xref: /linux/include/net/tcp.h (revision f5c31bcf604db54470868f3118a60dc4a9ba8813)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
56 
57 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS		48
60 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61 
62 /*
63  * Never offer a window over 32767 without using window scaling. Some
64  * poor stacks do signed 16bit maths!
65  */
66 #define MAX_TCP_WINDOW		32767U
67 
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS		88U
70 
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS		1024
73 
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL	600
76 
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD	8
79 
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
82 
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS	16U
85 
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE		14U
88 
89 /* urg_data states */
90 #define TCP_URG_VALID	0x0100
91 #define TCP_URG_NOTYET	0x0200
92 #define TCP_URG_READ	0x0400
93 
94 #define TCP_RETR1	3	/*
95 				 * This is how many retries it does before it
96 				 * tries to figure out if the gateway is
97 				 * down. Minimal RFC value is 3; it corresponds
98 				 * to ~3sec-8min depending on RTO.
99 				 */
100 
101 #define TCP_RETR2	15	/*
102 				 * This should take at least
103 				 * 90 minutes to time out.
104 				 * RFC1122 says that the limit is 100 sec.
105 				 * 15 is ~13-30min depending on RTO.
106 				 */
107 
108 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
109 				 * when active opening a connection.
110 				 * RFC1122 says the minimum retry MUST
111 				 * be at least 180secs.  Nevertheless
112 				 * this value is corresponding to
113 				 * 63secs of retransmission with the
114 				 * current initial RTO.
115 				 */
116 
117 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
118 				 * when passive opening a connection.
119 				 * This is corresponding to 31secs of
120 				 * retransmission with the current
121 				 * initial RTO.
122 				 */
123 
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 				  * state, about 60 seconds	*/
126 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
127                                  /* BSD style FIN_WAIT2 deadlock breaker.
128 				  * It used to be 3min, new value is 60sec,
129 				  * to combine FIN-WAIT-2 timeout with
130 				  * TIME-WAIT timer.
131 				  */
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133 
134 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
136 
137 #if HZ >= 100
138 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
139 #define TCP_ATO_MIN	((unsigned)(HZ/25))
140 #else
141 #define TCP_DELACK_MIN	4U
142 #define TCP_ATO_MIN	4U
143 #endif
144 #define TCP_RTO_MAX	((unsigned)(120*HZ))
145 #define TCP_RTO_MIN	((unsigned)(HZ/5))
146 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
147 
148 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
149 
150 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
151 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
152 						 * used as a fallback RTO for the
153 						 * initial data transmission if no
154 						 * valid RTT sample has been acquired,
155 						 * most likely due to retrans in 3WHS.
156 						 */
157 
158 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
159 					                 * for local resources.
160 					                 */
161 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
162 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
163 #define TCP_KEEPALIVE_INTVL	(75*HZ)
164 
165 #define MAX_TCP_KEEPIDLE	32767
166 #define MAX_TCP_KEEPINTVL	32767
167 #define MAX_TCP_KEEPCNT		127
168 #define MAX_TCP_SYNCNT		127
169 
170 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
171  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
172  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
173  */
174 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
175 
176 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
177 					 * after this time. It should be equal
178 					 * (or greater than) TCP_TIMEWAIT_LEN
179 					 * to provide reliability equal to one
180 					 * provided by timewait state.
181 					 */
182 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
183 					 * timestamps. It must be less than
184 					 * minimal timewait lifetime.
185 					 */
186 /*
187  *	TCP option
188  */
189 
190 #define TCPOPT_NOP		1	/* Padding */
191 #define TCPOPT_EOL		0	/* End of options */
192 #define TCPOPT_MSS		2	/* Segment size negotiating */
193 #define TCPOPT_WINDOW		3	/* Window scaling */
194 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
195 #define TCPOPT_SACK             5       /* SACK Block */
196 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
197 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
198 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
199 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
200 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
201 #define TCPOPT_EXP		254	/* Experimental */
202 /* Magic number to be after the option value for sharing TCP
203  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
204  */
205 #define TCPOPT_FASTOPEN_MAGIC	0xF989
206 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
207 
208 /*
209  *     TCP option lengths
210  */
211 
212 #define TCPOLEN_MSS            4
213 #define TCPOLEN_WINDOW         3
214 #define TCPOLEN_SACK_PERM      2
215 #define TCPOLEN_TIMESTAMP      10
216 #define TCPOLEN_MD5SIG         18
217 #define TCPOLEN_FASTOPEN_BASE  2
218 #define TCPOLEN_EXP_FASTOPEN_BASE  4
219 #define TCPOLEN_EXP_SMC_BASE   6
220 
221 /* But this is what stacks really send out. */
222 #define TCPOLEN_TSTAMP_ALIGNED		12
223 #define TCPOLEN_WSCALE_ALIGNED		4
224 #define TCPOLEN_SACKPERM_ALIGNED	4
225 #define TCPOLEN_SACK_BASE		2
226 #define TCPOLEN_SACK_BASE_ALIGNED	4
227 #define TCPOLEN_SACK_PERBLOCK		8
228 #define TCPOLEN_MD5SIG_ALIGNED		20
229 #define TCPOLEN_MSS_ALIGNED		4
230 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
231 
232 /* Flags in tp->nonagle */
233 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
234 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
235 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
236 
237 /* TCP thin-stream limits */
238 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
239 
240 /* TCP initial congestion window as per rfc6928 */
241 #define TCP_INIT_CWND		10
242 
243 /* Bit Flags for sysctl_tcp_fastopen */
244 #define	TFO_CLIENT_ENABLE	1
245 #define	TFO_SERVER_ENABLE	2
246 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
247 
248 /* Accept SYN data w/o any cookie option */
249 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
250 
251 /* Force enable TFO on all listeners, i.e., not requiring the
252  * TCP_FASTOPEN socket option.
253  */
254 #define	TFO_SERVER_WO_SOCKOPT1	0x400
255 
256 
257 /* sysctl variables for tcp */
258 extern int sysctl_tcp_max_orphans;
259 extern long sysctl_tcp_mem[3];
260 
261 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
262 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
263 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
264 
265 extern atomic_long_t tcp_memory_allocated;
266 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
267 
268 extern struct percpu_counter tcp_sockets_allocated;
269 extern unsigned long tcp_memory_pressure;
270 
271 /* optimized version of sk_under_memory_pressure() for TCP sockets */
272 static inline bool tcp_under_memory_pressure(const struct sock *sk)
273 {
274 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
275 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
276 		return true;
277 
278 	return READ_ONCE(tcp_memory_pressure);
279 }
280 /*
281  * The next routines deal with comparing 32 bit unsigned ints
282  * and worry about wraparound (automatic with unsigned arithmetic).
283  */
284 
285 static inline bool before(__u32 seq1, __u32 seq2)
286 {
287         return (__s32)(seq1-seq2) < 0;
288 }
289 #define after(seq2, seq1) 	before(seq1, seq2)
290 
291 /* is s2<=s1<=s3 ? */
292 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
293 {
294 	return seq3 - seq2 >= seq1 - seq2;
295 }
296 
297 static inline bool tcp_out_of_memory(struct sock *sk)
298 {
299 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
300 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
301 		return true;
302 	return false;
303 }
304 
305 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
306 {
307 	sk_wmem_queued_add(sk, -skb->truesize);
308 	if (!skb_zcopy_pure(skb))
309 		sk_mem_uncharge(sk, skb->truesize);
310 	else
311 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
312 	__kfree_skb(skb);
313 }
314 
315 void sk_forced_mem_schedule(struct sock *sk, int size);
316 
317 bool tcp_check_oom(struct sock *sk, int shift);
318 
319 
320 extern struct proto tcp_prot;
321 
322 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
323 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
324 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
325 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
326 
327 void tcp_tasklet_init(void);
328 
329 int tcp_v4_err(struct sk_buff *skb, u32);
330 
331 void tcp_shutdown(struct sock *sk, int how);
332 
333 int tcp_v4_early_demux(struct sk_buff *skb);
334 int tcp_v4_rcv(struct sk_buff *skb);
335 
336 void tcp_remove_empty_skb(struct sock *sk);
337 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
338 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
339 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
340 			 size_t size, struct ubuf_info *uarg);
341 void tcp_splice_eof(struct socket *sock);
342 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
343 int tcp_wmem_schedule(struct sock *sk, int copy);
344 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
345 	      int size_goal);
346 void tcp_release_cb(struct sock *sk);
347 void tcp_wfree(struct sk_buff *skb);
348 void tcp_write_timer_handler(struct sock *sk);
349 void tcp_delack_timer_handler(struct sock *sk);
350 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
351 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
353 void tcp_rcv_space_adjust(struct sock *sk);
354 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
355 void tcp_twsk_destructor(struct sock *sk);
356 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
357 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
358 			struct pipe_inode_info *pipe, size_t len,
359 			unsigned int flags);
360 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
361 				     bool force_schedule);
362 
363 static inline void tcp_dec_quickack_mode(struct sock *sk)
364 {
365 	struct inet_connection_sock *icsk = inet_csk(sk);
366 
367 	if (icsk->icsk_ack.quick) {
368 		/* How many ACKs S/ACKing new data have we sent? */
369 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
370 
371 		if (pkts >= icsk->icsk_ack.quick) {
372 			icsk->icsk_ack.quick = 0;
373 			/* Leaving quickack mode we deflate ATO. */
374 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
375 		} else
376 			icsk->icsk_ack.quick -= pkts;
377 	}
378 }
379 
380 #define	TCP_ECN_OK		1
381 #define	TCP_ECN_QUEUE_CWR	2
382 #define	TCP_ECN_DEMAND_CWR	4
383 #define	TCP_ECN_SEEN		8
384 
385 enum tcp_tw_status {
386 	TCP_TW_SUCCESS = 0,
387 	TCP_TW_RST = 1,
388 	TCP_TW_ACK = 2,
389 	TCP_TW_SYN = 3
390 };
391 
392 
393 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
394 					      struct sk_buff *skb,
395 					      const struct tcphdr *th);
396 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
397 			   struct request_sock *req, bool fastopen,
398 			   bool *lost_race);
399 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
