xref: /linux/include/net/tcp.h (revision e958da0ddbe831197a0023251880a4a09d5ba268)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 DECLARE_PER_CPU(u32, tcp_tw_isn);
56 
57 void tcp_time_wait(struct sock *sk, int state, int timeo);
58 
59 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
60 #define MAX_TCP_OPTION_SPACE 40
61 #define TCP_MIN_SND_MSS		48
62 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
63 
64 /*
65  * Never offer a window over 32767 without using window scaling. Some
66  * poor stacks do signed 16bit maths!
67  */
68 #define MAX_TCP_WINDOW		32767U
69 
70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
71 #define TCP_MIN_MSS		88U
72 
73 /* The initial MTU to use for probing */
74 #define TCP_BASE_MSS		1024
75 
76 /* probing interval, default to 10 minutes as per RFC4821 */
77 #define TCP_PROBE_INTERVAL	600
78 
79 /* Specify interval when tcp mtu probing will stop */
80 #define TCP_PROBE_THRESHOLD	8
81 
82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
83 #define TCP_FASTRETRANS_THRESH 3
84 
85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
86 #define TCP_MAX_QUICKACKS	16U
87 
88 /* Maximal number of window scale according to RFC1323 */
89 #define TCP_MAX_WSCALE		14U
90 
91 /* urg_data states */
92 #define TCP_URG_VALID	0x0100
93 #define TCP_URG_NOTYET	0x0200
94 #define TCP_URG_READ	0x0400
95 
96 #define TCP_RETR1	3	/*
97 				 * This is how many retries it does before it
98 				 * tries to figure out if the gateway is
99 				 * down. Minimal RFC value is 3; it corresponds
100 				 * to ~3sec-8min depending on RTO.
101 				 */
102 
103 #define TCP_RETR2	15	/*
104 				 * This should take at least
105 				 * 90 minutes to time out.
106 				 * RFC1122 says that the limit is 100 sec.
107 				 * 15 is ~13-30min depending on RTO.
108 				 */
109 
110 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
111 				 * when active opening a connection.
112 				 * RFC1122 says the minimum retry MUST
113 				 * be at least 180secs.  Nevertheless
114 				 * this value is corresponding to
115 				 * 63secs of retransmission with the
116 				 * current initial RTO.
117 				 */
118 
119 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
120 				 * when passive opening a connection.
121 				 * This is corresponding to 31secs of
122 				 * retransmission with the current
123 				 * initial RTO.
124 				 */
125 
126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
127 				  * state, about 60 seconds	*/
128 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
129                                  /* BSD style FIN_WAIT2 deadlock breaker.
130 				  * It used to be 3min, new value is 60sec,
131 				  * to combine FIN-WAIT-2 timeout with
132 				  * TIME-WAIT timer.
133 				  */
134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
135 
136 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
138 
139 #if HZ >= 100
140 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
141 #define TCP_ATO_MIN	((unsigned)(HZ/25))
142 #else
143 #define TCP_DELACK_MIN	4U
144 #define TCP_ATO_MIN	4U
145 #endif
146 #define TCP_RTO_MAX	((unsigned)(120*HZ))
147 #define TCP_RTO_MIN	((unsigned)(HZ/5))
148 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
149 
150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
151 
152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
154 						 * used as a fallback RTO for the
155 						 * initial data transmission if no
156 						 * valid RTT sample has been acquired,
157 						 * most likely due to retrans in 3WHS.
158 						 */
159 
160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
161 					                 * for local resources.
162 					                 */
163 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
164 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
165 #define TCP_KEEPALIVE_INTVL	(75*HZ)
166 
167 #define MAX_TCP_KEEPIDLE	32767
168 #define MAX_TCP_KEEPINTVL	32767
169 #define MAX_TCP_KEEPCNT		127
170 #define MAX_TCP_SYNCNT		127
171 
172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
173  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
174  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
175  */
176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
177 
178 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
179 					 * after this time. It should be equal
180 					 * (or greater than) TCP_TIMEWAIT_LEN
181 					 * to provide reliability equal to one
182 					 * provided by timewait state.
183 					 */
184 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
185 					 * timestamps. It must be less than
186 					 * minimal timewait lifetime.
187 					 */
188 /*
189  *	TCP option
190  */
191 
192 #define TCPOPT_NOP		1	/* Padding */
193 #define TCPOPT_EOL		0	/* End of options */
194 #define TCPOPT_MSS		2	/* Segment size negotiating */
195 #define TCPOPT_WINDOW		3	/* Window scaling */
196 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
197 #define TCPOPT_SACK             5       /* SACK Block */
198 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
199 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
200 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
201 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
202 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
203 #define TCPOPT_EXP		254	/* Experimental */
204 /* Magic number to be after the option value for sharing TCP
205  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
206  */
207 #define TCPOPT_FASTOPEN_MAGIC	0xF989
208 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
209 
210 /*
211  *     TCP option lengths
212  */
213 
214 #define TCPOLEN_MSS            4
215 #define TCPOLEN_WINDOW         3
216 #define TCPOLEN_SACK_PERM      2
217 #define TCPOLEN_TIMESTAMP      10
218 #define TCPOLEN_MD5SIG         18
219 #define TCPOLEN_FASTOPEN_BASE  2
220 #define TCPOLEN_EXP_FASTOPEN_BASE  4
221 #define TCPOLEN_EXP_SMC_BASE   6
222 
223 /* But this is what stacks really send out. */
224 #define TCPOLEN_TSTAMP_ALIGNED		12
225 #define TCPOLEN_WSCALE_ALIGNED		4
226 #define TCPOLEN_SACKPERM_ALIGNED	4
227 #define TCPOLEN_SACK_BASE		2
228 #define TCPOLEN_SACK_BASE_ALIGNED	4
229 #define TCPOLEN_SACK_PERBLOCK		8
230 #define TCPOLEN_MD5SIG_ALIGNED		20
231 #define TCPOLEN_MSS_ALIGNED		4
232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
233 
234 /* Flags in tp->nonagle */
235 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
236 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
237 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
238 
239 /* TCP thin-stream limits */
240 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
241 
242 /* TCP initial congestion window as per rfc6928 */
243 #define TCP_INIT_CWND		10
244 
245 /* Bit Flags for sysctl_tcp_fastopen */
246 #define	TFO_CLIENT_ENABLE	1
247 #define	TFO_SERVER_ENABLE	2
248 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
249 
250 /* Accept SYN data w/o any cookie option */
251 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
252 
253 /* Force enable TFO on all listeners, i.e., not requiring the
254  * TCP_FASTOPEN socket option.
255  */
256 #define	TFO_SERVER_WO_SOCKOPT1	0x400
257 
258 
259 /* sysctl variables for tcp */
260 extern int sysctl_tcp_max_orphans;
261 extern long sysctl_tcp_mem[3];
262 
263 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
264 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
265 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
266 
267 extern atomic_long_t tcp_memory_allocated;
268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
269 
270 extern struct percpu_counter tcp_sockets_allocated;
271 extern unsigned long tcp_memory_pressure;
272 
273 /* optimized version of sk_under_memory_pressure() for TCP sockets */
274 static inline bool tcp_under_memory_pressure(const struct sock *sk)
275 {
276 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
277 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
278 		return true;
279 
280 	return READ_ONCE(tcp_memory_pressure);
281 }
282 /*
283  * The next routines deal with comparing 32 bit unsigned ints
284  * and worry about wraparound (automatic with unsigned arithmetic).
