1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 extern struct percpu_counter tcp_orphan_count; 52 void tcp_time_wait(struct sock *sk, int state, int timeo); 53 54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 55 #define MAX_TCP_OPTION_SPACE 40 56 #define TCP_MIN_SND_MSS 48 57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 58 59 /* 60 * Never offer a window over 32767 without using window scaling. Some 61 * poor stacks do signed 16bit maths! 62 */ 63 #define MAX_TCP_WINDOW 32767U 64 65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 66 #define TCP_MIN_MSS 88U 67 68 /* The initial MTU to use for probing */ 69 #define TCP_BASE_MSS 1024 70 71 /* probing interval, default to 10 minutes as per RFC4821 */ 72 #define TCP_PROBE_INTERVAL 600 73 74 /* Specify interval when tcp mtu probing will stop */ 75 #define TCP_PROBE_THRESHOLD 8 76 77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 78 #define TCP_FASTRETRANS_THRESH 3 79 80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 81 #define TCP_MAX_QUICKACKS 16U 82 83 /* Maximal number of window scale according to RFC1323 */ 84 #define TCP_MAX_WSCALE 14U 85 86 /* urg_data states */ 87 #define TCP_URG_VALID 0x0100 88 #define TCP_URG_NOTYET 0x0200 89 #define TCP_URG_READ 0x0400 90 91 #define TCP_RETR1 3 /* 92 * This is how many retries it does before it 93 * tries to figure out if the gateway is 94 * down. Minimal RFC value is 3; it corresponds 95 * to ~3sec-8min depending on RTO. 96 */ 97 98 #define TCP_RETR2 15 /* 99 * This should take at least 100 * 90 minutes to time out. 101 * RFC1122 says that the limit is 100 sec. 102 * 15 is ~13-30min depending on RTO. 103 */ 104 105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 106 * when active opening a connection. 107 * RFC1122 says the minimum retry MUST 108 * be at least 180secs. Nevertheless 109 * this value is corresponding to 110 * 63secs of retransmission with the 111 * current initial RTO. 112 */ 113 114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 115 * when passive opening a connection. 116 * This is corresponding to 31secs of 117 * retransmission with the current 118 * initial RTO. 119 */ 120 121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 122 * state, about 60 seconds */ 123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 124 /* BSD style FIN_WAIT2 deadlock breaker. 125 * It used to be 3min, new value is 60sec, 126 * to combine FIN-WAIT-2 timeout with 127 * TIME-WAIT timer. 128 */ 129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 130 131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 132 #if HZ >= 100 133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 134 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 135 #else 136 #define TCP_DELACK_MIN 4U 137 #define TCP_ATO_MIN 4U 138 #endif 139 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 140 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 144 * used as a fallback RTO for the 145 * initial data transmission if no 146 * valid RTT sample has been acquired, 147 * most likely due to retrans in 3WHS. 148 */ 149 150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 151 * for local resources. 152 */ 153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 155 #define TCP_KEEPALIVE_INTVL (75*HZ) 156 157 #define MAX_TCP_KEEPIDLE 32767 158 #define MAX_TCP_KEEPINTVL 32767 159 #define MAX_TCP_KEEPCNT 127 160 #define MAX_TCP_SYNCNT 127 161 162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 extern struct percpu_counter tcp_sockets_allocated; 255 extern unsigned long tcp_memory_pressure; 256 257 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 258 static inline bool tcp_under_memory_pressure(const struct sock *sk) 259 { 260 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 261 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 262 return true; 263 264 return READ_ONCE(tcp_memory_pressure); 265 } 266 /* 267 * The next routines deal with comparing 32 bit unsigned ints 268 * and worry about wraparound (automatic with unsigned arithmetic). 269 */ 270 271 static inline bool before(__u32 seq1, __u32 seq2) 272 { 273 return (__s32)(seq1-seq2) < 0; 274 } 275 #define after(seq2, seq1) before(seq1, seq2) 276 277 /* is s2<=s1<=s3 ? */ 278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 279 { 280 return seq3 - seq2 >= seq1 - seq2; 281 } 282 283 static inline bool tcp_out_of_memory(struct sock *sk) 284 { 285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 287 return true; 288 return false; 289 } 290 291 void sk_forced_mem_schedule(struct sock *sk, int size); 292 293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift) 294 { 295 struct percpu_counter *ocp = sk->sk_prot->orphan_count; 296 int orphans = percpu_counter_read_positive(ocp); 297 298 if (orphans << shift > sysctl_tcp_max_orphans) { 299 orphans = percpu_counter_sum_positive(ocp); 300 if (orphans << shift > sysctl_tcp_max_orphans) 301 return true; 302 } 303 return false; 304 } 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb); 326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 330 int flags); 331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 332 size_t size, int flags); 333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 334 struct page *page, int offset, size_t *size); 335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 336 size_t size, int flags); 337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 351 struct pipe_inode_info *pipe, size_t len, 352 unsigned int flags); 353 354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 355 static inline void tcp_dec_quickack_mode(struct sock *sk, 356 const unsigned int pkts) 357 { 358 struct inet_connection_sock *icsk = inet_csk(sk); 359 360 if (icsk->icsk_ack.quick) { 361 if (pkts >= icsk->icsk_ack.quick) { 362 icsk->icsk_ack.quick = 0; 363 /* Leaving quickack mode we deflate ATO. */ 364 icsk->icsk_ack.ato = TCP_ATO_MIN; 365 } else 366 icsk->icsk_ack.quick -= pkts; 367 } 368 } 369 370 #define TCP_ECN_OK 1 371 #define TCP_ECN_QUEUE_CWR 2 372 #define TCP_ECN_DEMAND_CWR 4 373 #define TCP_ECN_SEEN 8 374 375 enum tcp_tw_status { 376 TCP_TW_SUCCESS = 0, 377 TCP_TW_RST = 1, 378 TCP_TW_ACK = 2, 379 TCP_TW_SYN = 3 380 }; 381 382 383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 384 struct sk_buff *skb, 385 const struct tcphdr *th); 386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 387 struct request_sock *req, bool fastopen, 388 bool *lost_race); 389 int tcp_child_process(struct sock *parent, struct sock *child, 390 struct sk_buff *skb); 391 void tcp_enter_loss(struct sock *sk); 392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 393 void tcp_clear_retrans(struct tcp_sock *tp); 394 void tcp_update_metrics(struct sock *sk); 395 void tcp_init_metrics(struct sock *sk); 396 void tcp_metrics_init(void); 397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 398 void __tcp_close(struct sock *sk, long timeout); 399 void tcp_close(struct sock *sk, long timeout); 400 void tcp_init_sock(struct sock *sk); 401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 402 __poll_t tcp_poll(struct file *file, struct socket *sock, 403 struct poll_table_struct *wait); 404 int tcp_getsockopt(struct sock *sk, int level, int optname, 405 char __user *optval, int __user *optlen); 406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 407 unsigned int optlen); 408 void tcp_set_keepalive(struct sock *sk, int val); 409 void tcp_syn_ack_timeout(const struct request_sock *req); 410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 411 int flags, int *addr_len); 412 int tcp_set_rcvlowat(struct sock *sk, int val); 413 void tcp_data_ready(struct sock *sk); 414 #ifdef CONFIG_MMU 415 int tcp_mmap(struct file *file, struct socket *sock, 416 struct vm_area_struct *vma); 417 #endif 418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 419 struct tcp_options_received *opt_rx, 420 int estab, struct tcp_fastopen_cookie *foc); 421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 422 423 /* 424 * BPF SKB-less helpers 425 */ 426 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 427 struct tcphdr *th, u32 *cookie); 428 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 429 struct tcphdr *th, u32 *cookie); 430 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 431 const struct tcp_request_sock_ops *af_ops, 432 struct sock *sk, struct tcphdr *th); 433 /* 434 * TCP v4 functions exported for the inet6 API 435 */ 436 437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 438 void tcp_v4_mtu_reduced(struct sock *sk); 439 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 440 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 442 struct sock *tcp_create_openreq_child(const struct sock *sk, 443 struct request_sock *req, 444 struct sk_buff *skb); 445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 447 struct request_sock *req, 448 struct dst_entry *dst, 449 struct request_sock *req_unhash, 450 bool *own_req); 451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 453 int tcp_connect(struct sock *sk); 454 enum tcp_synack_type { 455 TCP_SYNACK_NORMAL, 456 TCP_SYNACK_FASTOPEN, 457 TCP_SYNACK_COOKIE, 458 }; 459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 460 struct request_sock *req, 461 struct tcp_fastopen_cookie *foc, 462 enum tcp_synack_type synack_type, 463 struct sk_buff *syn_skb); 464 int tcp_disconnect(struct sock *sk, int flags); 465 466 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 467 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 468 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 469 470 /* From syncookies.c */ 471 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 472 struct request_sock *req, 473 struct dst_entry *dst, u32 tsoff); 474 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 475 u32 cookie); 476 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 477 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 478 struct sock *sk, struct sk_buff *skb); 479 #ifdef CONFIG_SYN_COOKIES 480 481 /* Syncookies use a monotonic timer which increments every 60 seconds. 