1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 #define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80 #define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define __TLS_DEC_STATS(net, field) \ 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84 #define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87 enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93 }; 94 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99 struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 104 struct sk_msg msg_plaintext; 105 struct sk_msg msg_encrypted; 106 107 /* AAD | msg_plaintext.sg.data | sg_tag */ 108 struct scatterlist sg_aead_in[2]; 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 110 struct scatterlist sg_aead_out[2]; 111 112 char content_type; 113 struct scatterlist sg_content_type; 114 115 char aad_space[TLS_AAD_SPACE_SIZE]; 116 u8 iv_data[MAX_IV_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119 }; 120 121 struct tls_msg { 122 struct strp_msg rxm; 123 u8 control; 124 }; 125 126 struct tx_work { 127 struct delayed_work work; 128 struct sock *sk; 129 }; 130 131 struct tls_sw_context_tx { 132 struct crypto_aead *aead_send; 133 struct crypto_wait async_wait; 134 struct tx_work tx_work; 135 struct tls_rec *open_rec; 136 struct list_head tx_list; 137 atomic_t encrypt_pending; 138 /* protect crypto_wait with encrypt_pending */ 139 spinlock_t encrypt_compl_lock; 140 int async_notify; 141 u8 async_capable:1; 142 143 #define BIT_TX_SCHEDULED 0 144 #define BIT_TX_CLOSING 1 145 unsigned long tx_bitmask; 146 }; 147 148 struct tls_sw_context_rx { 149 struct crypto_aead *aead_recv; 150 struct crypto_wait async_wait; 151 struct strparser strp; 152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 153 void (*saved_data_ready)(struct sock *sk); 154 155 struct sk_buff *recv_pkt; 156 u8 control; 157 u8 async_capable:1; 158 u8 decrypted:1; 159 atomic_t decrypt_pending; 160 /* protect crypto_wait with decrypt_pending*/ 161 spinlock_t decrypt_compl_lock; 162 bool async_notify; 163 }; 164 165 struct tls_record_info { 166 struct list_head list; 167 u32 end_seq; 168 int len; 169 int num_frags; 170 skb_frag_t frags[MAX_SKB_FRAGS]; 171 }; 172 173 struct tls_offload_context_tx { 174 struct crypto_aead *aead_send; 175 spinlock_t lock; /* protects records list */ 176 struct list_head records_list; 177 struct tls_record_info *open_record; 178 struct tls_record_info *retransmit_hint; 179 u64 hint_record_sn; 180 u64 unacked_record_sn; 181 182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 183 void (*sk_destruct)(struct sock *sk); 184 u8 driver_state[] __aligned(8); 185 /* The TLS layer reserves room for driver specific state 186 * Currently the belief is that there is not enough 187 * driver specific state to justify another layer of indirection 188 */ 189 #define TLS_DRIVER_STATE_SIZE_TX 16 190 }; 191 192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 194 195 enum tls_context_flags { 196 TLS_RX_SYNC_RUNNING = 0, 197 /* Unlike RX where resync is driven entirely by the core in TX only 198 * the driver knows when things went out of sync, so we need the flag 199 * to be atomic. 200 */ 201 TLS_TX_SYNC_SCHED = 1, 202 /* tls_dev_del was called for the RX side, device state was released, 203 * but tls_ctx->netdev might still be kept, because TX-side driver 204 * resources might not be released yet. Used to prevent the second 205 * tls_dev_del call in tls_device_down if it happens simultaneously. 206 */ 207 TLS_RX_DEV_CLOSED = 2, 208 }; 209 210 struct cipher_context { 211 char *iv; 212 char *rec_seq; 213 }; 214 215 union tls_crypto_context { 216 struct tls_crypto_info info; 217 union { 218 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 219 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 220 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305; 221 }; 222 }; 223 224 struct tls_prot_info { 225 u16 version; 226 u16 cipher_type; 227 u16 prepend_size; 228 u16 tag_size; 229 u16 overhead_size; 230 u16 iv_size; 231 u16 salt_size; 232 u16 rec_seq_size; 233 u16 aad_size; 234 u16 tail_size; 235 }; 236 237 struct tls_context { 238 /* read-only cache line */ 239 struct tls_prot_info prot_info; 240 241 u8 tx_conf:3; 242 u8 rx_conf:3; 243 244 int (*push_pending_record)(struct sock *sk, int flags); 245 void (*sk_write_space)(struct sock *sk); 246 247 void *priv_ctx_tx; 248 void *priv_ctx_rx; 249 250 struct net_device *netdev; 251 252 /* rw cache line */ 253 struct cipher_context tx; 254 struct cipher_context rx; 255 256 struct scatterlist *partially_sent_record; 257 u16 partially_sent_offset; 258 259 bool in_tcp_sendpages; 260 bool pending_open_record_frags; 261 262 struct mutex tx_lock; /* protects partially_sent_* fields and 263 * per-type TX fields 264 */ 265 unsigned long flags; 266 267 /* cache cold stuff */ 268 struct proto *sk_proto; 269 270 void (*sk_destruct)(struct