400 				       struct sk_buff *skb);
401 void tcp_enter_loss(struct sock *sk);
402 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
403 void tcp_clear_retrans(struct tcp_sock *tp);
404 void tcp_update_metrics(struct sock *sk);
405 void tcp_init_metrics(struct sock *sk);
406 void tcp_metrics_init(void);
407 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
408 void __tcp_close(struct sock *sk, long timeout);
409 void tcp_close(struct sock *sk, long timeout);
410 void tcp_init_sock(struct sock *sk);
411 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
412 __poll_t tcp_poll(struct file *file, struct socket *sock,
413 		      struct poll_table_struct *wait);
414 int do_tcp_getsockopt(struct sock *sk, int level,
415 		      int optname, sockptr_t optval, sockptr_t optlen);
416 int tcp_getsockopt(struct sock *sk, int level, int optname,
417 		   char __user *optval, int __user *optlen);
418 bool tcp_bpf_bypass_getsockopt(int level, int optname);
419 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
420 		      sockptr_t optval, unsigned int optlen);
421 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
422 		   unsigned int optlen);
423 void tcp_set_keepalive(struct sock *sk, int val);
424 void tcp_syn_ack_timeout(const struct request_sock *req);
425 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
426 		int flags, int *addr_len);
427 int tcp_set_rcvlowat(struct sock *sk, int val);
428 int tcp_set_window_clamp(struct sock *sk, int val);
429 void tcp_update_recv_tstamps(struct sk_buff *skb,
430 			     struct scm_timestamping_internal *tss);
431 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
432 			struct scm_timestamping_internal *tss);
433 void tcp_data_ready(struct sock *sk);
434 #ifdef CONFIG_MMU
435 int tcp_mmap(struct file *file, struct socket *sock,
436 	     struct vm_area_struct *vma);
437 #endif
438 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
439 		       struct tcp_options_received *opt_rx,
440 		       int estab, struct tcp_fastopen_cookie *foc);
441 
442 /*
443  *	BPF SKB-less helpers
444  */
445 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
446 			 struct tcphdr *th, u32 *cookie);
447 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
448 			 struct tcphdr *th, u32 *cookie);
449 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
450 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
451 			  const struct tcp_request_sock_ops *af_ops,
452 			  struct sock *sk, struct tcphdr *th);
453 /*
454  *	TCP v4 functions exported for the inet6 API
455  */
456 
457 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
458 void tcp_v4_mtu_reduced(struct sock *sk);
459 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
460 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
461 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
462 struct sock *tcp_create_openreq_child(const struct sock *sk,
463 				      struct request_sock *req,
464 				      struct sk_buff *skb);
465 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
466 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
467 				  struct request_sock *req,
468 				  struct dst_entry *dst,
469 				  struct request_sock *req_unhash,
470 				  bool *own_req);
471 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
472 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
473 int tcp_connect(struct sock *sk);
474 enum tcp_synack_type {
475 	TCP_SYNACK_NORMAL,
476 	TCP_SYNACK_FASTOPEN,
477 	TCP_SYNACK_COOKIE,
478 };
479 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
480 				struct request_sock *req,
481 				struct tcp_fastopen_cookie *foc,
482 				enum tcp_synack_type synack_type,
483 				struct sk_buff *syn_skb);
484 int tcp_disconnect(struct sock *sk, int flags);
485 
486 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
487 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
488 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
489 
490 /* From syncookies.c */
491 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
492 				 struct request_sock *req,
493 				 struct dst_entry *dst);
494 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
495 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
496 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
497 					    struct sock *sk, struct sk_buff *skb,
498 					    struct tcp_options_received *tcp_opt,
499 					    int mss, u32 tsoff);
500 
501 #if IS_ENABLED(CONFIG_BPF)
502 struct bpf_tcp_req_attrs {
503 	u32 rcv_tsval;
504 	u32 rcv_tsecr;
505 	u16 mss;
506 	u8 rcv_wscale;
507 	u8 snd_wscale;
508 	u8 ecn_ok;
509 	u8 wscale_ok;
510 	u8 sack_ok;
511 	u8 tstamp_ok;
512 	u8 usec_ts_ok;
513 	u8 reserved[3];
514 };
515 #endif
516 
517 #ifdef CONFIG_SYN_COOKIES
518 
519 /* Syncookies use a monotonic timer which increments every 60 seconds.
520  * This counter is used both as a hash input and partially encoded into
521  * the cookie value.  A cookie is only validated further if the delta
522  * between the current counter value and the encoded one is less than this,
523  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
524  * the counter advances immediately after a cookie is generated).
525  */
526 #define MAX_SYNCOOKIE_AGE	2
527 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
528 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
529 
530 /* syncookies: remember time of last synqueue overflow
531  * But do not dirty this field too often (once per second is enough)
532  * It is racy as we do not hold a lock, but race is very minor.
533  */
534 static inline void tcp_synq_overflow(const struct sock *sk)
535 {
536 	unsigned int last_overflow;
537 	unsigned int now = jiffies;
538 
539 	if (sk->sk_reuseport) {
540 		struct sock_reuseport *reuse;
541 
542 		reuse = rcu_dereference(sk->sk_reuseport_cb);
543 		if (likely(reuse)) {
544 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
545 			if (!time_between32(now, last_overflow,
546 					    last_overflow + HZ))
547 				WRITE_ONCE(reuse->synq_overflow_ts, now);
548 			return;
549 		}
550 	}
551 
552 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
553 	if (!time_between32(now, last_overflow, last_overflow + HZ))
554 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
555 }
556 
557 /* syncookies: no recent synqueue overflow on this listening socket? */
558 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
559 {
560 	unsigned int last_overflow;
561 	unsigned int now = jiffies;
562 
563 	if (sk->sk_reuseport) {
564 		struct sock_reuseport *reuse;
565 
566 		reuse = rcu_dereference(sk->sk_reuseport_cb);
567 		if (likely(reuse)) {
568 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
569 			return !time_between32(now, last_overflow - HZ,
570 					       last_overflow +
571 					       TCP_SYNCOOKIE_VALID);
572 		}
573 	}
574 
575 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
576 
577 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
578 	 * then we're under synflood. However, we have to use
579 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
580 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
581 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
582 	 * which could lead to rejecting a valid syncookie.
583 	 */
584 	return !time_between32(now, last_overflow - HZ,
585 			       last_overflow + TCP_SYNCOOKIE_VALID);
586 }
587 
588 static inline u32 tcp_cookie_time(void)
589 {
590 	u64 val = get_jiffies_64();
591 
592 	do_div(val, TCP_SYNCOOKIE_PERIOD);
593 	return val;
594 }
595 
596 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
597 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
598 {
599 	if (usec_ts)
600 		return div_u64(val, NSEC_PER_USEC);
601 
602 	return div_u64(val, NSEC_PER_MSEC);
603 }
604 
605 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
606 			      u16 *mssp);
607 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
608 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
609 bool cookie_timestamp_decode(const struct net *net,
610 			     struct tcp_options_received *opt);
611 
612 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
613 {
614 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
615 		dst_feature(dst, RTAX_FEATURE_ECN);
616 }
617 
618 #if IS_ENABLED(CONFIG_BPF)
619 static inline bool cookie_bpf_ok(struct sk_buff *skb)
620 {
621 	return skb->sk;
622 }
623 
624 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
625 #else
626 static inline bool cookie_bpf_ok(struct sk_buff *skb)
627 {
628 	return false;
629 }
630 
631 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
632 						    struct sk_buff *skb)
633 {
634 	return NULL;
635 }
636 #endif
637 
638 /* From net/ipv6/syncookies.c */
639 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
640 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
641 
642 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
643 			      const struct tcphdr *th, u16 *mssp);
644 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
645 #endif
646 /* tcp_output.c */
647 
648 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
649 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
650 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
651 			       int nonagle);
652 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
653 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
654 void tcp_retransmit_timer(struct sock *sk);
655 void tcp_xmit_retransmit_queue(struct sock *);
656 void tcp_simple_retransmit(struct sock *);
657 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
658 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
659 enum tcp_queue {
660 	TCP_FRAG_IN_WRITE_QUEUE,
661 	TCP_FRAG_IN_RTX_QUEUE,
662 };
663 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
664 		 struct sk_buff *skb, u32 len,
665 		 unsigned int mss_now, gfp_t gfp);
666 
667 void tcp_send_probe0(struct sock *);
668 int tcp_write_wakeup(struct sock *, int mib);
669 void tcp_send_fin(struct sock *sk);
670 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
671 int tcp_send_synack(struct sock *);
672 void tcp_push_one(struct sock *, unsigned int mss_now);
673 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
674 void tcp_send_ack(struct sock *sk);
675 void tcp_send_delayed_ack(struct sock *sk);
676 void tcp_send_loss_probe(struct sock *sk);
677 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
678 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
679 			     const struct sk_buff *next_skb);
680 
681 /* tcp_input.c */
682 void tcp_rearm_rto(struct sock *sk);
683 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
684 void tcp_reset(struct sock *sk, struct sk_buff *skb);
685 void tcp_fin(struct sock *sk);
686 void tcp_check_space(struct sock *sk);
687 void tcp_sack_compress_send_ack(struct sock *sk);
688 
689 /* tcp_timer.c */
690 void tcp_init_xmit_timers(struct sock *);
691 static inline void tcp_clear_xmit_timers(struct sock *sk)
692 {
693 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
694 		__sock_put(sk);
695 
696 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
697 		__sock_put(sk);
698 
699 	inet_csk_clear_xmit_timers(sk);
700 }
701 
702 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
703 unsigned int tcp_current_mss(struct sock *sk);
704 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
705 
706 /* Bound MSS / TSO packet size with the half of the window */
707 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
708 {
709 	int cutoff;
710 
711 	/* When peer uses tiny windows, there is no use in packetizing
712 	 * to sub-MSS pieces for the sake of SWS or making sure there
713 	 * are enough packets in the pipe for fast recovery.
