xref: /linux/include/net/tcp.h (revision ef347a340b1a8507c22ee3cf981cd5cd64188431)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 void tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll_mask(struct socket *sock, __poll_t events);
392 int tcp_getsockopt(struct sock *sk, int level, int optname,
393 		   char __user *optval, int __user *optlen);
394 int tcp_setsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, unsigned int optlen);
396 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
397 			  char __user *optval, int __user *optlen);
398 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, unsigned int optlen);
400 void tcp_set_keepalive(struct sock *sk, int val);
401 void tcp_syn_ack_timeout(const struct request_sock *req);
402 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
403 		int flags, int *addr_len);
404 int tcp_set_rcvlowat(struct sock *sk, int val);
405 void tcp_data_ready(struct sock *sk);
406 int tcp_mmap(struct file *file, struct socket *sock,
407 	     struct vm_area_struct *vma);
408 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
409 		       struct tcp_options_received *opt_rx,
410 		       int estab, struct tcp_fastopen_cookie *foc);
411 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
412 
413 /*
414  *	TCP v4 functions exported for the inet6 API
415  */
416 
417 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
418 void tcp_v4_mtu_reduced(struct sock *sk);
419 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
420 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
421 struct sock *tcp_create_openreq_child(const struct sock *sk,
422 				      struct request_sock *req,
423 				      struct sk_buff *skb);
424 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
425 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
426 				  struct request_sock *req,
427 				  struct dst_entry *dst,
428 				  struct request_sock *req_unhash,
429 				  bool *own_req);
430 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
431 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
432 int tcp_connect(struct sock *sk);
433 enum tcp_synack_type {
434 	TCP_SYNACK_NORMAL,
435 	TCP_SYNACK_FASTOPEN,
436 	TCP_SYNACK_COOKIE,
437 };
438 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
439 				struct request_sock *req,
440 				struct tcp_fastopen_cookie *foc,
441 				enum tcp_synack_type synack_type);
442 int tcp_disconnect(struct sock *sk, int flags);
443 
444 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
445 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
446 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
447 
448 /* From syncookies.c */
449 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
450 				 struct request_sock *req,
451 				 struct dst_entry *dst, u32 tsoff);
452 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
453 		      u32 cookie);
454 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
455 #ifdef CONFIG_SYN_COOKIES
456 
457 /* Syncookies use a monotonic timer which increments every 60 seconds.
458  * This counter is used both as a hash input and partially encoded into
459  * the cookie value.  A cookie is only validated further if the delta
460  * between the current counter value and the encoded one is less than this,
461  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
462  * the counter advances immediately after a cookie is generated).
463  */
464 #define MAX_SYNCOOKIE_AGE	2
465 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
466 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
467 
468 /* syncookies: remember time of last synqueue overflow
469  * But do not dirty this field too often (once per second is enough)
470  * It is racy as we do not hold a lock, but race is very minor.
471  */
472 static inline void tcp_synq_overflow(const struct sock *sk)
473 {
474 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
475 	unsigned long now = jiffies;
476 
477 	if (time_after(now, last_overflow + HZ))
478 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
479 }
480 
481 /* syncookies: no recent synqueue overflow on this listening socket? */
482 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
483 {
484 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
485 
486 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
487 }
488 
489 static inline u32 tcp_cookie_time(void)
490 {
491 	u64 val = get_jiffies_64();
492 
493 	do_div(val, TCP_SYNCOOKIE_PERIOD);
494 	return val;
495 }
496 
497 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
498 			      u16 *mssp);
499 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
500 u64 cookie_init_timestamp(struct request_sock *req);
501 bool cookie_timestamp_decode(const struct net *net,
502 			     struct tcp_options_received *opt);
503 bool cookie_ecn_ok(const struct tcp_options_received *opt,
504 		   const struct net *net, const struct dst_entry *dst);
505 
506 /* From net/ipv6/syncookies.c */
507 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
508 		      u32 cookie);
509 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
510 
511 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
512 			      const struct tcphdr *th, u16 *mssp);
513 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
514 #endif
515 /* tcp_output.c */
516 
517 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
518 			       int nonagle);
519 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
520 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 void tcp_retransmit_timer(struct sock *sk);
522 void tcp_xmit_retransmit_queue(struct sock *);
523 void tcp_simple_retransmit(struct sock *);
524 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
525 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
526 enum tcp_queue {
527 	TCP_FRAG_IN_WRITE_QUEUE,
528 	TCP_FRAG_IN_RTX_QUEUE,
529 };
530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
531 		 struct sk_buff *skb, u32 len,
532 		 unsigned int mss_now, gfp_t gfp);
533 
534 void tcp_send_probe0(struct sock *);
535 void tcp_send_partial(struct sock *);
536 int tcp_write_wakeup(struct sock *, int mib);
537 void tcp_send_fin(struct sock *sk);
538 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
539 int tcp_send_synack(struct sock *);
540 void tcp_push_one(struct sock *, unsigned int mss_now);
541 void tcp_send_ack(struct sock *sk);
542 void tcp_send_delayed_ack(struct sock *sk);
543 void tcp_send_loss_probe(struct sock *sk);
544 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
545 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
546 			     const struct sk_buff *next_skb);
547 
548 /* tcp_input.c */
549 void tcp_rearm_rto(struct sock *sk);
550 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
551 void tcp_reset(struct sock *sk);
552 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
553 void tcp_fin(struct sock *sk);
554 
555 /* tcp_timer.c */
556 void tcp_init_xmit_timers(struct sock *);
557 static inline void tcp_clear_xmit_timers(struct sock *sk)
558 {
559 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
560 		__sock_put(sk);
561 
562 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
563 		__sock_put(sk);
564 
565 	inet_csk_clear_xmit_timers(sk);
566 }
567 
568 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
569 unsigned int tcp_current_mss(struct sock *sk);
570 
571 /* Bound MSS / TSO packet size with the half of the window */
572 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
573 {
574 	int cutoff;
575 
576 	/* When peer uses tiny windows, there is no use in packetizing
577 	 * to sub-MSS pieces for the sake of SWS or making sure there
578 	 * are enough packets in the pipe for fast recovery.
579 	 *
580 	 * On the other hand, for extremely large MSS devices, handling
581 	 * smaller than MSS windows in this way does make sense.
