'enum ib_qp_type' is supported, e.g. 267 * supported_qpts |= 1 << IB_QPT_UD 268 */ 269 u32 supported_qpts; 270 u32 max_rwq_indirection_tables; 271 u32 max_rwq_indirection_table_size; 272 }; 273 274 enum ib_cq_creation_flags { 275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 277 }; 278 279 struct ib_cq_init_attr { 280 unsigned int cqe; 281 int comp_vector; 282 u32 flags; 283 }; 284 285 struct ib_device_attr { 286 u64 fw_ver; 287 __be64 sys_image_guid; 288 u64 max_mr_size; 289 u64 page_size_cap; 290 u32 vendor_id; 291 u32 vendor_part_id; 292 u32 hw_ver; 293 int max_qp; 294 int max_qp_wr; 295 u64 device_cap_flags; 296 int max_sge; 297 int max_sge_rd; 298 int max_cq; 299 int max_cqe; 300 int max_mr; 301 int max_pd; 302 int max_qp_rd_atom; 303 int max_ee_rd_atom; 304 int max_res_rd_atom; 305 int max_qp_init_rd_atom; 306 int max_ee_init_rd_atom; 307 enum ib_atomic_cap atomic_cap; 308 enum ib_atomic_cap masked_atomic_cap; 309 int max_ee; 310 int max_rdd; 311 int max_mw; 312 int max_raw_ipv6_qp; 313 int max_raw_ethy_qp; 314 int max_mcast_grp; 315 int max_mcast_qp_attach; 316 int max_total_mcast_qp_attach; 317 int max_ah; 318 int max_fmr; 319 int max_map_per_fmr; 320 int max_srq; 321 int max_srq_wr; 322 int max_srq_sge; 323 unsigned int max_fast_reg_page_list_len; 324 u16 max_pkeys; 325 u8 local_ca_ack_delay; 326 int sig_prot_cap; 327 int sig_guard_cap; 328 struct ib_odp_caps odp_caps; 329 uint64_t timestamp_mask; 330 uint64_t hca_core_clock; /* in KHZ */ 331 struct ib_rss_caps rss_caps; 332 u32 max_wq_type_rq; 333 }; 334 335 enum ib_mtu { 336 IB_MTU_256 = 1, 337 IB_MTU_512 = 2, 338 IB_MTU_1024 = 3, 339 IB_MTU_2048 = 4, 340 IB_MTU_4096 = 5 341 }; 342 343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 344 { 345 switch (mtu) { 346 case IB_MTU_256: return 256; 347 case IB_MTU_512: return 512; 348 case IB_MTU_1024: return 1024; 349 case IB_MTU_2048: return 2048; 350 case IB_MTU_4096: return 4096; 351 default: return -1; 352 } 353 } 354 355 enum ib_port_state { 356 IB_PORT_NOP = 0, 357 IB_PORT_DOWN = 1, 358 IB_PORT_INIT = 2, 359 IB_PORT_ARMED = 3, 360 IB_PORT_ACTIVE = 4, 361 IB_PORT_ACTIVE_DEFER = 5 362 }; 363 364 enum ib_port_cap_flags { 365 IB_PORT_SM = 1 << 1, 366 IB_PORT_NOTICE_SUP = 1 << 2, 367 IB_PORT_TRAP_SUP = 1 << 3, 368 IB_PORT_OPT_IPD_SUP = 1 << 4, 369 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 370 IB_PORT_SL_MAP_SUP = 1 << 6, 371 IB_PORT_MKEY_NVRAM = 1 << 7, 372 IB_PORT_PKEY_NVRAM = 1 << 8, 373 IB_PORT_LED_INFO_SUP = 1 << 9, 374 IB_PORT_SM_DISABLED = 1 << 10, 375 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 376 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 377 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 378 IB_PORT_CM_SUP = 1 << 16, 379 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 380 IB_PORT_REINIT_SUP = 1 << 18, 381 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 382 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 383 IB_PORT_DR_NOTICE_SUP = 1 << 21, 384 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 385 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 386 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 387 IB_PORT_CLIENT_REG_SUP = 1 << 25, 388 IB_PORT_IP_BASED_GIDS = 1 << 26, 389 }; 390 391 enum ib_port_width { 392 IB_WIDTH_1X = 1, 393 IB_WIDTH_4X = 2, 394 IB_WIDTH_8X = 4, 395 IB_WIDTH_12X = 8 396 }; 397 398 static inline int ib_width_enum_to_int(enum ib_port_width width) 399 { 400 switch (width) { 401 case IB_WIDTH_1X: return 1; 402 case IB_WIDTH_4X: return 4; 403 case IB_WIDTH_8X: return 8; 404 case IB_WIDTH_12X: return 12; 405 default: return -1; 406 } 407 } 408 409 enum ib_port_speed { 410 IB_SPEED_SDR = 1, 411 IB_SPEED_DDR = 2, 412 IB_SPEED_QDR = 4, 413 IB_SPEED_FDR10 = 8, 414 IB_SPEED_FDR = 16, 415 IB_SPEED_EDR = 32 416 }; 417 418 /** 419 * struct rdma_hw_stats 420 * @timestamp - Used by the core code to track when the last update was 421 * @lifespan - Used by the core code to determine how old the counters 422 * should be before being updated again. Stored in jiffies, defaults 423 * to 10 milliseconds, drivers can override the default be specifying 424 * their own value during their allocation routine. 425 * @name - Array of pointers to static names used for the counters in 426 * directory. 427 * @num_counters - How many hardware counters there are. If name is 428 * shorter than this number, a kernel oops will result. Driver authors 429 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 430 * in their code to prevent this. 431 * @value - Array of u64 counters that are accessed by the sysfs code and 432 * filled in by the drivers get_stats routine 433 */ 434 struct rdma_hw_stats { 435 unsigned long timestamp; 436 unsigned long lifespan; 437 const char * const *names; 438 int num_counters; 439 u64 value[]; 440 }; 441 442 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 443 /** 444 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 445 * for drivers. 446 * @names - Array of static const char * 447 * @num_counters - How many elements in array 448 * @lifespan - How many milliseconds between updates 449 */ 450 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 451 const char * const *names, int num_counters, 452 unsigned long lifespan) 453 { 454 struct rdma_hw_stats *stats; 455 456 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 457 GFP_KERNEL); 458 if (!stats) 459 return NULL; 460 stats->names = names; 461 stats->num_counters = num_counters; 462 stats->lifespan = msecs_to_jiffies(lifespan); 463 464 return stats; 465 } 466 467 468 /* Define bits for the various functionality this port needs to be supported by 469 * the core. 470 */ 471 /* Management 0x00000FFF */ 472 #define RDMA_CORE_CAP_IB_MAD 0x00000001 473 #define RDMA_CORE_CAP_IB_SMI 0x00000002 474 #define RDMA_CORE_CAP_IB_CM 0x00000004 475 #define RDMA_CORE_CAP_IW_CM 0x00000008 476 #define RDMA_CORE_CAP_IB_SA 0x00000010 477 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 478 479 /* Address format 0x000FF000 */ 480 #define RDMA_CORE_CAP_AF_IB 0x00001000 481 #define RDMA_CORE_CAP_ETH_AH 0x00002000 482 483 /* Protocol 0xFFF00000 */ 484 #define RDMA_CORE_CAP_PROT_IB 0x00100000 485 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 486 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 487 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 488 489 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 490 | RDMA_CORE_CAP_IB_MAD \ 491 | RDMA_CORE_CAP_IB_SMI \ 492 | RDMA_CORE_CAP_IB_CM \ 493 | RDMA_CORE_CAP_IB_SA \ 494 | RDMA_CORE_CAP_AF_IB) 495 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 496 | RDMA_CORE_CAP_IB_MAD \ 497 | RDMA_CORE_CAP_IB_CM \ 498 | RDMA_CORE_CAP_AF_IB \ 499 | RDMA_CORE_CAP_ETH_AH) 500 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 501 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 502 | RDMA_CORE_CAP_IB_MAD \ 503 | RDMA_CORE_CAP_IB_CM \ 504 | RDMA_CORE_CAP_AF_IB \ 505 | RDMA_CORE_CAP_ETH_AH) 506 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 507 | RDMA_CORE_CAP_IW_CM) 508 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 509 | RDMA_CORE_CAP_OPA_MAD) 510 511 struct ib_port_attr { 512 u64 subnet_prefix; 513 enum ib_port_state state; 514 enum ib_mtu max_mtu; 515 enum ib_mtu active_mtu; 516 int gid_tbl_len; 517 u32 port_cap_flags; 518 u32 max_msg_sz; 519 u32 bad_pkey_cntr; 520 u32 qkey_viol_cntr; 521 u16 pkey_tbl_len; 522 u16 lid; 523 u16 sm_lid; 524 u8 lmc; 525 u8 max_vl_num; 526 u8 sm_sl; 527 u8 subnet_timeout; 528 u8 init_type_reply; 529 u8 active_width; 530 u8 active_speed; 531 u8 phys_state; 532 bool grh_required; 533 }; 534 535 enum ib_device_modify_flags { 536 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 537 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 538 }; 539 540 #define IB_DEVICE_NODE_DESC_MAX 64 541 542 struct ib_device_modify { 543 u64 sys_image_guid; 544 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 545 }; 546 547 enum ib_port_modify_flags { 548 IB_PORT_SHUTDOWN = 1, 549 IB_PORT_INIT_TYPE = (1<<2), 550 IB_PORT_RESET_QKEY_CNTR = (1<<3) 551 }; 552 553 struct ib_port_modify { 554 u32 set_port_cap_mask; 555 u32 clr_port_cap_mask; 556 u8 init_type; 557 }; 558 559 enum ib_event_type { 560 IB_EVENT_CQ_ERR, 561 IB_EVENT_QP_FATAL, 562 IB_EVENT_QP_REQ_ERR, 563 IB_EVENT_QP_ACCESS_ERR, 564 IB_EVENT_COMM_EST, 565 IB_EVENT_SQ_DRAINED, 566 IB_EVENT_PATH_MIG, 567 IB_EVENT_PATH_MIG_ERR, 568 IB_EVENT_DEVICE_FATAL, 569 IB_EVENT_PORT_ACTIVE, 570 IB_EVENT_PORT_ERR, 571 IB_EVENT_LID_CHANGE, 572 IB_EVENT_PKEY_CHANGE, 573 IB_EVENT_SM_CHANGE, 574 IB_EVENT_SRQ_ERR, 575 IB_EVENT_SRQ_LIMIT_REACHED, 576 IB_EVENT_QP_LAST_WQE_REACHED, 577 IB_EVENT_CLIENT_REREGISTER, 578 IB_EVENT_GID_CHANGE, 579 IB_EVENT_WQ_FATAL, 580 }; 581 582 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 583 584 struct ib_event { 585 struct ib_device *device; 586 union { 587 struct ib_cq *cq; 588 struct ib_qp *qp; 589 struct ib_srq *srq; 590 struct ib_wq *wq; 591 u8 port_num; 592 } element; 593 enum ib_event_type event; 594 }; 595 596 struct ib_event_handler { 597 struct ib_device *device; 598 void (*handler)(struct ib_event_handler *, struct ib_event *); 599 struct list_head list; 600 }; 601 602 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 603 do { \ 604 (_ptr)->device = _device; \ 605 (_ptr)->handler = _handler; \ 606 INIT_LIST_HEAD(&(_ptr)->list); \ 607 } while (0) 608 609 struct ib_global_route { 610 union ib_gid dgid; 611 u32 flow_label; 612 u8 sgid_index; 613 u8 hop_limit; 614 u8 traffic_class; 615 }; 616 617 struct ib_grh { 618 __be32 version_tclass_flow; 619 __be16 paylen; 620 u8 next_hdr; 621 u8 hop_limit; 622 union ib_gid sgid; 623 union ib_gid dgid; 624 }; 625 626 union rdma_network_hdr { 627 struct ib_grh ibgrh; 628 struct { 629 /* The IB spec states that if it's IPv4, the header 630 * is located in the last 20 bytes of the header. 631 */ 632 u8 reserved[20]; 633 struct iphdr roce4grh; 634 }; 635 }; 636 637 enum { 638 IB_MULTICAST_QPN = 0xffffff 639 }; 640 641 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 642 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 643 644 enum ib_ah_flags { 645 IB_AH_GRH = 1 646 }; 647 648 enum ib_rate { 649 IB_RATE_PORT_CURRENT = 0, 650 IB_RATE_2_5_GBPS = 2, 651 IB_RATE_5_GBPS = 5, 652 IB_RATE_10_GBPS = 3, 653 IB_RATE_20_GBPS = 6, 654 IB_RATE_30_GBPS = 4, 655 IB_RATE_40_GBPS = 7, 656 IB_RATE_60_GBPS = 8, 657 IB_RATE_80_GBPS = 9, 658 IB_RATE_120_GBPS = 10, 659 IB_RATE_14_GBPS = 11, 660 IB_RATE_56_GBPS = 12, 661 IB_RATE_112_GBPS = 13, 662 IB_RATE_168_GBPS = 14, 663 IB_RATE_25_GBPS = 15, 664 IB_RATE_100_GBPS = 16, 665 IB_RATE_200_GBPS = 17, 666 IB_RATE_300_GBPS = 18 667 }; 668 669 /** 670 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 671 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 672 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 673 * @rate: rate to convert. 674 */ 675 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 676 677 /** 678 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 679 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 680 * @rate: rate to convert. 681 */ 682 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 683 684 685 /** 686 * enum ib_mr_type - memory region type 687 * @IB_MR_TYPE_MEM_REG: memory region that is used for 688 * normal registration 689 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 690 * signature operations (data-integrity 691 * capable regions) 692 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 693 * register any arbitrary sg lists (without 694 * the normal mr constraints - see 695 * ib_map_mr_sg) 696 */ 697 enum ib_mr_type { 698 IB_MR_TYPE_MEM_REG, 699 IB_MR_TYPE_SIGNATURE, 700 IB_MR_TYPE_SG_GAPS, 701 }; 702 703 /** 704 * Signature types 705 * IB_SIG_TYPE_NONE: Unprotected. 