xref: /linux/include/net/tls.h (revision 5aac49378742a52bbe8af3d25bc51b487be7b17f)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <net/tcp.h>
43 #include <net/strparser.h>
44 #include <crypto/aead.h>
45 #include <uapi/linux/tls.h>
46 
47 
48 /* Maximum data size carried in a TLS record */
49 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
50 
51 #define TLS_HEADER_SIZE			5
52 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
53 
54 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
55 
56 #define TLS_RECORD_TYPE_DATA		0x17
57 
58 #define TLS_AAD_SPACE_SIZE		13
59 #define TLS_DEVICE_NAME_MAX		32
60 
61 /*
62  * This structure defines the routines for Inline TLS driver.
63  * The following routines are optional and filled with a
64  * null pointer if not defined.
65  *
66  * @name: Its the name of registered Inline tls device
67  * @dev_list: Inline tls device list
68  * int (*feature)(struct tls_device *device);
69  *     Called to return Inline TLS driver capability
70  *
71  * int (*hash)(struct tls_device *device, struct sock *sk);
72  *     This function sets Inline driver for listen and program
73  *     device specific functioanlity as required
74  *
75  * void (*unhash)(struct tls_device *device, struct sock *sk);
76  *     This function cleans listen state set by Inline TLS driver
77  */
78 struct tls_device {
79 	char name[TLS_DEVICE_NAME_MAX];
80 	struct list_head dev_list;
81 	int  (*feature)(struct tls_device *device);
82 	int  (*hash)(struct tls_device *device, struct sock *sk);
83 	void (*unhash)(struct tls_device *device, struct sock *sk);
84 };
85 
86 enum {
87 	TLS_BASE,
88 	TLS_SW,
89 #ifdef CONFIG_TLS_DEVICE
90 	TLS_HW,
91 #endif
92 	TLS_HW_RECORD,
93 	TLS_NUM_CONFIG,
94 };
95 
96 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
97  * allocated or mapped for each TLS record. After encryption, the records are
98  * stores in a linked list.
99  */
100 struct tls_rec {
101 	struct list_head list;
102 	int tx_ready;
103 	int tx_flags;
104 	struct scatterlist sg_plaintext_data[MAX_SKB_FRAGS];
105 	struct scatterlist sg_encrypted_data[MAX_SKB_FRAGS];
106 
107 	/* AAD | sg_plaintext_data | sg_tag */
108 	struct scatterlist sg_aead_in[2];
109 	/* AAD | sg_encrypted_data (data contain overhead for hdr&iv&tag) */
110 	struct scatterlist sg_aead_out[2];
111 
112 	unsigned int sg_plaintext_size;
113 	unsigned int sg_encrypted_size;
114 	int sg_plaintext_num_elem;
115 	int sg_encrypted_num_elem;
116 
117 	char aad_space[TLS_AAD_SPACE_SIZE];
118 	struct aead_request aead_req;
119 	u8 aead_req_ctx[];
120 };
121 
122 struct tx_work {
123 	struct delayed_work work;
124 	struct sock *sk;
125 };
126 
127 struct tls_sw_context_tx {
128 	struct crypto_aead *aead_send;
129 	struct crypto_wait async_wait;
130 	struct tx_work tx_work;
131 	struct tls_rec *open_rec;
132 	struct list_head tx_list;
133 	atomic_t encrypt_pending;
134 	int async_notify;
135 
136 #define BIT_TX_SCHEDULED	0
137 	unsigned long tx_bitmask;
138 };
139 
140 struct tls_sw_context_rx {
141 	struct crypto_aead *aead_recv;
142 	struct crypto_wait async_wait;
143 
144 	struct strparser strp;
145 	void (*saved_data_ready)(struct sock *sk);
146 	unsigned int (*sk_poll)(struct file *file, struct socket *sock,
147 				struct poll_table_struct *wait);
148 	struct sk_buff *recv_pkt;
149 	u8 control;
150 	bool decrypted;
151 	atomic_t decrypt_pending;
152 	bool async_notify;
153 };
154 
155 struct tls_record_info {
156 	struct list_head list;
157 	u32 end_seq;
158 	int len;
159 	int num_frags;
160 	skb_frag_t frags[MAX_SKB_FRAGS];
161 };
162 
163 struct tls_offload_context_tx {
164 	struct crypto_aead *aead_send;
165 	spinlock_t lock;	/* protects records list */
166 	struct list_head records_list;
167 	struct tls_record_info *open_record;
168 	struct tls_record_info *retransmit_hint;
169 	u64 hint_record_sn;
170 	u64 unacked_record_sn;
171 
172 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
173 	void (*sk_destruct)(struct sock *sk);
174 	u8 driver_state[];
175 	/* The TLS layer reserves room for driver specific state
176 	 * Currently the belief is that there is not enough
177 	 * driver specific state to justify another layer of indirection
178 	 */
179 #define TLS_DRIVER_STATE_SIZE (max_t(size_t, 8, sizeof(void *)))
180 };
181 
182 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
183 	(ALIGN(sizeof(struct tls_offload_context_tx), sizeof(void *)) +        \
184 	 TLS_DRIVER_STATE_SIZE)
185 
186 enum {
187 	TLS_PENDING_CLOSED_RECORD
188 };
189 
190 struct cipher_context {
191 	u16 prepend_size;
192 	u16 tag_size;
193 	u16 overhead_size;
194 	u16 iv_size;
195 	char *iv;
196 	u16 rec_seq_size;
197 	char *rec_seq;
