xref: /linux/include/net/tcp.h (revision ea23fbd2a8f7dadfa9cd9b9d73f3b8a69eec0671)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
135 
136 #if HZ >= 100
137 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
138 #define TCP_ATO_MIN	((unsigned)(HZ/25))
139 #else
140 #define TCP_DELACK_MIN	4U
141 #define TCP_ATO_MIN	4U
142 #endif
143 #define TCP_RTO_MAX	((unsigned)(120*HZ))
144 #define TCP_RTO_MIN	((unsigned)(HZ/5))
145 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
146 
147 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
148 
149 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
150 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
151 						 * used as a fallback RTO for the
152 						 * initial data transmission if no
153 						 * valid RTT sample has been acquired,
154 						 * most likely due to retrans in 3WHS.
155 						 */
156 
157 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
158 					                 * for local resources.
159 					                 */
160 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
161 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
162 #define TCP_KEEPALIVE_INTVL	(75*HZ)
163 
164 #define MAX_TCP_KEEPIDLE	32767
165 #define MAX_TCP_KEEPINTVL	32767
166 #define MAX_TCP_KEEPCNT		127
167 #define MAX_TCP_SYNCNT		127
168 
169 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
170  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
171  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
172  */
173 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
174 
175 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
176 					 * after this time. It should be equal
177 					 * (or greater than) TCP_TIMEWAIT_LEN
178 					 * to provide reliability equal to one
179 					 * provided by timewait state.
180 					 */
181 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
182 					 * timestamps. It must be less than
183 					 * minimal timewait lifetime.
184 					 */
185 /*
186  *	TCP option
187  */
188 
189 #define TCPOPT_NOP		1	/* Padding */
190 #define TCPOPT_EOL		0	/* End of options */
191 #define TCPOPT_MSS		2	/* Segment size negotiating */
192 #define TCPOPT_WINDOW		3	/* Window scaling */
193 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
194 #define TCPOPT_SACK             5       /* SACK Block */
195 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
196 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
197 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
198 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
199 #define TCPOPT_EXP		254	/* Experimental */
200 /* Magic number to be after the option value for sharing TCP
201  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
202  */
203 #define TCPOPT_FASTOPEN_MAGIC	0xF989
204 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
205 
206 /*
207  *     TCP option lengths
208  */
209 
210 #define TCPOLEN_MSS            4
211 #define TCPOLEN_WINDOW         3
212 #define TCPOLEN_SACK_PERM      2
213 #define TCPOLEN_TIMESTAMP      10
214 #define TCPOLEN_MD5SIG         18
215 #define TCPOLEN_FASTOPEN_BASE  2
216 #define TCPOLEN_EXP_FASTOPEN_BASE  4
217 #define TCPOLEN_EXP_SMC_BASE   6
218 
219 /* But this is what stacks really send out. */
220 #define TCPOLEN_TSTAMP_ALIGNED		12
221 #define TCPOLEN_WSCALE_ALIGNED		4
222 #define TCPOLEN_SACKPERM_ALIGNED	4
223 #define TCPOLEN_SACK_BASE		2
224 #define TCPOLEN_SACK_BASE_ALIGNED	4
225 #define TCPOLEN_SACK_PERBLOCK		8
226 #define TCPOLEN_MD5SIG_ALIGNED		20
227 #define TCPOLEN_MSS_ALIGNED		4
228 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
229 
230 /* Flags in tp->nonagle */
231 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
232 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
233 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
234 
235 /* TCP thin-stream limits */
236 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
237 
238 /* TCP initial congestion window as per rfc6928 */
239 #define TCP_INIT_CWND		10
240 
241 /* Bit Flags for sysctl_tcp_fastopen */
242 #define	TFO_CLIENT_ENABLE	1
243 #define	TFO_SERVER_ENABLE	2
244 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
245 
246 /* Accept SYN data w/o any cookie option */
247 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
248 
249 /* Force enable TFO on all listeners, i.e., not requiring the
250  * TCP_FASTOPEN socket option.
251  */
252 #define	TFO_SERVER_WO_SOCKOPT1	0x400
253 
254 
255 /* sysctl variables for tcp */
256 extern int sysctl_tcp_max_orphans;
257 extern long sysctl_tcp_mem[3];
258 
259 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
260 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
261 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
262 
263 extern atomic_long_t tcp_memory_allocated;
264 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
265 
266 extern struct percpu_counter tcp_sockets_allocated;
267 extern unsigned long tcp_memory_pressure;
268 
269 /* optimized version of sk_under_memory_pressure() for TCP sockets */
270 static inline bool tcp_under_memory_pressure(const struct sock *sk)
271 {
272 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
273 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
274 		return true;
275 
276 	return READ_ONCE(tcp_memory_pressure);
277 }
278 /*
279  * The next routines deal with comparing 32 bit unsigned ints
280  * and worry about wraparound (automatic with unsigned arithmetic).
281  */
282 
283 static inline bool before(__u32 seq1, __u32 seq2)
284 {
285         return (__s32)(seq1-seq2) < 0;
286 }
287 #define after(seq2, seq1) 	before(seq1, seq2)
288 
289 /* is s2<=s1<=s3 ? */
290 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
291 {
292 	return seq3 - seq2 >= seq1 - seq2;
293 }
294 
295 static inline bool tcp_out_of_memory(struct sock *sk)
296 {
297 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
298 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
299 		return true;
300 	return false;
301 }
302 
303 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
304 {
305 	sk_wmem_queued_add(sk, -skb->truesize);
306 	if (!skb_zcopy_pure(skb))
307 		sk_mem_uncharge(sk, skb->truesize);
308 	else
309 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
310 	__kfree_skb(skb);
311 }
312 
313 void sk_forced_mem_schedule(struct sock *sk, int size);
314 
315 bool tcp_check_oom(struct sock *sk, int shift);
316 
317 
318 extern struct proto tcp_prot;
319 
320 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
321 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
322 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
323 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
324 
325 void tcp_tasklet_init(void);
326 
327 int tcp_v4_err(struct sk_buff *skb, u32);
328 
329 void tcp_shutdown(struct sock *sk, int how);
330 
331 int tcp_v4_early_demux(struct sk_buff *skb);
332 int tcp_v4_rcv(struct sk_buff *skb);
333 
334 void tcp_remove_empty_skb(struct sock *sk);
335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
336 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
337 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
338 			 size_t size, struct ubuf_info *uarg);
339 void tcp_splice_eof(struct socket *sock);
340 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
341 int tcp_wmem_schedule(struct sock *sk, int copy);
342 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
343 	      int size_goal);
344 void tcp_release_cb(struct sock *sk);
345 void tcp_wfree(struct sk_buff *skb);
346 void tcp_write_timer_handler(struct sock *sk);
347 void tcp_delack_timer_handler(struct sock *sk);
348 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
349 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
350 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
351 void tcp_rcv_space_adjust(struct sock *sk);
352 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
353 void tcp_twsk_destructor(struct sock *sk);
354 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
355 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
356 			struct pipe_inode_info *pipe, size_t len,
357 			unsigned int flags);
358 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
359 				     bool force_schedule);
360 
361 static inline void tcp_dec_quickack_mode(struct sock *sk)
362 {
363 	struct inet_connection_sock *icsk = inet_csk(sk);
364 
365 	if (icsk->icsk_ack.quick) {
366 		/* How many ACKs S/ACKing new data have we sent? */
367 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
368 
369 		if (pkts >= icsk->icsk_ack.quick) {
370 			icsk->icsk_ack.quick = 0;
371 			/* Leaving quickack mode we deflate ATO. */
372 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
373 		} else
374 			icsk->icsk_ack.quick -= pkts;
375 	}
376 }
377 
378 #define	TCP_ECN_OK		1
379 #define	TCP_ECN_QUEUE_CWR	2
380 #define	TCP_ECN_DEMAND_CWR	4
381 #define	TCP_ECN_SEEN		8
382 
383 enum tcp_tw_status {
384 	TCP_TW_SUCCESS = 0,
385 	TCP_TW_RST = 1,
386 	TCP_TW_ACK = 2,
387 	TCP_TW_SYN = 3
388 };
389 
390 
391 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
392 					      struct sk_buff *skb,
393 					      const struct tcphdr *th);
394 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
395 			   struct request_sock *req, bool fastopen,
396 			   bool *lost_race);
397 int tcp_child_process(struct sock *parent, struct sock *child,
398 		      struct sk_buff *skb);
399 void tcp_enter_loss(struct sock *sk);
400 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
401 void tcp_clear_retrans(struct tcp_sock *tp);
402 void tcp_update_metrics(struct sock *sk);
403 void tcp_init_metrics(struct sock *sk);
404 void tcp_metrics_init(void);
405 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
406 void __tcp_close(struct sock *sk, long timeout);
407 void tcp_close(struct sock *sk, long timeout);
408 void tcp_init_sock(struct sock *sk);
409 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
410 __poll_t tcp_poll(struct file *file, struct socket *sock,
411 		      struct poll_table_struct *wait);
412 int do_tcp_getsockopt(struct sock *sk, int level,
