xref: /linux/include/net/tls.h (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45 
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51 
52 struct tls_rec;
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_HANDSHAKE_KEYUPDATE		24	/* rfc8446 B.3: Key update */
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define TLS_MAX_IV_SIZE			16
67 #define TLS_MAX_SALT_SIZE		4
68 #define TLS_TAG_SIZE			16
69 #define TLS_MAX_REC_SEQ_SIZE		8
70 #define TLS_MAX_AAD_SIZE		TLS_AAD_SPACE_SIZE
71 
72 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
73  *
74  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
75  *
76  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
77  * Hence b0 contains (3 - 1) = 2.
78  */
79 #define TLS_AES_CCM_IV_B0_BYTE		2
80 #define TLS_SM4_CCM_IV_B0_BYTE		2
81 
82 enum {
83 	TLS_BASE,
84 	TLS_SW,
85 	TLS_HW,
86 	TLS_HW_RECORD,
87 	TLS_NUM_CONFIG,
88 };
89 
90 struct tx_work {
91 	struct delayed_work work;
92 	struct sock *sk;
93 };
94 
95 struct tls_sw_context_tx {
96 	struct crypto_aead *aead_send;
97 	struct crypto_wait async_wait;
98 	struct tx_work tx_work;
99 	struct tls_rec *open_rec;
100 	struct list_head tx_list;
101 	atomic_t encrypt_pending;
102 	u8 async_capable:1;
103 
104 #define BIT_TX_SCHEDULED	0
105 #define BIT_TX_CLOSING		1
106 	unsigned long tx_bitmask;
107 };
108 
109 struct tls_strparser {
110 	struct sock *sk;
111 
112 	u32 mark : 8;
113 	u32 stopped : 1;
114 	u32 copy_mode : 1;
115 	u32 mixed_decrypted : 1;
116 
117 	bool msg_ready;
118 
119 	struct strp_msg stm;
120 
121 	struct sk_buff *anchor;
122 	struct work_struct work;
123 };
124 
125 struct tls_sw_context_rx {
126 	struct crypto_aead *aead_recv;
127 	struct crypto_wait async_wait;
128 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
129 	void (*saved_data_ready)(struct sock *sk);
130 
131 	u8 reader_present;
132 	u8 async_capable:1;
133 	u8 zc_capable:1;
134 	u8 reader_contended:1;
135 	bool key_update_pending;
136 
137 	struct tls_strparser strp;
138 
139 	atomic_t decrypt_pending;
140 	struct sk_buff_head async_hold;
141 	struct wait_queue_head wq;
142 };
143 
144 struct tls_record_info {
145 	struct list_head list;
146 	u32 end_seq;
147 	int len;
148 	int num_frags;
149 	skb_frag_t frags[MAX_SKB_FRAGS];
150 };
151 
152 #define TLS_DRIVER_STATE_SIZE_TX	16
153 struct tls_offload_context_tx {
154 	struct crypto_aead *aead_send;
155 	spinlock_t lock;	/* protects records list */
156 	struct list_head records_list;
157 	struct tls_record_info *open_record;
158 	struct tls_record_info *retransmit_hint;
159 	u64 hint_record_sn;
160 	u64 unacked_record_sn;
161 
162 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
163 	void (*sk_destruct)(struct sock *sk);
164 	struct work_struct destruct_work;
165 	struct tls_context *ctx;
166 	/* The TLS layer reserves room for driver specific state
167 	 * Currently the belief is that there is not enough
168 	 * driver specific state to justify another layer of indirection
169 	 */
170 	u8 driver_state[TLS_DRIVER_STATE_SIZE_TX] __aligned(8);
171 };
172 
173 enum tls_context_flags {
174 	/* tls_device_down was called after the netdev went down, device state
175 	 * was released, and kTLS works in software, even though rx_conf is
176 	 * still TLS_HW (needed for transition).
177 	 */
178 	TLS_RX_DEV_DEGRADED = 0,
179 	/* Unlike RX where resync is driven entirely by the core in TX only
180 	 * the driver knows when things went out of sync, so we need the flag
181 	 * to be atomic.
