1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76 #define TLS_AES_CCM_IV_B0_BYTE 2 77 78 #define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80 #define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define __TLS_DEC_STATS(net, field) \ 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84 #define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87 enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93 }; 94 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99 struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 int inplace_crypto; 104 105 struct sk_msg msg_plaintext; 106 struct sk_msg msg_encrypted; 107 108 /* AAD | msg_plaintext.sg.data | sg_tag */ 109 struct scatterlist sg_aead_in[2]; 110 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 111 struct scatterlist sg_aead_out[2]; 112 113 char content_type; 114 struct scatterlist sg_content_type; 115 116 char aad_space[TLS_AAD_SPACE_SIZE]; 117 u8 iv_data[MAX_IV_SIZE]; 118 struct aead_request aead_req; 119 u8 aead_req_ctx[]; 120 }; 121 122 struct tls_msg { 123 struct strp_msg rxm; 124 u8 control; 125 }; 126 127 struct tx_work { 128 struct delayed_work work; 129 struct sock *sk; 130 }; 131 132 struct tls_sw_context_tx { 133 struct crypto_aead *aead_send; 134 struct crypto_wait async_wait; 135 struct tx_work tx_work; 136 struct tls_rec *open_rec; 137 struct list_head tx_list; 138 atomic_t encrypt_pending; 139 int async_notify; 140 u8 async_capable:1; 141 142 #define BIT_TX_SCHEDULED 0 143 #define BIT_TX_CLOSING 1 144 unsigned long tx_bitmask; 145 }; 146 147 struct tls_sw_context_rx { 148 struct crypto_aead *aead_recv; 149 struct crypto_wait async_wait; 150 struct strparser strp; 151 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 152 void (*saved_data_ready)(struct sock *sk); 153 154 struct sk_buff *recv_pkt; 155 u8 control; 156 u8 async_capable:1; 157 u8 decrypted:1; 158 atomic_t decrypt_pending; 159 bool async_notify; 160 }; 161 162 struct tls_record_info { 163 struct list_head list; 164 u32 end_seq; 165 int len; 166 int num_frags; 167 skb_frag_t frags[MAX_SKB_FRAGS]; 168 }; 169 170 struct tls_offload_context_tx { 171 struct crypto_aead *aead_send; 172 spinlock_t lock; /* protects records list */ 173 struct list_head records_list; 174 struct tls_record_info *open_record; 175 struct tls_record_info *retransmit_hint; 176 u64 hint_record_sn; 177 u64 unacked_record_sn; 178 179 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 180 void (*sk_destruct)(struct sock *sk); 181 u8 driver_state[] __aligned(8); 182 /* The TLS layer reserves room for driver specific state 183 * Currently the belief is that there is not enough 184 * driver specific state to justify another layer of indirection 185 */ 186 #define TLS_DRIVER_STATE_SIZE_TX 16 187 }; 188 189 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 190 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 191 192 enum tls_context_flags { 193 TLS_RX_SYNC_RUNNING = 0, 194 /* Unlike RX where resync is driven entirely by the core in TX only 195 * the driver knows when things went out of sync, so we need the flag 196 * to be atomic. 197 */ 198 TLS_TX_SYNC_SCHED = 1, 199 }; 200 201 struct cipher_context { 202 char *iv; 203 char *rec_seq; 204 }; 205 206 union tls_crypto_context { 207 struct tls_crypto_info info; 208 union { 209 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 210 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 211 }; 212 }; 213 214 struct tls_prot_info { 215 u16 version; 216 u16 cipher_type; 217 u16 prepend_size; 218 u16 tag_size; 219 u16 overhead_size; 220 u16 iv_size; 221 u16 salt_size; 222 u16 rec_seq_size; 223 u16 aad_size; 224 u16 tail_size; 225 }; 226 227 struct tls_context { 228 /* read-only cache line */ 229 struct tls_prot_info prot_info; 230 231 u8 tx_conf:3; 232 u8 rx_conf:3; 233 234 int (*push_pending_record)(struct sock *sk, int flags); 235 void (*sk_write_space)(struct sock *sk); 236 237 void *priv_ctx_tx; 238 void *priv_ctx_rx; 239 240 struct net_device *netdev; 241 242 /* rw cache line */ 243 struct cipher_context tx; 244 struct cipher_context rx; 245 246 struct scatterlist *partially_sent_record; 247 u16 partially_sent_offset; 248 249 bool in_tcp_sendpages; 250 bool pending_open_record_frags; 251 252 struct mutex