582 	 */
583 	if (tp->max_window > TCP_MSS_DEFAULT)
584 		cutoff = (tp->max_window >> 1);
585 	else
586 		cutoff = tp->max_window;
587 
588 	if (cutoff && pktsize > cutoff)
589 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
590 	else
591 		return pktsize;
592 }
593 
594 /* tcp.c */
595 void tcp_get_info(struct sock *, struct tcp_info *);
596 
597 /* Read 'sendfile()'-style from a TCP socket */
598 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
599 		  sk_read_actor_t recv_actor);
600 
601 void tcp_initialize_rcv_mss(struct sock *sk);
602 
603 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
604 int tcp_mss_to_mtu(struct sock *sk, int mss);
605 void tcp_mtup_init(struct sock *sk);
606 void tcp_init_buffer_space(struct sock *sk);
607 
608 static inline void tcp_bound_rto(const struct sock *sk)
609 {
610 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
611 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
612 }
613 
614 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
615 {
616 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
617 }
618 
619 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
620 {
621 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
622 			       ntohl(TCP_FLAG_ACK) |
623 			       snd_wnd);
624 }
625 
626 static inline void tcp_fast_path_on(struct tcp_sock *tp)
627 {
628 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
629 }
630 
631 static inline void tcp_fast_path_check(struct sock *sk)
632 {
633 	struct tcp_sock *tp = tcp_sk(sk);
634 
635 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
636 	    tp->rcv_wnd &&
637 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
638 	    !tp->urg_data)
639 		tcp_fast_path_on(tp);
640 }
641 
642 /* Compute the actual rto_min value */
643 static inline u32 tcp_rto_min(struct sock *sk)
644 {
645 	const struct dst_entry *dst = __sk_dst_get(sk);
646 	u32 rto_min = TCP_RTO_MIN;
647 
648 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
649 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
650 	return rto_min;
651 }
652 
653 static inline u32 tcp_rto_min_us(struct sock *sk)
654 {
655 	return jiffies_to_usecs(tcp_rto_min(sk));
656 }
657 
658 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
659 {
660 	return dst_metric_locked(dst, RTAX_CC_ALGO);
661 }
662 
663 /* Minimum RTT in usec. ~0 means not available. */
664 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
665 {
666 	return minmax_get(&tp->rtt_min);
667 }
668 
669 /* Compute the actual receive window we are currently advertising.
670  * Rcv_nxt can be after the window if our peer push more data
671  * than the offered window.
672  */
673 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
674 {
675 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
676 
677 	if (win < 0)
678 		win = 0;
679 	return (u32) win;
680 }
681 
682 /* Choose a new window, without checks for shrinking, and without
683  * scaling applied to the result.  The caller does these things
684  * if necessary.  This is a "raw" window selection.
685  */
686 u32 __tcp_select_window(struct sock *sk);
687 
688 void tcp_send_window_probe(struct sock *sk);
689 
690 /* TCP uses 32bit jiffies to save some space.
691  * Note that this is different from tcp_time_stamp, which
692  * historically has been the same until linux-4.13.
693  */
694 #define tcp_jiffies32 ((u32)jiffies)
695 
696 /*
697  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
698  * It is no longer tied to jiffies, but to 1 ms clock.
699  * Note: double check if you want to use tcp_jiffies32 instead of this.
700  */
701 #define TCP_TS_HZ	1000
702 
703 static inline u64 tcp_clock_ns(void)
704 {
705 	return local_clock();
706 }
707 
708 static inline u64 tcp_clock_us(void)
709 {
710 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
711 }
712 
713 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
714 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
715 {
716 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
717 }
718 
719 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
720 static inline u32 tcp_time_stamp_raw(void)
721 {
722 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
723 }
724 
725 
726 /* Refresh 1us clock of a TCP socket,
727  * ensuring monotically increasing values.
728  */
729 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
730 {
731 	u64 val = tcp_clock_us();
732 
733 	if (val > tp->tcp_mstamp)
734 		tp->tcp_mstamp = val;
735 }
736 
737 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
738 {
739 	return max_t(s64, t1 - t0, 0);
740 }
741 
742 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
743 {
744 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
745 }
746 
747 
748 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
749 
750 #define TCPHDR_FIN 0x01
751 #define TCPHDR_SYN 0x02
752 #define TCPHDR_RST 0x04
753 #define TCPHDR_PSH 0x08
754 #define TCPHDR_ACK 0x10
755 #define TCPHDR_URG 0x20
756 #define TCPHDR_ECE 0x40
757 #define TCPHDR_CWR 0x80
758 
759 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
760 
761 /* This is what the send packet queuing engine uses to pass
762  * TCP per-packet control information to the transmission code.
763  * We also store the host-order sequence numbers in here too.
764  * This is 44 bytes if IPV6 is enabled.
