xref: /linux/include/net/xdp.h (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* include/net/xdp.h
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 #ifndef __LINUX_NET_XDP_H__
7 #define __LINUX_NET_XDP_H__
8 
9 #include <linux/skbuff.h> /* skb_shared_info */
10 #include <uapi/linux/netdev.h>
11 #include <linux/bitfield.h>
12 
13 /**
14  * DOC: XDP RX-queue information
15  *
16  * The XDP RX-queue info (xdp_rxq_info) is associated with the driver
17  * level RX-ring queues.  It is information that is specific to how
18  * the driver have configured a given RX-ring queue.
19  *
20  * Each xdp_buff frame received in the driver carries a (pointer)
21  * reference to this xdp_rxq_info structure.  This provides the XDP
22  * data-path read-access to RX-info for both kernel and bpf-side
23  * (limited subset).
24  *
25  * For now, direct access is only safe while running in NAPI/softirq
26  * context.  Contents are read-mostly and must not be updated during
27  * driver NAPI/softirq poll.
28  *
29  * The driver usage API is a register and unregister API.
30  *
31  * The struct is not directly tied to the XDP prog.  A new XDP prog
32  * can be attached as long as it doesn't change the underlying
33  * RX-ring.  If the RX-ring does change significantly, the NIC driver
34  * naturally need to stop the RX-ring before purging and reallocating
35  * memory.  In that process the driver MUST call unregister (which
36  * also applies for driver shutdown and unload).  The register API is
37  * also mandatory during RX-ring setup.
38  */
39 
40 enum xdp_mem_type {
41 	MEM_TYPE_PAGE_SHARED = 0, /* Split-page refcnt based model */
42 	MEM_TYPE_PAGE_ORDER0,     /* Orig XDP full page model */
43 	MEM_TYPE_PAGE_POOL,
44 	MEM_TYPE_XSK_BUFF_POOL,
45 	MEM_TYPE_MAX,
46 };
47 
48 typedef u32 xdp_features_t;
49 
50 /* XDP flags for ndo_xdp_xmit */
51 #define XDP_XMIT_FLUSH		(1U << 0)	/* doorbell signal consumer */
52 #define XDP_XMIT_FLAGS_MASK	XDP_XMIT_FLUSH
53 
54 struct xdp_mem_info {
55 	u32 type; /* enum xdp_mem_type, but known size type */
56 	u32 id;
57 };
58 
59 struct page_pool;
60 
61 struct xdp_rxq_info {
62 	struct net_device *dev;
63 	u32 queue_index;
64 	u32 reg_state;
65 	struct xdp_mem_info mem;
66 	unsigned int napi_id;
67 	u32 frag_size;
68 } ____cacheline_aligned; /* perf critical, avoid false-sharing */
69 
70 struct xdp_txq_info {
71 	struct net_device *dev;
72 };
73 
74 enum xdp_buff_flags {
75 	XDP_FLAGS_HAS_FRAGS		= BIT(0), /* non-linear xdp buff */
76 	XDP_FLAGS_FRAGS_PF_MEMALLOC	= BIT(1), /* xdp paged memory is under
77 						   * pressure
78 						   */
79 };
80 
81 struct xdp_buff {
82 	void *data;
83 	void *data_end;
84 	void *data_meta;
85 	void *data_hard_start;
