1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 extern struct percpu_counter tcp_orphan_count; 52 void tcp_time_wait(struct sock *sk, int state, int timeo); 53 54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 55 #define MAX_TCP_OPTION_SPACE 40 56 #define TCP_MIN_SND_MSS 48 57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 58 59 /* 60 * Never offer a window over 32767 without using window scaling. Some 61 * poor stacks do signed 16bit maths! 62 */ 63 #define MAX_TCP_WINDOW 32767U 64 65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 66 #define TCP_MIN_MSS 88U 67 68 /* The initial MTU to use for probing */ 69 #define TCP_BASE_MSS 1024 70 71 /* probing interval, default to 10 minutes as per RFC4821 */ 72 #define TCP_PROBE_INTERVAL 600 73 74 /* Specify interval when tcp mtu probing will stop */ 75 #define TCP_PROBE_THRESHOLD 8 76 77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 78 #define TCP_FASTRETRANS_THRESH 3 79 80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 81 #define TCP_MAX_QUICKACKS 16U 82 83 /* Maximal number of window scale according to RFC1323 */ 84 #define TCP_MAX_WSCALE 14U 85 86 /* urg_data states */ 87 #define TCP_URG_VALID 0x0100 88 #define TCP_URG_NOTYET 0x0200 89 #define TCP_URG_READ 0x0400 90 91 #define TCP_RETR1 3 /* 92 * This is how many retries it does before it 93 * tries to figure out if the gateway is 94 * down. Minimal RFC value is 3; it corresponds 95 * to ~3sec-8min depending on RTO. 96 */ 97 98 #define TCP_RETR2 15 /* 99 * This should take at least 100 * 90 minutes to time out. 101 * RFC1122 says that the limit is 100 sec. 102 * 15 is ~13-30min depending on RTO. 103 */ 104 105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 106 * when active opening a connection. 107 * RFC1122 says the minimum retry MUST 108 * be at least 180secs. Nevertheless 109 * this value is corresponding to 110 * 63secs of retransmission with the 111 * current initial RTO. 112 */ 113 114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 115 * when passive opening a connection. 116 * This is corresponding to 31secs of 117 * retransmission with the current 118 * initial RTO. 119 */ 120 121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 122 * state, about 60 seconds */ 123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 124 /* BSD style FIN_WAIT2 deadlock breaker. 125 * It used to be 3min, new value is 60sec, 126 * to combine FIN-WAIT-2 timeout with 127 * TIME-WAIT timer. 128 */ 129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 130 131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 132 #if HZ >= 100 133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 134 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 135 #else 136 #define TCP_DELACK_MIN 4U 137 #define TCP_ATO_MIN 4U 138 #endif 139 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 140 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 144 * used as a fallback RTO for the 145 * initial data transmission if no 146 * valid RTT sample has been acquired, 147 * most likely due to retrans in 3WHS. 148 */ 149 150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 151 * for local resources. 152 */ 153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 155 #define TCP_KEEPALIVE_INTVL (75*HZ) 156 157 #define MAX_TCP_KEEPIDLE 32767 158 #define MAX_TCP_KEEPINTVL 32767 159 #define MAX_TCP_KEEPCNT 127 160 #define MAX_TCP_SYNCNT 127 161 162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 extern struct percpu_counter tcp_sockets_allocated; 255 extern unsigned long tcp_memory_pressure; 256 257 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 258 static inline bool tcp_under_memory_pressure(const struct sock *sk) 259 { 260 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 261 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 262 return true; 263 264 return READ_ONCE(tcp_memory_pressure); 265 } 266 /* 267 * The next routines deal with comparing 32 bit unsigned ints 268 * and worry about wraparound (automatic with unsigned arithmetic). 269 */ 270 271 static inline bool before(__u32 seq1, __u32 seq2) 272 { 273 return (__s32)(seq1-seq2) < 0; 274 } 275 #define after(seq2, seq1) before(seq1, seq2) 276 277 /* is s2<=s1<=s3 ? */ 278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 279 { 280 return seq3 - seq2 >= seq1 - seq2; 281 } 282 283 static inline bool tcp_out_of_memory(struct sock *sk) 284 { 285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 287 return true; 288 return false; 289 } 290 291 void sk_forced_mem_schedule(struct sock *sk, int size); 292 293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift) 294 { 295 struct percpu_counter *ocp = sk->sk_prot->orphan_count; 296 int orphans = percpu_counter_read_positive(ocp); 297 298 if (orphans << shift > sysctl_tcp_max_orphans) { 299 orphans = percpu_counter_sum_positive(ocp); 300 if (orphans << shift > sysctl_tcp_max_orphans) 301 return true; 302 } 303 return false; 304 } 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb); 326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 329 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 330 int flags); 331 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 332 size_t size, int flags); 333 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags, 334 struct page *page, int offset, size_t *size); 335 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 336 size_t size, int flags); 337 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 345 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 351 struct pipe_inode_info *pipe, size_t len, 352 unsigned int flags); 353 354 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 355 static inline void tcp_dec_quickack_mode(struct sock *sk, 356 const unsigned int pkts) 357 { 358 struct inet_connection_sock *icsk = inet_csk(sk); 359 360 if (icsk->icsk_ack.quick) { 361 if (pkts >= icsk->icsk_ack.quick) { 362 icsk->icsk_ack.quick = 0; 363 /* Leaving quickack mode we deflate ATO. */ 364 icsk->icsk_ack.ato = TCP_ATO_MIN; 365 } else 366 icsk->icsk_ack.quick -= pkts; 367 } 368 } 369 370 #define TCP_ECN_OK 1 371 #define TCP_ECN_QUEUE_CWR 2 372 #define TCP_ECN_DEMAND_CWR 4 373 #define TCP_ECN_SEEN 8 374 375 enum tcp_tw_status { 376 TCP_TW_SUCCESS = 0, 377 TCP_TW_RST = 1, 378 TCP_TW_ACK = 2, 379 TCP_TW_SYN = 3 380 }; 381 382 383 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 384 struct sk_buff *skb, 385 const struct tcphdr *th); 386 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 387 struct request_sock *req, bool fastopen, 388 bool *lost_race); 389 int tcp_child_process(struct sock *parent, struct sock *child, 390 struct sk_buff *skb); 391 void tcp_enter_loss(struct sock *sk); 392 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 393 void tcp_clear_retrans(struct tcp_sock *tp); 394 void tcp_update_metrics(struct sock *sk); 395 void tcp_init_metrics(struct sock *sk); 396 void tcp_metrics_init(void); 397 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 398 void __tcp_close(struct sock *sk, long timeout); 399 void tcp_close(struct sock *sk, long timeout); 400 void tcp_init_sock(struct sock *sk); 401 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 402 __poll_t tcp_poll(struct file *file, struct socket *sock, 403 struct poll_table_struct *wait); 404 int tcp_getsockopt(struct sock *sk, int level, int optname, 405 char __user *optval, int __user *optlen); 406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 407 unsigned int optlen); 408 void tcp_set_keepalive(struct sock *sk, int val); 409 void tcp_syn_ack_timeout(const struct request_sock *req); 410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 411 int flags, int *addr_len); 412 int tcp_set_rcvlowat(struct sock *sk, int val); 413 int tcp_set_window_clamp(struct sock *sk, int val); 414 void tcp_data_ready(struct sock *sk); 415 #ifdef CONFIG_MMU 416 int tcp_mmap(struct file *file, struct socket *sock, 417 struct vm_area_struct *vma); 418 #endif 419 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 420 struct tcp_options_received *opt_rx, 421 int estab, struct tcp_fastopen_cookie *foc); 422 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 423 424 /* 425 * BPF SKB-less helpers 426 */ 427 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 428 struct tcphdr *th, u32 *cookie); 429 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 430 struct tcphdr *th, u32 *cookie); 431 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 432 const struct tcp_request_sock_ops *af_ops, 433 struct sock *sk, struct tcphdr *th); 434 /* 435 * TCP v4 functions exported for the inet6 API 436 */ 437 438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 439 void tcp_v4_mtu_reduced(struct sock *sk); 440 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 441 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 442 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 