706 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 707 */ 708 enum ib_signature_type { 709 IB_SIG_TYPE_NONE, 710 IB_SIG_TYPE_T10_DIF, 711 }; 712 713 /** 714 * Signature T10-DIF block-guard types 715 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 716 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 717 */ 718 enum ib_t10_dif_bg_type { 719 IB_T10DIF_CRC, 720 IB_T10DIF_CSUM 721 }; 722 723 /** 724 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 725 * domain. 726 * @bg_type: T10-DIF block guard type (CRC|CSUM) 727 * @pi_interval: protection information interval. 728 * @bg: seed of guard computation. 729 * @app_tag: application tag of guard block 730 * @ref_tag: initial guard block reference tag. 731 * @ref_remap: Indicate wethear the reftag increments each block 732 * @app_escape: Indicate to skip block check if apptag=0xffff 733 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 734 * @apptag_check_mask: check bitmask of application tag. 735 */ 736 struct ib_t10_dif_domain { 737 enum ib_t10_dif_bg_type bg_type; 738 u16 pi_interval; 739 u16 bg; 740 u16 app_tag; 741 u32 ref_tag; 742 bool ref_remap; 743 bool app_escape; 744 bool ref_escape; 745 u16 apptag_check_mask; 746 }; 747 748 /** 749 * struct ib_sig_domain - Parameters for signature domain 750 * @sig_type: specific signauture type 751 * @sig: union of all signature domain attributes that may 752 * be used to set domain layout. 753 */ 754 struct ib_sig_domain { 755 enum ib_signature_type sig_type; 756 union { 757 struct ib_t10_dif_domain dif; 758 } sig; 759 }; 760 761 /** 762 * struct ib_sig_attrs - Parameters for signature handover operation 763 * @check_mask: bitmask for signature byte check (8 bytes) 764 * @mem: memory domain layout desciptor. 765 * @wire: wire domain layout desciptor. 766 */ 767 struct ib_sig_attrs { 768 u8 check_mask; 769 struct ib_sig_domain mem; 770 struct ib_sig_domain wire; 771 }; 772 773 enum ib_sig_err_type { 774 IB_SIG_BAD_GUARD, 775 IB_SIG_BAD_REFTAG, 776 IB_SIG_BAD_APPTAG, 777 }; 778 779 /** 780 * struct ib_sig_err - signature error descriptor 781 */ 782 struct ib_sig_err { 783 enum ib_sig_err_type err_type; 784 u32 expected; 785 u32 actual; 786 u64 sig_err_offset; 787 u32 key; 788 }; 789 790 enum ib_mr_status_check { 791 IB_MR_CHECK_SIG_STATUS = 1, 792 }; 793 794 /** 795 * struct ib_mr_status - Memory region status container 796 * 797 * @fail_status: Bitmask of MR checks status. For each 798 * failed check a corresponding status bit is set. 799 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 800 * failure. 801 */ 802 struct ib_mr_status { 803 u32 fail_status; 804 struct ib_sig_err sig_err; 805 }; 806 807 /** 808 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 809 * enum. 810 * @mult: multiple to convert. 811 */ 812 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 813 814 struct ib_ah_attr { 815 struct ib_global_route grh; 816 u16 dlid; 817 u8 sl; 818 u8 src_path_bits; 819 u8 static_rate; 820 u8 ah_flags; 821 u8 port_num; 822 u8 dmac[ETH_ALEN]; 823 }; 824 825 enum ib_wc_status { 826 IB_WC_SUCCESS, 827 IB_WC_LOC_LEN_ERR, 828 IB_WC_LOC_QP_OP_ERR, 829 IB_WC_LOC_EEC_OP_ERR, 830 IB_WC_LOC_PROT_ERR, 831 IB_WC_WR_FLUSH_ERR, 832 IB_WC_MW_BIND_ERR, 833 IB_WC_BAD_RESP_ERR, 834 IB_WC_LOC_ACCESS_ERR, 835 IB_WC_REM_INV_REQ_ERR, 836 IB_WC_REM_ACCESS_ERR, 837 IB_WC_REM_OP_ERR, 838 IB_WC_RETRY_EXC_ERR, 839 IB_WC_RNR_RETRY_EXC_ERR, 840 IB_WC_LOC_RDD_VIOL_ERR, 841 IB_WC_REM_INV_RD_REQ_ERR, 842 IB_WC_REM_ABORT_ERR, 843 IB_WC_INV_EECN_ERR, 844 IB_WC_INV_EEC_STATE_ERR, 845 IB_WC_FATAL_ERR, 846 IB_WC_RESP_TIMEOUT_ERR, 847 IB_WC_GENERAL_ERR 848 }; 849 850 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 851 852 enum ib_wc_opcode { 853 IB_WC_SEND, 854 IB_WC_RDMA_WRITE, 855 IB_WC_RDMA_READ, 856 IB_WC_COMP_SWAP, 857 IB_WC_FETCH_ADD, 858 IB_WC_LSO, 859 IB_WC_LOCAL_INV, 860 IB_WC_REG_MR, 861 IB_WC_MASKED_COMP_SWAP, 862 IB_WC_MASKED_FETCH_ADD, 863 /* 864 * Set value of IB_WC_RECV so consumers can test if a completion is a 865 * receive by testing (opcode & IB_WC_RECV). 866 */ 867 IB_WC_RECV = 1 << 7, 868 IB_WC_RECV_RDMA_WITH_IMM 869 }; 870 871 enum ib_wc_flags { 872 IB_WC_GRH = 1, 873 IB_WC_WITH_IMM = (1<<1), 874 IB_WC_WITH_INVALIDATE = (1<<2), 875 IB_WC_IP_CSUM_OK = (1<<3), 876 IB_WC_WITH_SMAC = (1<<4), 877 IB_WC_WITH_VLAN = (1<<5), 878 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 879 }; 880 881 struct ib_wc { 882 union { 883 u64 wr_id; 884 struct ib_cqe *wr_cqe; 885 }; 886 enum ib_wc_status status; 887 enum ib_wc_opcode opcode; 888 u32 vendor_err; 889 u32 byte_len; 890 struct ib_qp *qp; 891 union { 892 __be32 imm_data; 893 u32 invalidate_rkey; 894 } ex; 895 u32 src_qp; 896 int wc_flags; 897 u16 pkey_index; 898 u16 slid; 899 u8 sl; 900 u8 dlid_path_bits; 901 u8 port_num; /* valid only for DR SMPs on switches */ 902 u8 smac[ETH_ALEN]; 903 u16 vlan_id; 904 u8 network_hdr_type; 905 }; 906 907 enum ib_cq_notify_flags { 908 IB_CQ_SOLICITED = 1 << 0, 909 IB_CQ_NEXT_COMP = 1 << 1, 910 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 911 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 912 }; 913 914 enum ib_srq_type { 915 IB_SRQT_BASIC, 916 IB_SRQT_XRC 917 }; 918 919 enum ib_srq_attr_mask { 920 IB_SRQ_MAX_WR = 1 << 0, 921 IB_SRQ_LIMIT = 1 << 1, 922 }; 923 924 struct ib_srq_attr { 925 u32 max_wr; 926 u32 max_sge; 927 u32 srq_limit; 928 }; 929 930 struct ib_srq_init_attr { 931 void (*event_handler)(struct ib_event *, void *); 932 void *srq_context; 933 struct ib_srq_attr attr; 934 enum ib_srq_type srq_type; 935 936 union { 937 struct { 938 struct ib_xrcd *xrcd; 939 struct ib_cq *cq; 940 } xrc; 941 } ext; 942 }; 943 944 struct ib_qp_cap { 945 u32 max_send_wr; 946 u32 max_recv_wr; 947 u32 max_send_sge; 948 u32 max_recv_sge; 949 u32 max_inline_data; 950 951 /* 952 * Maximum number of rdma_rw_ctx structures in flight at a time. 953 * ib_create_qp() will calculate the right amount of neededed WRs 954 * and MRs based on this. 955 */ 956 u32 max_rdma_ctxs; 957 }; 958 959 enum ib_sig_type { 960 IB_SIGNAL_ALL_WR, 961 IB_SIGNAL_REQ_WR 962 }; 963 964 enum ib_qp_type { 965 /* 966 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 967 * here (and in that order) since the MAD layer uses them as 968 * indices into a 2-entry table. 969 */ 970 IB_QPT_SMI, 971 IB_QPT_GSI, 972 973 IB_QPT_RC, 974 IB_QPT_UC, 975 IB_QPT_UD, 976 IB_QPT_RAW_IPV6, 977 IB_QPT_RAW_ETHERTYPE, 978 IB_QPT_RAW_PACKET = 8, 979 IB_QPT_XRC_INI = 9, 980 IB_QPT_XRC_TGT, 981 IB_QPT_MAX, 982 /* Reserve a range for qp types internal to the low level driver. 983 * These qp types will not be visible at the IB core layer, so the 984 * IB_QPT_MAX usages should not be affected in the core layer 985 */ 986 IB_QPT_RESERVED1 = 0x1000, 987 IB_QPT_RESERVED2, 988 IB_QPT_RESERVED3, 989 IB_QPT_RESERVED4, 990 IB_QPT_RESERVED5, 991 IB_QPT_RESERVED6, 992 IB_QPT_RESERVED7, 993 IB_QPT_RESERVED8, 994 IB_QPT_RESERVED9, 995 IB_QPT_RESERVED10, 996 }; 997 998 enum ib_qp_create_flags { 999 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1000 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1001 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1002 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1003 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1004 IB_QP_CREATE_NETIF_QP = 1 << 5, 1005 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1006 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1007 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1008 /* reserve bits 26-31 for low level drivers' internal use */ 1009 IB_QP_CREATE_RESERVED_START = 1 << 26, 1010 IB_QP_CREATE_RESERVED_END = 1 << 31, 1011 }; 1012 1013 /* 1014 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1015 * callback to destroy the passed in QP. 1016 */ 1017 1018 struct ib_qp_init_attr { 1019 void (*event_handler)(struct ib_event *, void *); 1020 void *qp_context; 1021 struct ib_cq *send_cq; 1022 struct ib_cq *recv_cq; 1023 struct ib_srq *srq; 1024 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1025 struct ib_qp_cap cap; 1026 enum ib_sig_type sq_sig_type; 1027 enum ib_qp_type qp_type; 1028 enum ib_qp_create_flags create_flags; 1029 1030 /* 1031 * Only needed for special QP types, or when using the RW API. 1032 */ 1033 u8 port_num; 1034 struct ib_rwq_ind_table *rwq_ind_tbl; 1035 }; 1036 1037 struct ib_qp_open_attr { 1038 void (*event_handler)(struct ib_event *, void *); 1039 void *qp_context; 1040 u32 qp_num; 1041 enum ib_qp_type qp_type; 1042 }; 1043 1044 enum ib_rnr_timeout { 1045 IB_RNR_TIMER_655_36 = 0, 1046 IB_RNR_TIMER_000_01 = 1, 1047 IB_RNR_TIMER_000_02 = 2, 1048 IB_RNR_TIMER_000_03 = 3, 1049 IB_RNR_TIMER_000_04 = 4, 1050 IB_RNR_TIMER_000_06 = 5, 1051 IB_RNR_TIMER_000_08 = 6, 1052 IB_RNR_TIMER_000_12 = 7, 1053 IB_RNR_TIMER_000_16 = 8, 1054 IB_RNR_TIMER_000_24 = 9, 1055 IB_RNR_TIMER_000_32 = 10, 1056 IB_RNR_TIMER_000_48 = 11, 1057 IB_RNR_TIMER_000_64 = 12, 1058 IB_RNR_TIMER_000_96 = 13, 1059 IB_RNR_TIMER_001_28 = 14, 1060 IB_RNR_TIMER_001_92 = 15, 1061 IB_RNR_TIMER_002_56 = 16, 1062 IB_RNR_TIMER_003_84 = 17, 1063 IB_RNR_TIMER_005_12 = 18, 1064 IB_RNR_TIMER_007_68 = 19, 1065 IB_RNR_TIMER_010_24 = 20, 1066 IB_RNR_TIMER_015_36 = 21, 1067 IB_RNR_TIMER_020_48 = 22, 1068 IB_RNR_TIMER_030_72 = 23, 1069 IB_RNR_TIMER_040_96 = 24, 1070 IB_RNR_TIMER_061_44 = 25, 1071 IB_RNR_TIMER_081_92 = 26, 1072 IB_RNR_TIMER_122_88 = 27, 1073 IB_RNR_TIMER_163_84 = 28, 1074 IB_RNR_TIMER_245_76 = 29, 1075 IB_RNR_TIMER_327_68 = 30, 1076 IB_RNR_TIMER_491_52 = 31 1077 }; 1078 1079 enum ib_qp_attr_mask { 1080 IB_QP_STATE = 1, 1081 IB_QP_CUR_STATE = (1<<1), 1082 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1083 IB_QP_ACCESS_FLAGS = (1<<3), 1084 IB_QP_PKEY_INDEX = (1<<4), 1085 IB_QP_PORT = (1<<5), 1086 IB_QP_QKEY = (1<<6), 1087 IB_QP_AV = (1<<7), 1088 IB_QP_PATH_MTU = (1<<8), 1089 IB_QP_TIMEOUT = (1<<9), 1090 IB_QP_RETRY_CNT = (1<<10), 1091 IB_QP_RNR_RETRY = (1<<11), 1092 IB_QP_RQ_PSN = (1<<12), 1093 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1094 IB_QP_ALT_PATH = (1<<14), 1095 IB_QP_MIN_RNR_TIMER = (1<<15), 1096 IB_QP_SQ_PSN = (1<<16), 1097 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1098 IB_QP_PATH_MIG_STATE = (1<<18), 1099 IB_QP_CAP = (1<<19), 1100 IB_QP_DEST_QPN = (1<<20), 1101 IB_QP_RESERVED1 = (1<<21), 1102 IB_QP_RESERVED2 = (1<<22), 1103 IB_QP_RESERVED3 = (1<<23), 1104 IB_QP_RESERVED4 = (1<<24), 1105 IB_QP_RATE_LIMIT = (1<<25), 1106 }; 1107 1108 enum ib_qp_state { 1109 IB_QPS_RESET, 1110 IB_QPS_INIT, 1111 IB_QPS_RTR, 1112 IB_QPS_RTS, 1113 IB_QPS_SQD, 1114 IB_QPS_SQE, 1115 IB_QPS_ERR 1116 }; 1117 1118 enum ib_mig_state { 1119 IB_MIG_MIGRATED, 1120 IB_MIG_REARM, 1121 IB_MIG_ARMED 1122 }; 1123 1124 enum ib_mw_type { 1125 IB_MW_TYPE_1 = 1, 1126 IB_MW_TYPE_2 = 2 1127 }; 1128 1129 struct ib_qp_attr { 1130 enum ib_qp_state qp_state; 1131 enum ib_qp_state cur_qp_state; 1132 enum ib_mtu path_mtu; 1133 enum ib_mig_state path_mig_state; 1134 u32 qkey; 1135 u32 rq_psn; 1136 u32 sq_psn; 1137 u32 dest_qp_num; 1138 int qp_access_flags; 1139 struct ib_qp_cap cap; 1140 struct ib_ah_attr ah_attr; 1141 struct ib_ah_attr alt_ah_attr; 1142 u16 pkey_index; 1143 u16 alt_pkey_index; 1144 u8 en_sqd_async_notify; 1145 u8 sq_draining; 1146 u8 max_rd_atomic; 1147 u8 max_dest_rd_atomic; 1148 u8 min_rnr_timer; 1149 u8 port_num; 1150 u8 timeout; 1151 u8 retry_cnt; 1152 u8 rnr_retry; 1153 u8 alt_port_num; 1154 u8 alt_timeout; 1155 u32 rate_limit; 1156 }; 1157 1158 enum ib_wr_opcode { 1159 IB_WR_RDMA_WRITE, 1160 IB_WR_RDMA_WRITE_WITH_IMM, 1161 IB_WR_SEND, 1162 IB_WR_SEND_WITH_IMM, 1163 IB_WR_RDMA_READ, 1164 IB_WR_ATOMIC_CMP_AND_SWP, 1165 IB_WR_ATOMIC_FETCH_AND_ADD, 1166 IB_WR_LSO, 1167 IB_WR_SEND_WITH_INV, 1168 IB_WR_RDMA_READ_WITH_INV, 1169 IB_WR_LOCAL_INV, 1170 IB_WR_REG_MR, 1171 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1172 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1173 IB_WR_REG_SIG_MR, 1174 /* reserve values for low level drivers' internal use. 1175 * These values will not be used at all in the ib core layer. 