tx_lock; /* protects partially_sent_* fields and 253 * per-type TX fields 254 */ 255 unsigned long flags; 256 257 /* cache cold stuff */ 258 struct proto *sk_proto; 259 260 void (*sk_destruct)(struct sock *sk); 261 262 union tls_crypto_context crypto_send; 263 union tls_crypto_context crypto_recv; 264 265 struct list_head list; 266 refcount_t refcount; 267 struct rcu_head rcu; 268 }; 269 270 enum tls_offload_ctx_dir { 271 TLS_OFFLOAD_CTX_DIR_RX, 272 TLS_OFFLOAD_CTX_DIR_TX, 273 }; 274 275 struct tlsdev_ops { 276 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 277 enum tls_offload_ctx_dir direction, 278 struct tls_crypto_info *crypto_info, 279 u32 start_offload_tcp_sn); 280 void (*tls_dev_del)(struct net_device *netdev, 281 struct tls_context *ctx, 282 enum tls_offload_ctx_dir direction); 283 int (*tls_dev_resync)(struct net_device *netdev, 284 struct sock *sk, u32 seq, u8 *rcd_sn, 285 enum tls_offload_ctx_dir direction); 286 }; 287 288 enum tls_offload_sync_type { 289 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 290 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 291 }; 292 293 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 294 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 295 296 struct tls_offload_context_rx { 297 /* sw must be the first member of tls_offload_context_rx */ 298 struct tls_sw_context_rx sw; 299 enum tls_offload_sync_type resync_type; 300 /* this member is set regardless of resync_type, to avoid branches */ 301 u8 resync_nh_reset:1; 302 /* CORE_NEXT_HINT-only member, but use the hole here */ 303 u8 resync_nh_do_now:1; 304 union { 305 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 306 struct { 307 atomic64_t resync_req; 308 }; 309 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 310 struct { 311 u32 decrypted_failed; 312 u32 decrypted_tgt; 313 } resync_nh; 314 }; 315 u8 driver_state[] __aligned(8); 316 /* The TLS layer reserves room for driver specific state 317 * Currently the belief is that there is not enough 318 * driver specific state to justify another layer of indirection 319 */ 320 #define TLS_DRIVER_STATE_SIZE_RX 8 321 }; 322 323 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 324 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 325 326 struct tls_context *tls_ctx_create(struct sock *sk); 327 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 328 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 329 330 int wait_on_pending_writer(struct sock *sk, long *timeo); 331 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 332 int __user *optlen); 333 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 334 unsigned int optlen); 335 336 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 337 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 338 void tls_sw_strparser_done(struct tls_context *tls_ctx); 339 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 340 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 341 int offset, size_t size, int flags); 342 int tls_sw_sendpage(struct sock *sk, struct page *page, 343 int offset, size_t size, int flags); 344 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 345 void tls_sw_release_resources_tx(struct sock *sk); 346 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 347 void tls_sw_free_resources_rx(struct sock *sk); 348 void tls_sw_release_resources_rx(struct sock *sk); 349 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 350 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 351 int nonblock, int flags, int *addr_len); 352 bool tls_sw_stream_read(const struct sock *sk); 353 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 354 struct pipe_inode_info *pipe, 355 size_t len, unsigned int flags); 356 357 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 358 int tls_device_sendpage(struct sock *sk, struct page *page, 359 int offset, size_t size, int flags); 360 int tls_tx_records(struct sock *sk, int flags); 361 362 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 363 u32 seq, u64 *p_record_sn); 364 365 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 366 { 367 return rec->len == 0; 368 } 369 370 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 371 { 372 return rec->end_seq - rec->len; 373 } 374 375 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 