198 };
199 
200 union tls_crypto_context {
201 	struct tls_crypto_info info;
202 	struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
203 };
204 
205 struct tls_context {
206 	union tls_crypto_context crypto_send;
207 	union tls_crypto_context crypto_recv;
208 
209 	struct list_head list;
210 	struct net_device *netdev;
211 	refcount_t refcount;
212 
213 	void *priv_ctx_tx;
214 	void *priv_ctx_rx;
215 
216 	u8 tx_conf:3;
217 	u8 rx_conf:3;
218 
219 	struct cipher_context tx;
220 	struct cipher_context rx;
221 
222 	struct scatterlist *partially_sent_record;
223 	u16 partially_sent_offset;
224 
225 	unsigned long flags;
226 	bool in_tcp_sendpages;
227 
228 	u16 pending_open_record_frags;
229 	int (*push_pending_record)(struct sock *sk, int flags);
230 
231 	void (*sk_write_space)(struct sock *sk);
232 	void (*sk_destruct)(struct sock *sk);
233 	void (*sk_proto_close)(struct sock *sk, long timeout);
234 
235 	int  (*setsockopt)(struct sock *sk, int level,
236 			   int optname, char __user *optval,
237 			   unsigned int optlen);
238 	int  (*getsockopt)(struct sock *sk, int level,
239 			   int optname, char __user *optval,
240 			   int __user *optlen);
241 	int  (*hash)(struct sock *sk);
242 	void (*unhash)(struct sock *sk);
243 };
244 
245 struct tls_offload_context_rx {
246 	/* sw must be the first member of tls_offload_context_rx */
247 	struct tls_sw_context_rx sw;
248 	atomic64_t resync_req;
249 	u8 driver_state[];
250 	/* The TLS layer reserves room for driver specific state
251 	 * Currently the belief is that there is not enough
252 	 * driver specific state to justify another layer of indirection
253 	 */
254 };
255 
256 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
257 	(ALIGN(sizeof(struct tls_offload_context_rx), sizeof(void *)) + \
258 	 TLS_DRIVER_STATE_SIZE)
259 
260 int wait_on_pending_writer(struct sock *sk, long *timeo);
261 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
262 		int __user *optlen);
263 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
264 		  unsigned int optlen);
265 
266 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
267 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
268 int tls_sw_sendpage(struct sock *sk, struct page *page,
269 		    int offset, size_t size, int flags);
270 void tls_sw_close(struct sock *sk, long timeout);
271 void tls_sw_free_resources_tx(struct sock *sk);
272 void tls_sw_free_resources_rx(struct sock *sk);
273 void tls_sw_release_resources_rx(struct sock *sk);
274 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
275 		   int nonblock, int flags, int *addr_len);
276 unsigned int tls_sw_poll(struct file *file, struct socket *sock,
277 			 struct poll_table_struct *wait);
278 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
279 			   struct pipe_inode_info *pipe,
280 			   size_t len, unsigned int flags);
281 
282 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
283 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
284 int tls_device_sendpage(struct sock *sk, struct page *page,
285 			int offset, size_t size, int flags);
286 void tls_device_sk_destruct(struct sock *sk);
287 void tls_device_init(void);
288 void tls_device_cleanup(void);
289 int tls_tx_records(struct sock *sk, int flags);
290 
291 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
292 				       u32 seq, u64 *p_record_sn);
293 
294 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
295 {
296 	return rec->len == 0;
297 }
298 
299 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
300 {
301 	return rec->end_seq - rec->len;
302 }
303 
304 void tls_sk_destruct(struct sock *sk, struct tls_context *ctx);
305 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
306 		struct scatterlist *sg, u16 first_offset,
307 		int flags);
308 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
309 			    int flags);
310 
311 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
312 				   int flags, long *timeo);
313 
314 static inline bool tls_is_pending_closed_record(struct tls_context *ctx)
315 {
316 	return test_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
317 }
318 
319 static inline int tls_complete_pending_work(struct sock *sk,
320 					    struct tls_context *ctx,
321 					    int flags, long *timeo)
322 {
323 	int rc = 0;
324 
325 	if (unlikely(sk->sk_write_pending))
326 		rc = wait_on_pending_writer(sk, timeo);
327 
328 	if (!rc && tls_is_pending_closed_record(ctx))
329 		rc = tls_push_pending_closed_record(sk, ctx, flags, timeo);
330 
331 	return rc;
332 }
333 
334 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
335 {
336 	return !!ctx->partially_sent_record;
337 }
338 
339 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