86 	struct xdp_rxq_info *rxq;
87 	struct xdp_txq_info *txq;
88 	u32 frame_sz; /* frame size to deduce data_hard_end/reserved tailroom*/
89 	u32 flags; /* supported values defined in xdp_buff_flags */
90 };
91 
92 static __always_inline bool xdp_buff_has_frags(struct xdp_buff *xdp)
93 {
94 	return !!(xdp->flags & XDP_FLAGS_HAS_FRAGS);
95 }
96 
97 static __always_inline void xdp_buff_set_frags_flag(struct xdp_buff *xdp)
98 {
99 	xdp->flags |= XDP_FLAGS_HAS_FRAGS;
100 }
101 
102 static __always_inline void xdp_buff_clear_frags_flag(struct xdp_buff *xdp)
103 {
104 	xdp->flags &= ~XDP_FLAGS_HAS_FRAGS;
105 }
106 
107 static __always_inline bool xdp_buff_is_frag_pfmemalloc(struct xdp_buff *xdp)
108 {
109 	return !!(xdp->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC);
110 }
111 
112 static __always_inline void xdp_buff_set_frag_pfmemalloc(struct xdp_buff *xdp)
113 {
114 	xdp->flags |= XDP_FLAGS_FRAGS_PF_MEMALLOC;
115 }
116 
117 static __always_inline void
118 xdp_init_buff(struct xdp_buff *xdp, u32 frame_sz, struct xdp_rxq_info *rxq)
119 {
120 	xdp->frame_sz = frame_sz;
121 	xdp->rxq = rxq;
122 	xdp->flags = 0;
123 }
124 
125 static __always_inline void
126 xdp_prepare_buff(struct xdp_buff *xdp, unsigned char *hard_start,
127 		 int headroom, int data_len, const bool meta_valid)
128 {
129 	unsigned char *data = hard_start + headroom;
130 
131 	xdp->data_hard_start = hard_start;
132 	xdp->data = data;
133 	xdp->data_end = data + data_len;
134 	xdp->data_meta = meta_valid ? data : data + 1;
135 }
136 
137 /* Reserve memory area at end-of data area.
138  *
139  * This macro reserves tailroom in the XDP buffer by limiting the
140  * XDP/BPF data access to data_hard_end.  Notice same area (and size)
141  * is used for XDP_PASS, when constructing the SKB via build_skb().
142  */
143 #define xdp_data_hard_end(xdp)				\
144 	((xdp)->data_hard_start + (xdp)->frame_sz -	\
145 	 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
146 
147 static inline struct skb_shared_info *
148 xdp_get_shared_info_from_buff(struct xdp_buff *xdp)
149 {
150 	return (struct skb_shared_info *)xdp_data_hard_end(xdp);
151 }
152 
153 static __always_inline unsigned int xdp_get_buff_len(struct xdp_buff *xdp)
154 {
155 	unsigned int len = xdp->data_end - xdp->data;
156 	struct skb_shared_info *sinfo;
157 
158 	if (likely(!xdp_buff_has_frags(xdp)))
159 		goto out;
160 
161 	sinfo = xdp_get_shared_info_from_buff(xdp);
162 	len += sinfo->xdp_frags_size;
163 out:
164 	return len;
165 }
166 
167 struct xdp_frame {
168 	void *data;
169 	u16 len;
170 	u16 headroom;
171 	u32 metasize; /* uses lower 8-bits */
172 	/* Lifetime of xdp_rxq_info is limited to NAPI/enqueue time,
173 	 * while mem info is valid on remote CPU.