482 * This counter is used both as a hash input and partially encoded into 483 * the cookie value. A cookie is only validated further if the delta 484 * between the current counter value and the encoded one is less than this, 485 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 486 * the counter advances immediately after a cookie is generated). 487 */ 488 #define MAX_SYNCOOKIE_AGE 2 489 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 490 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 491 492 /* syncookies: remember time of last synqueue overflow 493 * But do not dirty this field too often (once per second is enough) 494 * It is racy as we do not hold a lock, but race is very minor. 495 */ 496 static inline void tcp_synq_overflow(const struct sock *sk) 497 { 498 unsigned int last_overflow; 499 unsigned int now = jiffies; 500 501 if (sk->sk_reuseport) { 502 struct sock_reuseport *reuse; 503 504 reuse = rcu_dereference(sk->sk_reuseport_cb); 505 if (likely(reuse)) { 506 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 507 if (!time_between32(now, last_overflow, 508 last_overflow + HZ)) 509 WRITE_ONCE(reuse->synq_overflow_ts, now); 510 return; 511 } 512 } 513 514 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 515 if (!time_between32(now, last_overflow, last_overflow + HZ)) 516 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 517 } 518 519 /* syncookies: no recent synqueue overflow on this listening socket? */ 520 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 521 { 522 unsigned int last_overflow; 523 unsigned int now = jiffies; 524 525 if (sk->sk_reuseport) { 526 struct sock_reuseport *reuse; 527 528 reuse = rcu_dereference(sk->sk_reuseport_cb); 529 if (likely(reuse)) { 530 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 531 return !time_between32(now, last_overflow - HZ, 532 last_overflow + 533 TCP_SYNCOOKIE_VALID); 534 } 535 } 536 537 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 538 539 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 540 * then we're under synflood. However, we have to use 541 * 'last_overflow - HZ' as lower bound. That's because a concurrent 542 * tcp_synq_overflow() could update .ts_recent_stamp after we read 543 * jiffies but before we store .ts_recent_stamp into last_overflow, 544 * which could lead to rejecting a valid syncookie. 545 */ 546 return !time_between32(now, last_overflow - HZ, 547 last_overflow + TCP_SYNCOOKIE_VALID); 548 } 549 550 static inline u32 tcp_cookie_time(void) 551 { 552 u64 val = get_jiffies_64(); 553 554 do_div(val, TCP_SYNCOOKIE_PERIOD); 555 return val; 556 } 557 558 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 559 u16 *mssp); 560 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 561 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 562 bool cookie_timestamp_decode(const struct net *net, 563 struct tcp_options_received *opt); 564 bool cookie_ecn_ok(const struct tcp_options_received *opt, 565 const struct net *net, const struct dst_entry *dst); 566 567 /* From net/ipv6/syncookies.c */ 568 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 569 u32 cookie); 570 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 571 572 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 573 const struct tcphdr *th, u16 *mssp); 574 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 575 #endif 576 /* tcp_output.c */ 577 578 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 579 int nonagle); 580 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 581 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 582 void tcp_retransmit_timer(struct sock *sk); 583 void tcp_xmit_retransmit_queue(struct sock *); 584 void tcp_simple_retransmit(struct sock *); 585 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 586 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 587 enum tcp_queue { 588 TCP_FRAG_IN_WRITE_QUEUE, 589 TCP_FRAG_IN_RTX_QUEUE, 590 }; 591 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 592 struct sk_buff *skb, u32 len, 593 unsigned int mss_now, gfp_t gfp); 594 595 void tcp_send_probe0(struct sock *); 596 void tcp_send_partial(struct sock *); 597 int tcp_write_wakeup(struct sock *, int mib); 598 void tcp_send_fin(struct sock *sk); 599 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 600 int tcp_send_synack(struct sock *); 601 void tcp_push_one(struct sock *, unsigned int mss_now); 602 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 603 void tcp_send_ack(struct sock *sk); 604 void tcp_send_delayed_ack(struct sock *sk); 605 void tcp_send_loss_probe(struct sock *sk); 606 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 607 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 608 const struct sk_buff *next_skb); 609 610 /* tcp_input.c */ 611 void tcp_rearm_rto(struct sock *sk); 612 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 613 void tcp_reset(struct sock *sk); 614 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 615 void tcp_fin(struct sock *sk); 616 617 /* tcp_timer.c */ 618 void tcp_init_xmit_timers(struct sock *); 619 static inline void tcp_clear_xmit_timers(struct sock *sk) 620 { 621 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 622 __sock_put(sk); 623 624 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 625 __sock_put(sk); 626 627 inet_csk_clear_xmit_timers(sk); 628 } 629 630 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 631 unsigned int tcp_current_mss(struct sock *sk); 632 633 /* Bound MSS / TSO packet size with the half of the window */ 634 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 635 { 636 int cutoff; 637 638 /* When peer uses tiny windows, there is no use in packetizing 639 * to sub-MSS pieces for the sake of SWS or making sure there 640 * are enough packets in the pipe for fast recovery. 641 * 642 * On the other hand, for extremely large MSS devices, handling 643 * smaller than MSS windows in this way does make sense. 644 */ 645 if (tp->max_window > TCP_MSS_DEFAULT) 646 cutoff = (tp->max_window >> 1); 647 else 648 cutoff = tp->max_window; 649 650 if (cutoff && pktsize > cutoff) 651 return max_t(int, cutoff, 68U - tp->tcp_header_len); 652 else 653 return pktsize; 654 } 655 656 /* tcp.c */ 657 void tcp_get_info(struct sock *, struct tcp_info *); 658 659 /* Read 'sendfile()'-style from a TCP socket */ 660 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 661 sk_read_actor_t recv_actor); 662 663 void tcp_initialize_rcv_mss(struct sock *sk); 664 665 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 666 int tcp_mss_to_mtu(struct sock *sk, int mss); 667 void tcp_mtup_init(struct sock *sk); 668 669 static inline void tcp_bound_rto(const struct sock *sk) 670 { 671 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 672 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 673 } 674 675 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 676 { 677 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 678 } 679 680 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 681 { 682 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 683 ntohl(TCP_FLAG_ACK) | 684 snd_wnd); 685 } 686 687 static inline void tcp_fast_path_on(struct tcp_sock *tp) 688 { 689 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 690 } 691 692 static inline void tcp_fast_path_check(struct sock *sk) 693 { 694 struct tcp_sock *tp = tcp_sk(sk); 695 696 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 697 tp->rcv_wnd && 698 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 699 !tp->urg_data) 700 tcp_fast_path_on(tp); 701 } 702 703 /* Compute the actual rto_min value */ 704 static inline u32 tcp_rto_min(struct sock *sk) 705 { 706 const struct dst_entry *dst = __sk_dst_get(sk); 707 u32 rto_min = inet_csk(sk)->icsk_rto_min; 708 709 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 710 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 711 return rto_min; 712 } 713 714 static inline u32 tcp_rto_min_us(struct sock *sk) 715 { 716 return jiffies_to_usecs(tcp_rto_min(sk)); 717 } 718 719 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 720 { 721 return dst_metric_locked(dst, RTAX_CC_ALGO); 722 } 723 724 /* Minimum RTT in usec. ~0 means not available. */ 725 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 726 { 727 return minmax_get(&tp->rtt_min); 728 } 729 730 /* Compute the actual receive window we are currently advertising. 