340 {
341 	return tls_ctx->pending_open_record_frags;
342 }
343 
344 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
345 {
346 	struct tls_rec *rec;
347 
348 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
349 	if (!rec)
350 		return false;
351 
352 	return READ_ONCE(rec->tx_ready);
353 }
354 
355 struct sk_buff *
356 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
357 		      struct sk_buff *skb);
358 
359 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
360 {
361 #ifdef CONFIG_SOCK_VALIDATE_XMIT
362 	return sk_fullsock(sk) &
363 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
364 	       &tls_validate_xmit_skb);
365 #else
366 	return false;
367 #endif
368 }
369 
370 static inline void tls_err_abort(struct sock *sk, int err)
371 {
372 	sk->sk_err = err;
373 	sk->sk_error_report(sk);
374 }
375 
376 static inline bool tls_bigint_increment(unsigned char *seq, int len)
377 {
378 	int i;
379 
380 	for (i = len - 1; i >= 0; i--) {
381 		++seq[i];
382 		if (seq[i] != 0)
383 			break;
384 	}
385 
386 	return (i == -1);
387 }
388 
389 static inline void tls_advance_record_sn(struct sock *sk,
390 					 struct cipher_context *ctx)
391 {
392 	if (tls_bigint_increment(ctx->rec_seq, ctx->rec_seq_size))
393 		tls_err_abort(sk, EBADMSG);
394 	tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
395 			     ctx->iv_size);
396 }
397 
398 static inline void tls_fill_prepend(struct tls_context *ctx,
399 			     char *buf,
400 			     size_t plaintext_len,
401 			     unsigned char record_type)
402 {
403 	size_t pkt_len, iv_size = ctx->tx.iv_size;
404 
405 	pkt_len = plaintext_len + iv_size + ctx->tx.tag_size;
406 
407 	/* we cover nonce explicit here as well, so buf should be of
408 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
409 	 */
410 	buf[0] = record_type;
411 	buf[1] = TLS_VERSION_MINOR(ctx->crypto_send.info.version);
412 	buf[2] = TLS_VERSION_MAJOR(ctx->crypto_send.info.version);
413 	/* we can use IV for nonce explicit according to spec */
414 	buf[3] = pkt_len >> 8;
415 	buf[4] = pkt_len & 0xFF;
416 	memcpy(buf + TLS_NONCE_OFFSET,
417 	       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
418 }
419 
420 static inline void tls_make_aad(char *buf,
421 				size_t size,
422 				char *record_sequence,
423 				int record_sequence_size,
424 				unsigned char record_type)
425 {
426 	memcpy(buf, record_sequence, record_sequence_size);
427 
428 	buf[8] = record_type;
429 	buf[9] = TLS_1_2_VERSION_MAJOR;
430 	buf[10] = TLS_1_2_VERSION_MINOR;
431 	buf[11] = size >> 8;
432 	buf[12] = size & 0xFF;
433 }
434 
435 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
436 {
437 	struct inet_connection_sock *icsk = inet_csk(sk);
438 
439 	return icsk->icsk_ulp_data;
440 }
441 
442 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
443 		const struct tls_context *tls_ctx)
444 {
445 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
446 }
447 
448 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
449 		const struct tls_context *tls_ctx)
450 {
451 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
452 }
453 
454 static inline struct tls_offload_context_tx *
455 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
456 {
457 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
458 }
459 
460 static inline struct tls_offload_context_rx *
461 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
462 {
463 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
464 }
465 
466 /* The TLS context is valid until sk_destruct is called */
467 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
468 {
469 	struct tls_context *tls_ctx = tls_get_ctx(sk);
470 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
471 
472 	atomic64_set(&rx_ctx->resync_req, ((((uint64_t)seq) << 32) | 1));
473 }
474 
475 
476 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
477 		      unsigned char *record_type);
478 void tls_register_device(struct tls_device *device);
479 void tls_unregister_device(struct tls_device *device);
480 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
481 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
482 		struct scatterlist *sgout);
483 
484 struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
485 				      struct net_device *dev,
486 				      struct sk_buff *skb);
487 
488 int tls_sw_fallback_init(struct sock *sk,
489 			 struct tls_offload_context_tx *offload_ctx,
490 			 struct tls_crypto_info *crypto_info);
491 
492 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
493 
494 void tls_device_offload_cleanup_rx(struct sock *sk);
495 void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn);
496 
497 #endif /* _TLS_OFFLOAD_H */
498