765  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
766  */
767 struct tcp_skb_cb {
768 	__u32		seq;		/* Starting sequence number	*/
769 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
770 	union {
771 		/* Note : tcp_tw_isn is used in input path only
772 		 *	  (isn chosen by tcp_timewait_state_process())
773 		 *
774 		 * 	  tcp_gso_segs/size are used in write queue only,
775 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
776 		 */
777 		__u32		tcp_tw_isn;
778 		struct {
779 			u16	tcp_gso_segs;
780 			u16	tcp_gso_size;
781 		};
782 	};
783 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
784 
785 	__u8		sacked;		/* State flags for SACK.	*/
786 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
787 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
788 #define TCPCB_LOST		0x04	/* SKB is lost			*/
789 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
790 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
791 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
792 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
793 				TCPCB_REPAIRED)
794 
795 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
796 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
797 			eor:1,		/* Is skb MSG_EOR marked? */
798 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
799 			unused:5;
800 	__u32		ack_seq;	/* Sequence number ACK'd	*/
801 	union {
802 		struct {
803 			/* There is space for up to 24 bytes */
804 			__u32 in_flight:30,/* Bytes in flight at transmit */
805 			      is_app_limited:1, /* cwnd not fully used? */
806 			      unused:1;
807 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
808 			__u32 delivered;
809 			/* start of send pipeline phase */
810 			u64 first_tx_mstamp;
811 			/* when we reached the "delivered" count */
812 			u64 delivered_mstamp;
813 		} tx;   /* only used for outgoing skbs */
814 		union {
815 			struct inet_skb_parm	h4;
816 #if IS_ENABLED(CONFIG_IPV6)
817 			struct inet6_skb_parm	h6;
818 #endif
819 		} header;	/* For incoming skbs */
820 		struct {
821 			__u32 flags;
822 			struct sock *sk_redir;
823 			void *data_end;
824 		} bpf;
825 	};
826 };
827 
828 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
829 
830 
831 #if IS_ENABLED(CONFIG_IPV6)
832 /* This is the variant of inet6_iif() that must be used by TCP,
833  * as TCP moves IP6CB into a different location in skb->cb[]
834  */
835 static inline int tcp_v6_iif(const struct sk_buff *skb)
836 {
837 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
838 
839 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
840 }
841 
842 /* TCP_SKB_CB reference means this can not be used from early demux */
843 static inline int tcp_v6_sdif(const struct sk_buff *skb)
844 {
845 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
846 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
847 		return TCP_SKB_CB(skb)->header.h6.iif;
848 #endif
849 	return 0;
850 }
851 #endif
852 
853 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
854 {
855 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
856 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
857 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
858 		return true;
859 #endif
860 	return false;
861 }
862 
863 /* TCP_SKB_CB reference means this can not be used from early demux */
864 static inline int tcp_v4_sdif(struct sk_buff *skb)
865 {
866 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
867 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
868 		return TCP_SKB_CB(skb)->header.h4.iif;
869 #endif
870 	return 0;
871 }
872 
873 /* Due to TSO, an SKB can be composed of multiple actual
874  * packets.  To keep these tracked properly, we use this.
875  */
876 static inline int tcp_skb_pcount(const struct sk_buff *skb)
877 {
878 	return TCP_SKB_CB(skb)->tcp_gso_segs;
879 }
880 
881 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
882 {
883 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
884 }
885 
886 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
887 {
888 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
889 }
890 
891 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
892 static inline int tcp_skb_mss(const struct sk_buff *skb)
893 {
894 	return TCP_SKB_CB(skb)->tcp_gso_size;
895 }
896 
897 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
898 {
899 	return likely(!TCP_SKB_CB(skb)->eor);
900 }
901 
902 /* Events passed to congestion control interface */
903 enum tcp_ca_event {
904 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
905 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
906 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
907 	CA_EVENT_LOSS,		/* loss timeout */
908 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
909 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
910 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
911 	CA_EVENT_NON_DELAYED_ACK,
912 };
913 
914 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
915 enum tcp_ca_ack_event_flags {
916 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
917 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
918 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
919 };
920 
921 /*
922  * Interface for adding new TCP congestion control handlers
923  */
924 #define TCP_CA_NAME_MAX	16
925 #define TCP_CA_MAX	128
926 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
927 
928 #define TCP_CA_UNSPEC	0
929 
930 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
931 #define TCP_CONG_NON_RESTRICTED 0x1
932 /* Requires ECN/ECT set on all packets */
933 #define TCP_CONG_NEEDS_ECN	0x2
934 
935 union tcp_cc_info;
936 
937 struct ack_sample {
938 	u32 pkts_acked;
939 	s32 rtt_us;
940 	u32 in_flight;
941 };
942 
943 /* A rate sample measures the number of (original/retransmitted) data
944  * packets delivered "delivered" over an interval of time "interval_us".
945  * The tcp_rate.c code fills in the rate sample, and congestion
946  * control modules that define a cong_control function to run at the end
947  * of ACK processing can optionally chose to consult this sample when
948  * setting cwnd and pacing rate.
949  * A sample is invalid if "delivered" or "interval_us" is negative.
950  */
951 struct rate_sample {
952 	u64  prior_mstamp; /* starting timestamp for interval */
953 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
954 	s32  delivered;		/* number of packets delivered over interval */
955 	long interval_us;	/* time for tp->delivered to incr "delivered" */
956 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
957 	int  losses;		/* number of packets marked lost upon ACK */
958 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
959 	u32  prior_in_flight;	/* in flight before this ACK */
960 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
961 	bool is_retrans;	/* is sample from retransmission? */
962 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
963 };
964 
965 struct tcp_congestion_ops {
966 	struct list_head	list;
967 	u32 key;
968 	u32 flags;
969 
970 	/* initialize private data (optional) */
971 	void (*init)(struct sock *sk);
972 	/* cleanup private data  (optional) */
973 	void (*release)(struct sock *sk);
974 
975 	/* return slow start threshold (required) */
976 	u32 (*ssthresh)(struct sock *sk);
977 	/* do new cwnd calculation (required) */
978 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
979 	/* call before changing ca_state (optional) */
980 	void (*set_state)(struct sock *sk, u8 new_state);
981 	/* call when cwnd event occurs (optional) */
982 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
983 	/* call when ack arrives (optional) */
984 	void (*in_ack_event)(struct sock *sk, u32 flags);
985 	/* new value of cwnd after loss (required) */
986 	u32  (*undo_cwnd)(struct sock *sk);
987 	/* hook for packet ack accounting (optional) */
988 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
989 	/* override sysctl_tcp_min_tso_segs */
990 	u32 (*min_tso_segs)(struct sock *sk);
991 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
992 	u32 (*sndbuf_expand)(struct sock *sk);
993 	/* call when packets are delivered to update cwnd and pacing rate,
994 	 * after all the ca_state processing. (optional)
995 	 */
996 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
997 	/* get info for inet_diag (optional) */
998 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
999 			   union tcp_cc_info *info);
1000 
1001 	char 		name[TCP_CA_NAME_MAX];
1002 	struct module 	*owner;
1003 };
1004 
1005 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1006 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1007 
1008 void tcp_assign_congestion_control(struct sock *sk);
1009 void tcp_init_congestion_control(struct sock *sk);
1010 void tcp_cleanup_congestion_control(struct sock *sk);
1011 int tcp_set_default_congestion_control(struct net *net, const char *name);
1012 void tcp_get_default_congestion_control(struct net *net, char *name);
1013 void tcp_get_available_congestion_control(char *buf, size_t len);
1014 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1015 int tcp_set_allowed_congestion_control(char *allowed);
1016 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1017 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1018 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1019 
1020 u32 tcp_reno_ssthresh(struct sock *sk);
1021 u32 tcp_reno_undo_cwnd(struct sock *sk);
1022 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1023 extern struct tcp_congestion_ops tcp_reno;
1024 
1025 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1026 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1027 #ifdef CONFIG_INET
1028 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1029 #else
1030 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1031 {
1032 	return NULL;
1033 }
1034 #endif
1035 
1036 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1037 {
1038 	const struct inet_connection_sock *icsk = inet_csk(sk);
1039 
1040 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1041 }
1042 
1043 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1044 {
1045 	struct inet_connection_sock *icsk = inet_csk(sk);
1046 
1047 	if (icsk->icsk_ca_ops->set_state)
1048 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1049 	icsk->icsk_ca_state = ca_state;
1050 }
1051 
1052 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1053 {
1054 	const struct inet_connection_sock *icsk = inet_csk(sk);
1055 
1056 	if (icsk->icsk_ca_ops->cwnd_event)
1057 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1058 }
1059 
1060 /* From tcp_rate.c */
1061 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1062 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1063 			    struct rate_sample *rs);
1064 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1065 		  bool is_sack_reneg, struct rate_sample *rs);
1066 void tcp_rate_check_app_limited(struct sock *sk);
1067 
1068 /* These functions determine how the current flow behaves in respect of SACK
1069  * handling. SACK is negotiated with the peer, and therefore it can vary
1070  * between different flows.