376 struct scatterlist *sg, u16 first_offset, 377 int flags); 378 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 379 int flags); 380 bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 381 382 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 383 { 384 return (struct tls_msg *)strp_msg(skb); 385 } 386 387 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 388 { 389 return !!ctx->partially_sent_record; 390 } 391 392 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 393 { 394 return tls_ctx->pending_open_record_frags; 395 } 396 397 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 398 { 399 struct tls_rec *rec; 400 401 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 402 if (!rec) 403 return false; 404 405 return READ_ONCE(rec->tx_ready); 406 } 407 408 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 409 { 410 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 411 412 switch (config) { 413 case TLS_BASE: 414 return TLS_CONF_BASE; 415 case TLS_SW: 416 return TLS_CONF_SW; 417 case TLS_HW: 418 return TLS_CONF_HW; 419 case TLS_HW_RECORD: 420 return TLS_CONF_HW_RECORD; 421 } 422 return 0; 423 } 424 425 struct sk_buff * 426 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 427 struct sk_buff *skb); 428 429 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 430 { 431 #ifdef CONFIG_SOCK_VALIDATE_XMIT 432 return sk_fullsock(sk) && 433 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 434 &tls_validate_xmit_skb); 435 #else 436 return false; 437 #endif 438 } 439 440 static inline void tls_err_abort(struct sock *sk, int err) 441 { 442 sk->sk_err = err; 443 sk->sk_error_report(sk); 444 } 445 446 static inline bool tls_bigint_increment(unsigned char *seq, int len) 447 { 448 int i; 449 450 for (i = len - 1; i >= 0; i--) { 451 ++seq[i]; 452 if (seq[i] != 0) 453 break; 454 } 455 456 return (i == -1); 457 } 458 459 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 460 { 461 struct inet_connection_sock *icsk = inet_csk(sk); 462 463 /* Use RCU on icsk_ulp_data only for sock diag code, 464 * TLS data path doesn't need rcu_dereference(). 465 */ 466 return (__force void *)icsk->icsk_ulp_data; 467 } 468 469 static inline void tls_advance_record_sn(struct sock *sk, 470 struct tls_prot_info *prot, 471 struct cipher_context *ctx) 472 { 473 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 474 tls_err_abort(sk, EBADMSG); 475 476 if (prot->version != TLS_1_3_VERSION) 477 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 478 prot->iv_size); 479 } 480 481 static inline void tls_fill_prepend(struct tls_context *ctx, 482 char *buf, 483 size_t plaintext_len, 484 unsigned char record_type, 485 int version) 486 { 487 struct tls_prot_info *prot = &ctx->prot_info; 488 size_t pkt_len, iv_size = prot->iv_size; 489 490 pkt_len = plaintext_len + prot->tag_size; 491 if (version != TLS_1_3_VERSION) { 492 pkt_len += iv_size; 493 494 memcpy(buf + TLS_NONCE_OFFSET, 495 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 496 } 497 498 /* we cover nonce explicit here as well, so buf should be of 499 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 500 */ 501 buf[0] = version == TLS_1_3_VERSION ? 502 TLS_RECORD_TYPE_DATA : record_type; 503 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 504 buf[1] = TLS_1_2_VERSION_MINOR; 505 buf[2] = TLS_1_2_VERSION_MAJOR; 506 /* we can use IV for nonce explicit according to spec */ 507 buf[3] = pkt_len >> 8; 508 buf[4] = pkt_len & 0xFF; 509 } 510 511 static inline void tls_make_aad(char *buf, 512 size_t size, 513 char *record_sequence, 514 int record_sequence_size, 515 unsigned char record_type, 516 int version) 517 { 518 if (version != TLS_1_3_VERSION) { 519 memcpy(buf, record_sequence, record_sequence_size); 520 buf += 8; 521 } else { 522 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 523 } 524 525 buf[0] = version == TLS_1_3_VERSION ? 