xref: /linux/include/net/tcp.h (revision f197902cd21ae833850679b216bb62c0d056bbb3)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	return READ_ONCE(tcp_memory_pressure);
307 }
308 /*
309  * The next routines deal with comparing 32 bit unsigned ints
310  * and worry about wraparound (automatic with unsigned arithmetic).
311  */
312 
313 static inline bool before(__u32 seq1, __u32 seq2)
314 {
315         return (__s32)(seq1-seq2) < 0;
316 }
317 #define after(seq2, seq1) 	before(seq1, seq2)
318 
319 /* is s2<=s1<=s3 ? */
320 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
321 {
322 	return seq3 - seq2 >= seq1 - seq2;
323 }
324 
325 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
326 {
327 	sk_wmem_queued_add(sk, -skb->truesize);
328 	if (!skb_zcopy_pure(skb))
329 		sk_mem_uncharge(sk, skb->truesize);
330 	else
331 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
332 	__kfree_skb(skb);
333 }
334 
335 void sk_forced_mem_schedule(struct sock *sk, int size);
336 
337 bool tcp_check_oom(const struct sock *sk, int shift);
338 
339 
340 extern struct proto tcp_prot;
341 
342 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
343 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
344 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
345 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
346 
347 void tcp_tsq_work_init(void);
348 
349 int tcp_v4_err(struct sk_buff *skb, u32);
350 
351 void tcp_shutdown(struct sock *sk, int how);
352 
353 int tcp_v4_early_demux(struct sk_buff *skb);
354 int tcp_v4_rcv(struct sk_buff *skb);
355 
356 void tcp_remove_empty_skb(struct sock *sk);
357 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
358 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
359 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
360 			 size_t size, struct ubuf_info *uarg);
361 void tcp_splice_eof(struct socket *sock);
362 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
363 int tcp_wmem_schedule(struct sock *sk, int copy);
364 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
365 	      int size_goal);
366 void tcp_release_cb(struct sock *sk);
367 void tcp_wfree(struct sk_buff *skb);
368 void tcp_write_timer_handler(struct sock *sk);
369 void tcp_delack_timer_handler(struct sock *sk);
370 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
371 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
373 void tcp_rcvbuf_grow(struct sock *sk);
374 void tcp_rcv_space_adjust(struct sock *sk);
375 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
376 void tcp_twsk_destructor(struct sock *sk);
377 void tcp_twsk_purge(struct list_head *net_exit_list);
378 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
379 			struct pipe_inode_info *pipe, size_t len,
380 			unsigned int flags);
381 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
382 				     bool force_schedule);
383 
384 static inline void tcp_dec_quickack_mode(struct sock *sk)
385 {
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	if (icsk->icsk_ack.quick) {
389 		/* How many ACKs S/ACKing new data have we sent? */
390 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
391 
392 		if (pkts >= icsk->icsk_ack.quick) {
393 			icsk->icsk_ack.quick = 0;
394 			/* Leaving quickack mode we deflate ATO. */
395 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
396 		} else
397 			icsk->icsk_ack.quick -= pkts;
398 	}
399 }
400 
401 #define	TCP_ECN_MODE_RFC3168	BIT(0)
402 #define	TCP_ECN_QUEUE_CWR	BIT(1)
403 #define	TCP_ECN_DEMAND_CWR	BIT(2)
404 #define	TCP_ECN_SEEN		BIT(3)
405 #define	TCP_ECN_MODE_ACCECN	BIT(4)
406 
407 #define	TCP_ECN_DISABLED	0
408 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
409 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
410 
411 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
412 {
413 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
414 }
415 
416 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
417 {
418 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
419 }
420 
421 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
422 {
423 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
424 }
425 
426 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
427 {
428 	return !tcp_ecn_mode_any(tp);
429 }
430 
431 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
432 {
433 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
434 }
435 
436 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
437 {
438 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
439 	tp->ecn_flags |= mode;
440 }
441 
442 enum tcp_tw_status {
443 	TCP_TW_SUCCESS = 0,
444 	TCP_TW_RST = 1,
445 	TCP_TW_ACK = 2,
446 	TCP_TW_SYN = 3,
447 	TCP_TW_ACK_OOW = 4
448 };
449 
450 
451 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
452 					      struct sk_buff *skb,
453 					      const struct tcphdr *th,
454 					      u32 *tw_isn,
455 					      enum skb_drop_reason *drop_reason);
456 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
457 			   struct request_sock *req, bool fastopen,
458 			   bool *lost_race, enum skb_drop_reason *drop_reason);
459 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
460 				       struct sk_buff *skb);
461 void tcp_enter_loss(struct sock *sk);
462 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
463 void tcp_clear_retrans(struct tcp_sock *tp);
464 void tcp_update_pacing_rate(struct sock *sk);
465 void tcp_set_rto(struct sock *sk);
466 void tcp_update_metrics(struct sock *sk);
467 void tcp_init_metrics(struct sock *sk);
468 void tcp_metrics_init(void);
469 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
470 void __tcp_close(struct sock *sk, long timeout);
471 void tcp_close(struct sock *sk, long timeout);
472 void tcp_init_sock(struct sock *sk);
473 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
474 __poll_t tcp_poll(struct file *file, struct socket *sock,
475 		      struct poll_table_struct *wait);
476 int do_tcp_getsockopt(struct sock *sk, int level,
477 		      int optname, sockptr_t optval, sockptr_t optlen);
478 int tcp_getsockopt(struct sock *sk, int level, int optname,
479 		   char __user *optval, int __user *optlen);
480 bool tcp_bpf_bypass_getsockopt(int level, int optname);
481 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
482 		      sockptr_t optval, unsigned int optlen);
483 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
484 		   unsigned int optlen);
485 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
486 void tcp_set_keepalive(struct sock *sk, int val);
487 void tcp_syn_ack_timeout(const struct request_sock *req);
488 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
489 		int flags, int *addr_len);
490 int tcp_set_rcvlowat(struct sock *sk, int val);
491 int tcp_set_window_clamp(struct sock *sk, int val);
492 void tcp_update_recv_tstamps(struct sk_buff *skb,
493 			     struct scm_timestamping_internal *tss);
494 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
495 			struct scm_timestamping_internal *tss);
496 void tcp_data_ready(struct sock *sk);
497 #ifdef CONFIG_MMU
498 int tcp_mmap(struct file *file, struct socket *sock,
499 	     struct vm_area_struct *vma);
500 #endif
501 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
502 		       struct tcp_options_received *opt_rx,
503 		       int estab, struct tcp_fastopen_cookie *foc);
504 
505 /*
506  *	BPF SKB-less helpers
507  */
508 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
509 			 struct tcphdr *th, u32 *cookie);
510 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
511 			 struct tcphdr *th, u32 *cookie);
512 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
513 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
514 			  const struct tcp_request_sock_ops *af_ops,
515 			  struct sock *sk, struct tcphdr *th);
516 /*
517  *	TCP v4 functions exported for the inet6 API
518  */
519 
520 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
521 void tcp_v4_mtu_reduced(struct sock *sk);
522 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
523 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
524 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
525 struct sock *tcp_create_openreq_child(const struct sock *sk,
526 				      struct request_sock *req,
527 				      struct sk_buff *skb);
528 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
529 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
530 				  struct request_sock *req,
531 				  struct dst_entry *dst,
532 				  struct request_sock *req_unhash,
533 				  bool *own_req);
534 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
535 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
536 int tcp_connect(struct sock *sk);
537 enum tcp_synack_type {
538 	TCP_SYNACK_NORMAL,
539 	TCP_SYNACK_FASTOPEN,
540 	TCP_SYNACK_COOKIE,
541 };
542 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
543 				struct request_sock *req,
544 				struct tcp_fastopen_cookie *foc,
545 				enum tcp_synack_type synack_type,
546 				struct sk_buff *syn_skb);
547 int tcp_disconnect(struct sock *sk, int flags);
548 
549 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
550 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
551 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
552 
553 /* From syncookies.c */
554 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
555 				 struct request_sock *req,
556 				 struct dst_entry *dst);
557 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
558 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
559 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
560 					    struct sock *sk, struct sk_buff *skb,
561 					    struct tcp_options_received *tcp_opt,
562 					    int mss, u32 tsoff);
563 
564 #if IS_ENABLED(CONFIG_BPF)
565 struct bpf_tcp_req_attrs {
566 	u32 rcv_tsval;
567 	u32 rcv_tsecr;
568 	u16 mss;
569 	u8 rcv_wscale;
570 	u8 snd_wscale;
571 	u8 ecn_ok;
572 	u8 wscale_ok;
573 	u8 sack_ok;
574 	u8 tstamp_ok;
575 	u8 usec_ts_ok;
576 	u8 reserved[3];
577 };
578 #endif
579 
580 #ifdef CONFIG_SYN_COOKIES
581 
582 /* Syncookies use a monotonic timer which increments every 60 seconds.
583  * This counter is used both as a hash input and partially encoded into
584  * the cookie value.  A cookie is only validated further if the delta
585  * between the current counter value and the encoded one is less than this,
586  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
587  * the counter advances immediately after a cookie is generated).
588  */
589 #define MAX_SYNCOOKIE_AGE	2
590 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
591 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
592 
593 /* syncookies: remember time of last synqueue overflow
594  * But do not dirty this field too often (once per second is enough)
595  * It is racy as we do not hold a lock, but race is very minor.
