xref: /linux/include/net/tls.h (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36 
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46 
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52 
53 
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56 
57 #define TLS_HEADER_SIZE			5
58 #define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59 
60 #define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61 
62 #define TLS_RECORD_TYPE_DATA		0x17
63 
64 #define TLS_AAD_SPACE_SIZE		13
65 
66 #define MAX_IV_SIZE			16
67 #define TLS_TAG_SIZE			16
68 #define TLS_MAX_REC_SEQ_SIZE		8
69 
70 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
71  *
72  * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73  *
74  * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75  * Hence b0 contains (3 - 1) = 2.
76  */
77 #define TLS_AES_CCM_IV_B0_BYTE		2
78 #define TLS_SM4_CCM_IV_B0_BYTE		2
79 
80 #define __TLS_INC_STATS(net, field)				\
81 	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define TLS_INC_STATS(net, field)				\
83 	SNMP_INC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field)				\
85 	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86 
87 enum {
88 	TLS_BASE,
89 	TLS_SW,
90 	TLS_HW,
91 	TLS_HW_RECORD,
92 	TLS_NUM_CONFIG,
93 };
94 
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96  * allocated or mapped for each TLS record. After encryption, the records are
97  * stores in a linked list.
98  */
99 struct tls_rec {
100 	struct list_head list;
101 	int tx_ready;
102 	int tx_flags;
103 
104 	struct sk_msg msg_plaintext;
105 	struct sk_msg msg_encrypted;
106 
107 	/* AAD | msg_plaintext.sg.data | sg_tag */
108 	struct scatterlist sg_aead_in[2];
109 	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 	struct scatterlist sg_aead_out[2];
111 
112 	char content_type;
113 	struct scatterlist sg_content_type;
114 
115 	char aad_space[TLS_AAD_SPACE_SIZE];
116 	u8 iv_data[MAX_IV_SIZE];
117 	struct aead_request aead_req;
118 	u8 aead_req_ctx[];
119 };
120 
121 struct tx_work {
122 	struct delayed_work work;
123 	struct sock *sk;
124 };
125 
126 struct tls_sw_context_tx {
127 	struct crypto_aead *aead_send;
128 	struct crypto_wait async_wait;
129 	struct tx_work tx_work;
130 	struct tls_rec *open_rec;
131 	struct list_head tx_list;
132 	atomic_t encrypt_pending;
133 	/* protect crypto_wait with encrypt_pending */
134 	spinlock_t encrypt_compl_lock;
135 	int async_notify;
136 	u8 async_capable:1;
137 
138 #define BIT_TX_SCHEDULED	0
139 #define BIT_TX_CLOSING		1
140 	unsigned long tx_bitmask;
141 };
142 
143 struct tls_sw_context_rx {
144 	struct crypto_aead *aead_recv;
145 	struct crypto_wait async_wait;
146 	struct strparser strp;
147 	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
148 	void (*saved_data_ready)(struct sock *sk);
149 
150 	struct sk_buff *recv_pkt;
151 	u8 async_capable:1;
152 	atomic_t decrypt_pending;
153 	/* protect crypto_wait with decrypt_pending*/
154 	spinlock_t decrypt_compl_lock;
155 };
156 
157 struct tls_record_info {
158 	struct list_head list;
159 	u32 end_seq;
160 	int len;
161 	int num_frags;
162 	skb_frag_t frags[MAX_SKB_FRAGS];
163 };
164 
165 struct tls_offload_context_tx {
166 	struct crypto_aead *aead_send;
167 	spinlock_t lock;	/* protects records list */
168 	struct list_head records_list;
169 	struct tls_record_info *open_record;
170 	struct tls_record_info *retransmit_hint;
171 	u64 hint_record_sn;
172 	u64 unacked_record_sn;
173 
174 	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
175 	void (*sk_destruct)(struct sock *sk);
176 	u8 driver_state[] __aligned(8);
177 	/* The TLS layer reserves room for driver specific state
178 	 * Currently the belief is that there is not enough
179 	 * driver specific state to justify another layer of indirection
180 	 */
181 #define TLS_DRIVER_STATE_SIZE_TX	16
182 };
183 
184 #define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
185 	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
186 
187 enum tls_context_flags {
188 	/* tls_device_down was called after the netdev went down, device state
189 	 * was released, and kTLS works in software, even though rx_conf is
190 	 * still TLS_HW (needed for transition).