174 	 */
175 	struct xdp_mem_info mem;
176 	struct net_device *dev_rx; /* used by cpumap */
177 	u32 frame_sz;
178 	u32 flags; /* supported values defined in xdp_buff_flags */
179 };
180 
181 static __always_inline bool xdp_frame_has_frags(struct xdp_frame *frame)
182 {
183 	return !!(frame->flags & XDP_FLAGS_HAS_FRAGS);
184 }
185 
186 static __always_inline bool xdp_frame_is_frag_pfmemalloc(struct xdp_frame *frame)
187 {
188 	return !!(frame->flags & XDP_FLAGS_FRAGS_PF_MEMALLOC);
189 }
190 
191 #define XDP_BULK_QUEUE_SIZE	16
192 struct xdp_frame_bulk {
193 	int count;
194 	void *xa;
195 	void *q[XDP_BULK_QUEUE_SIZE];
196 };
197 
198 static __always_inline void xdp_frame_bulk_init(struct xdp_frame_bulk *bq)
199 {
200 	/* bq->count will be zero'ed when bq->xa gets updated */
201 	bq->xa = NULL;
202 }
203 
204 static inline struct skb_shared_info *
205 xdp_get_shared_info_from_frame(struct xdp_frame *frame)
206 {
207 	void *data_hard_start = frame->data - frame->headroom - sizeof(*frame);
208 
209 	return (struct skb_shared_info *)(data_hard_start + frame->frame_sz -
210 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
211 }
212 
213 struct xdp_cpumap_stats {
214 	unsigned int redirect;
215 	unsigned int pass;
216 	unsigned int drop;
217 };
218 
219 /* Clear kernel pointers in xdp_frame */
220 static inline void xdp_scrub_frame(struct xdp_frame *frame)
221 {
222 	frame->data = NULL;
223 	frame->dev_rx = NULL;
224 }
225 
226 static inline void
227 xdp_update_skb_shared_info(struct sk_buff *skb, u8 nr_frags,
228 			   unsigned int size, unsigned int truesize,
229 			   bool pfmemalloc)
230 {
231 	skb_shinfo(skb)->nr_frags = nr_frags;
232 
233 	skb->len += size;
234 	skb->data_len += size;
235 	skb->truesize += truesize;
236 	skb->pfmemalloc |= pfmemalloc;
237 }
238 
239 /* Avoids inlining WARN macro in fast-path */
240 void xdp_warn(const char *msg, const char *func, const int line);
241 #define XDP_WARN(msg) xdp_warn(msg, __func__, __LINE__)
242 
243 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp);
244 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
245 					   struct sk_buff *skb,
246 					   struct net_device *dev);
247 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
248 					 struct net_device *dev);
249 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp);
250 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf);
251 
252 static inline
253 void xdp_convert_frame_to_buff(struct xdp_frame *frame, struct xdp_buff *xdp)
254 {
255 	xdp->data_hard_start = frame->data - frame->headroom - sizeof(*frame);
256 	xdp->data = frame->data;
257 	xdp->data_end = frame->data + frame->len;
258 	xdp->data_meta = frame->data - frame->metasize;
259 	xdp->frame_sz = frame->frame_sz;
260 	xdp->flags = frame->flags;
261 }
262 
263 static inline
264 int xdp_update_frame_from_buff(struct xdp_buff *xdp,
265 			       struct xdp_frame *xdp_frame)
266 {
267 	int metasize, headroom;
268 
269 	/* Assure headroom is available for storing info */
270 	headroom = xdp->data - xdp->data_hard_start;
271 	metasize = xdp->data - xdp->data_meta;
272 	metasize = metasize > 0 ? metasize : 0;
273 	if (unlikely((headroom - metasize) < sizeof(*xdp_frame)))
274 		return -ENOSPC;
275 
276 	/* Catch if driver didn't reserve tailroom for skb_shared_info */
277 	if (unlikely(xdp->data_end > xdp_data_hard_end(xdp))) {
278 		XDP_WARN("Driver BUG: missing reserved tailroom");
279 		return -ENOSPC;
280 	}
281 
282 	xdp_frame->data = xdp->data;
283 	xdp_frame->len  = xdp->data_end - xdp->data;
284 	xdp_frame->headroom = headroom - sizeof(*xdp_frame);
285 	xdp_frame->metasize = metasize;
286 	xdp_frame->frame_sz = xdp->frame_sz;
287 	xdp_frame->flags = xdp->flags;
288 
289 	return 0;
290 }
291 
292 /* Convert xdp_buff to xdp_frame */
293 static inline