596  */
597 static inline void tcp_synq_overflow(const struct sock *sk)
598 {
599 	unsigned int last_overflow;
600 	unsigned int now = jiffies;
601 
602 	if (sk->sk_reuseport) {
603 		struct sock_reuseport *reuse;
604 
605 		reuse = rcu_dereference(sk->sk_reuseport_cb);
606 		if (likely(reuse)) {
607 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
608 			if (!time_between32(now, last_overflow,
609 					    last_overflow + HZ))
610 				WRITE_ONCE(reuse->synq_overflow_ts, now);
611 			return;
612 		}
613 	}
614 
615 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
616 	if (!time_between32(now, last_overflow, last_overflow + HZ))
617 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
618 }
619 
620 /* syncookies: no recent synqueue overflow on this listening socket? */
621 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
622 {
623 	unsigned int last_overflow;
624 	unsigned int now = jiffies;
625 
626 	if (sk->sk_reuseport) {
627 		struct sock_reuseport *reuse;
628 
629 		reuse = rcu_dereference(sk->sk_reuseport_cb);
630 		if (likely(reuse)) {
631 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
632 			return !time_between32(now, last_overflow - HZ,
633 					       last_overflow +
634 					       TCP_SYNCOOKIE_VALID);
635 		}
636 	}
637 
638 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
639 
640 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
641 	 * then we're under synflood. However, we have to use
642 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
643 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
644 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
645 	 * which could lead to rejecting a valid syncookie.
646 	 */
647 	return !time_between32(now, last_overflow - HZ,
648 			       last_overflow + TCP_SYNCOOKIE_VALID);
649 }
650 
651 static inline u32 tcp_cookie_time(void)
652 {
653 	u64 val = get_jiffies_64();
654 
655 	do_div(val, TCP_SYNCOOKIE_PERIOD);
656 	return val;
657 }
658 
659 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
660 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
661 {
662 	if (usec_ts)
663 		return div_u64(val, NSEC_PER_USEC);
664 
665 	return div_u64(val, NSEC_PER_MSEC);
666 }
667 
668 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
669 			      u16 *mssp);
670 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
671 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
672 bool cookie_timestamp_decode(const struct net *net,
673 			     struct tcp_options_received *opt);
674 
675 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
676 {
677 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
678 		dst_feature(dst, RTAX_FEATURE_ECN);
679 }
680 
681 #if IS_ENABLED(CONFIG_BPF)
682 static inline bool cookie_bpf_ok(struct sk_buff *skb)
683 {
684 	return skb->sk;
685 }
686 
687 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
688 #else
689 static inline bool cookie_bpf_ok(struct sk_buff *skb)
690 {
691 	return false;
692 }
693 
694 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
695 						    struct sk_buff *skb)
696 {
697 	return NULL;
698 }
699 #endif
700 
701 /* From net/ipv6/syncookies.c */
702 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
703 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
704 
705 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
706 			      const struct tcphdr *th, u16 *mssp);
707 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
708 #endif
709 /* tcp_output.c */
710 
711 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
712 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
713 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
714 			       int nonagle);
715 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
716 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
717 void tcp_retransmit_timer(struct sock *sk);
718 void tcp_xmit_retransmit_queue(struct sock *);
719 void tcp_simple_retransmit(struct sock *);
720 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
721 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
722 enum tcp_queue {
723 	TCP_FRAG_IN_WRITE_QUEUE,
724 	TCP_FRAG_IN_RTX_QUEUE,
725 };
726 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
727 		 struct sk_buff *skb, u32 len,
728 		 unsigned int mss_now, gfp_t gfp);
729 
730 void tcp_send_probe0(struct sock *);
731 int tcp_write_wakeup(struct sock *, int mib);
732 void tcp_send_fin(struct sock *sk);
733 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
734 			   enum sk_rst_reason reason);
735 int tcp_send_synack(struct sock *);
736 void tcp_push_one(struct sock *, unsigned int mss_now);
737 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
738 void tcp_send_ack(struct sock *sk);
739 void tcp_send_delayed_ack(struct sock *sk);
740 void tcp_send_loss_probe(struct sock *sk);
741 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
742 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
743 			     const struct sk_buff *next_skb);
744 
745 /* tcp_input.c */
746 void tcp_rearm_rto(struct sock *sk);
747 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
748 void tcp_done_with_error(struct sock *sk, int err);
749 void tcp_reset(struct sock *sk, struct sk_buff *skb);
750 void tcp_fin(struct sock *sk);
751 void tcp_check_space(struct sock *sk);
752 void tcp_sack_compress_send_ack(struct sock *sk);
753 
754 static inline void tcp_cleanup_skb(struct sk_buff *skb)
755 {
756 	skb_dst_drop(skb);
757 	secpath_reset(skb);
758 }
759 
760 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
761 {
762 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
763 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
764 	__skb_queue_tail(&sk->sk_receive_queue, skb);
765 }
766 
767 /* tcp_timer.c */
768 void tcp_init_xmit_timers(struct sock *);
769 static inline void tcp_clear_xmit_timers(struct sock *sk)
770 {
771 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
772 		__sock_put(sk);
773 
774 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
775 		__sock_put(sk);
776 
777 	inet_csk_clear_xmit_timers(sk);
778 }
779 
780 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
781 unsigned int tcp_current_mss(struct sock *sk);
782 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
783 
784 /* Bound MSS / TSO packet size with the half of the window */
785 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
786 {
787 	int cutoff;
788 
789 	/* When peer uses tiny windows, there is no use in packetizing
790 	 * to sub-MSS pieces for the sake of SWS or making sure there
791 	 * are enough packets in the pipe for fast recovery.
792 	 *
793 	 * On the other hand, for extremely large MSS devices, handling
794 	 * smaller than MSS windows in this way does make sense.
795 	 */
796 	if (tp->max_window > TCP_MSS_DEFAULT)
797 		cutoff = (tp->max_window >> 1);
798 	else
799 		cutoff = tp->max_window;
800 
801 	if (cutoff && pktsize > cutoff)
802 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
803 	else
804 		return pktsize;
805 }
806 
807 /* tcp.c */
808 void tcp_get_info(struct sock *, struct tcp_info *);
809 
810 /* Read 'sendfile()'-style from a TCP socket */
811 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
812 		  sk_read_actor_t recv_actor);
813 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
814 			sk_read_actor_t recv_actor, bool noack,
815 			u32 *copied_seq);
816 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
817 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
818 void tcp_read_done(struct sock *sk, size_t len);
819 
820 void tcp_initialize_rcv_mss(struct sock *sk);
821 
822 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
823 int tcp_mss_to_mtu(struct sock *sk, int mss);
824 void tcp_mtup_init(struct sock *sk);
825 
826 static inline unsigned int tcp_rto_max(const struct sock *sk)
827 {
828 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
829 }
830 
831 static inline void tcp_bound_rto(struct sock *sk)
832 {
833 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
834 }
835 
836 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
837 {
838 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
839 }
840 
841 u32 tcp_delack_max(const struct sock *sk);
842 
843 /* Compute the actual rto_min value */
844 static inline u32 tcp_rto_min(const struct sock *sk)
845 {
846 	const struct dst_entry *dst = __sk_dst_get(sk);
847 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
848 
849 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
850 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
851 	return rto_min;
852 }
853 
854 static inline u32 tcp_rto_min_us(const struct sock *sk)
855 {
856 	return jiffies_to_usecs(tcp_rto_min(sk));
857 }
858 
859 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
860 {
861 	return dst_metric_locked(dst, RTAX_CC_ALGO);
862 }
863 
864 /* Minimum RTT in usec. ~0 means not available. */
865 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
866 {
867 	return minmax_get(&tp->rtt_min);
868 }
869 
870 /* Compute the actual receive window we are currently advertising.
871  * Rcv_nxt can be after the window if our peer push more data
872  * than the offered window.
873  */
874 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
875 {
876 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
877 
878 	if (win < 0)
879 		win = 0;
880 	return (u32) win;
881 }
882 
883 /* Choose a new window, without checks for shrinking, and without
884  * scaling applied to the result.  The caller does these things
885  * if necessary.  This is a "raw" window selection.
886  */
887 u32 __tcp_select_window(struct sock *sk);
888 
889 void tcp_send_window_probe(struct sock *sk);
890 
891 /* TCP uses 32bit jiffies to save some space.
892  * Note that this is different from tcp_time_stamp, which
893  * historically has been the same until linux-4.13.
894  */
895 #define tcp_jiffies32 ((u32)jiffies)
896 
897 /*
898  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
899  * It is no longer tied to jiffies, but to 1 ms clock.
900  * Note: double check if you want to use tcp_jiffies32 instead of this.
901  */
902 #define TCP_TS_HZ	1000
903 
904 static inline u64 tcp_clock_ns(void)
905 {
906 	return ktime_get_ns();
907 }
908 
909 static inline u64 tcp_clock_us(void)
910 {
911 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
912 }
913 
914 static inline u64 tcp_clock_ms(void)
915 {
916 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
917 }
918 
919 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
920  * or usec resolution. Each socket carries a flag to select one or other
921  * resolution, as the route attribute could change anytime.
922  * Each flow must stick to initial resolution.