191 	 */
192 	TLS_RX_DEV_DEGRADED = 0,
193 	/* Unlike RX where resync is driven entirely by the core in TX only
194 	 * the driver knows when things went out of sync, so we need the flag
195 	 * to be atomic.
196 	 */
197 	TLS_TX_SYNC_SCHED = 1,
198 	/* tls_dev_del was called for the RX side, device state was released,
199 	 * but tls_ctx->netdev might still be kept, because TX-side driver
200 	 * resources might not be released yet. Used to prevent the second
201 	 * tls_dev_del call in tls_device_down if it happens simultaneously.
202 	 */
203 	TLS_RX_DEV_CLOSED = 2,
204 };
205 
206 struct cipher_context {
207 	char *iv;
208 	char *rec_seq;
209 };
210 
211 union tls_crypto_context {
212 	struct tls_crypto_info info;
213 	union {
214 		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
215 		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
216 		struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
217 		struct tls12_crypto_info_sm4_gcm sm4_gcm;
218 		struct tls12_crypto_info_sm4_ccm sm4_ccm;
219 	};
220 };
221 
222 struct tls_prot_info {
223 	u16 version;
224 	u16 cipher_type;
225 	u16 prepend_size;
226 	u16 tag_size;
227 	u16 overhead_size;
228 	u16 iv_size;
229 	u16 salt_size;
230 	u16 rec_seq_size;
231 	u16 aad_size;
232 	u16 tail_size;
233 };
234 
235 struct tls_context {
236 	/* read-only cache line */
237 	struct tls_prot_info prot_info;
238 
239 	u8 tx_conf:3;
240 	u8 rx_conf:3;
241 
242 	int (*push_pending_record)(struct sock *sk, int flags);
243 	void (*sk_write_space)(struct sock *sk);
244 
245 	void *priv_ctx_tx;
246 	void *priv_ctx_rx;
247 
248 	struct net_device *netdev;
249 
250 	/* rw cache line */
251 	struct cipher_context tx;
252 	struct cipher_context rx;
253 
254 	struct scatterlist *partially_sent_record;
255 	u16 partially_sent_offset;
256 
257 	bool in_tcp_sendpages;
258 	bool pending_open_record_frags;
259 
260 	struct mutex tx_lock; /* protects partially_sent_* fields and
261 			       * per-type TX fields
262 			       */
263 	unsigned long flags;
264 
265 	/* cache cold stuff */
266 	struct proto *sk_proto;
267 	struct sock *sk;
268 
269 	void (*sk_destruct)(struct sock *sk);
270 
271 	union tls_crypto_context crypto_send;
272 	union tls_crypto_context crypto_recv;
273 
274 	struct list_head list;
275 	refcount_t refcount;
276 	struct rcu_head rcu;
277 };
278 
279 enum tls_offload_ctx_dir {
280 	TLS_OFFLOAD_CTX_DIR_RX,
281 	TLS_OFFLOAD_CTX_DIR_TX,
282 };
283 
284 struct tlsdev_ops {
285 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
286 			   enum tls_offload_ctx_dir direction,
287 			   struct tls_crypto_info *crypto_info,
288 			   u32 start_offload_tcp_sn);
289 	void (*tls_dev_del)(struct net_device *netdev,
290 			    struct tls_context *ctx,
291 			    enum tls_offload_ctx_dir direction);
292 	int (*tls_dev_resync)(struct net_device *netdev,
293 			      struct sock *sk, u32 seq, u8 *rcd_sn,
294 			      enum tls_offload_ctx_dir direction);
295 };
296 
297 enum tls_offload_sync_type {
298 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
299 	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
300 	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
301 };
302 
303 #define TLS_DEVICE_RESYNC_NH_START_IVAL		2
304 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
305 
306 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
307 struct tls_offload_resync_async {
308 	atomic64_t req;
309 	u16 loglen;
310 	u16 rcd_delta;
311 	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
312 };
313 
314 struct tls_offload_context_rx {
315 	/* sw must be the first member of tls_offload_context_rx */
316 	struct tls_sw_context_rx sw;
317 	enum tls_offload_sync_type resync_type;
318 	/* this member is set regardless of resync_type, to avoid branches */
319 	u8 resync_nh_reset:1;
320 	/* CORE_NEXT_HINT-only member, but use the hole here */
321 	u8 resync_nh_do_now:1;
322 	union {
323 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
324 		struct {
325 			atomic64_t resync_req;
326 		};
327 		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
328 		struct {
329 			u32 decrypted_failed;
330 			u32 decrypted_tgt;
331 		} resync_nh;
332 		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
333 		struct {
334 			struct tls_offload_resync_async *resync_async;
335 		};
336 	};
337 	u8 driver_state[] __aligned(8);
338 	/* The TLS layer reserves room for driver specific state
339 	 * Currently the belief is that there is not enough
340 	 * driver specific state to justify another layer of indirection
341 	 */
342 #define TLS_DRIVER_STATE_SIZE_RX	8
343 };
344 
345 #define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
