xref: /linux/include/net/tls.h (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_MAX_REC_SEQ_SIZE		8
68 
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70  *
71  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72  *
73  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74  * Hence b0 contains (3 - 1) = 2.
75  */
76 #define TLS_AES_CCM_IV_B0_BYTE		2
77 
78 #define __TLS_INC_STATS(net, field)				\
79 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field)				\
81 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field)				\
83 	__SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field)				\
85 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 
87 enum {
88 	TLS_BASE,
89 	TLS_SW,
90 	TLS_HW,
91 	TLS_HW_RECORD,
92 	TLS_NUM_CONFIG,
93 };
94 
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96  * allocated or mapped for each TLS record. After encryption, the records are
97  * stores in a linked list.
98  */
99 struct tls_rec {
100 	struct list_head list;
101 	int tx_ready;
102 	int tx_flags;
103 	int inplace_crypto;
104 
105 	struct sk_msg msg_plaintext;
106 	struct sk_msg msg_encrypted;
107 
108 	/* AAD | msg_plaintext.sg.data | sg_tag */
109 	struct scatterlist sg_aead_in[2];
110 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
111 	struct scatterlist sg_aead_out[2];
112 
113 	char content_type;
114 	struct scatterlist sg_content_type;
115 
116 	char aad_space[TLS_AAD_SPACE_SIZE];
117 	u8 iv_data[MAX_IV_SIZE];
118 	struct aead_request aead_req;
119 	u8 aead_req_ctx[];
120 };
121 
122 struct tls_msg {
123 	struct strp_msg rxm;
124 	u8 control;
125 };
126 
127 struct tx_work {
128 	struct delayed_work work;
129 	struct sock *sk;
130 };
131 
132 struct tls_sw_context_tx {
133 	struct crypto_aead *aead_send;
134 	struct crypto_wait async_wait;
135 	struct tx_work tx_work;
136 	struct tls_rec *open_rec;
137 	struct list_head tx_list;
138 	atomic_t encrypt_pending;
139 	int async_notify;
140 	u8 async_capable:1;
141 
142 #define BIT_TX_SCHEDULED	0
143 #define BIT_TX_CLOSING		1
144 	unsigned long tx_bitmask;
145 };
146 
147 struct tls_sw_context_rx {
148 	struct crypto_aead *aead_recv;
149 	struct crypto_wait async_wait;
150 	struct strparser strp;
151 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
152 	void (*saved_data_ready)(struct sock *sk);
153 
154 	struct sk_buff *recv_pkt;
155 	u8 control;
156 	u8 async_capable:1;
157 	u8 decrypted:1;
158 	atomic_t decrypt_pending;
159 	bool async_notify;
160 };
161 
162 struct tls_record_info {
163 	struct list_head list;
164 	u32 end_seq;
165 	int len;
166 	int num_frags;
167 	skb_frag_t frags[MAX_SKB_FRAGS];
168 };
169 
170 struct tls_offload_context_tx {
171 	struct crypto_aead *aead_send;
172 	spinlock_t lock;	/* protects records list */
173 	struct list_head records_list;
174 	struct tls_record_info *open_record;
175 	struct tls_record_info *retransmit_hint;
176 	u64 hint_record_sn;
177 	u64 unacked_record_sn;
178 
179 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
180 	void (*sk_destruct)(struct sock *sk);
181 	u8 driver_state[] __aligned(8);
182 	/* The TLS layer reserves room for driver specific state
183 	 * Currently the belief is that there is not enough
184 	 * driver specific state to justify another layer of indirection
185 	 */
186 #define TLS_DRIVER_STATE_SIZE_TX	16
187 };
188 
189 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
190 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
191 
192 enum tls_context_flags {
193 	TLS_RX_SYNC_RUNNING = 0,
194 	/* Unlike RX where resync is driven entirely by the core in TX only
195 	 * the driver knows when things went out of sync, so we need the flag
196 	 * to be atomic.