923  */
924 static inline u32 tcp_clock_ts(bool usec_ts)
925 {
926 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
927 }
928 
929 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
930 {
931 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
932 }
933 
934 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
935 {
936 	if (tp->tcp_usec_ts)
937 		return tp->tcp_mstamp;
938 	return tcp_time_stamp_ms(tp);
939 }
940 
941 void tcp_mstamp_refresh(struct tcp_sock *tp);
942 
943 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
944 {
945 	return max_t(s64, t1 - t0, 0);
946 }
947 
948 /* provide the departure time in us unit */
949 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
950 {
951 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
952 }
953 
954 /* Provide skb TSval in usec or ms unit */
955 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
956 {
957 	if (usec_ts)
958 		return tcp_skb_timestamp_us(skb);
959 
960 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
961 }
962 
963 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
964 {
965 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
966 }
967 
968 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
969 {
970 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
971 }
972 
973 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
974 
975 #define TCPHDR_FIN	BIT(0)
976 #define TCPHDR_SYN	BIT(1)
977 #define TCPHDR_RST	BIT(2)
978 #define TCPHDR_PSH	BIT(3)
979 #define TCPHDR_ACK	BIT(4)
980 #define TCPHDR_URG	BIT(5)
981 #define TCPHDR_ECE	BIT(6)
982 #define TCPHDR_CWR	BIT(7)
983 #define TCPHDR_AE	BIT(8)
984 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
985 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
986 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
987 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
988 			    TCPHDR_FLAGS_MASK)
989 
990 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
991 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
992 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
993 
994 #define TCP_ACCECN_CEP_ACE_MASK 0x7
995 #define TCP_ACCECN_ACE_MAX_DELTA 6
996 
997 /* To avoid/detect middlebox interference, not all counters start at 0.
998  * See draft-ietf-tcpm-accurate-ecn for the latest values.
999  */
1000 #define TCP_ACCECN_CEP_INIT_OFFSET 5
1001 #define TCP_ACCECN_E1B_INIT_OFFSET 1
1002 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1003 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1004 
1005 /* State flags for sacked in struct tcp_skb_cb */
1006 enum tcp_skb_cb_sacked_flags {
1007 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1008 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1009 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1010 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1011 				   TCPCB_LOST),	/* All tag bits			*/
1012 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1013 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1014 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1015 				   TCPCB_REPAIRED),
1016 };
1017 
1018 /* This is what the send packet queuing engine uses to pass
1019  * TCP per-packet control information to the transmission code.
1020  * We also store the host-order sequence numbers in here too.
1021  * This is 44 bytes if IPV6 is enabled.
1022  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1023  */
1024 struct tcp_skb_cb {
1025 	__u32		seq;		/* Starting sequence number	*/
1026 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1027 	union {
1028 		/* Note :
1029 		 * 	  tcp_gso_segs/size are used in write queue only,
1030 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1031 		 */
1032 		struct {
1033 			u16	tcp_gso_segs;
1034 			u16	tcp_gso_size;
1035 		};
1036 	};
1037 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1038 
1039 	__u8		sacked;		/* State flags for SACK.	*/
1040 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1041 #define TSTAMP_ACK_SK	0x1
1042 #define TSTAMP_ACK_BPF	0x2
1043 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1044 			eor:1,		/* Is skb MSG_EOR marked? */
1045 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1046 			unused:4;
1047 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1048 	union {
1049 		struct {
1050 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1051 			/* There is space for up to 24 bytes */
1052 			__u32 is_app_limited:1, /* cwnd not fully used? */
1053 			      delivered_ce:20,
1054 			      unused:11;
1055 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1056 			__u32 delivered;
1057 			/* start of send pipeline phase */
1058 			u64 first_tx_mstamp;
1059 			/* when we reached the "delivered" count */
1060 			u64 delivered_mstamp;
1061 		} tx;   /* only used for outgoing skbs */
1062 		union {
1063 			struct inet_skb_parm	h4;
1064 #if IS_ENABLED(CONFIG_IPV6)
1065 			struct inet6_skb_parm	h6;
1066 #endif
1067 		} header;	/* For incoming skbs */
1068 	};
1069 };
1070 
1071 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1072 
1073 extern const struct inet_connection_sock_af_ops ipv4_specific;
1074 
1075 #if IS_ENABLED(CONFIG_IPV6)
1076 /* This is the variant of inet6_iif() that must be used by TCP,
1077  * as TCP moves IP6CB into a different location in skb->cb[]
1078  */
1079 static inline int tcp_v6_iif(const struct sk_buff *skb)
1080 {
1081 	return TCP_SKB_CB(skb)->header.h6.iif;
1082 }
1083 
1084 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1085 {
1086 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1087 
1088 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1089 }
1090 
1091 /* TCP_SKB_CB reference means this can not be used from early demux */
1092 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1093 {
1094 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1095 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1096 		return TCP_SKB_CB(skb)->header.h6.iif;
1097 #endif
1098 	return 0;
1099 }
1100 
1101 extern const struct inet_connection_sock_af_ops ipv6_specific;
1102 
1103 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1104 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1105 void tcp_v6_early_demux(struct sk_buff *skb);
1106 
1107 #endif
1108 
1109 /* TCP_SKB_CB reference means this can not be used from early demux */
1110 static inline int tcp_v4_sdif(struct sk_buff *skb)
1111 {
1112 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1113 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1114 		return TCP_SKB_CB(skb)->header.h4.iif;
1115 #endif
1116 	return 0;
1117 }
1118 
1119 /* Due to TSO, an SKB can be composed of multiple actual
1120  * packets.  To keep these tracked properly, we use this.
1121  */
1122 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1123 {
1124 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1125 }
1126 
1127 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1128 {
1129 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1130 }
1131 
1132 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1133 {
1134 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1135 }
1136 
1137 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1138 static inline int tcp_skb_mss(const struct sk_buff *skb)
1139 {
1140 	return TCP_SKB_CB(skb)->tcp_gso_size;
1141 }
1142 
1143 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1144 {
1145 	return likely(!TCP_SKB_CB(skb)->eor);
1146 }
1147 
1148 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1149 					const struct sk_buff *from)
1150 {
1151 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1152 	return likely(tcp_skb_can_collapse_to(to) &&
1153 		      mptcp_skb_can_collapse(to, from) &&
1154 		      skb_pure_zcopy_same(to, from) &&
1155 		      skb_frags_readable(to) == skb_frags_readable(from));
1156 }
1157 
1158 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1159 					   const struct sk_buff *from)
1160 {
1161 	return likely(mptcp_skb_can_collapse(to, from) &&
1162 		      !skb_cmp_decrypted(to, from));
1163 }
1164 
1165 /* Events passed to congestion control interface */
1166 enum tcp_ca_event {
1167 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1168 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1169 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1170 	CA_EVENT_LOSS,		/* loss timeout */
1171 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1172 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1173 };
1174 
1175 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1176 enum tcp_ca_ack_event_flags {
1177 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1178 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1179 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1180 };
1181 
1182 /*
1183  * Interface for adding new TCP congestion control handlers
1184  */
1185 #define TCP_CA_NAME_MAX	16
1186 #define TCP_CA_MAX	128
1187 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1188 
1189 #define TCP_CA_UNSPEC	0
1190 
1191 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1192 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1193 /* Requires ECN/ECT set on all packets */
1194 #define TCP_CONG_NEEDS_ECN		BIT(1)
1195 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1196 
1197 union tcp_cc_info;
1198 
1199 struct ack_sample {
1200 	u32 pkts_acked;
1201 	s32 rtt_us;
1202 	u32 in_flight;
1203 };
1204 
1205 /* A rate sample measures the number of (original/retransmitted) data
1206  * packets delivered "delivered" over an interval of time "interval_us".
1207  * The tcp_rate.c code fills in the rate sample, and congestion
1208  * control modules that define a cong_control function to run at the end
1209  * of ACK processing can optionally chose to consult this sample when
1210  * setting cwnd and pacing rate.
1211  * A sample is invalid if "delivered" or "interval_us" is negative.