714 	 *
715 	 * On the other hand, for extremely large MSS devices, handling
716 	 * smaller than MSS windows in this way does make sense.
717 	 */
718 	if (tp->max_window > TCP_MSS_DEFAULT)
719 		cutoff = (tp->max_window >> 1);
720 	else
721 		cutoff = tp->max_window;
722 
723 	if (cutoff && pktsize > cutoff)
724 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
725 	else
726 		return pktsize;
727 }
728 
729 /* tcp.c */
730 void tcp_get_info(struct sock *, struct tcp_info *);
731 
732 /* Read 'sendfile()'-style from a TCP socket */
733 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
734 		  sk_read_actor_t recv_actor);
735 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
736 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
737 void tcp_read_done(struct sock *sk, size_t len);
738 
739 void tcp_initialize_rcv_mss(struct sock *sk);
740 
741 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
742 int tcp_mss_to_mtu(struct sock *sk, int mss);
743 void tcp_mtup_init(struct sock *sk);
744 
745 static inline void tcp_bound_rto(const struct sock *sk)
746 {
747 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
748 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
749 }
750 
751 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
752 {
753 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
754 }
755 
756 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
757 {
758 	/* mptcp hooks are only on the slow path */
759 	if (sk_is_mptcp((struct sock *)tp))
760 		return;
761 
762 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
763 			       ntohl(TCP_FLAG_ACK) |
764 			       snd_wnd);
765 }
766 
767 static inline void tcp_fast_path_on(struct tcp_sock *tp)
768 {
769 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
770 }
771 
772 static inline void tcp_fast_path_check(struct sock *sk)
773 {
774 	struct tcp_sock *tp = tcp_sk(sk);
775 
776 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
777 	    tp->rcv_wnd &&
778 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
779 	    !tp->urg_data)
780 		tcp_fast_path_on(tp);
781 }
782 
783 u32 tcp_delack_max(const struct sock *sk);
784 
785 /* Compute the actual rto_min value */
786 static inline u32 tcp_rto_min(const struct sock *sk)
787 {
788 	const struct dst_entry *dst = __sk_dst_get(sk);
789 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
790 
791 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
792 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
793 	return rto_min;
794 }
795 
796 static inline u32 tcp_rto_min_us(const struct sock *sk)
797 {
798 	return jiffies_to_usecs(tcp_rto_min(sk));
799 }
800 
801 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
802 {
803 	return dst_metric_locked(dst, RTAX_CC_ALGO);
804 }
805 
806 /* Minimum RTT in usec. ~0 means not available. */
807 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
808 {
809 	return minmax_get(&tp->rtt_min);
810 }
811 
812 /* Compute the actual receive window we are currently advertising.
813  * Rcv_nxt can be after the window if our peer push more data
814  * than the offered window.
815  */
816 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
817 {
818 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
819 
820 	if (win < 0)
821 		win = 0;
822 	return (u32) win;
823 }
824 
825 /* Choose a new window, without checks for shrinking, and without
826  * scaling applied to the result.  The caller does these things
827  * if necessary.  This is a "raw" window selection.
828  */
829 u32 __tcp_select_window(struct sock *sk);
830 
831 void tcp_send_window_probe(struct sock *sk);
832 
833 /* TCP uses 32bit jiffies to save some space.
834  * Note that this is different from tcp_time_stamp, which
835  * historically has been the same until linux-4.13.
836  */
837 #define tcp_jiffies32 ((u32)jiffies)
838 
839 /*
840  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
841  * It is no longer tied to jiffies, but to 1 ms clock.
842  * Note: double check if you want to use tcp_jiffies32 instead of this.
843  */
844 #define TCP_TS_HZ	1000
845 
846 static inline u64 tcp_clock_ns(void)
847 {
848 	return ktime_get_ns();
849 }
850 
851 static inline u64 tcp_clock_us(void)
852 {
853 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
854 }
855 
856 static inline u64 tcp_clock_ms(void)
857 {
858 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
859 }
860 
861 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
862  * or usec resolution. Each socket carries a flag to select one or other
863  * resolution, as the route attribute could change anytime.
864  * Each flow must stick to initial resolution.
865  */
866 static inline u32 tcp_clock_ts(bool usec_ts)
867 {
868 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
869 }
870 
871 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
872 {
873 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
874 }
875 
876 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
877 {
878 	if (tp->tcp_usec_ts)
879 		return tp->tcp_mstamp;
880 	return tcp_time_stamp_ms(tp);
881 }
882 
883 void tcp_mstamp_refresh(struct tcp_sock *tp);
884 
885 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
886 {
887 	return max_t(s64, t1 - t0, 0);
888 }
889 
890 /* provide the departure time in us unit */
891 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
892 {
893 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
894 }
895 
896 /* Provide skb TSval in usec or ms unit */
897 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
898 {
899 	if (usec_ts)
900 		return tcp_skb_timestamp_us(skb);
901 
902 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
903 }
904 
905 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
906 {
907 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
908 }
909 
910 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
911 {
912 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
913 }
914 
915 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
916 
917 #define TCPHDR_FIN 0x01
918 #define TCPHDR_SYN 0x02
919 #define TCPHDR_RST 0x04
920 #define TCPHDR_PSH 0x08
921 #define TCPHDR_ACK 0x10
922 #define TCPHDR_URG 0x20
923 #define TCPHDR_ECE 0x40
924 #define TCPHDR_CWR 0x80
925 
926 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
927 
928 /* This is what the send packet queuing engine uses to pass
929  * TCP per-packet control information to the transmission code.
930  * We also store the host-order sequence numbers in here too.
931  * This is 44 bytes if IPV6 is enabled.
932  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
933  */
934 struct tcp_skb_cb {
935 	__u32		seq;		/* Starting sequence number	*/
936 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
937 	union {
938 		/* Note : tcp_tw_isn is used in input path only
939 		 *	  (isn chosen by tcp_timewait_state_process())
940 		 *
941 		 * 	  tcp_gso_segs/size are used in write queue only,
942 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
943 		 */
944 		__u32		tcp_tw_isn;
945 		struct {
946 			u16	tcp_gso_segs;
947 			u16	tcp_gso_size;
948 		};
949 	};
950 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
951 
952 	__u8		sacked;		/* State flags for SACK.	*/
953 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
954 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
955 #define TCPCB_LOST		0x04	/* SKB is lost			*/
956 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
957 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
958 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
959 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
960 				TCPCB_REPAIRED)
961 
962 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
963 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
964 			eor:1,		/* Is skb MSG_EOR marked? */
965 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
966 			unused:5;
967 	__u32		ack_seq;	/* Sequence number ACK'd	*/
968 	union {
969 		struct {
970 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
971 			/* There is space for up to 24 bytes */
972 			__u32 is_app_limited:1, /* cwnd not fully used? */
973 			      delivered_ce:20,
974 			      unused:11;
975 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
976 			__u32 delivered;
977 			/* start of send pipeline phase */
978 			u64 first_tx_mstamp;
979 			/* when we reached the "delivered" count */
980 			u64 delivered_mstamp;
981 		} tx;   /* only used for outgoing skbs */
982 		union {
983 			struct inet_skb_parm	h4;
984 #if IS_ENABLED(CONFIG_IPV6)
985 			struct inet6_skb_parm	h6;
986 #endif
987 		} header;	/* For incoming skbs */
988 	};
989 };
990 
991 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
992 
993 extern const struct inet_connection_sock_af_ops ipv4_specific;
994 
995 #if IS_ENABLED(CONFIG_IPV6)
996 /* This is the variant of inet6_iif() that must be used by TCP,
997  * as TCP moves IP6CB into a different location in skb->cb[]
998  */
999 static inline int tcp_v6_iif(const struct sk_buff *skb)
1000 {
1001 	return TCP_SKB_CB(skb)->header.h6.iif;
1002 }
1003 
1004 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1005 {
1006 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1007 
1008 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1009 }
1010 
1011 /* TCP_SKB_CB reference means this can not be used from early demux */
1012 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1013 {
1014 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1015 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1016 		return TCP_SKB_CB(skb)->header.h6.iif;
1017 #endif
1018 	return 0;
1019 }
1020 
1021 extern const struct inet_connection_sock_af_ops ipv6_specific;
1022 
1023 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1024 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1025 void tcp_v6_early_demux(struct sk_buff *skb);
1026 
1027 #endif
1028 
1029 /* TCP_SKB_CB reference means this can not be used from early demux */
1030 static inline int tcp_v4_sdif(struct sk_buff *skb)
1031 {
1032 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1033 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1034 		return TCP_SKB_CB(skb)->header.h4.iif;
1035 #endif
1036 	return 0;
1037 }
1038 
1039 /* Due to TSO, an SKB can be composed of multiple actual
1040  * packets.  To keep these tracked properly, we use this.
1041  */
1042 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1043 {
1044 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1045 }
1046 
1047 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1048 {
1049 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1050 }
1051 
1052 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1053 {
1054 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1055 }
1056 
1057 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1058 static inline int tcp_skb_mss(const struct sk_buff *skb)
1059 {
1060 	return TCP_SKB_CB(skb)->tcp_gso_size;
1061 }
1062 
1063 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1064 {
1065 	return likely(!TCP_SKB_CB(skb)->eor);
1066 }
1067 
1068 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1069 					const struct sk_buff *from)
1070 {
1071 	return likely(tcp_skb_can_collapse_to(to) &&
1072 		      mptcp_skb_can_collapse(to, from) &&
1073 		      skb_pure_zcopy_same(to, from));
1074 }
1075 
1076 /* Events passed to congestion control interface */
1077 enum tcp_ca_event {
1078 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1079 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1080 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1081 	CA_EVENT_LOSS,		/* loss timeout */
1082 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1083 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1084 };
1085 
1086 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1087 enum tcp_ca_ack_event_flags {
1088 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1089 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1090 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1091 };
1092 
1093 /*
1094  * Interface for adding new TCP congestion control handlers
1095  */
1096 #define TCP_CA_NAME_MAX	16
1097 #define TCP_CA_MAX	128
1098 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1099 
1100 #define TCP_CA_UNSPEC	0
1101 
1102 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1103 #define TCP_CONG_NON_RESTRICTED 0x1
1104 /* Requires ECN/ECT set on all packets */
1105 #define TCP_CONG_NEEDS_ECN	0x2
1106 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1107 
1108 union tcp_cc_info;
1109 
1110 struct ack_sample {
1111 	u32 pkts_acked;
1112 	s32 rtt_us;
1113 	u32 in_flight;
1114 };
1115 
1116 /* A rate sample measures the number of (original/retransmitted) data
1117  * packets delivered "delivered" over an interval of time "interval_us".