1176 */ 1177 IB_WR_RESERVED1 = 0xf0, 1178 IB_WR_RESERVED2, 1179 IB_WR_RESERVED3, 1180 IB_WR_RESERVED4, 1181 IB_WR_RESERVED5, 1182 IB_WR_RESERVED6, 1183 IB_WR_RESERVED7, 1184 IB_WR_RESERVED8, 1185 IB_WR_RESERVED9, 1186 IB_WR_RESERVED10, 1187 }; 1188 1189 enum ib_send_flags { 1190 IB_SEND_FENCE = 1, 1191 IB_SEND_SIGNALED = (1<<1), 1192 IB_SEND_SOLICITED = (1<<2), 1193 IB_SEND_INLINE = (1<<3), 1194 IB_SEND_IP_CSUM = (1<<4), 1195 1196 /* reserve bits 26-31 for low level drivers' internal use */ 1197 IB_SEND_RESERVED_START = (1 << 26), 1198 IB_SEND_RESERVED_END = (1 << 31), 1199 }; 1200 1201 struct ib_sge { 1202 u64 addr; 1203 u32 length; 1204 u32 lkey; 1205 }; 1206 1207 struct ib_cqe { 1208 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1209 }; 1210 1211 struct ib_send_wr { 1212 struct ib_send_wr *next; 1213 union { 1214 u64 wr_id; 1215 struct ib_cqe *wr_cqe; 1216 }; 1217 struct ib_sge *sg_list; 1218 int num_sge; 1219 enum ib_wr_opcode opcode; 1220 int send_flags; 1221 union { 1222 __be32 imm_data; 1223 u32 invalidate_rkey; 1224 } ex; 1225 }; 1226 1227 struct ib_rdma_wr { 1228 struct ib_send_wr wr; 1229 u64 remote_addr; 1230 u32 rkey; 1231 }; 1232 1233 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1234 { 1235 return container_of(wr, struct ib_rdma_wr, wr); 1236 } 1237 1238 struct ib_atomic_wr { 1239 struct ib_send_wr wr; 1240 u64 remote_addr; 1241 u64 compare_add; 1242 u64 swap; 1243 u64 compare_add_mask; 1244 u64 swap_mask; 1245 u32 rkey; 1246 }; 1247 1248 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1249 { 1250 return container_of(wr, struct ib_atomic_wr, wr); 1251 } 1252 1253 struct ib_ud_wr { 1254 struct ib_send_wr wr; 1255 struct ib_ah *ah; 1256 void *header; 1257 int hlen; 1258 int mss; 1259 u32 remote_qpn; 1260 u32 remote_qkey; 1261 u16 pkey_index; /* valid for GSI only */ 1262 u8 port_num; /* valid for DR SMPs on switch only */ 1263 }; 1264 1265 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1266 { 1267 return container_of(wr, struct ib_ud_wr, wr); 1268 } 1269 1270 struct ib_reg_wr { 1271 struct ib_send_wr wr; 1272 struct ib_mr *mr; 1273 u32 key; 1274 int access; 1275 }; 1276 1277 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1278 { 1279 return container_of(wr, struct ib_reg_wr, wr); 1280 } 1281 1282 struct ib_sig_handover_wr { 1283 struct ib_send_wr wr; 1284 struct ib_sig_attrs *sig_attrs; 1285 struct ib_mr *sig_mr; 1286 int access_flags; 1287 struct ib_sge *prot; 1288 }; 1289 1290 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1291 { 1292 return container_of(wr, struct ib_sig_handover_wr, wr); 1293 } 1294 1295 struct ib_recv_wr { 1296 struct ib_recv_wr *next; 1297 union { 1298 u64 wr_id; 1299 struct ib_cqe *wr_cqe; 1300 }; 1301 struct ib_sge *sg_list; 1302 int num_sge; 1303 }; 1304 1305 enum ib_access_flags { 1306 IB_ACCESS_LOCAL_WRITE = 1, 1307 IB_ACCESS_REMOTE_WRITE = (1<<1), 1308 IB_ACCESS_REMOTE_READ = (1<<2), 1309 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1310 IB_ACCESS_MW_BIND = (1<<4), 1311 IB_ZERO_BASED = (1<<5), 1312 IB_ACCESS_ON_DEMAND = (1<<6), 1313 }; 1314 1315 /* 1316 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1317 * are hidden here instead of a uapi header! 1318 */ 1319 enum ib_mr_rereg_flags { 1320 IB_MR_REREG_TRANS = 1, 1321 IB_MR_REREG_PD = (1<<1), 1322 IB_MR_REREG_ACCESS = (1<<2), 1323 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1324 }; 1325 1326 struct ib_fmr_attr { 1327 int max_pages; 1328 int max_maps; 1329 u8 page_shift; 1330 }; 1331 1332 struct ib_umem; 1333 1334 struct ib_ucontext { 1335 struct ib_device *device; 1336 struct list_head pd_list; 1337 struct list_head mr_list; 1338 struct list_head mw_list; 1339 struct list_head cq_list; 1340 struct list_head qp_list; 1341 struct list_head srq_list; 1342 struct list_head ah_list; 1343 struct list_head xrcd_list; 1344 struct list_head rule_list; 1345 struct list_head wq_list; 1346 struct list_head rwq_ind_tbl_list; 1347 int closing; 1348 1349 struct pid *tgid; 1350 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1351 struct rb_root umem_tree; 1352 /* 1353 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1354 * mmu notifiers registration. 1355 */ 1356 struct rw_semaphore umem_rwsem; 1357 void (*invalidate_range)(struct ib_umem *umem, 1358 unsigned long start, unsigned long end); 1359 1360 struct mmu_notifier mn; 1361 atomic_t notifier_count; 1362 /* A list of umems that don't have private mmu notifier counters yet. */ 1363 struct list_head no_private_counters; 1364 int odp_mrs_count; 1365 #endif 1366 }; 1367 1368 struct ib_uobject { 1369 u64 user_handle; /* handle given to us by userspace */ 1370 struct ib_ucontext *context; /* associated user context */ 1371 void *object; /* containing object */ 1372 struct list_head list; /* link to context's list */ 1373 int id; /* index into kernel idr */ 1374 struct kref ref; 1375 struct rw_semaphore mutex; /* protects .live */ 1376 struct rcu_head rcu; /* kfree_rcu() overhead */ 1377 int live; 1378 }; 1379 1380 struct ib_udata { 1381 const void __user *inbuf; 1382 void __user *outbuf; 1383 size_t inlen; 1384 size_t outlen; 1385 }; 1386 1387 struct ib_pd { 1388 u32 local_dma_lkey; 1389 u32 flags; 1390 struct ib_device *device; 1391 struct ib_uobject *uobject; 1392 atomic_t usecnt; /* count all resources */ 1393 1394 u32 unsafe_global_rkey; 1395 1396 /* 1397 * Implementation details of the RDMA core, don't use in drivers: 1398 */ 1399 struct ib_mr *__internal_mr; 1400 }; 1401 1402 struct ib_xrcd { 1403 struct ib_device *device; 1404 atomic_t usecnt; /* count all exposed resources */ 1405 struct inode *inode; 1406 1407 struct mutex tgt_qp_mutex; 1408 struct list_head tgt_qp_list; 1409 }; 1410 1411 struct ib_ah { 1412 struct ib_device *device; 1413 struct ib_pd *pd; 1414 struct ib_uobject *uobject; 1415 }; 1416 1417 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1418 1419 enum ib_poll_context { 1420 IB_POLL_DIRECT, /* caller context, no hw completions */ 1421 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1422 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1423 }; 1424 1425 struct ib_cq { 1426 struct ib_device *device; 1427 struct ib_uobject *uobject; 1428 ib_comp_handler comp_handler; 1429 void (*event_handler)(struct ib_event *, void *); 1430 void *cq_context; 1431 int cqe; 1432 atomic_t usecnt; /* count number of work queues */ 1433 enum ib_poll_context poll_ctx; 1434 struct ib_wc *wc; 1435 union { 1436 struct irq_poll iop; 1437 struct work_struct work; 1438 }; 1439 }; 1440 1441 struct ib_srq { 1442 struct ib_device *device; 1443 struct ib_pd *pd; 1444 struct ib_uobject *uobject; 1445 void (*event_handler)(struct ib_event *, void *); 1446 void *srq_context; 1447 enum ib_srq_type srq_type; 1448 atomic_t usecnt; 1449 1450 union { 1451 struct { 1452 struct ib_xrcd *xrcd; 1453 struct ib_cq *cq; 1454 u32 srq_num; 1455 } xrc; 1456 } ext; 1457 }; 1458 1459 enum ib_wq_type { 1460 IB_WQT_RQ 1461 }; 1462 1463 enum ib_wq_state { 1464 IB_WQS_RESET, 1465 IB_WQS_RDY, 1466 IB_WQS_ERR 1467 }; 1468 1469 struct ib_wq { 1470 struct ib_device *device; 1471 struct ib_uobject *uobject; 1472 void *wq_context; 1473 void (*event_handler)(struct ib_event *, void *); 1474 struct ib_pd *pd; 1475 struct ib_cq *cq; 1476 u32 wq_num; 1477 enum ib_wq_state state; 1478 enum ib_wq_type wq_type; 1479 atomic_t usecnt; 1480 }; 1481 1482 struct ib_wq_init_attr { 1483 void *wq_context; 1484 enum ib_wq_type wq_type; 1485 u32 max_wr; 1486 u32 max_sge; 1487 struct ib_cq *cq; 1488 void (*event_handler)(struct ib_event *, void *); 1489 }; 1490 1491 enum ib_wq_attr_mask { 1492 IB_WQ_STATE = 1 << 0, 1493 IB_WQ_CUR_STATE = 1 << 1, 1494 }; 1495 1496 struct ib_wq_attr { 1497 enum ib_wq_state wq_state; 1498 enum ib_wq_state curr_wq_state; 1499 }; 1500 1501 struct ib_rwq_ind_table { 1502 struct ib_device *device; 1503 struct ib_uobject *uobject; 1504 atomic_t usecnt; 1505 u32 ind_tbl_num; 1506 u32 log_ind_tbl_size; 1507 struct ib_wq **ind_tbl; 1508 }; 1509 1510 struct ib_rwq_ind_table_init_attr { 1511 u32 log_ind_tbl_size; 1512 /* Each entry is a pointer to Receive Work Queue */ 1513 struct ib_wq **ind_tbl; 1514 }; 1515 1516 /* 1517 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1518 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1519 */ 1520 struct ib_qp { 1521 struct ib_device *device; 1522 struct ib_pd *pd; 1523 struct ib_cq *send_cq; 1524 struct ib_cq *recv_cq; 1525 spinlock_t mr_lock; 1526 int mrs_used; 1527 struct list_head rdma_mrs; 1528 struct list_head sig_mrs; 1529 struct ib_srq *srq; 1530 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1531 struct list_head xrcd_list; 1532 1533 /* count times opened, mcast attaches, flow attaches */ 1534 atomic_t usecnt; 1535 struct list_head open_list; 1536 struct ib_qp *real_qp; 1537 struct ib_uobject *uobject; 1538 void (*event_handler)(struct ib_event *, void *); 1539 void *qp_context; 1540 u32 qp_num; 1541 u32 max_write_sge; 1542 u32 max_read_sge; 1543 enum ib_qp_type qp_type; 1544 struct ib_rwq_ind_table *rwq_ind_tbl; 1545 }; 1546 1547 struct ib_mr { 1548 struct ib_device *device; 1549 struct ib_pd *pd; 1550 u32 lkey; 1551 u32 rkey; 1552 u64 iova; 1553 u32 length; 1554 unsigned int page_size; 1555 bool need_inval; 1556 union { 1557 struct ib_uobject *uobject; /* user */ 1558 struct list_head qp_entry; /* FR */ 1559 }; 1560 }; 1561 1562 struct ib_mw { 1563 struct ib_device *device; 1564 struct ib_pd *pd; 1565 struct ib_uobject *uobject; 1566 u32 rkey; 1567 enum ib_mw_type type; 1568 }; 1569 1570 struct ib_fmr { 1571 struct ib_device *device; 1572 struct ib_pd *pd; 1573 struct list_head list; 1574 u32 lkey; 1575 u32 rkey; 1576 }; 1577 1578 /* Supported steering options */ 1579 enum ib_flow_attr_type { 1580 /* steering according to rule specifications */ 1581 IB_FLOW_ATTR_NORMAL = 0x0, 1582 /* default unicast and multicast rule - 1583 * receive all Eth traffic which isn't steered to any QP 1584 */ 1585 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1586 /* default multicast rule - 1587 * receive all Eth multicast traffic which isn't steered to any QP 1588 */ 1589 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1590 /* sniffer rule - receive all port traffic */ 1591 IB_FLOW_ATTR_SNIFFER = 0x3 1592 }; 1593 1594 /* Supported steering header types */ 1595 enum ib_flow_spec_type { 1596 /* L2 headers*/ 1597 IB_FLOW_SPEC_ETH = 0x20, 1598 IB_FLOW_SPEC_IB = 0x22, 1599 /* L3 header*/ 1600 IB_FLOW_SPEC_IPV4 = 0x30, 1601 IB_FLOW_SPEC_IPV6 = 0x31, 1602 /* L4 headers*/ 1603 IB_FLOW_SPEC_TCP = 0x40, 1604 IB_FLOW_SPEC_UDP = 0x41, 1605 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1606 IB_FLOW_SPEC_INNER = 0x100, 1607 }; 1608 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1609 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1610 1611 /* Flow steering rule priority is set according to it's domain. 1612 * Lower domain value means higher priority. 