1212  */
1213 struct rate_sample {
1214 	u64  prior_mstamp; /* starting timestamp for interval */
1215 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1216 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1217 	s32  delivered;		/* number of packets delivered over interval */
1218 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1219 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1220 	u32 snd_interval_us;	/* snd interval for delivered packets */
1221 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1222 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1223 	int  losses;		/* number of packets marked lost upon ACK */
1224 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1225 	u32  prior_in_flight;	/* in flight before this ACK */
1226 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1227 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1228 	bool is_retrans;	/* is sample from retransmission? */
1229 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1230 };
1231 
1232 struct tcp_congestion_ops {
1233 /* fast path fields are put first to fill one cache line */
1234 
1235 	/* return slow start threshold (required) */
1236 	u32 (*ssthresh)(struct sock *sk);
1237 
1238 	/* do new cwnd calculation (required) */
1239 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1240 
1241 	/* call before changing ca_state (optional) */
1242 	void (*set_state)(struct sock *sk, u8 new_state);
1243 
1244 	/* call when cwnd event occurs (optional) */
1245 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1246 
1247 	/* call when ack arrives (optional) */
1248 	void (*in_ack_event)(struct sock *sk, u32 flags);
1249 
1250 	/* hook for packet ack accounting (optional) */
1251 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1252 
1253 	/* override sysctl_tcp_min_tso_segs */
1254 	u32 (*min_tso_segs)(struct sock *sk);
1255 
1256 	/* call when packets are delivered to update cwnd and pacing rate,
1257 	 * after all the ca_state processing. (optional)
1258 	 */
1259 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1260 
1261 
1262 	/* new value of cwnd after loss (required) */
1263 	u32  (*undo_cwnd)(struct sock *sk);
1264 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1265 	u32 (*sndbuf_expand)(struct sock *sk);
1266 
1267 /* control/slow paths put last */
1268 	/* get info for inet_diag (optional) */
1269 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1270 			   union tcp_cc_info *info);
1271 
1272 	char 			name[TCP_CA_NAME_MAX];
1273 	struct module		*owner;
1274 	struct list_head	list;
1275 	u32			key;
1276 	u32			flags;
1277 
1278 	/* initialize private data (optional) */
1279 	void (*init)(struct sock *sk);
1280 	/* cleanup private data  (optional) */
1281 	void (*release)(struct sock *sk);
1282 } ____cacheline_aligned_in_smp;
1283 
1284 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1285 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1286 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1287 				  struct tcp_congestion_ops *old_type);
1288 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1289 
1290 void tcp_assign_congestion_control(struct sock *sk);
1291 void tcp_init_congestion_control(struct sock *sk);
1292 void tcp_cleanup_congestion_control(struct sock *sk);
1293 int tcp_set_default_congestion_control(struct net *net, const char *name);
1294 void tcp_get_default_congestion_control(struct net *net, char *name);
1295 void tcp_get_available_congestion_control(char *buf, size_t len);
1296 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1297 int tcp_set_allowed_congestion_control(char *allowed);
1298 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1299 			       bool cap_net_admin);
1300 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1301 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1302 
1303 u32 tcp_reno_ssthresh(struct sock *sk);
1304 u32 tcp_reno_undo_cwnd(struct sock *sk);
1305 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1306 extern struct tcp_congestion_ops tcp_reno;
1307 
1308 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1309 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1310 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1311 #ifdef CONFIG_INET
1312 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1313 #else
1314 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1315 {
1316 	return NULL;
1317 }
1318 #endif
1319 
1320 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1321 {
1322 	const struct inet_connection_sock *icsk = inet_csk(sk);
1323 
1324 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1325 }
1326 
1327 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1328 {
1329 	const struct inet_connection_sock *icsk = inet_csk(sk);
1330 
1331 	if (icsk->icsk_ca_ops->cwnd_event)
1332 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1333 }
1334 
1335 /* From tcp_cong.c */
1336 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1337 
1338 /* From tcp_rate.c */
1339 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1340 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1341 			    struct rate_sample *rs);
1342 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1343 		  bool is_sack_reneg, struct rate_sample *rs);
1344 void tcp_rate_check_app_limited(struct sock *sk);
1345 
1346 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1347 {
1348 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1349 }
1350 
1351 /* These functions determine how the current flow behaves in respect of SACK
1352  * handling. SACK is negotiated with the peer, and therefore it can vary
1353  * between different flows.
1354  *
1355  * tcp_is_sack - SACK enabled
1356  * tcp_is_reno - No SACK
1357  */
1358 static inline int tcp_is_sack(const struct tcp_sock *tp)
1359 {
1360 	return likely(tp->rx_opt.sack_ok);
1361 }
1362 
1363 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1364 {
1365 	return !tcp_is_sack(tp);
1366 }
1367 
1368 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1369 {
1370 	return tp->sacked_out + tp->lost_out;
1371 }
1372 
1373 /* This determines how many packets are "in the network" to the best
1374  * of our knowledge.  In many cases it is conservative, but where
1375  * detailed information is available from the receiver (via SACK
1376  * blocks etc.) we can make more aggressive calculations.
1377  *
1378  * Use this for decisions involving congestion control, use just
1379  * tp->packets_out to determine if the send queue is empty or not.
1380  *
1381  * Read this equation as:
1382  *
1383  *	"Packets sent once on transmission queue" MINUS
1384  *	"Packets left network, but not honestly ACKed yet" PLUS
1385  *	"Packets fast retransmitted"
1386  */
1387 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1388 {
1389 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1390 }
1391 
1392 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1393 
1394 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1395 {
1396 	return tp->snd_cwnd;
1397 }
1398 
1399 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1400 {
1401 	WARN_ON_ONCE((int)val <= 0);
1402 	tp->snd_cwnd = val;
1403 }
1404 
1405 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1406 {
1407 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1408 }
1409 
1410 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1411 {
1412 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1413 }
1414 
1415 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1416 {
1417 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1418 	       (1 << inet_csk(sk)->icsk_ca_state);
1419 }
1420 
1421 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1422  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1423  * ssthresh.
1424  */
1425 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1426 {
1427 	const struct tcp_sock *tp = tcp_sk(sk);
1428 
1429 	if (tcp_in_cwnd_reduction(sk))
1430 		return tp->snd_ssthresh;
1431 	else
1432 		return max(tp->snd_ssthresh,
1433 			   ((tcp_snd_cwnd(tp) >> 1) +
1434 			    (tcp_snd_cwnd(tp) >> 2)));
1435 }
1436 
1437 /* Use define here intentionally to get WARN_ON location shown at the caller */
1438 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1439 
1440 void tcp_enter_cwr(struct sock *sk);
1441 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1442 
1443 /* The maximum number of MSS of available cwnd for which TSO defers
1444  * sending if not using sysctl_tcp_tso_win_divisor.
1445  */
1446 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1447 {
1448 	return 3;
1449 }
1450 
1451 /* Returns end sequence number of the receiver's advertised window */
1452 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1453 {
1454 	return tp->snd_una + tp->snd_wnd;
1455 }
1456 
1457 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1458  * flexible approach. The RFC suggests cwnd should not be raised unless
1459  * it was fully used previously. And that's exactly what we do in
1460  * congestion avoidance mode. But in slow start we allow cwnd to grow
1461  * as long as the application has used half the cwnd.
1462  * Example :
1463  *    cwnd is 10 (IW10), but application sends 9 frames.
1464  *    We allow cwnd to reach 18 when all frames are ACKed.
1465  * This check is safe because it's as aggressive as slow start which already
1466  * risks 100% overshoot. The advantage is that we discourage application to
1467  * either send more filler packets or data to artificially blow up the cwnd
1468  * usage, and allow application-limited process to probe bw more aggressively.
1469  */
1470 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1471 {
1472 	const struct tcp_sock *tp = tcp_sk(sk);
1473 
1474 	if (tp->is_cwnd_limited)
1475 		return true;
1476 
1477 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1478 	if (tcp_in_slow_start(tp))
1479 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1480 
1481 	return false;
1482 }
1483 
1484 /* BBR congestion control needs pacing.
1485  * Same remark for SO_MAX_PACING_RATE.
1486  * sch_fq packet scheduler is efficiently handling pacing,
1487  * but is not always installed/used.
1488  * Return true if TCP stack should pace packets itself.
1489  */
1490 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1491 {
1492 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1493 }
1494 
1495 /* Estimates in how many jiffies next packet for this flow can be sent.
1496  * Scheduling a retransmit timer too early would be silly.
1497  */
1498 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1499 {
1500 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1501 
1502 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1503 }
1504 
1505 static inline void tcp_reset_xmit_timer(struct sock *sk,
1506 					const int what,
1507 					unsigned long when,
1508 					bool pace_delay)
1509 {
1510 	if (pace_delay)
1511 		when += tcp_pacing_delay(sk);
1512 	inet_csk_reset_xmit_timer(sk, what, when,
1513 				  tcp_rto_max(sk));
1514 }
1515 
1516 /* Something is really bad, we could not queue an additional packet,
1517  * because qdisc is full or receiver sent a 0 window, or we are paced.
1518  * We do not want to add fuel to the fire, or abort too early,
1519  * so make sure the timer we arm now is at least 200ms in the future,
1520  * regardless of current icsk_rto value (as it could be ~2ms)
1521  */
1522 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1523 {
1524 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1525 }
1526 
1527 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1528 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1529 					    unsigned long max_when)
1530 {
1531 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1532 			   inet_csk(sk)->icsk_backoff);
1533 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1534 
1535 	return (unsigned long)min_t(u64, when, max_when);
1536 }
1537 
1538 static inline void tcp_check_probe_timer(struct sock *sk)
1539 {
1540 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1541 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1542 				     tcp_probe0_base(sk), true);
1543 }
1544 
1545 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1546 {
1547 	tp->snd_wl1 = seq;
1548 }
1549 
1550 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1551 {
1552 	tp->snd_wl1 = seq;
1553 }
1554 
1555 /*
1556  * Calculate(/check) TCP checksum
1557  */
1558 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1559 				   __be32 daddr, __wsum base)
1560 {
1561 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1562 }
1563 
1564 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1565 {
1566 	return !skb_csum_unnecessary(skb) &&
1567 		__skb_checksum_complete(skb);
1568 }
1569 
1570 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1571 		     enum skb_drop_reason *reason);
1572 
1573 
1574 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1575 void tcp_set_state(struct sock *sk, int state);
1576 void tcp_done(struct sock *sk);
1577 int tcp_abort(struct sock *sk, int err);
1578 
1579 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1580 {
1581 	rx_opt->dsack = 0;
1582 	rx_opt->num_sacks = 0;
1583 }
1584 
1585 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1586 
1587 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1588 {
1589 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1590 	struct tcp_sock *tp = tcp_sk(sk);
1591 	s32 delta;
1592 
1593 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1594 	    tp->packets_out || ca_ops->cong_control)
1595 		return;
1596 	delta = tcp_jiffies32 - tp->lsndtime;
1597 	if (delta > inet_csk(sk)->icsk_rto)
1598 		tcp_cwnd_restart(sk, delta);
1599 }
1600 
1601 /* Determine a window scaling and initial window to offer. */
1602 void tcp_select_initial_window(const struct sock *sk, int __space,
1603 			       __u32 mss, __u32 *rcv_wnd,
1604 			       __u32 *window_clamp, int wscale_ok,
1605 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1606 
1607 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1608 {
1609 	s64 scaled_space = (s64)space * scaling_ratio;
1610 
1611 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1612 }
1613 
1614 static inline int tcp_win_from_space(const struct sock *sk, int space)
1615 {
1616 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1617 }
1618 
1619 /* inverse of __tcp_win_from_space() */
1620 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1621 {
1622 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1623 
1624 	do_div(val, scaling_ratio);
1625 	return val;
1626 }
1627 
1628 static inline int tcp_space_from_win(const struct sock *sk, int win)
1629 {
1630 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1631 }
1632 
1633 /* Assume a 50% default for skb->len/skb->truesize ratio.