731 * Rcv_nxt can be after the window if our peer push more data 732 * than the offered window. 733 */ 734 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 735 { 736 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 737 738 if (win < 0) 739 win = 0; 740 return (u32) win; 741 } 742 743 /* Choose a new window, without checks for shrinking, and without 744 * scaling applied to the result. The caller does these things 745 * if necessary. This is a "raw" window selection. 746 */ 747 u32 __tcp_select_window(struct sock *sk); 748 749 void tcp_send_window_probe(struct sock *sk); 750 751 /* TCP uses 32bit jiffies to save some space. 752 * Note that this is different from tcp_time_stamp, which 753 * historically has been the same until linux-4.13. 754 */ 755 #define tcp_jiffies32 ((u32)jiffies) 756 757 /* 758 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 759 * It is no longer tied to jiffies, but to 1 ms clock. 760 * Note: double check if you want to use tcp_jiffies32 instead of this. 761 */ 762 #define TCP_TS_HZ 1000 763 764 static inline u64 tcp_clock_ns(void) 765 { 766 return ktime_get_ns(); 767 } 768 769 static inline u64 tcp_clock_us(void) 770 { 771 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 772 } 773 774 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 775 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 776 { 777 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 778 } 779 780 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 781 static inline u32 tcp_ns_to_ts(u64 ns) 782 { 783 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 784 } 785 786 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 787 static inline u32 tcp_time_stamp_raw(void) 788 { 789 return tcp_ns_to_ts(tcp_clock_ns()); 790 } 791 792 void tcp_mstamp_refresh(struct tcp_sock *tp); 793 794 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 795 { 796 return max_t(s64, t1 - t0, 0); 797 } 798 799 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 800 { 801 return tcp_ns_to_ts(skb->skb_mstamp_ns); 802 } 803 804 /* provide the departure time in us unit */ 805 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 806 { 807 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 808 } 809 810 811 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 812 813 #define TCPHDR_FIN 0x01 814 #define TCPHDR_SYN 0x02 815 #define TCPHDR_RST 0x04 816 #define TCPHDR_PSH 0x08 817 #define TCPHDR_ACK 0x10 818 #define TCPHDR_URG 0x20 819 #define TCPHDR_ECE 0x40 820 #define TCPHDR_CWR 0x80 821 822 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 823 824 /* This is what the send packet queuing engine uses to pass 825 * TCP per-packet control information to the transmission code. 826 * We also store the host-order sequence numbers in here too. 827 * This is 44 bytes if IPV6 is enabled. 828 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 829 */ 830 struct tcp_skb_cb { 831 __u32 seq; /* Starting sequence number */ 832 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 833 union { 834 /* Note : tcp_tw_isn is used in input path only 835 * (isn chosen by tcp_timewait_state_process()) 836 * 837 * tcp_gso_segs/size are used in write queue only, 838 * cf tcp_skb_pcount()/tcp_skb_mss() 839 */ 840 __u32 tcp_tw_isn; 841 struct { 842 u16 tcp_gso_segs; 843 u16 tcp_gso_size; 844 }; 845 }; 846 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 847 848 __u8 sacked; /* State flags for SACK. */ 849 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 850 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 851 #define TCPCB_LOST 0x04 /* SKB is lost */ 852 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 853 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 854 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 855 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 856 TCPCB_REPAIRED) 857 858 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 859 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 860 eor:1, /* Is skb MSG_EOR marked? */ 861 has_rxtstamp:1, /* SKB has a RX timestamp */ 862 unused:5; 863 __u32 ack_seq; /* Sequence number ACK'd */ 864 union { 865 struct { 866 /* There is space for up to 24 bytes */ 867 __u32 in_flight:30,/* Bytes in flight at transmit */ 868 is_app_limited:1, /* cwnd not fully used? */ 869 unused:1; 870 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 871 __u32 delivered; 872 /* start of send pipeline phase */ 873 u64 first_tx_mstamp; 874 /* when we reached the "delivered" count */ 875 u64 delivered_mstamp; 876 } tx; /* only used for outgoing skbs */ 877 union { 878 struct inet_skb_parm h4; 879 #if IS_ENABLED(CONFIG_IPV6) 880 struct inet6_skb_parm h6; 881 #endif 882 } header; /* For incoming skbs */ 883 struct { 884 __u32 flags; 885 struct sock *sk_redir; 886 void *data_end; 887 } bpf; 888 }; 889 }; 890 891 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 892 893 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) 894 { 895 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); 896 } 897 898 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) 899 { 900 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; 901 } 902 903 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) 904 { 905 return TCP_SKB_CB(skb)->bpf.sk_redir; 906 } 907 908 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) 909 { 910 TCP_SKB_CB(skb)->bpf.sk_redir = NULL; 911 } 912 913 extern const struct inet_connection_sock_af_ops ipv4_specific; 914 915 #if IS_ENABLED(CONFIG_IPV6) 916 /* This is the variant of inet6_iif() that must be used by TCP, 917 * as TCP moves IP6CB into a different location in skb->cb[] 918 */ 919 static inline int tcp_v6_iif(const struct sk_buff *skb) 920 { 921 return TCP_SKB_CB(skb)->header.h6.iif; 922 } 923 924 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 925 { 926 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 927 928 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 929 } 930 931 /* TCP_SKB_CB reference means this can not be used from early demux */ 932 static inline int tcp_v6_sdif(const struct sk_buff *skb) 933 { 934 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 935 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 936 return TCP_SKB_CB(skb)->header.h6.iif; 937 #endif 938 return 0; 939 } 940 941 extern const struct inet_connection_sock_af_ops ipv6_specific; 942 943 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 944 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 945 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); 946 947 #endif 948 949 /* TCP_SKB_CB reference means this can not be used from early demux */ 950 static inline int tcp_v4_sdif(struct sk_buff *skb) 951 { 952 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 953 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 954 return TCP_SKB_CB(skb)->header.h4.iif; 955 #endif 956 return 0; 957 } 958 959 /* Due to TSO, an SKB can be composed of multiple actual 960 * packets. To keep these tracked properly, we use this. 961 */ 962 static inline int tcp_skb_pcount(const struct sk_buff *skb) 963 { 964 return TCP_SKB_CB(skb)->tcp_gso_segs; 965 } 966 967 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 968 { 969 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 970 } 971 972 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 973 { 974 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 975 } 976 977 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 978 static inline int tcp_skb_mss(const struct sk_buff *skb) 979 { 980 return TCP_SKB_CB(skb)->tcp_gso_size; 981 } 982 983 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 984 { 985 return likely(!TCP_SKB_CB(skb)->eor); 986 } 987 988 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 989 const struct sk_buff *from) 990 { 991 return likely(tcp_skb_can_collapse_to(to) && 992 mptcp_skb_can_collapse(to, from)); 