1 /* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 42 #include <linux/skmsg.h> 43 #include <linux/mutex.h> 44 #include <linux/netdevice.h> 45 #include <linux/rcupdate.h> 46 47 #include <net/net_namespace.h> 48 #include <net/tcp.h> 49 #include <net/strparser.h> 50 #include <crypto/aead.h> 51 #include <uapi/linux/tls.h> 52 53 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62 #define TLS_RECORD_TYPE_DATA 0x17 63 64 #define TLS_AAD_SPACE_SIZE 13 65 66 #define MAX_IV_SIZE 16 67 #define TLS_TAG_SIZE 16 68 #define TLS_MAX_REC_SEQ_SIZE 8 69 70 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes. 71 * 72 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 73 * 74 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 75 * Hence b0 contains (3 - 1) = 2. 76 */ 77 #define TLS_AES_CCM_IV_B0_BYTE 2 78 #define TLS_SM4_CCM_IV_B0_BYTE 2 79 80 #define __TLS_INC_STATS(net, field) \ 81 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 82 #define TLS_INC_STATS(net, field) \ 83 SNMP_INC_STATS((net)->mib.tls_statistics, field) 84 #define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87 enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93 }; 94 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99 struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 104 struct sk_msg msg_plaintext; 105 struct sk_msg msg_encrypted; 106 107 /* AAD | msg_plaintext.sg.data | sg_tag */ 108 struct scatterlist sg_aead_in[2]; 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 110 struct scatterlist sg_aead_out[2]; 111 112 char content_type; 113 struct scatterlist sg_content_type; 114 115 char aad_space[TLS_AAD_SPACE_SIZE]; 116 u8 iv_data[MAX_IV_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119 }; 120 121 struct tx_work { 122 struct delayed_work work; 123 struct sock *sk; 124 }; 125 126 struct tls_sw_context_tx { 127 struct crypto_aead *aead_send; 128 struct crypto_wait async_wait; 129 struct tx_work tx_work; 130 struct tls_rec *open_rec; 131 struct list_head tx_list; 132 atomic_t encrypt_pending; 133 /* protect crypto_wait with encrypt_pending */ 134 spinlock_t encrypt_compl_lock; 135 int async_notify; 136 u8 async_capable:1; 137 138 #define BIT_TX_SCHEDULED 0 139 #define BIT_TX_CLOSING 1 140 unsigned long tx_bitmask; 141 }; 142 143 struct tls_sw_context_rx { 144 struct crypto_aead *aead_recv; 145 struct crypto_wait async_wait; 146 struct strparser strp; 147 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 148 void (*saved_data_ready)(struct sock *sk); 149 150 struct sk_buff *recv_pkt; 151 u8 async_capable:1; 152 atomic_t decrypt_pending; 153 /* protect crypto_wait with decrypt_pending*/ 154 spinlock_t decrypt_compl_lock; 155 }; 156 157 struct tls_record_info { 158 struct list_head list; 159 u32 end_seq; 160 int len; 161 int num_frags; 162 skb_frag_t frags[MAX_SKB_FRAGS]; 163 }; 164 165 struct tls_offload_context_tx { 166 struct crypto_aead *aead_send; 167 spinlock_t lock; /* protects records list */ 168 struct list_head records_list; 169 struct tls_record_info *open_record; 170 struct tls_record_info *retransmit_hint; 171 u64 hint_record_sn; 172 u64 unacked_record_sn; 173 174 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 175 void (*sk_destruct)(struct sock *sk); 176 u8 driver_state[] __aligned(8); 177 /* The TLS layer reserves room for driver specific state 178 * Currently the belief is that there is not enough 179 * driver specific state to justify another layer of indirection 180 */ 181 #define TLS_DRIVER_STATE_SIZE_TX 16 182 }; 183 184 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 185 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 186 187 enum tls_context_flags { 188 /* tls_device_down was called after the netdev went down, device state 189 * was released, and kTLS works in software, even though rx_conf is 190 * still TLS_HW (needed for transition). 191 */ 192 TLS_RX_DEV_DEGRADED = 0, 193 /* Unlike RX where resync is driven entirely by the core in TX only 194 * the driver knows when things went out of sync, so we need the flag 195 * to be atomic. 