1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* Default sending frequency of accurate ECN option per RTT */ 104 #define TCP_ACCECN_OPTION_BEACON 3 105 106 /* urg_data states */ 107 #define TCP_URG_VALID 0x0100 108 #define TCP_URG_NOTYET 0x0200 109 #define TCP_URG_READ 0x0400 110 111 #define TCP_RETR1 3 /* 112 * This is how many retries it does before it 113 * tries to figure out if the gateway is 114 * down. Minimal RFC value is 3; it corresponds 115 * to ~3sec-8min depending on RTO. 116 */ 117 118 #define TCP_RETR2 15 /* 119 * This should take at least 120 * 90 minutes to time out. 121 * RFC1122 says that the limit is 100 sec. 122 * 15 is ~13-30min depending on RTO. 123 */ 124 125 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 126 * when active opening a connection. 127 * RFC1122 says the minimum retry MUST 128 * be at least 180secs. Nevertheless 129 * this value is corresponding to 130 * 63secs of retransmission with the 131 * current initial RTO. 132 */ 133 134 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 135 * when passive opening a connection. 136 * This is corresponding to 31secs of 137 * retransmission with the current 138 * initial RTO. 139 */ 140 141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 142 * state, about 60 seconds */ 143 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 144 /* BSD style FIN_WAIT2 deadlock breaker. 145 * It used to be 3min, new value is 60sec, 146 * to combine FIN-WAIT-2 timeout with 147 * TIME-WAIT timer. 148 */ 149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 150 151 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 153 154 #if HZ >= 100 155 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 156 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 157 #else 158 #define TCP_DELACK_MIN 4U 159 #define TCP_ATO_MIN 4U 160 #endif 161 #define TCP_RTO_MAX_SEC 120 162 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 163 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 164 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 165 166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 167 168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 170 * used as a fallback RTO for the 171 * initial data transmission if no 172 * valid RTT sample has been acquired, 173 * most likely due to retrans in 3WHS. 174 */ 175 176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 177 * for local resources. 178 */ 179 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 180 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 181 #define TCP_KEEPALIVE_INTVL (75*HZ) 182 183 #define MAX_TCP_KEEPIDLE 32767 184 #define MAX_TCP_KEEPINTVL 32767 185 #define MAX_TCP_KEEPCNT 127 186 #define MAX_TCP_SYNCNT 127 187 188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 189 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 190 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 191 */ 192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 193 194 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 195 * after this time. It should be equal 196 * (or greater than) TCP_TIMEWAIT_LEN 197 * to provide reliability equal to one 198 * provided by timewait state. 199 */ 200 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 201 * timestamps. It must be less than 202 * minimal timewait lifetime. 203 */ 204 /* 205 * TCP option 206 */ 207 208 #define TCPOPT_NOP 1 /* Padding */ 209 #define TCPOPT_EOL 0 /* End of options */ 210 #define TCPOPT_MSS 2 /* Segment size negotiating */ 211 #define TCPOPT_WINDOW 3 /* Window scaling */ 212 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 213 #define TCPOPT_SACK 5 /* SACK Block */ 214 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 215 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 216 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 217 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 218 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 219 #define TCPOPT_ACCECN0 172 /* 0xAC: Accurate ECN Order 0 */ 220 #define TCPOPT_ACCECN1 174 /* 0xAE: Accurate ECN Order 1 */ 221 #define TCPOPT_EXP 254 /* Experimental */ 222 /* Magic number to be after the option value for sharing TCP 223 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 224 */ 225 #define TCPOPT_FASTOPEN_MAGIC 0xF989 226 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 227 228 /* 229 * TCP option lengths 230 */ 231 232 #define TCPOLEN_MSS 4 233 #define TCPOLEN_WINDOW 3 234 #define TCPOLEN_SACK_PERM 2 235 #define TCPOLEN_TIMESTAMP 10 236 #define TCPOLEN_MD5SIG 18 237 #define TCPOLEN_FASTOPEN_BASE 2 238 #define TCPOLEN_ACCECN_BASE 2 239 #define TCPOLEN_EXP_FASTOPEN_BASE 4 240 #define TCPOLEN_EXP_SMC_BASE 6 241 242 /* But this is what stacks really send out. */ 243 #define TCPOLEN_TSTAMP_ALIGNED 12 244 #define TCPOLEN_WSCALE_ALIGNED 4 245 #define TCPOLEN_SACKPERM_ALIGNED 4 246 #define TCPOLEN_SACK_BASE 2 247 #define TCPOLEN_SACK_BASE_ALIGNED 4 248 #define TCPOLEN_SACK_PERBLOCK 8 249 #define TCPOLEN_MD5SIG_ALIGNED 20 250 #define TCPOLEN_MSS_ALIGNED 4 251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 252 #define TCPOLEN_ACCECN_PERFIELD 3 253 254 /* Maximum number of byte counters in AccECN option + size */ 255 #define TCP_ACCECN_NUMFIELDS 3 256 #define TCP_ACCECN_MAXSIZE (TCPOLEN_ACCECN_BASE + \ 257 TCPOLEN_ACCECN_PERFIELD * \ 258 TCP_ACCECN_NUMFIELDS) 259 #define TCP_ACCECN_SAFETY_SHIFT 1 /* SAFETY_FACTOR in accecn draft */ 260 261 /* Flags in tp->nonagle */ 262 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 263 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 264 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 265 266 /* TCP thin-stream limits */ 267 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 268 269 /* TCP initial congestion window as per rfc6928 */ 270 #define TCP_INIT_CWND 10 271 272 /* Bit Flags for sysctl_tcp_fastopen */ 273 #define TFO_CLIENT_ENABLE 1 274 #define TFO_SERVER_ENABLE 2 275 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 276 277 /* Accept SYN data w/o any cookie option */ 278 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 279 280 /* Force enable TFO on all listeners, i.e., not requiring the 281 * TCP_FASTOPEN socket option. 282 */ 283 #define TFO_SERVER_WO_SOCKOPT1 0x400 284 285 286 /* sysctl variables for tcp */ 287 extern int sysctl_tcp_max_orphans; 288 extern long sysctl_tcp_mem[3]; 289 290 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 291 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 292 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 293 294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 295 296 extern struct percpu_counter tcp_sockets_allocated; 297 extern unsigned long tcp_memory_pressure; 298 299 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 300 static inline bool tcp_under_memory_pressure(const struct sock *sk) 301 { 302 if (mem_cgroup_sk_enabled(sk) && 303 mem_cgroup_sk_under_memory_pressure(sk)) 304 return true; 305 306 return READ_ONCE(tcp_memory_pressure); 307 } 308 /* 309 * The next routines deal with comparing 32 bit unsigned ints 310 * and worry about wraparound (automatic with unsigned arithmetic). 311 */ 312 313 static inline bool before(__u32 seq1, __u32 seq2) 314 { 315 return (__s32)(seq1-seq2) < 0; 316 } 317 #define after(seq2, seq1) before(seq1, seq2) 318 319 /* is s2<=s1<=s3 ? */ 320 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 321 { 322 return seq3 - seq2 >= seq1 - seq2; 323 } 324 325 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 326 { 327 sk_wmem_queued_add(sk, -skb->truesize); 328 if (!skb_zcopy_pure(skb)) 329 sk_mem_uncharge(sk, skb->truesize); 330 else 331 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 332 __kfree_skb(skb); 333 } 334 335 void sk_forced_mem_schedule(struct sock *sk, int size); 336 337 bool tcp_check_oom(const struct sock *sk, int shift); 338 339 340 extern struct proto tcp_prot; 341 342 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 343 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 344 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 345 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 346 347 void tcp_tsq_work_init(void); 348 349 int tcp_v4_err(struct sk_buff *skb, u32); 350 351 void tcp_shutdown(struct sock *sk, int how); 352 353 int tcp_v4_early_demux(struct sk_buff *skb); 354 int tcp_v4_rcv(struct sk_buff *skb); 355 356 void tcp_remove_empty_skb(struct sock *sk); 357 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 358 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 359 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 360 size_t size, struct ubuf_info *uarg); 361 void tcp_splice_eof(struct socket *sock); 362 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 363 int tcp_wmem_schedule(struct sock *sk, int copy); 364 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 365 int size_goal); 366 void tcp_release_cb(struct sock *sk); 367 void tcp_wfree(struct sk_buff *skb); 368 void tcp_write_timer_handler(struct sock *sk); 369 void tcp_delack_timer_handler(struct sock *sk); 370 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 371 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 373 void tcp_rcvbuf_grow(struct sock *sk); 374 void tcp_rcv_space_adjust(struct sock *sk); 375 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 376 void tcp_twsk_destructor(struct sock *sk); 377 void tcp_twsk_purge(struct list_head *net_exit_list); 378 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 379 struct pipe_inode_info *pipe, size_t len, 380 unsigned int flags); 381 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 382 bool force_schedule); 383 384 static inline void tcp_dec_quickack_mode(struct sock *sk) 385 { 386 struct inet_connection_sock *icsk = inet_csk(sk); 387 388 if (icsk->icsk_ack.quick) { 389 /* How many ACKs S/ACKing new data have we sent? */ 390 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 391 392 if (pkts >= icsk->icsk_ack.quick) { 393 icsk->icsk_ack.quick = 0; 394 /* Leaving quickack mode we deflate ATO. */ 395 icsk->icsk_ack.ato = TCP_ATO_MIN; 396 } else 397 icsk->icsk_ack.quick -= pkts; 398 } 399 } 400 401 #define TCP_ECN_MODE_RFC3168 BIT(0) 402 #define TCP_ECN_QUEUE_CWR BIT(1) 403 #define TCP_ECN_DEMAND_CWR BIT(2) 404 #define TCP_ECN_SEEN BIT(3) 405 #define TCP_ECN_MODE_ACCECN BIT(4) 406 407 #define TCP_ECN_DISABLED 0 408 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 409 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 410 411 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 412 { 413 return tp->ecn_flags & TCP_ECN_MODE_ANY; 414 } 415 416 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 417 { 418 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 419 } 420 421 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 422 { 423 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 424 } 425 426 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 427 { 428 return !tcp_ecn_mode_any(tp); 429 } 430 431 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 432 { 433 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 434 } 435 436 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 437 { 438 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 439 tp->ecn_flags |= mode; 440 } 441 442 enum tcp_tw_status { 443 TCP_TW_SUCCESS = 0, 444 TCP_TW_RST = 1, 445 TCP_TW_ACK = 2, 446 TCP_TW_SYN = 