413 		      int optname, sockptr_t optval, sockptr_t optlen);
414 int tcp_getsockopt(struct sock *sk, int level, int optname,
415 		   char __user *optval, int __user *optlen);
416 bool tcp_bpf_bypass_getsockopt(int level, int optname);
417 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
418 		      sockptr_t optval, unsigned int optlen);
419 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
420 		   unsigned int optlen);
421 void tcp_set_keepalive(struct sock *sk, int val);
422 void tcp_syn_ack_timeout(const struct request_sock *req);
423 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
424 		int flags, int *addr_len);
425 int tcp_set_rcvlowat(struct sock *sk, int val);
426 int tcp_set_window_clamp(struct sock *sk, int val);
427 void tcp_update_recv_tstamps(struct sk_buff *skb,
428 			     struct scm_timestamping_internal *tss);
429 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
430 			struct scm_timestamping_internal *tss);
431 void tcp_data_ready(struct sock *sk);
432 #ifdef CONFIG_MMU
433 int tcp_mmap(struct file *file, struct socket *sock,
434 	     struct vm_area_struct *vma);
435 #endif
436 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
437 		       struct tcp_options_received *opt_rx,
438 		       int estab, struct tcp_fastopen_cookie *foc);
439 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
440 
441 /*
442  *	BPF SKB-less helpers
443  */
444 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
445 			 struct tcphdr *th, u32 *cookie);
446 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
447 			 struct tcphdr *th, u32 *cookie);
448 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
449 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
450 			  const struct tcp_request_sock_ops *af_ops,
451 			  struct sock *sk, struct tcphdr *th);
452 /*
453  *	TCP v4 functions exported for the inet6 API
454  */
455 
456 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
457 void tcp_v4_mtu_reduced(struct sock *sk);
458 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
459 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
460 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
461 struct sock *tcp_create_openreq_child(const struct sock *sk,
462 				      struct request_sock *req,
463 				      struct sk_buff *skb);
464 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
465 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
466 				  struct request_sock *req,
467 				  struct dst_entry *dst,
468 				  struct request_sock *req_unhash,
469 				  bool *own_req);
470 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
471 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
472 int tcp_connect(struct sock *sk);
473 enum tcp_synack_type {
474 	TCP_SYNACK_NORMAL,
475 	TCP_SYNACK_FASTOPEN,
476 	TCP_SYNACK_COOKIE,
477 };
478 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
479 				struct request_sock *req,
480 				struct tcp_fastopen_cookie *foc,
481 				enum tcp_synack_type synack_type,
482 				struct sk_buff *syn_skb);
483 int tcp_disconnect(struct sock *sk, int flags);
484 
485 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
486 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
487 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
488 
489 /* From syncookies.c */
490 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
491 				 struct request_sock *req,
492 				 struct dst_entry *dst, u32 tsoff);
493 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
494 		      u32 cookie);
495 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
496 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
497 					    const struct tcp_request_sock_ops *af_ops,
498 					    struct sock *sk, struct sk_buff *skb);
499 #ifdef CONFIG_SYN_COOKIES
500 
501 /* Syncookies use a monotonic timer which increments every 60 seconds.
502  * This counter is used both as a hash input and partially encoded into
503  * the cookie value.  A cookie is only validated further if the delta
504  * between the current counter value and the encoded one is less than this,
505  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
506  * the counter advances immediately after a cookie is generated).
507  */
508 #define MAX_SYNCOOKIE_AGE	2
509 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
510 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
511 
512 /* syncookies: remember time of last synqueue overflow
513  * But do not dirty this field too often (once per second is enough)
514  * It is racy as we do not hold a lock, but race is very minor.
515  */
516 static inline void tcp_synq_overflow(const struct sock *sk)
517 {
518 	unsigned int last_overflow;
519 	unsigned int now = jiffies;
520 
521 	if (sk->sk_reuseport) {
522 		struct sock_reuseport *reuse;
523 
524 		reuse = rcu_dereference(sk->sk_reuseport_cb);
525 		if (likely(reuse)) {
526 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
527 			if (!time_between32(now, last_overflow,
528 					    last_overflow + HZ))
529 				WRITE_ONCE(reuse->synq_overflow_ts, now);
530 			return;
531 		}
532 	}
533 
534 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
535 	if (!time_between32(now, last_overflow, last_overflow + HZ))
536 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
537 }
538 
539 /* syncookies: no recent synqueue overflow on this listening socket? */
540 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
541 {
542 	unsigned int last_overflow;
543 	unsigned int now = jiffies;
544 
545 	if (sk->sk_reuseport) {
546 		struct sock_reuseport *reuse;
547 
548 		reuse = rcu_dereference(sk->sk_reuseport_cb);
549 		if (likely(reuse)) {
550 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
551 			return !time_between32(now, last_overflow - HZ,
552 					       last_overflow +
553 					       TCP_SYNCOOKIE_VALID);
554 		}
555 	}
556 
557 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
558 
559 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
560 	 * then we're under synflood. However, we have to use
561 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
562 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
563 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
564 	 * which could lead to rejecting a valid syncookie.
565 	 */
566 	return !time_between32(now, last_overflow - HZ,
567 			       last_overflow + TCP_SYNCOOKIE_VALID);
568 }
569 
570 static inline u32 tcp_cookie_time(void)
571 {
572 	u64 val = get_jiffies_64();
573 
574 	do_div(val, TCP_SYNCOOKIE_PERIOD);
575 	return val;
576 }
577 
578 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
579 			      u16 *mssp);
580 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
581 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
582 bool cookie_timestamp_decode(const struct net *net,
583 			     struct tcp_options_received *opt);
584 bool cookie_ecn_ok(const struct tcp_options_received *opt,
585 		   const struct net *net, const struct dst_entry *dst);
586 
587 /* From net/ipv6/syncookies.c */
588 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
589 		      u32 cookie);
590 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
591 
592 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
593 			      const struct tcphdr *th, u16 *mssp);
594 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
595 #endif
596 /* tcp_output.c */
597 
598 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
599 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
600 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
601 			       int nonagle);
602 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
603 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
604 void tcp_retransmit_timer(struct sock *sk);
605 void tcp_xmit_retransmit_queue(struct sock *);
606 void tcp_simple_retransmit(struct sock *);
607 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
608 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
609 enum tcp_queue {
610 	TCP_FRAG_IN_WRITE_QUEUE,
611 	TCP_FRAG_IN_RTX_QUEUE,
612 };
613 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
614 		 struct sk_buff *skb, u32 len,
615 		 unsigned int mss_now, gfp_t gfp);
616 
617 void tcp_send_probe0(struct sock *);
618 int tcp_write_wakeup(struct sock *, int mib);
619 void tcp_send_fin(struct sock *sk);
620 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
621 int tcp_send_synack(struct sock *);
622 void tcp_push_one(struct sock *, unsigned int mss_now);
623 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
624 void tcp_send_ack(struct sock *sk);
625 void tcp_send_delayed_ack(struct sock *sk);
626 void tcp_send_loss_probe(struct sock *sk);
627 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
628 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
629 			     const struct sk_buff *next_skb);
630 
631 /* tcp_input.c */
632 void tcp_rearm_rto(struct sock *sk);
633 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
634 void tcp_reset(struct sock *sk, struct sk_buff *skb);
635 void tcp_fin(struct sock *sk);
636 void tcp_check_space(struct sock *sk);
637 void tcp_sack_compress_send_ack(struct sock *sk);
638 
639 /* tcp_timer.c */
640 void tcp_init_xmit_timers(struct sock *);
641 static inline void tcp_clear_xmit_timers(struct sock *sk)
642 {
643 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
644 		__sock_put(sk);
645 
646 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
647 		__sock_put(sk);
648 
649 	inet_csk_clear_xmit_timers(sk);
650 }
651 
652 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
653 unsigned int tcp_current_mss(struct sock *sk);
654 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
655 
656 /* Bound MSS / TSO packet size with the half of the window */
657 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
658 {
659 	int cutoff;
660 
661 	/* When peer uses tiny windows, there is no use in packetizing
662 	 * to sub-MSS pieces for the sake of SWS or making sure there
663 	 * are enough packets in the pipe for fast recovery.
664 	 *
665 	 * On the other hand, for extremely large MSS devices, handling
666 	 * smaller than MSS windows in this way does make sense.