1634  * This may be adjusted later in tcp_measure_rcv_mss().
1635  */
1636 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1637 
1638 static inline void tcp_scaling_ratio_init(struct sock *sk)
1639 {
1640 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1641 }
1642 
1643 /* Note: caller must be prepared to deal with negative returns */
1644 static inline int tcp_space(const struct sock *sk)
1645 {
1646 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1647 				  READ_ONCE(sk->sk_backlog.len) -
1648 				  atomic_read(&sk->sk_rmem_alloc));
1649 }
1650 
1651 static inline int tcp_full_space(const struct sock *sk)
1652 {
1653 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1654 }
1655 
1656 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1657 {
1658 	int unused_mem = sk_unused_reserved_mem(sk);
1659 	struct tcp_sock *tp = tcp_sk(sk);
1660 
1661 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1662 	if (unused_mem)
1663 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1664 					 tcp_win_from_space(sk, unused_mem));
1665 }
1666 
1667 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1668 {
1669 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1670 }
1671 
1672 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1673 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1674 
1675 
1676 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1677  * If 87.5 % (7/8) of the space has been consumed, we want to override
1678  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1679  * len/truesize ratio.
1680  */
1681 static inline bool tcp_rmem_pressure(const struct sock *sk)
1682 {
1683 	int rcvbuf, threshold;
1684 
1685 	if (tcp_under_memory_pressure(sk))
1686 		return true;
1687 
1688 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1689 	threshold = rcvbuf - (rcvbuf >> 3);
1690 
1691 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1692 }
1693 
1694 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1695 {
1696 	const struct tcp_sock *tp = tcp_sk(sk);
1697 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1698 
1699 	if (avail <= 0)
1700 		return false;
1701 
1702 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1703 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1704 }
1705 
1706 extern void tcp_openreq_init_rwin(struct request_sock *req,
1707 				  const struct sock *sk_listener,
1708 				  const struct dst_entry *dst);
1709 
1710 void tcp_enter_memory_pressure(struct sock *sk);
1711 void tcp_leave_memory_pressure(struct sock *sk);
1712 
1713 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1714 {
1715 	struct net *net = sock_net((struct sock *)tp);
1716 	int val;
1717 
1718 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1719 	 * and do_tcp_setsockopt().
1720 	 */
1721 	val = READ_ONCE(tp->keepalive_intvl);
1722 
1723 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1724 }
1725 
1726 static inline int keepalive_time_when(const struct tcp_sock *tp)
1727 {
1728 	struct net *net = sock_net((struct sock *)tp);
1729 	int val;
1730 
1731 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1732 	val = READ_ONCE(tp->keepalive_time);
1733 
1734 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1735 }
1736 
1737 static inline int keepalive_probes(const struct tcp_sock *tp)
1738 {
1739 	struct net *net = sock_net((struct sock *)tp);
1740 	int val;
1741 
1742 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1743 	 * and do_tcp_setsockopt().
1744 	 */
1745 	val = READ_ONCE(tp->keepalive_probes);
1746 
1747 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1748 }
1749 
1750 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1751 {
1752 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1753 
1754 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1755 			  tcp_jiffies32 - tp->rcv_tstamp);
1756 }
1757 
1758 static inline int tcp_fin_time(const struct sock *sk)
1759 {
1760 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1761 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1762 	const int rto = inet_csk(sk)->icsk_rto;
1763 
1764 	if (fin_timeout < (rto << 2) - (rto >> 1))
1765 		fin_timeout = (rto << 2) - (rto >> 1);
1766 
1767 	return fin_timeout;
1768 }
1769 
1770 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1771 				  int paws_win)
1772 {
1773 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1774 		return true;
1775 	if (unlikely(!time_before32(ktime_get_seconds(),
1776 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1777 		return true;
1778 	/*
1779 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1780 	 * then following tcp messages have valid values. Ignore 0 value,
1781 	 * or else 'negative' tsval might forbid us to accept their packets.
1782 	 */
1783 	if (!rx_opt->ts_recent)
1784 		return true;
1785 	return false;
1786 }
1787 
1788 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1789 				   int rst)
1790 {
1791 	if (tcp_paws_check(rx_opt, 0))
1792 		return false;
1793 
1794 	/* RST segments are not recommended to carry timestamp,
1795 	   and, if they do, it is recommended to ignore PAWS because
1796 	   "their cleanup function should take precedence over timestamps."
1797 	   Certainly, it is mistake. It is necessary to understand the reasons
1798 	   of this constraint to relax it: if peer reboots, clock may go
1799 	   out-of-sync and half-open connections will not be reset.
1800 	   Actually, the problem would be not existing if all
1801 	   the implementations followed draft about maintaining clock
1802 	   via reboots. Linux-2.2 DOES NOT!
1803 
1804 	   However, we can relax time bounds for RST segments to MSL.
1805 	 */
1806 	if (rst && !time_before32(ktime_get_seconds(),
1807 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1808 		return false;
1809 	return true;
1810 }
1811 
1812 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1813 {
1814 	u32 ace;
1815 
1816 	/* mptcp hooks are only on the slow path */
1817 	if (sk_is_mptcp((struct sock *)tp))
1818 		return;
1819 
1820 	ace = tcp_ecn_mode_accecn(tp) ?
1821 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1822 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1823 
1824 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1825 			       (ace << 22) |
1826 			       ntohl(TCP_FLAG_ACK) |
1827 			       snd_wnd);
1828 }
1829 
1830 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1831 {
1832 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1833 }
1834 
1835 static inline void tcp_fast_path_check(struct sock *sk)
1836 {
1837 	struct tcp_sock *tp = tcp_sk(sk);
1838 
1839 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1840 	    tp->rcv_wnd &&
1841 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1842 	    !tp->urg_data)
1843 		tcp_fast_path_on(tp);
1844 }
1845 
1846 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1847 			  int mib_idx, u32 *last_oow_ack_time);
1848 
1849 static inline void tcp_mib_init(struct net *net)
1850 {
1851 	/* See RFC 2012 */
1852 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1853 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1854 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1855 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1856 }
1857 
1858 /* from STCP */
1859 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1860 {
1861 	tp->retransmit_skb_hint = NULL;
1862 }
1863 
1864 #define tcp_md5_addr tcp_ao_addr
1865 
1866 /* - key database */
1867 struct tcp_md5sig_key {
1868 	struct hlist_node	node;
1869 	u8			keylen;
1870 	u8			family; /* AF_INET or AF_INET6 */
1871 	u8			prefixlen;
1872 	u8			flags;
1873 	union tcp_md5_addr	addr;
1874 	int			l3index; /* set if key added with L3 scope */
1875 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1876 	struct rcu_head		rcu;
1877 };
1878 
1879 /* - sock block */
1880 struct tcp_md5sig_info {
1881 	struct hlist_head	head;
1882 	struct rcu_head		rcu;
1883 };
1884 
1885 /* - pseudo header */
1886 struct tcp4_pseudohdr {
1887 	__be32		saddr;
1888 	__be32		daddr;
1889 	__u8		pad;
1890 	__u8		protocol;
1891 	__be16		len;
1892 };
1893 
1894 struct tcp6_pseudohdr {
1895 	struct in6_addr	saddr;
1896 	struct in6_addr daddr;
1897 	__be32		len;
1898 	__be32		protocol;	/* including padding */
1899 };
1900 
1901 union tcp_md5sum_block {
1902 	struct tcp4_pseudohdr ip4;
1903 #if IS_ENABLED(CONFIG_IPV6)
1904 	struct tcp6_pseudohdr ip6;
1905 #endif
1906 };
1907 
1908 /*
1909  * struct tcp_sigpool - per-CPU pool of ahash_requests
1910  * @scratch: per-CPU temporary area, that can be used between
1911  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1912  *	     crypto request
1913  * @req: pre-allocated ahash request
1914  */
1915 struct tcp_sigpool {
1916 	void *scratch;
1917 	struct ahash_request *req;
1918 };
1919 
1920 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1921 void tcp_sigpool_get(unsigned int id);
1922 void tcp_sigpool_release(unsigned int id);
1923 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1924 			      const struct sk_buff *skb,
1925 			      unsigned int header_len);
1926 
1927 /**
1928  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1929  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1930  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1931  *
1932  * Returns: 0 on success, error otherwise.
