1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <asm/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 enum ib_cq_creation_flags { 265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 267 }; 268 269 struct ib_cq_init_attr { 270 unsigned int cqe; 271 int comp_vector; 272 u32 flags; 273 }; 274 275 struct ib_device_attr { 276 u64 fw_ver; 277 __be64 sys_image_guid; 278 u64 max_mr_size; 279 u64 page_size_cap; 280 u32 vendor_id; 281 u32 vendor_part_id; 282 u32 hw_ver; 283 int max_qp; 284 int max_qp_wr; 285 u64 device_cap_flags; 286 int max_sge; 287 int max_sge_rd; 288 int max_cq; 289 int max_cqe; 290 int max_mr; 291 int max_pd; 292 int max_qp_rd_atom; 293 int max_ee_rd_atom; 294 int max_res_rd_atom; 295 int max_qp_init_rd_atom; 296 int max_ee_init_rd_atom; 297 enum ib_atomic_cap atomic_cap; 298 enum ib_atomic_cap masked_atomic_cap; 299 int max_ee; 300 int max_rdd; 301 int max_mw; 302 int max_raw_ipv6_qp; 303 int max_raw_ethy_qp; 304 int max_mcast_grp; 305 int max_mcast_qp_attach; 306 int max_total_mcast_qp_attach; 307 int max_ah; 308 int max_fmr; 309 int max_map_per_fmr; 310 int max_srq; 311 int max_srq_wr; 312 int max_srq_sge; 313 unsigned int max_fast_reg_page_list_len; 314 u16 max_pkeys; 315 u8 local_ca_ack_delay; 316 int sig_prot_cap; 317 int sig_guard_cap; 318 struct ib_odp_caps odp_caps; 319 uint64_t timestamp_mask; 320 uint64_t hca_core_clock; /* in KHZ */ 321 }; 322 323 enum ib_mtu { 324 IB_MTU_256 = 1, 325 IB_MTU_512 = 2, 326 IB_MTU_1024 = 3, 327 IB_MTU_2048 = 4, 328 IB_MTU_4096 = 5 329 }; 330 331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 332 { 333 switch (mtu) { 334 case IB_MTU_256: return 256; 335 case IB_MTU_512: return 512; 336 case IB_MTU_1024: return 1024; 337 case IB_MTU_2048: return 2048; 338 case IB_MTU_4096: return 4096; 339 default: return -1; 340 } 341 } 342 343 enum ib_port_state { 344 IB_PORT_NOP = 0, 345 IB_PORT_DOWN = 1, 346 IB_PORT_INIT = 2, 347 IB_PORT_ARMED = 3, 348 IB_PORT_ACTIVE = 4, 349 IB_PORT_ACTIVE_DEFER = 5 350 }; 351 352 enum ib_port_cap_flags { 353 IB_PORT_SM = 1 << 1, 354 IB_PORT_NOTICE_SUP = 1 << 2, 355 IB_PORT_TRAP_SUP = 1 << 3, 356 IB_PORT_OPT_IPD_SUP = 1 << 4, 357 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 358 IB_PORT_SL_MAP_SUP = 1 << 6, 359 IB_PORT_MKEY_NVRAM = 1 << 7, 360 IB_PORT_PKEY_NVRAM = 1 << 8, 361 IB_PORT_LED_INFO_SUP = 1 << 9, 362 IB_PORT_SM_DISABLED = 1 << 10, 363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 366 IB_PORT_CM_SUP = 1 << 16, 367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 368 IB_PORT_REINIT_SUP = 1 << 18, 369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 371 IB_PORT_DR_NOTICE_SUP = 1 << 21, 372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 373 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 374 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 375 IB_PORT_CLIENT_REG_SUP = 1 << 25, 376 IB_PORT_IP_BASED_GIDS = 1 << 26, 377 }; 378 379 enum ib_port_width { 380 IB_WIDTH_1X = 1, 381 IB_WIDTH_4X = 2, 382 IB_WIDTH_8X = 4, 383 IB_WIDTH_12X = 8 384 }; 385 386 static inline int ib_width_enum_to_int(enum ib_port_width width) 387 { 388 switch (width) { 389 case IB_WIDTH_1X: return 1; 390 case IB_WIDTH_4X: return 4; 391 case IB_WIDTH_8X: return 8; 392 case IB_WIDTH_12X: return 12; 393 default: return -1; 394 } 395 } 396 397 enum ib_port_speed { 398 IB_SPEED_SDR = 1, 399 IB_SPEED_DDR = 2, 400 IB_SPEED_QDR = 4, 401 IB_SPEED_FDR10 = 8, 402 IB_SPEED_FDR = 16, 403 IB_SPEED_EDR = 32 404 }; 405 406 /** 407 * struct rdma_hw_stats 408 * @timestamp - Used by the core code to track when the last update was 409 * @lifespan - Used by the core code to determine how old the counters 410 * should be before being updated again. Stored in jiffies, defaults 411 * to 10 milliseconds, drivers can override the default be specifying 412 * their own value during their allocation routine. 413 * @name - Array of pointers to static names used for the counters in 414 * directory. 415 * @num_counters - How many hardware counters there are. If name is 416 * shorter than this number, a kernel oops will result. Driver authors 417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 418 * in their code to prevent this. 419 * @value - Array of u64 counters that are accessed by the sysfs code and 420 * filled in by the drivers get_stats routine 421 */ 422 struct rdma_hw_stats { 423 unsigned long timestamp; 424 unsigned long lifespan; 425 const char * const *names; 426 int num_counters; 427 u64 value[]; 428 }; 429 430 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 431 /** 432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 433 * for drivers. 434 * @names - Array of static const char * 435 * @num_counters - How many elements in array 436 * @lifespan - How many milliseconds between updates 437 */ 438 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 439 const char * const *names, int num_counters, 440 unsigned long lifespan) 441 { 442 struct rdma_hw_stats *stats; 443 444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 445 GFP_KERNEL); 446 if (!stats) 447 return NULL; 448 stats->names = names; 449 stats->num_counters = num_counters; 450 stats->lifespan = msecs_to_jiffies(lifespan); 451 452 return stats; 453 } 454 455 456 /* Define bits for the various functionality this port needs to be supported by 457 * the core. 458 */ 459 /* Management 0x00000FFF */ 460 #define RDMA_CORE_CAP_IB_MAD 0x00000001 461 #define RDMA_CORE_CAP_IB_SMI 0x00000002 462 #define RDMA_CORE_CAP_IB_CM 0x00000004 463 #define RDMA_CORE_CAP_IW_CM 0x00000008 464 #define RDMA_CORE_CAP_IB_SA 0x00000010 465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 466 467 /* Address format 0x000FF000 */ 468 #define RDMA_CORE_CAP_AF_IB 0x00001000 469 #define RDMA_CORE_CAP_ETH_AH 0x00002000 470 471 /* Protocol 0xFFF00000 */ 472 #define RDMA_CORE_CAP_PROT_IB 0x00100000 473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 476 477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 478 | RDMA_CORE_CAP_IB_MAD \ 479 | RDMA_CORE_CAP_IB_SMI \ 480 | RDMA_CORE_CAP_IB_CM \ 481 | RDMA_CORE_CAP_IB_SA \ 482 | RDMA_CORE_CAP_AF_IB) 483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 484 | RDMA_CORE_CAP_IB_MAD \ 485 | RDMA_CORE_CAP_IB_CM \ 486 | RDMA_CORE_CAP_AF_IB \ 487 | RDMA_CORE_CAP_ETH_AH) 488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 490 | RDMA_CORE_CAP_IB_MAD \ 491 | RDMA_CORE_CAP_IB_CM \ 492 | RDMA_CORE_CAP_AF_IB \ 493 | RDMA_CORE_CAP_ETH_AH) 494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 495 | RDMA_CORE_CAP_IW_CM) 496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 497 | RDMA_CORE_CAP_OPA_MAD) 498 499 struct ib_port_attr { 500 u64 subnet_prefix; 501 enum ib_port_state state; 502 enum ib_mtu max_mtu; 503 enum ib_mtu active_mtu; 504 int gid_tbl_len; 505 u32 port_cap_flags; 506 u32 max_msg_sz; 507 u32 bad_pkey_cntr; 508 u32 qkey_viol_cntr; 509 u16 pkey_tbl_len; 510 u16 lid; 511 u16 sm_lid; 512 u8 lmc; 513 u8 max_vl_num; 514 u8 sm_sl; 515 u8 subnet_timeout; 516 u8 init_type_reply; 517 u8 active_width; 518 u8 active_speed; 519 u8 phys_state; 520 bool grh_required; 521 }; 522 523 enum ib_device_modify_flags { 524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 526 }; 527 528 struct ib_device_modify { 529 u64 sys_image_guid; 530 char node_desc[64]; 531 }; 532 533 enum ib_port_modify_flags { 534 IB_PORT_SHUTDOWN = 1, 535 IB_PORT_INIT_TYPE = (1<<2), 536 IB_PORT_RESET_QKEY_CNTR = (1<<3) 537 }; 538 539 struct ib_port_modify { 540 u32 set_port_cap_mask; 541 u32 clr_port_cap_mask; 542 u8 init_type; 543 }; 544 545 enum ib_event_type { 546 IB_EVENT_CQ_ERR, 547 IB_EVENT_QP_FATAL, 548 IB_EVENT_QP_REQ_ERR, 549 IB_EVENT_QP_ACCESS_ERR, 550 IB_EVENT_COMM_EST, 551 IB_EVENT_SQ_DRAINED, 552 IB_EVENT_PATH_MIG, 553 IB_EVENT_PATH_MIG_ERR, 554 IB_EVENT_DEVICE_FATAL, 555 IB_EVENT_PORT_ACTIVE, 556 IB_EVENT_PORT_ERR, 557 IB_EVENT_LID_CHANGE, 558 IB_EVENT_PKEY_CHANGE, 559 IB_EVENT_SM_CHANGE, 560 IB_EVENT_SRQ_ERR, 561 IB_EVENT_SRQ_LIMIT_REACHED, 562 IB_EVENT_QP_LAST_WQE_REACHED, 563 IB_EVENT_CLIENT_REREGISTER, 564 IB_EVENT_GID_CHANGE, 565 }; 566 567 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 568 569 struct ib_event { 570 struct ib_device *device; 571 union { 572 struct ib_cq *cq; 573 struct ib_qp *qp; 574 struct ib_srq *srq; 575 u8 port_num; 576 } element; 577 enum ib_event_type event; 578 }; 579 580 struct ib_event_handler { 581 struct ib_device *device; 582 void (*handler)(struct ib_event_handler *, struct ib_event *); 583 struct list_head list; 584 }; 585 586 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 587 do { \ 588 (_ptr)->device = _device; \ 589 (_ptr)->handler = _handler; \ 590 INIT_LIST_HEAD(&(_ptr)->list); \ 591 } while (0) 592 593 struct ib_global_route { 594 union ib_gid dgid; 595 u32 flow_label; 596 u8 sgid_index; 597 u8 hop_limit; 598 u8 traffic_class; 599 }; 600 601 struct ib_grh { 602 __be32 version_tclass_flow; 603 __be16 paylen; 604 u8 next_hdr; 605 u8 hop_limit; 606 union ib_gid sgid; 607 union ib_gid dgid; 608 }; 609 610 union rdma_network_hdr { 611 struct ib_grh ibgrh; 612 struct { 613 /* The IB spec states that if it's IPv4, the header 614 * is located in the last 20 bytes of the header. 615 */ 616 u8 reserved[20]; 617 struct iphdr roce4grh; 618 }; 619 }; 620 621 enum { 622 IB_MULTICAST_QPN = 0xffffff 623 }; 624 625 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 626 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 627 628 enum ib_ah_flags { 629 IB_AH_GRH = 1 630 }; 631 632 enum ib_rate { 633 IB_RATE_PORT_CURRENT = 0, 634 IB_RATE_2_5_GBPS = 2, 635 IB_RATE_5_GBPS = 5, 636 IB_RATE_10_GBPS = 3, 637 IB_RATE_20_GBPS = 6, 638 IB_RATE_30_GBPS = 4, 639 IB_RATE_40_GBPS = 7, 640 IB_RATE_60_GBPS = 8, 641 IB_RATE_80_GBPS = 9, 642 IB_RATE_120_GBPS = 10, 643 IB_RATE_14_GBPS = 11, 644 IB_RATE_56_GBPS = 12, 645 IB_RATE_112_GBPS = 13, 646 IB_RATE_168_GBPS = 14, 647 IB_RATE_25_GBPS = 15, 648 IB_RATE_100_GBPS = 16, 649 IB_RATE_200_GBPS = 17, 650 IB_RATE_300_GBPS = 18 651 }; 652 653 /** 654 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 655 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 656 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 657 * @rate: rate to convert. 658 */ 659 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 660 661 /** 662 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 663 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 664 * @rate: rate to convert. 665 */ 666 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 667 668 669 /** 670 * enum ib_mr_type - memory region type 671 * @IB_MR_TYPE_MEM_REG: memory region that is used for 672 * normal registration 673 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 674 * signature operations (data-integrity 675 * capable regions) 676 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 677 * register any arbitrary sg lists (without 678 * the normal mr constraints - see 679 * ib_map_mr_sg) 680 */ 681 enum ib_mr_type { 682 IB_MR_TYPE_MEM_REG, 683 IB_MR_TYPE_SIGNATURE, 684 IB_MR_TYPE_SG_GAPS, 685 }; 686 687 /** 688 * Signature types 689 * IB_SIG_TYPE_NONE: Unprotected. 