3, 447 TCP_TW_ACK_OOW = 4 448 }; 449 450 451 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 452 struct sk_buff *skb, 453 const struct tcphdr *th, 454 u32 *tw_isn, 455 enum skb_drop_reason *drop_reason); 456 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 457 struct request_sock *req, bool fastopen, 458 bool *lost_race, enum skb_drop_reason *drop_reason); 459 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 460 struct sk_buff *skb); 461 void tcp_enter_loss(struct sock *sk); 462 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 463 void tcp_clear_retrans(struct tcp_sock *tp); 464 void tcp_update_pacing_rate(struct sock *sk); 465 void tcp_set_rto(struct sock *sk); 466 void tcp_update_metrics(struct sock *sk); 467 void tcp_init_metrics(struct sock *sk); 468 void tcp_metrics_init(void); 469 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 470 void __tcp_close(struct sock *sk, long timeout); 471 void tcp_close(struct sock *sk, long timeout); 472 void tcp_init_sock(struct sock *sk); 473 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 474 __poll_t tcp_poll(struct file *file, struct socket *sock, 475 struct poll_table_struct *wait); 476 int do_tcp_getsockopt(struct sock *sk, int level, 477 int optname, sockptr_t optval, sockptr_t optlen); 478 int tcp_getsockopt(struct sock *sk, int level, int optname, 479 char __user *optval, int __user *optlen); 480 bool tcp_bpf_bypass_getsockopt(int level, int optname); 481 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 482 sockptr_t optval, unsigned int optlen); 483 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 484 unsigned int optlen); 485 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 486 void tcp_set_keepalive(struct sock *sk, int val); 487 void tcp_syn_ack_timeout(const struct request_sock *req); 488 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 489 int flags, int *addr_len); 490 int tcp_set_rcvlowat(struct sock *sk, int val); 491 int tcp_set_window_clamp(struct sock *sk, int val); 492 void tcp_update_recv_tstamps(struct sk_buff *skb, 493 struct scm_timestamping_internal *tss); 494 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 495 struct scm_timestamping_internal *tss); 496 void tcp_data_ready(struct sock *sk); 497 #ifdef CONFIG_MMU 498 int tcp_mmap(struct file *file, struct socket *sock, 499 struct vm_area_struct *vma); 500 #endif 501 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 502 struct tcp_options_received *opt_rx, 503 int estab, struct tcp_fastopen_cookie *foc); 504 505 /* 506 * BPF SKB-less helpers 507 */ 508 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 509 struct tcphdr *th, u32 *cookie); 510 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 511 struct tcphdr *th, u32 *cookie); 512 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 513 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 514 const struct tcp_request_sock_ops *af_ops, 515 struct sock *sk, struct tcphdr *th); 516 /* 517 * TCP v4 functions exported for the inet6 API 518 */ 519 520 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 521 void tcp_v4_mtu_reduced(struct sock *sk); 522 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 523 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 524 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 525 struct sock *tcp_create_openreq_child(const struct sock *sk, 526 struct request_sock *req, 527 struct sk_buff *skb); 528 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 529 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 530 struct request_sock *req, 531 struct dst_entry *dst, 532 struct request_sock *req_unhash, 533 bool *own_req); 534 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 535 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 536 int tcp_connect(struct sock *sk); 537 enum tcp_synack_type { 538 TCP_SYNACK_NORMAL, 539 TCP_SYNACK_FASTOPEN, 540 TCP_SYNACK_COOKIE, 541 }; 542 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 543 struct request_sock *req, 544 struct tcp_fastopen_cookie *foc, 545 enum tcp_synack_type synack_type, 546 struct sk_buff *syn_skb); 547 int tcp_disconnect(struct sock *sk, int flags); 548 549 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 550 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 551 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 552 553 /* From syncookies.c */ 554 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 555 struct request_sock *req, 556 struct dst_entry *dst); 557 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 558 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 559 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 560 struct sock *sk, struct sk_buff *skb, 561 struct tcp_options_received *tcp_opt, 562 int mss, u32 tsoff); 563 564 #if IS_ENABLED(CONFIG_BPF) 565 struct bpf_tcp_req_attrs { 566 u32 rcv_tsval; 567 u32 rcv_tsecr; 568 u16 mss; 569 u8 rcv_wscale; 570 u8 snd_wscale; 571 u8 ecn_ok; 572 u8 wscale_ok; 573 u8 sack_ok; 574 u8 tstamp_ok; 575 u8 usec_ts_ok; 576 u8 reserved[3]; 577 }; 578 #endif 579 580 #ifdef CONFIG_SYN_COOKIES 581 582 /* Syncookies use a monotonic timer which increments every 60 seconds. 583 * This counter is used both as a hash input and partially encoded into 584 * the cookie value. A cookie is only validated further if the delta 585 * between the current counter value and the encoded one is less than this, 586 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 587 * the counter advances immediately after a cookie is generated). 588 */ 589 #define MAX_SYNCOOKIE_AGE 2 590 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 591 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 592 593 /* syncookies: remember time of last synqueue overflow 594 * But do not dirty this field too often (once per second is enough) 595 * It is racy as we do not hold a lock, but race is very minor. 596 */ 597 static inline void tcp_synq_overflow(const struct sock *sk) 598 { 599 unsigned int last_overflow; 600 unsigned int now = jiffies; 601 602 if (sk->sk_reuseport) { 603 struct sock_reuseport *reuse; 604 605 reuse = rcu_dereference(sk->sk_reuseport_cb); 606 if (likely(reuse)) { 607 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 608 if (!time_between32(now, last_overflow, 609 last_overflow + HZ)) 610 WRITE_ONCE(reuse->synq_overflow_ts, now); 611 return; 612 } 613 } 614 615 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 616 if (!time_between32(now, last_overflow, last_overflow + HZ)) 617 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 618 } 619 620 /* syncookies: no recent synqueue overflow on this listening socket? */ 621 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 622 { 623 unsigned int last_overflow; 624 unsigned int now = jiffies; 625 626 if (sk->sk_reuseport) { 627 struct sock_reuseport *reuse; 628 629 reuse = rcu_dereference(sk->sk_reuseport_cb); 630 if (likely(reuse)) { 631 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 632 return !time_between32(now, last_overflow - HZ, 633 last_overflow + 634 TCP_SYNCOOKIE_VALID); 635 } 636 } 637 638 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 639 640 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 641 * then we're under synflood. However, we have to use 642 * 'last_overflow - HZ' as lower bound. That's because a concurrent 643 * tcp_synq_overflow() could update .ts_recent_stamp after we read 644 * jiffies but before we store .ts_recent_stamp into last_overflow, 645 * which could lead to rejecting a valid syncookie. 646 */ 647 return !time_between32(now, last_overflow - HZ, 648 last_overflow + TCP_SYNCOOKIE_VALID); 649 } 650 651 static inline u32 tcp_cookie_time(void) 652 { 653 u64 val = get_jiffies_64(); 654 655 do_div(val, TCP_SYNCOOKIE_PERIOD); 656 return val; 657 } 658 659 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 660 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 661 { 662 if (usec_ts) 663 return div_u64(val, NSEC_PER_USEC); 664 665 return div_u64(val, NSEC_PER_MSEC); 666 } 667 668 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 669 u16 *mssp); 670 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 671 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 672 bool cookie_timestamp_decode(const struct net *net, 673 struct tcp_options_received *opt); 674 675 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 676 { 677 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 678 dst_feature(dst, RTAX_FEATURE_ECN); 679 } 680 681 #if IS_ENABLED(CONFIG_BPF) 682 static inline bool cookie_bpf_ok(struct sk_buff *skb) 683 { 684 return skb->sk; 685 } 686 687 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 688 #else 689 static inline bool cookie_bpf_ok(struct sk_buff *skb) 690 { 691 return false; 692 } 693 694 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 695 struct sk_buff *skb) 696 { 697 return NULL; 698 } 699 #endif 700 701 /* From net/ipv6/syncookies.c */ 702 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 703 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 704 705 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 706 const struct tcphdr *th, u16 *mssp); 707 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 708 #endif 709 /* tcp_output.c */ 710 711 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 712 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 713 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 714 int nonagle); 715 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 716 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 717 void tcp_retransmit_timer(struct sock *sk); 718 void tcp_xmit_retransmit_queue(struct sock *); 719 void tcp_simple_retransmit(struct sock *); 720 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 721 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 722 enum tcp_queue { 723 TCP_FRAG_IN_WRITE_QUEUE, 724 TCP_FRAG_IN_RTX_QUEUE, 725 }; 726 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 727 struct sk_buff *skb, u32 len, 728 unsigned int mss_now, gfp_t gfp); 729 730 void tcp_send_probe0(struct sock *); 731 int tcp_write_wakeup(struct sock *, int mib); 732 void tcp_send_fin(struct sock *sk); 733 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 734 enum sk_rst_reason reason); 735 int tcp_send_synack(struct sock *); 736 void tcp_push_one(struct sock *, unsigned int mss_now); 737 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 738 void tcp_send_ack(struct sock *sk); 739 void tcp_send_delayed_ack(struct sock *sk); 740 void tcp_send_loss_probe(struct sock *sk); 741 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 742 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 743 const struct sk_buff *next_skb); 744 745 /* tcp_input.c */ 746 void tcp_rearm_rto(struct sock *sk); 747 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 748 void tcp_done_with_error(struct sock *sk, int err); 749 void tcp_reset(struct sock *sk, struct sk_buff *skb); 750 void tcp_fin(struct sock *sk); 751 void tcp_check_space(struct sock *sk); 752 void tcp_sack_compress_send_ack(struct sock *sk); 753 754 static inline void tcp_cleanup_skb(struct sk_buff *skb) 755 { 756 skb_dst_drop(skb); 757 secpath_reset(skb); 758 } 759 760 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 761 { 762 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 763 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 764 __skb_queue_tail(&sk->sk_receive_queue, skb); 765 } 766 767 /* tcp_timer.c */ 768 void tcp_init_xmit_timers(struct sock *); 769 static inline void tcp_clear_xmit_timers(struct sock *sk) 770 { 771 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 772 __sock_put(sk); 773 774 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 775 __sock_put(sk); 776 777 inet_csk_clear_xmit_timers(sk); 778 } 779 780 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 781 unsigned int tcp_current_mss(struct sock *sk); 782 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 783 784 /* Bound MSS / TSO packet size with the half of the window */ 785 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 786 { 787 int cutoff; 788 789 /* When peer uses tiny windows, there is no use in packetizing 790 * to sub-MSS pieces for the sake of SWS or making sure there 791 * are enough packets in the pipe for fast recovery. 