xref: /linux/include/net/tcp.h (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53 
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55 
56 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS		48
59 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132 
133 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN	((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN	4U
139 #define TCP_ATO_MIN	4U
140 #endif
141 #define TCP_RTO_MAX	((unsigned)(120*HZ))
142 #define TCP_RTO_MIN	((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
146 						 * used as a fallback RTO for the
147 						 * initial data transmission if no
148 						 * valid RTT sample has been acquired,
149 						 * most likely due to retrans in 3WHS.
150 						 */
151 
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 					                 * for local resources.
154 					                 */
155 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
156 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
157 #define TCP_KEEPALIVE_INTVL	(75*HZ)
158 
159 #define MAX_TCP_KEEPIDLE	32767
160 #define MAX_TCP_KEEPINTVL	32767
161 #define MAX_TCP_KEEPCNT		127
162 #define MAX_TCP_SYNCNT		127
163 
164 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
165 
166 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
168 					 * after this time. It should be equal
169 					 * (or greater than) TCP_TIMEWAIT_LEN
170 					 * to provide reliability equal to one
171 					 * provided by timewait state.
172 					 */
173 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
174 					 * timestamps. It must be less than
175 					 * minimal timewait lifetime.
176 					 */
177 /*
178  *	TCP option
179  */
180 
181 #define TCPOPT_NOP		1	/* Padding */
182 #define TCPOPT_EOL		0	/* End of options */
183 #define TCPOPT_MSS		2	/* Segment size negotiating */
184 #define TCPOPT_WINDOW		3	/* Window scaling */
185 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
186 #define TCPOPT_SACK             5       /* SACK Block */
187 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
197 
198 /*
199  *     TCP option lengths
200  */
201 
202 #define TCPOLEN_MSS            4
203 #define TCPOLEN_WINDOW         3
204 #define TCPOLEN_SACK_PERM      2
205 #define TCPOLEN_TIMESTAMP      10
206 #define TCPOLEN_MD5SIG         18
207 #define TCPOLEN_FASTOPEN_BASE  2
208 #define TCPOLEN_EXP_FASTOPEN_BASE  4
209 #define TCPOLEN_EXP_SMC_BASE   6
210 
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED		12
213 #define TCPOLEN_WSCALE_ALIGNED		4
214 #define TCPOLEN_SACKPERM_ALIGNED	4
215 #define TCPOLEN_SACK_BASE		2
216 #define TCPOLEN_SACK_BASE_ALIGNED	4
217 #define TCPOLEN_SACK_PERBLOCK		8
218 #define TCPOLEN_MD5SIG_ALIGNED		20
219 #define TCPOLEN_MSS_ALIGNED		4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
221 
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
225 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
226 
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
229 
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND		10
232 
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define	TFO_CLIENT_ENABLE	1
235 #define	TFO_SERVER_ENABLE	2
236 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
237 
238 /* Accept SYN data w/o any cookie option */
239 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
240 
241 /* Force enable TFO on all listeners, i.e., not requiring the
242  * TCP_FASTOPEN socket option.
243  */
244 #define	TFO_SERVER_WO_SOCKOPT1	0x400
245 
246 
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250 
251 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
254 
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258 
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 		return true;
265 
266 	return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269  * The next routines deal with comparing 32 bit unsigned ints
270  * and worry about wraparound (automatic with unsigned arithmetic).
271  */
272 
273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275         return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) 	before(seq1, seq2)
278 
279 /* is s2<=s1<=s3 ? */
280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 	return seq3 - seq2 >= seq1 - seq2;
283 }
284 
285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 	sk_wmem_queued_add(sk, -skb->truesize);
296 	sk_mem_uncharge(sk, skb->truesize);
297 	__kfree_skb(skb);
298 }
299 
300 void sk_forced_mem_schedule(struct sock *sk, int size);
301 
302 bool tcp_check_oom(struct sock *sk, int shift);
303 
304 
305 extern struct proto tcp_prot;
306 
307 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311 
312 void tcp_tasklet_init(void);
313 
314 int tcp_v4_err(struct sk_buff *skb, u32);
315 
316 void tcp_shutdown(struct sock *sk, int how);
317 
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320 
321 void tcp_remove_empty_skb(struct sock *sk);
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
332 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
333 	      int size_goal);
334 void tcp_release_cb(struct sock *sk);
335 void tcp_wfree(struct sk_buff *skb);
336 void tcp_write_timer_handler(struct sock *sk);
337 void tcp_delack_timer_handler(struct sock *sk);
338 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
339 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
340 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_space_adjust(struct sock *sk);
342 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
343 void tcp_twsk_destructor(struct sock *sk);