690 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 691 */ 692 enum ib_signature_type { 693 IB_SIG_TYPE_NONE, 694 IB_SIG_TYPE_T10_DIF, 695 }; 696 697 /** 698 * Signature T10-DIF block-guard types 699 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 700 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 701 */ 702 enum ib_t10_dif_bg_type { 703 IB_T10DIF_CRC, 704 IB_T10DIF_CSUM 705 }; 706 707 /** 708 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 709 * domain. 710 * @bg_type: T10-DIF block guard type (CRC|CSUM) 711 * @pi_interval: protection information interval. 712 * @bg: seed of guard computation. 713 * @app_tag: application tag of guard block 714 * @ref_tag: initial guard block reference tag. 715 * @ref_remap: Indicate wethear the reftag increments each block 716 * @app_escape: Indicate to skip block check if apptag=0xffff 717 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 718 * @apptag_check_mask: check bitmask of application tag. 719 */ 720 struct ib_t10_dif_domain { 721 enum ib_t10_dif_bg_type bg_type; 722 u16 pi_interval; 723 u16 bg; 724 u16 app_tag; 725 u32 ref_tag; 726 bool ref_remap; 727 bool app_escape; 728 bool ref_escape; 729 u16 apptag_check_mask; 730 }; 731 732 /** 733 * struct ib_sig_domain - Parameters for signature domain 734 * @sig_type: specific signauture type 735 * @sig: union of all signature domain attributes that may 736 * be used to set domain layout. 737 */ 738 struct ib_sig_domain { 739 enum ib_signature_type sig_type; 740 union { 741 struct ib_t10_dif_domain dif; 742 } sig; 743 }; 744 745 /** 746 * struct ib_sig_attrs - Parameters for signature handover operation 747 * @check_mask: bitmask for signature byte check (8 bytes) 748 * @mem: memory domain layout desciptor. 749 * @wire: wire domain layout desciptor. 750 */ 751 struct ib_sig_attrs { 752 u8 check_mask; 753 struct ib_sig_domain mem; 754 struct ib_sig_domain wire; 755 }; 756 757 enum ib_sig_err_type { 758 IB_SIG_BAD_GUARD, 759 IB_SIG_BAD_REFTAG, 760 IB_SIG_BAD_APPTAG, 761 }; 762 763 /** 764 * struct ib_sig_err - signature error descriptor 765 */ 766 struct ib_sig_err { 767 enum ib_sig_err_type err_type; 768 u32 expected; 769 u32 actual; 770 u64 sig_err_offset; 771 u32 key; 772 }; 773 774 enum ib_mr_status_check { 775 IB_MR_CHECK_SIG_STATUS = 1, 776 }; 777 778 /** 779 * struct ib_mr_status - Memory region status container 780 * 781 * @fail_status: Bitmask of MR checks status. For each 782 * failed check a corresponding status bit is set. 783 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 784 * failure. 785 */ 786 struct ib_mr_status { 787 u32 fail_status; 788 struct ib_sig_err sig_err; 789 }; 790 791 /** 792 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 793 * enum. 794 * @mult: multiple to convert. 795 */ 796 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 797 798 struct ib_ah_attr { 799 struct ib_global_route grh; 800 u16 dlid; 801 u8 sl; 802 u8 src_path_bits; 803 u8 static_rate; 804 u8 ah_flags; 805 u8 port_num; 806 u8 dmac[ETH_ALEN]; 807 }; 808 809 enum ib_wc_status { 810 IB_WC_SUCCESS, 811 IB_WC_LOC_LEN_ERR, 812 IB_WC_LOC_QP_OP_ERR, 813 IB_WC_LOC_EEC_OP_ERR, 814 IB_WC_LOC_PROT_ERR, 815 IB_WC_WR_FLUSH_ERR, 816 IB_WC_MW_BIND_ERR, 817 IB_WC_BAD_RESP_ERR, 818 IB_WC_LOC_ACCESS_ERR, 819 IB_WC_REM_INV_REQ_ERR, 820 IB_WC_REM_ACCESS_ERR, 821 IB_WC_REM_OP_ERR, 822 IB_WC_RETRY_EXC_ERR, 823 IB_WC_RNR_RETRY_EXC_ERR, 824 IB_WC_LOC_RDD_VIOL_ERR, 825 IB_WC_REM_INV_RD_REQ_ERR, 826 IB_WC_REM_ABORT_ERR, 827 IB_WC_INV_EECN_ERR, 828 IB_WC_INV_EEC_STATE_ERR, 829 IB_WC_FATAL_ERR, 830 IB_WC_RESP_TIMEOUT_ERR, 831 IB_WC_GENERAL_ERR 832 }; 833 834 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 835 836 enum ib_wc_opcode { 837 IB_WC_SEND, 838 IB_WC_RDMA_WRITE, 839 IB_WC_RDMA_READ, 840 IB_WC_COMP_SWAP, 841 IB_WC_FETCH_ADD, 842 IB_WC_LSO, 843 IB_WC_LOCAL_INV, 844 IB_WC_REG_MR, 845 IB_WC_MASKED_COMP_SWAP, 846 IB_WC_MASKED_FETCH_ADD, 847 /* 848 * Set value of IB_WC_RECV so consumers can test if a completion is a 849 * receive by testing (opcode & IB_WC_RECV). 850 */ 851 IB_WC_RECV = 1 << 7, 852 IB_WC_RECV_RDMA_WITH_IMM 853 }; 854 855 enum ib_wc_flags { 856 IB_WC_GRH = 1, 857 IB_WC_WITH_IMM = (1<<1), 858 IB_WC_WITH_INVALIDATE = (1<<2), 859 IB_WC_IP_CSUM_OK = (1<<3), 860 IB_WC_WITH_SMAC = (1<<4), 861 IB_WC_WITH_VLAN = (1<<5), 862 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 863 }; 864 865 struct ib_wc { 866 union { 867 u64 wr_id; 868 struct ib_cqe *wr_cqe; 869 }; 870 enum ib_wc_status status; 871 enum ib_wc_opcode opcode; 872 u32 vendor_err; 873 u32 byte_len; 874 struct ib_qp *qp; 875 union { 876 __be32 imm_data; 877 u32 invalidate_rkey; 878 } ex; 879 u32 src_qp; 880 int wc_flags; 881 u16 pkey_index; 882 u16 slid; 883 u8 sl; 884 u8 dlid_path_bits; 885 u8 port_num; /* valid only for DR SMPs on switches */ 886 u8 smac[ETH_ALEN]; 887 u16 vlan_id; 888 u8 network_hdr_type; 889 }; 890 891 enum ib_cq_notify_flags { 892 IB_CQ_SOLICITED = 1 << 0, 893 IB_CQ_NEXT_COMP = 1 << 1, 894 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 895 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 896 }; 897 898 enum ib_srq_type { 899 IB_SRQT_BASIC, 900 IB_SRQT_XRC 901 }; 902 903 enum ib_srq_attr_mask { 904 IB_SRQ_MAX_WR = 1 << 0, 905 IB_SRQ_LIMIT = 1 << 1, 906 }; 907 908 struct ib_srq_attr { 909 u32 max_wr; 910 u32 max_sge; 911 u32 srq_limit; 912 }; 913 914 struct ib_srq_init_attr { 915 void (*event_handler)(struct ib_event *, void *); 916 void *srq_context; 917 struct ib_srq_attr attr; 918 enum ib_srq_type srq_type; 919 920 union { 921 struct { 922 struct ib_xrcd *xrcd; 923 struct ib_cq *cq; 924 } xrc; 925 } ext; 926 }; 927 928 struct ib_qp_cap { 929 u32 max_send_wr; 930 u32 max_recv_wr; 931 u32 max_send_sge; 932 u32 max_recv_sge; 933 u32 max_inline_data; 934 935 /* 936 * Maximum number of rdma_rw_ctx structures in flight at a time. 937 * ib_create_qp() will calculate the right amount of neededed WRs 938 * and MRs based on this. 939 */ 940 u32 max_rdma_ctxs; 941 }; 942 943 enum ib_sig_type { 944 IB_SIGNAL_ALL_WR, 945 IB_SIGNAL_REQ_WR 946 }; 947 948 enum ib_qp_type { 949 /* 950 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 951 * here (and in that order) since the MAD layer uses them as 952 * indices into a 2-entry table. 953 */ 954 IB_QPT_SMI, 955 IB_QPT_GSI, 956 957 IB_QPT_RC, 958 IB_QPT_UC, 959 IB_QPT_UD, 960 IB_QPT_RAW_IPV6, 961 IB_QPT_RAW_ETHERTYPE, 962 IB_QPT_RAW_PACKET = 8, 963 IB_QPT_XRC_INI = 9, 964 IB_QPT_XRC_TGT, 965 IB_QPT_MAX, 966 /* Reserve a range for qp types internal to the low level driver. 967 * These qp types will not be visible at the IB core layer, so the 968 * IB_QPT_MAX usages should not be affected in the core layer 969 */ 970 IB_QPT_RESERVED1 = 0x1000, 971 IB_QPT_RESERVED2, 972 IB_QPT_RESERVED3, 973 IB_QPT_RESERVED4, 974 IB_QPT_RESERVED5, 975 IB_QPT_RESERVED6, 976 IB_QPT_RESERVED7, 977 IB_QPT_RESERVED8, 978 IB_QPT_RESERVED9, 979 IB_QPT_RESERVED10, 980 }; 981 982 enum ib_qp_create_flags { 983 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 984 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 985 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 986 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 987 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 988 IB_QP_CREATE_NETIF_QP = 1 << 5, 989 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 990 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 991 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 992 /* reserve bits 26-31 for low level drivers' internal use */ 993 IB_QP_CREATE_RESERVED_START = 1 << 26, 994 IB_QP_CREATE_RESERVED_END = 1 << 31, 995 }; 996 997 /* 998 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 999 * callback to destroy the passed in QP. 1000 */ 1001 1002 struct ib_qp_init_attr { 1003 void (*event_handler)(struct ib_event *, void *); 1004 void *qp_context; 1005 struct ib_cq *send_cq; 1006 struct ib_cq *recv_cq; 1007 struct ib_srq *srq; 1008 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1009 struct ib_qp_cap cap; 1010 enum ib_sig_type sq_sig_type; 1011 enum ib_qp_type qp_type; 1012 enum ib_qp_create_flags create_flags; 1013 1014 /* 1015 * Only needed for special QP types, or when using the RW API. 1016 */ 1017 u8 port_num; 1018 }; 1019 1020 struct ib_qp_open_attr { 1021 void (*event_handler)(struct ib_event *, void *); 1022 void *qp_context; 1023 u32 qp_num; 1024 enum ib_qp_type qp_type; 1025 }; 1026 1027 enum ib_rnr_timeout { 1028 IB_RNR_TIMER_655_36 = 0, 1029 IB_RNR_TIMER_000_01 = 1, 1030 IB_RNR_TIMER_000_02 = 2, 1031 IB_RNR_TIMER_000_03 = 3, 1032 IB_RNR_TIMER_000_04 = 4, 1033 IB_RNR_TIMER_000_06 = 5, 1034 IB_RNR_TIMER_000_08 = 6, 1035 IB_RNR_TIMER_000_12 = 7, 1036 IB_RNR_TIMER_000_16 = 8, 1037 IB_RNR_TIMER_000_24 = 9, 1038 IB_RNR_TIMER_000_32 = 10, 1039 IB_RNR_TIMER_000_48 = 11, 1040 IB_RNR_TIMER_000_64 = 12, 1041 IB_RNR_TIMER_000_96 = 13, 1042 IB_RNR_TIMER_001_28 = 14, 1043 IB_RNR_TIMER_001_92 = 15, 1044 IB_RNR_TIMER_002_56 = 16, 1045 IB_RNR_TIMER_003_84 = 17, 1046 IB_RNR_TIMER_005_12 = 18, 1047 IB_RNR_TIMER_007_68 = 19, 1048 IB_RNR_TIMER_010_24 = 20, 1049 IB_RNR_TIMER_015_36 = 21, 1050 IB_RNR_TIMER_020_48 = 22, 1051 IB_RNR_TIMER_030_72 = 23, 1052 IB_RNR_TIMER_040_96 = 24, 1053 IB_RNR_TIMER_061_44 = 25, 1054 IB_RNR_TIMER_081_92 = 26, 1055 IB_RNR_TIMER_122_88 = 27, 1056 IB_RNR_TIMER_163_84 = 28, 1057 IB_RNR_TIMER_245_76 = 29, 1058 IB_RNR_TIMER_327_68 = 30, 1059 IB_RNR_TIMER_491_52 = 31 1060 }; 1061 1062 enum ib_qp_attr_mask { 1063 IB_QP_STATE = 1, 1064 IB_QP_CUR_STATE = (1<<1), 1065 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1066 IB_QP_ACCESS_FLAGS = (1<<3), 1067 IB_QP_PKEY_INDEX = (1<<4), 1068 IB_QP_PORT = (1<<5), 1069 IB_QP_QKEY = (1<<6), 1070 IB_QP_AV = (1<<7), 1071 IB_QP_PATH_MTU = (1<<8), 1072 IB_QP_TIMEOUT = (1<<9), 1073 IB_QP_RETRY_CNT = (1<<10), 1074 IB_QP_RNR_RETRY = (1<<11), 1075 IB_QP_RQ_PSN = (1<<12), 1076 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1077 IB_QP_ALT_PATH = (1<<14), 1078 IB_QP_MIN_RNR_TIMER = (1<<15), 1079 IB_QP_SQ_PSN = (1<<16), 1080 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1081 IB_QP_PATH_MIG_STATE = (1<<18), 1082 IB_QP_CAP = (1<<19), 1083 IB_QP_DEST_QPN = (1<<20), 1084 IB_QP_RESERVED1 = (1<<21), 1085 IB_QP_RESERVED2 = (1<<22), 1086 IB_QP_RESERVED3 = (1<<23), 1087 IB_QP_RESERVED4 = (1<<24), 1088 }; 1089 1090 enum ib_qp_state { 1091 IB_QPS_RESET, 1092 IB_QPS_INIT, 1093 IB_QPS_RTR, 1094 IB_QPS_RTS, 1095 IB_QPS_SQD, 1096 IB_QPS_SQE, 1097 IB_QPS_ERR 1098 }; 1099 1100 enum ib_mig_state { 1101 IB_MIG_MIGRATED, 1102 IB_MIG_REARM, 1103 IB_MIG_ARMED 1104 }; 1105 1106 enum ib_mw_type { 1107 IB_MW_TYPE_1 = 1, 1108 IB_MW_TYPE_2 = 2 1109 }; 1110 1111 struct ib_qp_attr { 1112 enum ib_qp_state qp_state; 1113 enum ib_qp_state cur_qp_state; 1114 enum ib_mtu path_mtu; 1115 enum ib_mig_state path_mig_state; 1116 u32 qkey; 1117 u32 rq_psn; 1118 u32 sq_psn; 1119 u32 dest_qp_num; 1120 int qp_access_flags; 1121 struct ib_qp_cap cap; 1122 struct ib_ah_attr ah_attr; 1123 struct ib_ah_attr alt_ah_attr; 1124 u16 pkey_index; 1125 u16 alt_pkey_index; 1126 u8 en_sqd_async_notify; 1127 u8 sq_draining; 1128 u8 max_rd_atomic; 1129 u8 max_dest_rd_atomic; 1130 u8 min_rnr_timer; 1131 u8 port_num; 1132 u8 timeout; 1133 u8 retry_cnt; 1134 u8 rnr_retry; 1135 u8 alt_port_num; 1136 u8 alt_timeout; 1137 }; 1138 1139 enum ib_wr_opcode { 1140 IB_WR_RDMA_WRITE, 1141 IB_WR_RDMA_WRITE_WITH_IMM, 1142 IB_WR_SEND, 1143 IB_WR_SEND_WITH_IMM, 1144 IB_WR_RDMA_READ, 1145 IB_WR_ATOMIC_CMP_AND_SWP, 1146 IB_WR_ATOMIC_FETCH_AND_ADD, 1147 IB_WR_LSO, 1148 IB_WR_SEND_WITH_INV, 1149 IB_WR_RDMA_READ_WITH_INV, 1150 IB_WR_LOCAL_INV, 1151 IB_WR_REG_MR, 1152 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1153 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1154 IB_WR_REG_SIG_MR, 1155 /* reserve values for low level drivers' internal use. 1156 * These values will not be used at all in the ib core layer. 