526 TLS_RECORD_TYPE_DATA : record_type; 527 buf[1] = TLS_1_2_VERSION_MAJOR; 528 buf[2] = TLS_1_2_VERSION_MINOR; 529 buf[3] = size >> 8; 530 buf[4] = size & 0xFF; 531 } 532 533 static inline void xor_iv_with_seq(int version, char *iv, char *seq) 534 { 535 int i; 536 537 if (version == TLS_1_3_VERSION) { 538 for (i = 0; i < 8; i++) 539 iv[i + 4] ^= seq[i]; 540 } 541 } 542 543 544 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 545 const struct tls_context *tls_ctx) 546 { 547 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 548 } 549 550 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 551 const struct tls_context *tls_ctx) 552 { 553 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 554 } 555 556 static inline struct tls_offload_context_tx * 557 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 558 { 559 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 560 } 561 562 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 563 { 564 struct tls_context *ctx = tls_get_ctx(sk); 565 566 if (!ctx) 567 return false; 568 return !!tls_sw_ctx_tx(ctx); 569 } 570 571 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 572 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 573 574 static inline struct tls_offload_context_rx * 575 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 576 { 577 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 578 } 579 580 #if IS_ENABLED(CONFIG_TLS_DEVICE) 581 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 582 enum tls_offload_ctx_dir direction) 583 { 584 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 585 return tls_offload_ctx_tx(tls_ctx)->driver_state; 586 else 587 return tls_offload_ctx_rx(tls_ctx)->driver_state; 588 } 589 590 static inline void * 591 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 592 { 593 return __tls_driver_ctx(tls_get_ctx(sk), direction); 594 } 595 #endif 596 597 /* The TLS context is valid until sk_destruct is called */ 598 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 599 { 600 struct tls_context *tls_ctx = tls_get_ctx(sk); 601 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 602 603 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1); 604 } 605 606 static inline void 607 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 608 { 609 struct tls_context *tls_ctx = tls_get_ctx(sk); 610 611 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 612 } 613 614 /* Driver's seq tracking has to be disabled until resync succeeded */ 615 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 616 { 617 struct tls_context *tls_ctx = tls_get_ctx(sk); 618 bool ret; 619 620 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 621 smp_mb__after_atomic(); 622 return ret; 623 } 624 625 int __net_init tls_proc_init(struct net *net); 626 void __net_exit tls_proc_fini(struct net *net); 627 628 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 629 unsigned char *record_type); 630 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 631 struct scatterlist *sgout); 632 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 633 634 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, 635 struct net_device *dev, 636 struct sk_buff *skb); 637 638 int tls_sw_fallback_init(struct sock *sk, 639 struct tls_offload_context_tx *offload_ctx, 640 struct tls_crypto_info *crypto_info); 641 642 #ifdef CONFIG_TLS_DEVICE 643 void tls_device_init(void); 644 void tls_device_cleanup(void); 645 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 646 void tls_device_free_resources_tx(struct sock *sk); 647 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 648 void tls_device_offload_cleanup_rx(struct sock *sk); 649 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 650 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 651 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 652 struct sk_buff *skb, struct strp_msg *rxm); 653 #else 654 static inline void tls_device_init(void) {} 655 static inline void tls_device_cleanup(void) {} 656 657 static inline int 658 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 659 { 660 return -EOPNOTSUPP; 661 } 662 663 static inline void tls_device_free_resources_tx(struct sock *sk) {} 664 665 static inline int 666 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 667 { 668 return -EOPNOTSUPP; 669 } 670 671 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 672 static inline void 673 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 674 675 static inline int 676 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 677 struct sk_buff *skb, struct strp_msg *rxm) 678 { 679 return 0; 680 } 681 #endif 682 #endif /* _TLS_OFFLOAD_H */ 683