1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _NET_XFRM_H 3 #define _NET_XFRM_H 4 5 #include <linux/compiler.h> 6 #include <linux/xfrm.h> 7 #include <linux/spinlock.h> 8 #include <linux/list.h> 9 #include <linux/skbuff.h> 10 #include <linux/socket.h> 11 #include <linux/pfkeyv2.h> 12 #include <linux/ipsec.h> 13 #include <linux/in6.h> 14 #include <linux/mutex.h> 15 #include <linux/audit.h> 16 #include <linux/slab.h> 17 #include <linux/refcount.h> 18 19 #include <net/sock.h> 20 #include <net/dst.h> 21 #include <net/ip.h> 22 #include <net/route.h> 23 #include <net/ipv6.h> 24 #include <net/ip6_fib.h> 25 #include <net/flow.h> 26 27 #include <linux/interrupt.h> 28 29 #ifdef CONFIG_XFRM_STATISTICS 30 #include <net/snmp.h> 31 #endif 32 33 #define XFRM_PROTO_ESP 50 34 #define XFRM_PROTO_AH 51 35 #define XFRM_PROTO_COMP 108 36 #define XFRM_PROTO_IPIP 4 37 #define XFRM_PROTO_IPV6 41 38 #define XFRM_PROTO_ROUTING IPPROTO_ROUTING 39 #define XFRM_PROTO_DSTOPTS IPPROTO_DSTOPTS 40 41 #define XFRM_ALIGN4(len) (((len) + 3) & ~3) 42 #define XFRM_ALIGN8(len) (((len) + 7) & ~7) 43 #define MODULE_ALIAS_XFRM_MODE(family, encap) \ 44 MODULE_ALIAS("xfrm-mode-" __stringify(family) "-" __stringify(encap)) 45 #define MODULE_ALIAS_XFRM_TYPE(family, proto) \ 46 MODULE_ALIAS("xfrm-type-" __stringify(family) "-" __stringify(proto)) 47 #define MODULE_ALIAS_XFRM_OFFLOAD_TYPE(family, proto) \ 48 MODULE_ALIAS("xfrm-offload-" __stringify(family) "-" __stringify(proto)) 49 50 #ifdef CONFIG_XFRM_STATISTICS 51 #define XFRM_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.xfrm_statistics, field) 52 #else 53 #define XFRM_INC_STATS(net, field) ((void)(net)) 54 #endif 55 56 57 /* Organization of SPD aka "XFRM rules" 58 ------------------------------------ 59 60 Basic objects: 61 - policy rule, struct xfrm_policy (=SPD entry) 62 - bundle of transformations, struct dst_entry == struct xfrm_dst (=SA bundle) 63 - instance of a transformer, struct xfrm_state (=SA) 64 - template to clone xfrm_state, struct xfrm_tmpl 65 66 SPD is plain linear list of xfrm_policy rules, ordered by priority. 67 (To be compatible with existing pfkeyv2 implementations, 68 many rules with priority of 0x7fffffff are allowed to exist and 69 such rules are ordered in an unpredictable way, thanks to bsd folks.) 70 71 Lookup is plain linear search until the first match with selector. 72 73 If "action" is "block", then we prohibit the flow, otherwise: 74 if "xfrms_nr" is zero, the flow passes untransformed. Otherwise, 75 policy entry has list of up to XFRM_MAX_DEPTH transformations, 76 described by templates xfrm_tmpl. Each template is resolved 77 to a complete xfrm_state (see below) and we pack bundle of transformations 78 to a dst_entry returned to requestor. 79 80 dst -. xfrm .-> xfrm_state #1 81 |---. child .-> dst -. xfrm .-> xfrm_state #2 82 |---. child .-> dst -. xfrm .-> xfrm_state #3 83 |---. child .-> NULL 84 85 Bundles are cached at xrfm_policy struct (field ->bundles). 86 87 88 Resolution of xrfm_tmpl 89 ----------------------- 90 Template contains: 91 1. ->mode Mode: transport or tunnel 92 2. ->id.proto Protocol: AH/ESP/IPCOMP 93 3. ->id.daddr Remote tunnel endpoint, ignored for transport mode. 94 Q: allow to resolve security gateway? 95 4. ->id.spi If not zero, static SPI. 96 5. ->saddr Local tunnel endpoint, ignored for transport mode. 97 6. ->algos List of allowed algos. Plain bitmask now. 98 Q: ealgos, aalgos, calgos. What a mess... 99 7. ->share Sharing mode. 100 Q: how to implement private sharing mode? To add struct sock* to 101 flow id? 102 103 Having this template we search through SAD searching for entries 104 with appropriate mode/proto/algo, permitted by selector. 105 If no appropriate entry found, it is requested from key manager. 106 107 PROBLEMS: 108 Q: How to find all the bundles referring to a physical path for 109 PMTU discovery? Seems, dst should contain list of all parents... 110 and enter to infinite locking hierarchy disaster. 111 No! It is easier, we will not search for them, let them find us. 112 We add genid to each dst plus pointer to genid of raw IP route, 113 pmtu disc will update pmtu on raw IP route and increase its genid. 114 dst_check() will see this for top level and trigger resyncing 115 metrics. Plus, it will be made via sk->sk_dst_cache. Solved. 116 */ 117 118 struct xfrm_state_walk { 119 struct list_head all; 120 u8 state; 121 u8 dying; 122 u8 proto; 123 u32 seq; 124 struct xfrm_address_filter *filter; 125 }; 126 127 struct xfrm_state_offload { 128 struct net_device *dev; 129 unsigned long offload_handle; 130 unsigned int num_exthdrs; 131 u8 flags; 132 }; 133 134 /* Full description of state of transformer. */ 135 struct xfrm_state { 136 possible_net_t xs_net; 137 union { 138 struct hlist_node gclist; 139 struct hlist_node bydst; 140 }; 141 struct hlist_node bysrc; 142 struct hlist_node byspi; 143 144 refcount_t refcnt; 145 spinlock_t lock; 146 147 struct xfrm_id id; 148 struct xfrm_selector sel; 149 struct xfrm_mark mark; 150 u32 tfcpad; 151 152 u32 genid; 153 154 /* Key manager bits */ 155 struct xfrm_state_walk km; 156 157 /* Parameters of this state. */ 158 struct { 159 u32 reqid; 160 u8 mode; 161 u8 replay_window; 162 u8 aalgo, ealgo, calgo; 163 u8 flags; 164 u16 family; 165 xfrm_address_t saddr; 166 int header_len; 167 int trailer_len; 168 u32 extra_flags; 169 u32 output_mark; 170 } props; 171 172 struct xfrm_lifetime_cfg lft; 173 174 /* Data for transformer */ 175 struct xfrm_algo_auth *aalg; 176 struct xfrm_algo *ealg; 177 struct xfrm_algo *calg; 178 struct xfrm_algo_aead *aead; 179 const char *geniv; 180 181 /* Data for encapsulator */ 182 struct xfrm_encap_tmpl *encap; 183 184 /* Data for care-of address */ 185 xfrm_address_t *coaddr; 186 187 /* IPComp needs an IPIP tunnel for handling uncompressed packets */ 188 struct xfrm_state *tunnel; 189 190 /* If a tunnel, number of users + 1 */ 191 atomic_t tunnel_users; 192 193 /* State for replay detection */ 194 struct xfrm_replay_state replay; 195 struct xfrm_replay_state_esn *replay_esn; 196 197 /* Replay detection state at the time we sent the last notification */ 198 struct xfrm_replay_state preplay; 199 struct xfrm_replay_state_esn *preplay_esn; 200 201 /* The functions for replay detection. */ 202 const struct xfrm_replay *repl; 203 204 /* internal flag that only holds state for delayed aevent at the 205 * moment 206 */ 207 u32 xflags; 208 209 /* Replay detection notification settings */ 210 u32 replay_maxage; 211 u32 replay_maxdiff; 212 213 /* Replay detection notification timer */ 214 struct timer_list rtimer; 215 216 /* Statistics */ 217 struct xfrm_stats stats; 218 219 struct xfrm_lifetime_cur curlft; 220 struct tasklet_hrtimer mtimer; 221 222 struct xfrm_state_offload xso; 223 224 /* used to fix curlft->add_time when changing date */ 225 long saved_tmo; 226 227 /* Last used time */ 228 unsigned long lastused; 229 230 struct page_frag xfrag; 231 232 /* Reference to data common to all the instances of this 233 * transformer. */ 234 const struct xfrm_type *type; 235 struct xfrm_mode *inner_mode; 236 struct xfrm_mode *inner_mode_iaf; 237 struct xfrm_mode *outer_mode; 238 239 const struct xfrm_type_offload *type_offload; 240 241 /* Security context */ 242 struct xfrm_sec_ctx *security; 243 244 /* Private data of this transformer, format is opaque, 245 * interpreted by xfrm_type methods. */ 246 void *data; 247 }; 248 249 static inline struct net *xs_net(struct xfrm_state *x) 250 { 251 return read_pnet(&x->xs_net); 