443 struct sock *tcp_create_openreq_child(const struct sock *sk, 444 struct request_sock *req, 445 struct sk_buff *skb); 446 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 447 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 448 struct request_sock *req, 449 struct dst_entry *dst, 450 struct request_sock *req_unhash, 451 bool *own_req); 452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 453 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 454 int tcp_connect(struct sock *sk); 455 enum tcp_synack_type { 456 TCP_SYNACK_NORMAL, 457 TCP_SYNACK_FASTOPEN, 458 TCP_SYNACK_COOKIE, 459 }; 460 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 461 struct request_sock *req, 462 struct tcp_fastopen_cookie *foc, 463 enum tcp_synack_type synack_type, 464 struct sk_buff *syn_skb); 465 int tcp_disconnect(struct sock *sk, int flags); 466 467 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 468 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 469 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 470 471 /* From syncookies.c */ 472 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 473 struct request_sock *req, 474 struct dst_entry *dst, u32 tsoff); 475 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 476 u32 cookie); 477 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 478 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 479 struct sock *sk, struct sk_buff *skb); 480 #ifdef CONFIG_SYN_COOKIES 481 482 /* Syncookies use a monotonic timer which increments every 60 seconds. 483 * This counter is used both as a hash input and partially encoded into 484 * the cookie value. A cookie is only validated further if the delta 485 * between the current counter value and the encoded one is less than this, 486 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 487 * the counter advances immediately after a cookie is generated). 488 */ 489 #define MAX_SYNCOOKIE_AGE 2 490 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 491 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 492 493 /* syncookies: remember time of last synqueue overflow 494 * But do not dirty this field too often (once per second is enough) 495 * It is racy as we do not hold a lock, but race is very minor. 496 */ 497 static inline void tcp_synq_overflow(const struct sock *sk) 498 { 499 unsigned int last_overflow; 500 unsigned int now = jiffies; 501 502 if (sk->sk_reuseport) { 503 struct sock_reuseport *reuse; 504 505 reuse = rcu_dereference(sk->sk_reuseport_cb); 506 if (likely(reuse)) { 507 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 508 if (!time_between32(now, last_overflow, 509 last_overflow + HZ)) 510 WRITE_ONCE(reuse->synq_overflow_ts, now); 511 return; 512 } 513 } 514 515 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 516 if (!time_between32(now, last_overflow, last_overflow + HZ)) 517 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 518 } 519 520 /* syncookies: no recent synqueue overflow on this listening socket? */ 521 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 522 { 523 unsigned int last_overflow; 524 unsigned int now = jiffies; 525 526 if (sk->sk_reuseport) { 527 struct sock_reuseport *reuse; 528 529 reuse = rcu_dereference(sk->sk_reuseport_cb); 530 if (likely(reuse)) { 531 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 532 return !time_between32(now, last_overflow - HZ, 533 last_overflow + 534 TCP_SYNCOOKIE_VALID); 535 } 536 } 537 538 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 539 540 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 541 * then we're under synflood. However, we have to use 542 * 'last_overflow - HZ' as lower bound. That's because a concurrent 543 * tcp_synq_overflow() could update .ts_recent_stamp after we read 544 * jiffies but before we store .ts_recent_stamp into last_overflow, 545 * which could lead to rejecting a valid syncookie. 546 */ 547 return !time_between32(now, last_overflow - HZ, 548 last_overflow + TCP_SYNCOOKIE_VALID); 549 } 550 551 static inline u32 tcp_cookie_time(void) 552 { 553 u64 val = get_jiffies_64(); 554 555 do_div(val, TCP_SYNCOOKIE_PERIOD); 556 return val; 557 } 558 559 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 560 u16 *mssp); 561 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 562 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 563 bool cookie_timestamp_decode(const struct net *net, 564 struct tcp_options_received *opt); 565 bool cookie_ecn_ok(const struct tcp_options_received *opt, 566 const struct net *net, const struct dst_entry *dst); 567 568 /* From net/ipv6/syncookies.c */ 569 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 570 u32 cookie); 571 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 572 573 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 574 const struct tcphdr *th, u16 *mssp); 575 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 576 #endif 577 /* tcp_output.c */ 578 579 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 580 int nonagle); 581 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 582 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 583 void tcp_retransmit_timer(struct sock *sk); 584 void tcp_xmit_retransmit_queue(struct sock *); 585 void tcp_simple_retransmit(struct sock *); 586 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 587 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 588 enum tcp_queue { 589 TCP_FRAG_IN_WRITE_QUEUE, 590 TCP_FRAG_IN_RTX_QUEUE, 591 }; 592 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 593 struct sk_buff *skb, u32 len, 594 unsigned int mss_now, gfp_t gfp); 595 596 void tcp_send_probe0(struct sock *); 597 void tcp_send_partial(struct sock *); 598 int tcp_write_wakeup(struct sock *, int mib); 599 void tcp_send_fin(struct sock *sk); 600 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 601 int tcp_send_synack(struct sock *); 602 void tcp_push_one(struct sock *, unsigned int mss_now); 603 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 604 void tcp_send_ack(struct sock *sk); 605 void tcp_send_delayed_ack(struct sock *sk); 606 void tcp_send_loss_probe(struct sock *sk); 607 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 608 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 609 const struct sk_buff *next_skb); 610 611 /* tcp_input.c */ 612 void tcp_rearm_rto(struct sock *sk); 613 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 614 void tcp_reset(struct sock *sk, struct sk_buff *skb); 615 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 616 void tcp_fin(struct sock *sk); 617 618 /* tcp_timer.c */ 619 void tcp_init_xmit_timers(struct sock *); 620 static inline void tcp_clear_xmit_timers(struct sock *sk) 621 { 622 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 623 __sock_put(sk); 624 625 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 626 __sock_put(sk); 627 628 inet_csk_clear_xmit_timers(sk); 629 } 630 631 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 632 unsigned int tcp_current_mss(struct sock *sk); 633 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 634 635 /* Bound MSS / TSO packet size with the half of the window */ 636 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 637 { 638 int cutoff; 639 640 /* When peer uses tiny windows, there is no use in packetizing 641 * to sub-MSS pieces for the sake of SWS or making sure there 642 * are enough packets in the pipe for fast recovery. 643 * 644 * On the other hand, for extremely large MSS devices, handling 645 * smaller than MSS windows in this way does make sense. 646 */ 647 if (tp->max_window > TCP_MSS_DEFAULT) 648 cutoff = (tp->max_window >> 1); 649 else 650 cutoff = tp->max_window; 651 652 if (cutoff && pktsize > cutoff) 653 return max_t(int, cutoff, 68U - tp->tcp_header_len); 654 else 655 return pktsize; 656 } 657 658 /* tcp.c */ 659 void tcp_get_info(struct sock *, struct tcp_info *); 660 661 /* Read 'sendfile()'-style from a TCP socket */ 662 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 663 sk_read_actor_t recv_actor); 664 665 void tcp_initialize_rcv_mss(struct sock *sk); 666 667 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 668 int tcp_mss_to_mtu(struct sock *sk, int mss); 669 void tcp_mtup_init(struct sock *sk); 670 671 static inline void tcp_bound_rto(const struct sock *sk) 672 { 673 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 674 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 675 } 676 677 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 678 { 679 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 680 } 681 682 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 683 { 684 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 685 ntohl(TCP_FLAG_ACK) | 686 snd_wnd); 687 } 688 689 static inline void tcp_fast_path_on(struct tcp_sock *tp) 690 { 691 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 692 } 693 694 static inline void tcp_fast_path_check(struct sock *sk) 695 { 696 struct tcp_sock *tp = tcp_sk(sk); 697 698 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 699 tp->rcv_wnd && 700 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 701 !tp->urg_data) 702 tcp_fast_path_on(tp); 703 } 704 705 /* Compute the actual rto_min value */ 706 static inline u32 tcp_rto_min(struct sock *sk) 707 { 708 const struct dst_entry *dst = __sk_dst_get(sk); 709 u32 rto_min = inet_csk(sk)->icsk_rto_min; 710 711 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 712 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 713 return rto_min; 714 } 715 716 static inline u32 tcp_rto_min_us(struct sock *sk) 717 { 718 return jiffies_to_usecs(tcp_rto_min(sk)); 719 } 720 721 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 722 { 723 return dst_metric_locked(dst, RTAX_CC_ALGO); 724 } 725 726 /* Minimum RTT in usec. ~0 means not available. */ 727 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 728 { 729 return minmax_get(&tp->rtt_min); 730 } 731 732 /* Compute the actual receive window we are currently advertising. 