1118  * The tcp_rate.c code fills in the rate sample, and congestion
1119  * control modules that define a cong_control function to run at the end
1120  * of ACK processing can optionally chose to consult this sample when
1121  * setting cwnd and pacing rate.
1122  * A sample is invalid if "delivered" or "interval_us" is negative.
1123  */
1124 struct rate_sample {
1125 	u64  prior_mstamp; /* starting timestamp for interval */
1126 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1127 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1128 	s32  delivered;		/* number of packets delivered over interval */
1129 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1130 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1131 	u32 snd_interval_us;	/* snd interval for delivered packets */
1132 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1133 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1134 	int  losses;		/* number of packets marked lost upon ACK */
1135 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1136 	u32  prior_in_flight;	/* in flight before this ACK */
1137 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1138 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1139 	bool is_retrans;	/* is sample from retransmission? */
1140 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1141 };
1142 
1143 struct tcp_congestion_ops {
1144 /* fast path fields are put first to fill one cache line */
1145 
1146 	/* return slow start threshold (required) */
1147 	u32 (*ssthresh)(struct sock *sk);
1148 
1149 	/* do new cwnd calculation (required) */
1150 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1151 
1152 	/* call before changing ca_state (optional) */
1153 	void (*set_state)(struct sock *sk, u8 new_state);
1154 
1155 	/* call when cwnd event occurs (optional) */
1156 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1157 
1158 	/* call when ack arrives (optional) */
1159 	void (*in_ack_event)(struct sock *sk, u32 flags);
1160 
1161 	/* hook for packet ack accounting (optional) */
1162 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1163 
1164 	/* override sysctl_tcp_min_tso_segs */
1165 	u32 (*min_tso_segs)(struct sock *sk);
1166 
1167 	/* call when packets are delivered to update cwnd and pacing rate,
1168 	 * after all the ca_state processing. (optional)
1169 	 */
1170 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1171 
1172 
1173 	/* new value of cwnd after loss (required) */
1174 	u32  (*undo_cwnd)(struct sock *sk);
1175 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1176 	u32 (*sndbuf_expand)(struct sock *sk);
1177 
1178 /* control/slow paths put last */
1179 	/* get info for inet_diag (optional) */
1180 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1181 			   union tcp_cc_info *info);
1182 
1183 	char 			name[TCP_CA_NAME_MAX];
1184 	struct module		*owner;
1185 	struct list_head	list;
1186 	u32			key;
1187 	u32			flags;
1188 
1189 	/* initialize private data (optional) */
1190 	void (*init)(struct sock *sk);
1191 	/* cleanup private data  (optional) */
1192 	void (*release)(struct sock *sk);
1193 } ____cacheline_aligned_in_smp;
1194 
1195 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1196 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1197 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1198 				  struct tcp_congestion_ops *old_type);
1199 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1200 
1201 void tcp_assign_congestion_control(struct sock *sk);
1202 void tcp_init_congestion_control(struct sock *sk);
1203 void tcp_cleanup_congestion_control(struct sock *sk);
1204 int tcp_set_default_congestion_control(struct net *net, const char *name);
1205 void tcp_get_default_congestion_control(struct net *net, char *name);
1206 void tcp_get_available_congestion_control(char *buf, size_t len);
1207 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1208 int tcp_set_allowed_congestion_control(char *allowed);
1209 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1210 			       bool cap_net_admin);
1211 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1212 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1213 
1214 u32 tcp_reno_ssthresh(struct sock *sk);
1215 u32 tcp_reno_undo_cwnd(struct sock *sk);
1216 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1217 extern struct tcp_congestion_ops tcp_reno;
1218 
1219 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1220 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1221 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1222 #ifdef CONFIG_INET
1223 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1224 #else
1225 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1226 {
1227 	return NULL;
1228 }
1229 #endif
1230 
1231 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1232 {
1233 	const struct inet_connection_sock *icsk = inet_csk(sk);
1234 
1235 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1236 }
1237 
1238 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1239 {
1240 	const struct inet_connection_sock *icsk = inet_csk(sk);
1241 
1242 	if (icsk->icsk_ca_ops->cwnd_event)
1243 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1244 }
1245 
1246 /* From tcp_cong.c */
1247 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1248 
1249 /* From tcp_rate.c */
1250 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1251 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1252 			    struct rate_sample *rs);
1253 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1254 		  bool is_sack_reneg, struct rate_sample *rs);
1255 void tcp_rate_check_app_limited(struct sock *sk);
1256 
1257 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1258 {
1259 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1260 }
1261 
1262 /* These functions determine how the current flow behaves in respect of SACK
1263  * handling. SACK is negotiated with the peer, and therefore it can vary
1264  * between different flows.
1265  *
1266  * tcp_is_sack - SACK enabled
1267  * tcp_is_reno - No SACK
1268  */
1269 static inline int tcp_is_sack(const struct tcp_sock *tp)
1270 {
1271 	return likely(tp->rx_opt.sack_ok);
1272 }
1273 
1274 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1275 {
1276 	return !tcp_is_sack(tp);
1277 }
1278 
1279 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1280 {
1281 	return tp->sacked_out + tp->lost_out;
1282 }
1283 
1284 /* This determines how many packets are "in the network" to the best
1285  * of our knowledge.  In many cases it is conservative, but where
1286  * detailed information is available from the receiver (via SACK
1287  * blocks etc.) we can make more aggressive calculations.
1288  *
1289  * Use this for decisions involving congestion control, use just
1290  * tp->packets_out to determine if the send queue is empty or not.
1291  *
1292  * Read this equation as:
1293  *
1294  *	"Packets sent once on transmission queue" MINUS
1295  *	"Packets left network, but not honestly ACKed yet" PLUS
1296  *	"Packets fast retransmitted"
1297  */
1298 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1299 {
1300 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1301 }
1302 
1303 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1304 
1305 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1306 {
1307 	return tp->snd_cwnd;
1308 }
1309 
1310 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1311 {
1312 	WARN_ON_ONCE((int)val <= 0);
1313 	tp->snd_cwnd = val;
1314 }
1315 
1316 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1317 {
1318 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1319 }
1320 
1321 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1322 {
1323 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1324 }
1325 
1326 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1327 {
1328 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1329 	       (1 << inet_csk(sk)->icsk_ca_state);
1330 }
1331 
1332 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1333  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1334  * ssthresh.
1335  */
1336 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1337 {
1338 	const struct tcp_sock *tp = tcp_sk(sk);
1339 
1340 	if (tcp_in_cwnd_reduction(sk))
1341 		return tp->snd_ssthresh;
1342 	else
1343 		return max(tp->snd_ssthresh,
1344 			   ((tcp_snd_cwnd(tp) >> 1) +
1345 			    (tcp_snd_cwnd(tp) >> 2)));
1346 }
1347 
1348 /* Use define here intentionally to get WARN_ON location shown at the caller */
1349 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1350 
1351 void tcp_enter_cwr(struct sock *sk);
1352 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1353 
1354 /* The maximum number of MSS of available cwnd for which TSO defers
1355  * sending if not using sysctl_tcp_tso_win_divisor.
1356  */
1357 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1358 {
1359 	return 3;
1360 }
1361 
1362 /* Returns end sequence number of the receiver's advertised window */
1363 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1364 {
1365 	return tp->snd_una + tp->snd_wnd;
1366 }
1367 
1368 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1369  * flexible approach. The RFC suggests cwnd should not be raised unless
1370  * it was fully used previously. And that's exactly what we do in
1371  * congestion avoidance mode. But in slow start we allow cwnd to grow
1372  * as long as the application has used half the cwnd.
1373  * Example :
1374  *    cwnd is 10 (IW10), but application sends 9 frames.
1375  *    We allow cwnd to reach 18 when all frames are ACKed.
1376  * This check is safe because it's as aggressive as slow start which already
1377  * risks 100% overshoot. The advantage is that we discourage application to
1378  * either send more filler packets or data to artificially blow up the cwnd
1379  * usage, and allow application-limited process to probe bw more aggressively.
1380  */
1381 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1382 {
1383 	const struct tcp_sock *tp = tcp_sk(sk);
1384 
1385 	if (tp->is_cwnd_limited)
1386 		return true;
1387 
1388 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1389 	if (tcp_in_slow_start(tp))
1390 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1391 
1392 	return false;
1393 }
1394 
1395 /* BBR congestion control needs pacing.
1396  * Same remark for SO_MAX_PACING_RATE.
1397  * sch_fq packet scheduler is efficiently handling pacing,
1398  * but is not always installed/used.
1399  * Return true if TCP stack should pace packets itself.
1400  */
1401 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1402 {
1403 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1404 }
1405 
1406 /* Estimates in how many jiffies next packet for this flow can be sent.
1407  * Scheduling a retransmit timer too early would be silly.
1408  */
1409 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1410 {
1411 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1412 
1413 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1414 }
1415 
1416 static inline void tcp_reset_xmit_timer(struct sock *sk,
1417 					const int what,
1418 					unsigned long when,
1419 					const unsigned long max_when)
1420 {
1421 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1422 				  max_when);
1423 }
1424 
1425 /* Something is really bad, we could not queue an additional packet,
1426  * because qdisc is full or receiver sent a 0 window, or we are paced.