993 } 994 995 /* Events passed to congestion control interface */ 996 enum tcp_ca_event { 997 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 998 CA_EVENT_CWND_RESTART, /* congestion window restart */ 999 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1000 CA_EVENT_LOSS, /* loss timeout */ 1001 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1002 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1003 }; 1004 1005 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1006 enum tcp_ca_ack_event_flags { 1007 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1008 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1009 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1010 }; 1011 1012 /* 1013 * Interface for adding new TCP congestion control handlers 1014 */ 1015 #define TCP_CA_NAME_MAX 16 1016 #define TCP_CA_MAX 128 1017 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1018 1019 #define TCP_CA_UNSPEC 0 1020 1021 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1022 #define TCP_CONG_NON_RESTRICTED 0x1 1023 /* Requires ECN/ECT set on all packets */ 1024 #define TCP_CONG_NEEDS_ECN 0x2 1025 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1026 1027 union tcp_cc_info; 1028 1029 struct ack_sample { 1030 u32 pkts_acked; 1031 s32 rtt_us; 1032 u32 in_flight; 1033 }; 1034 1035 /* A rate sample measures the number of (original/retransmitted) data 1036 * packets delivered "delivered" over an interval of time "interval_us". 1037 * The tcp_rate.c code fills in the rate sample, and congestion 1038 * control modules that define a cong_control function to run at the end 1039 * of ACK processing can optionally chose to consult this sample when 1040 * setting cwnd and pacing rate. 1041 * A sample is invalid if "delivered" or "interval_us" is negative. 1042 */ 1043 struct rate_sample { 1044 u64 prior_mstamp; /* starting timestamp for interval */ 1045 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1046 s32 delivered; /* number of packets delivered over interval */ 1047 long interval_us; /* time for tp->delivered to incr "delivered" */ 1048 u32 snd_interval_us; /* snd interval for delivered packets */ 1049 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1050 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1051 int losses; /* number of packets marked lost upon ACK */ 1052 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1053 u32 prior_in_flight; /* in flight before this ACK */ 1054 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1055 bool is_retrans; /* is sample from retransmission? */ 1056 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1057 }; 1058 1059 struct tcp_congestion_ops { 1060 struct list_head list; 1061 u32 key; 1062 u32 flags; 1063 1064 /* initialize private data (optional) */ 1065 void (*init)(struct sock *sk); 1066 /* cleanup private data (optional) */ 1067 void (*release)(struct sock *sk); 1068 1069 /* return slow start threshold (required) */ 1070 u32 (*ssthresh)(struct sock *sk); 1071 /* do new cwnd calculation (required) */ 1072 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1073 /* call before changing ca_state (optional) */ 1074 void (*set_state)(struct sock *sk, u8 new_state); 1075 /* call when cwnd event occurs (optional) */ 1076 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1077 /* call when ack arrives (optional) */ 1078 void (*in_ack_event)(struct sock *sk, u32 flags); 1079 /* new value of cwnd after loss (required) */ 1080 u32 (*undo_cwnd)(struct sock *sk); 1081 /* hook for packet ack accounting (optional) */ 1082 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1083 /* override sysctl_tcp_min_tso_segs */ 1084 u32 (*min_tso_segs)(struct sock *sk); 1085 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1086 u32 (*sndbuf_expand)(struct sock *sk); 1087 /* call when packets are delivered to update cwnd and pacing rate, 1088 * after all the ca_state processing. (optional) 1089 */ 1090 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1091 /* get info for inet_diag (optional) */ 1092 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1093 union tcp_cc_info *info); 1094 1095 char name[TCP_CA_NAME_MAX]; 1096 struct module *owner; 1097 }; 1098 1099 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1100 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1101 1102 void tcp_assign_congestion_control(struct sock *sk); 1103 void tcp_init_congestion_control(struct sock *sk); 1104 void tcp_cleanup_congestion_control(struct sock *sk); 1105 int tcp_set_default_congestion_control(struct net *net, const char *name); 1106 void tcp_get_default_congestion_control(struct net *net, char *name); 1107 void tcp_get_available_congestion_control(char *buf, size_t len); 1108 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1109 int tcp_set_allowed_congestion_control(char *allowed); 1110 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1111 bool cap_net_admin); 1112 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1113 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1114 1115 u32 tcp_reno_ssthresh(struct sock *sk); 1116 u32 tcp_reno_undo_cwnd(struct sock *sk); 1117 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1118 extern struct tcp_congestion_ops tcp_reno; 1119 1120 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1121 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1122 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1123 #ifdef CONFIG_INET 1124 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1125 #else 1126 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1127 { 1128 return NULL; 1129 } 1130 #endif 1131 1132 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1133 { 1134 const struct inet_connection_sock *icsk = inet_csk(sk); 1135 1136 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1137 } 1138 1139 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1140 { 1141 struct inet_connection_sock *icsk = inet_csk(sk); 1142 1143 if (icsk->icsk_ca_ops->set_state) 1144 icsk->icsk_ca_ops->set_state(sk, ca_state); 1145 icsk->icsk_ca_state = ca_state; 1146 } 1147 1148 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1149 { 1150 const struct inet_connection_sock *icsk = inet_csk(sk); 1151 1152 if (icsk->icsk_ca_ops->cwnd_event) 1153 icsk->icsk_ca_ops->cwnd_event(sk, event); 1154 } 1155 1156 /* From tcp_rate.c */ 1157 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1158 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1159 struct rate_sample *rs); 1160 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1161 bool is_sack_reneg, struct rate_sample *rs); 1162 void tcp_rate_check_app_limited(struct sock *sk); 1163 1164 /* These functions determine how the current flow behaves in respect of SACK 1165 * handling. SACK is negotiated with the peer, and therefore it can vary 1166 * between different flows. 1167 * 1168 * tcp_is_sack - SACK enabled 1169 * tcp_is_reno - No SACK 1170 */ 1171 static inline int tcp_is_sack(const struct tcp_sock *tp) 1172 { 1173 return likely(tp->rx_opt.sack_ok); 1174 } 1175 1176 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1177 { 1178 return !tcp_is_sack(tp); 1179 } 1180 1181 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1182 { 1183 return tp->sacked_out + tp->lost_out; 1184 } 1185 1186 /* This determines how many packets are "in the network" to the best 1187 * of our knowledge. In many cases it is conservative, but where 1188 * detailed information is available from the receiver (via SACK 1189 * blocks etc.) we can make more aggressive calculations. 1190 * 1191 * Use this for decisions involving congestion control, use just 1192 * tp->packets_out to determine if the send queue is empty or not. 1193 * 1194 * Read this equation as: 1195 * 1196 * "Packets sent once on transmission queue" MINUS 1197 * "Packets left network, but not honestly ACKed yet" PLUS 1198 * "Packets fast retransmitted" 1199 */ 1200 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1201 { 1202 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1203 } 1204 1205 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1206 1207 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1208 { 1209 return tp->snd_cwnd < tp->snd_ssthresh; 1210 } 1211 1212 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1213 { 1214 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1215 } 1216 1217 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1218 { 1219 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1220 (1 << inet_csk(sk)->icsk_ca_state); 1221 } 1222 1223 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1224 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1225 * ssthresh. 