344 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
345 			struct pipe_inode_info *pipe, size_t len,
346 			unsigned int flags);
347 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
348 				     bool force_schedule);
349 
350 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
351 static inline void tcp_dec_quickack_mode(struct sock *sk,
352 					 const unsigned int pkts)
353 {
354 	struct inet_connection_sock *icsk = inet_csk(sk);
355 
356 	if (icsk->icsk_ack.quick) {
357 		if (pkts >= icsk->icsk_ack.quick) {
358 			icsk->icsk_ack.quick = 0;
359 			/* Leaving quickack mode we deflate ATO. */
360 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
361 		} else
362 			icsk->icsk_ack.quick -= pkts;
363 	}
364 }
365 
366 #define	TCP_ECN_OK		1
367 #define	TCP_ECN_QUEUE_CWR	2
368 #define	TCP_ECN_DEMAND_CWR	4
369 #define	TCP_ECN_SEEN		8
370 
371 enum tcp_tw_status {
372 	TCP_TW_SUCCESS = 0,
373 	TCP_TW_RST = 1,
374 	TCP_TW_ACK = 2,
375 	TCP_TW_SYN = 3
376 };
377 
378 
379 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
380 					      struct sk_buff *skb,
381 					      const struct tcphdr *th);
382 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
383 			   struct request_sock *req, bool fastopen,
384 			   bool *lost_race);
385 int tcp_child_process(struct sock *parent, struct sock *child,
386 		      struct sk_buff *skb);
387 void tcp_enter_loss(struct sock *sk);
388 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
389 void tcp_clear_retrans(struct tcp_sock *tp);
390 void tcp_update_metrics(struct sock *sk);
391 void tcp_init_metrics(struct sock *sk);
392 void tcp_metrics_init(void);
393 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
394 void __tcp_close(struct sock *sk, long timeout);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 		      struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 		   char __user *optval, int __user *optlen);
402 bool tcp_bpf_bypass_getsockopt(int level, int optname);
403 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
404 		   unsigned int optlen);
405 void tcp_set_keepalive(struct sock *sk, int val);
406 void tcp_syn_ack_timeout(const struct request_sock *req);
407 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
408 		int flags, int *addr_len);
409 int tcp_set_rcvlowat(struct sock *sk, int val);
410 int tcp_set_window_clamp(struct sock *sk, int val);
411 void tcp_update_recv_tstamps(struct sk_buff *skb,
412 			     struct scm_timestamping_internal *tss);
413 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
414 			struct scm_timestamping_internal *tss);
415 void tcp_data_ready(struct sock *sk);
416 #ifdef CONFIG_MMU
417 int tcp_mmap(struct file *file, struct socket *sock,
418 	     struct vm_area_struct *vma);
419 #endif
420 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
421 		       struct tcp_options_received *opt_rx,
422 		       int estab, struct tcp_fastopen_cookie *foc);
423 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
424 
425 /*
426  *	BPF SKB-less helpers
427  */
428 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
429 			 struct tcphdr *th, u32 *cookie);
430 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
431 			 struct tcphdr *th, u32 *cookie);
432 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
433 			  const struct tcp_request_sock_ops *af_ops,
434 			  struct sock *sk, struct tcphdr *th);
435 /*
436  *	TCP v4 functions exported for the inet6 API
437  */
438 
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
443 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
444 struct sock *tcp_create_openreq_child(const struct sock *sk,
445 				      struct request_sock *req,
446 				      struct sk_buff *skb);
447 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
448 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
449 				  struct request_sock *req,
450 				  struct dst_entry *dst,
451 				  struct request_sock *req_unhash,
452 				  bool *own_req);
453 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
454 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
455 int tcp_connect(struct sock *sk);
456 enum tcp_synack_type {
457 	TCP_SYNACK_NORMAL,
458 	TCP_SYNACK_FASTOPEN,
459 	TCP_SYNACK_COOKIE,
460 };
461 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
462 				struct request_sock *req,
463 				struct tcp_fastopen_cookie *foc,
464 				enum tcp_synack_type synack_type,
465 				struct sk_buff *syn_skb);
466 int tcp_disconnect(struct sock *sk, int flags);
467 
468 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
469 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
470 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
471 
472 /* From syncookies.c */
473 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
474 				 struct request_sock *req,
475 				 struct dst_entry *dst, u32 tsoff);
476 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
477 		      u32 cookie);
478 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
479 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
480 					    struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482 
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE	2
491 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
492 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493 
494 /* syncookies: remember time of last synqueue overflow
495  * But do not dirty this field too often (once per second is enough)
496  * It is racy as we do not hold a lock, but race is very minor.