1157 */ 1158 IB_WR_RESERVED1 = 0xf0, 1159 IB_WR_RESERVED2, 1160 IB_WR_RESERVED3, 1161 IB_WR_RESERVED4, 1162 IB_WR_RESERVED5, 1163 IB_WR_RESERVED6, 1164 IB_WR_RESERVED7, 1165 IB_WR_RESERVED8, 1166 IB_WR_RESERVED9, 1167 IB_WR_RESERVED10, 1168 }; 1169 1170 enum ib_send_flags { 1171 IB_SEND_FENCE = 1, 1172 IB_SEND_SIGNALED = (1<<1), 1173 IB_SEND_SOLICITED = (1<<2), 1174 IB_SEND_INLINE = (1<<3), 1175 IB_SEND_IP_CSUM = (1<<4), 1176 1177 /* reserve bits 26-31 for low level drivers' internal use */ 1178 IB_SEND_RESERVED_START = (1 << 26), 1179 IB_SEND_RESERVED_END = (1 << 31), 1180 }; 1181 1182 struct ib_sge { 1183 u64 addr; 1184 u32 length; 1185 u32 lkey; 1186 }; 1187 1188 struct ib_cqe { 1189 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1190 }; 1191 1192 struct ib_send_wr { 1193 struct ib_send_wr *next; 1194 union { 1195 u64 wr_id; 1196 struct ib_cqe *wr_cqe; 1197 }; 1198 struct ib_sge *sg_list; 1199 int num_sge; 1200 enum ib_wr_opcode opcode; 1201 int send_flags; 1202 union { 1203 __be32 imm_data; 1204 u32 invalidate_rkey; 1205 } ex; 1206 }; 1207 1208 struct ib_rdma_wr { 1209 struct ib_send_wr wr; 1210 u64 remote_addr; 1211 u32 rkey; 1212 }; 1213 1214 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1215 { 1216 return container_of(wr, struct ib_rdma_wr, wr); 1217 } 1218 1219 struct ib_atomic_wr { 1220 struct ib_send_wr wr; 1221 u64 remote_addr; 1222 u64 compare_add; 1223 u64 swap; 1224 u64 compare_add_mask; 1225 u64 swap_mask; 1226 u32 rkey; 1227 }; 1228 1229 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1230 { 1231 return container_of(wr, struct ib_atomic_wr, wr); 1232 } 1233 1234 struct ib_ud_wr { 1235 struct ib_send_wr wr; 1236 struct ib_ah *ah; 1237 void *header; 1238 int hlen; 1239 int mss; 1240 u32 remote_qpn; 1241 u32 remote_qkey; 1242 u16 pkey_index; /* valid for GSI only */ 1243 u8 port_num; /* valid for DR SMPs on switch only */ 1244 }; 1245 1246 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1247 { 1248 return container_of(wr, struct ib_ud_wr, wr); 1249 } 1250 1251 struct ib_reg_wr { 1252 struct ib_send_wr wr; 1253 struct ib_mr *mr; 1254 u32 key; 1255 int access; 1256 }; 1257 1258 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1259 { 1260 return container_of(wr, struct ib_reg_wr, wr); 1261 } 1262 1263 struct ib_sig_handover_wr { 1264 struct ib_send_wr wr; 1265 struct ib_sig_attrs *sig_attrs; 1266 struct ib_mr *sig_mr; 1267 int access_flags; 1268 struct ib_sge *prot; 1269 }; 1270 1271 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1272 { 1273 return container_of(wr, struct ib_sig_handover_wr, wr); 1274 } 1275 1276 struct ib_recv_wr { 1277 struct ib_recv_wr *next; 1278 union { 1279 u64 wr_id; 1280 struct ib_cqe *wr_cqe; 1281 }; 1282 struct ib_sge *sg_list; 1283 int num_sge; 1284 }; 1285 1286 enum ib_access_flags { 1287 IB_ACCESS_LOCAL_WRITE = 1, 1288 IB_ACCESS_REMOTE_WRITE = (1<<1), 1289 IB_ACCESS_REMOTE_READ = (1<<2), 1290 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1291 IB_ACCESS_MW_BIND = (1<<4), 1292 IB_ZERO_BASED = (1<<5), 1293 IB_ACCESS_ON_DEMAND = (1<<6), 1294 }; 1295 1296 /* 1297 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1298 * are hidden here instead of a uapi header! 1299 */ 1300 enum ib_mr_rereg_flags { 1301 IB_MR_REREG_TRANS = 1, 1302 IB_MR_REREG_PD = (1<<1), 1303 IB_MR_REREG_ACCESS = (1<<2), 1304 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1305 }; 1306 1307 struct ib_fmr_attr { 1308 int max_pages; 1309 int max_maps; 1310 u8 page_shift; 1311 }; 1312 1313 struct ib_umem; 1314 1315 struct ib_ucontext { 1316 struct ib_device *device; 1317 struct list_head pd_list; 1318 struct list_head mr_list; 1319 struct list_head mw_list; 1320 struct list_head cq_list; 1321 struct list_head qp_list; 1322 struct list_head srq_list; 1323 struct list_head ah_list; 1324 struct list_head xrcd_list; 1325 struct list_head rule_list; 1326 int closing; 1327 1328 struct pid *tgid; 1329 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1330 struct rb_root umem_tree; 1331 /* 1332 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1333 * mmu notifiers registration. 1334 */ 1335 struct rw_semaphore umem_rwsem; 1336 void (*invalidate_range)(struct ib_umem *umem, 1337 unsigned long start, unsigned long end); 1338 1339 struct mmu_notifier mn; 1340 atomic_t notifier_count; 1341 /* A list of umems that don't have private mmu notifier counters yet. */ 1342 struct list_head no_private_counters; 1343 int odp_mrs_count; 1344 #endif 1345 }; 1346 1347 struct ib_uobject { 1348 u64 user_handle; /* handle given to us by userspace */ 1349 struct ib_ucontext *context; /* associated user context */ 1350 void *object; /* containing object */ 1351 struct list_head list; /* link to context's list */ 1352 int id; /* index into kernel idr */ 1353 struct kref ref; 1354 struct rw_semaphore mutex; /* protects .live */ 1355 struct rcu_head rcu; /* kfree_rcu() overhead */ 1356 int live; 1357 }; 1358 1359 struct ib_udata { 1360 const void __user *inbuf; 1361 void __user *outbuf; 1362 size_t inlen; 1363 size_t outlen; 1364 }; 1365 1366 struct ib_pd { 1367 u32 local_dma_lkey; 1368 struct ib_device *device; 1369 struct ib_uobject *uobject; 1370 atomic_t usecnt; /* count all resources */ 1371 struct ib_mr *local_mr; 1372 }; 1373 1374 struct ib_xrcd { 1375 struct ib_device *device; 1376 atomic_t usecnt; /* count all exposed resources */ 1377 struct inode *inode; 1378 1379 struct mutex tgt_qp_mutex; 1380 struct list_head tgt_qp_list; 1381 }; 1382 1383 struct ib_ah { 1384 struct ib_device *device; 1385 struct ib_pd *pd; 1386 struct ib_uobject *uobject; 1387 }; 1388 1389 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1390 1391 enum ib_poll_context { 1392 IB_POLL_DIRECT, /* caller context, no hw completions */ 1393 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1394 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1395 }; 1396 1397 struct ib_cq { 1398 struct ib_device *device; 1399 struct ib_uobject *uobject; 1400 ib_comp_handler comp_handler; 1401 void (*event_handler)(struct ib_event *, void *); 1402 void *cq_context; 1403 int cqe; 1404 atomic_t usecnt; /* count number of work queues */ 1405 enum ib_poll_context poll_ctx; 1406 struct ib_wc *wc; 1407 union { 1408 struct irq_poll iop; 1409 struct work_struct work; 1410 }; 1411 }; 1412 1413 struct ib_srq { 1414 struct ib_device *device; 1415 struct ib_pd *pd; 1416 struct ib_uobject *uobject; 1417 void (*event_handler)(struct ib_event *, void *); 1418 void *srq_context; 1419 enum ib_srq_type srq_type; 1420 atomic_t usecnt; 1421 1422 union { 1423 struct { 1424 struct ib_xrcd *xrcd; 1425 struct ib_cq *cq; 1426 u32 srq_num; 1427 } xrc; 1428 } ext; 1429 }; 1430 1431 struct ib_qp { 1432 struct ib_device *device; 1433 struct ib_pd *pd; 1434 struct ib_cq *send_cq; 1435 struct ib_cq *recv_cq; 1436 spinlock_t mr_lock; 1437 int mrs_used; 1438 struct list_head rdma_mrs; 1439 struct list_head sig_mrs; 1440 struct ib_srq *srq; 1441 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1442 struct list_head xrcd_list; 1443 1444 /* count times opened, mcast attaches, flow attaches */ 1445 atomic_t usecnt; 1446 struct list_head open_list; 1447 struct ib_qp *real_qp; 1448 struct ib_uobject *uobject; 1449 void (*event_handler)(struct ib_event *, void *); 1450 void *qp_context; 1451 u32 qp_num; 1452 enum ib_qp_type qp_type; 1453 }; 1454 1455 struct ib_mr { 1456 struct ib_device *device; 1457 struct ib_pd *pd; 1458 u32 lkey; 1459 u32 rkey; 1460 u64 iova; 1461 u32 length; 1462 unsigned int page_size; 1463 bool need_inval; 1464 union { 1465 struct ib_uobject *uobject; /* user */ 1466 struct list_head qp_entry; /* FR */ 1467 }; 1468 }; 1469 1470 struct ib_mw { 1471 struct ib_device *device; 1472 struct ib_pd *pd; 1473 struct ib_uobject *uobject; 1474 u32 rkey; 1475 enum ib_mw_type type; 1476 }; 1477 1478 struct ib_fmr { 1479 struct ib_device *device; 1480 struct ib_pd *pd; 1481 struct list_head list; 1482 u32 lkey; 1483 u32 rkey; 1484 }; 1485 1486 /* Supported steering options */ 1487 enum ib_flow_attr_type { 1488 /* steering according to rule specifications */ 1489 IB_FLOW_ATTR_NORMAL = 0x0, 1490 /* default unicast and multicast rule - 1491 * receive all Eth traffic which isn't steered to any QP 1492 */ 1493 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1494 /* default multicast rule - 1495 * receive all Eth multicast traffic which isn't steered to any QP 1496 */ 1497 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1498 /* sniffer rule - receive all port traffic */ 1499 IB_FLOW_ATTR_SNIFFER = 0x3 1500 }; 1501 1502 /* Supported steering header types */ 1503 enum ib_flow_spec_type { 1504 /* L2 headers*/ 1505 IB_FLOW_SPEC_ETH = 0x20, 1506 IB_FLOW_SPEC_IB = 0x22, 1507 /* L3 header*/ 1508 IB_FLOW_SPEC_IPV4 = 0x30, 1509 /* L4 headers*/ 1510 IB_FLOW_SPEC_TCP = 0x40, 1511 IB_FLOW_SPEC_UDP = 0x41 1512 }; 1513 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1514 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1515 1516 /* Flow steering rule priority is set according to it's domain. 1517 * Lower domain value means higher priority. 1518 */ 1519 enum ib_flow_domain { 1520 IB_FLOW_DOMAIN_USER, 1521 IB_FLOW_DOMAIN_ETHTOOL, 1522 IB_FLOW_DOMAIN_RFS, 1523 IB_FLOW_DOMAIN_NIC, 1524 IB_FLOW_DOMAIN_NUM /* Must be last */ 1525 }; 1526 1527 enum ib_flow_flags { 1528 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1529 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1530 }; 1531 1532 struct ib_flow_eth_filter { 1533 u8 dst_mac[6]; 1534 u8 src_mac[6]; 1535 __be16 ether_type; 1536 __be16 vlan_tag; 1537 }; 1538 1539 struct ib_flow_spec_eth { 1540 enum ib_flow_spec_type type; 1541 u16 size; 1542 struct ib_flow_eth_filter val; 1543 struct ib_flow_eth_filter mask; 1544 }; 1545 1546 struct ib_flow_ib_filter { 1547 __be16 dlid; 1548 __u8 sl; 1549 }; 1550 1551 struct ib_flow_spec_ib { 1552 enum ib_flow_spec_type type; 1553 u16 size; 1554 struct ib_flow_ib_filter val; 1555 struct ib_flow_ib_filter mask; 1556 }; 1557 1558 struct ib_flow_ipv4_filter { 1559 __be32 src_ip; 1560 __be32 dst_ip; 1561 }; 1562 1563 struct ib_flow_spec_ipv4 { 1564 enum ib_flow_spec_type type; 1565 u16 size; 1566 struct ib_flow_ipv4_filter val; 1567 struct ib_flow_ipv4_filter mask; 1568 }; 1569 1570 struct ib_flow_tcp_udp_filter { 1571 __be16 dst_port; 1572 __be16 src_port; 1573 }; 1574 1575 struct ib_flow_spec_tcp_udp { 1576 enum ib_flow_spec_type type; 1577 u16 size; 1578 struct ib_flow_tcp_udp_filter val; 1579 struct ib_flow_tcp_udp_filter mask; 1580 }; 1581 1582 union ib_flow_spec { 1583 struct { 1584 enum ib_flow_spec_type type; 1585 u16 size; 1586 }; 1587 struct ib_flow_spec_eth eth; 1588 struct ib_flow_spec_ib ib; 1589 struct ib_flow_spec_ipv4 ipv4; 1590 struct ib_flow_spec_tcp_udp tcp_udp; 1591 }; 1592 1593 struct ib_flow_attr { 1594 enum ib_flow_attr_type type; 1595 u16 size; 1596 u16 priority; 1597 u32 flags; 1598 u8 num_of_specs; 1599 