252 } 253 254 /* xflags - make enum if more show up */ 255 #define XFRM_TIME_DEFER 1 256 #define XFRM_SOFT_EXPIRE 2 257 258 enum { 259 XFRM_STATE_VOID, 260 XFRM_STATE_ACQ, 261 XFRM_STATE_VALID, 262 XFRM_STATE_ERROR, 263 XFRM_STATE_EXPIRED, 264 XFRM_STATE_DEAD 265 }; 266 267 /* callback structure passed from either netlink or pfkey */ 268 struct km_event { 269 union { 270 u32 hard; 271 u32 proto; 272 u32 byid; 273 u32 aevent; 274 u32 type; 275 } data; 276 277 u32 seq; 278 u32 portid; 279 u32 event; 280 struct net *net; 281 }; 282 283 struct xfrm_replay { 284 void (*advance)(struct xfrm_state *x, __be32 net_seq); 285 int (*check)(struct xfrm_state *x, 286 struct sk_buff *skb, 287 __be32 net_seq); 288 int (*recheck)(struct xfrm_state *x, 289 struct sk_buff *skb, 290 __be32 net_seq); 291 void (*notify)(struct xfrm_state *x, int event); 292 int (*overflow)(struct xfrm_state *x, struct sk_buff *skb); 293 }; 294 295 struct net_device; 296 struct xfrm_type; 297 struct xfrm_dst; 298 struct xfrm_policy_afinfo { 299 struct dst_ops *dst_ops; 300 struct dst_entry *(*dst_lookup)(struct net *net, 301 int tos, int oif, 302 const xfrm_address_t *saddr, 303 const xfrm_address_t *daddr, 304 u32 mark); 305 int (*get_saddr)(struct net *net, int oif, 306 xfrm_address_t *saddr, 307 xfrm_address_t *daddr, 308 u32 mark); 309 void (*decode_session)(struct sk_buff *skb, 310 struct flowi *fl, 311 int reverse); 312 int (*get_tos)(const struct flowi *fl); 313 int (*init_path)(struct xfrm_dst *path, 314 struct dst_entry *dst, 315 int nfheader_len); 316 int (*fill_dst)(struct xfrm_dst *xdst, 317 struct net_device *dev, 318 const struct flowi *fl); 319 struct dst_entry *(*blackhole_route)(struct net *net, struct dst_entry *orig); 320 }; 321 322 int xfrm_policy_register_afinfo(const struct xfrm_policy_afinfo *afinfo, int family); 323 void xfrm_policy_unregister_afinfo(const struct xfrm_policy_afinfo *afinfo); 324 void km_policy_notify(struct xfrm_policy *xp, int dir, 325 const struct km_event *c); 326 void xfrm_policy_cache_flush(void); 327 void km_state_notify(struct xfrm_state *x, const struct km_event *c); 328 329 struct xfrm_tmpl; 330 int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, 331 struct xfrm_policy *pol); 332 void km_state_expired(struct xfrm_state *x, int hard, u32 portid); 333 int __xfrm_state_delete(struct xfrm_state *x); 334 335 struct xfrm_state_afinfo { 336 unsigned int family; 337 unsigned int proto; 338 __be16 eth_proto; 339 struct module *owner; 340 const struct xfrm_type *type_map[IPPROTO_MAX]; 341 const struct xfrm_type_offload *type_offload_map[IPPROTO_MAX]; 342 struct xfrm_mode *mode_map[XFRM_MODE_MAX]; 343 344 int (*init_flags)(struct xfrm_state *x); 345 void (*init_tempsel)(struct xfrm_selector *sel, 346 const struct flowi *fl); 347 void (*init_temprop)(struct xfrm_state *x, 348 const struct xfrm_tmpl *tmpl, 349 const xfrm_address_t *daddr, 350 const xfrm_address_t *saddr); 351 int (*tmpl_sort)(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n); 352 int (*state_sort)(struct xfrm_state **dst, struct xfrm_state **src, int n); 353 int (*output)(struct net *net, struct sock *sk, struct sk_buff *skb); 354 int (*output_finish)(struct sock *sk, struct sk_buff *skb); 355 int (*extract_input)(struct xfrm_state *x, 356 struct sk_buff *skb); 357 int (*extract_output)(struct xfrm_state *x, 358 struct sk_buff *skb); 359 int (*transport_finish)(struct sk_buff *skb, 360 int async); 361 void (*local_error)(struct sk_buff *skb, u32 mtu); 362 }; 363 364 int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo); 365 int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo); 366 struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family); 367 struct xfrm_state_afinfo *xfrm_state_afinfo_get_rcu(unsigned int family); 368 369 struct xfrm_input_afinfo { 370 unsigned int family; 371 int (*callback)(struct sk_buff *skb, u8 protocol, 372 int err); 373 }; 374 375 int xfrm_input_register_afinfo(const struct xfrm_input_afinfo *afinfo); 376 int xfrm_input_unregister_afinfo(const struct xfrm_input_afinfo *afinfo); 377 378 void xfrm_state_delete_tunnel(struct xfrm_state *x); 379 380 struct xfrm_type { 381 char *description; 382 struct module *owner; 383 u8 proto; 384 u8 flags; 385 #define XFRM_TYPE_NON_FRAGMENT 1 386 #define XFRM_TYPE_REPLAY_PROT 2 387 #define XFRM_TYPE_LOCAL_COADDR 4 388 #define XFRM_TYPE_REMOTE_COADDR 8 389 390 int (*init_state)(struct xfrm_state *x); 391 void (*destructor)(struct xfrm_state *); 392 int (*input)(struct xfrm_state *, struct sk_buff *skb); 393 int (*output)(struct xfrm_state *, struct sk_buff *pskb); 394 int (*reject)(struct xfrm_state *, struct sk_buff *, 395 const struct flowi *); 396 int (*hdr_offset)(struct xfrm_state *, struct sk_buff *, u8 **); 397 /* Estimate maximal size of result of transformation of a dgram */ 398 u32 (*get_mtu)(struct xfrm_state *, int size); 399 }; 400 401 int xfrm_register_type(const struct xfrm_type *type, unsigned short family); 402 int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family); 403 404 struct xfrm_type_offload { 405 char *description; 406 struct module *owner; 407 u8 proto; 408 void (*encap)(struct xfrm_state *, struct sk_buff *pskb); 409 int (*input_tail)(struct xfrm_state *x, struct sk_buff *skb); 410 int (*xmit)(struct xfrm_state *, struct sk_buff *pskb, netdev_features_t features); 411 }; 412 413 int xfrm_register_type_offload(const struct xfrm_type_offload *type, unsigned short family); 414 int xfrm_unregister_type_offload(const struct xfrm_type_offload *type, unsigned short family); 415 416 struct xfrm_mode { 417 /* 418 * Remove encapsulation header. 419 * 420 * The IP header will be moved over the top of the encapsulation 421 * header. 422 * 423 * On entry, the transport header shall point to where the IP header 424 * should be and the network header shall be set to where the IP 425 * header currently is. skb->data shall point to the start of the 426 * payload. 427 */ 428 int (*input2)(struct xfrm_state *x, struct sk_buff *skb); 429 430 /* 431 * This is the actual input entry point. 432 * 433 * For transport mode and equivalent this would be identical to 434 * input2 (which does not need to be set). While tunnel mode 435 * and equivalent would set this to the tunnel encapsulation function 436 * xfrm4_prepare_input that would in turn call input2. 437 */ 438 int (*input)(struct xfrm_state *x, struct sk_buff *skb); 439 440 /* 441 * Add encapsulation header. 442 * 443 * On exit, the transport header will be set to the start of the 444 * encapsulation header to be filled in by x->type->output and 445 * the mac header will be set to the nextheader (protocol for 446 * IPv4) field of the extension header directly preceding the 447 * encapsulation header, or in its absence, that of the top IP 448 * header. The value of the network header will always point 449 * to the top IP header while skb->data will point to the payload. 450 */ 451 int (*output2)(struct xfrm_state *x,struct sk_buff *skb); 452 453 /* 454 * This is the actual output entry point. 455 * 456 * For transport mode and equivalent this would be identical to 457 * output2 (which does not need to be set). While tunnel mode 458 * and equivalent would set this to a tunnel encapsulation function 459 * (xfrm4_prepare_output or xfrm6_prepare_output) that would in turn 460 * call output2. 461 */ 462 int (*output)(struct xfrm_state *x, struct sk_buff *skb); 463 464 /* 465 * Adjust pointers into the packet and do GSO segmentation. 