667 	 */
668 	if (tp->max_window > TCP_MSS_DEFAULT)
669 		cutoff = (tp->max_window >> 1);
670 	else
671 		cutoff = tp->max_window;
672 
673 	if (cutoff && pktsize > cutoff)
674 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
675 	else
676 		return pktsize;
677 }
678 
679 /* tcp.c */
680 void tcp_get_info(struct sock *, struct tcp_info *);
681 
682 /* Read 'sendfile()'-style from a TCP socket */
683 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
684 		  sk_read_actor_t recv_actor);
685 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
686 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
687 void tcp_read_done(struct sock *sk, size_t len);
688 
689 void tcp_initialize_rcv_mss(struct sock *sk);
690 
691 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
692 int tcp_mss_to_mtu(struct sock *sk, int mss);
693 void tcp_mtup_init(struct sock *sk);
694 
695 static inline void tcp_bound_rto(const struct sock *sk)
696 {
697 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
698 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
699 }
700 
701 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
702 {
703 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
704 }
705 
706 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
707 {
708 	/* mptcp hooks are only on the slow path */
709 	if (sk_is_mptcp((struct sock *)tp))
710 		return;
711 
712 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
713 			       ntohl(TCP_FLAG_ACK) |
714 			       snd_wnd);
715 }
716 
717 static inline void tcp_fast_path_on(struct tcp_sock *tp)
718 {
719 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
720 }
721 
722 static inline void tcp_fast_path_check(struct sock *sk)
723 {
724 	struct tcp_sock *tp = tcp_sk(sk);
725 
726 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
727 	    tp->rcv_wnd &&
728 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
729 	    !tp->urg_data)
730 		tcp_fast_path_on(tp);
731 }
732 
733 u32 tcp_delack_max(const struct sock *sk);
734 
735 /* Compute the actual rto_min value */
736 static inline u32 tcp_rto_min(const struct sock *sk)
737 {
738 	const struct dst_entry *dst = __sk_dst_get(sk);
739 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
740 
741 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
742 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
743 	return rto_min;
744 }
745 
746 static inline u32 tcp_rto_min_us(const struct sock *sk)
747 {
748 	return jiffies_to_usecs(tcp_rto_min(sk));
749 }
750 
751 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
752 {
753 	return dst_metric_locked(dst, RTAX_CC_ALGO);
754 }
755 
756 /* Minimum RTT in usec. ~0 means not available. */
757 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
758 {
759 	return minmax_get(&tp->rtt_min);
760 }
761 
762 /* Compute the actual receive window we are currently advertising.
763  * Rcv_nxt can be after the window if our peer push more data
764  * than the offered window.
765  */
766 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
767 {
768 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
769 
770 	if (win < 0)
771 		win = 0;
772 	return (u32) win;
773 }
774 
775 /* Choose a new window, without checks for shrinking, and without
776  * scaling applied to the result.  The caller does these things
777  * if necessary.  This is a "raw" window selection.
778  */
779 u32 __tcp_select_window(struct sock *sk);
780 
781 void tcp_send_window_probe(struct sock *sk);
782 
783 /* TCP uses 32bit jiffies to save some space.
784  * Note that this is different from tcp_time_stamp, which
785  * historically has been the same until linux-4.13.
786  */
787 #define tcp_jiffies32 ((u32)jiffies)
788 
789 /*
790  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
791  * It is no longer tied to jiffies, but to 1 ms clock.
792  * Note: double check if you want to use tcp_jiffies32 instead of this.
793  */
794 #define TCP_TS_HZ	1000
795 
796 static inline u64 tcp_clock_ns(void)
797 {
798 	return ktime_get_ns();
799 }
800 
801 static inline u64 tcp_clock_us(void)
802 {
803 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
804 }
805 
806 static inline u64 tcp_clock_ms(void)
807 {
808 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
809 }
810 
811 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
812  * or usec resolution. Each socket carries a flag to select one or other
813  * resolution, as the route attribute could change anytime.
814  * Each flow must stick to initial resolution.
815  */
816 static inline u32 tcp_clock_ts(bool usec_ts)
817 {
818 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
819 }
820 
821 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
822 {
823 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
824 }
825 
826 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
827 {
828 	if (tp->tcp_usec_ts)
829 		return tp->tcp_mstamp;
830 	return tcp_time_stamp_ms(tp);
831 }
832 
833 void tcp_mstamp_refresh(struct tcp_sock *tp);
834 
835 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
836 {
837 	return max_t(s64, t1 - t0, 0);
838 }
839 
840 /* provide the departure time in us unit */
841 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
842 {
843 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
844 }
845 
846 /* Provide skb TSval in usec or ms unit */
847 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
848 {
849 	if (usec_ts)
850 		return tcp_skb_timestamp_us(skb);
851 
852 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
853 }
854 
855 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
856 {
857 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
858 }
859 
860 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
861 {
862 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
863 }
864 
865 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
866 
867 #define TCPHDR_FIN 0x01
868 #define TCPHDR_SYN 0x02
869 #define TCPHDR_RST 0x04
870 #define TCPHDR_PSH 0x08
871 #define TCPHDR_ACK 0x10
872 #define TCPHDR_URG 0x20
873 #define TCPHDR_ECE 0x40
874 #define TCPHDR_CWR 0x80
875 
876 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
877 
878 /* This is what the send packet queuing engine uses to pass
879  * TCP per-packet control information to the transmission code.
880  * We also store the host-order sequence numbers in here too.
881  * This is 44 bytes if IPV6 is enabled.
882  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
883  */
884 struct tcp_skb_cb {
885 	__u32		seq;		/* Starting sequence number	*/
886 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
887 	union {
888 		/* Note : tcp_tw_isn is used in input path only
889 		 *	  (isn chosen by tcp_timewait_state_process())
890 		 *
891 		 * 	  tcp_gso_segs/size are used in write queue only,
892 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
893 		 */
894 		__u32		tcp_tw_isn;
895 		struct {
896 			u16	tcp_gso_segs;
897 			u16	tcp_gso_size;
898 		};
899 	};
900 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
901 
902 	__u8		sacked;		/* State flags for SACK.	*/
903 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
904 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
905 #define TCPCB_LOST		0x04	/* SKB is lost			*/
906 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
907 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
908 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
909 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
910 				TCPCB_REPAIRED)
911 
912 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
913 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
914 			eor:1,		/* Is skb MSG_EOR marked? */
915 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
916 			unused:5;
917 	__u32		ack_seq;	/* Sequence number ACK'd	*/
918 	union {
919 		struct {
920 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
921 			/* There is space for up to 24 bytes */
922 			__u32 is_app_limited:1, /* cwnd not fully used? */
923 			      delivered_ce:20,
924 			      unused:11;
925 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
926 			__u32 delivered;
927 			/* start of send pipeline phase */
928 			u64 first_tx_mstamp;
929 			/* when we reached the "delivered" count */
930 			u64 delivered_mstamp;
931 		} tx;   /* only used for outgoing skbs */
932 		union {
933 			struct inet_skb_parm	h4;
934 #if IS_ENABLED(CONFIG_IPV6)
935 			struct inet6_skb_parm	h6;
936 #endif
937 		} header;	/* For incoming skbs */
938 	};
939 };
940 
941 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
942 
943 extern const struct inet_connection_sock_af_ops ipv4_specific;
944 
945 #if IS_ENABLED(CONFIG_IPV6)
946 /* This is the variant of inet6_iif() that must be used by TCP,
947  * as TCP moves IP6CB into a different location in skb->cb[]
948  */
949 static inline int tcp_v6_iif(const struct sk_buff *skb)
950 {
951 	return TCP_SKB_CB(skb)->header.h6.iif;
952 }
953 
954 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
955 {
956 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
957 
958 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
959 }
960 
961 /* TCP_SKB_CB reference means this can not be used from early demux */
962 static inline int tcp_v6_sdif(const struct sk_buff *skb)
963 {
964 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
965 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
966 		return TCP_SKB_CB(skb)->header.h6.iif;
967 #endif
968 	return 0;
969 }
970 
971 extern const struct inet_connection_sock_af_ops ipv6_specific;
972 
973 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
974 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
975 void tcp_v6_early_demux(struct sk_buff *skb);
976 
977 #endif
978 
979 /* TCP_SKB_CB reference means this can not be used from early demux */
980 static inline int tcp_v4_sdif(struct sk_buff *skb)
981 {
982 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
983 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
984 		return TCP_SKB_CB(skb)->header.h4.iif;
985 #endif
986 	return 0;
987 }
988 
989 /* Due to TSO, an SKB can be composed of multiple actual
990  * packets.  To keep these tracked properly, we use this.