u8 port; 1600 /* Following are the optional layers according to user request 1601 * struct ib_flow_spec_xxx 1602 * struct ib_flow_spec_yyy 1603 */ 1604 }; 1605 1606 struct ib_flow { 1607 struct ib_qp *qp; 1608 struct ib_uobject *uobject; 1609 }; 1610 1611 struct ib_mad_hdr; 1612 struct ib_grh; 1613 1614 enum ib_process_mad_flags { 1615 IB_MAD_IGNORE_MKEY = 1, 1616 IB_MAD_IGNORE_BKEY = 2, 1617 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1618 }; 1619 1620 enum ib_mad_result { 1621 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1622 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1623 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1624 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1625 }; 1626 1627 #define IB_DEVICE_NAME_MAX 64 1628 1629 struct ib_cache { 1630 rwlock_t lock; 1631 struct ib_event_handler event_handler; 1632 struct ib_pkey_cache **pkey_cache; 1633 struct ib_gid_table **gid_cache; 1634 u8 *lmc_cache; 1635 }; 1636 1637 struct ib_dma_mapping_ops { 1638 int (*mapping_error)(struct ib_device *dev, 1639 u64 dma_addr); 1640 u64 (*map_single)(struct ib_device *dev, 1641 void *ptr, size_t size, 1642 enum dma_data_direction direction); 1643 void (*unmap_single)(struct ib_device *dev, 1644 u64 addr, size_t size, 1645 enum dma_data_direction direction); 1646 u64 (*map_page)(struct ib_device *dev, 1647 struct page *page, unsigned long offset, 1648 size_t size, 1649 enum dma_data_direction direction); 1650 void (*unmap_page)(struct ib_device *dev, 1651 u64 addr, size_t size, 1652 enum dma_data_direction direction); 1653 int (*map_sg)(struct ib_device *dev, 1654 struct scatterlist *sg, int nents, 1655 enum dma_data_direction direction); 1656 void (*unmap_sg)(struct ib_device *dev, 1657 struct scatterlist *sg, int nents, 1658 enum dma_data_direction direction); 1659 void (*sync_single_for_cpu)(struct ib_device *dev, 1660 u64 dma_handle, 1661 size_t size, 1662 enum dma_data_direction dir); 1663 void (*sync_single_for_device)(struct ib_device *dev, 1664 u64 dma_handle, 1665 size_t size, 1666 enum dma_data_direction dir); 1667 void *(*alloc_coherent)(struct ib_device *dev, 1668 size_t size, 1669 u64 *dma_handle, 1670 gfp_t flag); 1671 void (*free_coherent)(struct ib_device *dev, 1672 size_t size, void *cpu_addr, 1673 u64 dma_handle); 1674 }; 1675 1676 struct iw_cm_verbs; 1677 1678 struct ib_port_immutable { 1679 int pkey_tbl_len; 1680 int gid_tbl_len; 1681 u32 core_cap_flags; 1682 u32 max_mad_size; 1683 }; 1684 1685 struct ib_device { 1686 struct device *dma_device; 1687 1688 char name[IB_DEVICE_NAME_MAX]; 1689 1690 struct list_head event_handler_list; 1691 spinlock_t event_handler_lock; 1692 1693 spinlock_t client_data_lock; 1694 struct list_head core_list; 1695 /* Access to the client_data_list is protected by the client_data_lock 1696 * spinlock and the lists_rwsem read-write semaphore */ 1697 struct list_head client_data_list; 1698 1699 struct ib_cache cache; 1700 /** 1701 * port_immutable is indexed by port number 1702 */ 1703 struct ib_port_immutable *port_immutable; 1704 1705 int num_comp_vectors; 1706 1707 struct iw_cm_verbs *iwcm; 1708 1709 /** 1710 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1711 * driver initialized data. The struct is kfree()'ed by the sysfs 1712 * core when the device is removed. A lifespan of -1 in the return 1713 * struct tells the core to set a default lifespan. 1714 */ 1715 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1716 u8 port_num); 1717 /** 1718 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1719 * @index - The index in the value array we wish to have updated, or 1720 * num_counters if we want all stats updated 1721 * Return codes - 1722 * < 0 - Error, no counters updated 1723 * index - Updated the single counter pointed to by index 1724 * num_counters - Updated all counters (will reset the timestamp 1725 * and prevent further calls for lifespan milliseconds) 1726 * Drivers are allowed to update all counters in leiu of just the 1727 * one given in index at their option 1728 */ 1729 int (*get_hw_stats)(struct ib_device *device, 1730 struct rdma_hw_stats *stats, 1731 u8 port, int index); 1732 int (*query_device)(struct ib_device *device, 1733 struct ib_device_attr *device_attr, 1734 struct ib_udata *udata); 1735 int (*query_port)(struct ib_device *device, 1736 u8 port_num, 1737 struct ib_port_attr *port_attr); 1738 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1739 u8 port_num); 1740 /* When calling get_netdev, the HW vendor's driver should return the 1741 * net device of device @device at port @port_num or NULL if such 1742 * a net device doesn't exist. The vendor driver should call dev_hold 1743 * on this net device. The HW vendor's device driver must guarantee 1744 * that this function returns NULL before the net device reaches 1745 * NETDEV_UNREGISTER_FINAL state. 1746 */ 1747 struct net_device *(*get_netdev)(struct ib_device *device, 1748 u8 port_num); 1749 int (*query_gid)(struct ib_device *device, 1750 u8 port_num, int index, 1751 union ib_gid *gid); 1752 /* When calling add_gid, the HW vendor's driver should 1753 * add the gid of device @device at gid index @index of 1754 * port @port_num to be @gid. Meta-info of that gid (for example, 1755 * the network device related to this gid is available 1756 * at @attr. @context allows the HW vendor driver to store extra 1757 * information together with a GID entry. The HW vendor may allocate 1758 * memory to contain this information and store it in @context when a 1759 * new GID entry is written to. Params are consistent until the next 1760 * call of add_gid or delete_gid. The function should return 0 on 1761 * success or error otherwise. The function could be called 1762 * concurrently for different ports. This function is only called 1763 * when roce_gid_table is used. 1764 */ 1765 int (*add_gid)(struct ib_device *device, 1766 u8 port_num, 1767 unsigned int index, 1768 const union ib_gid *gid, 1769 const struct ib_gid_attr *attr, 1770 void **context); 1771 /* When calling del_gid, the HW vendor's driver should delete the 1772 * gid of device @device at gid index @index of port @port_num. 1773 * Upon the deletion of a GID entry, the HW vendor must free any 1774 * allocated memory. The caller will clear @context afterwards. 1775 * This function is only called when roce_gid_table is used. 1776 */ 1777 int (*del_gid)(struct ib_device *device, 1778 u8 port_num, 1779 unsigned int index, 1780 void **context); 1781 int (*query_pkey)(struct ib_device *device, 1782 u8 port_num, u16 index, u16 *pkey); 1783 int (*modify_device)(struct ib_device *device, 1784 int device_modify_mask, 1785 struct ib_device_modify *device_modify); 1786 int (*modify_port)(struct ib_device *device, 1787 u8 port_num, int port_modify_mask, 1788 struct ib_port_modify *port_modify); 1789 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1790 struct ib_udata *udata); 1791 int (*dealloc_ucontext)(struct ib_ucontext *context); 1792 int (*mmap)(struct ib_ucontext *context, 1793 struct vm_area_struct *vma); 1794 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1795 struct ib_ucontext *context, 1796 struct ib_udata *udata); 1797 int (*dealloc_pd)(struct ib_pd *pd); 1798 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1799 struct ib_ah_attr *ah_attr); 1800 int (*modify_ah)(struct ib_ah *ah, 1801 struct ib_ah_attr *ah_attr); 1802 int (*query_ah)(struct ib_ah *ah, 1803 struct ib_ah_attr *ah_attr); 1804 int (*destroy_ah)(struct ib_ah *ah); 1805 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1806 struct ib_srq_init_attr *srq_init_attr, 1807 struct ib_udata *udata); 1808 int (*modify_srq)(struct ib_srq *srq, 1809 struct ib_srq_attr *srq_attr, 1810 enum ib_srq_attr_mask srq_attr_mask, 1811 struct ib_udata *udata); 1812 int (*query_srq)(struct ib_srq *srq, 1813 struct ib_srq_attr *srq_attr); 1814 int (*destroy_srq)(struct ib_srq *srq); 1815 int (*post_srq_recv)(struct ib_srq *srq, 1816 struct ib_recv_wr *recv_wr, 1817 struct ib_recv_wr **bad_recv_wr); 1818 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1819 struct ib_qp_init_attr *qp_init_attr, 1820 struct ib_udata *udata); 1821 int (*modify_qp)(struct ib_qp *qp, 1822 struct ib_qp_attr *qp_attr, 1823 int qp_attr_mask, 1824 struct ib_udata *udata); 1825 int (*query_qp)(struct ib_qp *qp, 1826 struct ib_qp_attr *qp_attr, 1827 int qp_attr_mask, 1828 struct ib_qp_init_attr *qp_init_attr); 1829 int (*destroy_qp)(struct ib_qp *qp); 1830 int (*post_send)(struct ib_qp *qp, 1831 struct ib_send_wr *send_wr, 1832 struct ib_send_wr **bad_send_wr); 1833 int (*post_recv)(struct ib_qp *qp, 1834 struct ib_recv_wr *recv_wr, 1835 struct ib_recv_wr **bad_recv_wr); 1836 struct ib_cq * (*create_cq)(struct ib_device *device, 1837 const struct ib_cq_init_attr *attr, 1838 struct ib_ucontext *context, 1839 struct ib_udata *udata); 1840 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1841 u16 cq_period); 1842 int (*destroy_cq)(struct ib_cq *cq); 1843 int (*resize_cq)(struct ib_cq *cq, int cqe, 1844 struct ib_udata *udata); 1845 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1846 struct ib_wc *wc); 1847 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1848 int (*req_notify_cq)(struct ib_cq *cq, 1849 enum ib_cq_notify_flags flags); 1850 int (*req_ncomp_notif)(struct ib_cq *cq, 1851 int wc_cnt); 1852 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1853 int mr_access_flags); 1854 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1855 u64 start, u64 length, 1856 u64 virt_addr, 1857 int mr_access_flags, 1858 struct ib_udata *udata); 1859 int (*rereg_user_mr)(struct ib_mr *mr, 1860 int flags, 1861 u64 start, u64 length, 1862 u64 virt_addr, 1863 int mr_access_flags, 1864 struct ib_pd *pd, 1865 struct ib_udata *udata); 1866 int (*dereg_mr)(struct ib_mr *mr); 1867 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 1868 enum ib_mr_type mr_type, 1869 u32 max_num_sg); 1870 int (*map_mr_sg)(struct ib_mr *mr, 1871 struct scatterlist *sg, 1872 int sg_nents, 1873 unsigned int *sg_offset); 1874 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1875 enum ib_mw_type type, 1876 struct ib_udata *udata); 1877 int (*dealloc_mw)(struct ib_mw *mw); 1878 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1879 int mr_access_flags, 1880 struct ib_fmr_attr *fmr_attr); 1881 int (*map_phys_fmr)(struct ib_fmr *fmr, 1882 u64 *page_list, int list_len, 1883 u64 iova); 1884 int (*unmap_fmr)(struct list_head *fmr_list); 1885 int (*dealloc_fmr)(struct ib_fmr *fmr); 1886 int (*attach_mcast)(struct ib_qp *qp, 1887 union ib_gid *gid, 1888 u16 lid); 1889 int (*detach_mcast)(struct ib_qp *qp, 1890 union ib_gid *gid, 1891 u16 lid); 1892 int (*process_mad)(struct ib_device *device, 1893 int process_mad_flags, 1894 u8 port_num, 1895 const struct ib_wc *in_wc, 1896 const struct ib_grh *in_grh, 1897 const struct ib_mad_hdr *in_mad, 1898 size_t in_mad_size, 1899 struct ib_mad_hdr *out_mad, 1900 size_t *out_mad_size, 1901 u16 *out_mad_pkey_index); 1902 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1903 struct ib_ucontext *ucontext, 1904 struct ib_udata *udata); 1905 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1906 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1907 struct ib_flow_attr 1908 *flow_attr, 1909 int domain); 1910 int (*destroy_flow)(struct ib_flow *flow_id); 1911 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1912 struct ib_mr_status *mr_status); 1913 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 1914 void (*drain_rq)(struct ib_qp *qp); 1915 void (*drain_sq)(struct ib_qp *qp); 1916 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 1917 int state); 1918 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 1919 struct ifla_vf_info *ivf); 1920 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 1921 struct ifla_vf_stats *stats); 1922 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 1923 int type); 1924 1925 struct ib_dma_mapping_ops *dma_ops; 1926 1927 struct module *owner; 1928 struct device dev; 1929 struct kobject *ports_parent; 1930 struct list_head port_list; 1931 1932 enum { 1933 IB_DEV_UNINITIALIZED, 1934 IB_DEV_REGISTERED, 1935 IB_DEV_UNREGISTERED 1936 } reg_state; 1937 1938 int uverbs_abi_ver; 1939 u64 uverbs_cmd_mask; 1940 u64 uverbs_ex_cmd_mask; 1941 1942 char node_desc[64]; 1943 __be64 node_guid; 1944 u32 local_dma_lkey; 1945 u16 is_switch:1; 1946 u8 node_type; 1947 u8 phys_port_cnt; 1948 struct ib_device_attr attrs; 1949 struct attribute_group *hw_stats_ag; 1950 struct rdma_hw_stats *hw_stats; 1951 1952 /** 1953 * The following mandatory functions are used only at device 1954 * registration. Keep functions such as these at the end of this 1955 * structure to avoid cache line misses when accessing struct ib_device 1956 * in fast paths. 