197 	 */
198 	TLS_TX_SYNC_SCHED = 1,
199 };
200 
201 struct cipher_context {
202 	char *iv;
203 	char *rec_seq;
204 };
205 
206 union tls_crypto_context {
207 	struct tls_crypto_info info;
208 	union {
209 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
210 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
211 	};
212 };
213 
214 struct tls_prot_info {
215 	u16 version;
216 	u16 cipher_type;
217 	u16 prepend_size;
218 	u16 tag_size;
219 	u16 overhead_size;
220 	u16 iv_size;
221 	u16 salt_size;
222 	u16 rec_seq_size;
223 	u16 aad_size;
224 	u16 tail_size;
225 };
226 
227 struct tls_context {
228 	/* read-only cache line */
229 	struct tls_prot_info prot_info;
230 
231 	u8 tx_conf:3;
232 	u8 rx_conf:3;
233 
234 	int (*push_pending_record)(struct sock *sk, int flags);
235 	void (*sk_write_space)(struct sock *sk);
236 
237 	void *priv_ctx_tx;
238 	void *priv_ctx_rx;
239 
240 	struct net_device *netdev;
241 
242 	/* rw cache line */
243 	struct cipher_context tx;
244 	struct cipher_context rx;
245 
246 	struct scatterlist *partially_sent_record;
247 	u16 partially_sent_offset;
248 
249 	bool in_tcp_sendpages;
250 	bool pending_open_record_frags;
251 
252 	struct mutex tx_lock; /* protects partially_sent_* fields and
253 			       * per-type TX fields
254 			       */
255 	unsigned long flags;
256 
257 	/* cache cold stuff */
258 	struct proto *sk_proto;
259 
260 	void (*sk_destruct)(struct sock *sk);
261 
262 	union tls_crypto_context crypto_send;
263 	union tls_crypto_context crypto_recv;
264 
265 	struct list_head list;
266 	refcount_t refcount;
267 	struct rcu_head rcu;
268 };
269 
270 enum tls_offload_ctx_dir {
271 	TLS_OFFLOAD_CTX_DIR_RX,
272 	TLS_OFFLOAD_CTX_DIR_TX,
273 };
274 
275 struct tlsdev_ops {
276 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
277 			   enum tls_offload_ctx_dir direction,
278 			   struct tls_crypto_info *crypto_info,
279 			   u32 start_offload_tcp_sn);
280 	void (*tls_dev_del)(struct net_device *netdev,
281 			    struct tls_context *ctx,
282 			    enum tls_offload_ctx_dir direction);
283 	int (*tls_dev_resync)(struct net_device *netdev,
284 			      struct sock *sk, u32 seq, u8 *rcd_sn,
285 			      enum tls_offload_ctx_dir direction);
286 };
287 
288 enum tls_offload_sync_type {
289 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
290 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
291 };
292 
293 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
294 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
295 
296 struct tls_offload_context_rx {
297 	/* sw must be the first member of tls_offload_context_rx */
298 	struct tls_sw_context_rx sw;
299 	enum tls_offload_sync_type resync_type;
300 	/* this member is set regardless of resync_type, to avoid branches */
301 	u8 resync_nh_reset:1;
302 	/* CORE_NEXT_HINT-only member, but use the hole here */
303 	u8 resync_nh_do_now:1;
304 	union {
305 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
306 		struct {
307 			atomic64_t resync_req;
308 		};
309 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
310 		struct {
311 			u32 decrypted_failed;
312 			u32 decrypted_tgt;
313 		} resync_nh;
314 	};
315 	u8 driver_state[] __aligned(8);
316 	/* The TLS layer reserves room for driver specific state
317 	 * Currently the belief is that there is not enough
318 	 * driver specific state to justify another layer of indirection
319 	 */
320 #define TLS_DRIVER_STATE_SIZE_RX	8
321 };
322 
323 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
324 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
325 
326 struct tls_context *tls_ctx_create(struct sock *sk);
327 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
328 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
329 
330 int wait_on_pending_writer(struct sock *sk, long *timeo);
331 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
332 		int __user *optlen);
333 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
334 		  unsigned int optlen);
335 
336 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
337 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
338 void tls_sw_strparser_done(struct tls_context *tls_ctx);
339 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
340 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
341 			   int offset, size_t size, int flags);
342 int tls_sw_sendpage(struct sock *sk, struct page *page,
343 		    int offset, size_t size, int flags);
344 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
