xref: /linux/include/net/tls.h (revision bd476c1306ea989d6d9eb65295572e98d93edeb6)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_TAG_SIZE			16
68 #define TLS_MAX_REC_SEQ_SIZE		8
69 
70 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
71  *
72  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73  *
74  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75  * Hence b0 contains (3 - 1) = 2.
76  */
77 #define TLS_AES_CCM_IV_B0_BYTE		2
78 #define TLS_SM4_CCM_IV_B0_BYTE		2
79 
80 #define __TLS_INC_STATS(net, field)				\
81 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define TLS_INC_STATS(net, field)				\
83 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field)				\
85 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 
87 enum {
88 	TLS_BASE,
89 	TLS_SW,
90 	TLS_HW,
91 	TLS_HW_RECORD,
92 	TLS_NUM_CONFIG,
93 };
94 
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96  * allocated or mapped for each TLS record. After encryption, the records are
97  * stores in a linked list.
98  */
99 struct tls_rec {
100 	struct list_head list;
101 	int tx_ready;
102 	int tx_flags;
103 
104 	struct sk_msg msg_plaintext;
105 	struct sk_msg msg_encrypted;
106 
107 	/* AAD | msg_plaintext.sg.data | sg_tag */
108 	struct scatterlist sg_aead_in[2];
109 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 	struct scatterlist sg_aead_out[2];
111 
112 	char content_type;
113 	struct scatterlist sg_content_type;
114 
115 	char aad_space[TLS_AAD_SPACE_SIZE];
116 	u8 iv_data[MAX_IV_SIZE];
117 	struct aead_request aead_req;
118 	u8 aead_req_ctx[];
119 };
120 
121 struct tx_work {
122 	struct delayed_work work;
123 	struct sock *sk;
124 };
125 
126 struct tls_sw_context_tx {
127 	struct crypto_aead *aead_send;
128 	struct crypto_wait async_wait;
129 	struct tx_work tx_work;
130 	struct tls_rec *open_rec;
131 	struct list_head tx_list;
132 	atomic_t encrypt_pending;
133 	/* protect crypto_wait with encrypt_pending */
134 	spinlock_t encrypt_compl_lock;
135 	int async_notify;
136 	u8 async_capable:1;
137 
138 #define BIT_TX_SCHEDULED	0
139 #define BIT_TX_CLOSING		1
140 	unsigned long tx_bitmask;
141 };
142 
143 struct tls_sw_context_rx {
144 	struct crypto_aead *aead_recv;
145 	struct crypto_wait async_wait;
146 	struct strparser strp;
147 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
148 	void (*saved_data_ready)(struct sock *sk);
149 
150 	struct sk_buff *recv_pkt;
151 	u8 async_capable:1;
152 	atomic_t decrypt_pending;
153 	/* protect crypto_wait with decrypt_pending*/
154 	spinlock_t decrypt_compl_lock;
155 };
156 
157 struct tls_record_info {
158 	struct list_head list;
159 	u32 end_seq;
160 	int len;
161 	int num_frags;
162 	skb_frag_t frags[MAX_SKB_FRAGS];
163 };
164 
165 struct tls_offload_context_tx {
166 	struct crypto_aead *aead_send;
167 	spinlock_t lock;	/* protects records list */
168 	struct list_head records_list;
169 	struct tls_record_info *open_record;
170 	struct tls_record_info *retransmit_hint;
171 	u64 hint_record_sn;
172 	u64 unacked_record_sn;
173 
174 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
175 	void (*sk_destruct)(struct sock *sk);
176 	u8 driver_state[] __aligned(8);
177 	/* The TLS layer reserves room for driver specific state
178 	 * Currently the belief is that there is not enough
179 	 * driver specific state to justify another layer of indirection
180 	 */
181 #define TLS_DRIVER_STATE_SIZE_TX	16
182 };
183 
184 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
185 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
186 
187 enum tls_context_flags {
188 	/* tls_device_down was called after the netdev went down, device state
189 	 * was released, and kTLS works in software, even though rx_conf is
190 	 * still TLS_HW (needed for transition).