466 */ 467 struct sk_buff *(*gso_segment)(struct xfrm_state *x, struct sk_buff *skb, netdev_features_t features); 468 469 /* 470 * Adjust pointers into the packet when IPsec is done at layer2. 471 */ 472 void (*xmit)(struct xfrm_state *x, struct sk_buff *skb); 473 474 struct xfrm_state_afinfo *afinfo; 475 struct module *owner; 476 unsigned int encap; 477 int flags; 478 }; 479 480 /* Flags for xfrm_mode. */ 481 enum { 482 XFRM_MODE_FLAG_TUNNEL = 1, 483 }; 484 485 int xfrm_register_mode(struct xfrm_mode *mode, int family); 486 int xfrm_unregister_mode(struct xfrm_mode *mode, int family); 487 488 static inline int xfrm_af2proto(unsigned int family) 489 { 490 switch(family) { 491 case AF_INET: 492 return IPPROTO_IPIP; 493 case AF_INET6: 494 return IPPROTO_IPV6; 495 default: 496 return 0; 497 } 498 } 499 500 static inline struct xfrm_mode *xfrm_ip2inner_mode(struct xfrm_state *x, int ipproto) 501 { 502 if ((ipproto == IPPROTO_IPIP && x->props.family == AF_INET) || 503 (ipproto == IPPROTO_IPV6 && x->props.family == AF_INET6)) 504 return x->inner_mode; 505 else 506 return x->inner_mode_iaf; 507 } 508 509 struct xfrm_tmpl { 510 /* id in template is interpreted as: 511 * daddr - destination of tunnel, may be zero for transport mode. 512 * spi - zero to acquire spi. Not zero if spi is static, then 513 * daddr must be fixed too. 514 * proto - AH/ESP/IPCOMP 515 */ 516 struct xfrm_id id; 517 518 /* Source address of tunnel. Ignored, if it is not a tunnel. */ 519 xfrm_address_t saddr; 520 521 unsigned short encap_family; 522 523 u32 reqid; 524 525 /* Mode: transport, tunnel etc. */ 526 u8 mode; 527 528 /* Sharing mode: unique, this session only, this user only etc. */ 529 u8 share; 530 531 /* May skip this transfomration if no SA is found */ 532 u8 optional; 533 534 /* Skip aalgos/ealgos/calgos checks. */ 535 u8 allalgs; 536 537 /* Bit mask of algos allowed for acquisition */ 538 u32 aalgos; 539 u32 ealgos; 540 u32 calgos; 541 }; 542 543 #define XFRM_MAX_DEPTH 6 544 #define XFRM_MAX_OFFLOAD_DEPTH 1 545 546 struct xfrm_policy_walk_entry { 547 struct list_head all; 548 u8 dead; 549 }; 550 551 struct xfrm_policy_walk { 552 struct xfrm_policy_walk_entry walk; 553 u8 type; 554 u32 seq; 555 }; 556 557 struct xfrm_policy_queue { 558 struct sk_buff_head hold_queue; 559 struct timer_list hold_timer; 560 unsigned long timeout; 561 }; 562 563 struct xfrm_policy { 564 possible_net_t xp_net; 565 struct hlist_node bydst; 566 struct hlist_node byidx; 567 568 /* This lock only affects elements except for entry. */ 569 rwlock_t lock; 570 refcount_t refcnt; 571 struct timer_list timer; 572 573 atomic_t genid; 574 u32 priority; 575 u32 index; 576 struct xfrm_mark mark; 577 struct xfrm_selector selector; 578 struct xfrm_lifetime_cfg lft; 579 struct xfrm_lifetime_cur curlft; 580 struct xfrm_policy_walk_entry walk; 581 struct xfrm_policy_queue polq; 582 u8 type; 583 u8 action; 584 u8 flags; 585 u8 xfrm_nr; 586 u16 family; 587 struct xfrm_sec_ctx *security; 588 struct xfrm_tmpl xfrm_vec[XFRM_MAX_DEPTH]; 589 struct rcu_head rcu; 590 }; 591 592 static inline struct net *xp_net(const struct xfrm_policy *xp) 593 { 594 return read_pnet(&xp->xp_net); 595 } 596 597 struct xfrm_kmaddress { 598 xfrm_address_t local; 599 xfrm_address_t remote; 600 u32 reserved; 601 u16 family; 602 }; 603 604 struct xfrm_migrate { 605 xfrm_address_t old_daddr; 606 xfrm_address_t old_saddr; 607 xfrm_address_t new_daddr; 608 xfrm_address_t new_saddr; 609 u8 proto; 610 u8 mode; 611 u16 reserved; 612 u32 reqid; 613 u16 old_family; 614 u16 new_family; 615 }; 616 617 #define XFRM_KM_TIMEOUT 30 618 /* what happened */ 619 #define XFRM_REPLAY_UPDATE XFRM_AE_CR 620 #define XFRM_REPLAY_TIMEOUT XFRM_AE_CE 621 622 /* default aevent timeout in units of 100ms */ 623 #define XFRM_AE_ETIME 10 624 /* Async Event timer multiplier */ 625 #define XFRM_AE_ETH_M 10 626 /* default seq threshold size */ 627 #define XFRM_AE_SEQT_SIZE 2 628 629 struct xfrm_mgr { 630 struct list_head list; 631 int (*notify)(struct xfrm_state *x, const struct km_event *c); 632 int (*acquire)(struct xfrm_state *x, struct xfrm_tmpl *, struct xfrm_policy *xp); 633 struct xfrm_policy *(*compile_policy)(struct sock *sk, int opt, u8 *data, int len, int *dir); 634 int (*new_mapping)(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); 635 int (*notify_policy)(struct xfrm_policy *x, int dir, const struct km_event *c); 636 int (*report)(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr); 637 int (*migrate)(const struct xfrm_selector *sel, 638 u8 dir, u8 type, 639 const struct xfrm_migrate *m, 640 int num_bundles, 641 const struct xfrm_kmaddress *k, 642 const struct xfrm_encap_tmpl *encap); 643 bool (*is_alive)(const struct km_event *c); 644 }; 645 646 int xfrm_register_km(struct xfrm_mgr *km); 647 int xfrm_unregister_km(struct xfrm_mgr *km); 648 649 struct xfrm_tunnel_skb_cb { 650 union { 651 struct inet_skb_parm h4; 652 struct inet6_skb_parm h6; 653 } header; 654 655 union { 656 struct ip_tunnel *ip4; 657 struct ip6_tnl *ip6; 658 } tunnel; 659 }; 660 661 #define XFRM_TUNNEL_SKB_CB(__skb) ((struct xfrm_tunnel_skb_cb *)&((__skb)->cb[0])) 662 663 /* 664 * This structure is used for the duration where packets are being 665 * transformed by IPsec. As soon as the packet leaves IPsec the 666 * area beyond the generic IP part may be overwritten. 667 */ 668 struct xfrm_skb_cb { 669 struct xfrm_tunnel_skb_cb header; 670 671 /* Sequence number for replay protection. */ 672 union { 673 struct { 674 __u32 low; 675 __u32 hi; 676 } output; 677 struct { 678 __be32 low; 679 __be32 hi; 680 } input; 681 } seq; 682 }; 683 684 #define XFRM_SKB_CB(__skb) ((struct xfrm_skb_cb *)&((__skb)->cb[0])) 685 686 /* 687 * This structure is used by the afinfo prepare_input/prepare_output functions 688 * to transmit header information to the mode input/output functions. 689 */ 690 struct xfrm_mode_skb_cb { 691 struct xfrm_tunnel_skb_cb header; 692 693 /* Copied from header for IPv4, always set to zero and DF for IPv6. */ 694 __be16 id; 695 __be16 frag_off; 696 697 /* IP header length (excluding options or extension headers). */ 698 u8 ihl; 699 700 /* TOS for IPv4, class for IPv6. */ 701 u8 tos; 702 703 /* TTL for IPv4, hop limitfor IPv6. */ 704 u8 ttl; 705 706 /* Protocol for IPv4, NH for IPv6. */ 707 u8 protocol; 708 709 /* Option length for IPv4, zero for IPv6. */ 710 u8 optlen; 711 712 /* Used by IPv6 only, zero for IPv4. */ 713 u8 flow_lbl[3]; 714 }; 715 716 #define XFRM_MODE_SKB_CB(__skb) ((struct xfrm_mode_skb_cb *)&((__skb)->cb[0])) 717 718 /* 719 * This structure is used by the input processing to locate the SPI and 720 * related information. 721 */ 722 struct xfrm_spi_skb_cb { 723 struct xfrm_tunnel_skb_cb header; 724 725 unsigned int daddroff; 726 unsigned int family; 727 __be32 seq; 728 }; 729 730 #define XFRM_SPI_SKB_CB(__skb) ((struct xfrm_spi_skb_cb *)&((__skb)->cb[0])) 731 732 #ifdef CONFIG_AUDITSYSCALL 733 static inline struct audit_buffer *xfrm_audit_start(const char *op) 734 { 735 struct audit_buffer *audit_buf = NULL; 736 737 if (audit_enabled == 0) 738 return NULL; 739 audit_buf = audit_log_start(current->audit_context, GFP_ATOMIC, 740 AUDIT_MAC_IPSEC_EVENT); 741 if (audit_buf == NULL) 742 return NULL; 743 audit_log_format(audit_buf, "op=%s", op); 744 return audit_buf; 745 } 746 747 static inline void xfrm_audit_helper_usrinfo(bool task_valid, 748 struct audit_buffer *audit_buf) 749 { 750 const unsigned int auid = from_kuid(&init_user_ns, task_valid ? 