285  */
286 
287 static inline bool before(__u32 seq1, __u32 seq2)
288 {
289         return (__s32)(seq1-seq2) < 0;
290 }
291 #define after(seq2, seq1) 	before(seq1, seq2)
292 
293 /* is s2<=s1<=s3 ? */
294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
295 {
296 	return seq3 - seq2 >= seq1 - seq2;
297 }
298 
299 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
300 {
301 	sk_wmem_queued_add(sk, -skb->truesize);
302 	if (!skb_zcopy_pure(skb))
303 		sk_mem_uncharge(sk, skb->truesize);
304 	else
305 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
306 	__kfree_skb(skb);
307 }
308 
309 void sk_forced_mem_schedule(struct sock *sk, int size);
310 
311 bool tcp_check_oom(const struct sock *sk, int shift);
312 
313 
314 extern struct proto tcp_prot;
315 
316 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
317 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
318 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
319 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
320 
321 void tcp_tasklet_init(void);
322 
323 int tcp_v4_err(struct sk_buff *skb, u32);
324 
325 void tcp_shutdown(struct sock *sk, int how);
326 
327 int tcp_v4_early_demux(struct sk_buff *skb);
328 int tcp_v4_rcv(struct sk_buff *skb);
329 
330 void tcp_remove_empty_skb(struct sock *sk);
331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
332 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
333 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
334 			 size_t size, struct ubuf_info *uarg);
335 void tcp_splice_eof(struct socket *sock);
336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
337 int tcp_wmem_schedule(struct sock *sk, int copy);
338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
339 	      int size_goal);
340 void tcp_release_cb(struct sock *sk);
341 void tcp_wfree(struct sk_buff *skb);
342 void tcp_write_timer_handler(struct sock *sk);
343 void tcp_delack_timer_handler(struct sock *sk);
344 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
345 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
347 void tcp_rcv_space_adjust(struct sock *sk);
348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
349 void tcp_twsk_destructor(struct sock *sk);
350 void tcp_twsk_purge(struct list_head *net_exit_list);
351 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
352 			struct pipe_inode_info *pipe, size_t len,
353 			unsigned int flags);
354 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
355 				     bool force_schedule);
356 
357 static inline void tcp_dec_quickack_mode(struct sock *sk)
358 {
359 	struct inet_connection_sock *icsk = inet_csk(sk);
360 
361 	if (icsk->icsk_ack.quick) {
362 		/* How many ACKs S/ACKing new data have we sent? */
363 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
364 
365 		if (pkts >= icsk->icsk_ack.quick) {
366 			icsk->icsk_ack.quick = 0;
367 			/* Leaving quickack mode we deflate ATO. */
368 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
369 		} else
370 			icsk->icsk_ack.quick -= pkts;
371 	}
372 }
373 
374 #define	TCP_ECN_OK		1
375 #define	TCP_ECN_QUEUE_CWR	2
376 #define	TCP_ECN_DEMAND_CWR	4
377 #define	TCP_ECN_SEEN		8
378 
379 enum tcp_tw_status {
380 	TCP_TW_SUCCESS = 0,
381 	TCP_TW_RST = 1,
382 	TCP_TW_ACK = 2,
383 	TCP_TW_SYN = 3
384 };
385 
386 
387 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
388 					      struct sk_buff *skb,
389 					      const struct tcphdr *th,
390 					      u32 *tw_isn);
391 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
392 			   struct request_sock *req, bool fastopen,
393 			   bool *lost_race);
394 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
395 				       struct sk_buff *skb);
396 void tcp_enter_loss(struct sock *sk);
397 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
398 void tcp_clear_retrans(struct tcp_sock *tp);
399 void tcp_update_metrics(struct sock *sk);
400 void tcp_init_metrics(struct sock *sk);
401 void tcp_metrics_init(void);
402 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
403 void __tcp_close(struct sock *sk, long timeout);
404 void tcp_close(struct sock *sk, long timeout);
405 void tcp_init_sock(struct sock *sk);
406 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
407 __poll_t tcp_poll(struct file *file, struct socket *sock,
408 		      struct poll_table_struct *wait);
409 int do_tcp_getsockopt(struct sock *sk, int level,
410 		      int optname, sockptr_t optval, sockptr_t optlen);
411 int tcp_getsockopt(struct sock *sk, int level, int optname,
412 		   char __user *optval, int __user *optlen);
413 bool tcp_bpf_bypass_getsockopt(int level, int optname);
414 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
415 		      sockptr_t optval, unsigned int optlen);
416 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
417 		   unsigned int optlen);
418 void tcp_set_keepalive(struct sock *sk, int val);
419 void tcp_syn_ack_timeout(const struct request_sock *req);
420 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
421 		int flags, int *addr_len);
422 int tcp_set_rcvlowat(struct sock *sk, int val);
423 int tcp_set_window_clamp(struct sock *sk, int val);
424 void tcp_update_recv_tstamps(struct sk_buff *skb,
425 			     struct scm_timestamping_internal *tss);
426 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
427 			struct scm_timestamping_internal *tss);
428 void tcp_data_ready(struct sock *sk);
429 #ifdef CONFIG_MMU
430 int tcp_mmap(struct file *file, struct socket *sock,
431 	     struct vm_area_struct *vma);
432 #endif
433 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
434 		       struct tcp_options_received *opt_rx,
435 		       int estab, struct tcp_fastopen_cookie *foc);
436 
437 /*
438  *	BPF SKB-less helpers
439  */
440 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
441 			 struct tcphdr *th, u32 *cookie);
442 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
443 			 struct tcphdr *th, u32 *cookie);
444 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
445 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
446 			  const struct tcp_request_sock_ops *af_ops,
447 			  struct sock *sk, struct tcphdr *th);
448 /*
449  *	TCP v4 functions exported for the inet6 API
450  */
451 
452 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
453 void tcp_v4_mtu_reduced(struct sock *sk);
454 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
455 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
457 struct sock *tcp_create_openreq_child(const struct sock *sk,
458 				      struct request_sock *req,
459 				      struct sk_buff *skb);
460 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
461 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
462 				  struct request_sock *req,
463 				  struct dst_entry *dst,
464 				  struct request_sock *req_unhash,
465 				  bool *own_req);
466 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
467 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
468 int tcp_connect(struct sock *sk);
469 enum tcp_synack_type {
470 	TCP_SYNACK_NORMAL,
471 	TCP_SYNACK_FASTOPEN,
472 	TCP_SYNACK_COOKIE,
473 };
474 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
475 				struct request_sock *req,
476 				struct tcp_fastopen_cookie *foc,
477 				enum tcp_synack_type synack_type,
478 				struct sk_buff *syn_skb);
479 int tcp_disconnect(struct sock *sk, int flags);
480 
481 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
483 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
484 
485 /* From syncookies.c */
486 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
487 				 struct request_sock *req,
488 				 struct dst_entry *dst);
489 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
492 					    struct sock *sk, struct sk_buff *skb,
493 					    struct tcp_options_received *tcp_opt,
494 					    int mss, u32 tsoff);
495 
496 #if IS_ENABLED(CONFIG_BPF)
497 struct bpf_tcp_req_attrs {
498 	u32 rcv_tsval;
499 	u32 rcv_tsecr;
500 	u16 mss;
501 	u8 rcv_wscale;
502 	u8 snd_wscale;
503 	u8 ecn_ok;
504 	u8 wscale_ok;
505 	u8 sack_ok;
506 	u8 tstamp_ok;
507 	u8 usec_ts_ok;
508 	u8 reserved[3];
509 };
510 #endif
511 
512 #ifdef CONFIG_SYN_COOKIES
513 
514 /* Syncookies use a monotonic timer which increments every 60 seconds.
515  * This counter is used both as a hash input and partially encoded into
516  * the cookie value.  A cookie is only validated further if the delta
517  * between the current counter value and the encoded one is less than this,
518  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
519  * the counter advances immediately after a cookie is generated).
520  */
521 #define MAX_SYNCOOKIE_AGE	2
522 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
523 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
524 
525 /* syncookies: remember time of last synqueue overflow
526  * But do not dirty this field too often (once per second is enough)
527  * It is racy as we do not hold a lock, but race is very minor.
528  */
529 static inline void tcp_synq_overflow(const struct sock *sk)
530 {
531 	unsigned int last_overflow;
532 	unsigned int now = jiffies;
533 
534 	if (sk->sk_reuseport) {
535 		struct sock_reuseport *reuse;
536 
537 		reuse = rcu_dereference(sk->sk_reuseport_cb);
538 		if (likely(reuse)) {
539 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
540 			if (!time_between32(now, last_overflow,
541 					    last_overflow + HZ))
542 				WRITE_ONCE(reuse->synq_overflow_ts, now);
543 			return;
544 		}
545 	}
546 
547 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
548 	if (!time_between32(now, last_overflow, last_overflow + HZ))
549 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
550 }
551 
552 /* syncookies: no recent synqueue overflow on this listening socket? */
553 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
554 {
555 	unsigned int last_overflow;
556 	unsigned int now = jiffies;
557 
558 	if (sk->sk_reuseport) {
559 		struct sock_reuseport *reuse;
560 
561 		reuse = rcu_dereference(sk->sk_reuseport_cb);
562 		if (likely(reuse)) {
563 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
564 			return !time_between32(now, last_overflow - HZ,
565 					       last_overflow +
566 					       TCP_SYNCOOKIE_VALID);
567 		}
568 	}
569 
570 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
571 
572 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
573 	 * then we're under synflood. However, we have to use
574 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
575 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
576 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
577 	 * which could lead to rejecting a valid syncookie.
578 	 */
579 	return !time_between32(now, last_overflow - HZ,
580 			       last_overflow + TCP_SYNCOOKIE_VALID);
581 }
582 
583 static inline u32 tcp_cookie_time(void)
584 {
585 	u64 val = get_jiffies_64();
586 
587 	do_div(val, TCP_SYNCOOKIE_PERIOD);
588 	return val;
589 }
590 
591 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
592 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
593 {
594 	if (usec_ts)
595 		return div_u64(val, NSEC_PER_USEC);
596 
597 	return div_u64(val, NSEC_PER_MSEC);
598 }
599 
600 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
601 			      u16 *mssp);
602 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
603 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
604 bool cookie_timestamp_decode(const struct net *net,
605 			     struct tcp_options_received *opt);
606 
607 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
608 {
609 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
610 		dst_feature(dst, RTAX_FEATURE_ECN);
611 }
612 
613 #if IS_ENABLED(CONFIG_BPF)
614 static inline bool cookie_bpf_ok(struct sk_buff *skb)
615 {
616 	return skb->sk;
617 }
618 
619 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
620 #else
621 static inline bool cookie_bpf_ok(struct sk_buff *skb)
622 {
623 	return false;
624 }
625 
626 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
627 						    struct sk_buff *skb)
628 {
629 	return NULL;
630 }
631 #endif
632 
633 /* From net/ipv6/syncookies.c */
634 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
635 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
636 
637 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
638 			      const struct tcphdr *th, u16 *mssp);
639 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
640 #endif
641 /* tcp_output.c */
642 
643 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
645 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
646 			       int nonagle);
647 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
648 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
649 void tcp_retransmit_timer(struct sock *sk);
650 void tcp_xmit_retransmit_queue(struct sock *);
651 void tcp_simple_retransmit(struct sock *);
652 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
653 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
654 enum tcp_queue {
655 	TCP_FRAG_IN_WRITE_QUEUE,
656 	TCP_FRAG_IN_RTX_QUEUE,
657 };
658 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
659 		 struct sk_buff *skb, u32 len,
660 		 unsigned int mss_now, gfp_t gfp);
661 
662 void tcp_send_probe0(struct sock *);
663 int tcp_write_wakeup(struct sock *, int mib);
664 void tcp_send_fin(struct sock *sk);
665 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
666 			   enum sk_rst_reason reason);
667 int tcp_send_synack(struct sock *);
668 void tcp_push_one(struct sock *, unsigned int mss_now);
669 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
670 void tcp_send_ack(struct sock *sk);
671 void tcp_send_delayed_ack(struct sock *sk);
672 void tcp_send_loss_probe(struct sock *sk);
673 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
674 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
675 			     const struct sk_buff *next_skb);
676 
677 /* tcp_input.c */
678 void tcp_rearm_rto(struct sock *sk);
679 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
680 void tcp_reset(struct sock *sk, struct sk_buff *skb);
681 void tcp_fin(struct sock *sk);
682 void tcp_check_space(struct sock *sk);
683 void tcp_sack_compress_send_ack(struct sock *sk);
684 
685 /* tcp_timer.c */
686 void tcp_init_xmit_timers(struct sock *);
687 static inline void tcp_clear_xmit_timers(struct sock *sk)
688 {
689 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
690 		__sock_put(sk);
691 
692 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
693 		__sock_put(sk);
694 
695 	inet_csk_clear_xmit_timers(sk);
696 }
697 
698 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
699 unsigned int tcp_current_mss(struct sock *sk);
700 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
701 
702 /* Bound MSS / TSO packet size with the half of the window */
703 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
704 {
705 	int cutoff;
706 
707 	/* When peer uses tiny windows, there is no use in packetizing
708 	 * to sub-MSS pieces for the sake of SWS or making sure there
709 	 * are enough packets in the pipe for fast recovery.