1226 */ 1227 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1228 { 1229 const struct tcp_sock *tp = tcp_sk(sk); 1230 1231 if (tcp_in_cwnd_reduction(sk)) 1232 return tp->snd_ssthresh; 1233 else 1234 return max(tp->snd_ssthresh, 1235 ((tp->snd_cwnd >> 1) + 1236 (tp->snd_cwnd >> 2))); 1237 } 1238 1239 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1240 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1241 1242 void tcp_enter_cwr(struct sock *sk); 1243 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1244 1245 /* The maximum number of MSS of available cwnd for which TSO defers 1246 * sending if not using sysctl_tcp_tso_win_divisor. 1247 */ 1248 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1249 { 1250 return 3; 1251 } 1252 1253 /* Returns end sequence number of the receiver's advertised window */ 1254 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1255 { 1256 return tp->snd_una + tp->snd_wnd; 1257 } 1258 1259 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1260 * flexible approach. The RFC suggests cwnd should not be raised unless 1261 * it was fully used previously. And that's exactly what we do in 1262 * congestion avoidance mode. But in slow start we allow cwnd to grow 1263 * as long as the application has used half the cwnd. 1264 * Example : 1265 * cwnd is 10 (IW10), but application sends 9 frames. 1266 * We allow cwnd to reach 18 when all frames are ACKed. 1267 * This check is safe because it's as aggressive as slow start which already 1268 * risks 100% overshoot. The advantage is that we discourage application to 1269 * either send more filler packets or data to artificially blow up the cwnd 1270 * usage, and allow application-limited process to probe bw more aggressively. 1271 */ 1272 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1273 { 1274 const struct tcp_sock *tp = tcp_sk(sk); 1275 1276 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1277 if (tcp_in_slow_start(tp)) 1278 return tp->snd_cwnd < 2 * tp->max_packets_out; 1279 1280 return tp->is_cwnd_limited; 1281 } 1282 1283 /* BBR congestion control needs pacing. 1284 * Same remark for SO_MAX_PACING_RATE. 1285 * sch_fq packet scheduler is efficiently handling pacing, 1286 * but is not always installed/used. 1287 * Return true if TCP stack should pace packets itself. 1288 */ 1289 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1290 { 1291 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1292 } 1293 1294 /* Estimates in how many jiffies next packet for this flow can be sent. 1295 * Scheduling a retransmit timer too early would be silly. 1296 */ 1297 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1298 { 1299 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1300 1301 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1302 } 1303 1304 static inline void tcp_reset_xmit_timer(struct sock *sk, 1305 const int what, 1306 unsigned long when, 1307 const unsigned long max_when) 1308 { 1309 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1310 max_when); 1311 } 1312 1313 /* Something is really bad, we could not queue an additional packet, 1314 * because qdisc is full or receiver sent a 0 window, or we are paced. 1315 * We do not want to add fuel to the fire, or abort too early, 1316 * so make sure the timer we arm now is at least 200ms in the future, 1317 * regardless of current icsk_rto value (as it could be ~2ms) 1318 */ 1319 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1320 { 1321 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1322 } 1323 1324 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1325 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1326 unsigned long max_when) 1327 { 1328 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff; 1329 1330 return (unsigned long)min_t(u64, when, max_when); 1331 } 1332 1333 static inline void tcp_check_probe_timer(struct sock *sk) 1334 { 1335 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1336 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1337 tcp_probe0_base(sk), TCP_RTO_MAX); 1338 } 1339 1340 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1341 { 1342 tp->snd_wl1 = seq; 1343 } 1344 1345 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1346 { 1347 tp->snd_wl1 = seq; 1348 } 1349 1350 /* 1351 * Calculate(/check) TCP checksum 1352 */ 1353 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1354 __be32 daddr, __wsum base) 1355 { 1356 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1357 } 1358 1359 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1360 { 1361 return !skb_csum_unnecessary(skb) && 1362 __skb_checksum_complete(skb); 1363 } 1364 1365 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1366 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1367 void tcp_set_state(struct sock *sk, int state); 1368 void tcp_done(struct sock *sk); 1369 int tcp_abort(struct sock *sk, int err); 1370 1371 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1372 { 1373 rx_opt->dsack = 0; 1374 rx_opt->num_sacks = 0; 1375 } 1376 1377 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1378 1379 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1380 { 1381 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 s32 delta; 1384 1385 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1386 ca_ops->cong_control) 1387 return; 1388 delta = tcp_jiffies32 - tp->lsndtime; 1389 if (delta > inet_csk(sk)->icsk_rto) 1390 tcp_cwnd_restart(sk, delta); 1391 } 1392 1393 /* Determine a window scaling and initial window to offer. */ 1394 void tcp_select_initial_window(const struct sock *sk, int __space, 1395 __u32 mss, __u32 *rcv_wnd, 1396 __u32 *window_clamp, int wscale_ok, 1397 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1398 1399 static inline int tcp_win_from_space(const struct sock *sk, int space) 1400 { 1401 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1402 1403 return tcp_adv_win_scale <= 0 ? 1404 (space>>(-tcp_adv_win_scale)) : 1405 space - (space>>tcp_adv_win_scale); 1406 } 1407 1408 /* Note: caller must be prepared to deal with negative returns */ 1409 static inline int tcp_space(const struct sock *sk) 1410 { 1411 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1412 READ_ONCE(sk->sk_backlog.len) - 1413 atomic_read(&sk->sk_rmem_alloc)); 1414 } 1415 1416 static inline int tcp_full_space(const struct sock *sk) 1417 { 1418 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1419 } 1420 1421 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1422 1423 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1424 * If 87.5 % (7/8) of the space has been consumed, we want to override 1425 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1426 * len/truesize ratio. 1427 */ 1428 static inline bool tcp_rmem_pressure(const struct sock *sk) 1429 { 1430 int rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1431 int threshold = rcvbuf - (rcvbuf >> 3); 1432 1433 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1434 } 1435 1436 extern void tcp_openreq_init_rwin(struct request_sock *req, 1437 const struct sock *sk_listener, 1438 const struct dst_entry *dst); 1439 1440 void tcp_enter_memory_pressure(struct sock *sk); 1441 void tcp_leave_memory_pressure(struct sock *sk); 1442 1443 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1444 { 1445 struct net *net = sock_net((struct sock *)tp); 1446 1447 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1448 } 1449 1450 static inline int keepalive_time_when(const struct tcp_sock *tp) 1451 { 1452 struct net *net = sock_net((struct sock *)tp); 1453 1454 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1455 } 1456 1457 static inline int keepalive_probes(const struct tcp_sock *tp) 1458 { 1459 struct net *net = sock_net((struct sock *)tp); 1460 1461 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1462 } 1463 1464 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1465 { 1466 const struct inet_connection_sock *icsk = &tp->inet_conn; 1467 1468 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1469 tcp_jiffies32 - tp->rcv_tstamp); 1470 } 1471 1472 static inline int tcp_fin_time(const struct sock *sk) 1473 { 1474 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1475 const int rto = inet_csk(sk)->icsk_rto; 1476 1477 if (fin_timeout < (rto << 2) - (rto >> 1)) 1478 fin_timeout = (rto << 2) - (rto >> 1); 1479 1480 return fin_timeout; 1481 } 1482 1483 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1484 int paws_win) 1485 { 1486 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1487 return true; 1488 if (unlikely(!time_before32(ktime_get_seconds(), 1489 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1490 return true; 1491 /* 1492 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1493 * then following tcp messages have valid values. Ignore 0 value, 1494 * or else 'negative' tsval might forbid us to accept their packets. 