sock *sk); 271 272 union tls_crypto_context crypto_send; 273 union tls_crypto_context crypto_recv; 274 275 struct list_head list; 276 refcount_t refcount; 277 struct rcu_head rcu; 278 }; 279 280 enum tls_offload_ctx_dir { 281 TLS_OFFLOAD_CTX_DIR_RX, 282 TLS_OFFLOAD_CTX_DIR_TX, 283 }; 284 285 struct tlsdev_ops { 286 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 287 enum tls_offload_ctx_dir direction, 288 struct tls_crypto_info *crypto_info, 289 u32 start_offload_tcp_sn); 290 void (*tls_dev_del)(struct net_device *netdev, 291 struct tls_context *ctx, 292 enum tls_offload_ctx_dir direction); 293 int (*tls_dev_resync)(struct net_device *netdev, 294 struct sock *sk, u32 seq, u8 *rcd_sn, 295 enum tls_offload_ctx_dir direction); 296 }; 297 298 enum tls_offload_sync_type { 299 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 300 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 301 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 302 }; 303 304 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 305 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 306 307 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 308 struct tls_offload_resync_async { 309 atomic64_t req; 310 u16 loglen; 311 u16 rcd_delta; 312 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 313 }; 314 315 struct tls_offload_context_rx { 316 /* sw must be the first member of tls_offload_context_rx */ 317 struct tls_sw_context_rx sw; 318 enum tls_offload_sync_type resync_type; 319 /* this member is set regardless of resync_type, to avoid branches */ 320 u8 resync_nh_reset:1; 321 /* CORE_NEXT_HINT-only member, but use the hole here */ 322 u8 resync_nh_do_now:1; 323 union { 324 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 325 struct { 326 atomic64_t resync_req; 327 }; 328 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 329 struct { 330 u32 decrypted_failed; 331 u32 decrypted_tgt; 332 } resync_nh; 333 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 334 struct { 335 struct tls_offload_resync_async *resync_async; 336 }; 337 }; 338 u8 driver_state[] __aligned(8); 339 /* The TLS layer reserves room for driver specific state 340 * Currently the belief is that there is not enough 341 * driver specific state to justify another layer of indirection 342 */ 343 #define TLS_DRIVER_STATE_SIZE_RX 8 344 }; 345 346 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 347 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 348 349 struct tls_context *tls_ctx_create(struct sock *sk); 350 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 351 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 352 353 int wait_on_pending_writer(struct sock *sk, long *timeo); 354 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 355 int __user *optlen); 356 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 357 unsigned int optlen); 358 359 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 360 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 361 void tls_sw_strparser_done(struct tls_context *tls_ctx); 362 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 363 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 364 int offset, size_t size, int flags); 365 int tls_sw_sendpage(struct sock *sk, struct page *page, 366 int offset, size_t size, int flags); 367 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 368 void tls_sw_release_resources_tx(struct sock *sk); 369 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 370 void tls_sw_free_resources_rx(struct sock *sk); 371 void tls_sw_release_resources_rx(struct sock *sk); 372 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 373 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 374 int nonblock, int flags, int *addr_len); 375 bool tls_sw_stream_read(const struct sock *sk); 376 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 377 struct pipe_inode_info *pipe, 378 size_t len, unsigned int flags); 379 380 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 381 int tls_device_sendpage(struct sock *sk, struct page *page, 382 int offset, size_t size, int flags); 383 int tls_tx_records(struct sock *sk, int flags); 384 385 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 386 u32 seq, u64 *p_record_sn); 387 388 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 389 { 390 return rec->len == 0; 391 } 392 393 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 394 { 395 return rec->end_seq - rec->len; 396 } 397 398 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 399 struct scatterlist *sg, u16 first_offset, 400 int flags); 401 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 402 int flags); 403 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 404 405 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 406 { 407 return (struct tls_msg *)strp_msg(skb); 408 } 409 410 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 