196 */ 197 TLS_TX_SYNC_SCHED = 1, 198 /* tls_dev_del was called for the RX side, device state was released, 199 * but tls_ctx->netdev might still be kept, because TX-side driver 200 * resources might not be released yet. Used to prevent the second 201 * tls_dev_del call in tls_device_down if it happens simultaneously. 202 */ 203 TLS_RX_DEV_CLOSED = 2, 204 }; 205 206 struct cipher_context { 207 char *iv; 208 char *rec_seq; 209 }; 210 211 union tls_crypto_context { 212 struct tls_crypto_info info; 213 union { 214 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 215 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 216 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305; 217 struct tls12_crypto_info_sm4_gcm sm4_gcm; 218 struct tls12_crypto_info_sm4_ccm sm4_ccm; 219 }; 220 }; 221 222 struct tls_prot_info { 223 u16 version; 224 u16 cipher_type; 225 u16 prepend_size; 226 u16 tag_size; 227 u16 overhead_size; 228 u16 iv_size; 229 u16 salt_size; 230 u16 rec_seq_size; 231 u16 aad_size; 232 u16 tail_size; 233 }; 234 235 struct tls_context { 236 /* read-only cache line */ 237 struct tls_prot_info prot_info; 238 239 u8 tx_conf:3; 240 u8 rx_conf:3; 241 242 int (*push_pending_record)(struct sock *sk, int flags); 243 void (*sk_write_space)(struct sock *sk); 244 245 void *priv_ctx_tx; 246 void *priv_ctx_rx; 247 248 struct net_device *netdev; 249 250 /* rw cache line */ 251 struct cipher_context tx; 252 struct cipher_context rx; 253 254 struct scatterlist *partially_sent_record; 255 u16 partially_sent_offset; 256 257 bool in_tcp_sendpages; 258 bool pending_open_record_frags; 259 260 struct mutex tx_lock; /* protects partially_sent_* fields and 261 * per-type TX fields 262 */ 263 unsigned long flags; 264 265 /* cache cold stuff */ 266 struct proto *sk_proto; 267 struct sock *sk; 268 269 void (*sk_destruct)(struct sock *sk); 270 271 union tls_crypto_context crypto_send; 272 union tls_crypto_context crypto_recv; 273 274 struct list_head list; 275 refcount_t refcount; 276 struct rcu_head rcu; 277 }; 278 279 enum tls_offload_ctx_dir { 280 TLS_OFFLOAD_CTX_DIR_RX, 281 TLS_OFFLOAD_CTX_DIR_TX, 282 }; 283 284 struct tlsdev_ops { 285 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 286 enum tls_offload_ctx_dir direction, 287 struct tls_crypto_info *crypto_info, 288 u32 start_offload_tcp_sn); 289 void (*tls_dev_del)(struct net_device *netdev, 290 struct tls_context *ctx, 291 enum tls_offload_ctx_dir direction); 292 int (*tls_dev_resync)(struct net_device *netdev, 293 struct sock *sk, u32 seq, u8 *rcd_sn, 294 enum tls_offload_ctx_dir direction); 295 }; 296 297 enum tls_offload_sync_type { 298 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 299 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 300 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 301 }; 302 303 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 304 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 305 306 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 307 struct tls_offload_resync_async { 308 atomic64_t req; 309 u16 loglen; 310 u16 rcd_delta; 311 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 312 }; 313 314 struct tls_offload_context_rx { 315 /* sw must be the first member of tls_offload_context_rx */ 316 struct tls_sw_context_rx sw; 317 enum tls_offload_sync_type resync_type; 318 /* this member is set regardless of resync_type, to avoid branches */ 319 u8 resync_nh_reset:1; 320 /* CORE_NEXT_HINT-only member, but use the hole here */ 321 u8 resync_nh_do_now:1; 322 union { 323 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 324 struct { 325 atomic64_t resync_req; 326 }; 327 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 328 struct { 329 u32 decrypted_failed; 330 u32 decrypted_tgt; 331 } resync_nh; 332 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 333 struct { 334 struct tls_offload_resync_async *resync_async; 335 }; 336 }; 337 u8 driver_state[] __aligned(8); 338 /* The TLS layer reserves room for driver specific state 339 * Currently the belief is that there is not enough 340 * driver specific state to justify another layer of indirection 341 */ 342 #define TLS_DRIVER_STATE_SIZE_RX 