1427  * We do not want to add fuel to the fire, or abort too early,
1428  * so make sure the timer we arm now is at least 200ms in the future,
1429  * regardless of current icsk_rto value (as it could be ~2ms)
1430  */
1431 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1432 {
1433 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1434 }
1435 
1436 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1437 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1438 					    unsigned long max_when)
1439 {
1440 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1441 			   inet_csk(sk)->icsk_backoff);
1442 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1443 
1444 	return (unsigned long)min_t(u64, when, max_when);
1445 }
1446 
1447 static inline void tcp_check_probe_timer(struct sock *sk)
1448 {
1449 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1450 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1451 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1452 }
1453 
1454 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1455 {
1456 	tp->snd_wl1 = seq;
1457 }
1458 
1459 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1460 {
1461 	tp->snd_wl1 = seq;
1462 }
1463 
1464 /*
1465  * Calculate(/check) TCP checksum
1466  */
1467 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1468 				   __be32 daddr, __wsum base)
1469 {
1470 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1471 }
1472 
1473 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1474 {
1475 	return !skb_csum_unnecessary(skb) &&
1476 		__skb_checksum_complete(skb);
1477 }
1478 
1479 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1480 		     enum skb_drop_reason *reason);
1481 
1482 
1483 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1484 void tcp_set_state(struct sock *sk, int state);
1485 void tcp_done(struct sock *sk);
1486 int tcp_abort(struct sock *sk, int err);
1487 
1488 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1489 {
1490 	rx_opt->dsack = 0;
1491 	rx_opt->num_sacks = 0;
1492 }
1493 
1494 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1495 
1496 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1497 {
1498 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	s32 delta;
1501 
1502 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1503 	    tp->packets_out || ca_ops->cong_control)
1504 		return;
1505 	delta = tcp_jiffies32 - tp->lsndtime;
1506 	if (delta > inet_csk(sk)->icsk_rto)
1507 		tcp_cwnd_restart(sk, delta);
1508 }
1509 
1510 /* Determine a window scaling and initial window to offer. */
1511 void tcp_select_initial_window(const struct sock *sk, int __space,
1512 			       __u32 mss, __u32 *rcv_wnd,
1513 			       __u32 *window_clamp, int wscale_ok,
1514 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1515 
1516 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1517 {
1518 	s64 scaled_space = (s64)space * scaling_ratio;
1519 
1520 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1521 }
1522 
1523 static inline int tcp_win_from_space(const struct sock *sk, int space)
1524 {
1525 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1526 }
1527 
1528 /* inverse of __tcp_win_from_space() */
1529 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1530 {
1531 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1532 
1533 	do_div(val, scaling_ratio);
1534 	return val;
1535 }
1536 
1537 static inline int tcp_space_from_win(const struct sock *sk, int win)
1538 {
1539 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1540 }
1541 
1542 /* Assume a conservative default of 1200 bytes of payload per 4K page.
1543  * This may be adjusted later in tcp_measure_rcv_mss().
1544  */
1545 #define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1546 				   SKB_TRUESIZE(4096))
1547 
1548 static inline void tcp_scaling_ratio_init(struct sock *sk)
1549 {
1550 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1551 }
1552 
1553 /* Note: caller must be prepared to deal with negative returns */
1554 static inline int tcp_space(const struct sock *sk)
1555 {
1556 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1557 				  READ_ONCE(sk->sk_backlog.len) -
1558 				  atomic_read(&sk->sk_rmem_alloc));
1559 }
1560 
1561 static inline int tcp_full_space(const struct sock *sk)
1562 {
1563 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1564 }
1565 
1566 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1567 {
1568 	int unused_mem = sk_unused_reserved_mem(sk);
1569 	struct tcp_sock *tp = tcp_sk(sk);
1570 
1571 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1572 	if (unused_mem)
1573 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1574 					 tcp_win_from_space(sk, unused_mem));
1575 }
1576 
1577 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1578 {
1579 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1580 }
1581 
1582 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1583 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1584 
1585 
1586 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1587  * If 87.5 % (7/8) of the space has been consumed, we want to override
1588  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1589  * len/truesize ratio.
1590  */
1591 static inline bool tcp_rmem_pressure(const struct sock *sk)
1592 {
1593 	int rcvbuf, threshold;
1594 
1595 	if (tcp_under_memory_pressure(sk))
1596 		return true;
1597 
1598 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1599 	threshold = rcvbuf - (rcvbuf >> 3);
1600 
1601 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1602 }
1603 
1604 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1605 {
1606 	const struct tcp_sock *tp = tcp_sk(sk);
1607 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1608 
1609 	if (avail <= 0)
1610 		return false;
1611 
1612 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1613 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1614 }
1615 
1616 extern void tcp_openreq_init_rwin(struct request_sock *req,
1617 				  const struct sock *sk_listener,
1618 				  const struct dst_entry *dst);
1619 
1620 void tcp_enter_memory_pressure(struct sock *sk);
1621 void tcp_leave_memory_pressure(struct sock *sk);
1622 
1623 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1624 {
1625 	struct net *net = sock_net((struct sock *)tp);
1626 	int val;
1627 
1628 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1629 	 * and do_tcp_setsockopt().
1630 	 */
1631 	val = READ_ONCE(tp->keepalive_intvl);
1632 
1633 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1634 }
1635 
1636 static inline int keepalive_time_when(const struct tcp_sock *tp)
1637 {
1638 	struct net *net = sock_net((struct sock *)tp);
1639 	int val;
1640 
1641 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1642 	val = READ_ONCE(tp->keepalive_time);
1643 
1644 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1645 }
1646 
1647 static inline int keepalive_probes(const struct tcp_sock *tp)
1648 {
1649 	struct net *net = sock_net((struct sock *)tp);
1650 	int val;
1651 
1652 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1653 	 * and do_tcp_setsockopt().
1654 	 */
1655 	val = READ_ONCE(tp->keepalive_probes);
1656 
1657 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1658 }
1659 
1660 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1661 {
1662 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1663 
1664 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1665 			  tcp_jiffies32 - tp->rcv_tstamp);
1666 }
1667 
1668 static inline int tcp_fin_time(const struct sock *sk)
1669 {
1670 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1671 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1672 	const int rto = inet_csk(sk)->icsk_rto;
1673 
1674 	if (fin_timeout < (rto << 2) - (rto >> 1))
1675 		fin_timeout = (rto << 2) - (rto >> 1);
1676 
1677 	return fin_timeout;
1678 }
1679 
1680 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1681 				  int paws_win)
1682 {
1683 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1684 		return true;
1685 	if (unlikely(!time_before32(ktime_get_seconds(),
1686 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1687 		return true;
1688 	/*
1689 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1690 	 * then following tcp messages have valid values. Ignore 0 value,
1691 	 * or else 'negative' tsval might forbid us to accept their packets.
1692 	 */
1693 	if (!rx_opt->ts_recent)
1694 		return true;
1695 	return false;
1696 }
1697 
1698 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1699 				   int rst)
1700 {
1701 	if (tcp_paws_check(rx_opt, 0))
1702 		return false;
1703 
1704 	/* RST segments are not recommended to carry timestamp,
1705 	   and, if they do, it is recommended to ignore PAWS because
1706 	   "their cleanup function should take precedence over timestamps."
1707 	   Certainly, it is mistake. It is necessary to understand the reasons
1708 	   of this constraint to relax it: if peer reboots, clock may go
1709 	   out-of-sync and half-open connections will not be reset.
1710 	   Actually, the problem would be not existing if all
1711 	   the implementations followed draft about maintaining clock
1712 	   via reboots. Linux-2.2 DOES NOT!
1713 
1714 	   However, we can relax time bounds for RST segments to MSL.
1715 	 */
1716 	if (rst && !time_before32(ktime_get_seconds(),
1717 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1718 		return false;
1719 	return true;
1720 }
1721 
1722 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1723 			  int mib_idx, u32 *last_oow_ack_time);
1724 
1725 static inline void tcp_mib_init(struct net *net)
1726 {
1727 	/* See RFC 2012 */
1728 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1729 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1730 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1731 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1732 }
1733 
1734 /* from STCP */
1735 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1736 {
1737 	tp->lost_skb_hint = NULL;
1738 }
1739 
1740 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1741 {
1742 	tcp_clear_retrans_hints_partial(tp);
1743 	tp->retransmit_skb_hint = NULL;
1744 }
1745 
1746 #define tcp_md5_addr tcp_ao_addr
1747 
1748 /* - key database */
1749 struct tcp_md5sig_key {
1750 	struct hlist_node	node;
1751 	u8			keylen;
1752 	u8			family; /* AF_INET or AF_INET6 */
1753 	u8			prefixlen;
1754 	u8			flags;
1755 	union tcp_md5_addr	addr;
1756 	int			l3index; /* set if key added with L3 scope */
1757 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1758 	struct rcu_head		rcu;
1759 };
1760 
1761 /* - sock block */
1762 struct tcp_md5sig_info {
1763 	struct hlist_head	head;
1764 	struct rcu_head		rcu;
1765 };
1766 
1767 /* - pseudo header */
1768 struct tcp4_pseudohdr {
1769 	__be32		saddr;
1770 	__be32		daddr;
1771 	__u8		pad;
1772 	__u8		protocol;
1773 	__be16		len;
1774 };
1775 
1776 struct tcp6_pseudohdr {
1777 	struct in6_addr	saddr;
1778 	struct in6_addr daddr;
1779 	__be32		len;
1780 	__be32		protocol;	/* including padding */
1781 };
1782 
1783 union tcp_md5sum_block {
1784 	struct tcp4_pseudohdr ip4;
1785 #if IS_ENABLED(CONFIG_IPV6)
1786 	struct tcp6_pseudohdr ip6;
1787 #endif
1788 };
1789 
1790 /*
1791  * struct tcp_sigpool - per-CPU pool of ahash_requests
1792  * @scratch: per-CPU temporary area, that can be used between
1793  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1794  *	     crypto request
1795  * @req: pre-allocated ahash request
1796  */
1797 struct tcp_sigpool {
1798 	void *scratch;
1799 	struct ahash_request *req;
1800 };
1801 
1802 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1803 void tcp_sigpool_get(unsigned int id);
1804 void tcp_sigpool_release(unsigned int id);
1805 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1806 			      const struct sk_buff *skb,
1807 			      unsigned int header_len);
1808 
1809 /**
1810  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1811  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1812  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1813  *
1814  * Returns 0 on success, error otherwise.