294 struct xdp_frame *xdp_convert_buff_to_frame(struct xdp_buff *xdp)
295 {
296 	struct xdp_frame *xdp_frame;
297 
298 	if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
299 		return xdp_convert_zc_to_xdp_frame(xdp);
300 
301 	/* Store info in top of packet */
302 	xdp_frame = xdp->data_hard_start;
303 	if (unlikely(xdp_update_frame_from_buff(xdp, xdp_frame) < 0))
304 		return NULL;
305 
306 	/* rxq only valid until napi_schedule ends, convert to xdp_mem_info */
307 	xdp_frame->mem = xdp->rxq->mem;
308 
309 	return xdp_frame;
310 }
311 
312 void __xdp_return(void *data, struct xdp_mem_info *mem, bool napi_direct,
313 		  struct xdp_buff *xdp);
314 void xdp_return_frame(struct xdp_frame *xdpf);
315 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf);
316 void xdp_return_buff(struct xdp_buff *xdp);
317 void xdp_flush_frame_bulk(struct xdp_frame_bulk *bq);
318 void xdp_return_frame_bulk(struct xdp_frame *xdpf,
319 			   struct xdp_frame_bulk *bq);
320 
321 static __always_inline unsigned int xdp_get_frame_len(struct xdp_frame *xdpf)
322 {
323 	struct skb_shared_info *sinfo;
324 	unsigned int len = xdpf->len;
325 
326 	if (likely(!xdp_frame_has_frags(xdpf)))
327 		goto out;
328 
329 	sinfo = xdp_get_shared_info_from_frame(xdpf);
330 	len += sinfo->xdp_frags_size;
331 out:
332 	return len;
333 }
334 
335 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
336 		       struct net_device *dev, u32 queue_index,
337 		       unsigned int napi_id, u32 frag_size);
338 static inline int
339 xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
340 		 struct net_device *dev, u32 queue_index,
341 		 unsigned int napi_id)
342 {
343 	return __xdp_rxq_info_reg(xdp_rxq, dev, queue_index, napi_id, 0);
344 }
345 
346 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq);
347 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq);
348 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq);
349 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
350 			       enum xdp_mem_type type, void *allocator);
351 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq);
352 int xdp_reg_mem_model(struct xdp_mem_info *mem,
353 		      enum xdp_mem_type type, void *allocator);
354 void xdp_unreg_mem_model(struct xdp_mem_info *mem);
355 
356 /* Drivers not supporting XDP metadata can use this helper, which
357  * rejects any room expansion for metadata as a result.
358  */
359 static __always_inline void
360 xdp_set_data_meta_invalid(struct xdp_buff *xdp)
361 {
362 	xdp->data_meta = xdp->data + 1;
363 }
364 
365 static __always_inline bool
366 xdp_data_meta_unsupported(const struct xdp_buff *xdp)
367 {
368 	return unlikely(xdp->data_meta > xdp->data);
369 }
370 
371 static inline bool xdp_metalen_invalid(unsigned long metalen)
372 {
373 	return (metalen & (sizeof(__u32) - 1)) || (metalen > 32);
374 }
375 
376 struct xdp_attachment_info {
377 	struct bpf_prog *prog;
378 	u32 flags;
379 };
380 
381 struct netdev_bpf;
382 void xdp_attachment_setup(struct xdp_attachment_info *info,
383 			  struct netdev_bpf *bpf);
384 
385 #define DEV_MAP_BULK_SIZE XDP_BULK_QUEUE_SIZE
386 
387 #define XDP_METADATA_KFUNC_xxx	\
388 	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_TIMESTAMP, \
389 			   bpf_xdp_metadata_rx_timestamp) \
390 	XDP_METADATA_KFUNC(XDP_METADATA_KFUNC_RX_HASH, \
391 			   bpf_xdp_metadata_rx_hash) \
392 
393 enum {
394 #define XDP_METADATA_KFUNC(name, _) name,
395 XDP_METADATA_KFUNC_xxx
396 #undef XDP_METADATA_KFUNC
397 MAX_XDP_METADATA_KFUNC,
398 };
399 
400 enum xdp_rss_hash_type {
401 	/* First part: Individual bits for L3/L4 types */
402 	XDP_RSS_L3_IPV4		= BIT(0),
403 	XDP_RSS_L3_IPV6		= BIT(1),
404 
405 	/* The fixed (L3) IPv4 and IPv6 headers can both be followed by
406 	 * variable/dynamic headers, IPv4 called Options and IPv6 called
407 	 * Extension Headers. HW RSS type can contain this info.