733 * Rcv_nxt can be after the window if our peer push more data 734 * than the offered window. 735 */ 736 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 737 { 738 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 739 740 if (win < 0) 741 win = 0; 742 return (u32) win; 743 } 744 745 /* Choose a new window, without checks for shrinking, and without 746 * scaling applied to the result. The caller does these things 747 * if necessary. This is a "raw" window selection. 748 */ 749 u32 __tcp_select_window(struct sock *sk); 750 751 void tcp_send_window_probe(struct sock *sk); 752 753 /* TCP uses 32bit jiffies to save some space. 754 * Note that this is different from tcp_time_stamp, which 755 * historically has been the same until linux-4.13. 756 */ 757 #define tcp_jiffies32 ((u32)jiffies) 758 759 /* 760 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 761 * It is no longer tied to jiffies, but to 1 ms clock. 762 * Note: double check if you want to use tcp_jiffies32 instead of this. 763 */ 764 #define TCP_TS_HZ 1000 765 766 static inline u64 tcp_clock_ns(void) 767 { 768 return ktime_get_ns(); 769 } 770 771 static inline u64 tcp_clock_us(void) 772 { 773 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 774 } 775 776 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 777 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 778 { 779 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 780 } 781 782 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 783 static inline u32 tcp_ns_to_ts(u64 ns) 784 { 785 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 786 } 787 788 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 789 static inline u32 tcp_time_stamp_raw(void) 790 { 791 return tcp_ns_to_ts(tcp_clock_ns()); 792 } 793 794 void tcp_mstamp_refresh(struct tcp_sock *tp); 795 796 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 797 { 798 return max_t(s64, t1 - t0, 0); 799 } 800 801 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 802 { 803 return tcp_ns_to_ts(skb->skb_mstamp_ns); 804 } 805 806 /* provide the departure time in us unit */ 807 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 808 { 809 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 810 } 811 812 813 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 814 815 #define TCPHDR_FIN 0x01 816 #define TCPHDR_SYN 0x02 817 #define TCPHDR_RST 0x04 818 #define TCPHDR_PSH 0x08 819 #define TCPHDR_ACK 0x10 820 #define TCPHDR_URG 0x20 821 #define TCPHDR_ECE 0x40 822 #define TCPHDR_CWR 0x80 823 824 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 825 826 /* This is what the send packet queuing engine uses to pass 827 * TCP per-packet control information to the transmission code. 828 * We also store the host-order sequence numbers in here too. 829 * This is 44 bytes if IPV6 is enabled. 830 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 831 */ 832 struct tcp_skb_cb { 833 __u32 seq; /* Starting sequence number */ 834 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 835 union { 836 /* Note : tcp_tw_isn is used in input path only 837 * (isn chosen by tcp_timewait_state_process()) 838 * 839 * tcp_gso_segs/size are used in write queue only, 840 * cf tcp_skb_pcount()/tcp_skb_mss() 841 */ 842 __u32 tcp_tw_isn; 843 struct { 844 u16 tcp_gso_segs; 845 u16 tcp_gso_size; 846 }; 847 }; 848 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 849 850 __u8 sacked; /* State flags for SACK. */ 851 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 852 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 853 #define TCPCB_LOST 0x04 /* SKB is lost */ 854 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 855 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 856 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 857 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 858 TCPCB_REPAIRED) 859 860 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 861 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 862 eor:1, /* Is skb MSG_EOR marked? */ 863 has_rxtstamp:1, /* SKB has a RX timestamp */ 864 unused:5; 865 __u32 ack_seq; /* Sequence number ACK'd */ 866 union { 867 struct { 868 /* There is space for up to 24 bytes */ 869 __u32 in_flight:30,/* Bytes in flight at transmit */ 870 is_app_limited:1, /* cwnd not fully used? */ 871 unused:1; 872 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 873 __u32 delivered; 874 /* start of send pipeline phase */ 875 u64 first_tx_mstamp; 876 /* when we reached the "delivered" count */ 877 u64 delivered_mstamp; 878 } tx; /* only used for outgoing skbs */ 879 union { 880 struct inet_skb_parm h4; 881 #if IS_ENABLED(CONFIG_IPV6) 882 struct inet6_skb_parm h6; 883 #endif 884 } header; /* For incoming skbs */ 885 struct { 886 __u32 flags; 887 struct sock *sk_redir; 888 void *data_end; 889 } bpf; 890 }; 891 }; 892 893 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 894 895 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) 896 { 897 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); 898 } 899 900 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) 901 { 902 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; 903 } 904 905 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) 906 { 907 return TCP_SKB_CB(skb)->bpf.sk_redir; 908 } 909 910 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) 911 { 912 TCP_SKB_CB(skb)->bpf.sk_redir = NULL; 913 } 914 915 extern const struct inet_connection_sock_af_ops ipv4_specific; 916 917 #if IS_ENABLED(CONFIG_IPV6) 918 /* This is the variant of inet6_iif() that must be used by TCP, 919 * as TCP moves IP6CB into a different location in skb->cb[] 920 */ 921 static inline int tcp_v6_iif(const struct sk_buff *skb) 922 { 923 return TCP_SKB_CB(skb)->header.h6.iif; 924 } 925 926 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 927 { 928 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 929 930 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 931 } 932 933 /* TCP_SKB_CB reference means this can not be used from early demux */ 934 static inline int tcp_v6_sdif(const struct sk_buff *skb) 935 { 936 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 937 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 938 return TCP_SKB_CB(skb)->header.h6.iif; 939 #endif 940 return 0; 941 } 942 943 extern const struct inet_connection_sock_af_ops ipv6_specific; 944 945 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 946 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 947 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb)); 948 949 #endif 950 951 /* TCP_SKB_CB reference means this can not be used from early demux */ 952 static inline int tcp_v4_sdif(struct sk_buff *skb) 953 { 954 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 955 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 956 return TCP_SKB_CB(skb)->header.h4.iif; 957 #endif 958 return 0; 959 } 960 961 /* Due to TSO, an SKB can be composed of multiple actual 962 * packets. To keep these tracked properly, we use this. 963 */ 964 static inline int tcp_skb_pcount(const struct sk_buff *skb) 965 { 966 return TCP_SKB_CB(skb)->tcp_gso_segs; 967 } 968 969 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 970 { 971 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 972 } 973 974 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 975 { 976 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 977 } 978 979 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 980 static inline int tcp_skb_mss(const struct sk_buff *skb) 981 { 982 return TCP_SKB_CB(skb)->tcp_gso_size; 983 } 984 985 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 986 { 987 return likely(!TCP_SKB_CB(skb)->eor); 988 } 989 990 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 991 const