792 * 793 * On the other hand, for extremely large MSS devices, handling 794 * smaller than MSS windows in this way does make sense. 795 */ 796 if (tp->max_window > TCP_MSS_DEFAULT) 797 cutoff = (tp->max_window >> 1); 798 else 799 cutoff = tp->max_window; 800 801 if (cutoff && pktsize > cutoff) 802 return max_t(int, cutoff, 68U - tp->tcp_header_len); 803 else 804 return pktsize; 805 } 806 807 /* tcp.c */ 808 void tcp_get_info(struct sock *, struct tcp_info *); 809 810 /* Read 'sendfile()'-style from a TCP socket */ 811 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 812 sk_read_actor_t recv_actor); 813 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 814 sk_read_actor_t recv_actor, bool noack, 815 u32 *copied_seq); 816 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 817 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 818 void tcp_read_done(struct sock *sk, size_t len); 819 820 void tcp_initialize_rcv_mss(struct sock *sk); 821 822 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 823 int tcp_mss_to_mtu(struct sock *sk, int mss); 824 void tcp_mtup_init(struct sock *sk); 825 826 static inline unsigned int tcp_rto_max(const struct sock *sk) 827 { 828 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 829 } 830 831 static inline void tcp_bound_rto(struct sock *sk) 832 { 833 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 834 } 835 836 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 837 { 838 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 839 } 840 841 u32 tcp_delack_max(const struct sock *sk); 842 843 /* Compute the actual rto_min value */ 844 static inline u32 tcp_rto_min(const struct sock *sk) 845 { 846 const struct dst_entry *dst = __sk_dst_get(sk); 847 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 848 849 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 850 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 851 return rto_min; 852 } 853 854 static inline u32 tcp_rto_min_us(const struct sock *sk) 855 { 856 return jiffies_to_usecs(tcp_rto_min(sk)); 857 } 858 859 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 860 { 861 return dst_metric_locked(dst, RTAX_CC_ALGO); 862 } 863 864 /* Minimum RTT in usec. ~0 means not available. */ 865 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 866 { 867 return minmax_get(&tp->rtt_min); 868 } 869 870 /* Compute the actual receive window we are currently advertising. 871 * Rcv_nxt can be after the window if our peer push more data 872 * than the offered window. 873 */ 874 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 875 { 876 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 877 878 if (win < 0) 879 win = 0; 880 return (u32) win; 881 } 882 883 /* Choose a new window, without checks for shrinking, and without 884 * scaling applied to the result. The caller does these things 885 * if necessary. This is a "raw" window selection. 886 */ 887 u32 __tcp_select_window(struct sock *sk); 888 889 void tcp_send_window_probe(struct sock *sk); 890 891 /* TCP uses 32bit jiffies to save some space. 892 * Note that this is different from tcp_time_stamp, which 893 * historically has been the same until linux-4.13. 894 */ 895 #define tcp_jiffies32 ((u32)jiffies) 896 897 /* 898 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 899 * It is no longer tied to jiffies, but to 1 ms clock. 900 * Note: double check if you want to use tcp_jiffies32 instead of this. 901 */ 902 #define TCP_TS_HZ 1000 903 904 static inline u64 tcp_clock_ns(void) 905 { 906 return ktime_get_ns(); 907 } 908 909 static inline u64 tcp_clock_us(void) 910 { 911 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 912 } 913 914 static inline u64 tcp_clock_ms(void) 915 { 916 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 917 } 918 919 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 920 * or usec resolution. Each socket carries a flag to select one or other 921 * resolution, as the route attribute could change anytime. 922 * Each flow must stick to initial resolution. 923 */ 924 static inline u32 tcp_clock_ts(bool usec_ts) 925 { 926 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 927 } 928 929 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 930 { 931 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 932 } 933 934 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 935 { 936 if (tp->tcp_usec_ts) 937 return tp->tcp_mstamp; 938 return tcp_time_stamp_ms(tp); 939 } 940 941 void tcp_mstamp_refresh(struct tcp_sock *tp); 942 943 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 944 { 945 return max_t(s64, t1 - t0, 0); 946 } 947 948 /* provide the departure time in us unit */ 949 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 950 { 951 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 952 } 953 954 /* Provide skb TSval in usec or ms unit */ 955 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 956 { 957 if (usec_ts) 958 return tcp_skb_timestamp_us(skb); 959 960 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 961 } 962 963 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 964 { 965 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 966 } 967 968 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 969 { 970 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 971 } 972 973 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 974 975 #define TCPHDR_FIN BIT(0) 976 #define TCPHDR_SYN BIT(1) 977 #define TCPHDR_RST BIT(2) 978 #define TCPHDR_PSH BIT(3) 979 #define TCPHDR_ACK BIT(4) 980 #define TCPHDR_URG BIT(5) 981 #define TCPHDR_ECE BIT(6) 982 #define TCPHDR_CWR BIT(7) 983 #define TCPHDR_AE BIT(8) 984 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 985 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 986 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 987 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 988 TCPHDR_FLAGS_MASK) 989 990 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 991 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 992 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR) 993 994 #define TCP_ACCECN_CEP_ACE_MASK 0x7 995 #define TCP_ACCECN_ACE_MAX_DELTA 6 996 997 /* To avoid/detect middlebox interference, not all counters start at 0. 998 * See draft-ietf-tcpm-accurate-ecn for the latest values. 999 */ 1000 #define TCP_ACCECN_CEP_INIT_OFFSET 5 1001 #define TCP_ACCECN_E1B_INIT_OFFSET 1 1002 #define TCP_ACCECN_E0B_INIT_OFFSET 1 1003 #define TCP_ACCECN_CEB_INIT_OFFSET 0 1004 1005 /* State flags for sacked in struct tcp_skb_cb */ 1006 enum tcp_skb_cb_sacked_flags { 1007 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1008 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1009 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1010 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1011 TCPCB_LOST), /* All tag bits */ 1012 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1013 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1014 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1015 TCPCB_REPAIRED), 1016 }; 1017 1018 /* This is what the send packet queuing engine uses to pass 1019 * TCP per-packet control information to the transmission code. 1020 * We also store the host-order sequence numbers in here too. 1021 * This is 44 bytes if IPV6 is enabled. 1022 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1023 */ 1024 struct tcp_skb_cb { 1025 __u32 seq; /* Starting sequence number */ 1026 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1027 union { 1028 /* Note : 1029 * tcp_gso_segs/size are used in write queue only, 1030 * cf tcp_skb_pcount()/tcp_skb_mss() 1031 */ 1032 struct { 1033 u16 tcp_gso_segs; 1034 u16 tcp_gso_size; 1035 }; 1036 }; 1037 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1038 1039 __u8 sacked; /* State flags for SACK. */ 1040 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1041 #define TSTAMP_ACK_SK 0x1 1042 #define TSTAMP_ACK_BPF 0x2 1043 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1044 eor:1, /* Is skb MSG_EOR marked? */ 1045 has_rxtstamp:1, /* SKB has a RX timestamp */ 1046 unused:4; 1047 __u32 ack_seq; /* Sequence number ACK'd */ 1048 union { 1049 struct { 1050 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1051 /* There is space for up to 24 bytes */ 1052 __u32 is_app_limited:1, /* cwnd not fully used? */ 1053 delivered_ce:20, 1054 unused:11; 1055 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1056 __u32 delivered; 1057 /* start of send pipeline phase */ 1058 u64 first_tx_mstamp; 1059 /* when we reached the "delivered" count */ 1060 u64 delivered_mstamp; 1061 } tx; /* only used for outgoing skbs */ 1062 union { 1063 struct inet_skb_parm h4; 1064 #if IS_ENABLED(CONFIG_IPV6) 1065 struct inet6_skb_parm h6; 1066 #endif 1067 } header; /* For incoming skbs */ 1068 }; 1069 }; 1070 1071 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1072 1073 extern const struct inet_connection_sock_af_ops ipv4_specific; 1074 1075 #if IS_ENABLED(CONFIG_IPV6) 1076 /* This is the variant of inet6_iif() that must be used by TCP, 1077 * as TCP moves IP6CB into a different location in skb->cb[] 1078 */ 1079 static inline int tcp_v6_iif(const struct sk_buff *skb) 1080 { 1081 return TCP_SKB_CB(skb)->header.h6.iif; 1082 } 1083 1084 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1085 { 1086 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1087 1088 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1089 } 1090 1091 /* TCP_SKB_CB reference means this can not be used from early demux */ 1092 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1093 { 1094 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1095 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1096 return TCP_SKB_CB(skb)->header.h6.iif; 1097 #endif 1098 return 0; 1099 } 1100 1101 extern const struct inet_connection_sock_af_ops ipv6_specific; 1102 1103 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1104 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1105 void tcp_v6_early_demux(struct sk_buff *skb); 1106 1107 #endif 1108 1109 /* TCP_SKB_CB reference means this can not be used from early demux */ 1110 static inline int tcp_v4_sdif(struct sk_buff *skb) 1111 { 1112 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1113 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1114 return TCP_SKB_CB(skb)->header.h4.iif; 1115 #endif 1116 return 0; 1117 } 1118 1119 /* Due to TSO, an SKB can be composed of multiple actual 1120 * packets. To keep