710 	 *
711 	 * On the other hand, for extremely large MSS devices, handling
712 	 * smaller than MSS windows in this way does make sense.
713 	 */
714 	if (tp->max_window > TCP_MSS_DEFAULT)
715 		cutoff = (tp->max_window >> 1);
716 	else
717 		cutoff = tp->max_window;
718 
719 	if (cutoff && pktsize > cutoff)
720 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
721 	else
722 		return pktsize;
723 }
724 
725 /* tcp.c */
726 void tcp_get_info(struct sock *, struct tcp_info *);
727 
728 /* Read 'sendfile()'-style from a TCP socket */
729 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
730 		  sk_read_actor_t recv_actor);
731 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
732 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
733 void tcp_read_done(struct sock *sk, size_t len);
734 
735 void tcp_initialize_rcv_mss(struct sock *sk);
736 
737 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
738 int tcp_mss_to_mtu(struct sock *sk, int mss);
739 void tcp_mtup_init(struct sock *sk);
740 
741 static inline void tcp_bound_rto(struct sock *sk)
742 {
743 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
744 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
745 }
746 
747 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
748 {
749 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
750 }
751 
752 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
753 {
754 	/* mptcp hooks are only on the slow path */
755 	if (sk_is_mptcp((struct sock *)tp))
756 		return;
757 
758 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
759 			       ntohl(TCP_FLAG_ACK) |
760 			       snd_wnd);
761 }
762 
763 static inline void tcp_fast_path_on(struct tcp_sock *tp)
764 {
765 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
766 }
767 
768 static inline void tcp_fast_path_check(struct sock *sk)
769 {
770 	struct tcp_sock *tp = tcp_sk(sk);
771 
772 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
773 	    tp->rcv_wnd &&
774 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
775 	    !tp->urg_data)
776 		tcp_fast_path_on(tp);
777 }
778 
779 u32 tcp_delack_max(const struct sock *sk);
780 
781 /* Compute the actual rto_min value */
782 static inline u32 tcp_rto_min(const struct sock *sk)
783 {
784 	const struct dst_entry *dst = __sk_dst_get(sk);
785 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
786 
787 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
788 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
789 	return rto_min;
790 }
791 
792 static inline u32 tcp_rto_min_us(const struct sock *sk)
793 {
794 	return jiffies_to_usecs(tcp_rto_min(sk));
795 }
796 
797 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
798 {
799 	return dst_metric_locked(dst, RTAX_CC_ALGO);
800 }
801 
802 /* Minimum RTT in usec. ~0 means not available. */
803 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
804 {
805 	return minmax_get(&tp->rtt_min);
806 }
807 
808 /* Compute the actual receive window we are currently advertising.
809  * Rcv_nxt can be after the window if our peer push more data
810  * than the offered window.
811  */
812 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
813 {
814 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
815 
816 	if (win < 0)
817 		win = 0;
818 	return (u32) win;
819 }
820 
821 /* Choose a new window, without checks for shrinking, and without
822  * scaling applied to the result.  The caller does these things
823  * if necessary.  This is a "raw" window selection.
824  */
825 u32 __tcp_select_window(struct sock *sk);
826 
827 void tcp_send_window_probe(struct sock *sk);
828 
829 /* TCP uses 32bit jiffies to save some space.
830  * Note that this is different from tcp_time_stamp, which
831  * historically has been the same until linux-4.13.
832  */
833 #define tcp_jiffies32 ((u32)jiffies)
834 
835 /*
836  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
837  * It is no longer tied to jiffies, but to 1 ms clock.
838  * Note: double check if you want to use tcp_jiffies32 instead of this.
839  */
840 #define TCP_TS_HZ	1000
841 
842 static inline u64 tcp_clock_ns(void)
843 {
844 	return ktime_get_ns();
845 }
846 
847 static inline u64 tcp_clock_us(void)
848 {
849 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
850 }
851 
852 static inline u64 tcp_clock_ms(void)
853 {
854 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
855 }
856 
857 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
858  * or usec resolution. Each socket carries a flag to select one or other
859  * resolution, as the route attribute could change anytime.
860  * Each flow must stick to initial resolution.
861  */
862 static inline u32 tcp_clock_ts(bool usec_ts)
863 {
864 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
865 }
866 
867 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
868 {
869 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
870 }
871 
872 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
873 {
874 	if (tp->tcp_usec_ts)
875 		return tp->tcp_mstamp;
876 	return tcp_time_stamp_ms(tp);
877 }
878 
879 void tcp_mstamp_refresh(struct tcp_sock *tp);
880 
881 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
882 {
883 	return max_t(s64, t1 - t0, 0);
884 }
885 
886 /* provide the departure time in us unit */
887 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
888 {
889 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
890 }
891 
892 /* Provide skb TSval in usec or ms unit */
893 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
894 {
895 	if (usec_ts)
896 		return tcp_skb_timestamp_us(skb);
897 
898 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
899 }
900 
901 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
902 {
903 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
904 }
905 
906 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
907 {
908 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
909 }
910 
911 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
912 
913 #define TCPHDR_FIN 0x01
914 #define TCPHDR_SYN 0x02
915 #define TCPHDR_RST 0x04
916 #define TCPHDR_PSH 0x08
917 #define TCPHDR_ACK 0x10
918 #define TCPHDR_URG 0x20
919 #define TCPHDR_ECE 0x40
920 #define TCPHDR_CWR 0x80
921 
922 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
923 
924 /* State flags for sacked in struct tcp_skb_cb */
925 enum tcp_skb_cb_sacked_flags {
926 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
927 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
928 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
929 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
930 				   TCPCB_LOST),	/* All tag bits			*/
931 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
932 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
933 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
934 				   TCPCB_REPAIRED),
935 };
936 
937 /* This is what the send packet queuing engine uses to pass
938  * TCP per-packet control information to the transmission code.
939  * We also store the host-order sequence numbers in here too.
940  * This is 44 bytes if IPV6 is enabled.
941  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
942  */
943 struct tcp_skb_cb {
944 	__u32		seq;		/* Starting sequence number	*/
945 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
946 	union {
947 		/* Note :
948 		 * 	  tcp_gso_segs/size are used in write queue only,
949 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
950 		 */
951 		struct {
952 			u16	tcp_gso_segs;
953 			u16	tcp_gso_size;
954 		};
955 	};
956 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
957 
958 	__u8		sacked;		/* State flags for SACK.	*/
959 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
960 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
961 			eor:1,		/* Is skb MSG_EOR marked? */
962 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
963 			unused:5;
964 	__u32		ack_seq;	/* Sequence number ACK'd	*/
965 	union {
966 		struct {
967 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
968 			/* There is space for up to 24 bytes */
969 			__u32 is_app_limited:1, /* cwnd not fully used? */
970 			      delivered_ce:20,
971 			      unused:11;
972 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
973 			__u32 delivered;
974 			/* start of send pipeline phase */
975 			u64 first_tx_mstamp;
976 			/* when we reached the "delivered" count */
977 			u64 delivered_mstamp;
978 		} tx;   /* only used for outgoing skbs */
979 		union {
980 			struct inet_skb_parm	h4;
981 #if IS_ENABLED(CONFIG_IPV6)
982 			struct inet6_skb_parm	h6;
983 #endif
984 		} header;	/* For incoming skbs */
985 	};
986 };
987 
988 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
989 
990 extern const struct inet_connection_sock_af_ops ipv4_specific;
991 
992 #if IS_ENABLED(CONFIG_IPV6)
993 /* This is the variant of inet6_iif() that must be used by TCP,
994  * as TCP moves IP6CB into a different location in skb->cb[]
995  */
996 static inline int tcp_v6_iif(const struct sk_buff *skb)
997 {
998 	return TCP_SKB_CB(skb)->header.h6.iif;
999 }
1000 
1001 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1002 {
1003 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1004 
1005 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1006 }
1007 
1008 /* TCP_SKB_CB reference means this can not be used from early demux */
1009 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1010 {
1011 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1012 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1013 		return TCP_SKB_CB(skb)->header.h6.iif;
1014 #endif
1015 	return 0;
1016 }
1017 
1018 extern const struct inet_connection_sock_af_ops ipv6_specific;
1019 
1020 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1021 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1022 void tcp_v6_early_demux(struct sk_buff *skb);
1023 
1024 #endif
1025 
1026 /* TCP_SKB_CB reference means this can not be used from early demux */
1027 static inline int tcp_v4_sdif(struct sk_buff *skb)
1028 {
1029 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1030 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1031 		return TCP_SKB_CB(skb)->header.h4.iif;
1032 #endif
1033 	return 0;
1034 }
1035 
1036 /* Due to TSO, an SKB can be composed of multiple actual
1037  * packets.  To keep these tracked properly, we use this.