1495 */ 1496 if (!rx_opt->ts_recent) 1497 return true; 1498 return false; 1499 } 1500 1501 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1502 int rst) 1503 { 1504 if (tcp_paws_check(rx_opt, 0)) 1505 return false; 1506 1507 /* RST segments are not recommended to carry timestamp, 1508 and, if they do, it is recommended to ignore PAWS because 1509 "their cleanup function should take precedence over timestamps." 1510 Certainly, it is mistake. It is necessary to understand the reasons 1511 of this constraint to relax it: if peer reboots, clock may go 1512 out-of-sync and half-open connections will not be reset. 1513 Actually, the problem would be not existing if all 1514 the implementations followed draft about maintaining clock 1515 via reboots. Linux-2.2 DOES NOT! 1516 1517 However, we can relax time bounds for RST segments to MSL. 1518 */ 1519 if (rst && !time_before32(ktime_get_seconds(), 1520 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1521 return false; 1522 return true; 1523 } 1524 1525 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1526 int mib_idx, u32 *last_oow_ack_time); 1527 1528 static inline void tcp_mib_init(struct net *net) 1529 { 1530 /* See RFC 2012 */ 1531 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1532 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1533 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1534 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1535 } 1536 1537 /* from STCP */ 1538 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1539 { 1540 tp->lost_skb_hint = NULL; 1541 } 1542 1543 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1544 { 1545 tcp_clear_retrans_hints_partial(tp); 1546 tp->retransmit_skb_hint = NULL; 1547 } 1548 1549 union tcp_md5_addr { 1550 struct in_addr a4; 1551 #if IS_ENABLED(CONFIG_IPV6) 1552 struct in6_addr a6; 1553 #endif 1554 }; 1555 1556 /* - key database */ 1557 struct tcp_md5sig_key { 1558 struct hlist_node node; 1559 u8 keylen; 1560 u8 family; /* AF_INET or AF_INET6 */ 1561 u8 prefixlen; 1562 union tcp_md5_addr addr; 1563 int l3index; /* set if key added with L3 scope */ 1564 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1565 struct rcu_head rcu; 1566 }; 1567 1568 /* - sock block */ 1569 struct tcp_md5sig_info { 1570 struct hlist_head head; 1571 struct rcu_head rcu; 1572 }; 1573 1574 /* - pseudo header */ 1575 struct tcp4_pseudohdr { 1576 __be32 saddr; 1577 __be32 daddr; 1578 __u8 pad; 1579 __u8 protocol; 1580 __be16 len; 1581 }; 1582 1583 struct tcp6_pseudohdr { 1584 struct in6_addr saddr; 1585 struct in6_addr daddr; 1586 __be32 len; 1587 __be32 protocol; /* including padding */ 1588 }; 1589 1590 union tcp_md5sum_block { 1591 struct tcp4_pseudohdr ip4; 1592 #if IS_ENABLED(CONFIG_IPV6) 1593 struct tcp6_pseudohdr ip6; 1594 #endif 1595 }; 1596 1597 /* - pool: digest algorithm, hash description and scratch buffer */ 1598 struct tcp_md5sig_pool { 1599 struct ahash_request *md5_req; 1600 void *scratch; 1601 }; 1602 1603 /* - functions */ 1604 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1605 const struct sock *sk, const struct sk_buff *skb); 1606 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1607 int family, u8 prefixlen, int l3index, 1608 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1609 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1610 int family, u8 prefixlen, int l3index); 1611 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1612 const struct sock *addr_sk); 1613 1614 #ifdef CONFIG_TCP_MD5SIG 1615 #include <linux/jump_label.h> 1616 extern struct static_key_false tcp_md5_needed; 1617 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1618 const union tcp_md5_addr *addr, 1619 int family); 1620 static inline struct tcp_md5sig_key * 1621 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1622 const union tcp_md5_addr *addr, int family) 1623 { 1624 if (!static_branch_unlikely(&tcp_md5_needed)) 1625 return NULL; 1626 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1627 } 1628 1629 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1630 #else 1631 static inline struct tcp_md5sig_key * 1632 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1633 const union tcp_md5_addr *addr, int family) 1634 { 1635 return NULL; 1636 } 1637 #define tcp_twsk_md5_key(twsk) NULL 1638 #endif 1639 1640 bool tcp_alloc_md5sig_pool(void); 1641 1642 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1643 static inline void tcp_put_md5sig_pool(void) 1644 { 1645 local_bh_enable(); 1646 } 1647 1648 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1649 unsigned int header_len); 1650 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1651 const struct tcp_md5sig_key *key); 1652 1653 /* From tcp_fastopen.c */ 1654 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1655 struct tcp_fastopen_cookie *cookie); 1656 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1657 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1658 u16 try_exp); 1659 struct tcp_fastopen_request { 1660 /* Fast Open cookie. Size 0 means a cookie request */ 1661 struct tcp_fastopen_cookie cookie; 1662 struct msghdr *data; /* data in MSG_FASTOPEN */ 1663 size_t size; 1664 int copied; /* queued in tcp_connect() */ 1665 struct ubuf_info *uarg; 1666 }; 1667 void tcp_free_fastopen_req(struct tcp_sock *tp); 1668 void tcp_fastopen_destroy_cipher(struct sock *sk); 1669 void tcp_fastopen_ctx_destroy(struct net *net); 1670 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1671 void *primary_key, void *backup_key); 1672 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1673 u64 *key); 1674 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1675 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1676 struct request_sock *req, 1677 struct tcp_fastopen_cookie *foc, 1678 const struct dst_entry *dst); 1679 void tcp_fastopen_init_key_once(struct net *net); 1680 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1681 struct tcp_fastopen_cookie *cookie); 1682 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1683 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1684 #define TCP_FASTOPEN_KEY_MAX 2 1685 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1686 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1687 1688 /* Fastopen key context */ 1689 struct tcp_fastopen_context { 1690 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1691 int num; 1692 struct rcu_head rcu; 1693 }; 1694 1695 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; 1696 void tcp_fastopen_active_disable(struct sock *sk); 1697 bool tcp_fastopen_active_should_disable(struct sock *sk); 1698 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1699 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1700 1701 /* Caller needs to wrap with rcu_read_(un)lock() */ 1702 static inline 1703 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1704 { 1705 struct tcp_fastopen_context *ctx; 1706 1707 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1708 if (!ctx) 1709 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1710 return ctx; 1711 } 1712 1713 static inline 1714 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1715 const struct tcp_fastopen_cookie *orig) 1716 { 1717 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1718 orig->len == foc->len && 1719 !memcmp(orig->val, foc->val, foc->len)) 1720 return true; 1721 return false; 1722 } 1723 1724 static inline 1725 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1726 { 1727 return ctx->num; 1728 } 1729 1730 /* Latencies incurred by various limits for a sender. They are 1731 * chronograph-like stats that are mutually exclusive. 