346 	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
347 
348 struct tls_context *tls_ctx_create(struct sock *sk);
349 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
350 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
351 
352 int wait_on_pending_writer(struct sock *sk, long *timeo);
353 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
354 		int __user *optlen);
355 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
356 		  unsigned int optlen);
357 void tls_err_abort(struct sock *sk, int err);
358 
359 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
360 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
361 void tls_sw_strparser_done(struct tls_context *tls_ctx);
362 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
363 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
364 			   int offset, size_t size, int flags);
365 int tls_sw_sendpage(struct sock *sk, struct page *page,
366 		    int offset, size_t size, int flags);
367 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
368 void tls_sw_release_resources_tx(struct sock *sk);
369 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
370 void tls_sw_free_resources_rx(struct sock *sk);
371 void tls_sw_release_resources_rx(struct sock *sk);
372 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
373 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
374 		   int flags, int *addr_len);
375 bool tls_sw_sock_is_readable(struct sock *sk);
376 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
377 			   struct pipe_inode_info *pipe,
378 			   size_t len, unsigned int flags);
379 
380 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
381 int tls_device_sendpage(struct sock *sk, struct page *page,
382 			int offset, size_t size, int flags);
383 int tls_tx_records(struct sock *sk, int flags);
384 
385 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
386 				       u32 seq, u64 *p_record_sn);
387 
388 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
389 {
390 	return rec->len == 0;
391 }
392 
393 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
394 {
395 	return rec->end_seq - rec->len;
396 }
397 
398 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
399 		struct scatterlist *sg, u16 first_offset,
400 		int flags);
401 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
402 			    int flags);
403 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
404 
405 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
406 {
407 	struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb;
408 
409 	return &scb->tls;
410 }
411 
412 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
413 {
414 	return !!ctx->partially_sent_record;
415 }
416 
417 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
418 {
419 	return tls_ctx->pending_open_record_frags;
420 }
421 
422 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
423 {
424 	struct tls_rec *rec;
425 
426 	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
427 	if (!rec)
428 		return false;
429 
430 	return READ_ONCE(rec->tx_ready);
431 }
432 
433 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
434 {
435 	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
436 
437 	switch (config) {
438 	case TLS_BASE:
439 		return TLS_CONF_BASE;
440 	case TLS_SW:
441 		return TLS_CONF_SW;
442 	case TLS_HW:
443 		return TLS_CONF_HW;
444 	case TLS_HW_RECORD:
445 		return TLS_CONF_HW_RECORD;
446 	}
447 	return 0;
448 }
449 
450 struct sk_buff *
451 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
452 		      struct sk_buff *skb);
453 struct sk_buff *
454 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
455 			 struct sk_buff *skb);
456 
457 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
458 {
459 #ifdef CONFIG_SOCK_VALIDATE_XMIT
460 	return sk_fullsock(sk) &&
461 	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
462 	       &tls_validate_xmit_skb);
463 #else
464 	return false;
465 #endif
466 }
467 
468 static inline bool tls_bigint_increment(unsigned char *seq, int len)
469 {
470 	int i;
471 
472 	for (i = len - 1; i >= 0; i--) {
473 		++seq[i];
474 		if (seq[i] != 0)
475 			break;
476 	}
477 
478 	return (i == -1);
479 }
480 
481 static inline void tls_bigint_subtract(unsigned char *seq, int  n)
482 {
483 	u64 rcd_sn;
484 	__be64 *p;
485 
486 	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
487 
488 	p = (__be64 *)seq;
489 	rcd_sn = be64_to_cpu(*p);
490 	*p = cpu_to_be64(rcd_sn - n);
491 }
492 
493 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
494 {
495 	struct inet_connection_sock *icsk = inet_csk(sk);
496 
497 	/* Use RCU on icsk_ulp_data only for sock diag code,
498 	 * TLS data path doesn't need rcu_dereference().