1038  */
1039 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1040 {
1041 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1042 }
1043 
1044 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1045 {
1046 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1047 }
1048 
1049 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1050 {
1051 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1052 }
1053 
1054 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1055 static inline int tcp_skb_mss(const struct sk_buff *skb)
1056 {
1057 	return TCP_SKB_CB(skb)->tcp_gso_size;
1058 }
1059 
1060 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1061 {
1062 	return likely(!TCP_SKB_CB(skb)->eor);
1063 }
1064 
1065 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1066 					const struct sk_buff *from)
1067 {
1068 	return likely(tcp_skb_can_collapse_to(to) &&
1069 		      mptcp_skb_can_collapse(to, from) &&
1070 		      skb_pure_zcopy_same(to, from));
1071 }
1072 
1073 /* Events passed to congestion control interface */
1074 enum tcp_ca_event {
1075 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1076 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1077 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1078 	CA_EVENT_LOSS,		/* loss timeout */
1079 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1080 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1081 };
1082 
1083 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1084 enum tcp_ca_ack_event_flags {
1085 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1086 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1087 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1088 };
1089 
1090 /*
1091  * Interface for adding new TCP congestion control handlers
1092  */
1093 #define TCP_CA_NAME_MAX	16
1094 #define TCP_CA_MAX	128
1095 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1096 
1097 #define TCP_CA_UNSPEC	0
1098 
1099 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1100 #define TCP_CONG_NON_RESTRICTED 0x1
1101 /* Requires ECN/ECT set on all packets */
1102 #define TCP_CONG_NEEDS_ECN	0x2
1103 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1104 
1105 union tcp_cc_info;
1106 
1107 struct ack_sample {
1108 	u32 pkts_acked;
1109 	s32 rtt_us;
1110 	u32 in_flight;
1111 };
1112 
1113 /* A rate sample measures the number of (original/retransmitted) data
1114  * packets delivered "delivered" over an interval of time "interval_us".
1115  * The tcp_rate.c code fills in the rate sample, and congestion
1116  * control modules that define a cong_control function to run at the end
1117  * of ACK processing can optionally chose to consult this sample when
1118  * setting cwnd and pacing rate.
1119  * A sample is invalid if "delivered" or "interval_us" is negative.
1120  */
1121 struct rate_sample {
1122 	u64  prior_mstamp; /* starting timestamp for interval */
1123 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1124 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1125 	s32  delivered;		/* number of packets delivered over interval */
1126 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1127 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1128 	u32 snd_interval_us;	/* snd interval for delivered packets */
1129 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1130 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1131 	int  losses;		/* number of packets marked lost upon ACK */
1132 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1133 	u32  prior_in_flight;	/* in flight before this ACK */
1134 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1135 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1136 	bool is_retrans;	/* is sample from retransmission? */
1137 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1138 };
1139 
1140 struct tcp_congestion_ops {
1141 /* fast path fields are put first to fill one cache line */
1142 
1143 	/* return slow start threshold (required) */
1144 	u32 (*ssthresh)(struct sock *sk);
1145 
1146 	/* do new cwnd calculation (required) */
1147 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1148 
1149 	/* call before changing ca_state (optional) */
1150 	void (*set_state)(struct sock *sk, u8 new_state);
1151 
1152 	/* call when cwnd event occurs (optional) */
1153 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1154 
1155 	/* call when ack arrives (optional) */
1156 	void (*in_ack_event)(struct sock *sk, u32 flags);
1157 
1158 	/* hook for packet ack accounting (optional) */
1159 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1160 
1161 	/* override sysctl_tcp_min_tso_segs */
1162 	u32 (*min_tso_segs)(struct sock *sk);
1163 
1164 	/* call when packets are delivered to update cwnd and pacing rate,
1165 	 * after all the ca_state processing. (optional)
1166 	 */
1167 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1168 
1169 
1170 	/* new value of cwnd after loss (required) */
1171 	u32  (*undo_cwnd)(struct sock *sk);
1172 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1173 	u32 (*sndbuf_expand)(struct sock *sk);
1174 
1175 /* control/slow paths put last */
1176 	/* get info for inet_diag (optional) */
1177 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1178 			   union tcp_cc_info *info);
1179 
1180 	char 			name[TCP_CA_NAME_MAX];
1181 	struct module		*owner;
1182 	struct list_head	list;
1183 	u32			key;
1184 	u32			flags;
1185 
1186 	/* initialize private data (optional) */
1187 	void (*init)(struct sock *sk);
1188 	/* cleanup private data  (optional) */
1189 	void (*release)(struct sock *sk);
1190 } ____cacheline_aligned_in_smp;
1191 
1192 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1193 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1194 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1195 				  struct tcp_congestion_ops *old_type);
1196 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1197 
1198 void tcp_assign_congestion_control(struct sock *sk);
1199 void tcp_init_congestion_control(struct sock *sk);
1200 void tcp_cleanup_congestion_control(struct sock *sk);
1201 int tcp_set_default_congestion_control(struct net *net, const char *name);
1202 void tcp_get_default_congestion_control(struct net *net, char *name);
1203 void tcp_get_available_congestion_control(char *buf, size_t len);
1204 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1205 int tcp_set_allowed_congestion_control(char *allowed);
1206 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1207 			       bool cap_net_admin);
1208 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1209 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1210 
1211 u32 tcp_reno_ssthresh(struct sock *sk);
1212 u32 tcp_reno_undo_cwnd(struct sock *sk);
1213 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1214 extern struct tcp_congestion_ops tcp_reno;
1215 
1216 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1217 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1218 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1219 #ifdef CONFIG_INET
1220 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1221 #else
1222 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1223 {
1224 	return NULL;
1225 }
1226 #endif
1227 
1228 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1229 {
1230 	const struct inet_connection_sock *icsk = inet_csk(sk);
1231 
1232 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1233 }
1234 
1235 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1236 {
1237 	const struct inet_connection_sock *icsk = inet_csk(sk);
1238 
1239 	if (icsk->icsk_ca_ops->cwnd_event)
1240 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1241 }
1242 
1243 /* From tcp_cong.c */
1244 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1245 
1246 /* From tcp_rate.c */
1247 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1248 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1249 			    struct rate_sample *rs);
1250 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1251 		  bool is_sack_reneg, struct rate_sample *rs);
1252 void tcp_rate_check_app_limited(struct sock *sk);
1253 
1254 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1255 {
1256 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1257 }
1258 
1259 /* These functions determine how the current flow behaves in respect of SACK
1260  * handling. SACK is negotiated with the peer, and therefore it can vary
1261  * between different flows.
1262  *
1263  * tcp_is_sack - SACK enabled
1264  * tcp_is_reno - No SACK
1265  */
1266 static inline int tcp_is_sack(const struct tcp_sock *tp)
1267 {
1268 	return likely(tp->rx_opt.sack_ok);
1269 }
1270 
1271 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1272 {
1273 	return !tcp_is_sack(tp);
1274 }
1275 
1276 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1277 {
1278 	return tp->sacked_out + tp->lost_out;
1279 }
1280 
1281 /* This determines how many packets are "in the network" to the best
1282  * of our knowledge.  In many cases it is conservative, but where
1283  * detailed information is available from the receiver (via SACK
1284  * blocks etc.) we can make more aggressive calculations.
1285  *
1286  * Use this for decisions involving congestion control, use just
1287  * tp->packets_out to determine if the send queue is empty or not.
1288  *
1289  * Read this equation as:
1290  *
1291  *	"Packets sent once on transmission queue" MINUS
1292  *	"Packets left network, but not honestly ACKed yet" PLUS
1293  *	"Packets fast retransmitted"
1294  */
1295 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1296 {
1297 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1298 }
1299 
1300 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1301 
1302 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1303 {
1304 	return tp->snd_cwnd;
1305 }
1306 
1307 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1308 {
1309 	WARN_ON_ONCE((int)val <= 0);
1310 	tp->snd_cwnd = val;
1311 }
1312 
1313 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1314 {
1315 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1316 }
1317 
1318 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1319 {
1320 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1321 }
1322 
1323 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1324 {
1325 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1326 	       (1 << inet_csk(sk)->icsk_ca_state);
1327 }
1328 
1329 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1330  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1331  * ssthresh.
1332  */
1333 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1334 {
1335 	const struct tcp_sock *tp = tcp_sk(sk);
1336 
1337 	if (tcp_in_cwnd_reduction(sk))
1338 		return tp->snd_ssthresh;
1339 	else
1340 		return max(tp->snd_ssthresh,
1341 			   ((tcp_snd_cwnd(tp) >> 1) +
1342 			    (tcp_snd_cwnd(tp) >> 2)));
1343 }
1344 
1345 /* Use define here intentionally to get WARN_ON location shown at the caller */
1346 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1347 
1348 void tcp_enter_cwr(struct sock *sk);
1349 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1350 
1351 /* The maximum number of MSS of available cwnd for which TSO defers
1352  * sending if not using sysctl_tcp_tso_win_divisor.
1353  */
1354 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1355 {
1356 	return 3;
1357 }
1358 
1359 /* Returns end sequence number of the receiver's advertised window */
1360 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1361 {
1362 	return tp->snd_una + tp->snd_wnd;
1363 }
1364 
1365 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1366  * flexible approach. The RFC suggests cwnd should not be raised unless
1367  * it was fully used previously. And that's exactly what we do in
1368  * congestion avoidance mode. But in slow start we allow cwnd to grow
1369  * as long as the application has used half the cwnd.
1370  * Example :
1371  *    cwnd is 10 (IW10), but application sends 9 frames.
1372  *    We allow cwnd to reach 18 when all frames are ACKed.
1373  * This check is safe because it's as aggressive as slow start which already
1374  * risks 100% overshoot. The advantage is that we discourage application to
1375  * either send more filler packets or data to artificially blow up the cwnd
1376  * usage, and allow application-limited process to probe bw more aggressively.
1377  */
1378 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1379 {
1380 	const struct tcp_sock *tp = tcp_sk(sk);
1381 
1382 	if (tp->is_cwnd_limited)
1383 		return true;
1384 
1385 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1386 	if (tcp_in_slow_start(tp))
1387 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1388 
1389 	return false;
1390 }
1391 
1392 /* BBR congestion control needs pacing.
1393  * Same remark for SO_MAX_PACING_RATE.
1394  * sch_fq packet scheduler is efficiently handling pacing,
1395  * but is not always installed/used.
1396  * Return true if TCP stack should pace packets itself.