8 343 }; 344 345 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 346 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 347 348 struct tls_context *tls_ctx_create(struct sock *sk); 349 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 350 void update_sk_prot(struct sock *sk, struct tls_context *ctx); 351 352 int wait_on_pending_writer(struct sock *sk, long *timeo); 353 int tls_sk_query(struct sock *sk, int optname, char __user *optval, 354 int __user *optlen); 355 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 356 unsigned int optlen); 357 void tls_err_abort(struct sock *sk, int err); 358 359 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 360 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 361 void tls_sw_strparser_done(struct tls_context *tls_ctx); 362 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 363 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 364 int offset, size_t size, int flags); 365 int tls_sw_sendpage(struct sock *sk, struct page *page, 366 int offset, size_t size, int flags); 367 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 368 void tls_sw_release_resources_tx(struct sock *sk); 369 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 370 void tls_sw_free_resources_rx(struct sock *sk); 371 void tls_sw_release_resources_rx(struct sock *sk); 372 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 373 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 374 int flags, int *addr_len); 375 bool tls_sw_sock_is_readable(struct sock *sk); 376 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 377 struct pipe_inode_info *pipe, 378 size_t len, unsigned int flags); 379 380 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 381 int tls_device_sendpage(struct sock *sk, struct page *page, 382 int offset, size_t size, int flags); 383 int tls_tx_records(struct sock *sk, int flags); 384 385 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 386 u32 seq, u64 *p_record_sn); 387 388 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 389 { 390 return rec->len == 0; 391 } 392 393 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 394 { 395 return rec->end_seq - rec->len; 396 } 397 398 int tls_push_sg(struct sock *sk, struct tls_context *ctx, 399 struct scatterlist *sg, u16 first_offset, 400 int flags); 401 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 402 int flags); 403 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 404 405 static inline struct tls_msg *tls_msg(struct sk_buff *skb) 406 { 407 struct sk_skb_cb *scb = (struct sk_skb_cb *)skb->cb; 408 409 return &scb->tls; 410 } 411 412 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 413 { 414 return !!ctx->partially_sent_record; 415 } 416 417 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 418 { 419 return tls_ctx->pending_open_record_frags; 420 } 421 422 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 423 { 424 struct tls_rec *rec; 425 426 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 427 if (!rec) 428 return false; 429 430 return READ_ONCE(rec->tx_ready); 431 } 432 433 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 434 { 435 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 436 437 switch (config) { 438 case TLS_BASE: 439 return TLS_CONF_BASE; 440 case TLS_SW: 441 return TLS_CONF_SW; 442 case TLS_HW: 443 return TLS_CONF_HW; 444 case TLS_HW_RECORD: 445 return TLS_CONF_HW_RECORD; 446 } 447 return 0; 448 } 449 450 struct sk_buff * 451 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 452 struct sk_buff *skb); 453 struct sk_buff * 454 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, 455 struct sk_buff *skb); 456 457 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 458 { 459 #ifdef CONFIG_SOCK_VALIDATE_XMIT 460 return sk_fullsock(sk) && 461 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 462 &tls_validate_xmit_skb); 463 #else 464 return false; 465 #endif 466 } 467 468 static inline bool tls_bigint_increment(unsigned char *seq, int len) 469 { 470 int i; 471 472 for (i = len - 1; i >= 0; i--) { 473 ++seq[i]; 474 if (seq[i] != 0) 475 break; 476 } 477 478 return (i == -1); 479 } 480 481 static inline void tls_bigint_subtract(unsigned char *seq, int n) 482 { 483 u64 rcd_sn; 484 __be64 *p; 485 486 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 487 488 p = (__be64 *)seq; 489 rcd_sn = be64_to_cpu(*p); 490 *p = cpu_to_be64(rcd_sn - n); 491 } 492 493 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 494 { 495 struct inet_connection_sock *icsk = inet_csk(sk); 496 497 /* Use RCU on icsk_ulp_data only for sock diag code, 498 * TLS data path doesn't need rcu_dereference(). 