1933  */
1934 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1935 /**
1936  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1937  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1938  */
1939 void tcp_sigpool_end(struct tcp_sigpool *c);
1940 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1941 /* - functions */
1942 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1943 			const struct sock *sk, const struct sk_buff *skb);
1944 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1945 		   int family, u8 prefixlen, int l3index, u8 flags,
1946 		   const u8 *newkey, u8 newkeylen);
1947 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1948 		     int family, u8 prefixlen, int l3index,
1949 		     struct tcp_md5sig_key *key);
1950 
1951 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1952 		   int family, u8 prefixlen, int l3index, u8 flags);
1953 void tcp_clear_md5_list(struct sock *sk);
1954 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1955 					 const struct sock *addr_sk);
1956 
1957 #ifdef CONFIG_TCP_MD5SIG
1958 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1959 					   const union tcp_md5_addr *addr,
1960 					   int family, bool any_l3index);
1961 static inline struct tcp_md5sig_key *
1962 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1963 		  const union tcp_md5_addr *addr, int family)
1964 {
1965 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1966 		return NULL;
1967 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1968 }
1969 
1970 static inline struct tcp_md5sig_key *
1971 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1972 			      const union tcp_md5_addr *addr, int family)
1973 {
1974 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1975 		return NULL;
1976 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1977 }
1978 
1979 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1980 void tcp_md5_destruct_sock(struct sock *sk);
1981 #else
1982 static inline struct tcp_md5sig_key *
1983 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1984 		  const union tcp_md5_addr *addr, int family)
1985 {
1986 	return NULL;
1987 }
1988 
1989 static inline struct tcp_md5sig_key *
1990 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1991 			      const union tcp_md5_addr *addr, int family)
1992 {
1993 	return NULL;
1994 }
1995 
1996 #define tcp_twsk_md5_key(twsk)	NULL
1997 static inline void tcp_md5_destruct_sock(struct sock *sk)
1998 {
1999 }
2000 #endif
2001 
2002 int tcp_md5_alloc_sigpool(void);
2003 void tcp_md5_release_sigpool(void);
2004 void tcp_md5_add_sigpool(void);
2005 extern int tcp_md5_sigpool_id;
2006 
2007 int tcp_md5_hash_key(struct tcp_sigpool *hp,
2008 		     const struct tcp_md5sig_key *key);
2009 
2010 /* From tcp_fastopen.c */
2011 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2012 			    struct tcp_fastopen_cookie *cookie);
2013 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2014 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2015 			    u16 try_exp);
2016 struct tcp_fastopen_request {
2017 	/* Fast Open cookie. Size 0 means a cookie request */
2018 	struct tcp_fastopen_cookie	cookie;
2019 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2020 	size_t				size;
2021 	int				copied;	/* queued in tcp_connect() */
2022 	struct ubuf_info		*uarg;
2023 };
2024 void tcp_free_fastopen_req(struct tcp_sock *tp);
2025 void tcp_fastopen_destroy_cipher(struct sock *sk);
2026 void tcp_fastopen_ctx_destroy(struct net *net);
2027 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2028 			      void *primary_key, void *backup_key);
2029 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2030 			    u64 *key);
2031 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2032 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2033 			      struct request_sock *req,
2034 			      struct tcp_fastopen_cookie *foc,
2035 			      const struct dst_entry *dst);
2036 void tcp_fastopen_init_key_once(struct net *net);
2037 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2038 			     struct tcp_fastopen_cookie *cookie);
2039 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2040 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2041 #define TCP_FASTOPEN_KEY_MAX 2
2042 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2043 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2044 
2045 /* Fastopen key context */
2046 struct tcp_fastopen_context {
2047 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2048 	int		num;
2049 	struct rcu_head	rcu;
2050 };
2051 
2052 void tcp_fastopen_active_disable(struct sock *sk);
2053 bool tcp_fastopen_active_should_disable(struct sock *sk);
2054 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2055 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2056 
2057 /* Caller needs to wrap with rcu_read_(un)lock() */
2058 static inline
2059 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2060 {
2061 	struct tcp_fastopen_context *ctx;
2062 
2063 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2064 	if (!ctx)
2065 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2066 	return ctx;
2067 }
2068 
2069 static inline
2070 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2071 			       const struct tcp_fastopen_cookie *orig)
2072 {
2073 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2074 	    orig->len == foc->len &&
2075 	    !memcmp(orig->val, foc->val, foc->len))
2076 		return true;
2077 	return false;
2078 }
2079 
2080 static inline
2081 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2082 {
2083 	return ctx->num;
2084 }
2085 
2086 /* Latencies incurred by various limits for a sender. They are
2087  * chronograph-like stats that are mutually exclusive.
2088  */
2089 enum tcp_chrono {
2090 	TCP_CHRONO_UNSPEC,
2091 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2092 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2093 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2094 	__TCP_CHRONO_MAX,
2095 };
2096 
2097 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2098 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2099 
2100 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2101  * the same memory storage than skb->destructor/_skb_refdst
2102  */
2103 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2104 {
2105 	skb->destructor = NULL;
2106 	skb->_skb_refdst = 0UL;
2107 }
2108 
2109 #define tcp_skb_tsorted_save(skb) {		\
2110 	unsigned long _save = skb->_skb_refdst;	\
2111 	skb->_skb_refdst = 0UL;
2112 
2113 #define tcp_skb_tsorted_restore(skb)		\
2114 	skb->_skb_refdst = _save;		\
2115 }
2116 
2117 void tcp_write_queue_purge(struct sock *sk);
2118 
2119 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2120 {
2121 	return skb_rb_first(&sk->tcp_rtx_queue);
2122 }
2123 
2124 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2125 {
2126 	return skb_rb_last(&sk->tcp_rtx_queue);
2127 }
2128 
2129 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2130 {
2131 	return skb_peek_tail(&sk->sk_write_queue);
2132 }
2133 
2134 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2135 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2136 
2137 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2138 {
2139 	return skb_peek(&sk->sk_write_queue);
2140 }
2141 
2142 static inline bool tcp_skb_is_last(const struct sock *sk,
2143 				   const struct sk_buff *skb)
2144 {
2145 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2146 }
2147 
2148 /**
2149  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2150  * @sk: socket
2151  *
2152  * Since the write queue can have a temporary empty skb in it,
2153  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2154  */
2155 static inline bool tcp_write_queue_empty(const struct sock *sk)
2156 {
2157 	const struct tcp_sock *tp = tcp_sk(sk);
2158 
2159 	return tp->write_seq == tp->snd_nxt;
2160 }
2161 
2162 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2163 {
2164 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2165 }
2166 
2167 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2168 {
2169 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2170 }
2171 
2172 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2173 {
2174 	__skb_queue_tail(&sk->sk_write_queue, skb);
2175 
2176 	/* Queue it, remembering where we must start sending. */
2177 	if (sk->sk_write_queue.next == skb)
2178 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2179 }
2180 
2181 /* Insert new before skb on the write queue of sk.  */
2182 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2183 						  struct sk_buff *skb,
2184 						  struct sock *sk)
2185 {
2186 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2187 }
2188 
2189 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2190 {
2191 	tcp_skb_tsorted_anchor_cleanup(skb);
2192 	__skb_unlink(skb, &sk->sk_write_queue);
2193 }
2194 
2195 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2196 
2197 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2198 {
2199 	tcp_skb_tsorted_anchor_cleanup(skb);
2200 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2201 }
2202 
2203 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2204 {
2205 	list_del(&skb->tcp_tsorted_anchor);
2206 	tcp_rtx_queue_unlink(skb, sk);
2207 	tcp_wmem_free_skb(sk, skb);
2208 }
2209 
2210 static inline void tcp_write_collapse_fence(struct sock *sk)
2211 {
2212 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2213 
2214 	if (skb)
2215 		TCP_SKB_CB(skb)->eor = 1;
2216 }
2217 
2218 static inline void tcp_push_pending_frames(struct sock *sk)
2219 {
2220 	if (tcp_send_head(sk)) {
2221 		struct tcp_sock *tp = tcp_sk(sk);
2222 
2223 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2224 	}
2225 }
2226 
2227 /* Start sequence of the skb just after the highest skb with SACKed
2228  * bit, valid only if sacked_out > 0 or when the caller has ensured
2229  * validity by itself.
2230  */
2231 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2232 {
2233 	if (!tp->sacked_out)
2234 		return tp->snd_una;
2235 
2236 	if (tp->highest_sack == NULL)
2237 		return tp->snd_nxt;
2238 
2239 	return TCP_SKB_CB(tp->highest_sack)->seq;
2240 }
2241 
2242 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2243 {
2244 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2245 }
2246 
2247 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2248 {
2249 	return tcp_sk(sk)->highest_sack;
2250 }
2251 
2252 static inline void tcp_highest_sack_reset(struct sock *sk)
2253 {
2254 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2255 }
2256 
2257 /* Called when old skb is about to be deleted and replaced by new skb */
2258 static inline void tcp_highest_sack_replace(struct sock *sk,
2259 					    struct sk_buff *old,
2260 					    struct sk_buff *new)
2261 {
2262 	if (old == tcp_highest_sack(sk))
2263 		tcp_sk(sk)->highest_sack = new;
2264 }
2265 
2266 /* This helper checks if socket has IP_TRANSPARENT set */
2267 static inline bool inet_sk_transparent(const struct sock *sk)
2268 {
2269 	switch (sk->sk_state) {
2270 	case TCP_TIME_WAIT:
2271 		return inet_twsk(sk)->tw_transparent;
2272 	case TCP_NEW_SYN_RECV:
2273 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2274 	}
2275 	return inet_test_bit(TRANSPARENT, sk);
2276 }
2277 
2278 /* Determines whether this is a thin stream (which may suffer from
2279  * increased latency). Used to trigger latency-reducing mechanisms.