1613 */ 1614 enum ib_flow_domain { 1615 IB_FLOW_DOMAIN_USER, 1616 IB_FLOW_DOMAIN_ETHTOOL, 1617 IB_FLOW_DOMAIN_RFS, 1618 IB_FLOW_DOMAIN_NIC, 1619 IB_FLOW_DOMAIN_NUM /* Must be last */ 1620 }; 1621 1622 enum ib_flow_flags { 1623 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1624 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1625 }; 1626 1627 struct ib_flow_eth_filter { 1628 u8 dst_mac[6]; 1629 u8 src_mac[6]; 1630 __be16 ether_type; 1631 __be16 vlan_tag; 1632 /* Must be last */ 1633 u8 real_sz[0]; 1634 }; 1635 1636 struct ib_flow_spec_eth { 1637 u32 type; 1638 u16 size; 1639 struct ib_flow_eth_filter val; 1640 struct ib_flow_eth_filter mask; 1641 }; 1642 1643 struct ib_flow_ib_filter { 1644 __be16 dlid; 1645 __u8 sl; 1646 /* Must be last */ 1647 u8 real_sz[0]; 1648 }; 1649 1650 struct ib_flow_spec_ib { 1651 u32 type; 1652 u16 size; 1653 struct ib_flow_ib_filter val; 1654 struct ib_flow_ib_filter mask; 1655 }; 1656 1657 /* IPv4 header flags */ 1658 enum ib_ipv4_flags { 1659 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1660 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1661 last have this flag set */ 1662 }; 1663 1664 struct ib_flow_ipv4_filter { 1665 __be32 src_ip; 1666 __be32 dst_ip; 1667 u8 proto; 1668 u8 tos; 1669 u8 ttl; 1670 u8 flags; 1671 /* Must be last */ 1672 u8 real_sz[0]; 1673 }; 1674 1675 struct ib_flow_spec_ipv4 { 1676 u32 type; 1677 u16 size; 1678 struct ib_flow_ipv4_filter val; 1679 struct ib_flow_ipv4_filter mask; 1680 }; 1681 1682 struct ib_flow_ipv6_filter { 1683 u8 src_ip[16]; 1684 u8 dst_ip[16]; 1685 __be32 flow_label; 1686 u8 next_hdr; 1687 u8 traffic_class; 1688 u8 hop_limit; 1689 /* Must be last */ 1690 u8 real_sz[0]; 1691 }; 1692 1693 struct ib_flow_spec_ipv6 { 1694 u32 type; 1695 u16 size; 1696 struct ib_flow_ipv6_filter val; 1697 struct ib_flow_ipv6_filter mask; 1698 }; 1699 1700 struct ib_flow_tcp_udp_filter { 1701 __be16 dst_port; 1702 __be16 src_port; 1703 /* Must be last */ 1704 u8 real_sz[0]; 1705 }; 1706 1707 struct ib_flow_spec_tcp_udp { 1708 u32 type; 1709 u16 size; 1710 struct ib_flow_tcp_udp_filter val; 1711 struct ib_flow_tcp_udp_filter mask; 1712 }; 1713 1714 struct ib_flow_tunnel_filter { 1715 __be32 tunnel_id; 1716 u8 real_sz[0]; 1717 }; 1718 1719 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1720 * the tunnel_id from val has the vni value 1721 */ 1722 struct ib_flow_spec_tunnel { 1723 u32 type; 1724 u16 size; 1725 struct ib_flow_tunnel_filter val; 1726 struct ib_flow_tunnel_filter mask; 1727 }; 1728 1729 union ib_flow_spec { 1730 struct { 1731 u32 type; 1732 u16 size; 1733 }; 1734 struct ib_flow_spec_eth eth; 1735 struct ib_flow_spec_ib ib; 1736 struct ib_flow_spec_ipv4 ipv4; 1737 struct ib_flow_spec_tcp_udp tcp_udp; 1738 struct ib_flow_spec_ipv6 ipv6; 1739 struct ib_flow_spec_tunnel tunnel; 1740 }; 1741 1742 struct ib_flow_attr { 1743 enum ib_flow_attr_type type; 1744 u16 size; 1745 u16 priority; 1746 u32 flags; 1747 u8 num_of_specs; 1748 u8 port; 1749 /* Following are the optional layers according to user request 1750 * struct ib_flow_spec_xxx 1751 * struct ib_flow_spec_yyy 1752 */ 1753 }; 1754 1755 struct ib_flow { 1756 struct ib_qp *qp; 1757 struct ib_uobject *uobject; 1758 }; 1759 1760 struct ib_mad_hdr; 1761 struct ib_grh; 1762 1763 enum ib_process_mad_flags { 1764 IB_MAD_IGNORE_MKEY = 1, 1765 IB_MAD_IGNORE_BKEY = 2, 1766 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1767 }; 1768 1769 enum ib_mad_result { 1770 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1771 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1772 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1773 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1774 }; 1775 1776 #define IB_DEVICE_NAME_MAX 64 1777 1778 struct ib_cache { 1779 rwlock_t lock; 1780 struct ib_event_handler event_handler; 1781 struct ib_pkey_cache **pkey_cache; 1782 struct ib_gid_table **gid_cache; 1783 u8 *lmc_cache; 1784 enum ib_port_state *port_state_cache; 1785 }; 1786 1787 struct iw_cm_verbs; 1788 1789 struct ib_port_immutable { 1790 int pkey_tbl_len; 1791 int gid_tbl_len; 1792 u32 core_cap_flags; 1793 u32 max_mad_size; 1794 }; 1795 1796 struct ib_device { 1797 char name[IB_DEVICE_NAME_MAX]; 1798 1799 struct list_head event_handler_list; 1800 spinlock_t event_handler_lock; 1801 1802 spinlock_t client_data_lock; 1803 struct list_head core_list; 1804 /* Access to the client_data_list is protected by the client_data_lock 1805 * spinlock and the lists_rwsem read-write semaphore */ 1806 struct list_head client_data_list; 1807 1808 struct ib_cache cache; 1809 /** 1810 * port_immutable is indexed by port number 1811 */ 1812 struct ib_port_immutable *port_immutable; 1813 1814 int num_comp_vectors; 1815 1816 struct iw_cm_verbs *iwcm; 1817 1818 /** 1819 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1820 * driver initialized data. The struct is kfree()'ed by the sysfs 1821 * core when the device is removed. A lifespan of -1 in the return 1822 * struct tells the core to set a default lifespan. 1823 */ 1824 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1825 u8 port_num); 1826 /** 1827 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1828 * @index - The index in the value array we wish to have updated, or 1829 * num_counters if we want all stats updated 1830 * Return codes - 1831 * < 0 - Error, no counters updated 1832 * index - Updated the single counter pointed to by index 1833 * num_counters - Updated all counters (will reset the timestamp 1834 * and prevent further calls for lifespan milliseconds) 1835 * Drivers are allowed to update all counters in leiu of just the 1836 * one given in index at their option 1837 */ 1838 int (*get_hw_stats)(struct ib_device *device, 1839 struct rdma_hw_stats *stats, 1840 u8 port, int index); 1841 int (*query_device)(struct ib_device *device, 1842 struct ib_device_attr *device_attr, 1843 struct ib_udata *udata); 1844 int (*query_port)(struct ib_device *device, 1845 u8 port_num, 1846 struct ib_port_attr *port_attr); 1847 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1848 u8 port_num); 1849 /* When calling get_netdev, the HW vendor's driver should return the 1850 * net device of device @device at port @port_num or NULL if such 1851 * a net device doesn't exist. The vendor driver should call dev_hold 1852 * on this net device. The HW vendor's device driver must guarantee 1853 * that this function returns NULL before the net device reaches 1854 * NETDEV_UNREGISTER_FINAL state. 1855 */ 1856 struct net_device *(*get_netdev)(struct ib_device *device, 1857 u8 port_num); 1858 int (*query_gid)(struct ib_device *device, 1859 u8 port_num, int index, 1860 union ib_gid *gid); 1861 /* When calling add_gid, the HW vendor's driver should 1862 * add the gid of device @device at gid index @index of 1863 * port @port_num to be @gid. Meta-info of that gid (for example, 1864 * the network device related to this gid is available 1865 * at @attr. @context allows the HW vendor driver to store extra 1866 * information together with a GID entry. The HW vendor may allocate 1867 * memory to contain this information and store it in @context when a 1868 * new GID entry is written to. Params are consistent until the next 1869 * call of add_gid or delete_gid. The function should return 0 on 1870 * success or error otherwise. The function could be called 1871 * concurrently for different ports. This function is only called 1872 * when roce_gid_table is used. 1873 */ 1874 int (*add_gid)(struct ib_device *device, 1875 u8 port_num, 1876 unsigned int index, 1877 const union ib_gid *gid, 1878 const struct ib_gid_attr *attr, 1879 void **context); 1880 /* When calling del_gid, the HW vendor's driver should delete the 1881 * gid of device @device at gid index @index of port @port_num. 1882 * Upon the deletion of a GID entry, the HW vendor must free any 1883 * allocated memory. The caller will clear @context afterwards. 1884 * This function is only called when roce_gid_table is used. 1885 */ 1886 int (*del_gid)(struct ib_device *device, 1887 u8 port_num, 1888 unsigned int index, 1889 void **context); 1890 int (*query_pkey)(struct ib_device *device, 1891 u8 port_num, u16 index, u16 *pkey); 1892 int (*modify_device)(struct ib_device *device, 1893 int device_modify_mask, 1894 struct ib_device_modify *device_modify); 1895 int (*modify_port)(struct ib_device *device, 1896 u8 port_num, int port_modify_mask, 1897 struct ib_port_modify *port_modify); 1898 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1899 struct ib_udata *udata); 1900 int (*dealloc_ucontext)(struct ib_ucontext *context); 1901 int (*mmap)(struct ib_ucontext *context, 1902 struct vm_area_struct *vma); 1903 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1904 struct ib_ucontext *context, 1905 struct ib_udata *udata); 1906 int (*dealloc_pd)(struct ib_pd *pd); 1907 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1908 struct ib_ah_attr *ah_attr, 1909 struct ib_udata *udata); 1910 int (*modify_ah)(struct ib_ah *ah, 1911 struct ib_ah_attr *ah_attr); 1912 int (*query_ah)(struct ib_ah *ah, 1913 struct ib_ah_attr *ah_attr); 1914 int (*destroy_ah)(struct ib_ah *ah); 1915 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1916 struct ib_srq_init_attr *srq_init_attr, 1917 struct ib_udata *udata); 1918 int (*modify_srq)(struct ib_srq *srq, 1919 struct ib_srq_attr *srq_attr, 1920 enum ib_srq_attr_mask srq_attr_mask, 1921 struct ib_udata *udata); 1922 int (*query_srq)(struct ib_srq *srq, 1923 struct ib_srq_attr *srq_attr); 1924 int (*destroy_srq)(struct ib_srq *srq); 1925 int (*post_srq_recv)(struct ib_srq *srq, 1926 struct ib_recv_wr *recv_wr, 1927 struct ib_recv_wr **bad_recv_wr); 1928 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1929 struct ib_qp_init_attr *qp_init_attr, 1930 struct ib_udata *udata); 1931 int (*modify_qp)(struct ib_qp *qp, 1932 struct ib_qp_attr *qp_attr, 1933 int qp_attr_mask, 1934 struct ib_udata *udata); 1935 int (*query_qp)(struct ib_qp *qp, 1936 struct ib_qp_attr *qp_attr, 1937 int qp_attr_mask, 1938 struct ib_qp_init_attr *qp_init_attr); 1939 int (*destroy_qp)(struct ib_qp *qp); 1940 int (*post_send)(struct ib_qp *qp, 1941 struct ib_send_wr *send_wr, 1942 struct ib_send_wr **bad_send_wr); 1943 int (*post_recv)(struct ib_qp *qp, 1944 struct ib_recv_wr *recv_wr, 1945 struct ib_recv_wr **bad_recv_wr); 1946 struct ib_cq * (*create_cq)(struct ib_device *device, 1947 const struct ib_cq_init_attr *attr, 1948 struct ib_ucontext *context, 1949 struct ib_udata *udata); 1950 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1951 u16 cq_period); 1952 int (*destroy_cq)(struct ib_cq *cq); 1953 int (*resize_cq)(struct ib_cq *cq, int cqe, 1954 struct ib_udata *udata); 1955 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1956 struct ib_wc *wc); 1957 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1958 int (*req_notify_cq)(struct ib_cq *cq, 1959 enum ib_cq_notify_flags flags); 1960 int (*req_ncomp_notif)(struct ib_cq *cq, 1961 int wc_cnt); 1962 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1963 int mr_access_flags); 1964 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1965 u64 start, u64 length, 1966 u64 virt_addr, 1967 int mr_access_flags, 1968 struct ib_udata *udata); 1969 int (*rereg_user_mr)(struct ib_mr *mr, 1970 int flags, 1971 u64 start, u64 length, 1972 u64 virt_addr, 1973 int mr_access_flags, 1974 struct ib_pd *pd, 1975 struct ib_udata *udata); 1976 int (*dereg_mr)(struct ib_mr *mr); 1977 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 1978 enum ib_mr_type mr_type, 1979 u32 max_num_sg); 1980 int (*map_mr_sg)(struct ib_mr *mr, 1981 struct scatterlist *sg, 1982 int sg_nents, 1983 unsigned int *sg_offset); 1984 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1985 enum ib_mw_type type, 1986 struct ib_udata *udata); 1987 int (*dealloc_mw)(struct ib_mw *mw); 1988 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1989 int mr_access_flags, 1990 struct ib_fmr_attr *fmr_attr); 1991 int (*map_phys_fmr)(struct ib_fmr *fmr, 1992 u64 *page_list, int list_len, 1993 u64 iova); 1994 int (*unmap_fmr)(struct list_head *fmr_list); 1995 int (*dealloc_fmr)(struct ib_fmr *fmr); 1996 int (*attach_mcast)(struct ib_qp *qp, 1997 union ib_gid *gid, 1998 u16 lid); 1999 int (*detach_mcast)(struct ib_qp *qp, 2000 union ib_gid *gid, 2001 u16 lid); 2002 int (*process_mad)(struct ib_device *device, 2003 int process_mad_flags, 2004 u8 port_num, 2005 const struct ib_wc *in_wc, 2006 const struct ib_grh *in_grh, 2007 const struct ib_mad_hdr *in_mad, 2008 size_t in_mad_size, 2009 struct ib_mad_hdr *out_mad, 2010 size_t *out_mad_size, 2011 u16 *out_mad_pkey_index); 2012 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2013 struct ib_ucontext *ucontext, 2014 struct ib_udata *udata); 2015 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2016 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2017 struct ib_flow_attr 2018 *flow_attr, 2019 int domain); 2020 int (*destroy_flow)(struct ib_flow *flow_id); 2021 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2022 struct ib_mr_status *mr_status); 2023 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2024 void (*drain_rq)(struct ib_qp *qp); 2025 void (*drain_sq)(struct ib_qp *qp); 2026 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2027 int state); 2028 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2029 struct ifla_vf_info *ivf); 2030 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2031 struct ifla_vf_stats *stats); 2032 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2033 int type); 2034 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2035 struct ib_wq_init_attr *init_attr, 2036 struct ib_udata *udata); 2037 int (*destroy_wq)(struct ib_wq *wq); 2038 int (*modify_wq)(struct ib_wq *wq, 2039 struct ib_wq_attr *attr, 2040 u32 wq_attr_mask, 2041 struct ib_udata *udata); 2042 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2043 struct ib_rwq_ind_table_init_attr *init_attr, 2044 struct ib_udata *udata); 2045 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2046 2047 struct module *owner; 2048 struct device dev; 2049 struct kobject *ports_parent; 2050 struct list_head port_list; 2051 2052 enum { 2053 IB_DEV_UNINITIALIZED, 2054 IB_DEV_REGISTERED, 2055 IB_DEV_UNREGISTERED 2056 } reg_state; 2057 2058 int uverbs_abi_ver; 2059 u64 uverbs_cmd_mask; 2060 u64 uverbs_ex_cmd_mask; 2061 2062 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2063 __be64 node_guid; 2064 u32 local_dma_lkey; 2065 u16 is_switch:1; 2066 u8 node_type; 2067 u8 phys_port_cnt; 2068 struct ib_device_attr attrs; 2069 struct attribute_group *hw_stats_ag; 2070 struct rdma_hw_stats *hw_stats; 2071 2072 /** 2073 * The following mandatory functions are used only at device 2074 * registration. Keep functions such as these at the end of this 2075 * structure to avoid cache line misses when accessing struct ib_device 2076 * in fast paths. 2077 */ 2078 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2079 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2080 }; 2081 2082 struct ib_client { 2083 char *name; 2084 void (*add) (struct ib_device *); 2085 void (*remove)(struct ib_device *, void *client_data); 2086 2087 /* Returns the net_dev belonging to this ib_client and matching the 2088 * given parameters. 2089 * @dev: An RDMA device that the net_dev use for communication. 2090 * @port: A physical port number on the RDMA device. 2091 * @pkey: P_Key that the net_dev uses if applicable. 2092 * @gid: A GID that the net_dev uses to communicate. 2093 * @addr: An IP address the net_dev is configured with. 2094 * @client_data: The device's client data set by ib_set_client_data(). 2095 * 2096 * An ib_client that implements a net_dev on top of RDMA devices 2097 * (such as IP over IB) should implement this callback, allowing the 2098 * rdma_cm module to find the right net_dev for a given request. 2099 * 2100 * The caller is responsible for calling dev_put on the returned 2101 * netdev. */ 2102 struct net_device *(*get_net_dev_by_params)( 2103 struct ib_device *dev, 2104 u8 port, 2105 u16 pkey, 2106 const union ib_gid *gid, 2107 const struct sockaddr *addr, 2108 void *client_data); 2109 struct list_head list; 2110 }; 2111 2112 struct ib_device *ib_alloc_device(size_t size); 2113 void ib_dealloc_device(struct ib_device *device); 2114 2115 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2116 2117 int ib_register_device(struct ib_device *device, 2118 int (*port_callback)(struct ib_device *, 2119 u8, struct kobject *)); 2120 void ib_unregister_device(struct ib_device *device); 2121 2122 int ib_register_client (struct ib_client *client); 2123 void ib_unregister_client(struct ib_client *client); 2124 2125 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2126 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2127 void *data); 2128 2129 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2130 { 2131 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2132 } 2133 2134 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2135 { 2136 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2137 } 2138 2139 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2140 size_t offset, 2141 size_t len) 2142 { 2143 const void __user *p = udata->inbuf + offset; 2144 bool ret; 2145 u8 *buf; 2146 2147 if (len > USHRT_MAX) 2148 return false; 2149 2150 buf = memdup_user(p, len); 2151 if (IS_ERR(buf)) 2152 return false; 2153 2154 ret = !memchr_inv(buf, 0, len); 2155 kfree(buf); 2156 return ret; 2157 } 2158 2159 /** 2160 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2161 * contains all required attributes and no attributes not allowed for 2162 * the given QP state transition. 2163 * @cur_state: Current QP state 2164 * @next_state: Next QP state 2165 * @type: QP type 2166 * @mask: Mask of supplied QP attributes 2167 * @ll : link layer of port 2168 * 2169 * This function is a helper function that a low-level driver's 2170 * modify_qp method can use to validate the consumer's input. It 2171 * checks that cur_state and next_state are valid QP states, that a 2172 * transition from cur_state to next_state is allowed by the IB spec, 2173 * and that the attribute mask supplied is allowed for the transition. 2174 */ 2175 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2176 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2177 enum rdma_link_layer ll); 2178 2179 int ib_register_event_handler (struct ib_event_handler *event_handler); 2180 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2181 void ib_dispatch_event(struct ib_event *event); 2182 2183 int ib_query_port(struct ib_device *device, 2184 u8 port_num, struct ib_port_attr *port_attr); 2185 2186 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2187 u8 port_num); 2188 2189 /** 2190 * rdma_cap_ib_switch - Check if the device is IB switch 2191 * @device: Device to check 2192 * 2193 * Device driver is responsible for setting is_switch bit on 2194 * in ib_device structure at init time. 2195 * 2196 * Return: true if the device is IB switch. 2197 */ 2198 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2199 { 2200 return device->is_switch; 2201 } 2202 2203 /** 2204 * rdma_start_port - Return the first valid port number for the device 2205 * specified 2206 * 2207 * @device: Device to be checked 2208 * 2209 * Return start port number 2210 */ 2211 static inline u8 rdma_start_port(const struct ib_device *device) 2212 { 2213 return rdma_cap_ib_switch(device) ? 0 : 1; 2214 } 2215 2216 /** 2217 * rdma_end_port - Return the last valid port number for the device 2218 * specified 2219 * 2220 * @device: Device to be checked 2221 * 2222 * Return last port number 2223 */ 2224 static inline u8 rdma_end_port(const struct ib_device *device) 2225 { 2226 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2227 } 2228 2229 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2230 { 2231 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2232 } 2233 2234 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2235 { 2236 return device->port_immutable[port_num].core_cap_flags & 2237 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2238 } 2239 2240 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2241 { 2242 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2243 } 2244 2245 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2246 { 2247 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2248 } 2249 2250 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2251 { 2252 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2253 } 2254 2255 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2256 { 2257 return rdma_protocol_ib(device, port_num) || 2258 rdma_protocol_roce(device, port_num); 2259 } 2260 2261 /** 2262 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2263 * Management Datagrams. 2264 * @device: Device to check 2265 * @port_num: Port number to check 2266 * 2267 * Management Datagrams (MAD) are a required part of the InfiniBand 2268 * specification and are supported on all InfiniBand devices. A slightly 2269 * extended version are also supported on OPA interfaces. 2270 * 2271 * Return: true if the port supports sending/receiving of MAD packets. 2272 */ 2273 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2274 { 2275 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2276 } 2277 2278 /** 2279 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2280 * Management Datagrams. 2281 * @device: Device to check 2282 * @port_num: Port number to check 2283 * 2284 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2285 * datagrams with their own versions. These OPA MADs share many but not all of 2286 * the characteristics of InfiniBand MADs. 2287 * 2288 * OPA MADs differ in the following ways: 2289 * 2290 * 1) MADs are variable size up to 2K 2291 * IBTA defined MADs remain fixed at 256 bytes 2292 * 2) OPA SMPs must carry valid PKeys 2293 * 3) OPA SMP packets are a different format 2294 * 2295 * Return: true if the port supports OPA MAD packet formats. 2296 */ 2297 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2298 { 2299 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2300 == RDMA_CORE_CAP_OPA_MAD; 2301 } 2302 2303 /** 2304 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2305 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2306 * @device: Device to check 2307 * @port_num: Port number to check 2308 * 2309 * Each InfiniBand node is required to provide a Subnet Management Agent 2310 * that the subnet manager can access. Prior to the fabric being fully 2311 * configured by the subnet manager, the SMA is accessed via a well known 2312 * interface called the Subnet Management Interface (SMI). This interface 2313 * uses directed route packets to communicate with the SM to get around the 2314 * chicken and egg problem of the SM needing to know what's on the fabric 2315 * in order to configure the fabric, and needing to configure the fabric in 2316 * order to send packets to the devices on the fabric. These directed 2317 * route packets do not need the fabric fully configured in order to reach 2318 * their destination. The SMI is the only method allowed to send 2319 * directed route packets on an InfiniBand fabric. 2320 * 2321 * Return: true if the port provides an SMI. 2322 */ 2323 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2324 { 2325 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2326 } 2327 2328 /** 2329 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2330 * Communication Manager. 