499 	 */
500 	return (__force void *)icsk->icsk_ulp_data;
501 }
502 
503 static inline void tls_advance_record_sn(struct sock *sk,
504 					 struct tls_prot_info *prot,
505 					 struct cipher_context *ctx)
506 {
507 	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
508 		tls_err_abort(sk, -EBADMSG);
509 
510 	if (prot->version != TLS_1_3_VERSION &&
511 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
512 		tls_bigint_increment(ctx->iv + prot->salt_size,
513 				     prot->iv_size);
514 }
515 
516 static inline void tls_fill_prepend(struct tls_context *ctx,
517 			     char *buf,
518 			     size_t plaintext_len,
519 			     unsigned char record_type)
520 {
521 	struct tls_prot_info *prot = &ctx->prot_info;
522 	size_t pkt_len, iv_size = prot->iv_size;
523 
524 	pkt_len = plaintext_len + prot->tag_size;
525 	if (prot->version != TLS_1_3_VERSION &&
526 	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
527 		pkt_len += iv_size;
528 
529 		memcpy(buf + TLS_NONCE_OFFSET,
530 		       ctx->tx.iv + prot->salt_size, iv_size);
531 	}
532 
533 	/* we cover nonce explicit here as well, so buf should be of
534 	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
535 	 */
536 	buf[0] = prot->version == TLS_1_3_VERSION ?
537 		   TLS_RECORD_TYPE_DATA : record_type;
538 	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
539 	buf[1] = TLS_1_2_VERSION_MINOR;
540 	buf[2] = TLS_1_2_VERSION_MAJOR;
541 	/* we can use IV for nonce explicit according to spec */
542 	buf[3] = pkt_len >> 8;
543 	buf[4] = pkt_len & 0xFF;
544 }
545 
546 static inline void tls_make_aad(char *buf,
547 				size_t size,
548 				char *record_sequence,
549 				unsigned char record_type,
550 				struct tls_prot_info *prot)
551 {
552 	if (prot->version != TLS_1_3_VERSION) {
553 		memcpy(buf, record_sequence, prot->rec_seq_size);
554 		buf += 8;
555 	} else {
556 		size += prot->tag_size;
557 	}
558 
559 	buf[0] = prot->version == TLS_1_3_VERSION ?