991  */
992 static inline int tcp_skb_pcount(const struct sk_buff *skb)
993 {
994 	return TCP_SKB_CB(skb)->tcp_gso_segs;
995 }
996 
997 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
998 {
999 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1000 }
1001 
1002 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1003 {
1004 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1005 }
1006 
1007 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1008 static inline int tcp_skb_mss(const struct sk_buff *skb)
1009 {
1010 	return TCP_SKB_CB(skb)->tcp_gso_size;
1011 }
1012 
1013 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1014 {
1015 	return likely(!TCP_SKB_CB(skb)->eor);
1016 }
1017 
1018 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1019 					const struct sk_buff *from)
1020 {
1021 	return likely(tcp_skb_can_collapse_to(to) &&
1022 		      mptcp_skb_can_collapse(to, from) &&
1023 		      skb_pure_zcopy_same(to, from));
1024 }
1025 
1026 /* Events passed to congestion control interface */
1027 enum tcp_ca_event {
1028 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1029 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1030 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1031 	CA_EVENT_LOSS,		/* loss timeout */
1032 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1033 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1034 };
1035 
1036 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1037 enum tcp_ca_ack_event_flags {
1038 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1039 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1040 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1041 };
1042 
1043 /*
1044  * Interface for adding new TCP congestion control handlers
1045  */
1046 #define TCP_CA_NAME_MAX	16
1047 #define TCP_CA_MAX	128
1048 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1049 
1050 #define TCP_CA_UNSPEC	0
1051 
1052 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1053 #define TCP_CONG_NON_RESTRICTED 0x1
1054 /* Requires ECN/ECT set on all packets */
1055 #define TCP_CONG_NEEDS_ECN	0x2
1056 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1057 
1058 union tcp_cc_info;
1059 
1060 struct ack_sample {
1061 	u32 pkts_acked;
1062 	s32 rtt_us;
1063 	u32 in_flight;
1064 };
1065 
1066 /* A rate sample measures the number of (original/retransmitted) data
1067  * packets delivered "delivered" over an interval of time "interval_us".
1068  * The tcp_rate.c code fills in the rate sample, and congestion
1069  * control modules that define a cong_control function to run at the end
1070  * of ACK processing can optionally chose to consult this sample when
1071  * setting cwnd and pacing rate.
1072  * A sample is invalid if "delivered" or "interval_us" is negative.
1073  */
1074 struct rate_sample {
1075 	u64  prior_mstamp; /* starting timestamp for interval */
1076 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1077 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1078 	s32  delivered;		/* number of packets delivered over interval */
1079 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1080 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1081 	u32 snd_interval_us;	/* snd interval for delivered packets */
1082 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1083 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1084 	int  losses;		/* number of packets marked lost upon ACK */
1085 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1086 	u32  prior_in_flight;	/* in flight before this ACK */
1087 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1088 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1089 	bool is_retrans;	/* is sample from retransmission? */
1090 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1091 };
1092 
1093 struct tcp_congestion_ops {
1094 /* fast path fields are put first to fill one cache line */
1095 
1096 	/* return slow start threshold (required) */
1097 	u32 (*ssthresh)(struct sock *sk);
1098 
1099 	/* do new cwnd calculation (required) */
1100 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1101 
1102 	/* call before changing ca_state (optional) */
1103 	void (*set_state)(struct sock *sk, u8 new_state);
1104 
1105 	/* call when cwnd event occurs (optional) */
1106 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1107 
1108 	/* call when ack arrives (optional) */
1109 	void (*in_ack_event)(struct sock *sk, u32 flags);
1110 
1111 	/* hook for packet ack accounting (optional) */
1112 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1113 
1114 	/* override sysctl_tcp_min_tso_segs */
1115 	u32 (*min_tso_segs)(struct sock *sk);
1116 
1117 	/* call when packets are delivered to update cwnd and pacing rate,
1118 	 * after all the ca_state processing. (optional)
1119 	 */
1120 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1121 
1122 
1123 	/* new value of cwnd after loss (required) */
1124 	u32  (*undo_cwnd)(struct sock *sk);
1125 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1126 	u32 (*sndbuf_expand)(struct sock *sk);
1127 
1128 /* control/slow paths put last */
1129 	/* get info for inet_diag (optional) */
1130 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1131 			   union tcp_cc_info *info);
1132 
1133 	char 			name[TCP_CA_NAME_MAX];
1134 	struct module		*owner;
1135 	struct list_head	list;
1136 	u32			key;
1137 	u32			flags;
1138 
1139 	/* initialize private data (optional) */
1140 	void (*init)(struct sock *sk);
1141 	/* cleanup private data  (optional) */
1142 	void (*release)(struct sock *sk);
1143 } ____cacheline_aligned_in_smp;
1144 
1145 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1146 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1147 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1148 				  struct tcp_congestion_ops *old_type);
1149 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1150 
1151 void tcp_assign_congestion_control(struct sock *sk);
1152 void tcp_init_congestion_control(struct sock *sk);
1153 void tcp_cleanup_congestion_control(struct sock *sk);
1154 int tcp_set_default_congestion_control(struct net *net, const char *name);
1155 void tcp_get_default_congestion_control(struct net *net, char *name);
1156 void tcp_get_available_congestion_control(char *buf, size_t len);
1157 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1158 int tcp_set_allowed_congestion_control(char *allowed);
1159 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1160 			       bool cap_net_admin);
1161 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1162 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1163 
1164 u32 tcp_reno_ssthresh(struct sock *sk);
1165 u32 tcp_reno_undo_cwnd(struct sock *sk);
1166 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1167 extern struct tcp_congestion_ops tcp_reno;
1168 
1169 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1170 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1171 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1172 #ifdef CONFIG_INET
1173 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1174 #else
1175 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1176 {
1177 	return NULL;
1178 }
1179 #endif
1180 
1181 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1182 {
1183 	const struct inet_connection_sock *icsk = inet_csk(sk);
1184 
1185 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1186 }
1187 
1188 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1189 {
1190 	const struct inet_connection_sock *icsk = inet_csk(sk);
1191 
1192 	if (icsk->icsk_ca_ops->cwnd_event)
1193 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1194 }
1195 
1196 /* From tcp_cong.c */
1197 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1198 
1199 /* From tcp_rate.c */
1200 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1201 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1202 			    struct rate_sample *rs);
1203 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1204 		  bool is_sack_reneg, struct rate_sample *rs);
1205 void tcp_rate_check_app_limited(struct sock *sk);
1206 
1207 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1208 {
1209 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1210 }
1211 
1212 /* These functions determine how the current flow behaves in respect of SACK
1213  * handling. SACK is negotiated with the peer, and therefore it can vary
1214  * between different flows.
1215  *
1216  * tcp_is_sack - SACK enabled
1217  * tcp_is_reno - No SACK
1218  */
1219 static inline int tcp_is_sack(const struct tcp_sock *tp)
1220 {
1221 	return likely(tp->rx_opt.sack_ok);
1222 }
1223 
1224 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1225 {
1226 	return !tcp_is_sack(tp);
1227 }
1228 
1229 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1230 {
1231 	return tp->sacked_out + tp->lost_out;
1232 }
1233 
1234 /* This determines how many packets are "in the network" to the best
1235  * of our knowledge.  In many cases it is conservative, but where
1236  * detailed information is available from the receiver (via SACK
1237  * blocks etc.) we can make more aggressive calculations.
1238  *
1239  * Use this for decisions involving congestion control, use just
1240  * tp->packets_out to determine if the send queue is empty or not.
1241  *
1242  * Read this equation as:
1243  *
1244  *	"Packets sent once on transmission queue" MINUS
1245  *	"Packets left network, but not honestly ACKed yet" PLUS
1246  *	"Packets fast retransmitted"
1247  */
1248 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1249 {
1250 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1251 }
1252 
1253 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1254 
1255 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1256 {
1257 	return tp->snd_cwnd;
1258 }
1259 
1260 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1261 {
1262 	WARN_ON_ONCE((int)val <= 0);
1263 	tp->snd_cwnd = val;
1264 }
1265 
1266 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1267 {
1268 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1269 }
1270 
1271 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1272 {
1273 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1274 }
1275 
1276 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1277 {
1278 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1279 	       (1 << inet_csk(sk)->icsk_ca_state);
1280 }
1281 
1282 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1283  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1284  * ssthresh.
1285  */
1286 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1287 {
1288 	const struct tcp_sock *tp = tcp_sk(sk);
1289 
1290 	if (tcp_in_cwnd_reduction(sk))
1291 		return tp->snd_ssthresh;
1292 	else
1293 		return max(tp->snd_ssthresh,
1294 			   ((tcp_snd_cwnd(tp) >> 1) +
1295 			    (tcp_snd_cwnd(tp) >> 2)));
1296 }
1297 
1298 /* Use define here intentionally to get WARN_ON location shown at the caller */
1299 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1300 
1301 void tcp_enter_cwr(struct sock *sk);
1302 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1303 
1304 /* The maximum number of MSS of available cwnd for which TSO defers
1305  * sending if not using sysctl_tcp_tso_win_divisor.