1071  *
1072  * tcp_is_sack - SACK enabled
1073  * tcp_is_reno - No SACK
1074  */
1075 static inline int tcp_is_sack(const struct tcp_sock *tp)
1076 {
1077 	return tp->rx_opt.sack_ok;
1078 }
1079 
1080 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1081 {
1082 	return !tcp_is_sack(tp);
1083 }
1084 
1085 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1086 {
1087 	return tp->sacked_out + tp->lost_out;
1088 }
1089 
1090 /* This determines how many packets are "in the network" to the best
1091  * of our knowledge.  In many cases it is conservative, but where
1092  * detailed information is available from the receiver (via SACK
1093  * blocks etc.) we can make more aggressive calculations.
1094  *
1095  * Use this for decisions involving congestion control, use just
1096  * tp->packets_out to determine if the send queue is empty or not.
1097  *
1098  * Read this equation as:
1099  *
1100  *	"Packets sent once on transmission queue" MINUS
1101  *	"Packets left network, but not honestly ACKed yet" PLUS
1102  *	"Packets fast retransmitted"
1103  */
1104 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1105 {
1106 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1107 }
1108 
1109 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1110 
1111 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1112 {
1113 	return tp->snd_cwnd < tp->snd_ssthresh;
1114 }
1115 
1116 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1117 {
1118 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1119 }
1120 
1121 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1122 {
1123 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1124 	       (1 << inet_csk(sk)->icsk_ca_state);
1125 }
1126 
1127 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1128  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1129  * ssthresh.
1130  */
1131 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1132 {
1133 	const struct tcp_sock *tp = tcp_sk(sk);
1134 
1135 	if (tcp_in_cwnd_reduction(sk))
1136 		return tp->snd_ssthresh;
1137 	else
1138 		return max(tp->snd_ssthresh,
1139 			   ((tp->snd_cwnd >> 1) +
1140 			    (tp->snd_cwnd >> 2)));
1141 }
1142 
1143 /* Use define here intentionally to get WARN_ON location shown at the caller */
1144 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1145 
1146 void tcp_enter_cwr(struct sock *sk);
1147 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1148 
1149 /* The maximum number of MSS of available cwnd for which TSO defers
1150  * sending if not using sysctl_tcp_tso_win_divisor.
1151  */
1152 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1153 {
1154 	return 3;
1155 }
1156 
1157 /* Returns end sequence number of the receiver's advertised window */
1158 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1159 {
1160 	return tp->snd_una + tp->snd_wnd;
1161 }
1162 
1163 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1164  * flexible approach. The RFC suggests cwnd should not be raised unless
1165  * it was fully used previously. And that's exactly what we do in
1166  * congestion avoidance mode. But in slow start we allow cwnd to grow
1167  * as long as the application has used half the cwnd.
1168  * Example :
1169  *    cwnd is 10 (IW10), but application sends 9 frames.
1170  *    We allow cwnd to reach 18 when all frames are ACKed.
1171  * This check is safe because it's as aggressive as slow start which already
1172  * risks 100% overshoot. The advantage is that we discourage application to
1173  * either send more filler packets or data to artificially blow up the cwnd
1174  * usage, and allow application-limited process to probe bw more aggressively.
1175  */
1176 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1177 {
1178 	const struct tcp_sock *tp = tcp_sk(sk);
1179 
1180 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1181 	if (tcp_in_slow_start(tp))
1182 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1183 
1184 	return tp->is_cwnd_limited;
1185 }
1186 
1187 /* BBR congestion control needs pacing.
1188  * Same remark for SO_MAX_PACING_RATE.
1189  * sch_fq packet scheduler is efficiently handling pacing,
1190  * but is not always installed/used.
1191  * Return true if TCP stack should pace packets itself.
1192  */
1193 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1194 {
1195 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1196 }
1197 
1198 /* Something is really bad, we could not queue an additional packet,
1199  * because qdisc is full or receiver sent a 0 window.