2331 * @device: Device to check 2332 * @port_num: Port number to check 2333 * 2334 * The InfiniBand Communication Manager is one of many pre-defined General 2335 * Service Agents (GSA) that are accessed via the General Service 2336 * Interface (GSI). It's role is to facilitate establishment of connections 2337 * between nodes as well as other management related tasks for established 2338 * connections. 2339 * 2340 * Return: true if the port supports an IB CM (this does not guarantee that 2341 * a CM is actually running however). 2342 */ 2343 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2344 { 2345 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2346 } 2347 2348 /** 2349 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2350 * Communication Manager. 2351 * @device: Device to check 2352 * @port_num: Port number to check 2353 * 2354 * Similar to above, but specific to iWARP connections which have a different 2355 * managment protocol than InfiniBand. 2356 * 2357 * Return: true if the port supports an iWARP CM (this does not guarantee that 2358 * a CM is actually running however). 2359 */ 2360 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2361 { 2362 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2363 } 2364 2365 /** 2366 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2367 * Subnet Administration. 2368 * @device: Device to check 2369 * @port_num: Port number to check 2370 * 2371 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2372 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2373 * fabrics, devices should resolve routes to other hosts by contacting the 2374 * SA to query the proper route. 2375 * 2376 * Return: true if the port should act as a client to the fabric Subnet 2377 * Administration interface. This does not imply that the SA service is 2378 * running locally. 2379 */ 2380 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2381 { 2382 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2383 } 2384 2385 /** 2386 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2387 * Multicast. 2388 * @device: Device to check 2389 * @port_num: Port number to check 2390 * 2391 * InfiniBand multicast registration is more complex than normal IPv4 or 2392 * IPv6 multicast registration. Each Host Channel Adapter must register 2393 * with the Subnet Manager when it wishes to join a multicast group. It 2394 * should do so only once regardless of how many queue pairs it subscribes 2395 * to this group. And it should leave the group only after all queue pairs 2396 * attached to the group have been detached. 2397 * 2398 * Return: true if the port must undertake the additional adminstrative 2399 * overhead of registering/unregistering with the SM and tracking of the 2400 * total number of queue pairs attached to the multicast group. 2401 */ 2402 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2403 { 2404 return rdma_cap_ib_sa(device, port_num); 2405 } 2406 2407 /** 2408 * rdma_cap_af_ib - Check if the port of device has the capability 2409 * Native Infiniband Address. 2410 * @device: Device to check 2411 * @port_num: Port number to check 2412 * 2413 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2414 * GID. RoCE uses a different mechanism, but still generates a GID via 2415 * a prescribed mechanism and port specific data. 2416 * 2417 * Return: true if the port uses a GID address to identify devices on the 2418 * network. 2419 */ 2420 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2421 { 2422 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2423 } 2424 2425 /** 2426 * rdma_cap_eth_ah - Check if the port of device has the capability 2427 * Ethernet Address Handle. 2428 * @device: Device to check 2429 * @port_num: Port number to check 2430 * 2431 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2432 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2433 * port. Normally, packet headers are generated by the sending host 2434 * adapter, but when sending connectionless datagrams, we must manually 2435 * inject the proper headers for the fabric we are communicating over. 2436 * 2437 * Return: true if we are running as a RoCE port and must force the 2438 * addition of a Global Route Header built from our Ethernet Address 2439 * Handle into our header list for connectionless packets. 2440 */ 2441 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2442 { 2443 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2444 } 2445 2446 /** 2447 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2448 * 2449 * @device: Device 2450 * @port_num: Port number 2451 * 2452 * This MAD size includes the MAD headers and MAD payload. No other headers 2453 * are included. 2454 * 2455 * Return the max MAD size required by the Port. Will return 0 if the port 2456 * does not support MADs 2457 */ 2458 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2459 { 2460 return device->port_immutable[port_num].max_mad_size; 2461 } 2462 2463 /** 2464 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2465 * @device: Device to check 2466 * @port_num: Port number to check 2467 * 2468 * RoCE GID table mechanism manages the various GIDs for a device. 2469 * 2470 * NOTE: if allocating the port's GID table has failed, this call will still 2471 * return true, but any RoCE GID table API will fail. 2472 * 2473 * Return: true if the port uses RoCE GID table mechanism in order to manage 2474 * its GIDs. 2475 */ 2476 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2477 u8 port_num) 2478 { 2479 return rdma_protocol_roce(device, port_num) && 2480 device->add_gid && device->del_gid; 2481 } 2482 2483 /* 2484 * Check if the device supports READ W/ INVALIDATE. 2485 */ 2486 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2487 { 2488 /* 2489 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2490 * has support for it yet. 2491 */ 2492 return rdma_protocol_iwarp(dev, port_num); 2493 } 2494 2495 int ib_query_gid(struct ib_device *device, 2496 u8 port_num, int index, union ib_gid *gid, 2497 struct ib_gid_attr *attr); 2498 2499 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2500 int state); 2501 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2502 struct ifla_vf_info *info); 2503 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2504 struct ifla_vf_stats *stats); 2505 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2506 int type); 2507 2508 int ib_query_pkey(struct ib_device *device, 2509 u8 port_num, u16 index, u16 *pkey); 2510 2511 int ib_modify_device(struct ib_device *device, 2512 int device_modify_mask, 2513 struct ib_device_modify *device_modify); 2514 2515 int ib_modify_port(struct ib_device *device, 2516 u8 port_num, int port_modify_mask, 2517 struct ib_port_modify *port_modify); 2518 2519 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2520 enum ib_gid_type gid_type, struct net_device *ndev, 2521 u8 *port_num, u16 *index); 2522 2523 int ib_find_pkey(struct ib_device *device, 2524 u8 port_num, u16 pkey, u16 *index); 2525 2526 enum ib_pd_flags { 2527 /* 2528 * Create a memory registration for all memory in the system and place 2529 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2530 * ULPs to avoid the overhead of dynamic MRs. 2531 * 2532 * This flag is generally considered unsafe and must only be used in 2533 * extremly trusted environments. Every use of it will log a warning 2534 * in the kernel log. 2535 */ 2536 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2537 }; 2538 2539 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2540 const char *caller); 2541 #define ib_alloc_pd(device, flags) \ 2542 __ib_alloc_pd((device), (flags), __func__) 2543 void ib_dealloc_pd(struct ib_pd *pd); 2544 2545 /** 2546 * ib_create_ah - Creates an address handle for the given address vector. 2547 * @pd: The protection domain associated with the address handle. 2548 * @ah_attr: The attributes of the address vector. 2549 * 2550 * The address handle is used to reference a local or global destination 2551 * in all UD QP post sends. 2552 */ 2553 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2554 2555 /** 2556 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2557 * work completion. 2558 * @hdr: the L3 header to parse 2559 * @net_type: type of header to parse 2560 * @sgid: place to store source gid 2561 * @dgid: place to store destination gid 2562 */ 2563 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2564 enum rdma_network_type net_type, 2565 union ib_gid *sgid, union ib_gid *dgid); 2566 2567 /** 2568 * ib_get_rdma_header_version - Get the header version 2569 * @hdr: the L3 header to parse 2570 */ 2571 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2572 2573 /** 2574 * ib_init_ah_from_wc - Initializes address handle attributes from a 2575 * work completion. 2576 * @device: Device on which the received message arrived. 2577 * @port_num: Port on which the received message arrived. 2578 * @wc: Work completion associated with the received message. 2579 * @grh: References the received global route header. This parameter is 2580 * ignored unless the work completion indicates that the GRH is valid. 2581 * @ah_attr: Returned attributes that can be used when creating an address 2582 * handle for replying to the message. 2583 */ 2584 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2585 const struct ib_wc *wc, const struct ib_grh *grh, 2586 struct ib_ah_attr *ah_attr); 2587 2588 /** 2589 * ib_create_ah_from_wc - Creates an address handle associated with the 2590 * sender of the specified work completion. 2591 * @pd: The protection domain associated with the address handle. 2592 * @wc: Work completion information associated with a received message. 2593 * @grh: References the received global route header. This parameter is 2594 * ignored unless the work completion indicates that the GRH is valid. 2595 * @port_num: The outbound port number to associate with the address. 2596 * 2597 * The address handle is used to reference a local or global destination 2598 * in all UD QP post sends. 2599 */ 2600 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2601 const struct ib_grh *grh, u8 port_num); 2602 2603 /** 2604 * ib_modify_ah - Modifies the address vector associated with an address 2605 * handle. 2606 * @ah: The address handle to modify. 2607 * @ah_attr: The new address vector attributes to associate with the 2608 * address handle. 2609 */ 2610 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2611 2612 /** 2613 * ib_query_ah - Queries the address vector associated with an address 2614 * handle. 2615 * @ah: The address handle to query. 2616 * @ah_attr: The address vector attributes associated with the address 2617 * handle. 2618 */ 2619 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2620 2621 /** 2622 * ib_destroy_ah - Destroys an address handle. 2623 * @ah: The address handle to destroy. 2624 */ 2625 int ib_destroy_ah(struct ib_ah *ah); 2626 2627 /** 2628 * ib_create_srq - Creates a SRQ associated with the specified protection 2629 * domain. 2630 * @pd: The protection domain associated with the SRQ. 2631 * @srq_init_attr: A list of initial attributes required to create the 2632 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2633 * the actual capabilities of the created SRQ. 2634 * 2635 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2636 * requested size of the SRQ, and set to the actual values allocated 2637 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2638 * will always be at least as large as the requested values. 