1957 */ 1958 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 1959 }; 1960 1961 struct ib_client { 1962 char *name; 1963 void (*add) (struct ib_device *); 1964 void (*remove)(struct ib_device *, void *client_data); 1965 1966 /* Returns the net_dev belonging to this ib_client and matching the 1967 * given parameters. 1968 * @dev: An RDMA device that the net_dev use for communication. 1969 * @port: A physical port number on the RDMA device. 1970 * @pkey: P_Key that the net_dev uses if applicable. 1971 * @gid: A GID that the net_dev uses to communicate. 1972 * @addr: An IP address the net_dev is configured with. 1973 * @client_data: The device's client data set by ib_set_client_data(). 1974 * 1975 * An ib_client that implements a net_dev on top of RDMA devices 1976 * (such as IP over IB) should implement this callback, allowing the 1977 * rdma_cm module to find the right net_dev for a given request. 1978 * 1979 * The caller is responsible for calling dev_put on the returned 1980 * netdev. */ 1981 struct net_device *(*get_net_dev_by_params)( 1982 struct ib_device *dev, 1983 u8 port, 1984 u16 pkey, 1985 const union ib_gid *gid, 1986 const struct sockaddr *addr, 1987 void *client_data); 1988 struct list_head list; 1989 }; 1990 1991 struct ib_device *ib_alloc_device(size_t size); 1992 void ib_dealloc_device(struct ib_device *device); 1993 1994 int ib_register_device(struct ib_device *device, 1995 int (*port_callback)(struct ib_device *, 1996 u8, struct kobject *)); 1997 void ib_unregister_device(struct ib_device *device); 1998 1999 int ib_register_client (struct ib_client *client); 2000 void ib_unregister_client(struct ib_client *client); 2001 2002 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2003 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2004 void *data); 2005 2006 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2007 { 2008 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2009 } 2010 2011 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2012 { 2013 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2014 } 2015 2016 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2017 size_t offset, 2018 size_t len) 2019 { 2020 const void __user *p = udata->inbuf + offset; 2021 bool ret = false; 2022 u8 *buf; 2023 2024 if (len > USHRT_MAX) 2025 return false; 2026 2027 buf = kmalloc(len, GFP_KERNEL); 2028 if (!buf) 2029 return false; 2030 2031 if (copy_from_user(buf, p, len)) 2032 goto free; 2033 2034 ret = !memchr_inv(buf, 0, len); 2035 2036 free: 2037 kfree(buf); 2038 return ret; 2039 } 2040 2041 /** 2042 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2043 * contains all required attributes and no attributes not allowed for 2044 * the given QP state transition. 2045 * @cur_state: Current QP state 2046 * @next_state: Next QP state 2047 * @type: QP type 2048 * @mask: Mask of supplied QP attributes 2049 * @ll : link layer of port 2050 * 2051 * This function is a helper function that a low-level driver's 2052 * modify_qp method can use to validate the consumer's input. It 2053 * checks that cur_state and next_state are valid QP states, that a 2054 * transition from cur_state to next_state is allowed by the IB spec, 2055 * and that the attribute mask supplied is allowed for the transition. 2056 */ 2057 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2058 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2059 enum rdma_link_layer ll); 2060 2061 int ib_register_event_handler (struct ib_event_handler *event_handler); 2062 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2063 void ib_dispatch_event(struct ib_event *event); 2064 2065 int ib_query_port(struct ib_device *device, 2066 u8 port_num, struct ib_port_attr *port_attr); 2067 2068 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2069 u8 port_num); 2070 2071 /** 2072 * rdma_cap_ib_switch - Check if the device is IB switch 2073 * @device: Device to check 2074 * 2075 * Device driver is responsible for setting is_switch bit on 2076 * in ib_device structure at init time. 2077 * 2078 * Return: true if the device is IB switch. 2079 */ 2080 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2081 { 2082 return device->is_switch; 2083 } 2084 2085 /** 2086 * rdma_start_port - Return the first valid port number for the device 2087 * specified 2088 * 2089 * @device: Device to be checked 2090 * 2091 * Return start port number 2092 */ 2093 static inline u8 rdma_start_port(const struct ib_device *device) 2094 { 2095 return rdma_cap_ib_switch(device) ? 0 : 1; 2096 } 2097 2098 /** 2099 * rdma_end_port - Return the last valid port number for the device 2100 * specified 2101 * 2102 * @device: Device to be checked 2103 * 2104 * Return last port number 2105 */ 2106 static inline u8 rdma_end_port(const struct ib_device *device) 2107 { 2108 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2109 } 2110 2111 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2112 { 2113 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2114 } 2115 2116 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2117 { 2118 return device->port_immutable[port_num].core_cap_flags & 2119 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2120 } 2121 2122 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2123 { 2124 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2125 } 2126 2127 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2128 { 2129 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2130 } 2131 2132 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2133 { 2134 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2135 } 2136 2137 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2138 { 2139 return rdma_protocol_ib(device, port_num) || 2140 rdma_protocol_roce(device, port_num); 2141 } 2142 2143 /** 2144 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2145 * Management Datagrams. 2146 * @device: Device to check 2147 * @port_num: Port number to check 2148 * 2149 * Management Datagrams (MAD) are a required part of the InfiniBand 2150 * specification and are supported on all InfiniBand devices. A slightly 2151 * extended version are also supported on OPA interfaces. 2152 * 2153 * Return: true if the port supports sending/receiving of MAD packets. 2154 */ 2155 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2156 { 2157 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2158 } 2159 2160 /** 2161 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2162 * Management Datagrams. 2163 * @device: Device to check 2164 * @port_num: Port number to check 2165 * 2166 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2167 * datagrams with their own versions. These OPA MADs share many but not all of 2168 * the characteristics of InfiniBand MADs. 2169 * 2170 * OPA MADs differ in the following ways: 2171 * 2172 * 1) MADs are variable size up to 2K 2173 * IBTA defined MADs remain fixed at 256 bytes 2174 * 2) OPA SMPs must carry valid PKeys 2175 * 3) OPA SMP packets are a different format 2176 * 2177 * Return: true if the port supports OPA MAD packet formats. 2178 */ 2179 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2180 { 2181 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2182 == RDMA_CORE_CAP_OPA_MAD; 2183 } 2184 2185 /** 2186 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2187 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2188 * @device: Device to check 2189 * @port_num: Port number to check 2190 * 2191 * Each InfiniBand node is required to provide a Subnet Management Agent 2192 * that the subnet manager can access. Prior to the fabric being fully 2193 * configured by the subnet manager, the SMA is accessed via a well known 2194 * interface called the Subnet Management Interface (SMI). This interface 2195 * uses directed route packets to communicate with the SM to get around the 2196 * chicken and egg problem of the SM needing to know what's on the fabric 2197 * in order to configure the fabric, and needing to configure the fabric in 2198 * order to send packets to the devices on the fabric. These directed 2199 * route packets do not need the fabric fully configured in order to reach 2200 * their destination. The SMI is the only method allowed to send 2201 * directed route packets on an InfiniBand fabric. 2202 * 2203 * Return: true if the port provides an SMI. 2204 */ 2205 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2206 { 2207 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2208 } 2209 2210 /** 2211 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2212 * Communication Manager. 2213 * @device: Device to check 2214 * @port_num: Port number to check 2215 * 2216 * The InfiniBand Communication Manager is one of many pre-defined General 2217 * Service Agents (GSA) that are accessed via the General Service 2218 * Interface (GSI). It's role is to facilitate establishment of connections 2219 * between nodes as well as other management related tasks for established 2220 * connections. 2221 * 2222 * Return: true if the port supports an IB CM (this does not guarantee that 2223 * a CM is actually running however). 2224 */ 2225 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2226 { 2227 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2228 } 2229 2230 /** 2231 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2232 * Communication Manager. 2233 * @device: Device to check 2234 * @port_num: Port number to check 2235 * 2236 * Similar to above, but specific to iWARP connections which have a different 2237 * managment protocol than InfiniBand. 2238 * 2239 * Return: true if the port supports an iWARP CM (this does not guarantee that 2240 * a CM is actually running however). 2241 */ 2242 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2243 { 2244 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2245 } 2246 2247 /** 2248 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2249 * Subnet Administration. 