struct sk_buff *from) 992 { 993 return likely(tcp_skb_can_collapse_to(to) && 994 mptcp_skb_can_collapse(to, from)); 995 } 996 997 /* Events passed to congestion control interface */ 998 enum tcp_ca_event { 999 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1000 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1001 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1002 CA_EVENT_LOSS, /* loss timeout */ 1003 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1004 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1005 }; 1006 1007 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1008 enum tcp_ca_ack_event_flags { 1009 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1010 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1011 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1012 }; 1013 1014 /* 1015 * Interface for adding new TCP congestion control handlers 1016 */ 1017 #define TCP_CA_NAME_MAX 16 1018 #define TCP_CA_MAX 128 1019 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1020 1021 #define TCP_CA_UNSPEC 0 1022 1023 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1024 #define TCP_CONG_NON_RESTRICTED 0x1 1025 /* Requires ECN/ECT set on all packets */ 1026 #define TCP_CONG_NEEDS_ECN 0x2 1027 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1028 1029 union tcp_cc_info; 1030 1031 struct ack_sample { 1032 u32 pkts_acked; 1033 s32 rtt_us; 1034 u32 in_flight; 1035 }; 1036 1037 /* A rate sample measures the number of (original/retransmitted) data 1038 * packets delivered "delivered" over an interval of time "interval_us". 1039 * The tcp_rate.c code fills in the rate sample, and congestion 1040 * control modules that define a cong_control function to run at the end 1041 * of ACK processing can optionally chose to consult this sample when 1042 * setting cwnd and pacing rate. 1043 * A sample is invalid if "delivered" or "interval_us" is negative. 1044 */ 1045 struct rate_sample { 1046 u64 prior_mstamp; /* starting timestamp for interval */ 1047 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1048 s32 delivered; /* number of packets delivered over interval */ 1049 long interval_us; /* time for tp->delivered to incr "delivered" */ 1050 u32 snd_interval_us; /* snd interval for delivered packets */ 1051 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1052 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1053 int losses; /* number of packets marked lost upon ACK */ 1054 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1055 u32 prior_in_flight; /* in flight before this ACK */ 1056 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1057 bool is_retrans; /* is sample from retransmission? */ 1058 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1059 }; 1060 1061 struct tcp_congestion_ops { 1062 struct list_head list; 1063 u32 key; 1064 u32 flags; 1065 1066 /* initialize private data (optional) */ 1067 void (*init)(struct sock *sk); 1068 /* cleanup private data (optional) */ 1069 void (*release)(struct sock *sk); 1070 1071 /* return slow start threshold (required) */ 1072 u32 (*ssthresh)(struct sock *sk); 1073 /* do new cwnd calculation (required) */ 1074 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1075 /* call before changing ca_state (optional) */ 1076 void (*set_state)(struct sock *sk, u8 new_state); 1077 /* call when cwnd event occurs (optional) */ 1078 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1079 /* call when ack arrives (optional) */ 1080 void (*in_ack_event)(struct sock *sk, u32 flags); 1081 /* new value of cwnd after loss (required) */ 1082 u32 (*undo_cwnd)(struct sock *sk); 1083 /* hook for packet ack accounting (optional) */ 1084 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1085 /* override sysctl_tcp_min_tso_segs */ 1086 u32 (*min_tso_segs)(struct sock *sk); 1087 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1088 u32 (*sndbuf_expand)(struct sock *sk); 1089 /* call when packets are delivered to update cwnd and pacing rate, 1090 * after all the ca_state processing. (optional) 1091 */ 1092 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1093 /* get info for inet_diag (optional) */ 1094 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1095 union tcp_cc_info *info); 1096 1097 char name[TCP_CA_NAME_MAX]; 1098 struct module *owner; 1099 }; 1100 1101 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1102 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1103 1104 void tcp_assign_congestion_control(struct sock *sk); 1105 void tcp_init_congestion_control(struct sock *sk); 1106 void tcp_cleanup_congestion_control(struct sock *sk); 1107 int tcp_set_default_congestion_control(struct net *net, const char *name); 1108 void tcp_get_default_congestion_control(struct net *net, char *name); 1109 void tcp_get_available_congestion_control(char *buf, size_t len); 1110 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1111 int tcp_set_allowed_congestion_control(char *allowed); 1112 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1113 bool cap_net_admin); 1114 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1115 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1116 1117 u32 tcp_reno_ssthresh(struct sock *sk); 1118 u32 tcp_reno_undo_cwnd(struct sock *sk); 1119 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1120 extern struct tcp_congestion_ops tcp_reno; 1121 1122 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1123 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1124 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1125 #ifdef CONFIG_INET 1126 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1127 #else 1128 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1129 { 1130 return NULL; 1131 } 1132 #endif 1133 1134 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1135 { 1136 const struct inet_connection_sock *icsk = inet_csk(sk); 1137 1138 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1139 } 1140 1141 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1142 { 1143 struct inet_connection_sock *icsk = inet_csk(sk); 1144 1145 if (icsk->icsk_ca_ops->set_state) 1146 icsk->icsk_ca_ops->set_state(sk, ca_state); 1147 icsk->icsk_ca_state = ca_state; 1148 } 1149 1150 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1151 { 1152 const struct inet_connection_sock *icsk = inet_csk(sk); 1153 1154 if (icsk->icsk_ca_ops->cwnd_event) 1155 icsk->icsk_ca_ops->cwnd_event(sk, event); 1156 } 1157 1158 /* From tcp_rate.c */ 1159 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1160 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1161 struct rate_sample *rs); 1162 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1163 bool is_sack_reneg, struct rate_sample *rs); 1164 void tcp_rate_check_app_limited(struct sock *sk); 1165 1166 /* These functions determine how the current flow behaves in respect of SACK 1167 * handling. SACK is negotiated with the peer, and therefore it can vary 1168 * between different flows. 1169 * 1170 * tcp_is_sack - SACK enabled 1171 * tcp_is_reno - No SACK 1172 */ 1173 static inline int tcp_is_sack(const struct tcp_sock *tp) 1174 { 1175 return likely(tp->rx_opt.sack_ok); 1176 } 1177 1178 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1179 { 1180 return !tcp_is_sack(tp); 1181 } 1182 1183 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1184 { 1185 return tp->sacked_out + tp->lost_out; 1186 } 1187 1188 /* This determines how many packets are "in the network" to the best 1189 * of our knowledge. In many cases it is conservative, but where 1190 * detailed information is available from the receiver (via SACK 1191 * blocks etc.) we can make more aggressive calculations. 1192 * 1193 * Use this for decisions involving congestion control, use just 1194 * tp->packets_out to determine if the send queue is empty or not. 1195 * 1196 * Read this equation as: 1197 * 1198 * "Packets sent once on transmission queue" MINUS 1199 * "Packets left network, but not honestly ACKed yet" PLUS 1200 * "Packets fast retransmitted" 1201 */ 1202 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1203 { 1204 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1205 } 1206 1207 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1208 1209 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1210 { 1211 return tp->snd_cwnd < tp->snd_ssthresh; 1212 } 1213 1214 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1215 { 1216 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1217 } 1218 1219 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1220 { 1221 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1222 (1 << inet_csk(sk)->icsk_ca_state); 1223 } 1224 1225 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1226 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1227 * ssthresh. 