2639 */ 2640 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2641 struct ib_srq_init_attr *srq_init_attr); 2642 2643 /** 2644 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2645 * @srq: The SRQ to modify. 2646 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2647 * the current values of selected SRQ attributes are returned. 2648 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2649 * are being modified. 2650 * 2651 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2652 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2653 * the number of receives queued drops below the limit. 2654 */ 2655 int ib_modify_srq(struct ib_srq *srq, 2656 struct ib_srq_attr *srq_attr, 2657 enum ib_srq_attr_mask srq_attr_mask); 2658 2659 /** 2660 * ib_query_srq - Returns the attribute list and current values for the 2661 * specified SRQ. 2662 * @srq: The SRQ to query. 2663 * @srq_attr: The attributes of the specified SRQ. 2664 */ 2665 int ib_query_srq(struct ib_srq *srq, 2666 struct ib_srq_attr *srq_attr); 2667 2668 /** 2669 * ib_destroy_srq - Destroys the specified SRQ. 2670 * @srq: The SRQ to destroy. 2671 */ 2672 int ib_destroy_srq(struct ib_srq *srq); 2673 2674 /** 2675 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2676 * @srq: The SRQ to post the work request on. 2677 * @recv_wr: A list of work requests to post on the receive queue. 2678 * @bad_recv_wr: On an immediate failure, this parameter will reference 2679 * the work request that failed to be posted on the QP. 2680 */ 2681 static inline int ib_post_srq_recv(struct ib_srq *srq, 2682 struct ib_recv_wr *recv_wr, 2683 struct ib_recv_wr **bad_recv_wr) 2684 { 2685 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2686 } 2687 2688 /** 2689 * ib_create_qp - Creates a QP associated with the specified protection 2690 * domain. 2691 * @pd: The protection domain associated with the QP. 2692 * @qp_init_attr: A list of initial attributes required to create the 2693 * QP. If QP creation succeeds, then the attributes are updated to 2694 * the actual capabilities of the created QP. 2695 */ 2696 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2697 struct ib_qp_init_attr *qp_init_attr); 2698 2699 /** 2700 * ib_modify_qp - Modifies the attributes for the specified QP and then 2701 * transitions the QP to the given state. 2702 * @qp: The QP to modify. 2703 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2704 * the current values of selected QP attributes are returned. 2705 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2706 * are being modified. 2707 */ 2708 int ib_modify_qp(struct ib_qp *qp, 2709 struct ib_qp_attr *qp_attr, 2710 int qp_attr_mask); 2711 2712 /** 2713 * ib_query_qp - Returns the attribute list and current values for the 2714 * specified QP. 2715 * @qp: The QP to query. 2716 * @qp_attr: The attributes of the specified QP. 2717 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2718 * @qp_init_attr: Additional attributes of the selected QP. 2719 * 2720 * The qp_attr_mask may be used to limit the query to gathering only the 2721 * selected attributes. 2722 */ 2723 int ib_query_qp(struct ib_qp *qp, 2724 struct ib_qp_attr *qp_attr, 2725 int qp_attr_mask, 2726 struct ib_qp_init_attr *qp_init_attr); 2727 2728 /** 2729 * ib_destroy_qp - Destroys the specified QP. 2730 * @qp: The QP to destroy. 2731 */ 2732 int ib_destroy_qp(struct ib_qp *qp); 2733 2734 /** 2735 * ib_open_qp - Obtain a reference to an existing sharable QP. 2736 * @xrcd - XRC domain 2737 * @qp_open_attr: Attributes identifying the QP to open. 2738 * 2739 * Returns a reference to a sharable QP. 2740 */ 2741 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2742 struct ib_qp_open_attr *qp_open_attr); 2743 2744 /** 2745 * ib_close_qp - Release an external reference to a QP. 2746 * @qp: The QP handle to release 2747 * 2748 * The opened QP handle is released by the caller. The underlying 2749 * shared QP is not destroyed until all internal references are released. 2750 */ 2751 int ib_close_qp(struct ib_qp *qp); 2752 2753 /** 2754 * ib_post_send - Posts a list of work requests to the send queue of 2755 * the specified QP. 2756 * @qp: The QP to post the work request on. 2757 * @send_wr: A list of work requests to post on the send queue. 2758 * @bad_send_wr: On an immediate failure, this parameter will reference 2759 * the work request that failed to be posted on the QP. 2760 * 2761 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2762 * error is returned, the QP state shall not be affected, 2763 * ib_post_send() will return an immediate error after queueing any 2764 * earlier work requests in the list. 2765 */ 2766 static inline int ib_post_send(struct ib_qp *qp, 2767 struct ib_send_wr *send_wr, 2768 struct ib_send_wr **bad_send_wr) 2769 { 2770 return qp->device->post_send(qp, send_wr, bad_send_wr); 2771 } 2772 2773 /** 2774 * ib_post_recv - Posts a list of work requests to the receive queue of 2775 * the specified QP. 2776 * @qp: The QP to post the work request on. 2777 * @recv_wr: A list of work requests to post on the receive queue. 2778 * @bad_recv_wr: On an immediate failure, this parameter will reference 2779 * the work request that failed to be posted on the QP. 2780 */ 2781 static inline int ib_post_recv(struct ib_qp *qp, 2782 struct ib_recv_wr *recv_wr, 2783 struct ib_recv_wr **bad_recv_wr) 2784 { 2785 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2786 } 2787 2788 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2789 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2790 void ib_free_cq(struct ib_cq *cq); 2791 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2792 2793 /** 2794 * ib_create_cq - Creates a CQ on the specified device. 2795 * @device: The device on which to create the CQ. 2796 * @comp_handler: A user-specified callback that is invoked when a 2797 * completion event occurs on the CQ. 2798 * @event_handler: A user-specified callback that is invoked when an 2799 * asynchronous event not associated with a completion occurs on the CQ. 2800 * @cq_context: Context associated with the CQ returned to the user via 2801 * the associated completion and event handlers. 2802 * @cq_attr: The attributes the CQ should be created upon. 2803 * 2804 * Users can examine the cq structure to determine the actual CQ size. 2805 */ 2806 struct ib_cq *ib_create_cq(struct ib_device *device, 2807 ib_comp_handler comp_handler, 2808 void (*event_handler)(struct ib_event *, void *), 2809 void *cq_context, 2810 const struct ib_cq_init_attr *cq_attr); 2811 2812 /** 2813 * ib_resize_cq - Modifies the capacity of the CQ. 2814 * @cq: The CQ to resize. 2815 * @cqe: The minimum size of the CQ. 2816 * 2817 * Users can examine the cq structure to determine the actual CQ size. 2818 */ 2819 int ib_resize_cq(struct ib_cq *cq, int cqe); 2820 2821 /** 2822 * ib_modify_cq - Modifies moderation params of the CQ 2823 * @cq: The CQ to modify. 2824 * @cq_count: number of CQEs that will trigger an event 2825 * @cq_period: max period of time in usec before triggering an event 2826 * 2827 */ 2828 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2829 2830 /** 2831 * ib_destroy_cq - Destroys the specified CQ. 2832 * @cq: The CQ to destroy. 2833 */ 2834 int ib_destroy_cq(struct ib_cq *cq); 2835 2836 /** 2837 * ib_poll_cq - poll a CQ for completion(s) 2838 * @cq:the CQ being polled 2839 * @num_entries:maximum number of completions to return 2840 * @wc:array of at least @num_entries &struct ib_wc where completions 2841 * will be returned 2842 * 2843 * Poll a CQ for (possibly multiple) completions. If the return value 2844 * is < 0, an error occurred. If the return value is >= 0, it is the 2845 * number of completions returned. If the return value is 2846 * non-negative and < num_entries, then the CQ was emptied. 2847 */ 2848 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2849 struct ib_wc *wc) 2850 { 2851 return cq->device->poll_cq(cq, num_entries, wc); 2852 } 2853 2854 /** 2855 * ib_peek_cq - Returns the number of unreaped completions currently 2856 * on the specified CQ. 2857 * @cq: The CQ to peek. 2858 * @wc_cnt: A minimum number of unreaped completions to check for. 2859 * 2860 * If the number of unreaped completions is greater than or equal to wc_cnt, 2861 * this function returns wc_cnt, otherwise, it returns the actual number of 2862 * unreaped completions. 2863 */ 2864 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2865 2866 /** 2867 * ib_req_notify_cq - Request completion notification on a CQ. 2868 * @cq: The CQ to generate an event for. 2869 * @flags: 2870 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2871 * to request an event on the next solicited event or next work 2872 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2873 * may also be |ed in to request a hint about missed events, as 2874 * described below. 2875 * 2876 * Return Value: 2877 * < 0 means an error occurred while requesting notification 2878 * == 0 means notification was requested successfully, and if 2879 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2880 * were missed and it is safe to wait for another event. In 2881 * this case is it guaranteed that any work completions added 2882 * to the CQ since the last CQ poll will trigger a completion 2883 * notification event. 2884 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2885 * in. It means that the consumer must poll the CQ again to 2886 * make sure it is empty to avoid missing an event because of a 2887 * race between requesting notification and an entry being 2888 * added to the CQ. This return value means it is possible 2889 * (but not guaranteed) that a work completion has been added 2890 * to the CQ since the last poll without triggering a 2891 * completion notification event. 2892 */ 2893 static inline int ib_req_notify_cq(struct ib_cq *cq, 2894 enum ib_cq_notify_flags flags) 2895 { 2896 return cq->device->req_notify_cq(cq, flags); 2897 } 2898 2899 /** 2900 * ib_req_ncomp_notif - Request completion notification when there are 2901 * at least the specified number of unreaped completions on the CQ. 2902 * @cq: The CQ to generate an event for. 2903 * @wc_cnt: The number of unreaped completions that should be on the 2904 * CQ before an event is generated. 2905 */ 2906 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2907 { 2908 return cq->device->req_ncomp_notif ? 