345 void tls_sw_release_resources_tx(struct sock *sk);
346 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
347 void tls_sw_free_resources_rx(struct sock *sk);
348 void tls_sw_release_resources_rx(struct sock *sk);
349 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
350 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
351 		   int nonblock, int flags, int *addr_len);
352 bool tls_sw_stream_read(const struct sock *sk);
353 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
354 			   struct pipe_inode_info *pipe,
355 			   size_t len, unsigned int flags);
356 
357 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
358 int tls_device_sendpage(struct sock *sk, struct page *page,
359 			int offset, size_t size, int flags);
360 int tls_tx_records(struct sock *sk, int flags);
361 
362 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
363 				       u32 seq, u64 *p_record_sn);
364 
365 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
366 {
367 	return rec->len == 0;
368 }
369 
370 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
371 {
372 	return rec->end_seq - rec->len;
373 }
374 
375 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
376 		struct scatterlist *sg, u16 first_offset,
377 		int flags);
378 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
379 			    int flags);
380 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
381 
382 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
383 {
384 	return (struct tls_msg *)strp_msg(skb);
385 }
386 
387 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
388 {
389 	return !!ctx->partially_sent_record;
390 }
391 
392 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
393 {
394 	return tls_ctx->pending_open_record_frags;
395 }
396 
397 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
398 {
399 	struct tls_rec *rec;
400 
401 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
402 	if (!rec)
403 		return false;
404 
405 	return READ_ONCE(rec->tx_ready);
406 }
407 
408 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
409 {
410 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
411 
412 	switch (config) {
413 	case TLS_BASE:
414 		return TLS_CONF_BASE;
415 	case TLS_SW:
416 		return TLS_CONF_SW;
417 	case TLS_HW:
418 		return TLS_CONF_HW;
419 	case TLS_HW_RECORD:
420 		return TLS_CONF_HW_RECORD;
421 	}
422 	return 0;
423 }
424 
425 struct sk_buff *
426 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
427 		      struct sk_buff *skb);
428 
429 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
430 {
431 #ifdef CONFIG_SOCK_VALIDATE_XMIT
432 	return sk_fullsock(sk) &&
433 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
434 	       &tls_validate_xmit_skb);
435 #else
436 	return false;
437 #endif
438 }
439 
440 static inline void tls_err_abort(struct sock *sk, int err)
441 {
442 	sk->sk_err = err;
443 	sk->sk_error_report(sk);
444 }
445 
446 static inline bool tls_bigint_increment(unsigned char *seq, int len)
447 {
448 	int i;
449 
450 	for (i = len - 1; i >= 0; i--) {
451 		++seq[i];
452 		if (seq[i] != 0)
453 			break;
454 	}
455 
456 	return (i == -1);
457 }
458 
459 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
460 {
461 	struct inet_connection_sock *icsk = inet_csk(sk);
462 
463 	/* Use RCU on icsk_ulp_data only for sock diag code,
464 	 * TLS data path doesn't need rcu_dereference().
465 	 */
466 	return (__force void *)icsk->icsk_ulp_data;
467 }
468 
469 static inline void tls_advance_record_sn(struct sock *sk,
470 					 struct tls_prot_info *prot,
471 					 struct cipher_context *ctx)
472 {
473 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
474 		tls_err_abort(sk, EBADMSG);
475 
476 	if (prot->version != TLS_1_3_VERSION)
477 		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
478 				     prot->iv_size);
479 }
480 
481 static inline void tls_fill_prepend(struct tls_context *ctx,
482 			     char *buf,
483 			     size_t plaintext_len,
484 			     unsigned char record_type,
485 			     int version)
486 {
487 	struct tls_prot_info *prot = &ctx->prot_info;
488 	size_t pkt_len, iv_size = prot->iv_size;
489 
490 	pkt_len = plaintext_len + prot->tag_size;
491 	if (version != TLS_1_3_VERSION) {
492 		pkt_len += iv_size;
493 
494 		memcpy(buf + TLS_NONCE_OFFSET,
495 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
496 	}
497 
498 	/* we cover nonce explicit here as well, so buf should be of
499 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
500 	 */
501 	buf[0] = version == TLS_1_3_VERSION ?