1815  */
1816 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1817 /**
1818  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1819  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1820  */
1821 void tcp_sigpool_end(struct tcp_sigpool *c);
1822 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1823 /* - functions */
1824 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1825 			const struct sock *sk, const struct sk_buff *skb);
1826 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1827 		   int family, u8 prefixlen, int l3index, u8 flags,
1828 		   const u8 *newkey, u8 newkeylen);
1829 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1830 		     int family, u8 prefixlen, int l3index,
1831 		     struct tcp_md5sig_key *key);
1832 
1833 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1834 		   int family, u8 prefixlen, int l3index, u8 flags);
1835 void tcp_clear_md5_list(struct sock *sk);
1836 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1837 					 const struct sock *addr_sk);
1838 
1839 #ifdef CONFIG_TCP_MD5SIG
1840 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1841 					   const union tcp_md5_addr *addr,
1842 					   int family, bool any_l3index);
1843 static inline struct tcp_md5sig_key *
1844 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1845 		  const union tcp_md5_addr *addr, int family)
1846 {
1847 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1848 		return NULL;
1849 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1850 }
1851 
1852 static inline struct tcp_md5sig_key *
1853 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1854 			      const union tcp_md5_addr *addr, int family)
1855 {
1856 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1857 		return NULL;
1858 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1859 }
1860 
1861 enum skb_drop_reason
1862 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1863 		     const void *saddr, const void *daddr,
1864 		     int family, int l3index, const __u8 *hash_location);
1865 
1866 
1867 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1868 #else
1869 static inline struct tcp_md5sig_key *
1870 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1871 		  const union tcp_md5_addr *addr, int family)
1872 {
1873 	return NULL;
1874 }
1875 
1876 static inline struct tcp_md5sig_key *
1877 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1878 			      const union tcp_md5_addr *addr, int family)
1879 {
1880 	return NULL;
1881 }
1882 
1883 static inline enum skb_drop_reason
1884 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1885 		     const void *saddr, const void *daddr,
1886 		     int family, int l3index, const __u8 *hash_location)
1887 {
1888 	return SKB_NOT_DROPPED_YET;
1889 }
1890 #define tcp_twsk_md5_key(twsk)	NULL
1891 #endif
1892 
1893 int tcp_md5_alloc_sigpool(void);
1894 void tcp_md5_release_sigpool(void);
1895 void tcp_md5_add_sigpool(void);
1896 extern int tcp_md5_sigpool_id;
1897 
1898 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1899 		     const struct tcp_md5sig_key *key);
1900 
1901 /* From tcp_fastopen.c */
1902 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1903 			    struct tcp_fastopen_cookie *cookie);
1904 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1905 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1906 			    u16 try_exp);
1907 struct tcp_fastopen_request {
1908 	/* Fast Open cookie. Size 0 means a cookie request */
1909 	struct tcp_fastopen_cookie	cookie;
1910 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1911 	size_t				size;
1912 	int				copied;	/* queued in tcp_connect() */
1913 	struct ubuf_info		*uarg;
1914 };
1915 void tcp_free_fastopen_req(struct tcp_sock *tp);
1916 void tcp_fastopen_destroy_cipher(struct sock *sk);
1917 void tcp_fastopen_ctx_destroy(struct net *net);
1918 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1919 			      void *primary_key, void *backup_key);
1920 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1921 			    u64 *key);
1922 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1923 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1924 			      struct request_sock *req,
1925 			      struct tcp_fastopen_cookie *foc,
1926 			      const struct dst_entry *dst);
1927 void tcp_fastopen_init_key_once(struct net *net);
1928 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1929 			     struct tcp_fastopen_cookie *cookie);
1930 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1931 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1932 #define TCP_FASTOPEN_KEY_MAX 2
1933 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1934 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1935 
1936 /* Fastopen key context */
1937 struct tcp_fastopen_context {
1938 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1939 	int		num;
1940 	struct rcu_head	rcu;
1941 };
1942 
1943 void tcp_fastopen_active_disable(struct sock *sk);
1944 bool tcp_fastopen_active_should_disable(struct sock *sk);
1945 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1946 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1947 
1948 /* Caller needs to wrap with rcu_read_(un)lock() */
1949 static inline
1950 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1951 {
1952 	struct tcp_fastopen_context *ctx;
1953 
1954 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1955 	if (!ctx)
1956 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1957 	return ctx;
1958 }
1959 
1960 static inline
1961 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1962 			       const struct tcp_fastopen_cookie *orig)
1963 {
1964 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1965 	    orig->len == foc->len &&
1966 	    !memcmp(orig->val, foc->val, foc->len))
1967 		return true;
1968 	return false;
1969 }
1970 
1971 static inline
1972 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1973 {
1974 	return ctx->num;
1975 }
1976 
1977 /* Latencies incurred by various limits for a sender. They are
1978  * chronograph-like stats that are mutually exclusive.
1979  */
1980 enum tcp_chrono {
1981 	TCP_CHRONO_UNSPEC,
1982 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1983 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1984 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1985 	__TCP_CHRONO_MAX,
1986 };
1987 
1988 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1989 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1990 
1991 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1992  * the same memory storage than skb->destructor/_skb_refdst
1993  */
1994 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1995 {
1996 	skb->destructor = NULL;
1997 	skb->_skb_refdst = 0UL;
1998 }
1999 
2000 #define tcp_skb_tsorted_save(skb) {		\
2001 	unsigned long _save = skb->_skb_refdst;	\
2002 	skb->_skb_refdst = 0UL;
2003 
2004 #define tcp_skb_tsorted_restore(skb)		\
2005 	skb->_skb_refdst = _save;		\
2006 }
2007 
2008 void tcp_write_queue_purge(struct sock *sk);
2009 
2010 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2011 {
2012 	return skb_rb_first(&sk->tcp_rtx_queue);
2013 }
2014 
2015 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2016 {
2017 	return skb_rb_last(&sk->tcp_rtx_queue);
2018 }
2019 
2020 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2021 {
2022 	return skb_peek_tail(&sk->sk_write_queue);
2023 }
2024 
2025 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2026 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2027 
2028 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2029 {
2030 	return skb_peek(&sk->sk_write_queue);
2031 }
2032 
2033 static inline bool tcp_skb_is_last(const struct sock *sk,
2034 				   const struct sk_buff *skb)
2035 {
2036 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2037 }
2038 
2039 /**
2040  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2041  * @sk: socket
2042  *
2043  * Since the write queue can have a temporary empty skb in it,
2044  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2045  */
2046 static inline bool tcp_write_queue_empty(const struct sock *sk)
2047 {
2048 	const struct tcp_sock *tp = tcp_sk(sk);
2049 
2050 	return tp->write_seq == tp->snd_nxt;
2051 }
2052 
2053 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2054 {
2055 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2056 }
2057 
2058 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2059 {
2060 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2061 }
2062 
2063 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2064 {
2065 	__skb_queue_tail(&sk->sk_write_queue, skb);
2066 
2067 	/* Queue it, remembering where we must start sending. */
2068 	if (sk->sk_write_queue.next == skb)
2069 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2070 }
2071 
2072 /* Insert new before skb on the write queue of sk.  */
2073 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2074 						  struct sk_buff *skb,
2075 						  struct sock *sk)
2076 {
2077 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2078 }
2079 
2080 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2081 {
2082 	tcp_skb_tsorted_anchor_cleanup(skb);
2083 	__skb_unlink(skb, &sk->sk_write_queue);
2084 }
2085 
2086 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2087 
2088 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2089 {
2090 	tcp_skb_tsorted_anchor_cleanup(skb);
2091 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2092 }
2093 
2094 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2095 {
2096 	list_del(&skb->tcp_tsorted_anchor);
2097 	tcp_rtx_queue_unlink(skb, sk);
2098 	tcp_wmem_free_skb(sk, skb);
2099 }
2100 
2101 static inline void tcp_push_pending_frames(struct sock *sk)
2102 {
2103 	if (tcp_send_head(sk)) {
2104 		struct tcp_sock *tp = tcp_sk(sk);
2105 
2106 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2107 	}
2108 }
2109 
2110 /* Start sequence of the skb just after the highest skb with SACKed
2111  * bit, valid only if sacked_out > 0 or when the caller has ensured
2112  * validity by itself.
2113  */
2114 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2115 {
2116 	if (!tp->sacked_out)
2117 		return tp->snd_una;
2118 
2119 	if (tp->highest_sack == NULL)
2120 		return tp->snd_nxt;
2121 
2122 	return TCP_SKB_CB(tp->highest_sack)->seq;
2123 }
2124 
2125 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2126 {
2127 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2128 }
2129 
2130 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2131 {
2132 	return tcp_sk(sk)->highest_sack;
2133 }
2134 
2135 static inline void tcp_highest_sack_reset(struct sock *sk)
2136 {
2137 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2138 }
2139 
2140 /* Called when old skb is about to be deleted and replaced by new skb */
2141 static inline void tcp_highest_sack_replace(struct sock *sk,
2142 					    struct sk_buff *old,
2143 					    struct sk_buff *new)
2144 {
2145 	if (old == tcp_highest_sack(sk))
2146 		tcp_sk(sk)->highest_sack = new;
2147 }
2148 
2149 /* This helper checks if socket has IP_TRANSPARENT set */
2150 static inline bool inet_sk_transparent(const struct sock *sk)
2151 {
2152 	switch (sk->sk_state) {
2153 	case TCP_TIME_WAIT:
2154 		return inet_twsk(sk)->tw_transparent;
2155 	case TCP_NEW_SYN_RECV:
2156 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2157 	}
2158 	return inet_test_bit(TRANSPARENT, sk);
2159 }
2160 
2161 /* Determines whether this is a thin stream (which may suffer from
2162  * increased latency). Used to trigger latency-reducing mechanisms.