560 		  TLS_RECORD_TYPE_DATA : record_type;
561 	buf[1] = TLS_1_2_VERSION_MAJOR;
562 	buf[2] = TLS_1_2_VERSION_MINOR;
563 	buf[3] = size >> 8;
564 	buf[4] = size & 0xFF;
565 }
566 
567 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
568 {
569 	int i;
570 
571 	if (prot->version == TLS_1_3_VERSION ||
572 	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
573 		for (i = 0; i < 8; i++)
574 			iv[i + 4] ^= seq[i];
575 	}
576 }
577 
578 
579 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
580 		const struct tls_context *tls_ctx)
581 {
582 	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
583 }
584 
585 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
586 		const struct tls_context *tls_ctx)
587 {
588 	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
589 }
590 
591 static inline struct tls_offload_context_tx *
592 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
593 {
594 	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
595 }
596 
597 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
598 {
599 	struct tls_context *ctx = tls_get_ctx(sk);
600 
601 	if (!ctx)
602 		return false;
603 	return !!tls_sw_ctx_tx(ctx);
604 }
605 
606 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
607 {
608 	struct tls_context *ctx = tls_get_ctx(sk);
609 
610 	if (!ctx)
611 		return false;
612 	return !!tls_sw_ctx_rx(ctx);
613 }
614 
615 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
616 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
617 
618 static inline struct tls_offload_context_rx *
619 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
620 {
621 	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
622 }
623 
624 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
625 				     enum tls_offload_ctx_dir direction)
626 {
627 	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
628 		return tls_offload_ctx_tx(tls_ctx)->driver_state;
629 	else
630 		return tls_offload_ctx_rx(tls_ctx)->driver_state;
631 }
632 
633 static inline void *
634 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
635 {
636 	return __tls_driver_ctx(tls_get_ctx(sk), direction);
637 }
638 
639 #define RESYNC_REQ BIT(0)
640 #define RESYNC_REQ_ASYNC BIT(1)
641 /* The TLS context is valid until sk_destruct is called */
642 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
643 {
644 	struct tls_context *tls_ctx = tls_get_ctx(sk);
645 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
646 
647 	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
648 }
649 
650 /* Log all TLS record header TCP sequences in [seq, seq+len] */
651 static inline void
652 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
653 {
654 	struct tls_context *tls_ctx = tls_get_ctx(sk);
655 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
656 
657 	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
658 		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
659 	rx_ctx->resync_async->loglen = 0;
660 	rx_ctx->resync_async->rcd_delta = 0;
661 }
662 
663 static inline void
664 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
665 {
666 	struct tls_context *tls_ctx = tls_get_ctx(sk);
667 	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
668 
669 	atomic64_set(&rx_ctx->resync_async->req,
670 		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
671 }
672 
673 static inline void
674 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
675 {
676 	struct tls_context *tls_ctx = tls_get_ctx(sk);
677 
678 	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
679 }
680 
681 /* Driver's seq tracking has to be disabled until resync succeeded */
682 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
683 {
684 	struct tls_context *tls_ctx = tls_get_ctx(sk);
685 	bool ret;
686 
687 	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
688 	smp_mb__after_atomic();
689 	return ret;
690 }
691 
692 int __net_init tls_proc_init(struct net *net);
693 void __net_exit tls_proc_fini(struct net *net);
694 
695 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
696 		      unsigned char *record_type);
697 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
698 		struct scatterlist *sgout);
699 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
700 
701 int tls_sw_fallback_init(struct sock *sk,
702 			 struct tls_offload_context_tx *offload_ctx,
703 			 struct tls_crypto_info *crypto_info);
704 
705 #ifdef CONFIG_TLS_DEVICE
706 void tls_device_init(void);
707 void tls_device_cleanup(void);
708 void tls_device_sk_destruct(struct sock *sk);
709 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
710 void tls_device_free_resources_tx(struct sock *sk);
711 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
712 void tls_device_offload_cleanup_rx(struct sock *sk);
713 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
714 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
715 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
716 			 struct sk_buff *skb, struct strp_msg *rxm);
717 
718 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
719 {
720 	if (!sk_fullsock(sk) ||
721 	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
722 		return false;
723 	return tls_get_ctx(sk)->rx_conf == TLS_HW;
724 }
725 #else
726 static inline void tls_device_init(void) {}
727 static inline void tls_device_cleanup(void) {}
728 
729 static inline int
730 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
731 {
732 	return -EOPNOTSUPP;
733 }
734 
735 static inline void tls_device_free_resources_tx(struct sock *sk) {}
736 
737 static inline int
738 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
739 {
740 	return -EOPNOTSUPP;
741 }
742 
743 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
744 static inline void
745 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
746 
747 static inline int
748 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
749 		     struct sk_buff *skb, struct strp_msg *rxm)
750 {
751 	return 0;
752 }
753 #endif
754 #endif /* _TLS_OFFLOAD_H */
755