2909 cq->device->req_ncomp_notif(cq, wc_cnt) : 2910 -ENOSYS; 2911 } 2912 2913 /** 2914 * ib_dma_mapping_error - check a DMA addr for error 2915 * @dev: The device for which the dma_addr was created 2916 * @dma_addr: The DMA address to check 2917 */ 2918 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2919 { 2920 return dma_mapping_error(&dev->dev, dma_addr); 2921 } 2922 2923 /** 2924 * ib_dma_map_single - Map a kernel virtual address to DMA address 2925 * @dev: The device for which the dma_addr is to be created 2926 * @cpu_addr: The kernel virtual address 2927 * @size: The size of the region in bytes 2928 * @direction: The direction of the DMA 2929 */ 2930 static inline u64 ib_dma_map_single(struct ib_device *dev, 2931 void *cpu_addr, size_t size, 2932 enum dma_data_direction direction) 2933 { 2934 return dma_map_single(&dev->dev, cpu_addr, size, direction); 2935 } 2936 2937 /** 2938 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2939 * @dev: The device for which the DMA address was created 2940 * @addr: The DMA address 2941 * @size: The size of the region in bytes 2942 * @direction: The direction of the DMA 2943 */ 2944 static inline void ib_dma_unmap_single(struct ib_device *dev, 2945 u64 addr, size_t size, 2946 enum dma_data_direction direction) 2947 { 2948 dma_unmap_single(&dev->dev, addr, size, direction); 2949 } 2950 2951 /** 2952 * ib_dma_map_page - Map a physical page to DMA address 2953 * @dev: The device for which the dma_addr is to be created 2954 * @page: The page to be mapped 2955 * @offset: The offset within the page 2956 * @size: The size of the region in bytes 2957 * @direction: The direction of the DMA 2958 */ 2959 static inline u64 ib_dma_map_page(struct ib_device *dev, 2960 struct page *page, 2961 unsigned long offset, 2962 size_t size, 2963 enum dma_data_direction direction) 2964 { 2965 return dma_map_page(&dev->dev, page, offset, size, direction); 2966 } 2967 2968 /** 2969 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2970 * @dev: The device for which the DMA address was created 2971 * @addr: The DMA address 2972 * @size: The size of the region in bytes 2973 * @direction: The direction of the DMA 2974 */ 2975 static inline void ib_dma_unmap_page(struct ib_device *dev, 2976 u64 addr, size_t size, 2977 enum dma_data_direction direction) 2978 { 2979 dma_unmap_page(&dev->dev, addr, size, direction); 2980 } 2981 2982 /** 2983 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2984 * @dev: The device for which the DMA addresses are to be created 2985 * @sg: The array of scatter/gather entries 2986 * @nents: The number of scatter/gather entries 2987 * @direction: The direction of the DMA 2988 */ 2989 static inline int ib_dma_map_sg(struct ib_device *dev, 2990 struct scatterlist *sg, int nents, 2991 enum dma_data_direction direction) 2992 { 2993 return dma_map_sg(&dev->dev, sg, nents, direction); 2994 } 2995 2996 /** 2997 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2998 * @dev: The device for which the DMA addresses were created 2999 * @sg: The array of scatter/gather entries 3000 * @nents: The number of scatter/gather entries 3001 * @direction: The direction of the DMA 3002 */ 3003 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3004 struct scatterlist *sg, int nents, 3005 enum dma_data_direction direction) 3006 { 3007 dma_unmap_sg(&dev->dev, sg, nents, direction); 3008 } 3009 3010 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3011 struct scatterlist *sg, int nents, 3012 enum dma_data_direction direction, 3013 unsigned long dma_attrs) 3014 { 3015 return dma_map_sg_attrs(&dev->dev, sg, nents, direction, dma_attrs); 3016 } 3017 3018 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3019 struct scatterlist *sg, int nents, 3020 enum dma_data_direction direction, 3021 unsigned long dma_attrs) 3022 { 3023 dma_unmap_sg_attrs(&dev->dev, sg, nents, direction, dma_attrs); 3024 } 3025 /** 3026 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3027 * @dev: The device for which the DMA addresses were created 3028 * @sg: The scatter/gather entry 3029 * 3030 * Note: this function is obsolete. To do: change all occurrences of 3031 * ib_sg_dma_address() into sg_dma_address(). 3032 */ 3033 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3034 struct scatterlist *sg) 3035 { 3036 return sg_dma_address(sg); 3037 } 3038 3039 /** 3040 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3041 * @dev: The device for which the DMA addresses were created 3042 * @sg: The scatter/gather entry 3043 * 3044 * Note: this function is obsolete. To do: change all occurrences of 3045 * ib_sg_dma_len() into sg_dma_len(). 3046 */ 3047 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3048 struct scatterlist *sg) 3049 { 3050 return sg_dma_len(sg); 3051 } 3052 3053 /** 3054 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3055 * @dev: The device for which the DMA address was created 3056 * @addr: The DMA address 3057 * @size: The size of the region in bytes 3058 * @dir: The direction of the DMA 3059 */ 3060 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3061 u64 addr, 3062 size_t size, 3063 enum dma_data_direction dir) 3064 { 3065 dma_sync_single_for_cpu(&dev->dev, addr, size, dir); 3066 } 3067 3068 /** 3069 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3070 * @dev: The device for which the DMA address was created 3071 * @addr: The DMA address 3072 * @size: The size of the region in bytes 3073 * @dir: The direction of the DMA 3074 */ 3075 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3076 u64 addr, 3077 size_t size, 3078 enum dma_data_direction dir) 3079 { 3080 dma_sync_single_for_device(&dev->dev, addr, size, dir); 3081 } 3082 3083 /** 3084 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3085 * @dev: The device for which the DMA address is requested 3086 * @size: The size of the region to allocate in bytes 3087 * @dma_handle: A pointer for returning the DMA address of the region 3088 * @flag: memory allocator flags 3089 */ 3090 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3091 size_t size, 3092 dma_addr_t *dma_handle, 3093 gfp_t flag) 3094 { 3095 return dma_alloc_coherent(&dev->dev, size, dma_handle, flag); 3096 } 3097 3098 /** 3099 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3100 * @dev: The device for which the DMA addresses were allocated 3101 * @size: The size of the region 3102 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3103 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3104 */ 3105 static inline void ib_dma_free_coherent(struct ib_device *dev, 3106 size_t size, void *cpu_addr, 3107 dma_addr_t dma_handle) 3108 { 3109 dma_free_coherent(&dev->dev, size, cpu_addr, dma_handle); 3110 } 3111 3112 /** 3113 * ib_dereg_mr - Deregisters a memory region and removes it from the 3114 * HCA translation table. 3115 * @mr: The memory region to deregister. 3116 * 3117 * This function can fail, if the memory region has memory windows bound to it. 3118 */ 3119 int ib_dereg_mr(struct ib_mr *mr); 3120 3121 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3122 enum ib_mr_type mr_type, 3123 u32 max_num_sg); 3124 3125 /** 3126 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3127 * R_Key and L_Key. 3128 * @mr - struct ib_mr pointer to be updated. 3129 * @newkey - new key to be used. 3130 */ 3131 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3132 { 3133 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3134 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3135 } 3136 3137 /** 3138 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3139 * for calculating a new rkey for type 2 memory windows. 3140 * @rkey - the rkey to increment. 3141 */ 3142 static inline u32 ib_inc_rkey(u32 rkey) 3143 { 3144 const u32 mask = 0x000000ff; 3145 return ((rkey + 1) & mask) | (rkey & ~mask); 3146 } 3147 3148 /** 3149 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3150 * @pd: The protection domain associated with the unmapped region. 3151 * @mr_access_flags: Specifies the memory access rights. 3152 * @fmr_attr: Attributes of the unmapped region. 3153 * 3154 * A fast memory region must be mapped before it can be used as part of 3155 * a work request. 3156 */ 3157 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3158 int mr_access_flags, 3159 struct ib_fmr_attr *fmr_attr); 3160 3161 /** 3162 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3163 * @fmr: The fast memory region to associate with the pages. 3164 * @page_list: An array of physical pages to map to the fast memory region. 3165 * @list_len: The number of pages in page_list. 3166 * @iova: The I/O virtual address to use with the mapped region. 3167 */ 3168 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3169 u64 *page_list, int list_len, 3170 u64 iova) 3171 { 3172 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3173 } 3174 3175 /** 3176 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3177 * @fmr_list: A linked list of fast memory regions to unmap. 3178 */ 3179 int ib_unmap_fmr(struct list_head *fmr_list); 3180 3181 /** 3182 * ib_dealloc_fmr - Deallocates a fast memory region. 3183 * @fmr: The fast memory region to deallocate. 3184 */ 3185 int ib_dealloc_fmr(struct ib_fmr *fmr); 3186 3187 /** 3188 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3189 * @qp: QP to attach to the multicast group. The QP must be type 3190 * IB_QPT_UD. 3191 * @gid: Multicast group GID. 3192 * @lid: Multicast group LID in host byte order. 3193 * 3194 * In order to send and receive multicast packets, subnet 3195 * administration must have created the multicast group and configured 3196 * the fabric appropriately. The port associated with the specified 3197 * QP must also be a member of the multicast group. 3198 */ 3199 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3200 3201 /** 3202 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3203 * @qp: QP to detach from the multicast group. 3204 * @gid: Multicast group GID. 3205 * @lid: Multicast group LID in host byte order. 3206 */ 3207 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3208 3209 /** 3210 * ib_alloc_xrcd - Allocates an XRC domain. 3211 * @device: The device on which to allocate the XRC domain. 3212 */ 3213 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3214 3215 /** 3216 * ib_dealloc_xrcd - Deallocates an XRC domain. 3217 * @xrcd: The XRC domain to deallocate. 3218 */ 3219 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3220 3221 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3222 struct ib_flow_attr *flow_attr, int domain); 3223 int ib_destroy_flow(struct ib_flow *flow_id); 3224 3225 static inline int ib_check_mr_access(int flags) 3226 { 3227 /* 3228 * Local write permission is required if remote write or 3229 * remote atomic permission is also requested. 3230 */ 3231 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3232 !(flags & IB_ACCESS_LOCAL_WRITE)) 3233 return -EINVAL; 3234 3235 return 0; 3236 } 3237 3238 /** 3239 * ib_check_mr_status: lightweight check of MR status. 3240 * This routine may provide status checks on a selected 3241 * ib_mr. first use is for signature status check. 3242 * 3243 * @mr: A memory region. 3244 * @check_mask: Bitmask of which checks to perform from 3245 * ib_mr_status_check enumeration. 3246 * @mr_status: The container of relevant status checks. 3247 * failed checks will be indicated in the status bitmask 3248 * and the relevant info shall be in the error item. 3249 */ 3250 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3251 struct ib_mr_status *mr_status); 3252 3253 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3254 u16 pkey, const union ib_gid *gid, 3255 const struct sockaddr *addr); 3256 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3257 struct ib_wq_init_attr *init_attr); 3258 int ib_destroy_wq(struct ib_wq *wq); 3259 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3260 u32 wq_attr_mask); 3261 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3262 struct ib_rwq_ind_table_init_attr* 3263 wq_ind_table_init_attr); 3264 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3265 3266 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3267 unsigned int *sg_offset, unsigned int page_size); 3268 3269 static inline int 3270 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3271 unsigned int *sg_offset, unsigned int page_size) 3272 { 3273 int n; 3274 3275 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3276 mr->iova = 0; 3277 3278 return n; 3279 } 3280 3281 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3282 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3283 3284 void ib_drain_rq(struct ib_qp *qp); 3285 void ib_drain_sq(struct ib_qp *qp); 3286 void ib_drain_qp(struct ib_qp *qp); 3287 3288 int ib_resolve_eth_dmac(struct ib_device *device, 3289 struct ib_ah_attr *ah_attr); 3290 #endif /* IB_VERBS_H */ 3291