499 */ 500 return (__force void *)icsk->icsk_ulp_data; 501 } 502 503 static inline void tls_advance_record_sn(struct sock *sk, 504 struct tls_prot_info *prot, 505 struct cipher_context *ctx) 506 { 507 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 508 tls_err_abort(sk, -EBADMSG); 509 510 if (prot->version != TLS_1_3_VERSION && 511 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) 512 tls_bigint_increment(ctx->iv + prot->salt_size, 513 prot->iv_size); 514 } 515 516 static inline void tls_fill_prepend(struct tls_context *ctx, 517 char *buf, 518 size_t plaintext_len, 519 unsigned char record_type) 520 { 521 struct tls_prot_info *prot = &ctx->prot_info; 522 size_t pkt_len, iv_size = prot->iv_size; 523 524 pkt_len = plaintext_len + prot->tag_size; 525 if (prot->version != TLS_1_3_VERSION && 526 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) { 527 pkt_len += iv_size; 528 529 memcpy(buf + TLS_NONCE_OFFSET, 530 ctx->tx.iv + prot->salt_size, iv_size); 531 } 532 533 /* we cover nonce explicit here as well, so buf should be of 534 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 535 */ 536 buf[0] = prot->version == TLS_1_3_VERSION ? 537 TLS_RECORD_TYPE_DATA : record_type; 538 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 539 buf[1] = TLS_1_2_VERSION_MINOR; 540 buf[2] = TLS_1_2_VERSION_MAJOR; 541 /* we can use IV for nonce explicit according to spec */ 542 buf[3] = pkt_len >> 8; 543 buf[4] = pkt_len & 0xFF; 544 } 545 546 static inline void tls_make_aad(char *buf, 547 size_t size, 548 char *record_sequence, 549 unsigned char record_type, 550 struct tls_prot_info *prot) 551 { 552 if (prot->version != TLS_1_3_VERSION) { 553 memcpy(buf, record_sequence, prot->rec_seq_size); 554 buf += 8; 555 } else { 556 size += prot->tag_size; 557 } 558 559 buf[0] = prot->version == TLS_1_3_VERSION ? 560 TLS_RECORD_TYPE_DATA : record_type; 561 buf[1] = TLS_1_2_VERSION_MAJOR; 562 buf[2] = TLS_1_2_VERSION_MINOR; 563 buf[3] = size >> 8; 564 buf[4] = size & 0xFF; 565 } 566 567 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq) 568 { 569 int i; 570 571 if (prot->version == TLS_1_3_VERSION || 572 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) { 573 for (i = 0; i < 8; i++) 574 iv[i + 4] ^= seq[i]; 575 } 576 } 577 578 579 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 580 const struct tls_context *tls_ctx) 581 { 582 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 583 } 584 585 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 586 const struct tls_context *tls_ctx) 587 { 588 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 589 } 590 591 static inline struct tls_offload_context_tx * 592 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 593 { 594 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 595 } 596 597 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 598 { 599 struct tls_context *ctx = tls_get_ctx(sk); 600 601 if (!ctx) 602 return false; 603 return !!tls_sw_ctx_tx(ctx); 604 } 605 606 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 607 { 608 struct tls_context *ctx = tls_get_ctx(sk); 609 610 if (!ctx) 611 return false; 612 return !!tls_sw_ctx_rx(ctx); 613 } 614 615 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 616 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 617 618 static inline struct tls_offload_context_rx * 619 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 620 { 621 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 622 } 623 624 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 625 enum tls_offload_ctx_dir direction) 626 { 627 