2280  */
2281 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2282 {
2283 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2284 }
2285 
2286 /* /proc */
2287 enum tcp_seq_states {
2288 	TCP_SEQ_STATE_LISTENING,
2289 	TCP_SEQ_STATE_ESTABLISHED,
2290 };
2291 
2292 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2293 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2294 void tcp_seq_stop(struct seq_file *seq, void *v);
2295 
2296 struct tcp_seq_afinfo {
2297 	sa_family_t			family;
2298 };
2299 
2300 struct tcp_iter_state {
2301 	struct seq_net_private	p;
2302 	enum tcp_seq_states	state;
2303 	struct sock		*syn_wait_sk;
2304 	int			bucket, offset, sbucket, num;
2305 	loff_t			last_pos;
2306 };
2307 
2308 extern struct request_sock_ops tcp_request_sock_ops;
2309 extern struct request_sock_ops tcp6_request_sock_ops;
2310 
2311 void tcp_v4_destroy_sock(struct sock *sk);
2312 
2313 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2314 				netdev_features_t features);
2315 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2316 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2317 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2318 				struct tcphdr *th);
2319 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2320 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2321 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2322 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2323 #ifdef CONFIG_INET
2324 void tcp_gro_complete(struct sk_buff *skb);
2325 #else
2326 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2327 #endif
2328 
2329 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2330 
2331 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2332 {
2333 	struct net *net = sock_net((struct sock *)tp);
2334 	u32 val;
2335 
2336 	val = READ_ONCE(tp->notsent_lowat);
2337 
2338 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2339 }
2340 
2341 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2342 
2343 #ifdef CONFIG_PROC_FS
2344 int tcp4_proc_init(void);
2345 void tcp4_proc_exit(void);
2346 #endif
2347 
2348 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2349 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2350 		     const struct tcp_request_sock_ops *af_ops,
2351 		     struct sock *sk, struct sk_buff *skb);
2352 
2353 /* TCP af-specific functions */
2354 struct tcp_sock_af_ops {
2355 #ifdef CONFIG_TCP_MD5SIG
2356 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2357 						const struct sock *addr_sk);
2358 	int		(*calc_md5_hash)(char *location,
2359 					 const struct tcp_md5sig_key *md5,
2360 					 const struct sock *sk,
2361 					 const struct sk_buff *skb);
2362 	int		(*md5_parse)(struct sock *sk,
2363 				     int optname,
2364 				     sockptr_t optval,
2365 				     int optlen);
2366 #endif
2367 #ifdef CONFIG_TCP_AO
2368 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2369 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2370 					struct sock *addr_sk,
2371 					int sndid, int rcvid);
2372 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2373 			      const struct sock *sk,
2374 			      __be32 sisn, __be32 disn, bool send);
2375 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2376 			    const struct sock *sk, const struct sk_buff *skb,
2377 			    const u8 *tkey, int hash_offset, u32 sne);
2378 #endif
2379 };
2380 
2381 struct tcp_request_sock_ops {
2382 	u16 mss_clamp;
2383 #ifdef CONFIG_TCP_MD5SIG
2384 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2385 						 const struct sock *addr_sk);
2386 	int		(*calc_md5_hash) (char *location,
2387 					  const struct tcp_md5sig_key *md5,
2388 					  const struct sock *sk,
2389 					  const struct sk_buff *skb);
2390 #endif
2391 #ifdef CONFIG_TCP_AO
2392 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2393 					struct request_sock *req,
2394 					int sndid, int rcvid);
2395 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2396 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2397 			      struct request_sock *req, const struct sk_buff *skb,
2398 			      int hash_offset, u32 sne);
2399 #endif
2400 #ifdef CONFIG_SYN_COOKIES
2401 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2402 				 __u16 *mss);
2403 #endif
2404 	struct dst_entry *(*route_req)(const struct sock *sk,
2405 				       struct sk_buff *skb,
2406 				       struct flowi *fl,
2407 				       struct request_sock *req,
2408 				       u32 tw_isn);
2409 	u32 (*init_seq)(const struct sk_buff *skb);
2410 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2411 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2412 			   struct flowi *fl, struct request_sock *req,
2413 			   struct tcp_fastopen_cookie *foc,
2414 			   enum tcp_synack_type synack_type,
2415 			   struct sk_buff *syn_skb);
2416 };
2417 
2418 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2419 #if IS_ENABLED(CONFIG_IPV6)
2420 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2421 #endif
2422 
2423 #ifdef CONFIG_SYN_COOKIES
2424 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2425 					 const struct sock *sk, struct sk_buff *skb,
2426 					 __u16 *mss)
2427 {
2428 	tcp_synq_overflow(sk);
2429 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2430 	return ops->cookie_init_seq(skb, mss);
2431 }
2432 #else
2433 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2434 					 const struct sock *sk, struct sk_buff *skb,
2435 					 __u16 *mss)
2436 {
2437 	return 0;
2438 }
2439 #endif
2440 
2441 struct tcp_key {
2442 	union {
2443 		struct {
2444 			struct tcp_ao_key *ao_key;
2445 			char *traffic_key;
2446 			u32 sne;
2447 			u8 rcv_next;
2448 		};
2449 		struct tcp_md5sig_key *md5_key;
2450 	};
2451 	enum {
2452 		TCP_KEY_NONE = 0,
2453 		TCP_KEY_MD5,
2454 		TCP_KEY_AO,
2455 	} type;
2456 };
2457 
2458 static inline void tcp_get_current_key(const struct sock *sk,
2459 				       struct tcp_key *out)
2460 {
2461 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2462 	const struct tcp_sock *tp = tcp_sk(sk);
2463 #endif
2464 
2465 #ifdef CONFIG_TCP_AO
2466 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2467 		struct tcp_ao_info *ao;
2468 
2469 		ao = rcu_dereference_protected(tp->ao_info,
2470 					       lockdep_sock_is_held(sk));
2471 		if (ao) {
2472 			out->ao_key = READ_ONCE(ao->current_key);
2473 			out->type = TCP_KEY_AO;
2474 			return;
2475 		}
2476 	}
2477 #endif
2478 #ifdef CONFIG_TCP_MD5SIG
2479 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2480 	    rcu_access_pointer(tp->md5sig_info)) {
2481 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2482 		if (out->md5_key) {
2483 			out->type = TCP_KEY_MD5;
2484 			return;
2485 		}
2486 	}
2487 #endif
2488 	out->type = TCP_KEY_NONE;
2489 }
2490 
2491 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2492 {
2493 	if (static_branch_tcp_md5())
2494 		return key->type == TCP_KEY_MD5;
2495 	return false;
2496 }
2497 
2498 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2499 {
2500 	if (static_branch_tcp_ao())
2501 		return key->type == TCP_KEY_AO;
2502 	return false;
2503 }
2504 
2505 int tcpv4_offload_init(void);
2506 
2507 void tcp_v4_init(void);
2508 void tcp_init(void);
2509 
2510 /* tcp_recovery.c */
2511 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2512 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2513 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2514 				u32 reo_wnd);
2515 extern bool tcp_rack_mark_lost(struct sock *sk);
2516 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2517 			     u64 xmit_time);
2518 extern void tcp_rack_reo_timeout(struct sock *sk);
2519 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2520 
2521 /* tcp_plb.c */
2522 
2523 /*
2524  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2525  * expects cong_ratio which represents fraction of traffic that experienced
2526  * congestion over a single RTT. In order to avoid floating point operations,
2527  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2528  */
2529 #define TCP_PLB_SCALE 8
2530 
2531 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2532 struct tcp_plb_state {
2533 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2534 		unused:3;
2535 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2536 };
2537 
2538 static inline void tcp_plb_init(const struct sock *sk,
2539 				struct tcp_plb_state *plb)
2540 {
2541 	plb->consec_cong_rounds = 0;
2542 	plb->pause_until = 0;
2543 }
2544 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2545 			  const int cong_ratio);
2546 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2547 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2548 
2549 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2550 {
2551 	WARN_ONCE(cond,
2552 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2553 		  str,
2554 		  tcp_snd_cwnd(tcp_sk(sk)),
2555 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2556 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2557 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2558 		  inet_csk(sk)->icsk_ca_state,
2559 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2560 		  inet_csk(sk)->icsk_pmtu_cookie);
2561 }
2562 
2563 /* At how many usecs into the future should the RTO fire? */
2564 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2565 {
2566 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2567 	u32 rto = inet_csk(sk)->icsk_rto;
2568 
2569 	if (likely(skb)) {
2570 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2571 
2572 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2573 	} else {
2574 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2575 		return jiffies_to_usecs(rto);
2576 	}
2577 
2578 }
2579 
2580 /*
2581  * Save and compile IPv4 options, return a pointer to it
2582  */
2583 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2584 							 struct sk_buff *skb)
2585 {
2586 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2587 	struct ip_options_rcu *dopt = NULL;
2588 
2589 	if (opt->optlen) {
2590 		int opt_size = sizeof(*dopt) + opt->optlen;
2591 
2592 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2593 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2594 			kfree(dopt);
2595 			dopt = NULL;
2596 		}
2597 	}
2598 	return dopt;
2599 }
2600 
2601 /* locally generated TCP pure ACKs have skb->truesize == 2
2602  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2603  * This is much faster than dissecting the packet to find out.