1228 */ 1229 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1230 { 1231 const struct tcp_sock *tp = tcp_sk(sk); 1232 1233 if (tcp_in_cwnd_reduction(sk)) 1234 return tp->snd_ssthresh; 1235 else 1236 return max(tp->snd_ssthresh, 1237 ((tp->snd_cwnd >> 1) + 1238 (tp->snd_cwnd >> 2))); 1239 } 1240 1241 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1242 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1243 1244 void tcp_enter_cwr(struct sock *sk); 1245 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1246 1247 /* The maximum number of MSS of available cwnd for which TSO defers 1248 * sending if not using sysctl_tcp_tso_win_divisor. 1249 */ 1250 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1251 { 1252 return 3; 1253 } 1254 1255 /* Returns end sequence number of the receiver's advertised window */ 1256 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1257 { 1258 return tp->snd_una + tp->snd_wnd; 1259 } 1260 1261 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1262 * flexible approach. The RFC suggests cwnd should not be raised unless 1263 * it was fully used previously. And that's exactly what we do in 1264 * congestion avoidance mode. But in slow start we allow cwnd to grow 1265 * as long as the application has used half the cwnd. 1266 * Example : 1267 * cwnd is 10 (IW10), but application sends 9 frames. 1268 * We allow cwnd to reach 18 when all frames are ACKed. 1269 * This check is safe because it's as aggressive as slow start which already 1270 * risks 100% overshoot. The advantage is that we discourage application to 1271 * either send more filler packets or data to artificially blow up the cwnd 1272 * usage, and allow application-limited process to probe bw more aggressively. 1273 */ 1274 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1275 { 1276 const struct tcp_sock *tp = tcp_sk(sk); 1277 1278 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1279 if (tcp_in_slow_start(tp)) 1280 return tp->snd_cwnd < 2 * tp->max_packets_out; 1281 1282 return tp->is_cwnd_limited; 1283 } 1284 1285 /* BBR congestion control needs pacing. 1286 * Same remark for SO_MAX_PACING_RATE. 1287 * sch_fq packet scheduler is efficiently handling pacing, 1288 * but is not always installed/used. 1289 * Return true if TCP stack should pace packets itself. 1290 */ 1291 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1292 { 1293 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1294 } 1295 1296 /* Estimates in how many jiffies next packet for this flow can be sent. 1297 * Scheduling a retransmit timer too early would be silly. 1298 */ 1299 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1300 { 1301 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1302 1303 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1304 } 1305 1306 static inline void tcp_reset_xmit_timer(struct sock *sk, 1307 const int what, 1308 unsigned long when, 1309 const unsigned long max_when) 1310 { 1311 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1312 max_when); 1313 } 1314 1315 /* Something is really bad, we could not queue an additional packet, 1316 * because qdisc is full or receiver sent a 0 window, or we are paced. 1317 * We do not want to add fuel to the fire, or abort too early, 1318 * so make sure the timer we arm now is at least 200ms in the future, 1319 * regardless of current icsk_rto value (as it could be ~2ms) 1320 */ 1321 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1322 { 1323 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1324 } 1325 1326 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1327 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1328 unsigned long max_when) 1329 { 1330 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1331 inet_csk(sk)->icsk_backoff); 1332 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1333 1334 return (unsigned long)min_t(u64, when, max_when); 1335 } 1336 1337 static inline void tcp_check_probe_timer(struct sock *sk) 1338 { 1339 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1340 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1341 tcp_probe0_base(sk), TCP_RTO_MAX); 1342 } 1343 1344 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1345 { 1346 tp->snd_wl1 = seq; 1347 } 1348 1349 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1350 { 1351 tp->snd_wl1 = seq; 1352 } 1353 1354 /* 1355 * Calculate(/check) TCP checksum 1356 */ 1357 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1358 __be32 daddr, __wsum base) 1359 { 1360 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1361 } 1362 1363 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1364 { 1365 return !skb_csum_unnecessary(skb) && 1366 __skb_checksum_complete(skb); 1367 } 1368 1369 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1370 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1371 void tcp_set_state(struct sock *sk, int state); 1372 void tcp_done(struct sock *sk); 1373 int tcp_abort(struct sock *sk, int err); 1374 1375 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1376 { 1377 rx_opt->dsack = 0; 1378 rx_opt->num_sacks = 0; 1379 } 1380 1381 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1382 1383 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1384 { 1385 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 s32 delta; 1388 1389 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1390 ca_ops->cong_control) 1391 return; 1392 delta = tcp_jiffies32 - tp->lsndtime; 1393 if (delta > inet_csk(sk)->icsk_rto) 1394 tcp_cwnd_restart(sk, delta); 1395 } 1396 1397 /* Determine a window scaling and initial window to offer. */ 1398 void tcp_select_initial_window(const struct sock *sk, int __space, 1399 __u32 mss, __u32 *rcv_wnd, 1400 __u32 *window_clamp, int wscale_ok, 1401 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1402 1403 static inline int tcp_win_from_space(const struct sock *sk, int space) 1404 { 1405 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1406 1407 return tcp_adv_win_scale <= 0 ? 1408 (space>>(-tcp_adv_win_scale)) : 1409 space - (space>>tcp_adv_win_scale); 1410 } 1411 1412 /* Note: caller must be prepared to deal with negative returns */ 1413 static inline int tcp_space(const struct sock *sk) 1414 { 1415 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1416 READ_ONCE(sk->sk_backlog.len) - 1417 atomic_read(&sk->sk_rmem_alloc)); 1418 } 1419 1420 static inline int tcp_full_space(const struct sock *sk) 1421 { 1422 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1423 } 1424 1425 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1426 1427 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1428 * If 87.5 % (7/8) of the space has been consumed, we want to override 1429 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1430 * len/truesize ratio. 1431 */ 1432 static inline bool tcp_rmem_pressure(const struct sock *sk) 1433 { 1434 int rcvbuf, threshold; 1435 1436 if (tcp_under_memory_pressure(sk)) 1437 return true; 1438 1439 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1440 threshold = rcvbuf - (rcvbuf >> 3); 1441 1442 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1443 } 1444 1445 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1446 { 1447 const struct tcp_sock *tp = tcp_sk(sk); 1448 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1449 1450 if (avail <= 0) 1451 return false; 1452 1453 return (avail >= target) || tcp_rmem_pressure(sk) || 1454 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1455 } 1456 1457 extern void tcp_openreq_init_rwin(struct request_sock *req, 1458 const struct sock *sk_listener, 1459 const struct dst_entry *dst); 1460 1461 void tcp_enter_memory_pressure(struct sock *sk); 1462 void tcp_leave_memory_pressure(struct sock *sk); 1463 1464 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1465 { 1466 struct net *net = sock_net((struct sock *)tp); 1467 1468 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1469 } 1470 1471 static inline int keepalive_time_when(const struct tcp_sock *tp) 1472 { 1473 struct net *net = sock_net((struct sock *)tp); 1474 1475 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1476 } 1477 1478 static inline int keepalive_probes(const struct tcp_sock *tp) 1479 { 1480 struct net *net = sock_net((struct sock *)tp); 1481 1482 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1483 } 1484 1485 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1486 { 1487 const struct inet_connection_sock *icsk = &tp->inet_conn; 1488 1489 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1490 tcp_jiffies32 - tp->rcv_tstamp); 1491 } 1492 1493 static inline int tcp_fin_time(const struct sock *sk) 1494 { 1495 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1496 const int rto = inet_csk(sk)->icsk_rto; 1497 1498 if (fin_timeout < (rto << 2) - (rto >> 1)) 1499 fin_timeout = (rto << 2) - (rto >> 1); 1500 1501 return fin_timeout; 1502 } 1503 1504 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1505 int paws_win) 1506 { 1507 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1508 return true; 1509 if (unlikely(!time_before32(ktime_get_seconds(), 1510 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1511 return true; 1512 /* 1513 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1514 * then following tcp messages have valid values. Ignore 0 value, 1515 * or else 'negative' tsval might forbid us to accept their packets. 