751 audit_get_loginuid(current) : 752 INVALID_UID); 753 const unsigned int ses = task_valid ? audit_get_sessionid(current) : 754 (unsigned int) -1; 755 756 audit_log_format(audit_buf, " auid=%u ses=%u", auid, ses); 757 audit_log_task_context(audit_buf); 758 } 759 760 void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, bool task_valid); 761 void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, 762 bool task_valid); 763 void xfrm_audit_state_add(struct xfrm_state *x, int result, bool task_valid); 764 void xfrm_audit_state_delete(struct xfrm_state *x, int result, bool task_valid); 765 void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 766 struct sk_buff *skb); 767 void xfrm_audit_state_replay(struct xfrm_state *x, struct sk_buff *skb, 768 __be32 net_seq); 769 void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family); 770 void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, __be32 net_spi, 771 __be32 net_seq); 772 void xfrm_audit_state_icvfail(struct xfrm_state *x, struct sk_buff *skb, 773 u8 proto); 774 #else 775 776 static inline void xfrm_audit_policy_add(struct xfrm_policy *xp, int result, 777 bool task_valid) 778 { 779 } 780 781 static inline void xfrm_audit_policy_delete(struct xfrm_policy *xp, int result, 782 bool task_valid) 783 { 784 } 785 786 static inline void xfrm_audit_state_add(struct xfrm_state *x, int result, 787 bool task_valid) 788 { 789 } 790 791 static inline void xfrm_audit_state_delete(struct xfrm_state *x, int result, 792 bool task_valid) 793 { 794 } 795 796 static inline void xfrm_audit_state_replay_overflow(struct xfrm_state *x, 797 struct sk_buff *skb) 798 { 799 } 800 801 static inline void xfrm_audit_state_replay(struct xfrm_state *x, 802 struct sk_buff *skb, __be32 net_seq) 803 { 804 } 805 806 static inline void xfrm_audit_state_notfound_simple(struct sk_buff *skb, 807 u16 family) 808 { 809 } 810 811 static inline void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family, 812 __be32 net_spi, __be32 net_seq) 813 { 814 } 815 816 static inline void xfrm_audit_state_icvfail(struct xfrm_state *x, 817 struct sk_buff *skb, u8 proto) 818 { 819 } 820 #endif /* CONFIG_AUDITSYSCALL */ 821 822 static inline void xfrm_pol_hold(struct xfrm_policy *policy) 823 { 824 if (likely(policy != NULL)) 825 refcount_inc(&policy->refcnt); 826 } 827 828 void xfrm_policy_destroy(struct xfrm_policy *policy); 829 830 static inline void xfrm_pol_put(struct xfrm_policy *policy) 831 { 832 if (refcount_dec_and_test(&policy->refcnt)) 833 xfrm_policy_destroy(policy); 834 } 835 836 static inline void xfrm_pols_put(struct xfrm_policy **pols, int npols) 837 { 838 int i; 839 for (i = npols - 1; i >= 0; --i) 840 xfrm_pol_put(pols[i]); 841 } 842 843 void __xfrm_state_destroy(struct xfrm_state *); 844 845 static inline void __xfrm_state_put(struct xfrm_state *x) 846 { 847 refcount_dec(&x->refcnt); 848 } 849 850 static inline void xfrm_state_put(struct xfrm_state *x) 851 { 852 if (refcount_dec_and_test(&x->refcnt)) 853 __xfrm_state_destroy(x); 854 } 855 856 static inline void xfrm_state_hold(struct xfrm_state *x) 857 { 858 refcount_inc(&x->refcnt); 859 } 860 861 static inline bool addr_match(const void *token1, const void *token2, 862 unsigned int prefixlen) 863 { 864 const __be32 *a1 = token1; 865 const __be32 *a2 = token2; 866 unsigned int pdw; 867 unsigned int pbi; 868 869 pdw = prefixlen >> 5; /* num of whole u32 in prefix */ 870 pbi = prefixlen & 0x1f; /* num of bits in incomplete u32 in prefix */ 871 872 if (pdw) 873 if (memcmp(a1, a2, pdw << 2)) 874 return false; 875 876 if (pbi) { 877 __be32 mask; 878 879 mask = htonl((0xffffffff) << (32 - pbi)); 880 881 if ((a1[pdw] ^ a2[pdw]) & mask) 882 return false; 883 } 884 885 return true; 886 } 887 888 static inline bool addr4_match(__be32 a1, __be32 a2, u8 prefixlen) 889 { 890 /* C99 6.5.7 (3): u32 << 32 is undefined behaviour */ 891 if (sizeof(long) == 4 && prefixlen == 0) 892 return true; 893 return !((a1 ^ a2) & htonl(~0UL << (32 - prefixlen))); 894 } 895 896 static __inline__ 897 __be16 xfrm_flowi_sport(const struct flowi *fl, const union flowi_uli *uli) 898 { 899 __be16 port; 900 switch(fl->flowi_proto) { 901 case IPPROTO_TCP: 902 case IPPROTO_UDP: 903 case IPPROTO_UDPLITE: 904 case IPPROTO_SCTP: 905 port = uli->ports.sport; 906 break; 907 case IPPROTO_ICMP: 908 case IPPROTO_ICMPV6: 909 port = htons(uli->icmpt.type); 910 break; 911 case IPPROTO_MH: 912 port = htons(uli->mht.type); 913 break; 914 case IPPROTO_GRE: 915 port = htons(ntohl(uli->gre_key) >> 16); 916 break; 917 default: 918 port = 0; /*XXX*/ 919 } 920 return port; 921 } 922 923 static __inline__ 924 __be16 xfrm_flowi_dport(const struct flowi *fl, const union flowi_uli *uli) 925 { 926 __be16 port; 927 switch(fl->flowi_proto) { 928 case IPPROTO_TCP: 929 case IPPROTO_UDP: 930 case IPPROTO_UDPLITE: 931 case IPPROTO_SCTP: 932 port = uli->ports.dport; 933 break; 934 case IPPROTO_ICMP: 935 case IPPROTO_ICMPV6: 936 port = htons(uli->icmpt.code); 937 break; 938 case IPPROTO_GRE: 939 port = htons(ntohl(uli->gre_key) & 0xffff); 940 break; 941 default: 942 port = 0; /*XXX*/ 943 } 944 return port; 945 } 946 947 bool xfrm_selector_match(const struct xfrm_selector *sel, 948 const struct flowi *fl, unsigned short family); 949 950 #ifdef CONFIG_SECURITY_NETWORK_XFRM 951 /* If neither has a context --> match 952 * Otherwise, both must have a context and the sids, doi, alg must match 953 */ 954 static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) 955 { 956 return ((!s1 && !s2) || 957 (s1 && s2 && 958 (s1->ctx_sid == s2->ctx_sid) && 959 (s1->ctx_doi == s2->ctx_doi) && 960 (s1->ctx_alg == s2->ctx_alg))); 961 } 962 #else 963 static inline bool xfrm_sec_ctx_match(struct xfrm_sec_ctx *s1, struct xfrm_sec_ctx *s2) 964 { 965 return true; 966 } 967 #endif 968 969 /* A struct encoding bundle of transformations to apply to some set of flow. 970 * 971 * dst->child points to the next element of bundle. 972 * dst->xfrm points to an instanse of transformer. 973 * 974 * Due to unfortunate limitations of current routing cache, which we 975 * have no time to fix, it mirrors struct rtable and bound to the same 976 * routing key, including saddr,daddr. However, we can have many of 977 * bundles differing by session id. All the bundles grow from a parent 978 * policy rule. 979 */ 980 struct xfrm_dst { 981 union { 982 struct dst_entry dst; 983 struct rtable rt; 984 struct rt6_info rt6; 985 } u; 986 struct dst_entry *route; 987 struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX]; 988 int num_pols, num_xfrms; 989 u32 xfrm_genid; 990 u32 policy_genid; 991 u32 route_mtu_cached; 992 u32 child_mtu_cached; 993 u32 route_cookie; 994 u32 path_cookie; 995 }; 996 997 #ifdef CONFIG_XFRM 998 static inline void xfrm_dst_destroy(struct xfrm_dst *xdst) 999 { 1000 xfrm_pols_put(xdst->pols, xdst->num_pols); 1001 dst_release(xdst->route); 1002 if (likely(xdst->u.dst.xfrm)) 1003 xfrm_state_put(xdst->u.dst.xfrm); 1004 } 1005 #endif 1006 1007 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev); 1008 1009 struct xfrm_offload { 1010 /* Output sequence number for replay protection on offloading. */ 1011 struct { 1012 __u32 low; 1013 __u32 hi; 1014 } seq; 1015 1016 __u32 flags; 1017 #define SA_DELETE_REQ 1 1018 #define CRYPTO_DONE 2 1019 #define CRYPTO_NEXT_DONE 4 1020 #define CRYPTO_FALLBACK 8 1021 #define XFRM_GSO_SEGMENT 16 1022 #define XFRM_GRO 32 1023 #define XFRM_ESP_NO_TRAILER 64 1024 1025 __u32 status; 1026 #define CRYPTO_SUCCESS 1 1027 #define CRYPTO_GENERIC_ERROR 