502 		   TLS_RECORD_TYPE_DATA : record_type;
503 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
504 	buf[1] = TLS_1_2_VERSION_MINOR;
505 	buf[2] = TLS_1_2_VERSION_MAJOR;
506 	/* we can use IV for nonce explicit according to spec */
507 	buf[3] = pkt_len >> 8;
508 	buf[4] = pkt_len & 0xFF;
509 }
510 
511 static inline void tls_make_aad(char *buf,
512 				size_t size,
513 				char *record_sequence,
514 				int record_sequence_size,
515 				unsigned char record_type,
516 				int version)
517 {
518 	if (version != TLS_1_3_VERSION) {
519 		memcpy(buf, record_sequence, record_sequence_size);
520 		buf += 8;
521 	} else {
522 		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
523 	}
524 
525 	buf[0] = version == TLS_1_3_VERSION ?
526 		  TLS_RECORD_TYPE_DATA : record_type;
527 	buf[1] = TLS_1_2_VERSION_MAJOR;
528 	buf[2] = TLS_1_2_VERSION_MINOR;
529 	buf[3] = size >> 8;
530 	buf[4] = size & 0xFF;
531 }
532 
533 static inline void xor_iv_with_seq(int version, char *iv, char *seq)
534 {
535 	int i;
536 
537 	if (version == TLS_1_3_VERSION) {
538 		for (i = 0; i < 8; i++)
539 			iv[i + 4] ^= seq[i];
540 	}
541 }
542 
543 
544 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
545 		const struct tls_context *tls_ctx)
546 {
547 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
548 }
549 
550 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
551 		const struct tls_context *tls_ctx)
552 {
553 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
554 }
555 
556 static inline struct tls_offload_context_tx *
557 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
558 {
559 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
560 }
561 
562 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
563 {
564 	struct tls_context *ctx = tls_get_ctx(sk);
565 
566 	if (!ctx)
567 		return false;
568 	return !!tls_sw_ctx_tx(ctx);
569 }
570 
571 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
572 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
573 
574 static inline struct tls_offload_context_rx *
575 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
576 {
577 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
578 }
579 
580 #if IS_ENABLED(CONFIG_TLS_DEVICE)
581 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
582 				     enum tls_offload_ctx_dir direction)
583 {
584 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
585 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
586 	else
587 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
588 }
589 
590 static inline void *
591 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
592 {
593 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
594 }
595 #endif
596 
597 /* The TLS context is valid until sk_destruct is called */
598 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
599 {
600 	struct tls_context *tls_ctx = tls_get_ctx(sk);
601 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
602 
603 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
604 }
605 
606 static inline void
607 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
608 {
609 	struct tls_context *tls_ctx = tls_get_ctx(sk);
610 
611 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
612 }
613 
614 /* Driver's seq tracking has to be disabled until resync succeeded */
615 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
616 {
617 	struct tls_context *tls_ctx = tls_get_ctx(sk);
618 	bool ret;
619 
620 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
621 	smp_mb__after_atomic();
622 	return ret;
623 }
624 
625 int __net_init tls_proc_init(struct net *net);
626 void __net_exit tls_proc_fini(struct net *net);
627 
628 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
629 		      unsigned char *record_type);
630 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
631 		struct scatterlist *sgout);
632 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
633 
634 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
635 				      struct net_device *dev,
636 				      struct sk_buff *skb);
637 
638 int tls_sw_fallback_init(struct sock *sk,
639 			 struct tls_offload_context_tx *offload_ctx,
640 			 struct tls_crypto_info *crypto_info);
641 
642 #ifdef CONFIG_TLS_DEVICE
643 void tls_device_init(void);
644 void tls_device_cleanup(void);
645 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
646 void tls_device_free_resources_tx(struct sock *sk);
647 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
648 void tls_device_offload_cleanup_rx(struct sock *sk);
649 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
650 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
651 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
652 			 struct sk_buff *skb, struct strp_msg *rxm);
653 #else
654 static inline void tls_device_init(void) {}
655 static inline void tls_device_cleanup(void) {}
656 
657 static inline int
658 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
659 {
660 	return -EOPNOTSUPP;
661 }
662 
663 static inline void tls_device_free_resources_tx(struct sock *sk) {}
664 
665 static inline int
666 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
667 {
668 	return -EOPNOTSUPP;
669 }
670 
671 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
672 static inline void
673 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
674 
675 static inline int
676 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
677 		     struct sk_buff *skb, struct strp_msg *rxm)
678 {
679 	return 0;
680 }
681 #endif
682 #endif /* _TLS_OFFLOAD_H */
683