1397  */
1398 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1399 {
1400 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1401 }
1402 
1403 /* Estimates in how many jiffies next packet for this flow can be sent.
1404  * Scheduling a retransmit timer too early would be silly.
1405  */
1406 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1407 {
1408 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1409 
1410 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1411 }
1412 
1413 static inline void tcp_reset_xmit_timer(struct sock *sk,
1414 					const int what,
1415 					unsigned long when,
1416 					const unsigned long max_when)
1417 {
1418 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1419 				  max_when);
1420 }
1421 
1422 /* Something is really bad, we could not queue an additional packet,
1423  * because qdisc is full or receiver sent a 0 window, or we are paced.
1424  * We do not want to add fuel to the fire, or abort too early,
1425  * so make sure the timer we arm now is at least 200ms in the future,
1426  * regardless of current icsk_rto value (as it could be ~2ms)
1427  */
1428 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1429 {
1430 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1431 }
1432 
1433 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1434 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1435 					    unsigned long max_when)
1436 {
1437 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1438 			   inet_csk(sk)->icsk_backoff);
1439 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1440 
1441 	return (unsigned long)min_t(u64, when, max_when);
1442 }
1443 
1444 static inline void tcp_check_probe_timer(struct sock *sk)
1445 {
1446 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1447 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1448 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1449 }
1450 
1451 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1452 {
1453 	tp->snd_wl1 = seq;
1454 }
1455 
1456 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1457 {
1458 	tp->snd_wl1 = seq;
1459 }
1460 
1461 /*
1462  * Calculate(/check) TCP checksum
1463  */
1464 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1465 				   __be32 daddr, __wsum base)
1466 {
1467 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1468 }
1469 
1470 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1471 {
1472 	return !skb_csum_unnecessary(skb) &&
1473 		__skb_checksum_complete(skb);
1474 }
1475 
1476 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1477 		     enum skb_drop_reason *reason);
1478 
1479 
1480 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1481 void tcp_set_state(struct sock *sk, int state);
1482 void tcp_done(struct sock *sk);
1483 int tcp_abort(struct sock *sk, int err);
1484 
1485 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1486 {
1487 	rx_opt->dsack = 0;
1488 	rx_opt->num_sacks = 0;
1489 }
1490 
1491 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1492 
1493 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1494 {
1495 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1496 	struct tcp_sock *tp = tcp_sk(sk);
1497 	s32 delta;
1498 
1499 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1500 	    tp->packets_out || ca_ops->cong_control)
1501 		return;
1502 	delta = tcp_jiffies32 - tp->lsndtime;
1503 	if (delta > inet_csk(sk)->icsk_rto)
1504 		tcp_cwnd_restart(sk, delta);
1505 }
1506 
1507 /* Determine a window scaling and initial window to offer. */
1508 void tcp_select_initial_window(const struct sock *sk, int __space,
1509 			       __u32 mss, __u32 *rcv_wnd,
1510 			       __u32 *window_clamp, int wscale_ok,
1511 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1512 
1513 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1514 {
1515 	s64 scaled_space = (s64)space * scaling_ratio;
1516 
1517 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1518 }
1519 
1520 static inline int tcp_win_from_space(const struct sock *sk, int space)
1521 {
1522 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1523 }
1524 
1525 /* inverse of __tcp_win_from_space() */
1526 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1527 {
1528 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1529 
1530 	do_div(val, scaling_ratio);
1531 	return val;
1532 }
1533 
1534 static inline int tcp_space_from_win(const struct sock *sk, int win)
1535 {
1536 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1537 }
1538 
1539 /* Assume a 50% default for skb->len/skb->truesize ratio.
1540  * This may be adjusted later in tcp_measure_rcv_mss().
1541  */
1542 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1543 
1544 static inline void tcp_scaling_ratio_init(struct sock *sk)
1545 {
1546 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1547 }
1548 
1549 /* Note: caller must be prepared to deal with negative returns */
1550 static inline int tcp_space(const struct sock *sk)
1551 {
1552 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1553 				  READ_ONCE(sk->sk_backlog.len) -
1554 				  atomic_read(&sk->sk_rmem_alloc));
1555 }
1556 
1557 static inline int tcp_full_space(const struct sock *sk)
1558 {
1559 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1560 }
1561 
1562 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1563 {
1564 	int unused_mem = sk_unused_reserved_mem(sk);
1565 	struct tcp_sock *tp = tcp_sk(sk);
1566 
1567 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1568 	if (unused_mem)
1569 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1570 					 tcp_win_from_space(sk, unused_mem));
1571 }
1572 
1573 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1574 {
1575 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1576 }
1577 
1578 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1579 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1580 
1581 
1582 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1583  * If 87.5 % (7/8) of the space has been consumed, we want to override
1584  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1585  * len/truesize ratio.
1586  */
1587 static inline bool tcp_rmem_pressure(const struct sock *sk)
1588 {
1589 	int rcvbuf, threshold;
1590 
1591 	if (tcp_under_memory_pressure(sk))
1592 		return true;
1593 
1594 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1595 	threshold = rcvbuf - (rcvbuf >> 3);
1596 
1597 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1598 }
1599 
1600 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1601 {
1602 	const struct tcp_sock *tp = tcp_sk(sk);
1603 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1604 
1605 	if (avail <= 0)
1606 		return false;
1607 
1608 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1609 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1610 }
1611 
1612 extern void tcp_openreq_init_rwin(struct request_sock *req,
1613 				  const struct sock *sk_listener,
1614 				  const struct dst_entry *dst);
1615 
1616 void tcp_enter_memory_pressure(struct sock *sk);
1617 void tcp_leave_memory_pressure(struct sock *sk);
1618 
1619 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1620 {
1621 	struct net *net = sock_net((struct sock *)tp);
1622 	int val;
1623 
1624 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1625 	 * and do_tcp_setsockopt().
1626 	 */
1627 	val = READ_ONCE(tp->keepalive_intvl);
1628 
1629 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1630 }
1631 
1632 static inline int keepalive_time_when(const struct tcp_sock *tp)
1633 {
1634 	struct net *net = sock_net((struct sock *)tp);
1635 	int val;
1636 
1637 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1638 	val = READ_ONCE(tp->keepalive_time);
1639 
1640 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1641 }
1642 
1643 static inline int keepalive_probes(const struct tcp_sock *tp)
1644 {
1645 	struct net *net = sock_net((struct sock *)tp);
1646 	int val;
1647 
1648 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1649 	 * and do_tcp_setsockopt().
1650 	 */
1651 	val = READ_ONCE(tp->keepalive_probes);
1652 
1653 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1654 }
1655 
1656 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1657 {
1658 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1659 
1660 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1661 			  tcp_jiffies32 - tp->rcv_tstamp);
1662 }
1663 
1664 static inline int tcp_fin_time(const struct sock *sk)
1665 {
1666 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1667 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1668 	const int rto = inet_csk(sk)->icsk_rto;
1669 
1670 	if (fin_timeout < (rto << 2) - (rto >> 1))
1671 		fin_timeout = (rto << 2) - (rto >> 1);
1672 
1673 	return fin_timeout;
1674 }
1675 
1676 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1677 				  int paws_win)
1678 {
1679 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1680 		return true;
1681 	if (unlikely(!time_before32(ktime_get_seconds(),
1682 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1683 		return true;
1684 	/*
1685 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1686 	 * then following tcp messages have valid values. Ignore 0 value,
1687 	 * or else 'negative' tsval might forbid us to accept their packets.
1688 	 */
1689 	if (!rx_opt->ts_recent)
1690 		return true;
1691 	return false;
1692 }
1693 
1694 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1695 				   int rst)
1696 {
1697 	if (tcp_paws_check(rx_opt, 0))
1698 		return false;
1699 
1700 	/* RST segments are not recommended to carry timestamp,
1701 	   and, if they do, it is recommended to ignore PAWS because
1702 	   "their cleanup function should take precedence over timestamps."
1703 	   Certainly, it is mistake. It is necessary to understand the reasons
1704 	   of this constraint to relax it: if peer reboots, clock may go
1705 	   out-of-sync and half-open connections will not be reset.
1706 	   Actually, the problem would be not existing if all
1707 	   the implementations followed draft about maintaining clock
1708 	   via reboots. Linux-2.2 DOES NOT!
1709 
1710 	   However, we can relax time bounds for RST segments to MSL.
1711 	 */
1712 	if (rst && !time_before32(ktime_get_seconds(),
1713 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1714 		return false;
1715 	return true;
1716 }
1717 
1718 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1719 			  int mib_idx, u32 *last_oow_ack_time);
1720 
1721 static inline void tcp_mib_init(struct net *net)
1722 {
1723 	/* See RFC 2012 */
1724 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1725 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1726 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1727 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1728 }
1729 
1730 /* from STCP */
1731 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1732 {
1733 	tp->lost_skb_hint = NULL;
1734 }
1735 
1736 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1737 {
1738 	tcp_clear_retrans_hints_partial(tp);
1739 	tp->retransmit_skb_hint = NULL;
1740 }
1741 
1742 #define tcp_md5_addr tcp_ao_addr
1743 
1744 /* - key database */
1745 struct tcp_md5sig_key {
1746 	struct hlist_node	node;
1747 	u8			keylen;
1748 	u8			family; /* AF_INET or AF_INET6 */
1749 	u8			prefixlen;
1750 	u8			flags;
1751 	union tcp_md5_addr	addr;
1752 	int			l3index; /* set if key added with L3 scope */
1753 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1754 	struct rcu_head		rcu;
1755 };
1756 
1757 /* - sock block */
1758 struct tcp_md5sig_info {
1759 	struct hlist_head	head;
1760 	struct rcu_head		rcu;
1761 };
1762 
1763 /* - pseudo header */
1764 struct tcp4_pseudohdr {
1765 	__be32		saddr;
1766 	__be32		daddr;
1767 	__u8		pad;
1768 	__u8		protocol;
1769 	__be16		len;
1770 };
1771 
1772 struct tcp6_pseudohdr {
1773 	struct in6_addr	saddr;
1774 	struct in6_addr daddr;
1775 	__be32		len;
1776 	__be32		protocol;	/* including padding */
1777 };
1778 
1779 union tcp_md5sum_block {
1780 	struct tcp4_pseudohdr ip4;
1781 #if IS_ENABLED(CONFIG_IPV6)
1782 	struct tcp6_pseudohdr ip6;
1783 #endif
1784 };
1785 
1786 /*
1787  * struct tcp_sigpool - per-CPU pool of ahash_requests
1788  * @scratch: per-CPU temporary area, that can be used between
1789  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1790  *	     crypto request
1791  * @req: pre-allocated ahash request
1792  */
1793 struct tcp_sigpool {
1794 	void *scratch;
1795 	struct ahash_request *req;
1796 };
1797 
1798 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1799 void tcp_sigpool_get(unsigned int id);
1800 void tcp_sigpool_release(unsigned int id);
1801 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1802 			      const struct sk_buff *skb,
1803 			      unsigned int header_len);
1804 
1805 /**
1806  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1807  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1808  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1809  *
1810  * Returns 0 on success, error otherwise.