182 	 */
183 	TLS_TX_SYNC_SCHED = 1,
184 	/* tls_dev_del was called for the RX side, device state was released,
185 	 * but tls_ctx->netdev might still be kept, because TX-side driver
186 	 * resources might not be released yet. Used to prevent the second
187 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
188 	 */
189 	TLS_RX_DEV_CLOSED = 2,
190 };
191 
192 struct cipher_context {
193 	char iv[TLS_MAX_IV_SIZE + TLS_MAX_SALT_SIZE];
194 	char rec_seq[TLS_MAX_REC_SEQ_SIZE];
195 };
196 
197 union tls_crypto_context {
198 	struct tls_crypto_info info;
199 	union {
200 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
201 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
202 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
203 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
204 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
205 	};
206 };
207 
208 struct tls_prot_info {
209 	u16 version;
210 	u16 cipher_type;
211 	u16 prepend_size;
212 	u16 tag_size;
213 	u16 overhead_size;
214 	u16 iv_size;
215 	u16 salt_size;
216 	u16 rec_seq_size;
217 	u16 aad_size;
218 	u16 tail_size;
219 };
220 
221 struct tls_context {
222 	/* read-only cache line */
223 	struct tls_prot_info prot_info;
224 
225 	u8 tx_conf:3;
226 	u8 rx_conf:3;
227 	u8 zerocopy_sendfile:1;
228 	u8 rx_no_pad:1;
229 
230 	int (*push_pending_record)(struct sock *sk, int flags);
231 	void (*sk_write_space)(struct sock *sk);
232 
233 	void *priv_ctx_tx;
234 	void *priv_ctx_rx;
235 
236 	struct net_device __rcu *netdev;
237 
238 	/* rw cache line */
239 	struct cipher_context tx;
240 	struct cipher_context rx;
241 
242 	struct scatterlist *partially_sent_record;
243 	u16 partially_sent_offset;
244 
245 	bool splicing_pages;
246 	bool pending_open_record_frags;
247 
248 	struct mutex tx_lock; /* protects partially_sent_* fields and
249 			       * per-type TX fields
250 			       */
251 	unsigned long flags;
252 
253 	/* cache cold stuff */
254 	struct proto *sk_proto;
255 	struct sock *sk;
256 
257 	void (*sk_destruct)(struct sock *sk);
258 
259 	union tls_crypto_context crypto_send;
260 	union tls_crypto_context crypto_recv;
261 
262 	struct list_head list;
263 	refcount_t refcount;
264 	struct rcu_head rcu;
265 };
266 
267 enum tls_offload_ctx_dir {
268 	TLS_OFFLOAD_CTX_DIR_RX,
269 	TLS_OFFLOAD_CTX_DIR_TX,
270 };
271 
272 struct tlsdev_ops {
273 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
274 			   enum tls_offload_ctx_dir direction,
275 			   struct tls_crypto_info *crypto_info,
276 			   u32 start_offload_tcp_sn);
277 	void (*tls_dev_del)(struct net_device *netdev,
278 			    struct tls_context *ctx,
279 			    enum tls_offload_ctx_dir direction);
280 	int (*tls_dev_resync)(struct net_device *netdev,
281 			      struct sock *sk, u32 seq, u8 *rcd_sn,
282 			      enum tls_offload_ctx_dir direction);
283 };
284 
285 enum tls_offload_sync_type {
286 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
287 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
288 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
289 };
290 
291 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
292 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
293 
294 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
295 struct tls_offload_resync_async {
296 	atomic64_t req;
297 	u16 loglen;
298 	u16 rcd_delta;
299 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
300 };
301 
302 #define TLS_DRIVER_STATE_SIZE_RX	8
303 struct tls_offload_context_rx {
304 	/* sw must be the first member of tls_offload_context_rx */
305 	struct tls_sw_context_rx sw;
306 	enum tls_offload_sync_type resync_type;
307 	/* this member is set regardless of resync_type, to avoid branches */
308 	u8 resync_nh_reset:1;
309 	/* CORE_NEXT_HINT-only member, but use the hole here */
310 	u8 resync_nh_do_now:1;
311 	union {
312 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
313 		struct {
314 			atomic64_t resync_req;
315 		};
316 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
317 		struct {
318 			u32 decrypted_failed;
319 			u32 decrypted_tgt;
320 		} resync_nh;
321 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
322 		struct {
323 			struct tls_offload_resync_async *resync_async;
324 		};
325 	};
326 	/* The TLS layer reserves room for driver specific state
327 	 * Currently the belief is that there is not enough
328 	 * driver specific state to justify another layer of indirection
329 	 */
330 	u8 driver_state[TLS_DRIVER_STATE_SIZE_RX] __aligned(8);
331 };
332 
333 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
334 				       u32 seq, u64 *p_record_sn);
335 
336 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
337 {
338 	return rec->len == 0;
339 }
340 
341 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
342 {
343 	return rec->end_seq - rec->len;