408 	 */
409 	XDP_RSS_L3_DYNHDR	= BIT(2),
410 
411 	/* When RSS hash covers L4 then drivers MUST set XDP_RSS_L4 bit in
412 	 * addition to the protocol specific bit.  This ease interaction with
413 	 * SKBs and avoids reserving a fixed mask for future L4 protocol bits.
414 	 */
415 	XDP_RSS_L4		= BIT(3), /* L4 based hash, proto can be unknown */
416 	XDP_RSS_L4_TCP		= BIT(4),
417 	XDP_RSS_L4_UDP		= BIT(5),
418 	XDP_RSS_L4_SCTP		= BIT(6),
419 	XDP_RSS_L4_IPSEC	= BIT(7), /* L4 based hash include IPSEC SPI */
420 
421 	/* Second part: RSS hash type combinations used for driver HW mapping */
422 	XDP_RSS_TYPE_NONE            = 0,
423 	XDP_RSS_TYPE_L2              = XDP_RSS_TYPE_NONE,
424 
425 	XDP_RSS_TYPE_L3_IPV4         = XDP_RSS_L3_IPV4,
426 	XDP_RSS_TYPE_L3_IPV6         = XDP_RSS_L3_IPV6,
427 	XDP_RSS_TYPE_L3_IPV4_OPT     = XDP_RSS_L3_IPV4 | XDP_RSS_L3_DYNHDR,
428 	XDP_RSS_TYPE_L3_IPV6_EX      = XDP_RSS_L3_IPV6 | XDP_RSS_L3_DYNHDR,
429 
430 	XDP_RSS_TYPE_L4_ANY          = XDP_RSS_L4,
431 	XDP_RSS_TYPE_L4_IPV4_TCP     = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_TCP,
432 	XDP_RSS_TYPE_L4_IPV4_UDP     = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_UDP,
433 	XDP_RSS_TYPE_L4_IPV4_SCTP    = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_SCTP,
434 	XDP_RSS_TYPE_L4_IPV4_IPSEC   = XDP_RSS_L3_IPV4 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC,
435 
436 	XDP_RSS_TYPE_L4_IPV6_TCP     = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_TCP,
437 	XDP_RSS_TYPE_L4_IPV6_UDP     = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_UDP,
438 	XDP_RSS_TYPE_L4_IPV6_SCTP    = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_SCTP,
439 	XDP_RSS_TYPE_L4_IPV6_IPSEC   = XDP_RSS_L3_IPV6 | XDP_RSS_L4 | XDP_RSS_L4_IPSEC,
440 
441 	XDP_RSS_TYPE_L4_IPV6_TCP_EX  = XDP_RSS_TYPE_L4_IPV6_TCP  | XDP_RSS_L3_DYNHDR,
442 	XDP_RSS_TYPE_L4_IPV6_UDP_EX  = XDP_RSS_TYPE_L4_IPV6_UDP  | XDP_RSS_L3_DYNHDR,
443 	XDP_RSS_TYPE_L4_IPV6_SCTP_EX = XDP_RSS_TYPE_L4_IPV6_SCTP | XDP_RSS_L3_DYNHDR,
444 };
445 
446 #ifdef CONFIG_NET
447 u32 bpf_xdp_metadata_kfunc_id(int id);
448 bool bpf_dev_bound_kfunc_id(u32 btf_id);
449 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val);
450 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg);
451 void xdp_features_clear_redirect_target(struct net_device *dev);
452 #else
453 static inline u32 bpf_xdp_metadata_kfunc_id(int id) { return 0; }
454 static inline bool bpf_dev_bound_kfunc_id(u32 btf_id) { return false; }
455 
456 static inline void
457 xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
458 {
459 }
460 
461 static inline void
462 xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
463 {
464 }
465 
466 static inline void
467 xdp_features_clear_redirect_target(struct net_device *dev)
468 {
469 }
470 #endif
471 
472 static inline void xdp_clear_features_flag(struct net_device *dev)
473 {
474 	xdp_set_features_flag(dev, 0);
475 }
476 
477 #endif /* __LINUX_NET_XDP_H__ */
478