2 1028 #define CRYPTO_TRANSPORT_AH_AUTH_FAILED 4 1029 #define CRYPTO_TRANSPORT_ESP_AUTH_FAILED 8 1030 #define CRYPTO_TUNNEL_AH_AUTH_FAILED 16 1031 #define CRYPTO_TUNNEL_ESP_AUTH_FAILED 32 1032 #define CRYPTO_INVALID_PACKET_SYNTAX 64 1033 #define CRYPTO_INVALID_PROTOCOL 128 1034 1035 __u8 proto; 1036 }; 1037 1038 struct sec_path { 1039 refcount_t refcnt; 1040 int len; 1041 int olen; 1042 1043 struct xfrm_state *xvec[XFRM_MAX_DEPTH]; 1044 struct xfrm_offload ovec[XFRM_MAX_OFFLOAD_DEPTH]; 1045 }; 1046 1047 static inline int secpath_exists(struct sk_buff *skb) 1048 { 1049 #ifdef CONFIG_XFRM 1050 return skb->sp != NULL; 1051 #else 1052 return 0; 1053 #endif 1054 } 1055 1056 static inline struct sec_path * 1057 secpath_get(struct sec_path *sp) 1058 { 1059 if (sp) 1060 refcount_inc(&sp->refcnt); 1061 return sp; 1062 } 1063 1064 void __secpath_destroy(struct sec_path *sp); 1065 1066 static inline void 1067 secpath_put(struct sec_path *sp) 1068 { 1069 if (sp && refcount_dec_and_test(&sp->refcnt)) 1070 __secpath_destroy(sp); 1071 } 1072 1073 struct sec_path *secpath_dup(struct sec_path *src); 1074 int secpath_set(struct sk_buff *skb); 1075 1076 static inline void 1077 secpath_reset(struct sk_buff *skb) 1078 { 1079 #ifdef CONFIG_XFRM 1080 secpath_put(skb->sp); 1081 skb->sp = NULL; 1082 #endif 1083 } 1084 1085 static inline int 1086 xfrm_addr_any(const xfrm_address_t *addr, unsigned short family) 1087 { 1088 switch (family) { 1089 case AF_INET: 1090 return addr->a4 == 0; 1091 case AF_INET6: 1092 return ipv6_addr_any(&addr->in6); 1093 } 1094 return 0; 1095 } 1096 1097 static inline int 1098 __xfrm4_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) 1099 { 1100 return (tmpl->saddr.a4 && 1101 tmpl->saddr.a4 != x->props.saddr.a4); 1102 } 1103 1104 static inline int 1105 __xfrm6_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x) 1106 { 1107 return (!ipv6_addr_any((struct in6_addr*)&tmpl->saddr) && 1108 !ipv6_addr_equal((struct in6_addr *)&tmpl->saddr, (struct in6_addr*)&x->props.saddr)); 1109 } 1110 1111 static inline int 1112 xfrm_state_addr_cmp(const struct xfrm_tmpl *tmpl, const struct xfrm_state *x, unsigned short family) 1113 { 1114 switch (family) { 1115 case AF_INET: 1116 return __xfrm4_state_addr_cmp(tmpl, x); 1117 case AF_INET6: 1118 return __xfrm6_state_addr_cmp(tmpl, x); 1119 } 1120 return !0; 1121 } 1122 1123 #ifdef CONFIG_XFRM 1124 int __xfrm_policy_check(struct sock *, int dir, struct sk_buff *skb, 1125 unsigned short family); 1126 1127 static inline int __xfrm_policy_check2(struct sock *sk, int dir, 1128 struct sk_buff *skb, 1129 unsigned int family, int reverse) 1130 { 1131 struct net *net = dev_net(skb->dev); 1132 int ndir = dir | (reverse ? XFRM_POLICY_MASK + 1 : 0); 1133 1134 if (sk && sk->sk_policy[XFRM_POLICY_IN]) 1135 return __xfrm_policy_check(sk, ndir, skb, family); 1136 1137 return (!net->xfrm.policy_count[dir] && !skb->sp) || 1138 (skb_dst(skb)->flags & DST_NOPOLICY) || 1139 __xfrm_policy_check(sk, ndir, skb, family); 1140 } 1141 1142 static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) 1143 { 1144 return __xfrm_policy_check2(sk, dir, skb, family, 0); 1145 } 1146 1147 static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1148 { 1149 return xfrm_policy_check(sk, dir, skb, AF_INET); 1150 } 1151 1152 static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1153 { 1154 return xfrm_policy_check(sk, dir, skb, AF_INET6); 1155 } 1156 1157 static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, 1158 struct sk_buff *skb) 1159 { 1160 return __xfrm_policy_check2(sk, dir, skb, AF_INET, 1); 1161 } 1162 1163 static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, 1164 struct sk_buff *skb) 1165 { 1166 return __xfrm_policy_check2(sk, dir, skb, AF_INET6, 1); 1167 } 1168 1169 int __xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, 1170 unsigned int family, int reverse); 1171 1172 static inline int xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, 1173 unsigned int family) 1174 { 1175 return __xfrm_decode_session(skb, fl, family, 0); 1176 } 1177 1178 static inline int xfrm_decode_session_reverse(struct sk_buff *skb, 1179 struct flowi *fl, 1180 unsigned int family) 1181 { 1182 return __xfrm_decode_session(skb, fl, family, 1); 1183 } 1184 1185 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family); 1186 1187 static inline int xfrm_route_forward(struct sk_buff *skb, unsigned short family) 1188 { 1189 struct net *net = dev_net(skb->dev); 1190 1191 return !net->xfrm.policy_count[XFRM_POLICY_OUT] || 1192 (skb_dst(skb)->flags & DST_NOXFRM) || 1193 __xfrm_route_forward(skb, family); 1194 } 1195 1196 static inline int xfrm4_route_forward(struct sk_buff *skb) 1197 { 1198 return xfrm_route_forward(skb, AF_INET); 1199 } 1200 1201 static inline int xfrm6_route_forward(struct sk_buff *skb) 1202 { 1203 return xfrm_route_forward(skb, AF_INET6); 1204 } 1205 1206 int __xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk); 1207 1208 static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) 1209 { 1210 sk->sk_policy[0] = NULL; 1211 sk->sk_policy[1] = NULL; 1212 if (unlikely(osk->sk_policy[0] || osk->sk_policy[1])) 1213 return __xfrm_sk_clone_policy(sk, osk); 1214 return 0; 1215 } 1216 1217 int xfrm_policy_delete(struct xfrm_policy *pol, int dir); 1218 1219 static inline void xfrm_sk_free_policy(struct sock *sk) 1220 { 1221 struct xfrm_policy *pol; 1222 1223 pol = rcu_dereference_protected(sk->sk_policy[0], 1); 1224 if (unlikely(pol != NULL)) { 1225 xfrm_policy_delete(pol, XFRM_POLICY_MAX); 1226 sk->sk_policy[0] = NULL; 1227 } 1228 pol = rcu_dereference_protected(sk->sk_policy[1], 1); 1229 if (unlikely(pol != NULL)) { 1230 xfrm_policy_delete(pol, XFRM_POLICY_MAX+1); 1231 sk->sk_policy[1] = NULL; 1232 } 1233 } 1234 1235 #else 1236 1237 static inline void xfrm_sk_free_policy(struct sock *sk) {} 1238 static inline int xfrm_sk_clone_policy(struct sock *sk, const struct sock *osk) { return 0; } 1239 static inline int xfrm6_route_forward(struct sk_buff *skb) { return 1; } 1240 static inline int xfrm4_route_forward(struct sk_buff *skb) { return 1; } 1241 static inline int xfrm6_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1242 { 1243 return 1; 1244 } 1245 static inline int xfrm4_policy_check(struct sock *sk, int dir, struct sk_buff *skb) 1246 { 1247 return 1; 1248 } 1249 static inline int xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb, unsigned short family) 1250 { 1251 return 1; 1252 } 1253 static inline int xfrm_decode_session_reverse(struct sk_buff *skb, 1254 struct flowi *fl, 1255 unsigned int family) 1256 { 1257 return -ENOSYS; 1258 } 1259 static inline int xfrm4_policy_check_reverse(struct sock *sk, int dir, 1260 struct sk_buff *skb) 1261 { 1262 return 1; 1263 } 1264 static inline int xfrm6_policy_check_reverse(struct sock *sk, int dir, 1265 struct sk_buff *skb) 1266 { 1267 return 1; 1268 } 1269 #endif 1270 1271 static __inline__ 1272 xfrm_address_t *xfrm_flowi_daddr(const struct flowi *fl, unsigned short family) 1273 { 1274 switch (family){ 1275 case AF_INET: 1276 return (xfrm_address_t *)&fl->u.ip4.daddr; 1277 case AF_INET6: 1278 return (xfrm_address_t *)&fl->u.ip6.daddr; 1279 } 1280 return NULL; 1281 } 1282 1283 static __inline__ 1284 xfrm_address_t *xfrm_flowi_saddr(const struct flowi *fl, unsigned short family) 1285 { 1286 switch (family){ 1287 case AF_INET: 1288 return (xfrm_address_t *)&fl->u.ip4.saddr; 1289 case AF_INET6: 1290 return (xfrm_address_t *)&fl->u.ip6.saddr; 1291 } 1292 return NULL; 1293 } 1294 1295 static __inline__ 1296 void xfrm_flowi_addr_get(const struct flowi *fl, 1297 xfrm_address_t *saddr, xfrm_address_t *daddr, 1298 unsigned short family) 1299 { 1300 switch(family) { 1301 case AF_INET: 1302 memcpy(&saddr->a4, &fl->u.ip4.saddr, sizeof(saddr->a4)); 1303 memcpy(&daddr->a4, &fl->u.ip4.daddr, sizeof(daddr->a4)); 1304 break; 1305 case AF_INET6: 1306 saddr->in6 = fl->u.ip6.saddr; 1307 daddr->in6 = fl->u.ip6.daddr; 1308 break; 1309 } 1310 } 1311 1312 static __inline__ int 1313 __xfrm4_state_addr_check(const struct xfrm_state *x, 1314 const xfrm_address_t *daddr, const xfrm_address_t *saddr) 1315 { 1316 if (daddr->a4 == x->id.daddr.a4 && 1317 (saddr->a4 == x->props.saddr.a4 || !saddr->a4 || !x->props.saddr.a4)) 1318 return 1; 1319 return 0; 1320 } 1321 1322 static __inline__ int 1323 __xfrm6_state_addr_check(const struct xfrm_state *x, 1324 const xfrm_address_t *daddr, const xfrm_address_t *saddr) 1325 { 1326 if (ipv6_addr_equal((struct in6_addr *)daddr, (struct in6_addr *)&x->id.daddr) && 1327 (ipv6_addr_equal((struct in6_addr *)saddr, (struct in6_addr *)&x->props.saddr) || 1328 ipv6_addr_any((struct in6_addr *)saddr) || 1329 ipv6_addr_any((struct in6_addr *)&x->props.saddr))) 1330 return 1; 1331 return 0; 1332 } 1333 1334 static __inline__ int 1335 xfrm_state_addr_check(const struct xfrm_state *x, 1336 const xfrm_address_t *daddr, const xfrm_address_t *saddr, 1337 unsigned short family) 1338 { 1339 switch (family) { 1340 case AF_INET: 1341 return __xfrm4_state_addr_check(x, daddr, saddr); 1342 case AF_INET6: 1343 return __xfrm6_state_addr_check(x, daddr, saddr); 1344 } 1345 return 0; 1346 } 1347 1348 static __inline__ int 1349 xfrm_state_addr_flow_check(const struct xfrm_state *x, const struct flowi *fl, 1350 unsigned short family) 1351 { 1352 switch (family) { 1353 case AF_INET: 1354 return __xfrm4_state_addr_check(x, 1355 (const xfrm_address_t *)&fl->u.ip4.daddr, 1356 (const xfrm_address_t *)&fl->u.ip4.saddr); 1357 case AF_INET6: 1358 return __xfrm6_state_addr_check(x, 1359 (const xfrm_address_t *)&fl->u.ip6.daddr, 1360 (const xfrm_address_t *)&fl->u.ip6.saddr); 1361 } 1362 return 0; 1363 } 1364 1365 static inline int xfrm_state_kern(const struct xfrm_state *x) 1366 { 1367 return atomic_read(&x->tunnel_users); 1368 } 1369 1370 static inline int xfrm_id_proto_match(u8 proto, u8 userproto) 1371 { 1372 return (!userproto || proto == userproto || 1373 (userproto == IPSEC_PROTO_ANY && (proto == IPPROTO_AH || 1374 proto == IPPROTO_ESP || 1375 proto == IPPROTO_COMP))); 1376 } 1377 1378 /* 1379 * xfrm algorithm information 1380 */ 1381 struct xfrm_algo_aead_info { 1382 char *geniv; 1383 u16 icv_truncbits; 1384 }; 1385 1386 struct xfrm_algo_auth_info { 1387 u16 icv_truncbits; 1388 u16 icv_fullbits; 1389 }; 1390 1391 struct xfrm_algo_encr_info { 1392 char *geniv; 1393 u16 blockbits; 1394 u16 defkeybits; 1395 }; 1396 1397 struct xfrm_algo_comp_info { 1398 u16 threshold; 1399 }; 1400 1401 struct xfrm_algo_desc { 1402 char *name; 1403 char *compat; 1404 u8 available:1; 1405 u8 pfkey_supported:1; 1406 union { 1407 struct xfrm_algo_aead_info aead; 1408 struct xfrm_algo_auth_info auth; 1409 struct xfrm_algo_encr_info encr; 1410 struct xfrm_algo_comp_info comp; 1411 } uinfo; 1412 struct sadb_alg desc; 1413 }; 1414 1415 /* XFRM protocol handlers. */ 1416 struct xfrm4_protocol { 1417 int (*handler)(struct sk_buff *skb); 1418 int (*input_handler)(struct sk_buff *skb, int nexthdr, __be32 spi, 1419 int encap_type); 1420 int (*cb_handler)(struct sk_buff *skb, int err); 1421 int (*err_handler)(struct sk_buff *skb, u32 info); 1422 1423 struct xfrm4_protocol __rcu *next; 1424 int priority; 1425 }; 1426 1427 struct xfrm6_protocol { 1428 int (*handler)(struct sk_buff *skb); 1429 int (*cb_handler)(struct sk_buff *skb, int err); 1430 int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, 1431 u8 type, u8 code, int offset, __be32 info); 1432 1433 struct xfrm6_protocol __rcu *next; 1434 int priority; 1435 }; 1436 1437 /* XFRM tunnel handlers. */ 1438 struct xfrm_tunnel { 1439 int (*handler)(struct sk_buff *skb); 1440 int (*err_handler)(struct sk_buff *skb, u32 info); 1441 1442 struct xfrm_tunnel __rcu *next; 1443 int priority; 1444 }; 1445 1446 struct xfrm6_tunnel { 1447 int (*handler)(struct sk_buff *skb); 1448 int (*err_handler)(struct sk_buff *skb, struct inet6_skb_parm *opt, 1449 u8 type, u8 code, int offset, __be32 info); 1450 struct xfrm6_tunnel __rcu *next; 1451 int priority; 1452 }; 1453 1454 void xfrm_init(void); 1455 void xfrm4_init(void); 1456 int xfrm_state_init(struct net *net); 1457 void xfrm_state_fini(struct net *net); 1458 void xfrm4_state_init(void); 1459 void xfrm4_protocol_init(void); 1460 #ifdef CONFIG_XFRM 1461 int xfrm6_init(void); 1462 void xfrm6_fini(void); 1463 int xfrm6_state_init(void); 1464 void xfrm6_state_fini(void); 1465 int xfrm6_protocol_init(void); 1466 void xfrm6_protocol_fini(void); 1467 #else 1468 static inline int xfrm6_init(void) 1469 { 1470 return 0; 1471 } 1472 static inline void xfrm6_fini(void) 1473 { 1474 ; 1475 } 1476 #endif 1477 1478 #ifdef CONFIG_XFRM_STATISTICS 1479 int xfrm_proc_init(struct net *net); 1480 void xfrm_proc_fini(struct net *net); 1481 #endif 1482 1483 int xfrm_sysctl_init(struct net *net); 1484 #ifdef CONFIG_SYSCTL 1485 void xfrm_sysctl_fini(struct net *net); 1486 #else 1487 static inline void xfrm_sysctl_fini(struct net *net) 1488 { 1489 } 1490 #endif 1491 1492 void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto, 1493 struct xfrm_address_filter *filter); 1494 int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, 1495 int (*func)(struct xfrm_state *, int, void*), void *); 1496 void xfrm_state_walk_done(struct xfrm_state_walk *walk, struct net *net); 1497 struct xfrm_state *xfrm_state_alloc(struct net *net); 1498 struct xfrm_state *xfrm_state_find(const xfrm_address_t *daddr, 1499 const xfrm_address_t *saddr, 1500 const struct flowi *fl, 1501 struct xfrm_tmpl *tmpl, 1502 struct xfrm_policy *pol, int *err, 1503 unsigned short family); 1504 struct xfrm_state *xfrm_stateonly_find(struct net *net, u32 mark, 1505 xfrm_address_t *daddr, 1506 xfrm_address_t *saddr, 1507 unsigned short family, 1508 u8 mode, u8 proto, u32 reqid); 1509 struct xfrm_state *xfrm_state_lookup_byspi(struct net *net, __be32 spi, 1510 unsigned short family); 1511 int xfrm_state_check_expire(struct xfrm_state *x); 1512 void xfrm_state_insert(struct xfrm_state *x); 1513 int xfrm_state_add(struct xfrm_state *x); 1514 int xfrm_state_update(struct xfrm_state *x); 1515 struct xfrm_state *xfrm_state_lookup(struct net *net, u32 mark, 1516 const xfrm_address_t *daddr, __be32 spi, 1517 u8 proto, unsigned short family); 1518 struct xfrm_state *xfrm_state_lookup_byaddr(struct net *net, u32 mark, 1519 const xfrm_address_t *daddr, 1520 const xfrm_address_t *saddr, 1521 u8 proto, 1522 unsigned short family); 1523 #ifdef CONFIG_XFRM_SUB_POLICY 1524 int xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n, 1525 unsigned short family, struct net *net); 1526 int xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n, 1527 unsigned short family); 1528 #else 1529 static inline int xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, 1530 int n, unsigned short family, struct net *net) 1531 { 1532 return -ENOSYS; 1533 } 1534 1535 static inline int xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, 1536 int n, unsigned short family) 1537 { 1538 return -ENOSYS; 1539 } 1540 #endif 1541 1542 struct xfrmk_sadinfo { 1543 u32 