191 	 */
192 	TLS_RX_DEV_DEGRADED = 0,
193 	/* Unlike RX where resync is driven entirely by the core in TX only
194 	 * the driver knows when things went out of sync, so we need the flag
195 	 * to be atomic.
196 	 */
197 	TLS_TX_SYNC_SCHED = 1,
198 	/* tls_dev_del was called for the RX side, device state was released,
199 	 * but tls_ctx->netdev might still be kept, because TX-side driver
200 	 * resources might not be released yet. Used to prevent the second
201 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
202 	 */
203 	TLS_RX_DEV_CLOSED = 2,
204 };
205 
206 struct cipher_context {
207 	char *iv;
208 	char *rec_seq;
209 };
210 
211 union tls_crypto_context {
212 	struct tls_crypto_info info;
213 	union {
214 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
215 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
216 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
217 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
218 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
219 	};
220 };
221 
222 struct tls_prot_info {
223 	u16 version;
224 	u16 cipher_type;
225 	u16 prepend_size;
226 	u16 tag_size;
227 	u16 overhead_size;
228 	u16 iv_size;
229 	u16 salt_size;
230 	u16 rec_seq_size;
231 	u16 aad_size;
232 	u16 tail_size;
233 };
234 
235 struct tls_context {
236 	/* read-only cache line */
237 	struct tls_prot_info prot_info;
238 
239 	u8 tx_conf:3;
240 	u8 rx_conf:3;
241 	u8 zerocopy_sendfile:1;
242 
243 	int (*push_pending_record)(struct sock *sk, int flags);
244 	void (*sk_write_space)(struct sock *sk);
245 
246 	void *priv_ctx_tx;
247 	void *priv_ctx_rx;
248 
249 	struct net_device *netdev;
250 
251 	/* rw cache line */
252 	struct cipher_context tx;
253 	struct cipher_context rx;
254 
255 	struct scatterlist *partially_sent_record;
256 	u16 partially_sent_offset;
257 
258 	bool in_tcp_sendpages;
259 	bool pending_open_record_frags;
260 
261 	struct mutex tx_lock; /* protects partially_sent_* fields and
262 			       * per-type TX fields
263 			       */
264 	unsigned long flags;
265 
266 	/* cache cold stuff */
267 	struct proto *sk_proto;
268 	struct sock *sk;
269 
270 	void (*sk_destruct)(struct sock *sk);
271 
272 	union tls_crypto_context crypto_send;
273 	union tls_crypto_context crypto_recv;
274 
275 	struct list_head list;
276 	refcount_t refcount;
277 	struct rcu_head rcu;
278 };
279 
280 enum tls_offload_ctx_dir {
281 	TLS_OFFLOAD_CTX_DIR_RX,
282 	TLS_OFFLOAD_CTX_DIR_TX,
283 };
284 
285 struct tlsdev_ops {
286 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
287 			   enum tls_offload_ctx_dir direction,
288 			   struct tls_crypto_info *crypto_info,
289 			   u32 start_offload_tcp_sn);
290 	void (*tls_dev_del)(struct net_device *netdev,
291 			    struct tls_context *ctx,
292 			    enum tls_offload_ctx_dir direction);
293 	int (*tls_dev_resync)(struct net_device *netdev,
294 			      struct sock *sk, u32 seq, u8 *rcd_sn,
295 			      enum tls_offload_ctx_dir direction);
296 };
297 
298 enum tls_offload_sync_type {
299 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
300 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
301 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
302 };
303 
304 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
305 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
306 
307 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
308 struct tls_offload_resync_async {
309 	atomic64_t req;
310 	u16 loglen;
311 	u16 rcd_delta;
312 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
313 };
314 
315 struct tls_offload_context_rx {
316 	/* sw must be the first member of tls_offload_context_rx */
317 	struct tls_sw_context_rx sw;
318 	enum tls_offload_sync_type resync_type;
319 	/* this member is set regardless of resync_type, to avoid branches */
320 	u8 resync_nh_reset:1;
321 	/* CORE_NEXT_HINT-only member, but use the hole here */
322 	u8 resync_nh_do_now:1;
323 	union {
324 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
325 		struct {
326 			atomic64_t resync_req;
327 		};
328 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
329 		struct {
330 			u32 decrypted_failed;
331 			u32 decrypted_tgt;
332 		} resync_nh;
333 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
334 		struct {
335 			struct tls_offload_resync_async *resync_async;
336 		};
337 	};
338 	u8 driver_state[] __aligned(8);
339 	/* The TLS layer reserves room for driver specific state
340 	 * Currently the belief is that there is not enough
341 	 * driver specific state to justify another layer of indirection
342 	 */
343 #define TLS_DRIVER_STATE_SIZE_RX	8
344 };
345 
346 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