1306  */
1307 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1308 {
1309 	return 3;
1310 }
1311 
1312 /* Returns end sequence number of the receiver's advertised window */
1313 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1314 {
1315 	return tp->snd_una + tp->snd_wnd;
1316 }
1317 
1318 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1319  * flexible approach. The RFC suggests cwnd should not be raised unless
1320  * it was fully used previously. And that's exactly what we do in
1321  * congestion avoidance mode. But in slow start we allow cwnd to grow
1322  * as long as the application has used half the cwnd.
1323  * Example :
1324  *    cwnd is 10 (IW10), but application sends 9 frames.
1325  *    We allow cwnd to reach 18 when all frames are ACKed.
1326  * This check is safe because it's as aggressive as slow start which already
1327  * risks 100% overshoot. The advantage is that we discourage application to
1328  * either send more filler packets or data to artificially blow up the cwnd
1329  * usage, and allow application-limited process to probe bw more aggressively.
1330  */
1331 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1332 {
1333 	const struct tcp_sock *tp = tcp_sk(sk);
1334 
1335 	if (tp->is_cwnd_limited)
1336 		return true;
1337 
1338 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1339 	if (tcp_in_slow_start(tp))
1340 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1341 
1342 	return false;
1343 }
1344 
1345 /* BBR congestion control needs pacing.
1346  * Same remark for SO_MAX_PACING_RATE.
1347  * sch_fq packet scheduler is efficiently handling pacing,
1348  * but is not always installed/used.
1349  * Return true if TCP stack should pace packets itself.
1350  */
1351 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1352 {
1353 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1354 }
1355 
1356 /* Estimates in how many jiffies next packet for this flow can be sent.
1357  * Scheduling a retransmit timer too early would be silly.
1358  */
1359 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1360 {
1361 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1362 
1363 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1364 }
1365 
1366 static inline void tcp_reset_xmit_timer(struct sock *sk,
1367 					const int what,
1368 					unsigned long when,
1369 					const unsigned long max_when)
1370 {
1371 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1372 				  max_when);
1373 }
1374 
1375 /* Something is really bad, we could not queue an additional packet,
1376  * because qdisc is full or receiver sent a 0 window, or we are paced.
1377  * We do not want to add fuel to the fire, or abort too early,
1378  * so make sure the timer we arm now is at least 200ms in the future,
1379  * regardless of current icsk_rto value (as it could be ~2ms)
1380  */
1381 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1382 {
1383 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1384 }
1385 
1386 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1387 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1388 					    unsigned long max_when)
1389 {
1390 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1391 			   inet_csk(sk)->icsk_backoff);
1392 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1393 
1394 	return (unsigned long)min_t(u64, when, max_when);
1395 }
1396 
1397 static inline void tcp_check_probe_timer(struct sock *sk)
1398 {
1399 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1400 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1401 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1402 }
1403 
1404 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1405 {
1406 	tp->snd_wl1 = seq;
1407 }
1408 
1409 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1410 {
1411 	tp->snd_wl1 = seq;
1412 }
1413 
1414 /*
1415  * Calculate(/check) TCP checksum
1416  */
1417 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1418 				   __be32 daddr, __wsum base)
1419 {
1420 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1421 }
1422 
1423 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1424 {
1425 	return !skb_csum_unnecessary(skb) &&
1426 		__skb_checksum_complete(skb);
1427 }
1428 
1429 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1430 		     enum skb_drop_reason *reason);
1431 
1432 
1433 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1434 void tcp_set_state(struct sock *sk, int state);
1435 void tcp_done(struct sock *sk);
1436 int tcp_abort(struct sock *sk, int err);
1437 
1438 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1439 {
1440 	rx_opt->dsack = 0;
1441 	rx_opt->num_sacks = 0;
1442 }
1443 
1444 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1445 
1446 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1447 {
1448 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 	s32 delta;
1451 
1452 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1453 	    tp->packets_out || ca_ops->cong_control)
1454 		return;
1455 	delta = tcp_jiffies32 - tp->lsndtime;
1456 	if (delta > inet_csk(sk)->icsk_rto)
1457 		tcp_cwnd_restart(sk, delta);
1458 }
1459 
1460 /* Determine a window scaling and initial window to offer. */
1461 void tcp_select_initial_window(const struct sock *sk, int __space,
1462 			       __u32 mss, __u32 *rcv_wnd,
1463 			       __u32 *window_clamp, int wscale_ok,
1464 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1465 
1466 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1467 {
1468 	s64 scaled_space = (s64)space * scaling_ratio;
1469 
1470 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1471 }
1472 
1473 static inline int tcp_win_from_space(const struct sock *sk, int space)
1474 {
1475 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1476 }
1477 
1478 /* inverse of __tcp_win_from_space() */
1479 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1480 {
1481 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1482 
1483 	do_div(val, scaling_ratio);
1484 	return val;
1485 }
1486 
1487 static inline int tcp_space_from_win(const struct sock *sk, int win)
1488 {
1489 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1490 }
1491 
1492 /* Assume a conservative default of 1200 bytes of payload per 4K page.
1493  * This may be adjusted later in tcp_measure_rcv_mss().
1494  */
1495 #define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1496 				   SKB_TRUESIZE(4096))
1497 
1498 static inline void tcp_scaling_ratio_init(struct sock *sk)
1499 {
1500 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1501 }
1502 
1503 /* Note: caller must be prepared to deal with negative returns */
1504 static inline int tcp_space(const struct sock *sk)
1505 {
1506 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1507 				  READ_ONCE(sk->sk_backlog.len) -
1508 				  atomic_read(&sk->sk_rmem_alloc));
1509 }
1510 
1511 static inline int tcp_full_space(const struct sock *sk)
1512 {
1513 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1514 }
1515 
1516 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1517 {
1518 	int unused_mem = sk_unused_reserved_mem(sk);
1519 	struct tcp_sock *tp = tcp_sk(sk);
1520 
1521 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1522 	if (unused_mem)
1523 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1524 					 tcp_win_from_space(sk, unused_mem));
1525 }
1526 
1527 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1528 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1529 
1530 
1531 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1532  * If 87.5 % (7/8) of the space has been consumed, we want to override
1533  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1534  * len/truesize ratio.
1535  */
1536 static inline bool tcp_rmem_pressure(const struct sock *sk)
1537 {
1538 	int rcvbuf, threshold;
1539 
1540 	if (tcp_under_memory_pressure(sk))
1541 		return true;
1542 
1543 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1544 	threshold = rcvbuf - (rcvbuf >> 3);
1545 
1546 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1547 }
1548 
1549 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1550 {
1551 	const struct tcp_sock *tp = tcp_sk(sk);
1552 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1553 
1554 	if (avail <= 0)
1555 		return false;
1556 
1557 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1558 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1559 }
1560 
1561 extern void tcp_openreq_init_rwin(struct request_sock *req,
1562 				  const struct sock *sk_listener,
1563 				  const struct dst_entry *dst);
1564 
1565 void tcp_enter_memory_pressure(struct sock *sk);
1566 void tcp_leave_memory_pressure(struct sock *sk);
1567 
1568 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1569 {
1570 	struct net *net = sock_net((struct sock *)tp);
1571 	int val;
1572 
1573 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1574 	 * and do_tcp_setsockopt().
1575 	 */
1576 	val = READ_ONCE(tp->keepalive_intvl);
1577 
1578 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1579 }
1580 
1581 static inline int keepalive_time_when(const struct tcp_sock *tp)
1582 {
1583 	struct net *net = sock_net((struct sock *)tp);
1584 	int val;
1585 
1586 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1587 	val = READ_ONCE(tp->keepalive_time);
1588 
1589 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1590 }
1591 
1592 static inline int keepalive_probes(const struct tcp_sock *tp)
1593 {
1594 	struct net *net = sock_net((struct sock *)tp);
1595 	int val;
1596 
1597 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1598 	 * and do_tcp_setsockopt().
1599 	 */
1600 	val = READ_ONCE(tp->keepalive_probes);
1601 
1602 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1603 }
1604 
1605 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1606 {
1607 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1608 
1609 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1610 			  tcp_jiffies32 - tp->rcv_tstamp);
1611 }
1612 
1613 static inline int tcp_fin_time(const struct sock *sk)
1614 {
1615 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1616 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1617 	const int rto = inet_csk(sk)->icsk_rto;
1618 
1619 	if (fin_timeout < (rto << 2) - (rto >> 1))
1620 		fin_timeout = (rto << 2) - (rto >> 1);
1621 
1622 	return fin_timeout;
1623 }
1624 
1625 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1626 				  int paws_win)
1627 {
1628 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1629 		return true;
1630 	if (unlikely(!time_before32(ktime_get_seconds(),
1631 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1632 		return true;
1633 	/*
1634 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1635 	 * then following tcp messages have valid values. Ignore 0 value,
1636 	 * or else 'negative' tsval might forbid us to accept their packets.