2163  */
2164 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2165 {
2166 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2167 }
2168 
2169 /* /proc */
2170 enum tcp_seq_states {
2171 	TCP_SEQ_STATE_LISTENING,
2172 	TCP_SEQ_STATE_ESTABLISHED,
2173 };
2174 
2175 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2176 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2177 void tcp_seq_stop(struct seq_file *seq, void *v);
2178 
2179 struct tcp_seq_afinfo {
2180 	sa_family_t			family;
2181 };
2182 
2183 struct tcp_iter_state {
2184 	struct seq_net_private	p;
2185 	enum tcp_seq_states	state;
2186 	struct sock		*syn_wait_sk;
2187 	int			bucket, offset, sbucket, num;
2188 	loff_t			last_pos;
2189 };
2190 
2191 extern struct request_sock_ops tcp_request_sock_ops;
2192 extern struct request_sock_ops tcp6_request_sock_ops;
2193 
2194 void tcp_v4_destroy_sock(struct sock *sk);
2195 
2196 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2197 				netdev_features_t features);
2198 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2199 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2200 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2201 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2202 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2203 #ifdef CONFIG_INET
2204 void tcp_gro_complete(struct sk_buff *skb);
2205 #else
2206 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2207 #endif
2208 
2209 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2210 
2211 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2212 {
2213 	struct net *net = sock_net((struct sock *)tp);
2214 	u32 val;
2215 
2216 	val = READ_ONCE(tp->notsent_lowat);
2217 
2218 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2219 }
2220 
2221 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2222 
2223 #ifdef CONFIG_PROC_FS
2224 int tcp4_proc_init(void);
2225 void tcp4_proc_exit(void);
2226 #endif
2227 
2228 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2229 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2230 		     const struct tcp_request_sock_ops *af_ops,
2231 		     struct sock *sk, struct sk_buff *skb);
2232 
2233 /* TCP af-specific functions */
2234 struct tcp_sock_af_ops {
2235 #ifdef CONFIG_TCP_MD5SIG
2236 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2237 						const struct sock *addr_sk);
2238 	int		(*calc_md5_hash)(char *location,
2239 					 const struct tcp_md5sig_key *md5,
2240 					 const struct sock *sk,
2241 					 const struct sk_buff *skb);
2242 	int		(*md5_parse)(struct sock *sk,
2243 				     int optname,
2244 				     sockptr_t optval,
2245 				     int optlen);
2246 #endif
2247 #ifdef CONFIG_TCP_AO
2248 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2249 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2250 					struct sock *addr_sk,
2251 					int sndid, int rcvid);
2252 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2253 			      const struct sock *sk,
2254 			      __be32 sisn, __be32 disn, bool send);
2255 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2256 			    const struct sock *sk, const struct sk_buff *skb,
2257 			    const u8 *tkey, int hash_offset, u32 sne);
2258 #endif
2259 };
2260 
2261 struct tcp_request_sock_ops {
2262 	u16 mss_clamp;
2263 #ifdef CONFIG_TCP_MD5SIG
2264 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2265 						 const struct sock *addr_sk);
2266 	int		(*calc_md5_hash) (char *location,
2267 					  const struct tcp_md5sig_key *md5,
2268 					  const struct sock *sk,
2269 					  const struct sk_buff *skb);
2270 #endif
2271 #ifdef CONFIG_TCP_AO
2272 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2273 					struct request_sock *req,
2274 					int sndid, int rcvid);
2275 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2276 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2277 			      struct request_sock *req, const struct sk_buff *skb,
2278 			      int hash_offset, u32 sne);
2279 #endif
2280 #ifdef CONFIG_SYN_COOKIES
2281 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2282 				 __u16 *mss);
2283 #endif
2284 	struct dst_entry *(*route_req)(const struct sock *sk,
2285 				       struct sk_buff *skb,
2286 				       struct flowi *fl,
2287 				       struct request_sock *req);
2288 	u32 (*init_seq)(const struct sk_buff *skb);
2289 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2290 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2291 			   struct flowi *fl, struct request_sock *req,
2292 			   struct tcp_fastopen_cookie *foc,
2293 			   enum tcp_synack_type synack_type,
2294 			   struct sk_buff *syn_skb);
2295 };
2296 
2297 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2298 #if IS_ENABLED(CONFIG_IPV6)
2299 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2300 #endif
2301 
2302 #ifdef CONFIG_SYN_COOKIES
2303 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2304 					 const struct sock *sk, struct sk_buff *skb,
2305 					 __u16 *mss)
2306 {
2307 	tcp_synq_overflow(sk);
2308 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2309 	return ops->cookie_init_seq(skb, mss);
2310 }
2311 #else
2312 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2313 					 const struct sock *sk, struct sk_buff *skb,
2314 					 __u16 *mss)
2315 {
2316 	return 0;
2317 }
2318 #endif
2319 
2320 struct tcp_key {
2321 	union {
2322 		struct {
2323 			struct tcp_ao_key *ao_key;
2324 			char *traffic_key;
2325 			u32 sne;
2326 			u8 rcv_next;
2327 		};
2328 		struct tcp_md5sig_key *md5_key;
2329 	};
2330 	enum {
2331 		TCP_KEY_NONE = 0,
2332 		TCP_KEY_MD5,
2333 		TCP_KEY_AO,
2334 	} type;
2335 };
2336 
2337 static inline void tcp_get_current_key(const struct sock *sk,
2338 				       struct tcp_key *out)
2339 {
2340 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2341 	const struct tcp_sock *tp = tcp_sk(sk);
2342 #endif
2343 
2344 #ifdef CONFIG_TCP_AO
2345 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2346 		struct tcp_ao_info *ao;
2347 
2348 		ao = rcu_dereference_protected(tp->ao_info,
2349 					       lockdep_sock_is_held(sk));
2350 		if (ao) {
2351 			out->ao_key = READ_ONCE(ao->current_key);
2352 			out->type = TCP_KEY_AO;
2353 			return;
2354 		}
2355 	}
2356 #endif
2357 #ifdef CONFIG_TCP_MD5SIG
2358 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2359 	    rcu_access_pointer(tp->md5sig_info)) {
2360 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2361 		if (out->md5_key) {
2362 			out->type = TCP_KEY_MD5;
2363 			return;
2364 		}
2365 	}
2366 #endif
2367 	out->type = TCP_KEY_NONE;
2368 }
2369 
2370 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2371 {
2372 #ifdef CONFIG_TCP_MD5SIG
2373 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2374 	    key->type == TCP_KEY_MD5)
2375 		return true;
2376 #endif
2377 	return false;
2378 }
2379 
2380 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2381 {
2382 #ifdef CONFIG_TCP_AO
2383 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2384 	    key->type == TCP_KEY_AO)
2385 		return true;
2386 #endif
2387 	return false;
2388 }
2389 
2390 int tcpv4_offload_init(void);
2391 
2392 void tcp_v4_init(void);
2393 void tcp_init(void);
2394 
2395 /* tcp_recovery.c */
2396 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2397 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2398 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2399 				u32 reo_wnd);
2400 extern bool tcp_rack_mark_lost(struct sock *sk);
2401 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2402 			     u64 xmit_time);
2403 extern void tcp_rack_reo_timeout(struct sock *sk);
2404 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2405 
2406 /* tcp_plb.c */
2407 
2408 /*
2409  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2410  * expects cong_ratio which represents fraction of traffic that experienced
2411  * congestion over a single RTT. In order to avoid floating point operations,
2412  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2413  */
2414 #define TCP_PLB_SCALE 8
2415 
2416 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2417 struct tcp_plb_state {
2418 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2419 		unused:3;
2420 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2421 };
2422 
2423 static inline void tcp_plb_init(const struct sock *sk,
2424 				struct tcp_plb_state *plb)
2425 {
2426 	plb->consec_cong_rounds = 0;
2427 	plb->pause_until = 0;
2428 }
2429 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2430 			  const int cong_ratio);
2431 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2432 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2433 
2434 /* At how many usecs into the future should the RTO fire? */
2435 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2436 {
2437 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2438 	u32 rto = inet_csk(sk)->icsk_rto;
2439 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2440 
2441 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2442 }
2443 
2444 /*
2445  * Save and compile IPv4 options, return a pointer to it
2446  */
2447 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2448 							 struct sk_buff *skb)
2449 {
2450 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2451 	struct ip_options_rcu *dopt = NULL;
2452 
2453 	if (opt->optlen) {
2454 		int opt_size = sizeof(*dopt) + opt->optlen;
2455 
2456 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2457 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2458 			kfree(dopt);
2459 			dopt = NULL;
2460 		}
2461 	}
2462 	return dopt;
2463 }
2464 
2465 /* locally generated TCP pure ACKs have skb->truesize == 2
2466  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2467  * This is much faster than dissecting the packet to find out.