347 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
348 
349 struct tls_context *tls_ctx_create(struct sock *sk);
350 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
351 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
352 
353 int wait_on_pending_writer(struct sock *sk, long *timeo);
354 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
355 		int __user *optlen);
356 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
357 		  unsigned int optlen);
358 void tls_err_abort(struct sock *sk, int err);
359 
360 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
361 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
362 void tls_sw_strparser_done(struct tls_context *tls_ctx);
363 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
364 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
365 			   int offset, size_t size, int flags);
366 int tls_sw_sendpage(struct sock *sk, struct page *page,
367 		    int offset, size_t size, int flags);
368 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
369 void tls_sw_release_resources_tx(struct sock *sk);
370 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
371 void tls_sw_free_resources_rx(struct sock *sk);
372 void tls_sw_release_resources_rx(struct sock *sk);
373 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
374 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
375 		   int flags, int *addr_len);
376 bool tls_sw_sock_is_readable(struct sock *sk);
377 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
378 			   struct pipe_inode_info *pipe,
379 			   size_t len, unsigned int flags);
380 
381 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
382 int tls_device_sendpage(struct sock *sk, struct page *page,
383 			int offset, size_t size, int flags);
384 int tls_tx_records(struct sock *sk, int flags);
385 
386 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
387 				       u32 seq, u64 *p_record_sn);
388 
389 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
390 {
391 	return rec->len == 0;
392 }
393 
394 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
395 {
396 	return rec->end_seq - rec->len;
397 }
398 
399 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
400 		struct scatterlist *sg, u16 first_offset,
401 		int flags);
402 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
403 			    int flags);
404 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
405 
406 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
407 {
408 	struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb;
409 
410 	return &scb->tls;
411 }
412 
413 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
414 {
415 	return !!ctx->partially_sent_record;
416 }
417 
418 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
419 {
420 	return tls_ctx->pending_open_record_frags;
421 }
422 
423 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
424 {
425 	struct tls_rec *rec;
426 
427 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
428 	if (!rec)
429 		return false;
430 
431 	return READ_ONCE(rec->tx_ready);
432 }
433 
434 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
435 {
436 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
437 
438 	switch (config) {
439 	case TLS_BASE:
440 		return TLS_CONF_BASE;
441 	case TLS_SW:
442 		return TLS_CONF_SW;
443 	case TLS_HW:
444 		return TLS_CONF_HW;
445 	case TLS_HW_RECORD:
446 		return TLS_CONF_HW_RECORD;
447 	}
448 	return 0;
449 }
450 
451 struct sk_buff *
452 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
453 		      struct sk_buff *skb);
454 struct sk_buff *
455 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
456 			 struct sk_buff *skb);
457 
458 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
459 {
460 #ifdef CONFIG_SOCK_VALIDATE_XMIT
461 	return sk_fullsock(sk) &&
462 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
463 	       &tls_validate_xmit_skb);
464 #else
465 	return false;
466 #endif
467 }
468 
469 static inline bool tls_bigint_increment(unsigned char *seq, int len)
470 {
471 	int i;
472 
473 	for (i = len - 1; i >= 0; i--) {
474 		++seq[i];
475 		if (seq[i] != 0)
476 			break;
477 	}
478 
479 	return (i == -1);
480 }
481 
482 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
483 {
484 	u64 rcd_sn;
485 	__be64 *p;
486 
487 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
488 
489 	p = (__be64 *)seq;
490 	rcd_sn = be64_to_cpu(*p);
491 	*p = cpu_to_be64(rcd_sn - n);
492 }
493 
494 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
495 {
496 	struct inet_connection_sock *icsk = inet_csk(sk);
497 
498 	/* Use RCU on icsk_ulp_data only for sock diag code,
499 	 * TLS data path doesn't need rcu_dereference().