1516 */ 1517 if (!rx_opt->ts_recent) 1518 return true; 1519 return false; 1520 } 1521 1522 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1523 int rst) 1524 { 1525 if (tcp_paws_check(rx_opt, 0)) 1526 return false; 1527 1528 /* RST segments are not recommended to carry timestamp, 1529 and, if they do, it is recommended to ignore PAWS because 1530 "their cleanup function should take precedence over timestamps." 1531 Certainly, it is mistake. It is necessary to understand the reasons 1532 of this constraint to relax it: if peer reboots, clock may go 1533 out-of-sync and half-open connections will not be reset. 1534 Actually, the problem would be not existing if all 1535 the implementations followed draft about maintaining clock 1536 via reboots. Linux-2.2 DOES NOT! 1537 1538 However, we can relax time bounds for RST segments to MSL. 1539 */ 1540 if (rst && !time_before32(ktime_get_seconds(), 1541 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1542 return false; 1543 return true; 1544 } 1545 1546 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1547 int mib_idx, u32 *last_oow_ack_time); 1548 1549 static inline void tcp_mib_init(struct net *net) 1550 { 1551 /* See RFC 2012 */ 1552 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1553 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1554 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1555 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1556 } 1557 1558 /* from STCP */ 1559 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1560 { 1561 tp->lost_skb_hint = NULL; 1562 } 1563 1564 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1565 { 1566 tcp_clear_retrans_hints_partial(tp); 1567 tp->retransmit_skb_hint = NULL; 1568 } 1569 1570 union tcp_md5_addr { 1571 struct in_addr a4; 1572 #if IS_ENABLED(CONFIG_IPV6) 1573 struct in6_addr a6; 1574 #endif 1575 }; 1576 1577 /* - key database */ 1578 struct tcp_md5sig_key { 1579 struct hlist_node node; 1580 u8 keylen; 1581 u8 family; /* AF_INET or AF_INET6 */ 1582 u8 prefixlen; 1583 union tcp_md5_addr addr; 1584 int l3index; /* set if key added with L3 scope */ 1585 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1586 struct rcu_head rcu; 1587 }; 1588 1589 /* - sock block */ 1590 struct tcp_md5sig_info { 1591 struct hlist_head head; 1592 struct rcu_head rcu; 1593 }; 1594 1595 /* - pseudo header */ 1596 struct tcp4_pseudohdr { 1597 __be32 saddr; 1598 __be32 daddr; 1599 __u8 pad; 1600 __u8 protocol; 1601 __be16 len; 1602 }; 1603 1604 struct tcp6_pseudohdr { 1605 struct in6_addr saddr; 1606 struct in6_addr daddr; 1607 __be32 len; 1608 __be32 protocol; /* including padding */ 1609 }; 1610 1611 union tcp_md5sum_block { 1612 struct tcp4_pseudohdr ip4; 1613 #if IS_ENABLED(CONFIG_IPV6) 1614 struct tcp6_pseudohdr ip6; 1615 #endif 1616 }; 1617 1618 /* - pool: digest algorithm, hash description and scratch buffer */ 1619 struct tcp_md5sig_pool { 1620 struct ahash_request *md5_req; 1621 void *scratch; 1622 }; 1623 1624 /* - functions */ 1625 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1626 const struct sock *sk, const struct sk_buff *skb); 1627 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1628 int family, u8 prefixlen, int l3index, 1629 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1630 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1631 int family, u8 prefixlen, int l3index); 1632 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1633 const struct sock *addr_sk); 1634 1635 #ifdef CONFIG_TCP_MD5SIG 1636 #include <linux/jump_label.h> 1637 extern struct static_key_false tcp_md5_needed; 1638 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1639 const union tcp_md5_addr *addr, 1640 int family); 1641 static inline struct tcp_md5sig_key * 1642 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1643 const union tcp_md5_addr *addr, int family) 1644 { 1645 if (!static_branch_unlikely(&tcp_md5_needed)) 1646 return NULL; 1647 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1648 } 1649 1650 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1651 #else 1652 static inline struct tcp_md5sig_key * 1653 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1654 const union tcp_md5_addr *addr, int family) 1655 { 1656 return NULL; 1657 } 1658 #define tcp_twsk_md5_key(twsk) NULL 1659 #endif 1660 1661 bool tcp_alloc_md5sig_pool(void); 1662 1663 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1664 static inline void tcp_put_md5sig_pool(void) 1665 { 1666 local_bh_enable(); 1667 } 1668 1669 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1670 unsigned int header_len); 1671 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1672 const struct tcp_md5sig_key *key); 1673 1674 /* From tcp_fastopen.c */ 1675 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1676 struct tcp_fastopen_cookie *cookie); 1677 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1678 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1679 u16 try_exp); 1680 struct tcp_fastopen_request { 1681 /* Fast Open cookie. Size 0 means a cookie request */ 1682 struct tcp_fastopen_cookie cookie; 1683 struct msghdr *data; /* data in MSG_FASTOPEN */ 1684 size_t size; 1685 int copied; /* queued in tcp_connect() */ 1686 struct ubuf_info *uarg; 1687 }; 1688 void tcp_free_fastopen_req(struct tcp_sock *tp); 1689 void tcp_fastopen_destroy_cipher(struct sock *sk); 1690 void tcp_fastopen_ctx_destroy(struct net *net); 1691 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1692 void *primary_key, void *backup_key); 1693 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1694 u64 *key); 1695 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1696 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1697 struct request_sock *req, 1698 struct tcp_fastopen_cookie *foc, 1699 const struct dst_entry *dst); 1700 void tcp_fastopen_init_key_once(struct net *net); 1701 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1702 struct tcp_fastopen_cookie *cookie); 1703 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1704 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1705 #define TCP_FASTOPEN_KEY_MAX 2 1706 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1707 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1708 1709 /* Fastopen key context */ 1710 struct tcp_fastopen_context { 1711 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1712 int num; 1713 struct rcu_head rcu; 1714 }; 1715 1716 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; 1717 void tcp_fastopen_active_disable(struct sock *sk); 1718 bool tcp_fastopen_active_should_disable(struct sock *sk); 1719 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1720 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1721 1722 /* Caller needs to wrap with rcu_read_(un)lock() */ 1723 static inline 1724 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1725 { 1726 struct tcp_fastopen_context *ctx; 1727 1728 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1729 if (!ctx) 1730 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1731 return ctx; 1732 } 1733 1734 static inline 1735 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1736 const struct tcp_fastopen_cookie *orig) 1737 { 1738 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1739 orig->len == foc->len && 1740 !memcmp(orig->val, foc->val, foc->len)) 1741 return true; 1742 return false; 1743 } 1744 1745 static inline 1746 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1747 { 1748 return ctx->num; 1749 } 1750 1751 /* Latencies incurred by various limits for a sender. They are 1752 * chronograph-like stats that are mutually exclusive. 