these tracked properly, we use this. 1121 */ 1122 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1123 { 1124 return TCP_SKB_CB(skb)->tcp_gso_segs; 1125 } 1126 1127 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1128 { 1129 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1130 } 1131 1132 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1133 { 1134 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1135 } 1136 1137 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1138 static inline int tcp_skb_mss(const struct sk_buff *skb) 1139 { 1140 return TCP_SKB_CB(skb)->tcp_gso_size; 1141 } 1142 1143 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1144 { 1145 return likely(!TCP_SKB_CB(skb)->eor); 1146 } 1147 1148 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1149 const struct sk_buff *from) 1150 { 1151 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1152 return likely(tcp_skb_can_collapse_to(to) && 1153 mptcp_skb_can_collapse(to, from) && 1154 skb_pure_zcopy_same(to, from) && 1155 skb_frags_readable(to) == skb_frags_readable(from)); 1156 } 1157 1158 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1159 const struct sk_buff *from) 1160 { 1161 return likely(mptcp_skb_can_collapse(to, from) && 1162 !skb_cmp_decrypted(to, from)); 1163 } 1164 1165 /* Events passed to congestion control interface */ 1166 enum tcp_ca_event { 1167 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1168 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1169 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1170 CA_EVENT_LOSS, /* loss timeout */ 1171 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1172 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1173 }; 1174 1175 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1176 enum tcp_ca_ack_event_flags { 1177 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1178 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1179 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1180 }; 1181 1182 /* 1183 * Interface for adding new TCP congestion control handlers 1184 */ 1185 #define TCP_CA_NAME_MAX 16 1186 #define TCP_CA_MAX 128 1187 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1188 1189 #define TCP_CA_UNSPEC 0 1190 1191 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1192 #define TCP_CONG_NON_RESTRICTED BIT(0) 1193 /* Requires ECN/ECT set on all packets */ 1194 #define TCP_CONG_NEEDS_ECN BIT(1) 1195 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1196 1197 union tcp_cc_info; 1198 1199 struct ack_sample { 1200 u32 pkts_acked; 1201 s32 rtt_us; 1202 u32 in_flight; 1203 }; 1204 1205 /* A rate sample measures the number of (original/retransmitted) data 1206 * packets delivered "delivered" over an interval of time "interval_us". 1207 * The tcp_rate.c code fills in the rate sample, and congestion 1208 * control modules that define a cong_control function to run at the end 1209 * of ACK processing can optionally chose to consult this sample when 1210 * setting cwnd and pacing rate. 1211 * A sample is invalid if "delivered" or "interval_us" is negative. 1212 */ 1213 struct rate_sample { 1214 u64 prior_mstamp; /* starting timestamp for interval */ 1215 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1216 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1217 s32 delivered; /* number of packets delivered over interval */ 1218 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1219 long interval_us; /* time for tp->delivered to incr "delivered" */ 1220 u32 snd_interval_us; /* snd interval for delivered packets */ 1221 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1222 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1223 int losses; /* number of packets marked lost upon ACK */ 1224 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1225 u32 prior_in_flight; /* in flight before this ACK */ 1226 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1227 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1228 bool is_retrans; /* is sample from retransmission? */ 1229 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1230 }; 1231 1232 struct tcp_congestion_ops { 1233 /* fast path fields are put first to fill one cache line */ 1234 1235 /* return slow start threshold (required) */ 1236 u32 (*ssthresh)(struct sock *sk); 1237 1238 /* do new cwnd calculation (required) */ 1239 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1240 1241 /* call before changing ca_state (optional) */ 1242 void (*set_state)(struct sock *sk, u8 new_state); 1243 1244 /* call when cwnd event occurs (optional) */ 1245 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1246 1247 /* call when ack arrives (optional) */ 1248 void (*in_ack_event)(struct sock *sk, u32 flags); 1249 1250 /* hook for packet ack accounting (optional) */ 1251 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1252 1253 /* override sysctl_tcp_min_tso_segs */ 1254 u32 (*min_tso_segs)(struct sock *sk); 1255 1256 /* call when packets are delivered to update cwnd and pacing rate, 1257 * after all the ca_state processing. (optional) 1258 */ 1259 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1260 1261 1262 /* new value of cwnd after loss (required) */ 1263 u32 (*undo_cwnd)(struct sock *sk); 1264 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1265 u32 (*sndbuf_expand)(struct sock *sk); 1266 1267 /* control/slow paths put last */ 1268 /* get info for inet_diag (optional) */ 1269 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1270 union tcp_cc_info *info); 1271 1272 char name[TCP_CA_NAME_MAX]; 1273 struct module *owner; 1274 struct list_head list; 1275 u32 key; 1276 u32 flags; 1277 1278 /* initialize private data (optional) */ 1279 void (*init)(struct sock *sk); 1280 /* cleanup private data (optional) */ 1281 void (*release)(struct sock *sk); 1282 } ____cacheline_aligned_in_smp; 1283 1284 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1285 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1286 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1287 struct tcp_congestion_ops *old_type); 1288 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1289 1290 void tcp_assign_congestion_control(struct sock *sk); 1291 void tcp_init_congestion_control(struct sock *sk); 1292 void tcp_cleanup_congestion_control(struct sock *sk); 1293 int tcp_set_default_congestion_control(struct net *net, const char *name); 1294 void tcp_get_default_congestion_control(struct net *net, char *name); 1295 void tcp_get_available_congestion_control(char *buf, size_t len); 1296 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1297 int tcp_set_allowed_congestion_control(char *allowed); 1298 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1299 bool cap_net_admin); 1300 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1301 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1302 1303 u32 tcp_reno_ssthresh(struct sock *sk); 1304 u32 tcp_reno_undo_cwnd(struct sock *sk); 1305 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1306 extern struct tcp_congestion_ops tcp_reno; 1307 1308 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1309 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1310 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1311 #ifdef CONFIG_INET 1312 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1313 #else 1314 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1315 { 1316 return NULL; 1317 } 1318 #endif 1319 1320 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1321 { 1322 const struct inet_connection_sock *icsk = inet_csk(sk); 1323 1324 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1325 } 1326 1327 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1328 { 1329 const struct inet_connection_sock *icsk = inet_csk(sk); 1330 1331 if (icsk->icsk_ca_ops->cwnd_event) 1332 icsk->icsk_ca_ops->cwnd_event(sk, event); 1333 } 1334 1335 /* From tcp_cong.c */ 1336 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1337 1338 /* From tcp_rate.c */ 1339 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1340 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1341 struct rate_sample *rs); 1342 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1343 bool is_sack_reneg, struct rate_sample *rs); 1344 void tcp_rate_check_app_limited(struct sock *sk); 1345 1346 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1347 { 1348 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1349 } 1350 1351 /* These functions determine how the current flow behaves in respect of SACK 1352 * handling. SACK is negotiated with the peer, and therefore it can vary 1353 * between different flows. 1354 * 1355 * tcp_is_sack - SACK enabled 1356 * tcp_is_reno - No SACK 1357 */ 1358 static inline int tcp_is_sack(const struct tcp_sock *tp) 1359 { 1360 return likely(tp->rx_opt.sack_ok); 1361 } 1362 1363 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1364 { 1365 return !tcp_is_sack(tp); 1366 } 1367 1368 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1369 { 1370 return tp->sacked_out + tp->lost_out; 1371 } 1372 1373 /* This determines how many packets are "in the network" to the best 1374 * of our knowledge. In many cases it is conservative, but where 1375 * detailed information is available from the receiver (via SACK 1376 * blocks etc.) we can make more aggressive calculations. 1377 * 1378 * Use this for decisions involving congestion control, use just 1379 * tp->packets_out to determine if the send queue is empty or not. 1380 * 1381 * Read this equation as: 1382 * 1383 * "Packets sent once on transmission queue" MINUS 1384 * "Packets left network, but not honestly ACKed yet" PLUS 1385 * "Packets fast retransmitted" 1386 */ 1387 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1388 { 1389 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1390 } 1391 1392 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1393 1394 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1395 { 1396 return tp->snd_cwnd; 1397 } 1398 1399 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1400 { 1401 WARN_ON_ONCE((int)val <= 0); 1402 tp->snd_cwnd = val; 1403 } 1404 1405 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1406 { 1407 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1408 } 1409 1410 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1411 { 1412 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1413 } 1414 1415 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1416 { 1417 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1418 (1 << inet_csk(sk)->icsk_ca_state); 1419 } 1420 1421 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1422 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1423 * ssthresh. 1424 */ 1425 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1426 { 1427 const struct tcp_sock *tp = tcp_sk(sk); 1428 1429 if (tcp_in_cwnd_reduction(sk)) 1430 return tp->snd_ssthresh; 1431 else 1432 return max(tp->snd_ssthresh, 1433 ((tcp_snd_cwnd(tp) >> 1) + 1434 (tcp_snd_cwnd(tp) >> 2))); 1435 } 1436 1437 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1438 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1439 1440 void tcp_enter_cwr(struct sock *sk); 1441 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1442 1443 /* The maximum number of MSS of available cwnd for which TSO defers 1444 * sending if not using sysctl_tcp_tso_win_divisor. 