1811  */
1812 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1813 /**
1814  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1815  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1816  */
1817 void tcp_sigpool_end(struct tcp_sigpool *c);
1818 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1819 /* - functions */
1820 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1821 			const struct sock *sk, const struct sk_buff *skb);
1822 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1823 		   int family, u8 prefixlen, int l3index, u8 flags,
1824 		   const u8 *newkey, u8 newkeylen);
1825 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1826 		     int family, u8 prefixlen, int l3index,
1827 		     struct tcp_md5sig_key *key);
1828 
1829 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1830 		   int family, u8 prefixlen, int l3index, u8 flags);
1831 void tcp_clear_md5_list(struct sock *sk);
1832 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1833 					 const struct sock *addr_sk);
1834 
1835 #ifdef CONFIG_TCP_MD5SIG
1836 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1837 					   const union tcp_md5_addr *addr,
1838 					   int family, bool any_l3index);
1839 static inline struct tcp_md5sig_key *
1840 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1841 		  const union tcp_md5_addr *addr, int family)
1842 {
1843 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1844 		return NULL;
1845 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1846 }
1847 
1848 static inline struct tcp_md5sig_key *
1849 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1850 			      const union tcp_md5_addr *addr, int family)
1851 {
1852 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1853 		return NULL;
1854 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1855 }
1856 
1857 enum skb_drop_reason
1858 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1859 		     const void *saddr, const void *daddr,
1860 		     int family, int l3index, const __u8 *hash_location);
1861 
1862 
1863 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1864 #else
1865 static inline struct tcp_md5sig_key *
1866 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1867 		  const union tcp_md5_addr *addr, int family)
1868 {
1869 	return NULL;
1870 }
1871 
1872 static inline struct tcp_md5sig_key *
1873 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1874 			      const union tcp_md5_addr *addr, int family)
1875 {
1876 	return NULL;
1877 }
1878 
1879 static inline enum skb_drop_reason
1880 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1881 		     const void *saddr, const void *daddr,
1882 		     int family, int l3index, const __u8 *hash_location)
1883 {
1884 	return SKB_NOT_DROPPED_YET;
1885 }
1886 #define tcp_twsk_md5_key(twsk)	NULL
1887 #endif
1888 
1889 int tcp_md5_alloc_sigpool(void);
1890 void tcp_md5_release_sigpool(void);
1891 void tcp_md5_add_sigpool(void);
1892 extern int tcp_md5_sigpool_id;
1893 
1894 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1895 		     const struct tcp_md5sig_key *key);
1896 
1897 /* From tcp_fastopen.c */
1898 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1899 			    struct tcp_fastopen_cookie *cookie);
1900 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1901 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1902 			    u16 try_exp);
1903 struct tcp_fastopen_request {
1904 	/* Fast Open cookie. Size 0 means a cookie request */
1905 	struct tcp_fastopen_cookie	cookie;
1906 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1907 	size_t				size;
1908 	int				copied;	/* queued in tcp_connect() */
1909 	struct ubuf_info		*uarg;
1910 };
1911 void tcp_free_fastopen_req(struct tcp_sock *tp);
1912 void tcp_fastopen_destroy_cipher(struct sock *sk);
1913 void tcp_fastopen_ctx_destroy(struct net *net);
1914 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1915 			      void *primary_key, void *backup_key);
1916 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1917 			    u64 *key);
1918 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1919 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1920 			      struct request_sock *req,
1921 			      struct tcp_fastopen_cookie *foc,
1922 			      const struct dst_entry *dst);
1923 void tcp_fastopen_init_key_once(struct net *net);
1924 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1925 			     struct tcp_fastopen_cookie *cookie);
1926 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1927 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1928 #define TCP_FASTOPEN_KEY_MAX 2
1929 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1930 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1931 
1932 /* Fastopen key context */
1933 struct tcp_fastopen_context {
1934 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1935 	int		num;
1936 	struct rcu_head	rcu;
1937 };
1938 
1939 void tcp_fastopen_active_disable(struct sock *sk);
1940 bool tcp_fastopen_active_should_disable(struct sock *sk);
1941 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1942 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1943 
1944 /* Caller needs to wrap with rcu_read_(un)lock() */
1945 static inline
1946 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1947 {
1948 	struct tcp_fastopen_context *ctx;
1949 
1950 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1951 	if (!ctx)
1952 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1953 	return ctx;
1954 }
1955 
1956 static inline
1957 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1958 			       const struct tcp_fastopen_cookie *orig)
1959 {
1960 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1961 	    orig->len == foc->len &&
1962 	    !memcmp(orig->val, foc->val, foc->len))
1963 		return true;
1964 	return false;
1965 }
1966 
1967 static inline
1968 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1969 {
1970 	return ctx->num;
1971 }
1972 
1973 /* Latencies incurred by various limits for a sender. They are
1974  * chronograph-like stats that are mutually exclusive.
1975  */
1976 enum tcp_chrono {
1977 	TCP_CHRONO_UNSPEC,
1978 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1979 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1980 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1981 	__TCP_CHRONO_MAX,
1982 };
1983 
1984 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1985 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1986 
1987 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1988  * the same memory storage than skb->destructor/_skb_refdst
1989  */
1990 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1991 {
1992 	skb->destructor = NULL;
1993 	skb->_skb_refdst = 0UL;
1994 }
1995 
1996 #define tcp_skb_tsorted_save(skb) {		\
1997 	unsigned long _save = skb->_skb_refdst;	\
1998 	skb->_skb_refdst = 0UL;
1999 
2000 #define tcp_skb_tsorted_restore(skb)		\
2001 	skb->_skb_refdst = _save;		\
2002 }
2003 
2004 void tcp_write_queue_purge(struct sock *sk);
2005 
2006 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2007 {
2008 	return skb_rb_first(&sk->tcp_rtx_queue);
2009 }
2010 
2011 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2012 {
2013 	return skb_rb_last(&sk->tcp_rtx_queue);
2014 }
2015 
2016 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2017 {
2018 	return skb_peek_tail(&sk->sk_write_queue);
2019 }
2020 
2021 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2022 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2023 
2024 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2025 {
2026 	return skb_peek(&sk->sk_write_queue);
2027 }
2028 
2029 static inline bool tcp_skb_is_last(const struct sock *sk,
2030 				   const struct sk_buff *skb)
2031 {
2032 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2033 }
2034 
2035 /**
2036  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2037  * @sk: socket
2038  *
2039  * Since the write queue can have a temporary empty skb in it,
2040  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2041  */
2042 static inline bool tcp_write_queue_empty(const struct sock *sk)
2043 {
2044 	const struct tcp_sock *tp = tcp_sk(sk);
2045 
2046 	return tp->write_seq == tp->snd_nxt;
2047 }
2048 
2049 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2050 {
2051 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2052 }
2053 
2054 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2055 {
2056 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2057 }
2058 
2059 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2060 {
2061 	__skb_queue_tail(&sk->sk_write_queue, skb);
2062 
2063 	/* Queue it, remembering where we must start sending. */
2064 	if (sk->sk_write_queue.next == skb)
2065 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2066 }
2067 
2068 /* Insert new before skb on the write queue of sk.  */
2069 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2070 						  struct sk_buff *skb,
2071 						  struct sock *sk)
2072 {
2073 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2074 }
2075 
2076 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2077 {
2078 	tcp_skb_tsorted_anchor_cleanup(skb);
2079 	__skb_unlink(skb, &sk->sk_write_queue);
2080 }
2081 
2082 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2083 
2084 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2085 {
2086 	tcp_skb_tsorted_anchor_cleanup(skb);
2087 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2088 }
2089 
2090 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2091 {
2092 	list_del(&skb->tcp_tsorted_anchor);
2093 	tcp_rtx_queue_unlink(skb, sk);
2094 	tcp_wmem_free_skb(sk, skb);
2095 }
2096 
2097 static inline void tcp_push_pending_frames(struct sock *sk)
2098 {
2099 	if (tcp_send_head(sk)) {
2100 		struct tcp_sock *tp = tcp_sk(sk);
2101 
2102 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2103 	}
2104 }
2105 
2106 /* Start sequence of the skb just after the highest skb with SACKed
2107  * bit, valid only if sacked_out > 0 or when the caller has ensured
2108  * validity by itself.