1200  * We do not want to add fuel to the fire, or abort too early,
1201  * so make sure the timer we arm now is at least 200ms in the future,
1202  * regardless of current icsk_rto value (as it could be ~2ms)
1203  */
1204 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1205 {
1206 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1207 }
1208 
1209 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1210 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1211 					    unsigned long max_when)
1212 {
1213 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1214 
1215 	return (unsigned long)min_t(u64, when, max_when);
1216 }
1217 
1218 static inline void tcp_check_probe_timer(struct sock *sk)
1219 {
1220 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1221 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1222 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1223 }
1224 
1225 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1226 {
1227 	tp->snd_wl1 = seq;
1228 }
1229 
1230 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1231 {
1232 	tp->snd_wl1 = seq;
1233 }
1234 
1235 /*
1236  * Calculate(/check) TCP checksum
1237  */
1238 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1239 				   __be32 daddr, __wsum base)
1240 {
1241 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1242 }
1243 
1244 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1245 {
1246 	return __skb_checksum_complete(skb);
1247 }
1248 
1249 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1250 {
1251 	return !skb_csum_unnecessary(skb) &&
1252 		__tcp_checksum_complete(skb);
1253 }
1254 
1255 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1256 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1257 
1258 #undef STATE_TRACE
1259 
1260 #ifdef STATE_TRACE
1261 static const char *statename[]={
1262 	"Unused","Established","Syn Sent","Syn Recv",
1263 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1264 	"Close Wait","Last ACK","Listen","Closing"
1265 };
1266 #endif
1267 void tcp_set_state(struct sock *sk, int state);
1268 
1269 void tcp_done(struct sock *sk);
1270 
1271 int tcp_abort(struct sock *sk, int err);
1272 
1273 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1274 {
1275 	rx_opt->dsack = 0;
1276 	rx_opt->num_sacks = 0;
1277 }
1278 
1279 u32 tcp_default_init_rwnd(u32 mss);
1280 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1281 
1282 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1283 {
1284 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1285 	struct tcp_sock *tp = tcp_sk(sk);
1286 	s32 delta;
1287 
1288 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1289 	    ca_ops->cong_control)
1290 		return;
1291 	delta = tcp_jiffies32 - tp->lsndtime;
1292 	if (delta > inet_csk(sk)->icsk_rto)
1293 		tcp_cwnd_restart(sk, delta);
1294 }
1295 
1296 /* Determine a window scaling and initial window to offer. */
1297 void tcp_select_initial_window(const struct sock *sk, int __space,
1298 			       __u32 mss, __u32 *rcv_wnd,
1299 			       __u32 *window_clamp, int wscale_ok,
1300 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1301 
1302 static inline int tcp_win_from_space(const struct sock *sk, int space)
1303 {
1304 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1305 
1306 	return tcp_adv_win_scale <= 0 ?
1307 		(space>>(-tcp_adv_win_scale)) :
1308 		space - (space>>tcp_adv_win_scale);
1309 }
1310 
1311 /* Note: caller must be prepared to deal with negative returns */
1312 static inline int tcp_space(const struct sock *sk)
1313 {
1314 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1315 				  atomic_read(&sk->sk_rmem_alloc));
1316 }
1317 
1318 static inline int tcp_full_space(const struct sock *sk)
1319 {
1320 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1321 }
1322 
1323 extern void tcp_openreq_init_rwin(struct request_sock *req,
1324 				  const struct sock *sk_listener,
1325 				  const struct dst_entry *dst);
1326 
1327 void tcp_enter_memory_pressure(struct sock *sk);
1328 void tcp_leave_memory_pressure(struct sock *sk);
1329 
1330 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1331 {
1332 	struct net *net = sock_net((struct sock *)tp);
1333 
1334 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1335 }
1336 
1337 static inline int keepalive_time_when(const struct tcp_sock *tp)
1338 {
1339 	struct net *net = sock_net((struct sock *)tp);
1340 
1341 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1342 }
1343 
1344 static inline int keepalive_probes(const struct tcp_sock *tp)
1345 {
1346 	struct net *net = sock_net((struct sock *)tp);
1347 
1348 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1349 }
1350 
1351 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1352 {
1353 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1354 
1355 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1356 			  tcp_jiffies32 - tp->rcv_tstamp);
1357 }
1358 
1359 static inline int tcp_fin_time(const struct sock *sk)
1360 {
1361 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1362 	const int rto = inet_csk(sk)->icsk_rto;
1363 
1364 	if (fin_timeout < (rto << 2) - (rto >> 1))
1365 		fin_timeout = (rto << 2) - (rto >> 1);
1366 
1367 	return fin_timeout;
1368 }
1369 
1370 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1371 				  int paws_win)
1372 {
1373 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1374 		return true;
1375 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1376 		return true;
1377 	/*
1378 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1379 	 * then following tcp messages have valid values. Ignore 0 value,
1380 	 * or else 'negative' tsval might forbid us to accept their packets.
1381 	 */
1382 	if (!rx_opt->ts_recent)
1383 		return true;
1384 	return false;
1385 }
1386 
1387 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1388 				   int rst)
1389 {
1390 	if (tcp_paws_check(rx_opt, 0))
1391 		return false;
1392 
1393 	/* RST segments are not recommended to carry timestamp,
1394 	   and, if they do, it is recommended to ignore PAWS because
1395 	   "their cleanup function should take precedence over timestamps."
1396 	   Certainly, it is mistake. It is necessary to understand the reasons
1397 	   of this constraint to relax it: if peer reboots, clock may go
1398 	   out-of-sync and half-open connections will not be reset.
1399 	   Actually, the problem would be not existing if all
1400 	   the implementations followed draft about maintaining clock
1401 	   via reboots. Linux-2.2 DOES NOT!