500 	 */
501 	return (__force void *)icsk->icsk_ulp_data;
502 }
503 
504 static inline void tls_advance_record_sn(struct sock *sk,
505 					 struct tls_prot_info *prot,
506 					 struct cipher_context *ctx)
507 {
508 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
509 		tls_err_abort(sk, -EBADMSG);
510 
511 	if (prot->version != TLS_1_3_VERSION &&
512 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
513 		tls_bigint_increment(ctx->iv + prot->salt_size,
514 				     prot->iv_size);
515 }
516 
517 static inline void tls_fill_prepend(struct tls_context *ctx,
518 			     char *buf,
519 			     size_t plaintext_len,
520 			     unsigned char record_type)
521 {
522 	struct tls_prot_info *prot = &ctx->prot_info;
523 	size_t pkt_len, iv_size = prot->iv_size;
524 
525 	pkt_len = plaintext_len + prot->tag_size;
526 	if (prot->version != TLS_1_3_VERSION &&
527 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
528 		pkt_len += iv_size;
529 
530 		memcpy(buf + TLS_NONCE_OFFSET,
531 		       ctx->tx.iv + prot->salt_size, iv_size);
532 	}
533 
534 	/* we cover nonce explicit here as well, so buf should be of
535 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
536 	 */
537 	buf[0] = prot->version == TLS_1_3_VERSION ?
538 		   TLS_RECORD_TYPE_DATA : record_type;
539 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
540 	buf[1] = TLS_1_2_VERSION_MINOR;
541 	buf[2] = TLS_1_2_VERSION_MAJOR;
542 	/* we can use IV for nonce explicit according to spec */
543 	buf[3] = pkt_len >> 8;
544 	buf[4] = pkt_len & 0xFF;
545 }
546 
547 static inline void tls_make_aad(char *buf,
548 				size_t size,
549 				char *record_sequence,
550 				unsigned char record_type,
551 				struct tls_prot_info *prot)
552 {
553 	if (prot->version != TLS_1_3_VERSION) {
554 		memcpy(buf, record_sequence, prot->rec_seq_size);
555 		buf += 8;
556 	} else {
557 		size += prot->tag_size;
558 	}
559 
560 	buf[0] = prot->version == TLS_1_3_VERSION ?