411 { 412 return !!ctx->partially_sent_record; 413 } 414 415 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 416 { 417 return tls_ctx->pending_open_record_frags; 418 } 419 420 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 421 { 422 struct tls_rec *rec; 423 424 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 425 if (!rec) 426 return false; 427 428 return READ_ONCE(rec->tx_ready); 429 } 430 431 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 432 { 433 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 434 435 switch (config) { 436 case TLS_BASE: 437 return TLS_CONF_BASE; 438 case TLS_SW: 439 return TLS_CONF_SW; 440 case TLS_HW: 441 return TLS_CONF_HW; 442 case TLS_HW_RECORD: 443 return TLS_CONF_HW_RECORD; 444 } 445 return 0; 446 } 447 448 struct sk_buff * 449 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 450 struct sk_buff *skb); 451 452 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 453 { 454 #ifdef CONFIG_SOCK_VALIDATE_XMIT 455 return sk_fullsock(sk) && 456 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 457 &tls_validate_xmit_skb); 458 #else 459 return false; 460 #endif 461 } 462 463 static inline void tls_err_abort(struct sock *sk, int err) 464 { 465 sk->sk_err = err; 466 sk->sk_error_report(sk); 467 } 468 469 static inline bool tls_bigint_increment(unsigned char *seq, int len) 470 { 471 int i; 472 473 for (i = len - 1; i >= 0; i--) { 474 ++seq[i]; 475 if (seq[i] != 0) 476 break; 477 } 478 479 return (i == -1); 480 } 481 482 static inline void tls_bigint_subtract(unsigned char *seq, int n) 483 { 484 u64 rcd_sn; 485 __be64 *p; 486 487 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 488 489 p = (__be64 *)seq; 490 rcd_sn = be64_to_cpu(*p); 491 *p = cpu_to_be64(rcd_sn - n); 492 } 493 494 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 495 { 496 struct inet_connection_sock *icsk = inet_csk(sk); 497 498 /* Use RCU on icsk_ulp_data only for sock diag code, 499 * TLS data path doesn't need rcu_dereference(). 500 */ 501 return (__force void *)icsk->icsk_ulp_data; 502 } 503 504 static inline void tls_advance_record_sn(struct sock *sk, 505 struct tls_prot_info *prot, 506 struct cipher_context *ctx) 507 { 508 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 509 tls_err_abort(sk, EBADMSG); 510 511 if (prot->version != TLS_1_3_VERSION && 512 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 513 tls_bigint_increment(ctx->iv + prot->salt_size, 514 prot->iv_size); 515 } 516 517 static inline void tls_fill_prepend(struct tls_context *ctx, 518 char *buf, 519 size_t plaintext_len, 520 unsigned char record_type) 521 { 522 struct tls_prot_info *prot = &ctx->prot_info; 523 size_t pkt_len, iv_size = prot->iv_size; 524 525 pkt_len = plaintext_len + prot->tag_size; 526 if (prot->version != TLS_1_3_VERSION && 527 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 528 pkt_len += iv_size; 529 530 memcpy(buf + TLS_NONCE_OFFSET, 531 ctx->tx.iv + prot->salt_size, iv_size); 532 } 533 534 /* we cover nonce explicit here as well, so buf should be of 535 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 536 */ 537 buf[0] = prot->version == TLS_1_3_VERSION ? 538 TLS_RECORD_TYPE_DATA : record_type; 539 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 540 buf[1] = TLS_1_2_VERSION_MINOR; 541 buf[2] = TLS_1_2_VERSION_MAJOR; 542 /* we can use IV for nonce explicit according to spec */ 543 buf[3] = pkt_len >> 8; 544 buf[4] = pkt_len & 0xFF; 545 } 546 547 static inline void tls_make_aad(char *buf, 548 size_t size, 549 char *record_sequence, 550 unsigned char record_type, 551 struct tls_prot_info *prot) 552 { 553 if (prot->version != TLS_1_3_VERSION) { 554 memcpy(buf, record_sequence, prot->rec_seq_size); 555 buf += 8; 556 } else { 557 size += prot->tag_size; 558 } 559 560 buf[0] = prot->version == TLS_1_3_VERSION ? 561 TLS_RECORD_TYPE_DATA : record_type; 562 buf[1] = TLS_1_2_VERSION_MAJOR; 563 buf[2] = TLS_1_2_VERSION_MINOR; 564 buf[3] = size >> 8; 565 buf[4] = size & 0xFF; 566 } 567 568 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 569 { 570 int i; 571 572 if (prot->version == TLS_1_3_VERSION || 573 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 574 for (i = 0; i < 8; i++) 575 iv[i + 4] ^= seq[i]; 576 } 577 } 578 579 580 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 581 const struct tls_context *tls_ctx) 582 { 583 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 584 } 585 586 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 587 const struct tls_context *tls_ctx) 588 { 589 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 590 } 591 592 static inline struct tls_offload_context_tx * 593 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 594 { 595 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 596 } 597 598 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 599 { 600 struct