sadhcnt; /* current hash bkts */ 1544 u32 sadhmcnt; /* max allowed hash bkts */ 1545 u32 sadcnt; /* current running count */ 1546 }; 1547 1548 struct xfrmk_spdinfo { 1549 u32 incnt; 1550 u32 outcnt; 1551 u32 fwdcnt; 1552 u32 inscnt; 1553 u32 outscnt; 1554 u32 fwdscnt; 1555 u32 spdhcnt; 1556 u32 spdhmcnt; 1557 }; 1558 1559 struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq); 1560 int xfrm_state_delete(struct xfrm_state *x); 1561 int xfrm_state_flush(struct net *net, u8 proto, bool task_valid); 1562 int xfrm_dev_state_flush(struct net *net, struct net_device *dev, bool task_valid); 1563 void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si); 1564 void xfrm_spd_getinfo(struct net *net, struct xfrmk_spdinfo *si); 1565 u32 xfrm_replay_seqhi(struct xfrm_state *x, __be32 net_seq); 1566 int xfrm_init_replay(struct xfrm_state *x); 1567 int xfrm_state_mtu(struct xfrm_state *x, int mtu); 1568 int __xfrm_init_state(struct xfrm_state *x, bool init_replay, bool offload); 1569 int xfrm_init_state(struct xfrm_state *x); 1570 int xfrm_prepare_input(struct xfrm_state *x, struct sk_buff *skb); 1571 int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type); 1572 int xfrm_input_resume(struct sk_buff *skb, int nexthdr); 1573 int xfrm_output_resume(struct sk_buff *skb, int err); 1574 int xfrm_output(struct sock *sk, struct sk_buff *skb); 1575 int xfrm_inner_extract_output(struct xfrm_state *x, struct sk_buff *skb); 1576 void xfrm_local_error(struct sk_buff *skb, int mtu); 1577 int xfrm4_extract_header(struct sk_buff *skb); 1578 int xfrm4_extract_input(struct xfrm_state *x, struct sk_buff *skb); 1579 int xfrm4_rcv_encap(struct sk_buff *skb, int nexthdr, __be32 spi, 1580 int encap_type); 1581 int xfrm4_transport_finish(struct sk_buff *skb, int async); 1582 int xfrm4_rcv(struct sk_buff *skb); 1583 int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); 1584 1585 static inline int xfrm4_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi) 1586 { 1587 XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4 = NULL; 1588 XFRM_SPI_SKB_CB(skb)->family = AF_INET; 1589 XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct iphdr, daddr); 1590 return xfrm_input(skb, nexthdr, spi, 0); 1591 } 1592 1593 int xfrm4_extract_output(struct xfrm_state *x, struct sk_buff *skb); 1594 int xfrm4_prepare_output(struct xfrm_state *x, struct sk_buff *skb); 1595 int xfrm4_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1596 int xfrm4_output_finish(struct sock *sk, struct sk_buff *skb); 1597 int xfrm4_rcv_cb(struct sk_buff *skb, u8 protocol, int err); 1598 int xfrm4_protocol_register(struct xfrm4_protocol *handler, unsigned char protocol); 1599 int xfrm4_protocol_deregister(struct xfrm4_protocol *handler, unsigned char protocol); 1600 int xfrm4_tunnel_register(struct xfrm_tunnel *handler, unsigned short family); 1601 int xfrm4_tunnel_deregister(struct xfrm_tunnel *handler, unsigned short family); 1602 void xfrm4_local_error(struct sk_buff *skb, u32 mtu); 1603 int xfrm6_extract_header(struct sk_buff *skb); 1604 int xfrm6_extract_input(struct xfrm_state *x, struct sk_buff *skb); 1605 int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi, 1606 struct ip6_tnl *t); 1607 int xfrm6_transport_finish(struct sk_buff *skb, int async); 1608 int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t); 1609 int xfrm6_rcv(struct sk_buff *skb); 1610 int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr, 1611 xfrm_address_t *saddr, u8 proto); 1612 void xfrm6_local_error(struct sk_buff *skb, u32 mtu); 1613 int xfrm6_rcv_cb(struct sk_buff *skb, u8 protocol, int err); 1614 int xfrm6_protocol_register(struct xfrm6_protocol *handler, unsigned char protocol); 1615 int xfrm6_protocol_deregister(struct xfrm6_protocol *handler, unsigned char protocol); 1616 int xfrm6_tunnel_register(struct xfrm6_tunnel *handler, unsigned short family); 1617 int xfrm6_tunnel_deregister(struct xfrm6_tunnel *handler, unsigned short family); 1618 __be32 xfrm6_tunnel_alloc_spi(struct net *net, xfrm_address_t *saddr); 1619 __be32 xfrm6_tunnel_spi_lookup(struct net *net, const xfrm_address_t *saddr); 1620 int xfrm6_extract_output(struct xfrm_state *x, struct sk_buff *skb); 1621 int xfrm6_prepare_output(struct xfrm_state *x, struct sk_buff *skb); 1622 int xfrm6_output(struct net *net, struct sock *sk, struct sk_buff *skb); 1623 int xfrm6_output_finish(struct sock *sk, struct sk_buff *skb); 1624 int xfrm6_find_1stfragopt(struct xfrm_state *x, struct sk_buff *skb, 1625 u8 **prevhdr); 1626 1627 #ifdef CONFIG_XFRM 1628 int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb); 1629 int xfrm_user_policy(struct sock *sk, int optname, 1630 u8 __user *optval, int optlen); 1631 #else 1632 static inline int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen) 1633 { 1634 return -ENOPROTOOPT; 1635 } 1636 1637 static inline int xfrm4_udp_encap_rcv(struct sock *sk, struct sk_buff *skb) 1638 { 1639 /* should not happen */ 1640 kfree_skb(skb); 1641 return 0; 1642 } 1643 #endif 1644 1645 struct dst_entry *__xfrm_dst_lookup(struct net *net, int tos, int oif, 1646 const xfrm_address_t *saddr, 1647 const xfrm_address_t *daddr, 1648 int family, u32 mark); 1649 1650 struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp); 1651 1652 void xfrm_policy_walk_init(struct xfrm_policy_walk *walk, u8 type); 1653 int xfrm_policy_walk(struct net *net, struct xfrm_policy_walk *walk, 1654 int (*func)(struct xfrm_policy *, int, int, void*), 1655 void *); 1656 void xfrm_policy_walk_done(struct xfrm_policy_walk *walk, struct net *net); 1657 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl); 1658 struct xfrm_policy *xfrm_policy_bysel_ctx(struct net *net, u32 mark, 1659 u8 type, int dir, 1660 struct xfrm_selector *sel, 1661 struct xfrm_sec_ctx *ctx, int delete, 1662 int *err); 1663 struct xfrm_policy *xfrm_policy_byid(struct net *net, u32 mark, u8, int dir, 1664 u32 id, int delete, int *err); 1665 int xfrm_policy_flush(struct net *net, u8 type, bool task_valid); 1666 void xfrm_policy_hash_rebuild(struct net *net); 1667 u32 xfrm_get_acqseq(void); 1668 int verify_spi_info(u8 proto, u32 min, u32 max); 1669 int xfrm_alloc_spi(struct xfrm_state *x, u32 minspi, u32 maxspi); 1670 struct xfrm_state *xfrm_find_acq(struct net *net, const struct xfrm_mark *mark, 1671 u8 mode, u32 reqid, u8 proto, 1672 const xfrm_address_t *daddr, 1673 const xfrm_address_t *saddr, int create, 1674 unsigned short family); 1675 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol); 1676 1677 #ifdef CONFIG_XFRM_MIGRATE 1678 int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 1679 const struct xfrm_migrate *m, int num_bundles, 1680 const struct xfrm_kmaddress *k, 1681 const struct xfrm_encap_tmpl *encap); 1682 struct xfrm_state *xfrm_migrate_state_find(struct xfrm_migrate *m, struct net *net); 1683 struct xfrm_state *xfrm_state_migrate(struct xfrm_state *x, 1684 struct xfrm_migrate *m, 1685 struct xfrm_encap_tmpl *encap); 1686 int xfrm_migrate(const struct xfrm_selector *sel, u8 dir, u8 type, 1687 struct xfrm_migrate *m, int num_bundles, 1688 struct xfrm_kmaddress *k, struct net *net, 1689 struct xfrm_encap_tmpl *encap); 1690 #endif 1691 1692 int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport); 1693 void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid); 1694 int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, 1695 xfrm_address_t *addr); 1696 1697 void xfrm_input_init(void); 1698 int xfrm_parse_spi(struct sk_buff *skb, u8 nexthdr, __be32 *spi, __be32 *seq); 1699 1700 void xfrm_probe_algs(void); 1701 int xfrm_count_pfkey_auth_supported(void); 1702 int xfrm_count_pfkey_enc_supported(void); 1703 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx); 1704 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx); 1705 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id); 1706 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id); 1707 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id); 1708 struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe); 1709 struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe); 1710 struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe); 1711 struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, 1712 int probe); 1713 1714 static inline bool xfrm6_addr_equal(const xfrm_address_t *a, 1715 const xfrm_address_t *b) 1716 { 1717 return ipv6_addr_equal((const struct in6_addr *)a, 1718 (const struct in6_addr *)b); 1719 } 1720 1721 static inline bool xfrm_addr_equal(const xfrm_address_t *a, 1722 const xfrm_address_t *b, 1723 sa_family_t family) 1724 { 1725 switch (family) { 1726 default: 1727 case AF_INET: 1728 return ((__force u32)a->a4 ^ (__force u32)b->a4) == 0; 1729 case AF_INET6: 1730 return xfrm6_addr_equal(a, b); 1731 } 1732 } 1733 1734 static inline int xfrm_policy_id2dir(u32 index) 1735 { 1736 return index & 7; 1737 } 1738 1739 #ifdef CONFIG_XFRM 1740 static inline int xfrm_aevent_is_on(struct net *net) 1741 { 1742 struct sock *nlsk; 1743 int ret = 0; 1744 1745 rcu_read_lock(); 1746 nlsk = rcu_dereference(net->xfrm.nlsk); 1747 if (nlsk) 1748 ret = netlink_has_listeners(nlsk, XFRMNLGRP_AEVENTS); 1749 rcu_read_unlock(); 1750 return ret; 1751 } 1752 1753 static inline int xfrm_acquire_is_on(struct net *net) 1754 { 1755 struct sock *nlsk; 1756 int ret = 0; 1757 1758 rcu_read_lock(); 1759 nlsk = rcu_dereference(net->xfrm.nlsk); 1760 if (nlsk) 1761 ret = netlink_has_listeners(nlsk, XFRMNLGRP_ACQUIRE); 1762 rcu_read_unlock(); 1763 1764 return ret; 1765 } 1766 #endif 1767 1768 static inline unsigned int aead_len(struct xfrm_algo_aead *alg) 1769 { 1770 return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); 1771 } 1772 1773 static inline unsigned int xfrm_alg_len(const struct xfrm_algo *alg) 1774 { 1775 return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); 1776 } 1777 1778 static inline unsigned int xfrm_alg_auth_len(const struct xfrm_algo_auth *alg) 1779 { 1780 return sizeof(*alg) + ((alg->alg_key_len + 7) / 8); 1781 } 1782 1783 static inline unsigned int xfrm_replay_state_esn_len(struct xfrm_replay_state_esn *replay_esn) 1784 { 1785 return sizeof(*replay_esn) + replay_esn->bmp_len * sizeof(__u32); 1786 } 1787 1788 #ifdef CONFIG_XFRM_MIGRATE 1789 static inline int xfrm_replay_clone(struct xfrm_state *x, 1790 struct xfrm_state *orig) 1791 { 1792 x->replay_esn = kzalloc(xfrm_replay_state_esn_len(orig->replay_esn), 1793 GFP_KERNEL); 1794 if (!x->replay_esn) 1795 return -ENOMEM; 1796 1797 x->replay_esn->bmp_len = orig->replay_esn->bmp_len; 1798 x->replay_esn->replay_window = orig->replay_esn->replay_window; 1799 1800 x->preplay_esn = kmemdup(x->replay_esn, 1801 xfrm_replay_state_esn_len(x->replay_esn), 1802 GFP_KERNEL); 1803 if (!x->preplay_esn) { 1804 kfree(x->replay_esn); 1805 return -ENOMEM; 1806 } 1807 1808 return 0; 1809 } 1810 1811 static inline struct xfrm_algo_aead *xfrm_algo_aead_clone(struct xfrm_algo_aead *orig) 1812 { 1813 return kmemdup(orig, aead_len(orig), GFP_KERNEL); 1814 } 1815 1816 1817 static inline struct xfrm_algo *xfrm_algo_clone(struct xfrm_algo *orig) 1818 { 1819 return kmemdup(orig, xfrm_alg_len(orig), GFP_KERNEL); 1820 } 1821 1822 static inline struct xfrm_algo_auth *xfrm_algo_auth_clone(struct xfrm_algo_auth *orig) 1823 { 1824 return kmemdup(orig, xfrm_alg_auth_len(orig), GFP_KERNEL); 1825 } 1826 1827 static inline void xfrm_states_put(struct xfrm_state **states, int n) 1828 { 1829 int i; 1830 for (i = 0; i < n; i++) 1831 xfrm_state_put(*(states + i)); 1832 } 1833 1834 static inline void xfrm_states_delete(struct xfrm_state **states, int n) 1835 { 1836 int i; 1837 for (i = 0; i < n; i++) 1838 xfrm_state_delete(*(states + i)); 1839 } 1840 #endif 1841 1842 #ifdef CONFIG_XFRM 1843 static inline struct xfrm_state *xfrm_input_state(struct sk_buff *skb) 1844 { 1845 return skb->sp->xvec[skb->sp->len - 1]; 1846 } 1847 static inline struct xfrm_offload *xfrm_offload(struct sk_buff *skb) 1848 { 1849 struct sec_path *sp = skb->sp; 1850 1851 if (!sp || !sp->olen || sp->len != sp->olen) 1852 return NULL; 1853 1854 return &sp->ovec[sp->olen - 1]; 1855 } 1856 #endif 1857 1858 void __net_init xfrm_dev_init(void); 1859 1860 #ifdef CONFIG_XFRM_OFFLOAD 1861 int validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features); 1862 int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, 1863 struct xfrm_user_offload *xuo); 1864 bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x); 1865 1866 static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) 1867 { 1868 struct xfrm_state *x = dst->xfrm; 1869 1870 if (!x || !x->type_offload) 1871 return false; 1872 1873 if (x->xso.offload_handle && (x->xso.dev == dst->path->dev) && 1874 !dst->child->xfrm) 1875 return true; 1876 1877 return false; 1878 } 1879 1880 static inline void xfrm_dev_state_delete(struct xfrm_state *x) 1881 { 1882 struct xfrm_state_offload *xso = &x->xso; 1883 1884 if (xso->dev) 1885 xso->dev->xfrmdev_ops->xdo_dev_state_delete(x); 1886 } 1887 1888 static inline void xfrm_dev_state_free(struct xfrm_state *x) 1889 { 1890 struct xfrm_state_offload *xso = &x->xso; 1891 struct net_device *dev = xso->dev; 1892 1893 if (dev && dev->xfrmdev_ops) { 1894 dev->xfrmdev_ops->xdo_dev_state_free(x); 1895 xso->dev = NULL; 1896 dev_put(dev); 1897 } 1898 } 1899 #else 1900 static inline int validate_xmit_xfrm(struct sk_buff *skb, netdev_features_t features) 1901 { 1902 return 0; 1903 } 1904 1905 static inline int xfrm_dev_state_add(struct net *net, struct xfrm_state *x, struct xfrm_user_offload *xuo) 1906 { 1907 return 0; 1908 } 1909 1910 static inline void xfrm_dev_state_delete(struct xfrm_state *x) 1911 { 1912 } 1913 1914 static inline void xfrm_dev_state_free(struct xfrm_state *x) 1915 { 1916 } 1917 1918 static inline bool xfrm_dev_offload_ok(struct sk_buff *skb, struct xfrm_state *x) 1919 { 1920 return false; 1921 } 1922 1923 static inline bool xfrm_dst_offload_ok(struct dst_entry *dst) 1924 { 1925 return false; 1926 } 1927 #endif 1928 1929 static inline int xfrm_mark_get(struct nlattr **attrs, struct xfrm_mark *m) 1930 { 1931 if (attrs[XFRMA_MARK]) 1932 memcpy(m, nla_data(attrs[XFRMA_MARK]), sizeof(struct xfrm_mark)); 1933 else 1934 m->v = m->m = 0; 1935 1936 return m->v & m->m; 1937 } 1938 1939 static inline int xfrm_mark_put(struct sk_buff *skb, const struct xfrm_mark *m) 1940 { 1941 int ret = 0; 1942 1943 if (m->m | m->v) 1944 ret = nla_put(skb, XFRMA_MARK, sizeof(struct xfrm_mark), m); 1945 return ret; 1946 } 1947 1948 static inline int xfrm_tunnel_check(struct sk_buff *skb, struct xfrm_state *x, 1949 unsigned int family) 1950 { 1951 bool tunnel = false; 1952 1953 switch(family) { 1954 case AF_INET: 1955 if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip4) 1956 tunnel = true; 1957 break; 1958 case AF_INET6: 1959 if (XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6) 1960 tunnel = true; 1961 break; 1962 } 1963 if (tunnel && !(x->outer_mode->flags & XFRM_MODE_FLAG_TUNNEL)) 1964 return -EINVAL; 1965 1966 return 0; 1967 } 1968 #endif /* _NET_XFRM_H */ 1969