1753 */ 1754 enum tcp_chrono { 1755 TCP_CHRONO_UNSPEC, 1756 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1757 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1758 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1759 __TCP_CHRONO_MAX, 1760 }; 1761 1762 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1763 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1764 1765 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1766 * the same memory storage than skb->destructor/_skb_refdst 1767 */ 1768 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1769 { 1770 skb->destructor = NULL; 1771 skb->_skb_refdst = 0UL; 1772 } 1773 1774 #define tcp_skb_tsorted_save(skb) { \ 1775 unsigned long _save = skb->_skb_refdst; \ 1776 skb->_skb_refdst = 0UL; 1777 1778 #define tcp_skb_tsorted_restore(skb) \ 1779 skb->_skb_refdst = _save; \ 1780 } 1781 1782 void tcp_write_queue_purge(struct sock *sk); 1783 1784 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1785 { 1786 return skb_rb_first(&sk->tcp_rtx_queue); 1787 } 1788 1789 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1790 { 1791 return skb_rb_last(&sk->tcp_rtx_queue); 1792 } 1793 1794 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1795 { 1796 return skb_peek(&sk->sk_write_queue); 1797 } 1798 1799 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1800 { 1801 return skb_peek_tail(&sk->sk_write_queue); 1802 } 1803 1804 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1805 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1806 1807 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1808 { 1809 return skb_peek(&sk->sk_write_queue); 1810 } 1811 1812 static inline bool tcp_skb_is_last(const struct sock *sk, 1813 const struct sk_buff *skb) 1814 { 1815 return skb_queue_is_last(&sk->sk_write_queue, skb); 1816 } 1817 1818 /** 1819 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1820 * @sk: socket 1821 * 1822 * Since the write queue can have a temporary empty skb in it, 1823 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1824 */ 1825 static inline bool tcp_write_queue_empty(const struct sock *sk) 1826 { 1827 const struct tcp_sock *tp = tcp_sk(sk); 1828 1829 return tp->write_seq == tp->snd_nxt; 1830 } 1831 1832 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1833 { 1834 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1835 } 1836 1837 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1838 { 1839 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1840 } 1841 1842 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1843 { 1844 __skb_queue_tail(&sk->sk_write_queue, skb); 1845 1846 /* Queue it, remembering where we must start sending. */ 1847 if (sk->sk_write_queue.next == skb) 1848 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1849 } 1850 1851 /* Insert new before skb on the write queue of sk. */ 1852 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1853 struct sk_buff *skb, 1854 struct sock *sk) 1855 { 1856 __skb_queue_before(&sk->sk_write_queue, skb, new); 1857 } 1858 1859 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1860 { 1861 tcp_skb_tsorted_anchor_cleanup(skb); 1862 __skb_unlink(skb, &sk->sk_write_queue); 1863 } 1864 1865 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1866 1867 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1868 { 1869 tcp_skb_tsorted_anchor_cleanup(skb); 1870 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1871 } 1872 1873 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1874 { 1875 list_del(&skb->tcp_tsorted_anchor); 1876 tcp_rtx_queue_unlink(skb, sk); 1877 sk_wmem_free_skb(sk, skb); 1878 } 1879 1880 static inline void tcp_push_pending_frames(struct sock *sk) 1881 { 1882 if (tcp_send_head(sk)) { 1883 struct tcp_sock *tp = tcp_sk(sk); 1884 1885 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1886 } 1887 } 1888 1889 /* Start sequence of the skb just after the highest skb with SACKed 1890 * bit, valid only if sacked_out > 0 or when the caller has ensured 1891 * validity by itself. 1892 */ 1893 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1894 { 1895 if (!tp->sacked_out) 1896 return tp->snd_una; 1897 1898 if (tp->highest_sack == NULL) 1899 return tp->snd_nxt; 1900 1901 return TCP_SKB_CB(tp->highest_sack)->seq; 1902 } 1903 1904 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1905 { 1906 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1907 } 1908 1909 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1910 { 1911 return tcp_sk(sk)->highest_sack; 1912 } 1913 1914 static inline void tcp_highest_sack_reset(struct sock *sk) 1915 { 1916 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1917 } 1918 1919 /* Called when old skb is about to be deleted and replaced by new skb */ 1920 static inline void tcp_highest_sack_replace(struct sock *sk, 1921 struct sk_buff *old, 1922 struct sk_buff *new) 1923 { 1924 if (old == tcp_highest_sack(sk)) 1925 tcp_sk(sk)->highest_sack = new; 1926 } 1927 1928 /* This helper checks if socket has IP_TRANSPARENT set */ 1929 static inline bool inet_sk_transparent(const struct sock *sk) 1930 { 1931 switch (sk->sk_state) { 1932 case TCP_TIME_WAIT: 1933 return inet_twsk(sk)->tw_transparent; 1934 case TCP_NEW_SYN_RECV: 1935 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1936 } 1937 return inet_sk(sk)->transparent; 1938 } 1939 1940 /* Determines whether this is a thin stream (which may suffer from 1941 * increased latency). Used to trigger latency-reducing mechanisms. 1942 */ 1943 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1944 { 1945 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1946 } 1947 1948 /* /proc */ 1949 enum tcp_seq_states { 1950 TCP_SEQ_STATE_LISTENING, 1951 TCP_SEQ_STATE_ESTABLISHED, 1952 }; 1953 1954 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1955 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1956 void tcp_seq_stop(struct seq_file *seq, void *v); 1957 1958 struct tcp_seq_afinfo { 1959 sa_family_t family; 1960 }; 1961 1962 struct tcp_iter_state { 1963 struct seq_net_private p; 1964 enum tcp_seq_states state; 1965 struct sock *syn_wait_sk; 1966 struct tcp_seq_afinfo *bpf_seq_afinfo; 1967 int bucket, offset, sbucket, num; 1968 loff_t last_pos; 1969 }; 1970 1971 extern struct request_sock_ops tcp_request_sock_ops; 1972 extern struct request_sock_ops tcp6_request_sock_ops; 1973 1974 void tcp_v4_destroy_sock(struct sock *sk); 1975 1976 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 1977 netdev_features_t features); 1978 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 1979 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 1980 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 1981 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 1982 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 1983 int tcp_gro_complete(struct sk_buff *skb); 1984 1985 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 1986 1987 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 1988 { 1989 struct net *net = sock_net((struct sock *)tp); 1990 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 1991 } 1992 1993 bool tcp_stream_memory_free(const struct sock *sk, int wake); 1994 1995 #ifdef CONFIG_PROC_FS 1996 int tcp4_proc_init(void); 1997 void tcp4_proc_exit(void); 1998 #endif 1999 2000 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2001 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2002 const struct tcp_request_sock_ops *af_ops, 2003 struct sock *sk, struct sk_buff *skb); 2004 2005 /* TCP af-specific functions */ 2006 struct tcp_sock_af_ops { 2007 #ifdef CONFIG_TCP_MD5SIG 2008 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2009 const struct sock *addr_sk); 2010 int (*calc_md5_hash)(char *location, 2011 const struct tcp_md5sig_key *md5, 2012 const struct sock *sk, 2013 const struct sk_buff *skb); 2014 int (*md5_parse)(struct sock *sk, 2015 int optname, 2016 sockptr_t optval, 2017 int optlen); 2018 #endif 2019 }; 2020 2021 struct tcp_request_sock_ops { 2022 u16 mss_clamp; 2023 #ifdef CONFIG_TCP_MD5SIG 2024 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2025 const struct sock *addr_sk); 2026 int (*calc_md5_hash) (char *location, 2027 const struct tcp_md5sig_key *md5, 2028 const struct sock *sk, 2029 const struct sk_buff *skb); 2030 #endif 2031 #ifdef CONFIG_SYN_COOKIES 2032 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2033 __u16 *mss); 2034 #endif 2035 struct dst_entry *(*route_req)(const struct sock *sk, 2036 struct sk_buff *skb, 2037 struct flowi *fl, 2038 struct request_sock *req); 2039 u32 (*init_seq)(const struct sk_buff *skb); 2040 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2041 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2042 struct flowi *fl, struct request_sock *req, 2043 struct tcp_fastopen_cookie *foc, 2044 enum tcp_synack_type synack_type, 2045 struct sk_buff *syn_skb); 2046 }; 2047 2048 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2049 #if IS_ENABLED(CONFIG_IPV6) 2050 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2051 #endif 2052 2053 #ifdef CONFIG_SYN_COOKIES 2054 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2055 const struct sock *sk, struct sk_buff *skb, 2056 __u16 *mss) 2057 { 2058 tcp_synq_overflow(sk); 2059 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2060 return ops->cookie_init_seq(skb, mss); 2061 } 2062 #else 2063 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2064 const struct sock *sk, struct sk_buff *skb, 2065 __u16 *mss) 2066 { 2067 return 0; 2068 } 2069 #endif 2070 2071 int tcpv4_offload_init(void); 2072 2073 void tcp_v4_init(void); 2074 void tcp_init(void); 2075 2076 /* tcp_recovery.c */ 2077 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2078 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2079 