2250 * @device: Device to check 2251 * @port_num: Port number to check 2252 * 2253 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2254 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2255 * fabrics, devices should resolve routes to other hosts by contacting the 2256 * SA to query the proper route. 2257 * 2258 * Return: true if the port should act as a client to the fabric Subnet 2259 * Administration interface. This does not imply that the SA service is 2260 * running locally. 2261 */ 2262 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2263 { 2264 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2265 } 2266 2267 /** 2268 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2269 * Multicast. 2270 * @device: Device to check 2271 * @port_num: Port number to check 2272 * 2273 * InfiniBand multicast registration is more complex than normal IPv4 or 2274 * IPv6 multicast registration. Each Host Channel Adapter must register 2275 * with the Subnet Manager when it wishes to join a multicast group. It 2276 * should do so only once regardless of how many queue pairs it subscribes 2277 * to this group. And it should leave the group only after all queue pairs 2278 * attached to the group have been detached. 2279 * 2280 * Return: true if the port must undertake the additional adminstrative 2281 * overhead of registering/unregistering with the SM and tracking of the 2282 * total number of queue pairs attached to the multicast group. 2283 */ 2284 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2285 { 2286 return rdma_cap_ib_sa(device, port_num); 2287 } 2288 2289 /** 2290 * rdma_cap_af_ib - Check if the port of device has the capability 2291 * Native Infiniband Address. 2292 * @device: Device to check 2293 * @port_num: Port number to check 2294 * 2295 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2296 * GID. RoCE uses a different mechanism, but still generates a GID via 2297 * a prescribed mechanism and port specific data. 2298 * 2299 * Return: true if the port uses a GID address to identify devices on the 2300 * network. 2301 */ 2302 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2303 { 2304 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2305 } 2306 2307 /** 2308 * rdma_cap_eth_ah - Check if the port of device has the capability 2309 * Ethernet Address Handle. 2310 * @device: Device to check 2311 * @port_num: Port number to check 2312 * 2313 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2314 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2315 * port. Normally, packet headers are generated by the sending host 2316 * adapter, but when sending connectionless datagrams, we must manually 2317 * inject the proper headers for the fabric we are communicating over. 2318 * 2319 * Return: true if we are running as a RoCE port and must force the 2320 * addition of a Global Route Header built from our Ethernet Address 2321 * Handle into our header list for connectionless packets. 2322 */ 2323 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2324 { 2325 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2326 } 2327 2328 /** 2329 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2330 * 2331 * @device: Device 2332 * @port_num: Port number 2333 * 2334 * This MAD size includes the MAD headers and MAD payload. No other headers 2335 * are included. 2336 * 2337 * Return the max MAD size required by the Port. Will return 0 if the port 2338 * does not support MADs 2339 */ 2340 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2341 { 2342 return device->port_immutable[port_num].max_mad_size; 2343 } 2344 2345 /** 2346 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2347 * @device: Device to check 2348 * @port_num: Port number to check 2349 * 2350 * RoCE GID table mechanism manages the various GIDs for a device. 2351 * 2352 * NOTE: if allocating the port's GID table has failed, this call will still 2353 * return true, but any RoCE GID table API will fail. 2354 * 2355 * Return: true if the port uses RoCE GID table mechanism in order to manage 2356 * its GIDs. 2357 */ 2358 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2359 u8 port_num) 2360 { 2361 return rdma_protocol_roce(device, port_num) && 2362 device->add_gid && device->del_gid; 2363 } 2364 2365 /* 2366 * Check if the device supports READ W/ INVALIDATE. 2367 */ 2368 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2369 { 2370 /* 2371 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2372 * has support for it yet. 2373 */ 2374 return rdma_protocol_iwarp(dev, port_num); 2375 } 2376 2377 int ib_query_gid(struct ib_device *device, 2378 u8 port_num, int index, union ib_gid *gid, 2379 struct ib_gid_attr *attr); 2380 2381 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2382 int state); 2383 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2384 struct ifla_vf_info *info); 2385 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2386 struct ifla_vf_stats *stats); 2387 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2388 int type); 2389 2390 int ib_query_pkey(struct ib_device *device, 2391 u8 port_num, u16 index, u16 *pkey); 2392 2393 int ib_modify_device(struct ib_device *device, 2394 int device_modify_mask, 2395 struct ib_device_modify *device_modify); 2396 2397 int ib_modify_port(struct ib_device *device, 2398 u8 port_num, int port_modify_mask, 2399 struct ib_port_modify *port_modify); 2400 2401 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2402 enum ib_gid_type gid_type, struct net_device *ndev, 2403 u8 *port_num, u16 *index); 2404 2405 int ib_find_pkey(struct ib_device *device, 2406 u8 port_num, u16 pkey, u16 *index); 2407 2408 struct ib_pd *ib_alloc_pd(struct ib_device *device); 2409 2410 void ib_dealloc_pd(struct ib_pd *pd); 2411 2412 /** 2413 * ib_create_ah - Creates an address handle for the given address vector. 2414 * @pd: The protection domain associated with the address handle. 2415 * @ah_attr: The attributes of the address vector. 2416 * 2417 * The address handle is used to reference a local or global destination 2418 * in all UD QP post sends. 2419 */ 2420 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2421 2422 /** 2423 * ib_init_ah_from_wc - Initializes address handle attributes from a 2424 * work completion. 2425 * @device: Device on which the received message arrived. 2426 * @port_num: Port on which the received message arrived. 2427 * @wc: Work completion associated with the received message. 2428 * @grh: References the received global route header. This parameter is 2429 * ignored unless the work completion indicates that the GRH is valid. 2430 * @ah_attr: Returned attributes that can be used when creating an address 2431 * handle for replying to the message. 2432 */ 2433 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2434 const struct ib_wc *wc, const struct ib_grh *grh, 2435 struct ib_ah_attr *ah_attr); 2436 2437 /** 2438 * ib_create_ah_from_wc - Creates an address handle associated with the 2439 * sender of the specified work completion. 2440 * @pd: The protection domain associated with the address handle. 2441 * @wc: Work completion information associated with a received message. 2442 * @grh: References the received global route header. This parameter is 2443 * ignored unless the work completion indicates that the GRH is valid. 2444 * @port_num: The outbound port number to associate with the address. 2445 * 2446 * The address handle is used to reference a local or global destination 2447 * in all UD QP post sends. 2448 */ 2449 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2450 const struct ib_grh *grh, u8 port_num); 2451 2452 /** 2453 * ib_modify_ah - Modifies the address vector associated with an address 2454 * handle. 2455 * @ah: The address handle to modify. 2456 * @ah_attr: The new address vector attributes to associate with the 2457 * address handle. 2458 */ 2459 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2460 2461 /** 2462 * ib_query_ah - Queries the address vector associated with an address 2463 * handle. 2464 * @ah: The address handle to query. 2465 * @ah_attr: The address vector attributes associated with the address 2466 * handle. 2467 */ 2468 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2469 2470 /** 2471 * ib_destroy_ah - Destroys an address handle. 2472 * @ah: The address handle to destroy. 2473 */ 2474 int ib_destroy_ah(struct ib_ah *ah); 2475 2476 /** 2477 * ib_create_srq - Creates a SRQ associated with the specified protection 2478 * domain. 2479 * @pd: The protection domain associated with the SRQ. 2480 * @srq_init_attr: A list of initial attributes required to create the 2481 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2482 * the actual capabilities of the created SRQ. 2483 * 2484 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2485 * requested size of the SRQ, and set to the actual values allocated 2486 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2487 * will always be at least as large as the requested values. 2488 */ 2489 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2490 struct ib_srq_init_attr *srq_init_attr); 2491 2492 /** 2493 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2494 * @srq: The SRQ to modify. 2495 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2496 * the current values of selected SRQ attributes are returned. 2497 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2498 * are being modified. 2499 * 2500 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2501 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2502 * the number of receives queued drops below the limit. 2503 */ 2504 int ib_modify_srq(struct ib_srq *srq, 2505 struct ib_srq_attr *srq_attr, 2506 enum ib_srq_attr_mask srq_attr_mask); 2507 2508 /** 2509 * ib_query_srq - Returns the attribute list and current values for the 2510 * specified SRQ. 2511 * @srq: The SRQ to query. 2512 * @srq_attr: The attributes of the specified SRQ. 2513 */ 2514 int ib_query_srq(struct ib_srq *srq, 2515 struct ib_srq_attr *srq_attr); 2516 2517 /** 2518 * ib_destroy_srq - Destroys the specified SRQ. 2519 * @srq: The SRQ to destroy. 2520 */ 2521 int ib_destroy_srq(struct ib_srq *srq); 2522 2523 /** 2524 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2525 * @srq: The SRQ to post the work request on. 2526 * @recv_wr: A list of work requests to post on the receive queue. 2527 * @bad_recv_wr: On an immediate failure, this parameter will reference 2528 * the work request that failed to be posted on the QP. 2529 */ 2530 static inline int ib_post_srq_recv(struct ib_srq *srq, 2531 struct ib_recv_wr *recv_wr, 2532 struct ib_recv_wr **bad_recv_wr) 2533 { 2534 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2535 } 2536 2537 /** 2538 * ib_create_qp - Creates a QP associated with the specified protection 2539 * domain. 2540 * @pd: The protection domain associated with the QP. 2541 * @qp_init_attr: A list of initial attributes required to create the 2542 * QP. If QP creation succeeds, then the attributes are updated to 2543 * the actual capabilities of the created QP. 2544 */ 2545 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2546 struct ib_qp_init_attr *qp_init_attr); 2547 2548 /** 2549 * ib_modify_qp - Modifies the attributes for the specified QP and then 2550 * transitions the QP to the given state. 