1637 	 */
1638 	if (!rx_opt->ts_recent)
1639 		return true;
1640 	return false;
1641 }
1642 
1643 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1644 				   int rst)
1645 {
1646 	if (tcp_paws_check(rx_opt, 0))
1647 		return false;
1648 
1649 	/* RST segments are not recommended to carry timestamp,
1650 	   and, if they do, it is recommended to ignore PAWS because
1651 	   "their cleanup function should take precedence over timestamps."
1652 	   Certainly, it is mistake. It is necessary to understand the reasons
1653 	   of this constraint to relax it: if peer reboots, clock may go
1654 	   out-of-sync and half-open connections will not be reset.
1655 	   Actually, the problem would be not existing if all
1656 	   the implementations followed draft about maintaining clock
1657 	   via reboots. Linux-2.2 DOES NOT!
1658 
1659 	   However, we can relax time bounds for RST segments to MSL.
1660 	 */
1661 	if (rst && !time_before32(ktime_get_seconds(),
1662 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1663 		return false;
1664 	return true;
1665 }
1666 
1667 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1668 			  int mib_idx, u32 *last_oow_ack_time);
1669 
1670 static inline void tcp_mib_init(struct net *net)
1671 {
1672 	/* See RFC 2012 */
1673 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1674 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1675 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1676 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1677 }
1678 
1679 /* from STCP */
1680 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1681 {
1682 	tp->lost_skb_hint = NULL;
1683 }
1684 
1685 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1686 {
1687 	tcp_clear_retrans_hints_partial(tp);
1688 	tp->retransmit_skb_hint = NULL;
1689 }
1690 
1691 union tcp_md5_addr {
1692 	struct in_addr  a4;
1693 #if IS_ENABLED(CONFIG_IPV6)
1694 	struct in6_addr	a6;
1695 #endif
1696 };
1697 
1698 /* - key database */
1699 struct tcp_md5sig_key {
1700 	struct hlist_node	node;
1701 	u8			keylen;
1702 	u8			family; /* AF_INET or AF_INET6 */
1703 	u8			prefixlen;
1704 	u8			flags;
1705 	union tcp_md5_addr	addr;
1706 	int			l3index; /* set if key added with L3 scope */
1707 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1708 	struct rcu_head		rcu;
1709 };
1710 
1711 /* - sock block */
1712 struct tcp_md5sig_info {
1713 	struct hlist_head	head;
1714 	struct rcu_head		rcu;
1715 };
1716 
1717 /* - pseudo header */
1718 struct tcp4_pseudohdr {
1719 	__be32		saddr;
1720 	__be32		daddr;
1721 	__u8		pad;
1722 	__u8		protocol;
1723 	__be16		len;
1724 };
1725 
1726 struct tcp6_pseudohdr {
1727 	struct in6_addr	saddr;
1728 	struct in6_addr daddr;
1729 	__be32		len;
1730 	__be32		protocol;	/* including padding */
1731 };
1732 
1733 union tcp_md5sum_block {
1734 	struct tcp4_pseudohdr ip4;
1735 #if IS_ENABLED(CONFIG_IPV6)
1736 	struct tcp6_pseudohdr ip6;
1737 #endif
1738 };
1739 
1740 /* - pool: digest algorithm, hash description and scratch buffer */
1741 struct tcp_md5sig_pool {
1742 	struct ahash_request	*md5_req;
1743 	void			*scratch;
1744 };
1745 
1746 /* - functions */
1747 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1748 			const struct sock *sk, const struct sk_buff *skb);
1749 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1750 		   int family, u8 prefixlen, int l3index, u8 flags,
1751 		   const u8 *newkey, u8 newkeylen);
1752 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1753 		     int family, u8 prefixlen, int l3index,
1754 		     struct tcp_md5sig_key *key);
1755 
1756 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1757 		   int family, u8 prefixlen, int l3index, u8 flags);
1758 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1759 					 const struct sock *addr_sk);
1760 
1761 #ifdef CONFIG_TCP_MD5SIG
1762 #include <linux/jump_label.h>
1763 extern struct static_key_false_deferred tcp_md5_needed;
1764 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1765 					   const union tcp_md5_addr *addr,
1766 					   int family);
1767 static inline struct tcp_md5sig_key *
1768 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1769 		  const union tcp_md5_addr *addr, int family)
1770 {
1771 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1772 		return NULL;
1773 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1774 }
1775 
1776 enum skb_drop_reason
1777 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1778 		     const void *saddr, const void *daddr,
1779 		     int family, int dif, int sdif);
1780 
1781 
1782 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1783 #else
1784 static inline struct tcp_md5sig_key *
1785 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1786 		  const union tcp_md5_addr *addr, int family)
1787 {
1788 	return NULL;
1789 }
1790 
1791 static inline enum skb_drop_reason
1792 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1793 		     const void *saddr, const void *daddr,
1794 		     int family, int dif, int sdif)
1795 {
1796 	return SKB_NOT_DROPPED_YET;
1797 }
1798 #define tcp_twsk_md5_key(twsk)	NULL
1799 #endif
1800 
1801 bool tcp_alloc_md5sig_pool(void);
1802 
1803 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1804 static inline void tcp_put_md5sig_pool(void)
1805 {
1806 	local_bh_enable();
1807 }
1808 
1809 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1810 			  unsigned int header_len);
1811 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1812 		     const struct tcp_md5sig_key *key);
1813 
1814 /* From tcp_fastopen.c */
1815 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1816 			    struct tcp_fastopen_cookie *cookie);
1817 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1818 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1819 			    u16 try_exp);
1820 struct tcp_fastopen_request {
1821 	/* Fast Open cookie. Size 0 means a cookie request */
1822 	struct tcp_fastopen_cookie	cookie;
1823 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1824 	size_t				size;
1825 	int				copied;	/* queued in tcp_connect() */
1826 	struct ubuf_info		*uarg;
1827 };
1828 void tcp_free_fastopen_req(struct tcp_sock *tp);
1829 void tcp_fastopen_destroy_cipher(struct sock *sk);
1830 void tcp_fastopen_ctx_destroy(struct net *net);
1831 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1832 			      void *primary_key, void *backup_key);
1833 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1834 			    u64 *key);
1835 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1836 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1837 			      struct request_sock *req,
1838 			      struct tcp_fastopen_cookie *foc,
1839 			      const struct dst_entry *dst);
1840 void tcp_fastopen_init_key_once(struct net *net);
1841 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1842 			     struct tcp_fastopen_cookie *cookie);
1843 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1844 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1845 #define TCP_FASTOPEN_KEY_MAX 2
1846 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1847 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1848 
1849 /* Fastopen key context */
1850 struct tcp_fastopen_context {
1851 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1852 	int		num;
1853 	struct rcu_head	rcu;
1854 };
1855 
1856 void tcp_fastopen_active_disable(struct sock *sk);
1857 bool tcp_fastopen_active_should_disable(struct sock *sk);
1858 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1859 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1860 
1861 /* Caller needs to wrap with rcu_read_(un)lock() */
1862 static inline
1863 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1864 {
1865 	struct tcp_fastopen_context *ctx;
1866 
1867 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1868 	if (!ctx)
1869 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1870 	return ctx;
1871 }
1872 
1873 static inline
1874 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1875 			       const struct tcp_fastopen_cookie *orig)
1876 {
1877 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1878 	    orig->len == foc->len &&
1879 	    !memcmp(orig->val, foc->val, foc->len))
1880 		return true;
1881 	return false;
1882 }
1883 
1884 static inline
1885 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1886 {
1887 	return ctx->num;
1888 }
1889 
1890 /* Latencies incurred by various limits for a sender. They are
1891  * chronograph-like stats that are mutually exclusive.