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2080 u32 reo_wnd); 2081 extern bool tcp_rack_mark_lost(struct sock *sk); 2082 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2083 u64 xmit_time); 2084 extern void tcp_rack_reo_timeout(struct sock *sk); 2085 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2086 2087 /* At how many usecs into the future should the RTO fire? */ 2088 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2089 { 2090 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2091 u32 rto = inet_csk(sk)->icsk_rto; 2092 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2093 2094 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2095 } 2096 2097 /* 2098 * Save and compile IPv4 options, return a pointer to it 2099 */ 2100 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2101 struct sk_buff *skb) 2102 { 2103 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2104 struct ip_options_rcu *dopt = NULL; 2105 2106 if (opt->optlen) { 2107 int opt_size = sizeof(*dopt) + opt->optlen; 2108 2109 dopt = kmalloc(opt_size, GFP_ATOMIC); 2110 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2111 kfree(dopt); 2112 dopt = NULL; 2113 } 2114 } 2115 return dopt; 2116 } 2117 2118 /* locally generated TCP pure ACKs have skb->truesize == 2 2119 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2120 * This is much faster than dissecting the packet to find out. 2121 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2122 */ 2123 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2124 { 2125 return skb->truesize == 2; 2126 } 2127 2128 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2129 { 2130 skb->truesize = 2; 2131 } 2132 2133 static inline int tcp_inq(struct sock *sk) 2134 { 2135 struct tcp_sock *tp = tcp_sk(sk); 2136 int answ; 2137 2138 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2139 answ = 0; 2140 } else if (sock_flag(sk, SOCK_URGINLINE) || 2141 !tp->urg_data || 2142 before(tp->urg_seq, tp->copied_seq) || 2143 !before(tp->urg_seq, tp->rcv_nxt)) { 2144 2145 answ = tp->rcv_nxt - tp->copied_seq; 2146 2147 /* Subtract 1, if FIN was received */ 2148 if (answ && sock_flag(sk, SOCK_DONE)) 2149 answ--; 2150 } else { 2151 answ = tp->urg_seq - tp->copied_seq; 2152 } 2153 2154 return answ; 2155 } 2156 2157 int tcp_peek_len(struct socket *sock); 2158 2159 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2160 { 2161 u16 segs_in; 2162 2163 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2164 tp->segs_in += segs_in; 2165 if (skb->len > tcp_hdrlen(skb)) 2166 tp->data_segs_in += segs_in; 2167 } 2168 2169 /* 2170 * TCP listen path runs lockless. 2171 * We forced "struct sock" to be const qualified to make sure 2172 * we don't modify one of its field by mistake. 2173 * Here, we increment sk_drops which is an atomic_t, so we can safely 2174 * make sock writable again. 2175 */ 2176 static inline void tcp_listendrop(const struct sock *sk) 2177 { 2178 atomic_inc(&((struct sock *)sk)->sk_drops); 2179 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2180 } 2181 2182 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2183 2184 /* 2185 * Interface for adding Upper Level Protocols over TCP 2186 */ 2187 2188 #define TCP_ULP_NAME_MAX 16 2189 #define TCP_ULP_MAX 128 2190 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2191 2192 struct tcp_ulp_ops { 2193 struct list_head list; 2194 2195 /* initialize ulp */ 2196 int (*init)(struct sock *sk); 2197 /* update ulp */ 2198 void (*update)(struct sock *sk, struct proto *p, 2199 void (*write_space)(struct sock *sk)); 2200 /* cleanup ulp */ 2201 void (*release)(struct sock *sk); 2202 /* diagnostic */ 2203 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2204 size_t (*get_info_size)(const struct sock *sk); 2205 /* clone ulp */ 2206 void (*clone)(const struct request_sock *req, struct sock *newsk, 2207 const gfp_t priority); 2208 2209 char name[TCP_ULP_NAME_MAX]; 2210 struct module *owner; 2211 }; 2212 int tcp_register_ulp(struct tcp_ulp_ops *type); 2213 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2214 int tcp_set_ulp(struct sock *sk, const char *name); 2215 void tcp_get_available_ulp(char *buf, size_t len); 2216 void tcp_cleanup_ulp(struct sock *sk); 2217 void tcp_update_ulp(struct sock *sk, struct proto *p, 2218 void (*write_space)(struct sock *sk)); 2219 2220 #define MODULE_ALIAS_TCP_ULP(name) \ 2221 __MODULE_INFO(alias, alias_userspace, name); \ 2222 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2223 2224 struct sk_msg; 2225 struct sk_psock; 2226 2227 #ifdef CONFIG_BPF_STREAM_PARSER 2228 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2229 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2230 #else 2231 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2232 { 2233 } 2234 #endif /* CONFIG_BPF_STREAM_PARSER */ 2235 2236 #ifdef CONFIG_NET_SOCK_MSG 2237 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2238 int flags); 2239 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, 2240 struct msghdr *msg, int len, int flags); 2241 #endif /* CONFIG_NET_SOCK_MSG */ 2242 2243 #ifdef CONFIG_CGROUP_BPF 2244 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2245 struct sk_buff *skb, 2246 unsigned int end_offset) 2247 { 2248 skops->skb = skb; 2249 skops->skb_data_end = skb->data + end_offset; 2250 } 2251 #else 2252 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2253 struct sk_buff *skb, 2254 unsigned int end_offset) 2255 { 2256 } 2257 #endif 2258 2259 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2260 * is < 0, then the BPF op failed (for example if the loaded BPF 2261 * program does not support the chosen operation or there is no BPF 2262 * program loaded). 2263 */ 2264 #ifdef CONFIG_BPF 2265 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2266 { 2267 struct bpf_sock_ops_kern sock_ops; 2268 int ret; 2269 2270 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2271 if (sk_fullsock(sk)) { 2272 sock_ops.is_fullsock = 1; 2273 sock_owned_by_me(sk); 2274 } 2275 2276 sock_ops.sk = sk; 2277 sock_ops.op = op; 2278 if (nargs > 0) 2279 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2280 2281 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2282 if (ret == 0) 2283 ret = sock_ops.reply; 2284 else 2285 ret = -1; 2286 return ret; 2287 } 2288 2289 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2290 { 2291 u32 args[2] = {arg1, arg2}; 2292 2293 return tcp_call_bpf(sk, op, 2, args); 2294 } 2295 2296 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2297 u32 arg3) 2298 { 2299 u32 args[3] = {arg1, arg2, arg3}; 2300 2301 return tcp_call_bpf(sk, op, 3, args); 2302 } 2303 2304 #else 2305 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2306 { 2307 return -EPERM; 2308 } 2309 2310 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2311 { 2312 return -EPERM; 2313 } 2314 2315 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2316 u32 arg3) 2317 { 2318 return -EPERM; 2319 } 2320 2321 #endif 2322 2323 static inline u32 tcp_timeout_init(struct sock *sk) 2324 { 2325 int timeout; 2326 2327 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2328 2329 if (timeout <= 0) 2330 timeout = TCP_TIMEOUT_INIT; 2331 return timeout; 2332 } 2333 2334 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2335 { 2336 int rwnd; 2337 2338 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2339 2340 if (rwnd < 0) 2341 rwnd = 0; 2342 return rwnd; 2343 } 2344 2345 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2346 { 2347 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2348 } 2349 2350 static inline void tcp_bpf_rtt(struct sock *sk) 2351 { 2352 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2353 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2354 } 2355 2356 #if IS_ENABLED(CONFIG_SMC) 2357 extern struct static_key_false tcp_have_smc; 2358 #endif 2359 2360 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2361 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2362 void (*cad)(struct sock *sk, u32 ack_seq)); 2363 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2364 void clean_acked_data_flush(void); 2365 #endif 2366 2367 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2368 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2369 const struct tcp_sock *tp) 2370 { 2371 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2372 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2373 } 2374 2375 /* Compute Earliest Departure Time for some control packets 2376 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2377 */ 2378 static inline u64 tcp_transmit_time(const struct sock *sk) 2379 { 2380 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2381 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2382 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2383 2384 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2385 } 2386 return 0; 2387 } 2388 2389 #endif /* _TCP_H */ 2390