1402 
1403 	   However, we can relax time bounds for RST segments to MSL.
1404 	 */
1405 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1406 		return false;
1407 	return true;
1408 }
1409 
1410 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1411 			  int mib_idx, u32 *last_oow_ack_time);
1412 
1413 static inline void tcp_mib_init(struct net *net)
1414 {
1415 	/* See RFC 2012 */
1416 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1417 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1418 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1419 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1420 }
1421 
1422 /* from STCP */
1423 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1424 {
1425 	tp->lost_skb_hint = NULL;
1426 }
1427 
1428 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1429 {
1430 	tcp_clear_retrans_hints_partial(tp);
1431 	tp->retransmit_skb_hint = NULL;
1432 }
1433 
1434 union tcp_md5_addr {
1435 	struct in_addr  a4;
1436 #if IS_ENABLED(CONFIG_IPV6)
1437 	struct in6_addr	a6;
1438 #endif
1439 };
1440 
1441 /* - key database */
1442 struct tcp_md5sig_key {
1443 	struct hlist_node	node;
1444 	u8			keylen;
1445 	u8			family; /* AF_INET or AF_INET6 */
1446 	union tcp_md5_addr	addr;
1447 	u8			prefixlen;
1448 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1449 	struct rcu_head		rcu;
1450 };
1451 
1452 /* - sock block */
1453 struct tcp_md5sig_info {
1454 	struct hlist_head	head;
1455 	struct rcu_head		rcu;
1456 };
1457 
1458 /* - pseudo header */
1459 struct tcp4_pseudohdr {
1460 	__be32		saddr;
1461 	__be32		daddr;
1462 	__u8		pad;
1463 	__u8		protocol;
1464 	__be16		len;
1465 };
1466 
1467 struct tcp6_pseudohdr {
1468 	struct in6_addr	saddr;
1469 	struct in6_addr daddr;
1470 	__be32		len;
1471 	__be32		protocol;	/* including padding */
1472 };
1473 
1474 union tcp_md5sum_block {
1475 	struct tcp4_pseudohdr ip4;
1476 #if IS_ENABLED(CONFIG_IPV6)
1477 	struct tcp6_pseudohdr ip6;
1478 #endif
1479 };
1480 
1481 /* - pool: digest algorithm, hash description and scratch buffer */
1482 struct tcp_md5sig_pool {
1483 	struct ahash_request	*md5_req;
1484 	void			*scratch;
1485 };
1486 
1487 /* - functions */
1488 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1489 			const struct sock *sk, const struct sk_buff *skb);
1490 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1491 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1492 		   gfp_t gfp);
1493 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1494 		   int family, u8 prefixlen);
1495 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1496 					 const struct sock *addr_sk);
1497 
1498 #ifdef CONFIG_TCP_MD5SIG
1499 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1500 					 const union tcp_md5_addr *addr,
1501 					 int family);
1502 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1503 #else
1504 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1505 					 const union tcp_md5_addr *addr,
1506 					 int family)
1507 {
1508 	return NULL;
1509 }
1510 #define tcp_twsk_md5_key(twsk)	NULL
1511 #endif
1512 
1513 bool tcp_alloc_md5sig_pool(void);
1514 
1515 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1516 static inline void tcp_put_md5sig_pool(void)
1517 {
1518 	local_bh_enable();
1519 }
1520 
1521 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1522 			  unsigned int header_len);
1523 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1524 		     const struct tcp_md5sig_key *key);
1525 
1526 /* From tcp_fastopen.c */
1527 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1528 			    struct tcp_fastopen_cookie *cookie);
1529 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1530 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1531 			    u16 try_exp);
1532 struct tcp_fastopen_request {
1533 	/* Fast Open cookie. Size 0 means a cookie request */
1534 	struct tcp_fastopen_cookie	cookie;
1535 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1536 	size_t				size;
1537 	int				copied;	/* queued in tcp_connect() */
1538 };
1539 void tcp_free_fastopen_req(struct tcp_sock *tp);
1540 void tcp_fastopen_destroy_cipher(struct sock *sk);
1541 void tcp_fastopen_ctx_destroy(struct net *net);
1542 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1543 			      void *key, unsigned int len);
1544 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1545 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1546 			      struct request_sock *req,
1547 			      struct tcp_fastopen_cookie *foc,
1548 			      const struct dst_entry *dst);
1549 void tcp_fastopen_init_key_once(struct net *net);
1550 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1551 			     struct tcp_fastopen_cookie *cookie);
1552 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1553 #define TCP_FASTOPEN_KEY_LENGTH 16
1554 
1555 /* Fastopen key context */
1556 struct tcp_fastopen_context {
1557 	struct crypto_cipher	*tfm;
1558 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1559 	struct rcu_head		rcu;
1560 };
1561 
1562 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1563 void tcp_fastopen_active_disable(struct sock *sk);
1564 bool tcp_fastopen_active_should_disable(struct sock *sk);
1565 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1566 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1567 
1568 /* Latencies incurred by various limits for a sender. They are
1569  * chronograph-like stats that are mutually exclusive.
1570  */
1571 enum tcp_chrono {
1572 	TCP_CHRONO_UNSPEC,
1573 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1574 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1575 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1576 	__TCP_CHRONO_MAX,
1577 };
1578 
1579 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1580 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1581 
1582 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1583  * the same memory storage than skb->destructor/_skb_refdst
1584  */
1585 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1586 {
1587 	skb->destructor = NULL;
1588 	skb->_skb_refdst = 0UL;
1589 }
1590 
1591 #define tcp_skb_tsorted_save(skb) {		\
1592 	unsigned long _save = skb->_skb_refdst;	\
1593 	skb->_skb_refdst = 0UL;
1594 
1595 #define tcp_skb_tsorted_restore(skb)		\
1596 	skb->_skb_refdst = _save;		\
1597 }
1598 
1599 void tcp_write_queue_purge(struct sock *sk);
1600 
1601 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1602 {
1603 	return skb_rb_first(&sk->tcp_rtx_queue);
1604 }
1605 
1606 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1607 {
1608 	return skb_peek(&sk->sk_write_queue);
1609 }
1610 
1611 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1612 {
1613 	return skb_peek_tail(&sk->sk_write_queue);
1614 }
1615 
1616 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1617 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1618 
1619 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1620 {
1621 	return skb_peek(&sk->sk_write_queue);
1622 }
1623 
1624 static inline bool tcp_skb_is_last(const struct sock *sk,
1625 				   const struct sk_buff *skb)
1626 {
1627 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1628 }
1629 
1630 static inline bool tcp_write_queue_empty(const struct sock *sk)
1631 {
1632 	return skb_queue_empty(&sk->sk_write_queue);
1633 }
1634 
1635 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1636 {
1637 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1638 }
1639 
1640 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1641 {
1642 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1643 }
1644 
1645 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1646 {
1647 	if (tcp_write_queue_empty(sk))
1648 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1649 }
1650 
1651 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1652 {
1653 	__skb_queue_tail(&sk->sk_write_queue, skb);
1654 }
1655 
1656 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1657 {
1658 	__tcp_add_write_queue_tail(sk, skb);
1659 
1660 	/* Queue it, remembering where we must start sending. */
1661 	if (sk->sk_write_queue.next == skb)
1662 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1663 }
1664 
1665 /* Insert new before skb on the write queue of sk.  */
1666 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1667 						  struct sk_buff *skb,
1668 						  struct sock *sk)
1669 {
1670 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1671 }
1672 
1673 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1674 {
1675 	tcp_skb_tsorted_anchor_cleanup(skb);
1676 	__skb_unlink(skb, &sk->sk_write_queue);
1677 }
1678 
1679 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1680 
1681 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1682 {
1683 	tcp_skb_tsorted_anchor_cleanup(skb);
1684 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1685 }
1686 
1687 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1688 {
1689 	list_del(&skb->tcp_tsorted_anchor);
1690 	tcp_rtx_queue_unlink(skb, sk);
1691 	sk_wmem_free_skb(sk, skb);
1692 }
1693 
1694 static inline void tcp_push_pending_frames(struct sock *sk)
1695 {
1696 	if (tcp_send_head(sk)) {
1697 		struct tcp_sock *tp = tcp_sk(sk);
1698 
1699 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1700 	}
1701 }
1702 
1703 /* Start sequence of the skb just after the highest skb with SACKed
1704  * bit, valid only if sacked_out > 0 or when the caller has ensured
1705  * validity by itself.