1892  */
1893 enum tcp_chrono {
1894 	TCP_CHRONO_UNSPEC,
1895 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1896 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1897 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1898 	__TCP_CHRONO_MAX,
1899 };
1900 
1901 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1902 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1903 
1904 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1905  * the same memory storage than skb->destructor/_skb_refdst
1906  */
1907 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1908 {
1909 	skb->destructor = NULL;
1910 	skb->_skb_refdst = 0UL;
1911 }
1912 
1913 #define tcp_skb_tsorted_save(skb) {		\
1914 	unsigned long _save = skb->_skb_refdst;	\
1915 	skb->_skb_refdst = 0UL;
1916 
1917 #define tcp_skb_tsorted_restore(skb)		\
1918 	skb->_skb_refdst = _save;		\
1919 }
1920 
1921 void tcp_write_queue_purge(struct sock *sk);
1922 
1923 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1924 {
1925 	return skb_rb_first(&sk->tcp_rtx_queue);
1926 }
1927 
1928 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1929 {
1930 	return skb_rb_last(&sk->tcp_rtx_queue);
1931 }
1932 
1933 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1934 {
1935 	return skb_peek_tail(&sk->sk_write_queue);
1936 }
1937 
1938 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1939 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1940 
1941 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1942 {
1943 	return skb_peek(&sk->sk_write_queue);
1944 }
1945 
1946 static inline bool tcp_skb_is_last(const struct sock *sk,
1947 				   const struct sk_buff *skb)
1948 {
1949 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1950 }
1951 
1952 /**
1953  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1954  * @sk: socket
1955  *
1956  * Since the write queue can have a temporary empty skb in it,
1957  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1958  */
1959 static inline bool tcp_write_queue_empty(const struct sock *sk)
1960 {
1961 	const struct tcp_sock *tp = tcp_sk(sk);
1962 
1963 	return tp->write_seq == tp->snd_nxt;
1964 }
1965 
1966 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1967 {
1968 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1969 }
1970 
1971 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1972 {
1973 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1974 }
1975 
1976 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1977 {
1978 	__skb_queue_tail(&sk->sk_write_queue, skb);
1979 
1980 	/* Queue it, remembering where we must start sending. */
1981 	if (sk->sk_write_queue.next == skb)
1982 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1983 }
1984 
1985 /* Insert new before skb on the write queue of sk.  */
1986 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1987 						  struct sk_buff *skb,
1988 						  struct sock *sk)
1989 {
1990 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1991 }
1992 
1993 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1994 {
1995 	tcp_skb_tsorted_anchor_cleanup(skb);
1996 	__skb_unlink(skb, &sk->sk_write_queue);
1997 }
1998 
1999 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2000 
2001 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2002 {
2003 	tcp_skb_tsorted_anchor_cleanup(skb);
2004 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2005 }
2006 
2007 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2008 {
2009 	list_del(&skb->tcp_tsorted_anchor);
2010 	tcp_rtx_queue_unlink(skb, sk);
2011 	tcp_wmem_free_skb(sk, skb);
2012 }
2013 
2014 static inline void tcp_push_pending_frames(struct sock *sk)
2015 {
2016 	if (tcp_send_head(sk)) {
2017 		struct tcp_sock *tp = tcp_sk(sk);
2018 
2019 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2020 	}
2021 }
2022 
2023 /* Start sequence of the skb just after the highest skb with SACKed
2024  * bit, valid only if sacked_out > 0 or when the caller has ensured
2025  * validity by itself.
2026  */
2027 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2028 {
2029 	if (!tp->sacked_out)
2030 		return tp->snd_una;
2031 
2032 	if (tp->highest_sack == NULL)
2033 		return tp->snd_nxt;
2034 
2035 	return TCP_SKB_CB(tp->highest_sack)->seq;
2036 }
2037 
2038 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2039 {
2040 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2041 }
2042 
2043 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2044 {
2045 	return tcp_sk(sk)->highest_sack;
2046 }
2047 
2048 static inline void tcp_highest_sack_reset(struct sock *sk)
2049 {
2050 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2051 }
2052 
2053 /* Called when old skb is about to be deleted and replaced by new skb */
2054 static inline void tcp_highest_sack_replace(struct sock *sk,
2055 					    struct sk_buff *old,
2056 					    struct sk_buff *new)
2057 {
2058 	if (old == tcp_highest_sack(sk))
2059 		tcp_sk(sk)->highest_sack = new;
2060 }
2061 
2062 /* This helper checks if socket has IP_TRANSPARENT set */
2063 static inline bool inet_sk_transparent(const struct sock *sk)
2064 {
2065 	switch (sk->sk_state) {
2066 	case TCP_TIME_WAIT:
2067 		return inet_twsk(sk)->tw_transparent;
2068 	case TCP_NEW_SYN_RECV:
2069 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2070 	}
2071 	return inet_test_bit(TRANSPARENT, sk);
2072 }
2073 
2074 /* Determines whether this is a thin stream (which may suffer from
2075  * increased latency). Used to trigger latency-reducing mechanisms.
2076  */
2077 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2078 {
2079 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2080 }
2081 
2082 /* /proc */
2083 enum tcp_seq_states {
2084 	TCP_SEQ_STATE_LISTENING,
2085 	TCP_SEQ_STATE_ESTABLISHED,
2086 };
2087 
2088 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2089 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2090 void tcp_seq_stop(struct seq_file *seq, void *v);
2091 
2092 struct tcp_seq_afinfo {
2093 	sa_family_t			family;
2094 };
2095 
2096 struct tcp_iter_state {
2097 	struct seq_net_private	p;
2098 	enum tcp_seq_states	state;
2099 	struct sock		*syn_wait_sk;
2100 	int			bucket, offset, sbucket, num;
2101 	loff_t			last_pos;
2102 };
2103 
2104 extern struct request_sock_ops tcp_request_sock_ops;
2105 extern struct request_sock_ops tcp6_request_sock_ops;
2106 
2107 void tcp_v4_destroy_sock(struct sock *sk);
2108 
2109 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2110 				netdev_features_t features);
2111 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2112 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2113 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2114 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2115 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2116 #ifdef CONFIG_INET
2117 void tcp_gro_complete(struct sk_buff *skb);
2118 #else
2119 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2120 #endif
2121 
2122 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2123 
2124 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2125 {
2126 	struct net *net = sock_net((struct sock *)tp);
2127 	u32 val;
2128 
2129 	val = READ_ONCE(tp->notsent_lowat);
2130 
2131 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2132 }
2133 
2134 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2135 
2136 #ifdef CONFIG_PROC_FS
2137 int tcp4_proc_init(void);
2138 void tcp4_proc_exit(void);
2139 #endif
2140 
2141 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2142 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2143 		     const struct tcp_request_sock_ops *af_ops,
2144 		     struct sock *sk, struct sk_buff *skb);
2145 
2146 /* TCP af-specific functions */
2147 struct tcp_sock_af_ops {
2148 #ifdef CONFIG_TCP_MD5SIG
2149 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2150 						const struct sock *addr_sk);
2151 	int		(*calc_md5_hash)(char *location,
2152 					 const struct tcp_md5sig_key *md5,
2153 					 const struct sock *sk,
2154 					 const struct sk_buff *skb);
2155 	int		(*md5_parse)(struct sock *sk,
2156 				     int optname,
2157 				     sockptr_t optval,
2158 				     int optlen);
2159 #endif
2160 };
2161 
2162 struct tcp_request_sock_ops {
2163 	u16 mss_clamp;
2164 #ifdef CONFIG_TCP_MD5SIG
2165 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2166 						 const struct sock *addr_sk);
2167 	int		(*calc_md5_hash) (char *location,
2168 					  const struct tcp_md5sig_key *md5,
2169 					  const struct sock *sk,
2170 					  const struct sk_buff *skb);
2171 #endif
2172 #ifdef CONFIG_SYN_COOKIES
2173 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2174 				 __u16 *mss);
2175 #endif
2176 	struct dst_entry *(*route_req)(const struct sock *sk,
2177 				       struct sk_buff *skb,
2178 				       struct flowi *fl,
2179 				       struct request_sock *req);
2180 	u32 (*init_seq)(const struct sk_buff *skb);
2181 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2182 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2183 			   struct flowi *fl, struct request_sock *req,
2184 			   struct tcp_fastopen_cookie *foc,
2185 			   enum tcp_synack_type synack_type,
2186 			   struct sk_buff *syn_skb);
2187 };
2188 
2189 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2190 #if IS_ENABLED(CONFIG_IPV6)
2191 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2192 #endif
2193 
2194 #ifdef CONFIG_SYN_COOKIES
2195 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2196 					 const struct sock *sk, struct sk_buff *skb,
2197 					 __u16 *mss)
2198 {
2199 	tcp_synq_overflow(sk);
2200 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2201 	return ops->cookie_init_seq(skb, mss);
2202 }
2203 #else
2204 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2205 					 const struct sock *sk, struct sk_buff *skb,
2206 					 __u16 *mss)
2207 {
2208 	return 0;
2209 }
2210 #endif
2211 
2212 int tcpv4_offload_init(void);
2213 
2214 void tcp_v4_init(void);
2215 void tcp_init(void);
2216 
2217 /* tcp_recovery.c */
2218 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2219 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2220 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2221 				u32 reo_wnd);
2222 extern bool tcp_rack_mark_lost(struct sock *sk);
2223 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2224 			     u64 xmit_time);
2225 extern void tcp_rack_reo_timeout(struct sock *sk);
2226 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2227 
2228 /* tcp_plb.c */
2229 
2230 /*
2231  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2232  * expects cong_ratio which represents fraction of traffic that experienced
2233  * congestion over a single RTT. In order to avoid floating point operations,
2234  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2235  */
2236 #define TCP_PLB_SCALE 8
2237 
2238 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2239 struct tcp_plb_state {
2240 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2241 		unused:3;
2242 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2243 };
2244 
2245 static inline void tcp_plb_init(const struct sock *sk,
2246 				struct tcp_plb_state *plb)
2247 {
2248 	plb->consec_cong_rounds = 0;
2249 	plb->pause_until = 0;
2250 }
2251 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2252 			  const int cong_ratio);
2253 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2254 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2255 
2256 /* At how many usecs into the future should the RTO fire? */
2257 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2258 {
2259 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2260 	u32 rto = inet_csk(sk)->icsk_rto;
2261 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2262 
2263 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2264 }
2265 
2266 /*
2267  * Save and compile IPv4 options, return a pointer to it
2268  */
2269 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2270 							 struct sk_buff *skb)
2271 {
2272 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2273 	struct ip_options_rcu *dopt = NULL;
2274 
2275 	if (opt->optlen) {
2276 		int opt_size = sizeof(*dopt) + opt->optlen;
2277 
2278 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2279 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2280 			kfree(dopt);
2281 			dopt = NULL;
2282 		}
2283 	}
2284 	return dopt;
2285 }
2286 
2287 /* locally generated TCP pure ACKs have skb->truesize == 2
2288  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2289  * This is much faster than dissecting the packet to find out.