2109  */
2110 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2111 {
2112 	if (!tp->sacked_out)
2113 		return tp->snd_una;
2114 
2115 	if (tp->highest_sack == NULL)
2116 		return tp->snd_nxt;
2117 
2118 	return TCP_SKB_CB(tp->highest_sack)->seq;
2119 }
2120 
2121 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2122 {
2123 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2124 }
2125 
2126 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2127 {
2128 	return tcp_sk(sk)->highest_sack;
2129 }
2130 
2131 static inline void tcp_highest_sack_reset(struct sock *sk)
2132 {
2133 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2134 }
2135 
2136 /* Called when old skb is about to be deleted and replaced by new skb */
2137 static inline void tcp_highest_sack_replace(struct sock *sk,
2138 					    struct sk_buff *old,
2139 					    struct sk_buff *new)
2140 {
2141 	if (old == tcp_highest_sack(sk))
2142 		tcp_sk(sk)->highest_sack = new;
2143 }
2144 
2145 /* This helper checks if socket has IP_TRANSPARENT set */
2146 static inline bool inet_sk_transparent(const struct sock *sk)
2147 {
2148 	switch (sk->sk_state) {
2149 	case TCP_TIME_WAIT:
2150 		return inet_twsk(sk)->tw_transparent;
2151 	case TCP_NEW_SYN_RECV:
2152 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2153 	}
2154 	return inet_test_bit(TRANSPARENT, sk);
2155 }
2156 
2157 /* Determines whether this is a thin stream (which may suffer from
2158  * increased latency). Used to trigger latency-reducing mechanisms.
2159  */
2160 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2161 {
2162 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2163 }
2164 
2165 /* /proc */
2166 enum tcp_seq_states {
2167 	TCP_SEQ_STATE_LISTENING,
2168 	TCP_SEQ_STATE_ESTABLISHED,
2169 };
2170 
2171 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2172 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2173 void tcp_seq_stop(struct seq_file *seq, void *v);
2174 
2175 struct tcp_seq_afinfo {
2176 	sa_family_t			family;
2177 };
2178 
2179 struct tcp_iter_state {
2180 	struct seq_net_private	p;
2181 	enum tcp_seq_states	state;
2182 	struct sock		*syn_wait_sk;
2183 	int			bucket, offset, sbucket, num;
2184 	loff_t			last_pos;
2185 };
2186 
2187 extern struct request_sock_ops tcp_request_sock_ops;
2188 extern struct request_sock_ops tcp6_request_sock_ops;
2189 
2190 void tcp_v4_destroy_sock(struct sock *sk);
2191 
2192 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2193 				netdev_features_t features);
2194 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2195 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2196 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2197 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2198 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2199 #ifdef CONFIG_INET
2200 void tcp_gro_complete(struct sk_buff *skb);
2201 #else
2202 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2203 #endif
2204 
2205 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2206 
2207 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2208 {
2209 	struct net *net = sock_net((struct sock *)tp);
2210 	u32 val;
2211 
2212 	val = READ_ONCE(tp->notsent_lowat);
2213 
2214 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2215 }
2216 
2217 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2218 
2219 #ifdef CONFIG_PROC_FS
2220 int tcp4_proc_init(void);
2221 void tcp4_proc_exit(void);
2222 #endif
2223 
2224 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2225 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2226 		     const struct tcp_request_sock_ops *af_ops,
2227 		     struct sock *sk, struct sk_buff *skb);
2228 
2229 /* TCP af-specific functions */
2230 struct tcp_sock_af_ops {
2231 #ifdef CONFIG_TCP_MD5SIG
2232 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2233 						const struct sock *addr_sk);
2234 	int		(*calc_md5_hash)(char *location,
2235 					 const struct tcp_md5sig_key *md5,
2236 					 const struct sock *sk,
2237 					 const struct sk_buff *skb);
2238 	int		(*md5_parse)(struct sock *sk,
2239 				     int optname,
2240 				     sockptr_t optval,
2241 				     int optlen);
2242 #endif
2243 #ifdef CONFIG_TCP_AO
2244 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2245 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2246 					struct sock *addr_sk,
2247 					int sndid, int rcvid);
2248 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2249 			      const struct sock *sk,
2250 			      __be32 sisn, __be32 disn, bool send);
2251 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2252 			    const struct sock *sk, const struct sk_buff *skb,
2253 			    const u8 *tkey, int hash_offset, u32 sne);
2254 #endif
2255 };
2256 
2257 struct tcp_request_sock_ops {
2258 	u16 mss_clamp;
2259 #ifdef CONFIG_TCP_MD5SIG
2260 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2261 						 const struct sock *addr_sk);
2262 	int		(*calc_md5_hash) (char *location,
2263 					  const struct tcp_md5sig_key *md5,
2264 					  const struct sock *sk,
2265 					  const struct sk_buff *skb);
2266 #endif
2267 #ifdef CONFIG_TCP_AO
2268 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2269 					struct request_sock *req,
2270 					int sndid, int rcvid);
2271 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2272 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2273 			      struct request_sock *req, const struct sk_buff *skb,
2274 			      int hash_offset, u32 sne);
2275 #endif
2276 #ifdef CONFIG_SYN_COOKIES
2277 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2278 				 __u16 *mss);
2279 #endif
2280 	struct dst_entry *(*route_req)(const struct sock *sk,
2281 				       struct sk_buff *skb,
2282 				       struct flowi *fl,
2283 				       struct request_sock *req,
2284 				       u32 tw_isn);
2285 	u32 (*init_seq)(const struct sk_buff *skb);
2286 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2287 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2288 			   struct flowi *fl, struct request_sock *req,
2289 			   struct tcp_fastopen_cookie *foc,
2290 			   enum tcp_synack_type synack_type,
2291 			   struct sk_buff *syn_skb);
2292 };
2293 
2294 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2295 #if IS_ENABLED(CONFIG_IPV6)
2296 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2297 #endif
2298 
2299 #ifdef CONFIG_SYN_COOKIES
2300 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2301 					 const struct sock *sk, struct sk_buff *skb,
2302 					 __u16 *mss)
2303 {
2304 	tcp_synq_overflow(sk);
2305 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2306 	return ops->cookie_init_seq(skb, mss);
2307 }
2308 #else
2309 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2310 					 const struct sock *sk, struct sk_buff *skb,
2311 					 __u16 *mss)
2312 {
2313 	return 0;
2314 }
2315 #endif
2316 
2317 struct tcp_key {
2318 	union {
2319 		struct {
2320 			struct tcp_ao_key *ao_key;
2321 			char *traffic_key;
2322 			u32 sne;
2323 			u8 rcv_next;
2324 		};
2325 		struct tcp_md5sig_key *md5_key;
2326 	};
2327 	enum {
2328 		TCP_KEY_NONE = 0,
2329 		TCP_KEY_MD5,
2330 		TCP_KEY_AO,
2331 	} type;
2332 };
2333 
2334 static inline void tcp_get_current_key(const struct sock *sk,
2335 				       struct tcp_key *out)
2336 {
2337 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2338 	const struct tcp_sock *tp = tcp_sk(sk);
2339 #endif
2340 
2341 #ifdef CONFIG_TCP_AO
2342 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2343 		struct tcp_ao_info *ao;
2344 
2345 		ao = rcu_dereference_protected(tp->ao_info,
2346 					       lockdep_sock_is_held(sk));
2347 		if (ao) {
2348 			out->ao_key = READ_ONCE(ao->current_key);
2349 			out->type = TCP_KEY_AO;
2350 			return;
2351 		}
2352 	}
2353 #endif
2354 #ifdef CONFIG_TCP_MD5SIG
2355 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2356 	    rcu_access_pointer(tp->md5sig_info)) {
2357 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2358 		if (out->md5_key) {
2359 			out->type = TCP_KEY_MD5;
2360 			return;
2361 		}
2362 	}
2363 #endif
2364 	out->type = TCP_KEY_NONE;
2365 }
2366 
2367 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2368 {
2369 #ifdef CONFIG_TCP_MD5SIG
2370 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2371 	    key->type == TCP_KEY_MD5)
2372 		return true;
2373 #endif
2374 	return false;
2375 }
2376 
2377 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2378 {
2379 #ifdef CONFIG_TCP_AO
2380 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2381 	    key->type == TCP_KEY_AO)
2382 		return true;
2383 #endif
2384 	return false;
2385 }
2386 
2387 int tcpv4_offload_init(void);
2388 
2389 void tcp_v4_init(void);
2390 void tcp_init(void);
2391 
2392 /* tcp_recovery.c */
2393 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2394 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2395 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2396 				u32 reo_wnd);
2397 extern bool tcp_rack_mark_lost(struct sock *sk);
2398 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2399 			     u64 xmit_time);
2400 extern void tcp_rack_reo_timeout(struct sock *sk);
2401 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2402 
2403 /* tcp_plb.c */
2404 
2405 /*
2406  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2407  * expects cong_ratio which represents fraction of traffic that experienced
2408  * congestion over a single RTT. In order to avoid floating point operations,
2409  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2410  */
2411 #define TCP_PLB_SCALE 8
2412 
2413 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2414 struct tcp_plb_state {
2415 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2416 		unused:3;
2417 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2418 };
2419 
2420 static inline void tcp_plb_init(const struct sock *sk,
2421 				struct tcp_plb_state *plb)
2422 {
2423 	plb->consec_cong_rounds = 0;
2424 	plb->pause_until = 0;
2425 }
2426 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2427 			  const int cong_ratio);
2428 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2429 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2430 
2431 /* At how many usecs into the future should the RTO fire? */
2432 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2433 {
2434 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2435 	u32 rto = inet_csk(sk)->icsk_rto;
2436 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2437 
2438 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2439 }
2440 
2441 /*
2442  * Save and compile IPv4 options, return a pointer to it
2443  */
2444 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2445 							 struct sk_buff *skb)
2446 {
2447 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2448 	struct ip_options_rcu *dopt = NULL;
2449 
2450 	if (opt->optlen) {
2451 		int opt_size = sizeof(*dopt) + opt->optlen;
2452 
2453 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2454 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2455 			kfree(dopt);
2456 			dopt = NULL;
2457 		}
2458 	}
2459 	return dopt;
2460 }
2461 
2462 /* locally generated TCP pure ACKs have skb->truesize == 2
2463  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2464  * This is much faster than dissecting the packet to find out.