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 628 return tls_offload_ctx_tx(tls_ctx)->driver_state; 629 else 630 return tls_offload_ctx_rx(tls_ctx)->driver_state; 631 } 632 633 static inline void * 634 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 635 { 636 return __tls_driver_ctx(tls_get_ctx(sk), direction); 637 } 638 639 #define RESYNC_REQ BIT(0) 640 #define RESYNC_REQ_ASYNC BIT(1) 641 /* The TLS context is valid until sk_destruct is called */ 642 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 643 { 644 struct tls_context *tls_ctx = tls_get_ctx(sk); 645 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 646 647 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 648 } 649 650 /* Log all TLS record header TCP sequences in [seq, seq+len] */ 651 static inline void 652 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 653 { 654 struct tls_context *tls_ctx = tls_get_ctx(sk); 655 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 656 657 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 658 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 659 rx_ctx->resync_async->loglen = 0; 660 rx_ctx->resync_async->rcd_delta = 0; 661 } 662 663 static inline void 664 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 665 { 666 struct tls_context *tls_ctx = tls_get_ctx(sk); 667 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 668 669 atomic64_set(&rx_ctx->resync_async->req, 670 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 671 } 672 673 static inline void 674 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 675 { 676 struct tls_context *tls_ctx = tls_get_ctx(sk); 677 678 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 679 } 680 681 /* Driver's seq tracking has to be disabled until resync succeeded */ 682 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 683 { 684 struct tls_context *tls_ctx = tls_get_ctx(sk); 685 bool ret; 686 687 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 688 smp_mb__after_atomic(); 689 return ret; 690 } 691 692 int __net_init tls_proc_init(struct net *net); 693 void __net_exit tls_proc_fini(struct net *net); 694 695 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 696 unsigned char *record_type); 697 int decrypt_skb(struct sock *sk, struct sk_buff *skb, 698 struct scatterlist *sgout); 699 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 700 701 int tls_sw_fallback_init(struct sock *sk, 702 struct tls_offload_context_tx *offload_ctx, 703 struct tls_crypto_info *crypto_info); 704 705 #ifdef CONFIG_TLS_DEVICE 706 void tls_device_init(void); 707 void tls_device_cleanup(void); 708 void tls_device_sk_destruct(struct sock *sk); 709 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 710 void tls_device_free_resources_tx(struct sock *sk); 711 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 712 void tls_device_offload_cleanup_rx(struct sock *sk); 713 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 714 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 715 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 716 struct sk_buff *skb, struct strp_msg *rxm); 717 718 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 719 { 720 if (!sk_fullsock(sk) || 721 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 722 return false; 723 return tls_get_ctx(sk)->rx_conf == TLS_HW; 724 } 725 #else 726 static inline void tls_device_init(void) {} 727 static inline void tls_device_cleanup(void) {} 728 729 static inline int 730 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 731 { 732 return -EOPNOTSUPP; 733 } 734 735 static inline void tls_device_free_resources_tx(struct sock *sk) {} 736 737 static inline int 738 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 739 { 740 return -EOPNOTSUPP; 741 } 742 743 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 744 static inline void 745 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 746 747 static inline int 748 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 749 struct sk_buff *skb, struct strp_msg *rxm) 750 { 751 return 0; 752 } 753 #endif 754 #endif /* _TLS_OFFLOAD_H */ 755