561 		  TLS_RECORD_TYPE_DATA : record_type;
562 	buf[1] = TLS_1_2_VERSION_MAJOR;
563 	buf[2] = TLS_1_2_VERSION_MINOR;
564 	buf[3] = size >> 8;
565 	buf[4] = size & 0xFF;
566 }
567 
568 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
569 {
570 	int i;
571 
572 	if (prot->version == TLS_1_3_VERSION ||
573 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
574 		for (i = 0; i < 8; i++)
575 			iv[i + 4] ^= seq[i];
576 	}
577 }
578 
579 
580 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
581 		const struct tls_context *tls_ctx)
582 {
583 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
584 }
585 
586 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
587 		const struct tls_context *tls_ctx)
588 {
589 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
590 }
591 
592 static inline struct tls_offload_context_tx *
593 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
594 {
595 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
596 }
597 
598 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
599 {
600 	struct tls_context *ctx = tls_get_ctx(sk);
601 
602 	if (!ctx)
603 		return false;
604 	return !!tls_sw_ctx_tx(ctx);
605 }
606 
607 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
608 {
609 	struct tls_context *ctx = tls_get_ctx(sk);
610 
611 	if (!ctx)
612 		return false;
613 	return !!tls_sw_ctx_rx(ctx);
614 }
615 
616 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
617 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
618 
619 static inline struct tls_offload_context_rx *
620 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
621 {
622 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
623 }
624 
625 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
626 				     enum tls_offload_ctx_dir direction)
627 {
628 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
629 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
630 	else
631 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
632 }
633 
634 static inline void *
635 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
636 {
637 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
638 }
639 
640 #define RESYNC_REQ BIT(0)
641 #define RESYNC_REQ_ASYNC BIT(1)
642 /* The TLS context is valid until sk_destruct is called */
643 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
644 {
645 	struct tls_context *tls_ctx = tls_get_ctx(sk);
646 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
647 
648 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
649 }
650 
651 /* Log all TLS record header TCP sequences in [seq, seq+len] */
652 static inline void
653 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
654 {
655 	struct tls_context *tls_ctx = tls_get_ctx(sk);
656 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
657 
658 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
659 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
660 	rx_ctx->resync_async->loglen = 0;
661 	rx_ctx->resync_async->rcd_delta = 0;
662 }
663 
664 static inline void
665 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
666 {
667 	struct tls_context *tls_ctx = tls_get_ctx(sk);
668 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
669 
670 	atomic64_set(&rx_ctx->resync_async->req,
671 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
672 }
673 
674 static inline void
675 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
676 {
677 	struct tls_context *tls_ctx = tls_get_ctx(sk);
678 
679 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
680 }
681 
682 /* Driver's seq tracking has to be disabled until resync succeeded */
683 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
684 {
685 	struct tls_context *tls_ctx = tls_get_ctx(sk);
686 	bool ret;
687 
688 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
689 	smp_mb__after_atomic();
690 	return ret;
691 }
692 
693 int __net_init tls_proc_init(struct net *net);
694 void __net_exit tls_proc_fini(struct net *net);
695 
696 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
697 		      unsigned char *record_type);
698 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
699 		struct scatterlist *sgout);
700 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
701 
702 int tls_sw_fallback_init(struct sock *sk,
703 			 struct tls_offload_context_tx *offload_ctx,
704 			 struct tls_crypto_info *crypto_info);
705 
706 #ifdef CONFIG_TLS_DEVICE
707 void tls_device_init(void);
708 void tls_device_cleanup(void);
709 void tls_device_sk_destruct(struct sock *sk);
710 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
711 void tls_device_free_resources_tx(struct sock *sk);
712 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
713 void tls_device_offload_cleanup_rx(struct sock *sk);
714 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
715 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
716 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
717 			 struct sk_buff *skb, struct strp_msg *rxm);
718 
719 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
720 {
721 	if (!sk_fullsock(sk) ||
722 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
723 		return false;
724 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
725 }
726 #else
727 static inline void tls_device_init(void) {}
728 static inline void tls_device_cleanup(void) {}
729 
730 static inline int
731 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
732 {
733 	return -EOPNOTSUPP;
734 }
735 
736 static inline void tls_device_free_resources_tx(struct sock *sk) {}
737 
738 static inline int
739 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
740 {
741 	return -EOPNOTSUPP;
742 }
743 
744 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
745 static inline void
746 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
747 
748 static inline int
749 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
750 		     struct sk_buff *skb, struct strp_msg *rxm)
751 {
752 	return 0;
753 }
754 #endif
755 #endif /* _TLS_OFFLOAD_H */
756