1732 */ 1733 enum tcp_chrono { 1734 TCP_CHRONO_UNSPEC, 1735 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1736 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1737 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1738 __TCP_CHRONO_MAX, 1739 }; 1740 1741 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1742 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1743 1744 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1745 * the same memory storage than skb->destructor/_skb_refdst 1746 */ 1747 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1748 { 1749 skb->destructor = NULL; 1750 skb->_skb_refdst = 0UL; 1751 } 1752 1753 #define tcp_skb_tsorted_save(skb) { \ 1754 unsigned long _save = skb->_skb_refdst; \ 1755 skb->_skb_refdst = 0UL; 1756 1757 #define tcp_skb_tsorted_restore(skb) \ 1758 skb->_skb_refdst = _save; \ 1759 } 1760 1761 void tcp_write_queue_purge(struct sock *sk); 1762 1763 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1764 { 1765 return skb_rb_first(&sk->tcp_rtx_queue); 1766 } 1767 1768 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1769 { 1770 return skb_rb_last(&sk->tcp_rtx_queue); 1771 } 1772 1773 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1774 { 1775 return skb_peek(&sk->sk_write_queue); 1776 } 1777 1778 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1779 { 1780 return skb_peek_tail(&sk->sk_write_queue); 1781 } 1782 1783 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1784 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1785 1786 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1787 { 1788 return skb_peek(&sk->sk_write_queue); 1789 } 1790 1791 static inline bool tcp_skb_is_last(const struct sock *sk, 1792 const struct sk_buff *skb) 1793 { 1794 return skb_queue_is_last(&sk->sk_write_queue, skb); 1795 } 1796 1797 /** 1798 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1799 * @sk: socket 1800 * 1801 * Since the write queue can have a temporary empty skb in it, 1802 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1803 */ 1804 static inline bool tcp_write_queue_empty(const struct sock *sk) 1805 { 1806 const struct tcp_sock *tp = tcp_sk(sk); 1807 1808 return tp->write_seq == tp->snd_nxt; 1809 } 1810 1811 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1812 { 1813 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1814 } 1815 1816 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1817 { 1818 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1819 } 1820 1821 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1822 { 1823 __skb_queue_tail(&sk->sk_write_queue, skb); 1824 1825 /* Queue it, remembering where we must start sending. */ 1826 if (sk->sk_write_queue.next == skb) 1827 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1828 } 1829 1830 /* Insert new before skb on the write queue of sk. */ 1831 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1832 struct sk_buff *skb, 1833 struct sock *sk) 1834 { 1835 __skb_queue_before(&sk->sk_write_queue, skb, new); 1836 } 1837 1838 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1839 { 1840 tcp_skb_tsorted_anchor_cleanup(skb); 1841 __skb_unlink(skb, &sk->sk_write_queue); 1842 } 1843 1844 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1845 1846 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1847 { 1848 tcp_skb_tsorted_anchor_cleanup(skb); 1849 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1850 } 1851 1852 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1853 { 1854 list_del(&skb->tcp_tsorted_anchor); 1855 tcp_rtx_queue_unlink(skb, sk); 1856 sk_wmem_free_skb(sk, skb); 1857 } 1858 1859 static inline void tcp_push_pending_frames(struct sock *sk) 1860 { 1861 if (tcp_send_head(sk)) { 1862 struct tcp_sock *tp = tcp_sk(sk); 1863 1864 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1865 } 1866 } 1867 1868 /* Start sequence of the skb just after the highest skb with SACKed 1869 * bit, valid only if sacked_out > 0 or when the caller has ensured 1870 * validity by itself. 1871 */ 1872 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1873 { 1874 if (!tp->sacked_out) 1875 return tp->snd_una; 1876 1877 if (tp->highest_sack == NULL) 1878 return tp->snd_nxt; 1879 1880 return TCP_SKB_CB(tp->highest_sack)->seq; 1881 } 1882 1883 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1884 { 1885 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1886 } 1887 1888 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1889 { 1890 return tcp_sk(sk)->highest_sack; 1891 } 1892 1893 static inline void tcp_highest_sack_reset(struct sock *sk) 1894 { 1895 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1896 } 1897 1898 /* Called when old skb is about to be deleted and replaced by new skb */ 1899 static inline void tcp_highest_sack_replace(struct sock *sk, 1900 struct sk_buff *old, 1901 struct sk_buff *new) 1902 { 1903 if (old == tcp_highest_sack(sk)) 1904 tcp_sk(sk)->highest_sack = new; 1905 } 1906 1907 /* This helper checks if socket has IP_TRANSPARENT set */ 1908 static inline bool inet_sk_transparent(const struct sock *sk) 1909 { 1910 switch (sk->sk_state) { 1911 case TCP_TIME_WAIT: 1912 return inet_twsk(sk)->tw_transparent; 1913 case TCP_NEW_SYN_RECV: 1914 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1915 } 1916 return inet_sk(sk)->transparent; 1917 } 1918 1919 /* Determines whether this is a thin stream (which may suffer from 1920 * increased latency). Used to trigger latency-reducing mechanisms. 1921 */ 1922 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1923 { 1924 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1925 } 1926 1927 /* /proc */ 1928 enum tcp_seq_states { 1929 TCP_SEQ_STATE_LISTENING, 1930 TCP_SEQ_STATE_ESTABLISHED, 1931 }; 1932 1933 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1934 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1935 void tcp_seq_stop(struct seq_file *seq, void *v); 1936 1937 struct tcp_seq_afinfo { 1938 sa_family_t family; 1939 }; 1940 1941 struct tcp_iter_state { 1942 struct seq_net_private p; 1943 enum tcp_seq_states state; 1944 struct sock *syn_wait_sk; 1945 struct tcp_seq_afinfo *bpf_seq_afinfo; 1946 int bucket, offset, sbucket, num; 1947 loff_t last_pos; 1948 }; 1949 1950 extern struct request_sock_ops tcp_request_sock_ops; 1951 extern struct request_sock_ops tcp6_request_sock_ops; 1952 1953 void tcp_v4_destroy_sock(struct sock *sk); 1954 1955 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 1956 netdev_features_t features); 1957 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 1958 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 1959 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 1960 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 1961 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 1962 int tcp_gro_complete(struct sk_buff *skb); 1963 1964 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 1965 1966 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 1967 { 1968 struct net *net = sock_net((struct sock *)tp); 1969 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 1970 } 1971 1972 bool tcp_stream_memory_free(const struct sock *sk, int wake); 1973 1974 #ifdef CONFIG_PROC_FS 1975 int tcp4_proc_init(void); 1976 void tcp4_proc_exit(void); 1977 #endif 1978 1979 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 1980 int tcp_conn_request(struct request_sock_ops *rsk_ops, 1981 const struct tcp_request_sock_ops *af_ops, 1982 struct sock *sk, struct sk_buff *skb); 1983 1984 /* TCP af-specific functions */ 1985 struct tcp_sock_af_ops { 1986 #ifdef CONFIG_TCP_MD5SIG 1987 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 1988 const struct sock *addr_sk); 1989 int (*calc_md5_hash)(char *location, 1990 const struct tcp_md5sig_key *md5, 1991 const struct sock *sk, 1992 const struct sk_buff *skb); 1993 int (*md5_parse)(struct sock *sk, 1994 int optname, 1995 sockptr_t optval, 1996 int optlen); 1997 #endif 1998 }; 1999 2000 struct tcp_request_sock_ops { 2001 u16 mss_clamp; 2002 #ifdef CONFIG_TCP_MD5SIG 2003 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2004 const struct sock *addr_sk); 2005 int (*calc_md5_hash) (char *location, 2006 const struct tcp_md5sig_key *md5, 2007 const struct sock *sk, 2008 const struct sk_buff *skb); 2009 #endif 2010 void (*init_req)(struct request_sock *req, 2011 const struct sock *sk_listener, 2012 struct sk_buff *skb); 2013 #ifdef CONFIG_SYN_COOKIES 2014 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2015 __u16 *mss); 2016 #endif 2017 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl, 2018 const struct request_sock *req); 2019 u32 (*init_seq)(const struct sk_buff *skb); 2020 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2021 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2022 struct flowi *fl, struct request_sock *req, 2023 struct tcp_fastopen_cookie *foc, 2024 enum tcp_synack_type synack_type, 2025 struct sk_buff *syn_skb); 2026 }; 2027 2028 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2029 #if IS_ENABLED(CONFIG_IPV6) 2030 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2031 #endif 2032 2033 #ifdef CONFIG_SYN_COOKIES 2034 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2035 const struct sock *sk, struct sk_buff *skb, 2036 __u16 *mss) 2037 { 2038 tcp_synq_overflow(sk); 2039 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2040 return ops->cookie_init_seq(skb, mss); 2041 } 2042 #else 2043 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2044 const struct sock *sk, struct sk_buff *skb, 2045 __u16 *mss) 2046 { 2047 return 0; 2048 } 2049 #endif 2050 2051 int tcpv4_offload_init(void); 2052 2053 void tcp_v4_init(void); 2054 void tcp_init(void); 2055 2056 /* tcp_recovery.c */ 2057 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2058 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2059 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2060 u32 reo_wnd); 2061 extern void tcp_rack_mark_lost(struct