1445 */ 1446 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1447 { 1448 return 3; 1449 } 1450 1451 /* Returns end sequence number of the receiver's advertised window */ 1452 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1453 { 1454 return tp->snd_una + tp->snd_wnd; 1455 } 1456 1457 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1458 * flexible approach. The RFC suggests cwnd should not be raised unless 1459 * it was fully used previously. And that's exactly what we do in 1460 * congestion avoidance mode. But in slow start we allow cwnd to grow 1461 * as long as the application has used half the cwnd. 1462 * Example : 1463 * cwnd is 10 (IW10), but application sends 9 frames. 1464 * We allow cwnd to reach 18 when all frames are ACKed. 1465 * This check is safe because it's as aggressive as slow start which already 1466 * risks 100% overshoot. The advantage is that we discourage application to 1467 * either send more filler packets or data to artificially blow up the cwnd 1468 * usage, and allow application-limited process to probe bw more aggressively. 1469 */ 1470 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1471 { 1472 const struct tcp_sock *tp = tcp_sk(sk); 1473 1474 if (tp->is_cwnd_limited) 1475 return true; 1476 1477 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1478 if (tcp_in_slow_start(tp)) 1479 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1480 1481 return false; 1482 } 1483 1484 /* BBR congestion control needs pacing. 1485 * Same remark for SO_MAX_PACING_RATE. 1486 * sch_fq packet scheduler is efficiently handling pacing, 1487 * but is not always installed/used. 1488 * Return true if TCP stack should pace packets itself. 1489 */ 1490 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1491 { 1492 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1493 } 1494 1495 /* Estimates in how many jiffies next packet for this flow can be sent. 1496 * Scheduling a retransmit timer too early would be silly. 1497 */ 1498 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1499 { 1500 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1501 1502 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1503 } 1504 1505 static inline void tcp_reset_xmit_timer(struct sock *sk, 1506 const int what, 1507 unsigned long when, 1508 bool pace_delay) 1509 { 1510 if (pace_delay) 1511 when += tcp_pacing_delay(sk); 1512 inet_csk_reset_xmit_timer(sk, what, when, 1513 tcp_rto_max(sk)); 1514 } 1515 1516 /* Something is really bad, we could not queue an additional packet, 1517 * because qdisc is full or receiver sent a 0 window, or we are paced. 1518 * We do not want to add fuel to the fire, or abort too early, 1519 * so make sure the timer we arm now is at least 200ms in the future, 1520 * regardless of current icsk_rto value (as it could be ~2ms) 1521 */ 1522 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1523 { 1524 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1525 } 1526 1527 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1528 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1529 unsigned long max_when) 1530 { 1531 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1532 inet_csk(sk)->icsk_backoff); 1533 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1534 1535 return (unsigned long)min_t(u64, when, max_when); 1536 } 1537 1538 static inline void tcp_check_probe_timer(struct sock *sk) 1539 { 1540 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1541 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1542 tcp_probe0_base(sk), true); 1543 } 1544 1545 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1546 { 1547 tp->snd_wl1 = seq; 1548 } 1549 1550 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1551 { 1552 tp->snd_wl1 = seq; 1553 } 1554 1555 /* 1556 * Calculate(/check) TCP checksum 1557 */ 1558 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1559 __be32 daddr, __wsum base) 1560 { 1561 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1562 } 1563 1564 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1565 { 1566 return !skb_csum_unnecessary(skb) && 1567 __skb_checksum_complete(skb); 1568 } 1569 1570 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1571 enum skb_drop_reason *reason); 1572 1573 1574 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1575 void tcp_set_state(struct sock *sk, int state); 1576 void tcp_done(struct sock *sk); 1577 int tcp_abort(struct sock *sk, int err); 1578 1579 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1580 { 1581 rx_opt->dsack = 0; 1582 rx_opt->num_sacks = 0; 1583 } 1584 1585 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1586 1587 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1588 { 1589 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1590 struct tcp_sock *tp = tcp_sk(sk); 1591 s32 delta; 1592 1593 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1594 tp->packets_out || ca_ops->cong_control) 1595 return; 1596 delta = tcp_jiffies32 - tp->lsndtime; 1597 if (delta > inet_csk(sk)->icsk_rto) 1598 tcp_cwnd_restart(sk, delta); 1599 } 1600 1601 /* Determine a window scaling and initial window to offer. */ 1602 void tcp_select_initial_window(const struct sock *sk, int __space, 1603 __u32 mss, __u32 *rcv_wnd, 1604 __u32 *window_clamp, int wscale_ok, 1605 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1606 1607 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1608 { 1609 s64 scaled_space = (s64)space * scaling_ratio; 1610 1611 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1612 } 1613 1614 static inline int tcp_win_from_space(const struct sock *sk, int space) 1615 { 1616 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1617 } 1618 1619 /* inverse of __tcp_win_from_space() */ 1620 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1621 { 1622 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1623 1624 do_div(val, scaling_ratio); 1625 return val; 1626 } 1627 1628 static inline int tcp_space_from_win(const struct sock *sk, int win) 1629 { 1630 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1631 } 1632 1633 /* Assume a 50% default for skb->len/skb->truesize ratio. 1634 * This may be adjusted later in tcp_measure_rcv_mss(). 1635 */ 1636 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1637 1638 static inline void tcp_scaling_ratio_init(struct sock *sk) 1639 { 1640 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1641 } 1642 1643 /* Note: caller must be prepared to deal with negative returns */ 1644 static inline int tcp_space(const struct sock *sk) 1645 { 1646 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1647 READ_ONCE(sk->sk_backlog.len) - 1648 atomic_read(&sk->sk_rmem_alloc)); 1649 } 1650 1651 static inline int tcp_full_space(const struct sock *sk) 1652 { 1653 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1654 } 1655 1656 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1657 { 1658 int unused_mem = sk_unused_reserved_mem(sk); 1659 struct tcp_sock *tp = tcp_sk(sk); 1660 1661 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1662 if (unused_mem) 1663 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1664 tcp_win_from_space(sk, unused_mem)); 1665 } 1666 1667 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1668 { 1669 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1670 } 1671 1672 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1673 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1674 1675 1676 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1677 * If 87.5 % (7/8) of the space has been consumed, we want to override 1678 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1679 * len/truesize ratio. 1680 */ 1681 static inline bool tcp_rmem_pressure(const struct sock *sk) 1682 { 1683 int rcvbuf, threshold; 1684 1685 if (tcp_under_memory_pressure(sk)) 1686 return true; 1687 1688 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1689 threshold = rcvbuf - (rcvbuf >> 3); 1690 1691 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1692 } 1693 1694 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1695 { 1696 const struct tcp_sock *tp = tcp_sk(sk); 1697 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1698 1699 if (avail <= 0) 1700 return false; 1701 1702 return (avail >= target) || tcp_rmem_pressure(sk) || 1703 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1704 } 1705 1706 extern void tcp_openreq_init_rwin(struct request_sock *req, 1707 const struct sock *sk_listener, 1708 const struct dst_entry *dst); 1709 1710 void tcp_enter_memory_pressure(struct sock *sk); 1711 void tcp_leave_memory_pressure(struct sock *sk); 1712 1713 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1714 { 1715 struct net *net = sock_net((struct sock *)tp); 1716 int val; 1717 1718 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1719 * and do_tcp_setsockopt(). 1720 */ 1721 val = READ_ONCE(tp->keepalive_intvl); 1722 1723 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1724 } 1725 1726 static inline int keepalive_time_when(const struct tcp_sock *tp) 1727 { 1728 struct net *net = sock_net((struct sock *)tp); 1729 int val; 1730 1731 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1732 val = READ_ONCE(tp->keepalive_time); 1733 1734 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1735 } 1736 1737 static inline int keepalive_probes(const struct tcp_sock *tp) 1738 { 1739 struct net *net = sock_net((struct sock *)tp); 1740 int val; 1741 1742 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1743 * and do_tcp_setsockopt(). 1744 */ 1745 val = READ_ONCE(tp->keepalive_probes); 1746 1747 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1748 } 1749 1750 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1751 { 1752 const struct inet_connection_sock *icsk = &tp->inet_conn; 1753 1754 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1755 tcp_jiffies32 - tp->rcv_tstamp); 1756 } 1757 1758 static inline int tcp_fin_time(const struct sock *sk) 1759 { 1760 int fin_timeout = tcp_sk(sk)->linger2 ? : 1761 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1762 const int rto = inet_csk(sk)->icsk_rto; 1763 1764 if (fin_timeout < (rto << 2) - (rto >> 1)) 1765 fin_timeout = (rto << 2) - (rto >> 1); 1766 1767 return fin_timeout; 1768 } 1769 1770 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1771 int paws_win) 1772 { 1773 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1774 return true; 1775 if (unlikely(!time_before32(ktime_get_seconds(), 1776 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1777 return true; 1778 /* 1779 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1780 * then following tcp messages have valid values. Ignore 0 value, 1781 * or else 'negative' tsval might forbid us to accept their packets. 1782 */ 1783 if (!rx_opt->ts_recent) 1784 return true; 1785 return false; 1786 } 1787 1788 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1789 int rst) 1790 { 1791 if (tcp_paws_check(rx_opt, 0)) 1792 return false; 1793 1794 /* RST segments are not recommended to carry timestamp, 1795 and, if they do, it is recommended to ignore PAWS because 1796 "their cleanup function should take precedence over timestamps." 1797 Certainly, it is mistake. It is necessary to understand the reasons 1798 of this constraint to relax it: if peer reboots, clock may go 1799 out-of-sync and half-open connections will not be reset. 