2468  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2469  */
2470 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2471 {
2472 	return skb->truesize == 2;
2473 }
2474 
2475 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2476 {
2477 	skb->truesize = 2;
2478 }
2479 
2480 static inline int tcp_inq(struct sock *sk)
2481 {
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 	int answ;
2484 
2485 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2486 		answ = 0;
2487 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2488 		   !tp->urg_data ||
2489 		   before(tp->urg_seq, tp->copied_seq) ||
2490 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2491 
2492 		answ = tp->rcv_nxt - tp->copied_seq;
2493 
2494 		/* Subtract 1, if FIN was received */
2495 		if (answ && sock_flag(sk, SOCK_DONE))
2496 			answ--;
2497 	} else {
2498 		answ = tp->urg_seq - tp->copied_seq;
2499 	}
2500 
2501 	return answ;
2502 }
2503 
2504 int tcp_peek_len(struct socket *sock);
2505 
2506 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2507 {
2508 	u16 segs_in;
2509 
2510 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2511 
2512 	/* We update these fields while other threads might
2513 	 * read them from tcp_get_info()
2514 	 */
2515 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2516 	if (skb->len > tcp_hdrlen(skb))
2517 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2518 }
2519 
2520 /*
2521  * TCP listen path runs lockless.
2522  * We forced "struct sock" to be const qualified to make sure
2523  * we don't modify one of its field by mistake.
2524  * Here, we increment sk_drops which is an atomic_t, so we can safely
2525  * make sock writable again.
2526  */
2527 static inline void tcp_listendrop(const struct sock *sk)
2528 {
2529 	atomic_inc(&((struct sock *)sk)->sk_drops);
2530 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2531 }
2532 
2533 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2534 
2535 /*
2536  * Interface for adding Upper Level Protocols over TCP
2537  */
2538 
2539 #define TCP_ULP_NAME_MAX	16
2540 #define TCP_ULP_MAX		128
2541 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2542 
2543 struct tcp_ulp_ops {
2544 	struct list_head	list;
2545 
2546 	/* initialize ulp */
2547 	int (*init)(struct sock *sk);
2548 	/* update ulp */
2549 	void (*update)(struct sock *sk, struct proto *p,
2550 		       void (*write_space)(struct sock *sk));
2551 	/* cleanup ulp */
2552 	void (*release)(struct sock *sk);
2553 	/* diagnostic */
2554 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2555 	size_t (*get_info_size)(const struct sock *sk);
2556 	/* clone ulp */
2557 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2558 		      const gfp_t priority);
2559 
2560 	char		name[TCP_ULP_NAME_MAX];
2561 	struct module	*owner;
2562 };
2563 int tcp_register_ulp(struct tcp_ulp_ops *type);
2564 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2565 int tcp_set_ulp(struct sock *sk, const char *name);
2566 void tcp_get_available_ulp(char *buf, size_t len);
2567 void tcp_cleanup_ulp(struct sock *sk);
2568 void tcp_update_ulp(struct sock *sk, struct proto *p,
2569 		    void (*write_space)(struct sock *sk));
2570 
2571 #define MODULE_ALIAS_TCP_ULP(name)				\
2572 	__MODULE_INFO(alias, alias_userspace, name);		\
2573 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2574 
2575 #ifdef CONFIG_NET_SOCK_MSG
2576 struct sk_msg;
2577 struct sk_psock;
2578 
2579 #ifdef CONFIG_BPF_SYSCALL
2580 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2581 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2582 #endif /* CONFIG_BPF_SYSCALL */
2583 
2584 #ifdef CONFIG_INET
2585 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2586 #else
2587 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2588 {
2589 }
2590 #endif
2591 
2592 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2593 			  struct sk_msg *msg, u32 bytes, int flags);
2594 #endif /* CONFIG_NET_SOCK_MSG */
2595 
2596 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2597 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2598 {
2599 }
2600 #endif
2601 
2602 #ifdef CONFIG_CGROUP_BPF
2603 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2604 				      struct sk_buff *skb,
2605 				      unsigned int end_offset)
2606 {
2607 	skops->skb = skb;
2608 	skops->skb_data_end = skb->data + end_offset;
2609 }
2610 #else
2611 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2612 				      struct sk_buff *skb,
2613 				      unsigned int end_offset)
2614 {
2615 }
2616 #endif
2617 
2618 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2619  * is < 0, then the BPF op failed (for example if the loaded BPF
2620  * program does not support the chosen operation or there is no BPF
2621  * program loaded).
2622  */
2623 #ifdef CONFIG_BPF
2624 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2625 {
2626 	struct bpf_sock_ops_kern sock_ops;
2627 	int ret;
2628 
2629 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2630 	if (sk_fullsock(sk)) {
2631 		sock_ops.is_fullsock = 1;
2632 		sock_owned_by_me(sk);
2633 	}
2634 
2635 	sock_ops.sk = sk;
2636 	sock_ops.op = op;
2637 	if (nargs > 0)
2638 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2639 
2640 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2641 	if (ret == 0)
2642 		ret = sock_ops.reply;
2643 	else
2644 		ret = -1;
2645 	return ret;
2646 }
2647 
2648 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2649 {
2650 	u32 args[2] = {arg1, arg2};
2651 
2652 	return tcp_call_bpf(sk, op, 2, args);
2653 }
2654 
2655 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2656 				    u32 arg3)
2657 {
2658 	u32 args[3] = {arg1, arg2, arg3};
2659 
2660 	return tcp_call_bpf(sk, op, 3, args);
2661 }
2662 
2663 #else
2664 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2665 {
2666 	return -EPERM;
2667 }
2668 
2669 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2670 {
2671 	return -EPERM;
2672 }
2673 
2674 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2675 				    u32 arg3)
2676 {
2677 	return -EPERM;
2678 }
2679 
2680 #endif
2681 
2682 static inline u32 tcp_timeout_init(struct sock *sk)
2683 {
2684 	int timeout;
2685 
2686 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2687 
2688 	if (timeout <= 0)
2689 		timeout = TCP_TIMEOUT_INIT;
2690 	return min_t(int, timeout, TCP_RTO_MAX);
2691 }
2692 
2693 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2694 {
2695 	int rwnd;
2696 
2697 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2698 
2699 	if (rwnd < 0)
2700 		rwnd = 0;
2701 	return rwnd;
2702 }
2703 
2704 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2705 {
2706 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2707 }
2708 
2709 static inline void tcp_bpf_rtt(struct sock *sk)
2710 {
2711 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2712 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2713 }
2714 
2715 #if IS_ENABLED(CONFIG_SMC)
2716 extern struct static_key_false tcp_have_smc;
2717 #endif
2718 
2719 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2720 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2721 			     void (*cad)(struct sock *sk, u32 ack_seq));
2722 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2723 void clean_acked_data_flush(void);
2724 #endif
2725 
2726 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2727 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2728 				    const struct tcp_sock *tp)
2729 {
2730 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2731 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2732 }
2733 
2734 /* Compute Earliest Departure Time for some control packets
2735  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2736  */
2737 static inline u64 tcp_transmit_time(const struct sock *sk)
2738 {
2739 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2740 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2741 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2742 
2743 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2744 	}
2745 	return 0;
2746 }
2747 
2748 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2749 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2750 {
2751 	const u8 *md5_tmp, *ao_tmp;
2752 	int ret;
2753 
2754 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2755 	if (ret)
2756 		return ret;
2757 
2758 	if (md5_hash)
2759 		*md5_hash = md5_tmp;
2760 
2761 	if (aoh) {
2762 		if (!ao_tmp)
2763 			*aoh = NULL;
2764 		else
2765 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2766 	}
2767 
2768 	return 0;
2769 }
2770 
2771 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2772 				   int family, int l3index, bool stat_inc)
2773 {
2774 #ifdef CONFIG_TCP_AO
2775 	struct tcp_ao_info *ao_info;
2776 	struct tcp_ao_key *ao_key;
2777 
2778 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2779 		return false;
2780 
2781 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2782 					lockdep_sock_is_held(sk));
2783 	if (!ao_info)
2784 		return false;
2785 
2786 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2787 	if (ao_info->ao_required || ao_key) {
2788 		if (stat_inc) {
2789 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2790 			atomic64_inc(&ao_info->counters.ao_required);
2791 		}
2792 		return true;
2793 	}
2794 #endif
2795 	return false;
2796 }
2797 
2798 /* Called with rcu_read_lock() */
2799 static inline enum skb_drop_reason
2800 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2801 		 const struct sk_buff *skb,
2802 		 const void *saddr, const void *daddr,
2803 		 int family, int dif, int sdif)
2804 {
2805 	const struct tcphdr *th = tcp_hdr(skb);
2806 	const struct tcp_ao_hdr *aoh;
2807 	const __u8 *md5_location;
2808 	int l3index;
2809 
2810 	/* Invalid option or two times meet any of auth options */
2811 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2812 		tcp_hash_fail("TCP segment has incorrect auth options set",
2813 			      family, skb, "");
2814 		return SKB_DROP_REASON_TCP_AUTH_HDR;
2815 	}
2816 
2817 	if (req) {
2818 		if (tcp_rsk_used_ao(req) != !!aoh) {
2819 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2820 			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2821 				      family, skb, "%s",
2822 				      !aoh ? "missing AO" : "AO signed");
2823 			return SKB_DROP_REASON_TCP_AOFAILURE;
2824 		}
2825 	}
2826 
2827 	/* sdif set, means packet ingressed via a device
2828 	 * in an L3 domain and dif is set to the l3mdev
2829 	 */
2830 	l3index = sdif ? dif : 0;
2831 
2832 	/* Fast path: unsigned segments */
2833 	if (likely(!md5_location && !aoh)) {
2834 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2835 		 * for the remote peer. On TCP-AO established connection
2836 		 * the last key is impossible to remove, so there's
2837 		 * always at least one current_key.
2838 		 */
2839 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2840 			tcp_hash_fail("AO hash is required, but not found",
2841 					family, skb, "L3 index %d", l3index);
2842 			return SKB_DROP_REASON_TCP_AONOTFOUND;
2843 		}
2844 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2845 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2846 			tcp_hash_fail("MD5 Hash not found",
2847 				      family, skb, "L3 index %d", l3index);
2848 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2849 		}
2850 		return SKB_NOT_DROPPED_YET;
2851 	}
2852 
2853 	if (aoh)
2854 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2855 
2856 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2857 				    l3index, md5_location);
2858 }
2859 
2860 #endif	/* _TCP_H */
2861