2551 * @qp: The QP to modify. 2552 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2553 * the current values of selected QP attributes are returned. 2554 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2555 * are being modified. 2556 */ 2557 int ib_modify_qp(struct ib_qp *qp, 2558 struct ib_qp_attr *qp_attr, 2559 int qp_attr_mask); 2560 2561 /** 2562 * ib_query_qp - Returns the attribute list and current values for the 2563 * specified QP. 2564 * @qp: The QP to query. 2565 * @qp_attr: The attributes of the specified QP. 2566 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2567 * @qp_init_attr: Additional attributes of the selected QP. 2568 * 2569 * The qp_attr_mask may be used to limit the query to gathering only the 2570 * selected attributes. 2571 */ 2572 int ib_query_qp(struct ib_qp *qp, 2573 struct ib_qp_attr *qp_attr, 2574 int qp_attr_mask, 2575 struct ib_qp_init_attr *qp_init_attr); 2576 2577 /** 2578 * ib_destroy_qp - Destroys the specified QP. 2579 * @qp: The QP to destroy. 2580 */ 2581 int ib_destroy_qp(struct ib_qp *qp); 2582 2583 /** 2584 * ib_open_qp - Obtain a reference to an existing sharable QP. 2585 * @xrcd - XRC domain 2586 * @qp_open_attr: Attributes identifying the QP to open. 2587 * 2588 * Returns a reference to a sharable QP. 2589 */ 2590 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2591 struct ib_qp_open_attr *qp_open_attr); 2592 2593 /** 2594 * ib_close_qp - Release an external reference to a QP. 2595 * @qp: The QP handle to release 2596 * 2597 * The opened QP handle is released by the caller. The underlying 2598 * shared QP is not destroyed until all internal references are released. 2599 */ 2600 int ib_close_qp(struct ib_qp *qp); 2601 2602 /** 2603 * ib_post_send - Posts a list of work requests to the send queue of 2604 * the specified QP. 2605 * @qp: The QP to post the work request on. 2606 * @send_wr: A list of work requests to post on the send queue. 2607 * @bad_send_wr: On an immediate failure, this parameter will reference 2608 * the work request that failed to be posted on the QP. 2609 * 2610 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2611 * error is returned, the QP state shall not be affected, 2612 * ib_post_send() will return an immediate error after queueing any 2613 * earlier work requests in the list. 2614 */ 2615 static inline int ib_post_send(struct ib_qp *qp, 2616 struct ib_send_wr *send_wr, 2617 struct ib_send_wr **bad_send_wr) 2618 { 2619 return qp->device->post_send(qp, send_wr, bad_send_wr); 2620 } 2621 2622 /** 2623 * ib_post_recv - Posts a list of work requests to the receive queue of 2624 * the specified QP. 2625 * @qp: The QP to post the work request on. 2626 * @recv_wr: A list of work requests to post on the receive queue. 2627 * @bad_recv_wr: On an immediate failure, this parameter will reference 2628 * the work request that failed to be posted on the QP. 2629 */ 2630 static inline int ib_post_recv(struct ib_qp *qp, 2631 struct ib_recv_wr *recv_wr, 2632 struct ib_recv_wr **bad_recv_wr) 2633 { 2634 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2635 } 2636 2637 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2638 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2639 void ib_free_cq(struct ib_cq *cq); 2640 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2641 2642 /** 2643 * ib_create_cq - Creates a CQ on the specified device. 2644 * @device: The device on which to create the CQ. 2645 * @comp_handler: A user-specified callback that is invoked when a 2646 * completion event occurs on the CQ. 2647 * @event_handler: A user-specified callback that is invoked when an 2648 * asynchronous event not associated with a completion occurs on the CQ. 2649 * @cq_context: Context associated with the CQ returned to the user via 2650 * the associated completion and event handlers. 2651 * @cq_attr: The attributes the CQ should be created upon. 2652 * 2653 * Users can examine the cq structure to determine the actual CQ size. 2654 */ 2655 struct ib_cq *ib_create_cq(struct ib_device *device, 2656 ib_comp_handler comp_handler, 2657 void (*event_handler)(struct ib_event *, void *), 2658 void *cq_context, 2659 const struct ib_cq_init_attr *cq_attr); 2660 2661 /** 2662 * ib_resize_cq - Modifies the capacity of the CQ. 2663 * @cq: The CQ to resize. 2664 * @cqe: The minimum size of the CQ. 2665 * 2666 * Users can examine the cq structure to determine the actual CQ size. 2667 */ 2668 int ib_resize_cq(struct ib_cq *cq, int cqe); 2669 2670 /** 2671 * ib_modify_cq - Modifies moderation params of the CQ 2672 * @cq: The CQ to modify. 2673 * @cq_count: number of CQEs that will trigger an event 2674 * @cq_period: max period of time in usec before triggering an event 2675 * 2676 */ 2677 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2678 2679 /** 2680 * ib_destroy_cq - Destroys the specified CQ. 2681 * @cq: The CQ to destroy. 2682 */ 2683 int ib_destroy_cq(struct ib_cq *cq); 2684 2685 /** 2686 * ib_poll_cq - poll a CQ for completion(s) 2687 * @cq:the CQ being polled 2688 * @num_entries:maximum number of completions to return 2689 * @wc:array of at least @num_entries &struct ib_wc where completions 2690 * will be returned 2691 * 2692 * Poll a CQ for (possibly multiple) completions. If the return value 2693 * is < 0, an error occurred. If the return value is >= 0, it is the 2694 * number of completions returned. If the return value is 2695 * non-negative and < num_entries, then the CQ was emptied. 2696 */ 2697 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2698 struct ib_wc *wc) 2699 { 2700 return cq->device->poll_cq(cq, num_entries, wc); 2701 } 2702 2703 /** 2704 * ib_peek_cq - Returns the number of unreaped completions currently 2705 * on the specified CQ. 2706 * @cq: The CQ to peek. 2707 * @wc_cnt: A minimum number of unreaped completions to check for. 2708 * 2709 * If the number of unreaped completions is greater than or equal to wc_cnt, 2710 * this function returns wc_cnt, otherwise, it returns the actual number of 2711 * unreaped completions. 2712 */ 2713 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2714 2715 /** 2716 * ib_req_notify_cq - Request completion notification on a CQ. 2717 * @cq: The CQ to generate an event for. 2718 * @flags: 2719 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2720 * to request an event on the next solicited event or next work 2721 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2722 * may also be |ed in to request a hint about missed events, as 2723 * described below. 2724 * 2725 * Return Value: 2726 * < 0 means an error occurred while requesting notification 2727 * == 0 means notification was requested successfully, and if 2728 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2729 * were missed and it is safe to wait for another event. In 2730 * this case is it guaranteed that any work completions added 2731 * to the CQ since the last CQ poll will trigger a completion 2732 * notification event. 2733 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2734 * in. It means that the consumer must poll the CQ again to 2735 * make sure it is empty to avoid missing an event because of a 2736 * race between requesting notification and an entry being 2737 * added to the CQ. This return value means it is possible 2738 * (but not guaranteed) that a work completion has been added 2739 * to the CQ since the last poll without triggering a 2740 * completion notification event. 2741 */ 2742 static inline int ib_req_notify_cq(struct ib_cq *cq, 2743 enum ib_cq_notify_flags flags) 2744 { 2745 return cq->device->req_notify_cq(cq, flags); 2746 } 2747 2748 /** 2749 * ib_req_ncomp_notif - Request completion notification when there are 2750 * at least the specified number of unreaped completions on the CQ. 2751 * @cq: The CQ to generate an event for. 2752 * @wc_cnt: The number of unreaped completions that should be on the 2753 * CQ before an event is generated. 2754 */ 2755 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2756 { 2757 return cq->device->req_ncomp_notif ? 2758 cq->device->req_ncomp_notif(cq, wc_cnt) : 2759 -ENOSYS; 2760 } 2761 2762 /** 2763 * ib_get_dma_mr - Returns a memory region for system memory that is 2764 * usable for DMA. 2765 * @pd: The protection domain associated with the memory region. 2766 * @mr_access_flags: Specifies the memory access rights. 2767 * 2768 * Note that the ib_dma_*() functions defined below must be used 2769 * to create/destroy addresses used with the Lkey or Rkey returned 2770 * by ib_get_dma_mr(). 2771 */ 2772 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2773 2774 /** 2775 * ib_dma_mapping_error - check a DMA addr for error 2776 * @dev: The device for which the dma_addr was created 2777 * @dma_addr: The DMA address to check 2778 */ 2779 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2780 { 2781 if (dev->dma_ops) 2782 return dev->dma_ops->mapping_error(dev, dma_addr); 2783 return dma_mapping_error(dev->dma_device, dma_addr); 2784 } 2785 2786 /** 2787 * ib_dma_map_single - Map a kernel virtual address to DMA address 2788 * @dev: The device for which the dma_addr is to be created 2789 * @cpu_addr: The kernel virtual address 2790 * @size: The size of the region in bytes 2791 * @direction: The direction of the DMA 2792 */ 2793 static inline u64 ib_dma_map_single(struct ib_device *dev, 2794 void *cpu_addr, size_t size, 2795 enum dma_data_direction direction) 2796 { 2797 if (dev->dma_ops) 2798 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2799 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2800 } 2801 2802 /** 2803 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2804 * @dev: The device for which the DMA address was created 2805 * @addr: The DMA address 2806 * @size: The size of the region in bytes 2807 * @direction: The direction of the DMA 2808 */ 2809 static inline void ib_dma_unmap_single(struct ib_device *dev, 2810 u64 addr, size_t size, 2811 enum dma_data_direction direction) 2812 { 2813 if (dev->dma_ops) 2814 dev->dma_ops->unmap_single(dev, addr, size, direction); 2815 else 2816 dma_unmap_single(dev->dma_device, addr, size, direction); 2817 } 2818 2819 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2820 void *cpu_addr, size_t size, 2821 enum dma_data_direction direction, 2822 struct dma_attrs *attrs) 2823 { 2824 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2825 direction, attrs); 2826 } 2827 2828 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2829 u64 addr, size_t size, 2830 enum dma_data_direction direction, 2831 struct dma_attrs *attrs) 2832 { 2833 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2834 direction, attrs); 2835 } 2836 2837 /** 2838 * ib_dma_map_page - Map a physical page to DMA address 2839 * @dev: The device for which the dma_addr is to be created 2840 * @page: The page to be mapped 2841 * @offset: The offset within the page 2842 * @size: The size of the region in bytes 2843 * @direction: The direction of the DMA 2844 */ 2845 static inline u64 ib_dma_map_page(struct ib_device *dev, 2846 struct page *page, 2847 unsigned long offset, 2848 size_t size, 2849 enum dma_data_direction direction) 2850 { 2851 if (dev->dma_ops) 2852 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2853 return dma_map_page(dev->dma_device, page, offset, size, direction); 2854 } 2855 2856 /** 2857 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2858 * @dev: The device for which the DMA address was created 2859 * @addr: The DMA address 2860 * @size: The size of the region in bytes 2861 * @direction: The direction of the DMA 2862 */ 2863 static inline void ib_dma_unmap_page(struct ib_device *dev, 2864 u64 addr, size_t size, 2865 enum dma_data_direction direction) 2866 { 2867 if (dev->dma_ops) 2868 dev->dma_ops->unmap_page(dev, addr, size, direction); 2869 else 2870 dma_unmap_page(dev->dma_device, addr, size, direction); 2871 } 2872 2873 /** 2874 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2875 * @dev: The device for which the DMA addresses are to be created 2876 * @sg: The array of scatter/gather entries 2877 * @nents: The number of scatter/gather entries 2878 * @direction: The direction of the DMA 2879 */ 2880 static inline int ib_dma_map_sg(struct ib_device *dev, 2881 struct scatterlist *sg, int nents, 2882 enum dma_data_direction direction) 2883 { 2884 if (dev->dma_ops) 2885 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2886 return dma_map_sg(dev->dma_device, sg, nents, direction); 2887 } 2888 2889 /** 2890 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2891 * @dev: The device for which the DMA addresses were created 2892 * @sg: The array of scatter/gather entries 2893 * @nents: The number of scatter/gather entries 2894 * @direction: The direction of the DMA 2895 */ 2896 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2897 struct scatterlist *sg, int nents, 2898 enum dma_data_direction direction) 2899 { 2900 if (dev->dma_ops) 2901 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2902 else 2903 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2904 } 2905 2906 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2907 struct scatterlist *sg, int nents, 2908 enum dma_data_direction direction, 2909 struct dma_attrs *attrs) 2910 { 2911 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2912 } 2913 2914 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2915 struct scatterlist *sg, int nents, 2916 enum dma_data_direction direction, 2917 struct dma_attrs *attrs) 2918 { 2919 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2920 } 2921 /** 2922 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2923 * @dev: The device for which the DMA addresses were created 2924 * @sg: The scatter/gather entry 2925 * 2926 * Note: this function is obsolete. To do: change all occurrences of 2927 * ib_sg_dma_address() into sg_dma_address(). 2928 */ 2929 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2930 struct scatterlist *sg) 2931 { 2932 return sg_dma_address(sg); 2933 } 2934 2935 /** 2936 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2937 * @dev: The device for which the DMA addresses were created 2938 * @sg: The scatter/gather entry 2939 * 2940 * Note: this function is obsolete. To do: change all occurrences of 2941 * ib_sg_dma_len() into sg_dma_len(). 2942 */ 2943 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2944 struct scatterlist *sg) 2945 { 2946 return sg_dma_len(sg); 2947 } 2948 2949 /** 2950 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2951 * @dev: The device for which the DMA address was created 2952 * @addr: The DMA address 2953 * @size: The size of the region in bytes 2954 * @dir: The direction of the DMA 2955 */ 2956 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2957 u64 addr, 2958 size_t size, 2959 enum dma_data_direction dir) 2960 { 2961 if (dev->dma_ops) 2962 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2963 else 2964 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2965 } 2966 2967 /** 2968 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2969 * @dev: The device for which the DMA address was created 2970 * @addr: The DMA address 2971 * @size: The size of the region in bytes 2972 * @dir: The direction of the DMA 2973 */ 2974 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2975 u64 addr, 2976 size_t size, 2977 enum dma_data_direction dir) 2978 { 2979 if (dev->dma_ops) 2980 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2981 else 2982 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2983 } 2984 2985 /** 2986 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2987 * @dev: The device for which the DMA address is requested 2988 * @size: The size of the region to allocate in bytes 2989 * @dma_handle: A pointer for returning the DMA address of the region 2990 * @flag: memory allocator flags 2991 */ 2992 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2993 size_t size, 2994 u64 *dma_handle, 2995 gfp_t flag) 2996 { 2997 if (dev->dma_ops) 2998 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2999 else { 3000 dma_addr_t handle; 3001 void *ret; 3002 3003 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3004 *dma_handle = handle; 3005 return ret; 3006 } 3007 } 3008 3009 /** 3010 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3011 * @dev: The device for which the DMA addresses were allocated 3012 * @size: The size of the region 3013 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3014 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3015 */ 3016 static inline void ib_dma_free_coherent(struct ib_device *dev, 3017 size_t size, void *cpu_addr, 3018 u64 dma_handle) 3019 { 3020 if (dev->dma_ops) 3021 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3022 else 3023 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3024 } 3025 3026 /** 3027 * ib_dereg_mr - Deregisters a memory region and removes it from the 3028 * HCA translation table. 3029 * @mr: The memory region to deregister. 3030 * 3031 * This function can fail, if the memory region has memory windows bound to it. 3032 */ 3033 int ib_dereg_mr(struct ib_mr *mr); 3034 3035 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3036 enum ib_mr_type mr_type, 3037 u32 max_num_sg); 3038 3039 /** 3040 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3041 * R_Key and L_Key. 3042 * @mr - struct ib_mr pointer to be updated. 3043 * @newkey - new key to be used. 3044 */ 3045 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3046 { 3047 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3048 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3049 } 3050 3051 /** 3052 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3053 * for calculating a new rkey for type 2 memory windows. 3054 * @rkey - the rkey to increment. 3055 */ 3056 static inline u32 ib_inc_rkey(u32 rkey) 3057 { 3058 const u32 mask = 0x000000ff; 3059 return ((rkey + 1) & mask) | (rkey & ~mask); 3060 } 3061 3062 /** 3063 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3064 * @pd: The protection domain associated with the unmapped region. 3065 * @mr_access_flags: Specifies the memory access rights. 3066 * @fmr_attr: Attributes of the unmapped region. 3067 * 3068 * A fast memory region must be mapped before it can be used as part of 3069 * a work request. 3070 */ 3071 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3072 int mr_access_flags, 3073 struct ib_fmr_attr *fmr_attr); 3074 3075 /** 3076 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3077 * @fmr: The fast memory region to associate with the pages. 3078 * @page_list: An array of physical pages to map to the fast memory region. 3079 * @list_len: The number of pages in page_list. 3080 * @iova: The I/O virtual address to use with the mapped region. 3081 */ 3082 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3083 u64 *page_list, int list_len, 3084 u64 iova) 3085 { 3086 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3087 } 3088 3089 /** 3090 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3091 * @fmr_list: A linked list of fast memory regions to unmap. 3092 */ 3093 int ib_unmap_fmr(struct list_head *fmr_list); 3094 3095 /** 3096 * ib_dealloc_fmr - Deallocates a fast memory region. 3097 * @fmr: The fast memory region to deallocate. 3098 */ 3099 int ib_dealloc_fmr(struct ib_fmr *fmr); 3100 3101 /** 3102 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3103 * @qp: QP to attach to the multicast group. The QP must be type 3104 * IB_QPT_UD. 3105 * @gid: Multicast group GID. 3106 * @lid: Multicast group LID in host byte order. 3107 * 3108 * In order to send and receive multicast packets, subnet 3109 * administration must have created the multicast group and configured 3110 * the fabric appropriately. The port associated with the specified 3111 * QP must also be a member of the multicast group. 3112 */ 3113 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3114 3115 /** 3116 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3117 * @qp: QP to detach from the multicast group. 3118 * @gid: Multicast group GID. 3119 * @lid: Multicast group LID in host byte order. 3120 */ 3121 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3122 3123 /** 3124 * ib_alloc_xrcd - Allocates an XRC domain. 3125 * @device: The device on which to allocate the XRC domain. 3126 */ 3127 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3128 3129 /** 3130 * ib_dealloc_xrcd - Deallocates an XRC domain. 3131 * @xrcd: The XRC domain to deallocate. 3132 */ 3133 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3134 3135 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3136 struct ib_flow_attr *flow_attr, int domain); 3137 int ib_destroy_flow(struct ib_flow *flow_id); 3138 3139 static inline int ib_check_mr_access(int flags) 3140 { 3141 /* 3142 * Local write permission is required if remote write or 3143 * remote atomic permission is also requested. 3144 */ 3145 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3146 !(flags & IB_ACCESS_LOCAL_WRITE)) 3147 return -EINVAL; 3148 3149 return 0; 3150 } 3151 3152 /** 3153 * ib_check_mr_status: lightweight check of MR status. 3154 * This routine may provide status checks on a selected 3155 * ib_mr. first use is for signature status check. 3156 * 3157 * @mr: A memory region. 3158 * @check_mask: Bitmask of which checks to perform from 3159 * ib_mr_status_check enumeration. 3160 * @mr_status: The container of relevant status checks. 3161 * failed checks will be indicated in the status bitmask 3162 * and the relevant info shall be in the error item. 3163 */ 3164 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3165 struct ib_mr_status *mr_status); 3166 3167 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3168 u16 pkey, const union ib_gid *gid, 3169 const struct sockaddr *addr); 3170 3171 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3172 unsigned int *sg_offset, unsigned int page_size); 3173 3174 static inline int 3175 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3176 unsigned int *sg_offset, unsigned int page_size) 3177 { 3178 int n; 3179 3180 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3181 mr->iova = 0; 3182 3183 return n; 3184 } 3185 3186 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3187 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3188 3189 void ib_drain_rq(struct ib_qp *qp); 3190 void ib_drain_sq(struct ib_qp *qp); 3191 void ib_drain_qp(struct ib_qp *qp); 3192 #endif /* IB_VERBS_H */ 3193