tls_context *ctx = tls_get_ctx(sk); 601 602 if (!ctx) 603 return false; 604 return !!tls_sw_ctx_tx(ctx); 605 } 606 607 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 608 { 609 struct tls_context *ctx = tls_get_ctx(sk); 610 611 if (!ctx) 612 return false; 613 return !!tls_sw_ctx_rx(ctx); 614 } 615 616 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 617 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 618 619 static inline struct tls_offload_context_rx * 620 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 621 { 622 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 623 } 624 625 #if IS_ENABLED(CONFIG_TLS_DEVICE) 626 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 627 enum tls_offload_ctx_dir direction) 628 { 629 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 630 return tls_offload_ctx_tx(tls_ctx)->driver_state; 631 else 632 return tls_offload_ctx_rx(tls_ctx)->driver_state; 633 } 634 635 static inline void * 636 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 637 { 638 return __tls_driver_ctx(tls_get_ctx(sk), direction); 639 } 640 #endif 641 642 #define RESYNC_REQ BIT(0) 643 #define RESYNC_REQ_ASYNC BIT(1) 644 /* The TLS context is valid until sk_destruct is called */ 645 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 646 { 647 struct tls_context *tls_ctx = tls_get_ctx(sk); 648 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 649 650 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 651 } 652 653 /* Log all TLS record header TCP sequences in [seq, seq+len] */ 654 static inline void 655 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 656 { 657 struct tls_context *tls_ctx = tls_get_ctx(sk); 658 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 659 660 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 661 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 662 rx_ctx->resync_async->loglen = 0; 663 rx_ctx->resync_async->rcd_delta = 0; 664 } 665 666 static inline void 667 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 668 { 669 struct tls_context *tls_ctx = tls_get_ctx(sk); 670 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 671 672 atomic64_set(&rx_ctx->resync_async->req, 673 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 674 } 675 676 static inline void 677 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 678 { 679 struct tls_context *tls_ctx = tls_get_ctx(sk); 680 681 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 682 } 683 684 /* Driver's seq tracking has to be disabled until resync succeeded */ 685 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 686 { 687 struct tls_context *tls_ctx = tls_get_ctx(sk); 688 bool ret; 689 690 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 691 smp_mb__after_atomic(); 692 return ret; 693 } 694 695 int __net_init tls_proc_init(struct net *net); 696 void __net_exit tls_proc_fini(struct net *net); 697 698 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 699 unsigned char *record_type); 700 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 701 struct scatterlist *sgout); 702 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 703 704 int tls_sw_fallback_init(struct sock *sk, 705 struct tls_offload_context_tx *offload_ctx, 706 struct tls_crypto_info *crypto_info); 707 708 #ifdef CONFIG_TLS_DEVICE 709 void tls_device_init(void); 710 void tls_device_cleanup(void); 711 void tls_device_sk_destruct(struct sock *sk); 712 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 713 void tls_device_free_resources_tx(struct sock *sk); 714 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 715 void tls_device_offload_cleanup_rx(struct sock *sk); 716 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 717 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 718 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 719 struct sk_buff *skb, struct strp_msg *rxm); 720 721 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 722 { 723 if (!sk_fullsock(sk) || 724 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 725 return false; 726 return tls_get_ctx(sk)->rx_conf == TLS_HW; 727 } 728 #else 729 static inline void tls_device_init(void) {} 730 static inline void tls_device_cleanup(void) {} 731 732 static inline int 733 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 734 { 735 return -EOPNOTSUPP; 736 } 737 738 static inline void tls_device_free_resources_tx(struct sock *sk) {} 739 740 static inline int 741 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 742 { 743 return -EOPNOTSUPP; 744 } 745 746 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 747 static inline void 748 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 749 750 static inline int 751 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 752 struct sk_buff *skb, struct strp_msg *rxm) 753 { 754 return 0; 755 } 756 #endif 757 #endif /* _TLS_OFFLOAD_H */ 758