sock *sk); 2062 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2063 u64 xmit_time); 2064 extern void tcp_rack_reo_timeout(struct sock *sk); 2065 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2066 2067 /* At how many usecs into the future should the RTO fire? */ 2068 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2069 { 2070 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2071 u32 rto = inet_csk(sk)->icsk_rto; 2072 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2073 2074 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2075 } 2076 2077 /* 2078 * Save and compile IPv4 options, return a pointer to it 2079 */ 2080 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2081 struct sk_buff *skb) 2082 { 2083 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2084 struct ip_options_rcu *dopt = NULL; 2085 2086 if (opt->optlen) { 2087 int opt_size = sizeof(*dopt) + opt->optlen; 2088 2089 dopt = kmalloc(opt_size, GFP_ATOMIC); 2090 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2091 kfree(dopt); 2092 dopt = NULL; 2093 } 2094 } 2095 return dopt; 2096 } 2097 2098 /* locally generated TCP pure ACKs have skb->truesize == 2 2099 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2100 * This is much faster than dissecting the packet to find out. 2101 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2102 */ 2103 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2104 { 2105 return skb->truesize == 2; 2106 } 2107 2108 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2109 { 2110 skb->truesize = 2; 2111 } 2112 2113 static inline int tcp_inq(struct sock *sk) 2114 { 2115 struct tcp_sock *tp = tcp_sk(sk); 2116 int answ; 2117 2118 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2119 answ = 0; 2120 } else if (sock_flag(sk, SOCK_URGINLINE) || 2121 !tp->urg_data || 2122 before(tp->urg_seq, tp->copied_seq) || 2123 !before(tp->urg_seq, tp->rcv_nxt)) { 2124 2125 answ = tp->rcv_nxt - tp->copied_seq; 2126 2127 /* Subtract 1, if FIN was received */ 2128 if (answ && sock_flag(sk, SOCK_DONE)) 2129 answ--; 2130 } else { 2131 answ = tp->urg_seq - tp->copied_seq; 2132 } 2133 2134 return answ; 2135 } 2136 2137 int tcp_peek_len(struct socket *sock); 2138 2139 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2140 { 2141 u16 segs_in; 2142 2143 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2144 tp->segs_in += segs_in; 2145 if (skb->len > tcp_hdrlen(skb)) 2146 tp->data_segs_in += segs_in; 2147 } 2148 2149 /* 2150 * TCP listen path runs lockless. 2151 * We forced "struct sock" to be const qualified to make sure 2152 * we don't modify one of its field by mistake. 2153 * Here, we increment sk_drops which is an atomic_t, so we can safely 2154 * make sock writable again. 2155 */ 2156 static inline void tcp_listendrop(const struct sock *sk) 2157 { 2158 atomic_inc(&((struct sock *)sk)->sk_drops); 2159 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2160 } 2161 2162 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2163 2164 /* 2165 * Interface for adding Upper Level Protocols over TCP 2166 */ 2167 2168 #define TCP_ULP_NAME_MAX 16 2169 #define TCP_ULP_MAX 128 2170 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2171 2172 struct tcp_ulp_ops { 2173 struct list_head list; 2174 2175 /* initialize ulp */ 2176 int (*init)(struct sock *sk); 2177 /* update ulp */ 2178 void (*update)(struct sock *sk, struct proto *p, 2179 void (*write_space)(struct sock *sk)); 2180 /* cleanup ulp */ 2181 void (*release)(struct sock *sk); 2182 /* diagnostic */ 2183 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2184 size_t (*get_info_size)(const struct sock *sk); 2185 /* clone ulp */ 2186 void (*clone)(const struct request_sock *req, struct sock *newsk, 2187 const gfp_t priority); 2188 2189 char name[TCP_ULP_NAME_MAX]; 2190 struct module *owner; 2191 }; 2192 int tcp_register_ulp(struct tcp_ulp_ops *type); 2193 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2194 int tcp_set_ulp(struct sock *sk, const char *name); 2195 void tcp_get_available_ulp(char *buf, size_t len); 2196 void tcp_cleanup_ulp(struct sock *sk); 2197 void tcp_update_ulp(struct sock *sk, struct proto *p, 2198 void (*write_space)(struct sock *sk)); 2199 2200 #define MODULE_ALIAS_TCP_ULP(name) \ 2201 __MODULE_INFO(alias, alias_userspace, name); \ 2202 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2203 2204 struct sk_msg; 2205 struct sk_psock; 2206 2207 #ifdef CONFIG_BPF_STREAM_PARSER 2208 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2209 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2210 #else 2211 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2212 { 2213 } 2214 #endif /* CONFIG_BPF_STREAM_PARSER */ 2215 2216 #ifdef CONFIG_NET_SOCK_MSG 2217 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2218 int flags); 2219 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, 2220 struct msghdr *msg, int len, int flags); 2221 #endif /* CONFIG_NET_SOCK_MSG */ 2222 2223 #ifdef CONFIG_CGROUP_BPF 2224 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2225 struct sk_buff *skb, 2226 unsigned int end_offset) 2227 { 2228 skops->skb = skb; 2229 skops->skb_data_end = skb->data + end_offset; 2230 } 2231 #else 2232 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2233 struct sk_buff *skb, 2234 unsigned int end_offset) 2235 { 2236 } 2237 #endif 2238 2239 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2240 * is < 0, then the BPF op failed (for example if the loaded BPF 2241 * program does not support the chosen operation or there is no BPF 2242 * program loaded). 2243 */ 2244 #ifdef CONFIG_BPF 2245 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2246 { 2247 struct bpf_sock_ops_kern sock_ops; 2248 int ret; 2249 2250 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2251 if (sk_fullsock(sk)) { 2252 sock_ops.is_fullsock = 1; 2253 sock_owned_by_me(sk); 2254 } 2255 2256 sock_ops.sk = sk; 2257 sock_ops.op = op; 2258 if (nargs > 0) 2259 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2260 2261 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2262 if (ret == 0) 2263 ret = sock_ops.reply; 2264 else 2265 ret = -1; 2266 return ret; 2267 } 2268 2269 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2270 { 2271 u32 args[2] = {arg1, arg2}; 2272 2273 return tcp_call_bpf(sk, op, 2, args); 2274 } 2275 2276 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2277 u32 arg3) 2278 { 2279 u32 args[3] = {arg1, arg2, arg3}; 2280 2281 return tcp_call_bpf(sk, op, 3, args); 2282 } 2283 2284 #else 2285 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2286 { 2287 return -EPERM; 2288 } 2289 2290 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2291 { 2292 return -EPERM; 2293 } 2294 2295 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2296 u32 arg3) 2297 { 2298 return -EPERM; 2299 } 2300 2301 #endif 2302 2303 static inline u32 tcp_timeout_init(struct sock *sk) 2304 { 2305 int timeout; 2306 2307 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2308 2309 if (timeout <= 0) 2310 timeout = TCP_TIMEOUT_INIT; 2311 return timeout; 2312 } 2313 2314 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2315 { 2316 int rwnd; 2317 2318 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2319 2320 if (rwnd < 0) 2321 rwnd = 0; 2322 return rwnd; 2323 } 2324 2325 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2326 { 2327 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2328 } 2329 2330 static inline void tcp_bpf_rtt(struct sock *sk) 2331 { 2332 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2333 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2334 } 2335 2336 #if IS_ENABLED(CONFIG_SMC) 2337 extern struct static_key_false tcp_have_smc; 2338 #endif 2339 2340 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2341 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2342 void (*cad)(struct sock *sk, u32 ack_seq)); 2343 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2344 void clean_acked_data_flush(void); 2345 #endif 2346 2347 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2348 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2349 const struct tcp_sock *tp) 2350 { 2351 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2352 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2353 } 2354 2355 /* Compute Earliest Departure Time for some control packets 2356 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2357 */ 2358 static inline u64 tcp_transmit_time(const struct sock *sk) 2359 { 2360 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2361 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2362 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2363 2364 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2365 } 2366 return 0; 2367 } 2368 2369 #endif /* _TCP_H */ 2370