2290  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2291  */
2292 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2293 {
2294 	return skb->truesize == 2;
2295 }
2296 
2297 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2298 {
2299 	skb->truesize = 2;
2300 }
2301 
2302 static inline int tcp_inq(struct sock *sk)
2303 {
2304 	struct tcp_sock *tp = tcp_sk(sk);
2305 	int answ;
2306 
2307 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2308 		answ = 0;
2309 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2310 		   !tp->urg_data ||
2311 		   before(tp->urg_seq, tp->copied_seq) ||
2312 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2313 
2314 		answ = tp->rcv_nxt - tp->copied_seq;
2315 
2316 		/* Subtract 1, if FIN was received */
2317 		if (answ && sock_flag(sk, SOCK_DONE))
2318 			answ--;
2319 	} else {
2320 		answ = tp->urg_seq - tp->copied_seq;
2321 	}
2322 
2323 	return answ;
2324 }
2325 
2326 int tcp_peek_len(struct socket *sock);
2327 
2328 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2329 {
2330 	u16 segs_in;
2331 
2332 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2333 
2334 	/* We update these fields while other threads might
2335 	 * read them from tcp_get_info()
2336 	 */
2337 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2338 	if (skb->len > tcp_hdrlen(skb))
2339 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2340 }
2341 
2342 /*
2343  * TCP listen path runs lockless.
2344  * We forced "struct sock" to be const qualified to make sure
2345  * we don't modify one of its field by mistake.
2346  * Here, we increment sk_drops which is an atomic_t, so we can safely
2347  * make sock writable again.
2348  */
2349 static inline void tcp_listendrop(const struct sock *sk)
2350 {
2351 	atomic_inc(&((struct sock *)sk)->sk_drops);
2352 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2353 }
2354 
2355 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2356 
2357 /*
2358  * Interface for adding Upper Level Protocols over TCP
2359  */
2360 
2361 #define TCP_ULP_NAME_MAX	16
2362 #define TCP_ULP_MAX		128
2363 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2364 
2365 struct tcp_ulp_ops {
2366 	struct list_head	list;
2367 
2368 	/* initialize ulp */
2369 	int (*init)(struct sock *sk);
2370 	/* update ulp */
2371 	void (*update)(struct sock *sk, struct proto *p,
2372 		       void (*write_space)(struct sock *sk));
2373 	/* cleanup ulp */
2374 	void (*release)(struct sock *sk);
2375 	/* diagnostic */
2376 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2377 	size_t (*get_info_size)(const struct sock *sk);
2378 	/* clone ulp */
2379 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2380 		      const gfp_t priority);
2381 
2382 	char		name[TCP_ULP_NAME_MAX];
2383 	struct module	*owner;
2384 };
2385 int tcp_register_ulp(struct tcp_ulp_ops *type);
2386 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2387 int tcp_set_ulp(struct sock *sk, const char *name);
2388 void tcp_get_available_ulp(char *buf, size_t len);
2389 void tcp_cleanup_ulp(struct sock *sk);
2390 void tcp_update_ulp(struct sock *sk, struct proto *p,
2391 		    void (*write_space)(struct sock *sk));
2392 
2393 #define MODULE_ALIAS_TCP_ULP(name)				\
2394 	__MODULE_INFO(alias, alias_userspace, name);		\
2395 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2396 
2397 #ifdef CONFIG_NET_SOCK_MSG
2398 struct sk_msg;
2399 struct sk_psock;
2400 
2401 #ifdef CONFIG_BPF_SYSCALL
2402 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2403 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2404 #endif /* CONFIG_BPF_SYSCALL */
2405 
2406 #ifdef CONFIG_INET
2407 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2408 #else
2409 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2410 {
2411 }
2412 #endif
2413 
2414 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2415 			  struct sk_msg *msg, u32 bytes, int flags);
2416 #endif /* CONFIG_NET_SOCK_MSG */
2417 
2418 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2419 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2420 {
2421 }
2422 #endif
2423 
2424 #ifdef CONFIG_CGROUP_BPF
2425 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2426 				      struct sk_buff *skb,
2427 				      unsigned int end_offset)
2428 {
2429 	skops->skb = skb;
2430 	skops->skb_data_end = skb->data + end_offset;
2431 }
2432 #else
2433 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2434 				      struct sk_buff *skb,
2435 				      unsigned int end_offset)
2436 {
2437 }
2438 #endif
2439 
2440 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2441  * is < 0, then the BPF op failed (for example if the loaded BPF
2442  * program does not support the chosen operation or there is no BPF
2443  * program loaded).
2444  */
2445 #ifdef CONFIG_BPF
2446 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2447 {
2448 	struct bpf_sock_ops_kern sock_ops;
2449 	int ret;
2450 
2451 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2452 	if (sk_fullsock(sk)) {
2453 		sock_ops.is_fullsock = 1;
2454 		sock_owned_by_me(sk);
2455 	}
2456 
2457 	sock_ops.sk = sk;
2458 	sock_ops.op = op;
2459 	if (nargs > 0)
2460 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2461 
2462 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2463 	if (ret == 0)
2464 		ret = sock_ops.reply;
2465 	else
2466 		ret = -1;
2467 	return ret;
2468 }
2469 
2470 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2471 {
2472 	u32 args[2] = {arg1, arg2};
2473 
2474 	return tcp_call_bpf(sk, op, 2, args);
2475 }
2476 
2477 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2478 				    u32 arg3)
2479 {
2480 	u32 args[3] = {arg1, arg2, arg3};
2481 
2482 	return tcp_call_bpf(sk, op, 3, args);
2483 }
2484 
2485 #else
2486 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2487 {
2488 	return -EPERM;
2489 }
2490 
2491 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2492 {
2493 	return -EPERM;
2494 }
2495 
2496 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2497 				    u32 arg3)
2498 {
2499 	return -EPERM;
2500 }
2501 
2502 #endif
2503 
2504 static inline u32 tcp_timeout_init(struct sock *sk)
2505 {
2506 	int timeout;
2507 
2508 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2509 
2510 	if (timeout <= 0)
2511 		timeout = TCP_TIMEOUT_INIT;
2512 	return min_t(int, timeout, TCP_RTO_MAX);
2513 }
2514 
2515 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2516 {
2517 	int rwnd;
2518 
2519 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2520 
2521 	if (rwnd < 0)
2522 		rwnd = 0;
2523 	return rwnd;
2524 }
2525 
2526 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2527 {
2528 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2529 }
2530 
2531 static inline void tcp_bpf_rtt(struct sock *sk)
2532 {
2533 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2534 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2535 }
2536 
2537 #if IS_ENABLED(CONFIG_SMC)
2538 extern struct static_key_false tcp_have_smc;
2539 #endif
2540 
2541 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2542 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2543 			     void (*cad)(struct sock *sk, u32 ack_seq));
2544 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2545 void clean_acked_data_flush(void);
2546 #endif
2547 
2548 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2549 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2550 				    const struct tcp_sock *tp)
2551 {
2552 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2553 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2554 }
2555 
2556 /* Compute Earliest Departure Time for some control packets
2557  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2558  */
2559 static inline u64 tcp_transmit_time(const struct sock *sk)
2560 {
2561 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2562 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2563 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2564 
2565 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2566 	}
2567 	return 0;
2568 }
2569 
2570 #endif	/* _TCP_H */
2571