2604  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2605  */
2606 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2607 {
2608 	return skb->truesize == 2;
2609 }
2610 
2611 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2612 {
2613 	skb->truesize = 2;
2614 }
2615 
2616 static inline int tcp_inq(struct sock *sk)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 	int answ;
2620 
2621 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2622 		answ = 0;
2623 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2624 		   !tp->urg_data ||
2625 		   before(tp->urg_seq, tp->copied_seq) ||
2626 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2627 
2628 		answ = tp->rcv_nxt - tp->copied_seq;
2629 
2630 		/* Subtract 1, if FIN was received */
2631 		if (answ && sock_flag(sk, SOCK_DONE))
2632 			answ--;
2633 	} else {
2634 		answ = tp->urg_seq - tp->copied_seq;
2635 	}
2636 
2637 	return answ;
2638 }
2639 
2640 int tcp_peek_len(struct socket *sock);
2641 
2642 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2643 {
2644 	u16 segs_in;
2645 
2646 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2647 
2648 	/* We update these fields while other threads might
2649 	 * read them from tcp_get_info()
2650 	 */
2651 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2652 	if (skb->len > tcp_hdrlen(skb))
2653 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2654 }
2655 
2656 /*
2657  * TCP listen path runs lockless.
2658  * We forced "struct sock" to be const qualified to make sure
2659  * we don't modify one of its field by mistake.
2660  * Here, we increment sk_drops which is an atomic_t, so we can safely
2661  * make sock writable again.
2662  */
2663 static inline void tcp_listendrop(const struct sock *sk)
2664 {
2665 	sk_drops_inc((struct sock *)sk);
2666 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2667 }
2668 
2669 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2670 
2671 /*
2672  * Interface for adding Upper Level Protocols over TCP
2673  */
2674 
2675 #define TCP_ULP_NAME_MAX	16
2676 #define TCP_ULP_MAX		128
2677 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2678 
2679 struct tcp_ulp_ops {
2680 	struct list_head	list;
2681 
2682 	/* initialize ulp */
2683 	int (*init)(struct sock *sk);
2684 	/* update ulp */
2685 	void (*update)(struct sock *sk, struct proto *p,
2686 		       void (*write_space)(struct sock *sk));
2687 	/* cleanup ulp */
2688 	void (*release)(struct sock *sk);
2689 	/* diagnostic */
2690 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2691 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2692 	/* clone ulp */
2693 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2694 		      const gfp_t priority);
2695 
2696 	char		name[TCP_ULP_NAME_MAX];
2697 	struct module	*owner;
2698 };
2699 int tcp_register_ulp(struct tcp_ulp_ops *type);
2700 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2701 int tcp_set_ulp(struct sock *sk, const char *name);
2702 void tcp_get_available_ulp(char *buf, size_t len);
2703 void tcp_cleanup_ulp(struct sock *sk);
2704 void tcp_update_ulp(struct sock *sk, struct proto *p,
2705 		    void (*write_space)(struct sock *sk));
2706 
2707 #define MODULE_ALIAS_TCP_ULP(name)				\
2708 	MODULE_INFO(alias, name);		\
2709 	MODULE_INFO(alias, "tcp-ulp-" name)
2710 
2711 #ifdef CONFIG_NET_SOCK_MSG
2712 struct sk_msg;
2713 struct sk_psock;
2714 
2715 #ifdef CONFIG_BPF_SYSCALL
2716 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2717 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2718 #ifdef CONFIG_BPF_STREAM_PARSER
2719 struct strparser;
2720 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2721 			   sk_read_actor_t recv_actor);
2722 #endif /* CONFIG_BPF_STREAM_PARSER */
2723 #endif /* CONFIG_BPF_SYSCALL */
2724 
2725 #ifdef CONFIG_INET
2726 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2727 #else
2728 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2729 {
2730 }
2731 #endif
2732 
2733 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2734 			  struct sk_msg *msg, u32 bytes, int flags);
2735 #endif /* CONFIG_NET_SOCK_MSG */
2736 
2737 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2738 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2739 {
2740 }
2741 #endif
2742 
2743 #ifdef CONFIG_CGROUP_BPF
2744 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2745 				      struct sk_buff *skb,
2746 				      unsigned int end_offset)
2747 {
2748 	skops->skb = skb;
2749 	skops->skb_data_end = skb->data + end_offset;
2750 }
2751 #else
2752 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2753 				      struct sk_buff *skb,
2754 				      unsigned int end_offset)
2755 {
2756 }
2757 #endif
2758 
2759 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2760  * is < 0, then the BPF op failed (for example if the loaded BPF
2761  * program does not support the chosen operation or there is no BPF
2762  * program loaded).
2763  */
2764 #ifdef CONFIG_BPF
2765 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2766 {
2767 	struct bpf_sock_ops_kern sock_ops;
2768 	int ret;
2769 
2770 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2771 	if (sk_fullsock(sk)) {
2772 		sock_ops.is_fullsock = 1;
2773 		sock_ops.is_locked_tcp_sock = 1;
2774 		sock_owned_by_me(sk);
2775 	}
2776 
2777 	sock_ops.sk = sk;
2778 	sock_ops.op = op;
2779 	if (nargs > 0)
2780 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2781 
2782 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2783 	if (ret == 0)
2784 		ret = sock_ops.reply;
2785 	else
2786 		ret = -1;
2787 	return ret;
2788 }
2789 
2790 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2791 {
2792 	u32 args[2] = {arg1, arg2};
2793 
2794 	return tcp_call_bpf(sk, op, 2, args);
2795 }
2796 
2797 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2798 				    u32 arg3)
2799 {
2800 	u32 args[3] = {arg1, arg2, arg3};
2801 
2802 	return tcp_call_bpf(sk, op, 3, args);
2803 }
2804 
2805 #else
2806 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2807 {
2808 	return -EPERM;
2809 }
2810 
2811 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2812 {
2813 	return -EPERM;
2814 }
2815 
2816 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2817 				    u32 arg3)
2818 {
2819 	return -EPERM;
2820 }
2821 
2822 #endif
2823 
2824 static inline u32 tcp_timeout_init(struct sock *sk)
2825 {
2826 	int timeout;
2827 
2828 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2829 
2830 	if (timeout <= 0)
2831 		timeout = TCP_TIMEOUT_INIT;
2832 	return min_t(int, timeout, TCP_RTO_MAX);
2833 }
2834 
2835 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2836 {
2837 	int rwnd;
2838 
2839 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2840 
2841 	if (rwnd < 0)
2842 		rwnd = 0;
2843 	return rwnd;
2844 }
2845 
2846 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2847 {
2848 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2849 }
2850 
2851 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2852 {
2853 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2854 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2855 }
2856 
2857 #if IS_ENABLED(CONFIG_SMC)
2858 extern struct static_key_false tcp_have_smc;
2859 #endif
2860 
2861 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2862 void clean_acked_data_enable(struct tcp_sock *tp,
2863 			     void (*cad)(struct sock *sk, u32 ack_seq));
2864 void clean_acked_data_disable(struct tcp_sock *tp);
2865 void clean_acked_data_flush(void);
2866 #endif
2867 
2868 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2869 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2870 				    const struct tcp_sock *tp)
2871 {
2872 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2873 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2874 }
2875 
2876 /* Compute Earliest Departure Time for some control packets
2877  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2878  */
2879 static inline u64 tcp_transmit_time(const struct sock *sk)
2880 {
2881 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2882 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2883 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2884 
2885 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2886 	}
2887 	return 0;
2888 }
2889 
2890 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2891 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2892 {
2893 	const u8 *md5_tmp, *ao_tmp;
2894 	int ret;
2895 
2896 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2897 	if (ret)
2898 		return ret;
2899 
2900 	if (md5_hash)
2901 		*md5_hash = md5_tmp;
2902 
2903 	if (aoh) {
2904 		if (!ao_tmp)
2905 			*aoh = NULL;
2906 		else
2907 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2914 				   int family, int l3index, bool stat_inc)
2915 {
2916 #ifdef CONFIG_TCP_AO
2917 	struct tcp_ao_info *ao_info;
2918 	struct tcp_ao_key *ao_key;
2919 
2920 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2921 		return false;
2922 
2923 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2924 					lockdep_sock_is_held(sk));
2925 	if (!ao_info)
2926 		return false;
2927 
2928 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2929 	if (ao_info->ao_required || ao_key) {
2930 		if (stat_inc) {
2931 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2932 			atomic64_inc(&ao_info->counters.ao_required);
2933 		}
2934 		return true;
2935 	}
2936 #endif
2937 	return false;
2938 }
2939 
2940 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2941 		const struct request_sock *req, const struct sk_buff *skb,
2942 		const void *saddr, const void *daddr,
2943 		int family, int dif, int sdif);
2944 
2945 #endif	/* _TCP_H */
2946