1706  */
1707 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1708 {
1709 	if (!tp->sacked_out)
1710 		return tp->snd_una;
1711 
1712 	if (tp->highest_sack == NULL)
1713 		return tp->snd_nxt;
1714 
1715 	return TCP_SKB_CB(tp->highest_sack)->seq;
1716 }
1717 
1718 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1719 {
1720 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1721 }
1722 
1723 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1724 {
1725 	return tcp_sk(sk)->highest_sack;
1726 }
1727 
1728 static inline void tcp_highest_sack_reset(struct sock *sk)
1729 {
1730 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1731 }
1732 
1733 /* Called when old skb is about to be deleted and replaced by new skb */
1734 static inline void tcp_highest_sack_replace(struct sock *sk,
1735 					    struct sk_buff *old,
1736 					    struct sk_buff *new)
1737 {
1738 	if (old == tcp_highest_sack(sk))
1739 		tcp_sk(sk)->highest_sack = new;
1740 }
1741 
1742 /* This helper checks if socket has IP_TRANSPARENT set */
1743 static inline bool inet_sk_transparent(const struct sock *sk)
1744 {
1745 	switch (sk->sk_state) {
1746 	case TCP_TIME_WAIT:
1747 		return inet_twsk(sk)->tw_transparent;
1748 	case TCP_NEW_SYN_RECV:
1749 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1750 	}
1751 	return inet_sk(sk)->transparent;
1752 }
1753 
1754 /* Determines whether this is a thin stream (which may suffer from
1755  * increased latency). Used to trigger latency-reducing mechanisms.
1756  */
1757 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1758 {
1759 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1760 }
1761 
1762 /* /proc */
1763 enum tcp_seq_states {
1764 	TCP_SEQ_STATE_LISTENING,
1765 	TCP_SEQ_STATE_ESTABLISHED,
1766 };
1767 
1768 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1769 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1770 void tcp_seq_stop(struct seq_file *seq, void *v);
1771 
1772 struct tcp_seq_afinfo {
1773 	sa_family_t			family;
1774 };
1775 
1776 struct tcp_iter_state {
1777 	struct seq_net_private	p;
1778 	enum tcp_seq_states	state;
1779 	struct sock		*syn_wait_sk;
1780 	int			bucket, offset, sbucket, num;
1781 	loff_t			last_pos;
1782 };
1783 
1784 extern struct request_sock_ops tcp_request_sock_ops;
1785 extern struct request_sock_ops tcp6_request_sock_ops;
1786 
1787 void tcp_v4_destroy_sock(struct sock *sk);
1788 
1789 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1790 				netdev_features_t features);
1791 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1792 int tcp_gro_complete(struct sk_buff *skb);
1793 
1794 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1795 
1796 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1797 {
1798 	struct net *net = sock_net((struct sock *)tp);
1799 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1800 }
1801 
1802 static inline bool tcp_stream_memory_free(const struct sock *sk)
1803 {
1804 	const struct tcp_sock *tp = tcp_sk(sk);
1805 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1806 
1807 	return notsent_bytes < tcp_notsent_lowat(tp);
1808 }
1809 
1810 #ifdef CONFIG_PROC_FS
1811 int tcp4_proc_init(void);
1812 void tcp4_proc_exit(void);
1813 #endif
1814 
1815 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1816 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1817 		     const struct tcp_request_sock_ops *af_ops,
1818 		     struct sock *sk, struct sk_buff *skb);
1819 
1820 /* TCP af-specific functions */
1821 struct tcp_sock_af_ops {
1822 #ifdef CONFIG_TCP_MD5SIG
1823 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1824 						const struct sock *addr_sk);
1825 	int		(*calc_md5_hash)(char *location,
1826 					 const struct tcp_md5sig_key *md5,
1827 					 const struct sock *sk,
1828 					 const struct sk_buff *skb);
1829 	int		(*md5_parse)(struct sock *sk,
1830 				     int optname,
1831 				     char __user *optval,
1832 				     int optlen);
1833 #endif
1834 };
1835 
1836 struct tcp_request_sock_ops {
1837 	u16 mss_clamp;
1838 #ifdef CONFIG_TCP_MD5SIG
1839 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1840 						 const struct sock *addr_sk);
1841 	int		(*calc_md5_hash) (char *location,
1842 					  const struct tcp_md5sig_key *md5,
1843 					  const struct sock *sk,
1844 					  const struct sk_buff *skb);
1845 #endif
1846 	void (*init_req)(struct request_sock *req,
1847 			 const struct sock *sk_listener,
1848 			 struct sk_buff *skb);
1849 #ifdef CONFIG_SYN_COOKIES
1850 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1851 				 __u16 *mss);
1852 #endif
1853 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1854 				       const struct request_sock *req);
1855 	u32 (*init_seq)(const struct sk_buff *skb);
1856 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1857 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1858 			   struct flowi *fl, struct request_sock *req,
1859 			   struct tcp_fastopen_cookie *foc,
1860 			   enum tcp_synack_type synack_type);
1861 };
1862 
1863 #ifdef CONFIG_SYN_COOKIES
1864 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1865 					 const struct sock *sk, struct sk_buff *skb,
1866 					 __u16 *mss)
1867 {
1868 	tcp_synq_overflow(sk);
1869 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1870 	return ops->cookie_init_seq(skb, mss);
1871 }
1872 #else
1873 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1874 					 const struct sock *sk, struct sk_buff *skb,
1875 					 __u16 *mss)
1876 {
1877 	return 0;
1878 }
1879 #endif
1880 
1881 int tcpv4_offload_init(void);
1882 
1883 void tcp_v4_init(void);
1884 void tcp_init(void);
1885 
1886 /* tcp_recovery.c */
1887 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1888 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1889 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1890 				u32 reo_wnd);
1891 extern void tcp_rack_mark_lost(struct sock *sk);
1892 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1893 			     u64 xmit_time);
1894 extern void tcp_rack_reo_timeout(struct sock *sk);
1895 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1896 
1897 /* At how many usecs into the future should the RTO fire? */
1898 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1899 {
1900 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1901 	u32 rto = inet_csk(sk)->icsk_rto;
1902 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1903 
1904 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1905 }
1906 
1907 /*
1908  * Save and compile IPv4 options, return a pointer to it
1909  */
1910 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1911 							 struct sk_buff *skb)
1912 {
1913 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1914 	struct ip_options_rcu *dopt = NULL;
1915 
1916 	if (opt->optlen) {
1917 		int opt_size = sizeof(*dopt) + opt->optlen;
1918 
1919 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1920 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1921 			kfree(dopt);
1922 			dopt = NULL;
1923 		}
1924 	}
1925 	return dopt;
1926 }
1927 
1928 /* locally generated TCP pure ACKs have skb->truesize == 2
1929  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1930  * This is much faster than dissecting the packet to find out.