2465  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2466  */
2467 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2468 {
2469 	return skb->truesize == 2;
2470 }
2471 
2472 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2473 {
2474 	skb->truesize = 2;
2475 }
2476 
2477 static inline int tcp_inq(struct sock *sk)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	int answ;
2481 
2482 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2483 		answ = 0;
2484 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2485 		   !tp->urg_data ||
2486 		   before(tp->urg_seq, tp->copied_seq) ||
2487 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2488 
2489 		answ = tp->rcv_nxt - tp->copied_seq;
2490 
2491 		/* Subtract 1, if FIN was received */
2492 		if (answ && sock_flag(sk, SOCK_DONE))
2493 			answ--;
2494 	} else {
2495 		answ = tp->urg_seq - tp->copied_seq;
2496 	}
2497 
2498 	return answ;
2499 }
2500 
2501 int tcp_peek_len(struct socket *sock);
2502 
2503 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2504 {
2505 	u16 segs_in;
2506 
2507 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2508 
2509 	/* We update these fields while other threads might
2510 	 * read them from tcp_get_info()
2511 	 */
2512 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2513 	if (skb->len > tcp_hdrlen(skb))
2514 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2515 }
2516 
2517 /*
2518  * TCP listen path runs lockless.
2519  * We forced "struct sock" to be const qualified to make sure
2520  * we don't modify one of its field by mistake.
2521  * Here, we increment sk_drops which is an atomic_t, so we can safely
2522  * make sock writable again.
2523  */
2524 static inline void tcp_listendrop(const struct sock *sk)
2525 {
2526 	atomic_inc(&((struct sock *)sk)->sk_drops);
2527 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2528 }
2529 
2530 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2531 
2532 /*
2533  * Interface for adding Upper Level Protocols over TCP
2534  */
2535 
2536 #define TCP_ULP_NAME_MAX	16
2537 #define TCP_ULP_MAX		128
2538 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2539 
2540 struct tcp_ulp_ops {
2541 	struct list_head	list;
2542 
2543 	/* initialize ulp */
2544 	int (*init)(struct sock *sk);
2545 	/* update ulp */
2546 	void (*update)(struct sock *sk, struct proto *p,
2547 		       void (*write_space)(struct sock *sk));
2548 	/* cleanup ulp */
2549 	void (*release)(struct sock *sk);
2550 	/* diagnostic */
2551 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2552 	size_t (*get_info_size)(const struct sock *sk);
2553 	/* clone ulp */
2554 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2555 		      const gfp_t priority);
2556 
2557 	char		name[TCP_ULP_NAME_MAX];
2558 	struct module	*owner;
2559 };
2560 int tcp_register_ulp(struct tcp_ulp_ops *type);
2561 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2562 int tcp_set_ulp(struct sock *sk, const char *name);
2563 void tcp_get_available_ulp(char *buf, size_t len);
2564 void tcp_cleanup_ulp(struct sock *sk);
2565 void tcp_update_ulp(struct sock *sk, struct proto *p,
2566 		    void (*write_space)(struct sock *sk));
2567 
2568 #define MODULE_ALIAS_TCP_ULP(name)				\
2569 	__MODULE_INFO(alias, alias_userspace, name);		\
2570 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2571 
2572 #ifdef CONFIG_NET_SOCK_MSG
2573 struct sk_msg;
2574 struct sk_psock;
2575 
2576 #ifdef CONFIG_BPF_SYSCALL
2577 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2578 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2579 #endif /* CONFIG_BPF_SYSCALL */
2580 
2581 #ifdef CONFIG_INET
2582 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2583 #else
2584 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2585 {
2586 }
2587 #endif
2588 
2589 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2590 			  struct sk_msg *msg, u32 bytes, int flags);
2591 #endif /* CONFIG_NET_SOCK_MSG */
2592 
2593 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2594 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2595 {
2596 }
2597 #endif
2598 
2599 #ifdef CONFIG_CGROUP_BPF
2600 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2601 				      struct sk_buff *skb,
2602 				      unsigned int end_offset)
2603 {
2604 	skops->skb = skb;
2605 	skops->skb_data_end = skb->data + end_offset;
2606 }
2607 #else
2608 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2609 				      struct sk_buff *skb,
2610 				      unsigned int end_offset)
2611 {
2612 }
2613 #endif
2614 
2615 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2616  * is < 0, then the BPF op failed (for example if the loaded BPF
2617  * program does not support the chosen operation or there is no BPF
2618  * program loaded).
2619  */
2620 #ifdef CONFIG_BPF
2621 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2622 {
2623 	struct bpf_sock_ops_kern sock_ops;
2624 	int ret;
2625 
2626 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2627 	if (sk_fullsock(sk)) {
2628 		sock_ops.is_fullsock = 1;
2629 		sock_owned_by_me(sk);
2630 	}
2631 
2632 	sock_ops.sk = sk;
2633 	sock_ops.op = op;
2634 	if (nargs > 0)
2635 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2636 
2637 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2638 	if (ret == 0)
2639 		ret = sock_ops.reply;
2640 	else
2641 		ret = -1;
2642 	return ret;
2643 }
2644 
2645 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2646 {
2647 	u32 args[2] = {arg1, arg2};
2648 
2649 	return tcp_call_bpf(sk, op, 2, args);
2650 }
2651 
2652 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2653 				    u32 arg3)
2654 {
2655 	u32 args[3] = {arg1, arg2, arg3};
2656 
2657 	return tcp_call_bpf(sk, op, 3, args);
2658 }
2659 
2660 #else
2661 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2662 {
2663 	return -EPERM;
2664 }
2665 
2666 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2667 {
2668 	return -EPERM;
2669 }
2670 
2671 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2672 				    u32 arg3)
2673 {
2674 	return -EPERM;
2675 }
2676 
2677 #endif
2678 
2679 static inline u32 tcp_timeout_init(struct sock *sk)
2680 {
2681 	int timeout;
2682 
2683 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2684 
2685 	if (timeout <= 0)
2686 		timeout = TCP_TIMEOUT_INIT;
2687 	return min_t(int, timeout, TCP_RTO_MAX);
2688 }
2689 
2690 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2691 {
2692 	int rwnd;
2693 
2694 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2695 
2696 	if (rwnd < 0)
2697 		rwnd = 0;
2698 	return rwnd;
2699 }
2700 
2701 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2702 {
2703 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2704 }
2705 
2706 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2707 {
2708 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2709 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2710 }
2711 
2712 #if IS_ENABLED(CONFIG_SMC)
2713 extern struct static_key_false tcp_have_smc;
2714 #endif
2715 
2716 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2717 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2718 			     void (*cad)(struct sock *sk, u32 ack_seq));
2719 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2720 void clean_acked_data_flush(void);
2721 #endif
2722 
2723 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2724 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2725 				    const struct tcp_sock *tp)
2726 {
2727 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2728 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2729 }
2730 
2731 /* Compute Earliest Departure Time for some control packets
2732  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2733  */
2734 static inline u64 tcp_transmit_time(const struct sock *sk)
2735 {
2736 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2737 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2738 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2739 
2740 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2741 	}
2742 	return 0;
2743 }
2744 
2745 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2746 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2747 {
2748 	const u8 *md5_tmp, *ao_tmp;
2749 	int ret;
2750 
2751 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2752 	if (ret)
2753 		return ret;
2754 
2755 	if (md5_hash)
2756 		*md5_hash = md5_tmp;
2757 
2758 	if (aoh) {
2759 		if (!ao_tmp)
2760 			*aoh = NULL;
2761 		else
2762 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2769 				   int family, int l3index, bool stat_inc)
2770 {
2771 #ifdef CONFIG_TCP_AO
2772 	struct tcp_ao_info *ao_info;
2773 	struct tcp_ao_key *ao_key;
2774 
2775 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2776 		return false;
2777 
2778 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2779 					lockdep_sock_is_held(sk));
2780 	if (!ao_info)
2781 		return false;
2782 
2783 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2784 	if (ao_info->ao_required || ao_key) {
2785 		if (stat_inc) {
2786 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2787 			atomic64_inc(&ao_info->counters.ao_required);
2788 		}
2789 		return true;
2790 	}
2791 #endif
2792 	return false;
2793 }
2794 
2795 /* Called with rcu_read_lock() */
2796 static inline enum skb_drop_reason
2797 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2798 		 const struct sk_buff *skb,
2799 		 const void *saddr, const void *daddr,
2800 		 int family, int dif, int sdif)
2801 {
2802 	const struct tcphdr *th = tcp_hdr(skb);
2803 	const struct tcp_ao_hdr *aoh;
2804 	const __u8 *md5_location;
2805 	int l3index;
2806 
2807 	/* Invalid option or two times meet any of auth options */
2808 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2809 		tcp_hash_fail("TCP segment has incorrect auth options set",
2810 			      family, skb, "");
2811 		return SKB_DROP_REASON_TCP_AUTH_HDR;
2812 	}
2813 
2814 	if (req) {
2815 		if (tcp_rsk_used_ao(req) != !!aoh) {
2816 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2817 			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2818 				      family, skb, "%s",
2819 				      !aoh ? "missing AO" : "AO signed");
2820 			return SKB_DROP_REASON_TCP_AOFAILURE;
2821 		}
2822 	}
2823 
2824 	/* sdif set, means packet ingressed via a device
2825 	 * in an L3 domain and dif is set to the l3mdev
2826 	 */
2827 	l3index = sdif ? dif : 0;
2828 
2829 	/* Fast path: unsigned segments */
2830 	if (likely(!md5_location && !aoh)) {
2831 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2832 		 * for the remote peer. On TCP-AO established connection
2833 		 * the last key is impossible to remove, so there's
2834 		 * always at least one current_key.
2835 		 */
2836 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2837 			tcp_hash_fail("AO hash is required, but not found",
2838 					family, skb, "L3 index %d", l3index);
2839 			return SKB_DROP_REASON_TCP_AONOTFOUND;
2840 		}
2841 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2842 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2843 			tcp_hash_fail("MD5 Hash not found",
2844 				      family, skb, "L3 index %d", l3index);
2845 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2846 		}
2847 		return SKB_NOT_DROPPED_YET;
2848 	}
2849 
2850 	if (aoh)
2851 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2852 
2853 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2854 				    l3index, md5_location);
2855 }
2856 
2857 #endif	/* _TCP_H */
2858