1800 Actually, the problem would be not existing if all 1801 the implementations followed draft about maintaining clock 1802 via reboots. Linux-2.2 DOES NOT! 1803 1804 However, we can relax time bounds for RST segments to MSL. 1805 */ 1806 if (rst && !time_before32(ktime_get_seconds(), 1807 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1808 return false; 1809 return true; 1810 } 1811 1812 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1813 { 1814 u32 ace; 1815 1816 /* mptcp hooks are only on the slow path */ 1817 if (sk_is_mptcp((struct sock *)tp)) 1818 return; 1819 1820 ace = tcp_ecn_mode_accecn(tp) ? 1821 ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) & 1822 TCP_ACCECN_CEP_ACE_MASK) : 0; 1823 1824 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1825 (ace << 22) | 1826 ntohl(TCP_FLAG_ACK) | 1827 snd_wnd); 1828 } 1829 1830 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1831 { 1832 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1833 } 1834 1835 static inline void tcp_fast_path_check(struct sock *sk) 1836 { 1837 struct tcp_sock *tp = tcp_sk(sk); 1838 1839 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1840 tp->rcv_wnd && 1841 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1842 !tp->urg_data) 1843 tcp_fast_path_on(tp); 1844 } 1845 1846 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1847 int mib_idx, u32 *last_oow_ack_time); 1848 1849 static inline void tcp_mib_init(struct net *net) 1850 { 1851 /* See RFC 2012 */ 1852 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1853 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1854 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1855 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1856 } 1857 1858 /* from STCP */ 1859 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1860 { 1861 tp->retransmit_skb_hint = NULL; 1862 } 1863 1864 #define tcp_md5_addr tcp_ao_addr 1865 1866 /* - key database */ 1867 struct tcp_md5sig_key { 1868 struct hlist_node node; 1869 u8 keylen; 1870 u8 family; /* AF_INET or AF_INET6 */ 1871 u8 prefixlen; 1872 u8 flags; 1873 union tcp_md5_addr addr; 1874 int l3index; /* set if key added with L3 scope */ 1875 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1876 struct rcu_head rcu; 1877 }; 1878 1879 /* - sock block */ 1880 struct tcp_md5sig_info { 1881 struct hlist_head head; 1882 struct rcu_head rcu; 1883 }; 1884 1885 /* - pseudo header */ 1886 struct tcp4_pseudohdr { 1887 __be32 saddr; 1888 __be32 daddr; 1889 __u8 pad; 1890 __u8 protocol; 1891 __be16 len; 1892 }; 1893 1894 struct tcp6_pseudohdr { 1895 struct in6_addr saddr; 1896 struct in6_addr daddr; 1897 __be32 len; 1898 __be32 protocol; /* including padding */ 1899 }; 1900 1901 union tcp_md5sum_block { 1902 struct tcp4_pseudohdr ip4; 1903 #if IS_ENABLED(CONFIG_IPV6) 1904 struct tcp6_pseudohdr ip6; 1905 #endif 1906 }; 1907 1908 /* 1909 * struct tcp_sigpool - per-CPU pool of ahash_requests 1910 * @scratch: per-CPU temporary area, that can be used between 1911 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1912 * crypto request 1913 * @req: pre-allocated ahash request 1914 */ 1915 struct tcp_sigpool { 1916 void *scratch; 1917 struct ahash_request *req; 1918 }; 1919 1920 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1921 void tcp_sigpool_get(unsigned int id); 1922 void tcp_sigpool_release(unsigned int id); 1923 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1924 const struct sk_buff *skb, 1925 unsigned int header_len); 1926 1927 /** 1928 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1929 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1930 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1931 * 1932 * Returns: 0 on success, error otherwise. 1933 */ 1934 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1935 /** 1936 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1937 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1938 */ 1939 void tcp_sigpool_end(struct tcp_sigpool *c); 1940 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1941 /* - functions */ 1942 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1943 const struct sock *sk, const struct sk_buff *skb); 1944 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1945 int family, u8 prefixlen, int l3index, u8 flags, 1946 const u8 *newkey, u8 newkeylen); 1947 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1948 int family, u8 prefixlen, int l3index, 1949 struct tcp_md5sig_key *key); 1950 1951 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1952 int family, u8 prefixlen, int l3index, u8 flags); 1953 void tcp_clear_md5_list(struct sock *sk); 1954 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1955 const struct sock *addr_sk); 1956 1957 #ifdef CONFIG_TCP_MD5SIG 1958 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1959 const union tcp_md5_addr *addr, 1960 int family, bool any_l3index); 1961 static inline struct tcp_md5sig_key * 1962 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1963 const union tcp_md5_addr *addr, int family) 1964 { 1965 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1966 return NULL; 1967 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1968 } 1969 1970 static inline struct tcp_md5sig_key * 1971 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1972 const union tcp_md5_addr *addr, int family) 1973 { 1974 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1975 return NULL; 1976 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1977 } 1978 1979 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1980 void tcp_md5_destruct_sock(struct sock *sk); 1981 #else 1982 static inline struct tcp_md5sig_key * 1983 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1984 const union tcp_md5_addr *addr, int family) 1985 { 1986 return NULL; 1987 } 1988 1989 static inline struct tcp_md5sig_key * 1990 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1991 const union tcp_md5_addr *addr, int family) 1992 { 1993 return NULL; 1994 } 1995 1996 #define tcp_twsk_md5_key(twsk) NULL 1997 static inline void tcp_md5_destruct_sock(struct sock *sk) 1998 { 1999 } 2000 #endif 2001 2002 int tcp_md5_alloc_sigpool(void); 2003 void tcp_md5_release_sigpool(void); 2004 void tcp_md5_add_sigpool(void); 2005 extern int tcp_md5_sigpool_id; 2006 2007 int tcp_md5_hash_key(struct tcp_sigpool *hp, 2008 const struct tcp_md5sig_key *key); 2009 2010 /* From tcp_fastopen.c */ 2011 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 2012 struct tcp_fastopen_cookie *cookie); 2013 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 2014 struct tcp_fastopen_cookie *cookie, bool syn_lost, 2015 u16 try_exp); 2016 struct tcp_fastopen_request { 2017 /* Fast Open cookie. Size 0 means a cookie request */ 2018 struct tcp_fastopen_cookie cookie; 2019 struct msghdr *data; /* data in MSG_FASTOPEN */ 2020 size_t size; 2021 int copied; /* queued in tcp_connect() */ 2022 struct ubuf_info *uarg; 2023 }; 2024 void tcp_free_fastopen_req(struct tcp_sock *tp); 2025 void tcp_fastopen_destroy_cipher(struct sock *sk); 2026 void tcp_fastopen_ctx_destroy(struct net *net); 2027 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 2028 void *primary_key, void *backup_key); 2029 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 2030 u64 *key); 2031 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 2032 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 2033 struct request_sock *req, 2034 struct tcp_fastopen_cookie *foc, 2035 const struct dst_entry *dst); 2036 void tcp_fastopen_init_key_once(struct net *net); 2037 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2038 struct tcp_fastopen_cookie *cookie); 2039 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2040 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2041 #define TCP_FASTOPEN_KEY_MAX 2 2042 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2043 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2044 2045 /* Fastopen key context */ 2046 struct tcp_fastopen_context { 2047 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2048 int num; 2049 struct rcu_head rcu; 2050 }; 2051 2052 void tcp_fastopen_active_disable(struct sock *sk); 2053 bool tcp_fastopen_active_should_disable(struct sock *sk); 2054 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2055 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2056 2057 /* Caller needs to wrap with rcu_read_(un)lock() */ 2058 static inline 2059 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2060 { 2061 struct tcp_fastopen_context *ctx; 2062 2063 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2064 if (!ctx) 2065 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2066 return ctx; 2067 } 2068 2069 static inline 2070 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2071 const struct tcp_fastopen_cookie *orig) 2072 { 2073 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2074 orig->len == foc->len && 2075 !memcmp(orig->val, foc->val, foc->len)) 2076 return true; 2077 return false; 2078 } 2079 2080 static inline 2081 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2082 { 2083 return ctx->num; 2084 } 2085 2086 /* Latencies incurred by various limits for a sender. They are 2087 * chronograph-like stats that are mutually exclusive. 2088 */ 2089 enum tcp_chrono { 2090 TCP_CHRONO_UNSPEC, 2091 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2092 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2093 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2094 __TCP_CHRONO_MAX, 2095 }; 2096 2097 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2098 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2099 2100 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2101 * the same memory storage than skb->destructor/_skb_refdst 2102 */ 2103 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2104 { 2105 skb->destructor = NULL; 2106 skb->_skb_refdst = 0UL; 2107 } 2108 2109 #define tcp_skb_tsorted_save(skb) { \ 2110 unsigned long _save = skb->_skb_refdst; \ 2111 skb->_skb_refdst = 0UL; 2112 2113 #define tcp_skb_tsorted_restore(skb) \ 2114 skb->_skb_refdst = _save; \ 2115 } 2116 2117 void tcp_write_queue_purge(struct sock *sk); 2118 2119 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2120 { 2121 return skb_rb_first(&sk->tcp_rtx_queue); 2122 } 2123 2124 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2125 { 2126 return skb_rb_last(&sk->tcp_rtx_queue); 2127 } 2128 2129 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2130 { 2131 return skb_peek_tail(&sk->sk_write_queue); 2132 } 2133 2134 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2135 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2136 2137 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2138 { 2139 return skb_peek(&sk->sk_write_queue); 2140 } 2141 2142 static inline bool tcp_skb_is_last(const struct sock *sk, 2143 const struct sk_buff *skb) 2144 { 2145 return skb_queue_is_last(&sk->sk_write_queue, skb); 2146 } 2147 2148 /** 2149 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2150 * @sk: socket 2151 * 2152 * Since the write queue can have a temporary empty skb in it, 2153 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2154 */ 2155 static inline bool tcp_write_queue_empty(const struct sock *sk) 2156 { 2157 const struct tcp_sock *tp = tcp_sk(sk); 2158 2159 return tp->write_seq == tp->snd_nxt; 2160 } 2161 2162 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2163 { 2164 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2165 } 2166 2167 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2168 { 2169 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2170 } 2171 2172 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2173 { 2174 __skb_queue_tail(&sk->sk_write_queue, skb); 2175 2176 /* Queue it, remembering where we must start sending. */ 2177 if (sk->sk_write_queue.next == skb) 2178 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2179 } 2180 2181 /* Insert new before skb on the write queue of sk. */ 2182 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2183 struct sk_buff *skb, 2184 struct sock *sk) 2185 { 2186 __skb_queue_before(&sk->sk_write_queue, skb, new); 2187 } 2188 2189 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2190 { 2191 tcp_skb_tsorted_anchor_cleanup(skb); 2192 __skb_unlink(skb, &sk->sk_write_queue); 2193 } 2194 2195 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2196 2197 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2198 { 2199 tcp_skb_tsorted_anchor_cleanup(skb); 2200 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2201 } 2202 2203 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2204 { 2205 list_del(&skb->tcp_tsorted_anchor); 2206 tcp_rtx_queue_unlink(skb, sk); 2207 tcp_wmem_free_skb(sk, skb); 2208 } 2209 2210 static inline void tcp_write_collapse_fence(struct sock *sk) 2211 { 2212 struct sk_buff *skb = tcp_write_queue_tail(sk); 2213 2214 if (skb) 2215 TCP_SKB_CB(skb)->eor = 1; 2216 } 2217 2218 static inline void tcp_push_pending_frames(struct sock *sk) 2219 { 2220 if (tcp_send_head(sk)) { 2221 struct tcp_sock *tp = tcp_sk(sk); 2222 2223 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2224 } 2225 } 2226 2227 /* Start sequence of the skb just after the highest skb with SACKed 2228 * bit, valid only if sacked_out > 0 or when the caller has ensured 2229 * validity by itself. 2230 */ 2231 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2232 { 2233 if (!tp->sacked_out) 2234 return tp->snd_una; 2235 2236 if (tp->highest_sack == NULL) 2237 return tp->snd_nxt; 2238 2239 return TCP_SKB_CB(tp->highest_sack)->seq; 2240 } 2241 2242 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2243 { 2244 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2245 } 2246 2247 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2248 { 2249 return tcp_sk(sk)->highest_sack; 2250 } 2251 2252 static inline void tcp_highest_sack_reset(struct sock *sk) 2253 { 2254 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2255 } 2256 2257 /* Called when old skb is about to be deleted and replaced by new skb */ 2258 static inline void tcp_highest_sack_replace(struct sock *sk, 2259 struct sk_buff *old, 2260 struct sk_buff *new) 2261 { 2262 if (old == tcp_highest_sack(sk)) 2263 tcp_sk(sk)->highest_sack = new; 2264 } 2265 2266 /* This helper checks if socket has IP_TRANSPARENT set */ 2267 static inline bool inet_sk_transparent(const struct sock *sk) 2268 { 2269 switch (sk->sk_state) { 2270 case TCP_TIME_WAIT: 2271 return inet_twsk(sk)->tw_transparent; 2272 case TCP_NEW_SYN_RECV: 2273 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2274 } 2275 return inet_test_bit(TRANSPARENT, sk); 2276 } 2277 2278 /* Determines whether this is a thin stream (which may suffer from 2279 * increased latency). Used to trigger latency-reducing mechanisms. 2280 */ 2281 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2282 { 2283 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2284 } 2285 2286 /* /proc */ 2287 enum tcp_seq_states { 2288 TCP_SEQ_STATE_LISTENING, 2289 TCP_SEQ_STATE_ESTABLISHED, 2290 }; 2291 2292 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2293 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2294 void tcp_seq_stop(struct seq_file *seq, void *v); 2295 2296 struct tcp_seq_afinfo { 2297 sa_family_t family; 2298 }; 2299 2300 struct tcp_iter_state { 2301 struct seq_net_private p; 2302 enum tcp_seq_states state; 2303 struct sock *syn_wait_sk; 2304 int bucket, offset, sbucket, num; 2305 loff_t last_pos; 2306 }; 2307 2308 extern struct request_sock_ops tcp_request_sock_ops; 2309 extern struct request_sock_ops tcp6_request_sock_ops; 2310 2311 void tcp_v4_destroy_sock(struct sock *sk); 2312 2313 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2314 netdev_features_t features); 2315 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2316 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2317 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2318 struct tcphdr *th); 2319 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2320 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2321 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2322 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2323 #ifdef CONFIG_INET 2324 void tcp_gro_complete(struct sk_buff *skb); 2325 #else 2326 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2327 #endif 2328 2329 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2330 2331 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2332 { 2333 struct net *net = sock_net((struct sock *)tp); 2334 u32 val; 2335 2336 val = READ_ONCE(tp->notsent_lowat); 2337 2338 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2339 } 2340 2341 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2342 2343 #ifdef CONFIG_PROC_FS 2344 int tcp4_proc_init(void); 2345 void tcp4_proc_exit(void); 2346 #endif 2347 2348 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2349 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2350 const struct tcp_request_sock_ops *af_ops, 2351 struct sock *sk, struct sk_buff *skb); 2352 2353 /* TCP af-specific functions */ 2354 struct tcp_sock_af_ops { 2355 #ifdef CONFIG_TCP_MD5SIG 2356 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2357 const struct sock *addr_sk); 2358 int (*calc_md5_hash)(char *location, 2359 const struct tcp_md5sig_key *md5, 2360 const struct sock *sk, 2361 const struct sk_buff *skb); 2362 int (*md5_parse)(struct sock *sk, 2363 int optname, 2364 sockptr_t optval, 2365 int optlen); 2366 #endif 2367 #ifdef CONFIG_TCP_AO 2368 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2369 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2370 struct sock *addr_sk, 2371 int sndid, int rcvid); 2372 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2373 const struct sock *sk, 2374 __be32 sisn, __be32 disn, bool send); 2375 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2376 const struct sock *sk, const struct sk_buff *skb, 2377 const u8 *tkey, int hash_offset, u32 sne); 2378 #endif 2379 }; 2380 2381 struct tcp_request_sock_ops { 2382 u16 mss_clamp; 2383 #ifdef CONFIG_TCP_MD5SIG 2384 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2385 const struct sock *addr_sk); 2386 int (*calc_md5_hash) (char *location, 2387 const struct tcp_md5sig_key *md5, 2388 const struct sock *sk, 2389 const struct sk_buff *skb); 2390 #endif 2391 #ifdef CONFIG_TCP_AO 2392 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2393 struct request_sock *req, 2394 int sndid, int rcvid); 2395 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2396 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2397 struct request_sock *req, const struct sk_buff *skb, 2398 int hash_offset, u32 sne); 2399 #endif 2400 #ifdef CONFIG_SYN_COOKIES 2401 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2402 __u16 *mss); 2403 #endif 2404 struct dst_entry *(*route_req)(const struct sock *sk, 2405 struct sk_buff *skb, 2406 struct flowi *fl, 2407 struct request_sock *req, 2408 u32 tw_isn); 2409 u32 (*init_seq)(const struct sk_buff *skb); 2410 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2411 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2412 struct flowi *fl, struct request_sock *req, 2413 struct tcp_fastopen_cookie *foc, 2414 enum tcp_synack_type synack_type, 2415 struct sk_buff *syn_skb); 2416 }; 2417 2418 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2419 #if IS_ENABLED(CONFIG_IPV6) 2420 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2421 #endif 2422 2423 #ifdef CONFIG_SYN_COOKIES 2424 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2425 const struct sock *sk, struct sk_buff *skb, 2426 __u16 *mss) 2427 { 2428 tcp_synq_overflow(sk); 2429 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2430 return ops->cookie_init_seq(skb, mss); 2431 } 2432 #else 2433 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2434 const struct sock *sk, struct sk_buff *skb, 2435 __u16 *mss) 2436 { 2437 return 0; 2438 } 2439 #endif 2440 2441 struct tcp_key { 2442 union { 2443 struct { 2444 struct tcp_ao_key *ao_key; 2445 char *traffic_key; 2446 u32 sne; 2447 u8 rcv_next; 2448 }; 2449 struct tcp_md5sig_key *md5_key; 2450 }; 2451 enum { 2452 TCP_KEY_NONE = 0, 2453 TCP_KEY_MD5, 2454 TCP_KEY_AO, 2455 } type; 2456 }; 2457 2458 static inline void tcp_get_current_key(const struct sock *sk, 2459 struct tcp_key *out) 2460 { 2461 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2462 const struct tcp_sock *tp = tcp_sk(sk); 2463 #endif 2464 2465 #ifdef CONFIG_TCP_AO 2466 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2467 struct tcp_ao_info *ao; 2468 2469 ao = rcu_dereference_protected(tp->ao_info, 2470 lockdep_sock_is_held(sk)); 2471 if (ao) { 2472 out->ao_key = READ_ONCE(ao->current_key); 2473 out->type = TCP_KEY_AO; 2474 return; 2475 } 2476 } 2477 #endif 2478 #ifdef CONFIG_TCP_MD5SIG 2479 if (static_branch_unlikely(&tcp_md5_needed.key) && 2480 rcu_access_pointer(tp->md5sig_info)) { 2481 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2482 if (out->md5_key) { 2483 out->type = TCP_KEY_MD5; 2484 return; 2485 } 2486 } 2487 #endif 2488 out->type = TCP_KEY_NONE; 2489 } 2490 2491 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2492 { 2493 if (static_branch_tcp_md5()) 2494 return key->type == TCP_KEY_MD5; 2495 return false; 2496 } 2497 2498 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2499 { 2500 if (static_branch_tcp_ao()) 2501 return key->type == TCP_KEY_AO; 2502 return false; 2503 } 2504 2505 int tcpv4_offload_init(void); 2506 2507 void tcp_v4_init(void); 2508 void tcp_init(void); 2509 2510 /* tcp_recovery.c */ 2511 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2512 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2513 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2514 u32 reo_wnd); 2515 extern bool tcp_rack_mark_lost(struct sock *sk); 2516 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2517 u64 xmit_time); 2518 extern void tcp_rack_reo_timeout(struct sock *sk); 2519 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2520 2521 /* tcp_plb.c */ 2522 2523 /* 2524 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2525 * expects cong_ratio which represents fraction of traffic that experienced 2526 * congestion over a single RTT. In order to avoid floating point operations, 2527 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2528 */ 2529 #define TCP_PLB_SCALE 8 2530 2531 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2532 struct tcp_plb_state { 2533 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2534 unused:3; 2535 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2536 }; 2537 2538 static inline void tcp_plb_init(const struct sock *sk, 2539 struct tcp_plb_state *plb) 2540 { 2541 plb->consec_cong_rounds = 0; 2542 plb->pause_until = 0; 2543 } 2544 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2545 const int cong_ratio); 2546 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2547 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2548 2549 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2550 { 2551 WARN_ONCE(cond, 2552 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2553 str, 2554 tcp_snd_cwnd(tcp_sk(sk)), 2555 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2556 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2557 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2558 inet_csk(sk)->icsk_ca_state, 2559 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2560 inet_csk(sk)->icsk_pmtu_cookie); 2561 } 2562 2563 /* At how many usecs into the future should the RTO fire? */ 2564 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2565 { 2566 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2567 u32 rto = inet_csk(sk)->icsk_rto; 2568 2569 if (likely(skb)) { 2570 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2571 2572 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2573 } else { 2574 tcp_warn_once(sk, 1, "rtx queue empty: "); 2575 return jiffies_to_usecs(rto); 2576 } 2577 2578 } 2579 2580 /* 2581 * Save and compile IPv4 options, return a pointer to it 2582 */ 2583 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2584 struct sk_buff *skb) 2585 { 2586 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2587 struct ip_options_rcu *dopt = NULL; 2588 2589 if (opt->optlen) { 2590 int opt_size = sizeof(*dopt) + opt->optlen; 2591 2592 dopt = kmalloc(opt_size, GFP_ATOMIC); 2593 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2594 kfree(dopt); 2595 dopt = NULL; 2596 } 2597 } 2598 return dopt; 2599 } 2600 2601 /* locally generated TCP pure ACKs have skb->truesize == 2 2602 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2603 * This is much faster than dissecting the packet to find out. 2604 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2605 */ 2606 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2607 { 2608 return skb->truesize == 2; 2609 } 2610 2611 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2612 { 2613 skb->truesize = 2; 2614 } 2615 2616 static inline int tcp_inq(struct sock *sk) 2617 { 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 int answ; 2620 2621 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2622 answ = 0; 2623 } else if (sock_flag(sk, SOCK_URGINLINE) || 2624 !tp->urg_data || 2625 before(tp->urg_seq, tp->copied_seq) || 2626 !before(tp->urg_seq, tp->rcv_nxt)) { 2627 2628 answ = tp->rcv_nxt - tp->copied_seq; 2629 2630 /* Subtract 1, if FIN was received */ 2631 if (answ && sock_flag(sk, SOCK_DONE)) 2632 answ--; 2633 } else { 2634 answ = tp->urg_seq - tp->copied_seq; 2635 } 2636 2637 return answ; 2638 } 2639 2640 int tcp_peek_len(struct socket *sock); 2641 2642 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2643 { 2644 u16 segs_in; 2645 2646 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2647 2648 /* We update these fields while other threads might 2649 * read them from tcp_get_info() 2650 */ 2651 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2652 if (skb->len > tcp_hdrlen(skb)) 2653 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2654 } 2655 2656 /* 2657 * TCP listen path runs lockless. 2658 * We forced "struct sock" to be const qualified to make sure 2659 * we don't modify one of its field by mistake. 2660 * Here, we increment sk_drops which is an atomic_t, so we can safely 2661 * make sock writable again. 2662 */ 2663 static inline void tcp_listendrop(const struct sock *sk) 2664 { 2665 sk_drops_inc((struct sock *)sk); 2666 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2667 } 2668 2669 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2670 2671 /* 2672 * Interface for adding Upper Level Protocols over TCP 2673 */ 2674 2675 #define TCP_ULP_NAME_MAX 16 2676 #define TCP_ULP_MAX 128 2677 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2678 2679 struct tcp_ulp_ops { 2680 struct list_head list; 2681 2682 /* initialize ulp */ 2683 int (*init)(struct sock *sk); 2684 /* update ulp */ 2685 void (*update)(struct sock *sk, struct proto *p, 2686 void (*write_space)(struct sock *sk)); 2687 /* cleanup ulp */ 2688 void (*release)(struct sock *sk); 2689 /* diagnostic */ 2690 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2691 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2692 /* clone ulp */ 2693 void (*clone)(const struct request_sock *req, struct sock *newsk, 2694 const gfp_t priority); 2695 2696 char name[TCP_ULP_NAME_MAX]; 2697 struct module *owner; 2698 }; 2699 int tcp_register_ulp(struct tcp_ulp_ops *type); 2700 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2701 int tcp_set_ulp(struct sock *sk, const char *name); 2702 void tcp_get_available_ulp(char *buf, size_t len); 2703 void tcp_cleanup_ulp(struct sock *sk); 2704 void tcp_update_ulp(struct sock *sk, struct proto *p, 2705 void (*write_space)(struct sock *sk)); 2706 2707 #define MODULE_ALIAS_TCP_ULP(name) \ 2708 MODULE_INFO(alias, name); \ 2709 MODULE_INFO(alias, "tcp-ulp-" name) 2710 2711 #ifdef CONFIG_NET_SOCK_MSG 2712 struct sk_msg; 2713 struct sk_psock; 2714 2715 #ifdef CONFIG_BPF_SYSCALL 2716 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2717 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2718 #ifdef CONFIG_BPF_STREAM_PARSER 2719 struct strparser; 2720 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2721 sk_read_actor_t recv_actor); 2722 #endif /* CONFIG_BPF_STREAM_PARSER */ 2723 #endif /* CONFIG_BPF_SYSCALL */ 2724 2725 #ifdef CONFIG_INET 2726 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2727 #else 2728 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2729 { 2730 } 2731 #endif 2732 2733 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2734 struct sk_msg *msg, u32 bytes, int flags); 2735 #endif /* CONFIG_NET_SOCK_MSG */ 2736 2737 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2738 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2739 { 2740 } 2741 #endif 2742 2743 #ifdef CONFIG_CGROUP_BPF 2744 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2745 struct sk_buff *skb, 2746 unsigned int end_offset) 2747 { 2748 skops->skb = skb; 2749 skops->skb_data_end = skb->data + end_offset; 2750 } 2751 #else 2752 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2753 struct sk_buff *skb, 2754 unsigned int end_offset) 2755 { 2756 } 2757 #endif 2758 2759 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2760 * is < 0, then the BPF op failed (for example if the loaded BPF 2761 * program does not support the chosen operation or there is no BPF 2762 * program loaded). 2763 */ 2764 #ifdef CONFIG_BPF 2765 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2766 { 2767 struct bpf_sock_ops_kern sock_ops; 2768 int ret; 2769 2770 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2771 if (sk_fullsock(sk)) { 2772 sock_ops.is_fullsock = 1; 2773 sock_ops.is_locked_tcp_sock = 1; 2774 sock_owned_by_me(sk); 2775 } 2776 2777 sock_ops.sk = sk; 2778 sock_ops.op = op; 2779 if (nargs > 0) 2780 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2781 2782 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2783 if (ret == 0) 2784 ret = sock_ops.reply; 2785 else 2786 ret = -1; 2787 return ret; 2788 } 2789 2790 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2791 { 2792 u32 args[2] = {arg1, arg2}; 2793 2794 return tcp_call_bpf(sk, op, 2, args); 2795 } 2796 2797 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2798 u32 arg3) 2799 { 2800 u32 args[3] = {arg1, arg2, arg3}; 2801 2802 return tcp_call_bpf(sk, op, 3, args); 2803 } 2804 2805 #else 2806 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2807 { 2808 return -EPERM; 2809 } 2810 2811 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2812 { 2813 return -EPERM; 2814 } 2815 2816 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2817 u32 arg3) 2818 { 2819 return -EPERM; 2820 } 2821 2822 #endif 2823 2824 static inline u32 tcp_timeout_init(struct sock *sk) 2825 { 2826 int timeout; 2827 2828 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2829 2830 if (timeout <= 0) 2831 timeout = TCP_TIMEOUT_INIT; 2832 return min_t(int, timeout, TCP_RTO_MAX); 2833 } 2834 2835 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2836 { 2837 int rwnd; 2838 2839 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2840 2841 if (rwnd < 0) 2842 rwnd = 0; 2843 return rwnd; 2844 } 2845 2846 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2847 { 2848 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2849 } 2850 2851 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2852 { 2853 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2854 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2855 } 2856 2857 #if IS_ENABLED(CONFIG_SMC) 2858 extern struct static_key_false tcp_have_smc; 2859 #endif 2860 2861 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2862 void clean_acked_data_enable(struct tcp_sock *tp, 2863 void (*cad)(struct sock *sk, u32 ack_seq)); 2864 void clean_acked_data_disable(struct tcp_sock *tp); 2865 void clean_acked_data_flush(void); 2866 #endif 2867 2868 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2869 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2870 const struct tcp_sock *tp) 2871 { 2872 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2873 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2874 } 2875 2876 /* Compute Earliest Departure Time for some control packets 2877 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2878 */ 2879 static inline u64 tcp_transmit_time(const struct sock *sk) 2880 { 2881 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2882 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2883 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2884 2885 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2886 } 2887 return 0; 2888 } 2889 2890 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2891 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2892 { 2893 const u8 *md5_tmp, *ao_tmp; 2894 int ret; 2895 2896 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2897 if (ret) 2898 return ret; 2899 2900 if (md5_hash) 2901 *md5_hash = md5_tmp; 2902 2903 if (aoh) { 2904 if (!ao_tmp) 2905 *aoh = NULL; 2906 else 2907 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2908 } 2909 2910 return 0; 2911 } 2912 2913 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2914 int family, int l3index, bool stat_inc) 2915 { 2916 #ifdef CONFIG_TCP_AO 2917 struct tcp_ao_info *ao_info; 2918 struct tcp_ao_key *ao_key; 2919 2920 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2921 return false; 2922 2923 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2924 lockdep_sock_is_held(sk)); 2925 if (!ao_info) 2926 return false; 2927 2928 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2929 if (ao_info->ao_required || ao_key) { 2930 if (stat_inc) { 2931 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2932 atomic64_inc(&ao_info->counters.ao_required); 2933 } 2934 return true; 2935 } 2936 #endif 2937 return false; 2938 } 2939 2940 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2941 const struct request_sock *req, const struct sk_buff *skb, 2942 const void *saddr, const void *daddr, 2943 int family, int dif, int sdif); 2944 2945 #endif /* _TCP_H */ 2946