344 }
345 
346 struct sk_buff *
347 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
348 		      struct sk_buff *skb);
349 struct sk_buff *
350 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
351 			 struct sk_buff *skb);
352 
353 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
354 {
355 #ifdef CONFIG_TLS_DEVICE
356 	struct sock *sk = skb->sk;
357 
358 	return sk && sk_fullsock(sk) &&
359 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
360 	       &tls_validate_xmit_skb);
361 #else
362 	return false;
363 #endif
364 }
365 
366 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
367 {
368 	const struct inet_connection_sock *icsk = inet_csk(sk);
369 
370 	/* Use RCU on icsk_ulp_data only for sock diag code,
371 	 * TLS data path doesn't need rcu_dereference().
372 	 */
373 	return (__force void *)icsk->icsk_ulp_data;
374 }
375 
376 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
377 		const struct tls_context *tls_ctx)
378 {
379 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
380 }
381 
382 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
383 		const struct tls_context *tls_ctx)
384 {
385 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
386 }
387 
388 static inline struct tls_offload_context_tx *
389 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
390 {
391 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
392 }
393 
394 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
395 {
396 	struct tls_context *ctx;
397 
398 	if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
399 		return false;
400 
401 	ctx = tls_get_ctx(sk);
402 	if (!ctx)
403 		return false;
404 	return !!tls_sw_ctx_tx(ctx);
405 }
406 
407 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
408 {
409 	struct tls_context *ctx;
410 
411 	if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
412 		return false;
413 
414 	ctx = tls_get_ctx(sk);
415 	if (!ctx)
416 		return false;
417 	return !!tls_sw_ctx_rx(ctx);
418 }
419 
420 static inline struct tls_offload_context_rx *
421 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
422 {
423 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
424 }
425 
426 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
427 				     enum tls_offload_ctx_dir direction)
428 {
429 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
430 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
431 	else
432 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
433 }
434 
435 static inline void *
436 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
437 {
438 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
439 }
440 
441 #define RESYNC_REQ BIT(0)
442 #define RESYNC_REQ_ASYNC BIT(1)
443 /* The TLS context is valid until sk_destruct is called */
444 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
445 {
446 	struct tls_context *tls_ctx = tls_get_ctx(sk);
447 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
448 
449 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
450 }
451 
452 /* Log all TLS record header TCP sequences in [seq, seq+len] */
453 static inline void
454 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
455 {
456 	struct tls_context *tls_ctx = tls_get_ctx(sk);
457 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
458 
459 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
460 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
461 	rx_ctx->resync_async->loglen = 0;
462 	rx_ctx->resync_async->rcd_delta = 0;
463 }
464 
465 static inline void
466 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
467 {
468 	struct tls_context *tls_ctx = tls_get_ctx(sk);
469 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
470 
471 	atomic64_set(&rx_ctx->resync_async->req,
472 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
473 }
474 
475 static inline void
476 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
477 {
478 	struct tls_context *tls_ctx = tls_get_ctx(sk);
479 
480 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
481 }
482 
483 /* Driver's seq tracking has to be disabled until resync succeeded */
484 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
485 {
486 	struct tls_context *tls_ctx = tls_get_ctx(sk);
487 	bool ret;
488 
489 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
490 	smp_mb__after_atomic();
491 	return ret;
492 }
493 
494 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
495 
496 #ifdef CONFIG_TLS_DEVICE
497 void tls_device_sk_destruct(struct sock *sk);
498 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
499 
500 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
501 {
502 	if (!sk_fullsock(sk) ||
503 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
504 		return false;
505 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
506 }
507 #endif
508 #endif /* _TLS_OFFLOAD_H */
509