1931  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1932  */
1933 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1934 {
1935 	return skb->truesize == 2;
1936 }
1937 
1938 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1939 {
1940 	skb->truesize = 2;
1941 }
1942 
1943 static inline int tcp_inq(struct sock *sk)
1944 {
1945 	struct tcp_sock *tp = tcp_sk(sk);
1946 	int answ;
1947 
1948 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1949 		answ = 0;
1950 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1951 		   !tp->urg_data ||
1952 		   before(tp->urg_seq, tp->copied_seq) ||
1953 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1954 
1955 		answ = tp->rcv_nxt - tp->copied_seq;
1956 
1957 		/* Subtract 1, if FIN was received */
1958 		if (answ && sock_flag(sk, SOCK_DONE))
1959 			answ--;
1960 	} else {
1961 		answ = tp->urg_seq - tp->copied_seq;
1962 	}
1963 
1964 	return answ;
1965 }
1966 
1967 int tcp_peek_len(struct socket *sock);
1968 
1969 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1970 {
1971 	u16 segs_in;
1972 
1973 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1974 	tp->segs_in += segs_in;
1975 	if (skb->len > tcp_hdrlen(skb))
1976 		tp->data_segs_in += segs_in;
1977 }
1978 
1979 /*
1980  * TCP listen path runs lockless.
1981  * We forced "struct sock" to be const qualified to make sure
1982  * we don't modify one of its field by mistake.
1983  * Here, we increment sk_drops which is an atomic_t, so we can safely
1984  * make sock writable again.
1985  */
1986 static inline void tcp_listendrop(const struct sock *sk)
1987 {
1988 	atomic_inc(&((struct sock *)sk)->sk_drops);
1989 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1990 }
1991 
1992 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1993 
1994 /*
1995  * Interface for adding Upper Level Protocols over TCP
1996  */
1997 
1998 #define TCP_ULP_NAME_MAX	16
1999 #define TCP_ULP_MAX		128
2000 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2001 
2002 enum {
2003 	TCP_ULP_TLS,
2004 	TCP_ULP_BPF,
2005 };
2006 
2007 struct tcp_ulp_ops {
2008 	struct list_head	list;
2009 
2010 	/* initialize ulp */
2011 	int (*init)(struct sock *sk);
2012 	/* cleanup ulp */
2013 	void (*release)(struct sock *sk);
2014 
2015 	int		uid;
2016 	char		name[TCP_ULP_NAME_MAX];
2017 	bool		user_visible;
2018 	struct module	*owner;
2019 };
2020 int tcp_register_ulp(struct tcp_ulp_ops *type);
2021 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2022 int tcp_set_ulp(struct sock *sk, const char *name);
2023 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2024 void tcp_get_available_ulp(char *buf, size_t len);
2025 void tcp_cleanup_ulp(struct sock *sk);
2026 
2027 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2028  * is < 0, then the BPF op failed (for example if the loaded BPF
2029  * program does not support the chosen operation or there is no BPF
2030  * program loaded).
2031  */
2032 #ifdef CONFIG_BPF
2033 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2034 {
2035 	struct bpf_sock_ops_kern sock_ops;
2036 	int ret;
2037 
2038 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2039 	if (sk_fullsock(sk)) {
2040 		sock_ops.is_fullsock = 1;
2041 		sock_owned_by_me(sk);
2042 	}
2043 
2044 	sock_ops.sk = sk;
2045 	sock_ops.op = op;
2046 	if (nargs > 0)
2047 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2048 
2049 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2050 	if (ret == 0)
2051 		ret = sock_ops.reply;
2052 	else
2053 		ret = -1;
2054 	return ret;
2055 }
2056 
2057 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2058 {
2059 	u32 args[2] = {arg1, arg2};
2060 
2061 	return tcp_call_bpf(sk, op, 2, args);
2062 }
2063 
2064 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2065 				    u32 arg3)
2066 {
2067 	u32 args[3] = {arg1, arg2, arg3};
2068 
2069 	return tcp_call_bpf(sk, op, 3, args);
2070 }
2071 
2072 #else
2073 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2074 {
2075 	return -EPERM;
2076 }
2077 
2078 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2079 {
2080 	return -EPERM;
2081 }
2082 
2083 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2084 				    u32 arg3)
2085 {
2086 	return -EPERM;
2087 }
2088 
2089 #endif
2090 
2091 static inline u32 tcp_timeout_init(struct sock *sk)
2092 {
2093 	int timeout;
2094 
2095 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2096 
2097 	if (timeout <= 0)
2098 		timeout = TCP_TIMEOUT_INIT;
2099 	return timeout;
2100 }
2101 
2102 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2103 {
2104 	int rwnd;
2105 
2106 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2107 
2108 	if (rwnd < 0)
2109 		rwnd = 0;
2110 	return rwnd;
2111 }
2112 
2113 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2114 {
2115 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2116 }
2117 
2118 #if IS_ENABLED(CONFIG_SMC)
2119 extern struct static_key_false tcp_have_smc;
2120 #endif
2121 
2122 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2123 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2124 			     void (*cad)(struct sock *sk, u32 ack_seq));
2125 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2126 
2127 #endif
2128 
2129 #endif	/* _TCP_H */
2130