497  */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 	unsigned int last_overflow;
501 	unsigned int now = jiffies;
502 
503 	if (sk->sk_reuseport) {
504 		struct sock_reuseport *reuse;
505 
506 		reuse = rcu_dereference(sk->sk_reuseport_cb);
507 		if (likely(reuse)) {
508 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
509 			if (!time_between32(now, last_overflow,
510 					    last_overflow + HZ))
511 				WRITE_ONCE(reuse->synq_overflow_ts, now);
512 			return;
513 		}
514 	}
515 
516 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
517 	if (!time_between32(now, last_overflow, last_overflow + HZ))
518 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
519 }
520 
521 /* syncookies: no recent synqueue overflow on this listening socket? */
522 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
523 {
524 	unsigned int last_overflow;
525 	unsigned int now = jiffies;
526 
527 	if (sk->sk_reuseport) {
528 		struct sock_reuseport *reuse;
529 
530 		reuse = rcu_dereference(sk->sk_reuseport_cb);
531 		if (likely(reuse)) {
532 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
533 			return !time_between32(now, last_overflow - HZ,
534 					       last_overflow +
535 					       TCP_SYNCOOKIE_VALID);
536 		}
537 	}
538 
539 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
540 
541 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
542 	 * then we're under synflood. However, we have to use
543 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
544 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
545 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
546 	 * which could lead to rejecting a valid syncookie.
547 	 */
548 	return !time_between32(now, last_overflow - HZ,
549 			       last_overflow + TCP_SYNCOOKIE_VALID);
550 }
551 
552 static inline u32 tcp_cookie_time(void)
553 {
554 	u64 val = get_jiffies_64();
555 
556 	do_div(val, TCP_SYNCOOKIE_PERIOD);
557 	return val;
558 }
559 
560 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
561 			      u16 *mssp);
562 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
563 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
564 bool cookie_timestamp_decode(const struct net *net,
565 			     struct tcp_options_received *opt);
566 bool cookie_ecn_ok(const struct tcp_options_received *opt,
567 		   const struct net *net, const struct dst_entry *dst);
568 
569 /* From net/ipv6/syncookies.c */
570 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
571 		      u32 cookie);
572 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
573 
574 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
575 			      const struct tcphdr *th, u16 *mssp);
576 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
577 #endif
578 /* tcp_output.c */
579 
580 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
581 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
582 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
583 			       int nonagle);
584 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
585 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
586 void tcp_retransmit_timer(struct sock *sk);
587 void tcp_xmit_retransmit_queue(struct sock *);
588 void tcp_simple_retransmit(struct sock *);
589 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
590 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
591 enum tcp_queue {
592 	TCP_FRAG_IN_WRITE_QUEUE,
593 	TCP_FRAG_IN_RTX_QUEUE,
594 };
595 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
596 		 struct sk_buff *skb, u32 len,
597 		 unsigned int mss_now, gfp_t gfp);
598 
599 void tcp_send_probe0(struct sock *);
600 void tcp_send_partial(struct sock *);
601 int tcp_write_wakeup(struct sock *, int mib);
602 void tcp_send_fin(struct sock *sk);
603 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
604 int tcp_send_synack(struct sock *);
605 void tcp_push_one(struct sock *, unsigned int mss_now);
606 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
607 void tcp_send_ack(struct sock *sk);
608 void tcp_send_delayed_ack(struct sock *sk);
609 void tcp_send_loss_probe(struct sock *sk);
610 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
611 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
612 			     const struct sk_buff *next_skb);
613 
614 /* tcp_input.c */
615 void tcp_rearm_rto(struct sock *sk);
616 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
617 void tcp_reset(struct sock *sk, struct sk_buff *skb);
618 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
619 void tcp_fin(struct sock *sk);
620 
621 /* tcp_timer.c */
622 void tcp_init_xmit_timers(struct sock *);
623 static inline void tcp_clear_xmit_timers(struct sock *sk)
624 {
625 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
626 		__sock_put(sk);
627 
628 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
629 		__sock_put(sk);
630 
631 	inet_csk_clear_xmit_timers(sk);
632 }
633 
634 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
635 unsigned int tcp_current_mss(struct sock *sk);
636 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
637 
638 /* Bound MSS / TSO packet size with the half of the window */
639 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
640 {
641 	int cutoff;
642 
643 	/* When peer uses tiny windows, there is no use in packetizing
644 	 * to sub-MSS pieces for the sake of SWS or making sure there
645 	 * are enough packets in the pipe for fast recovery.
646 	 *
647 	 * On the other hand, for extremely large MSS devices, handling
648 	 * smaller than MSS windows in this way does make sense.
649 	 */
650 	if (tp->max_window > TCP_MSS_DEFAULT)
651 		cutoff = (tp->max_window >> 1);
652 	else
653 		cutoff = tp->max_window;
654 
655 	if (cutoff && pktsize > cutoff)
656 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
657 	else
658 		return pktsize;
659 }
660 
661 /* tcp.c */
662 void tcp_get_info(struct sock *, struct tcp_info *);
663 
664 /* Read 'sendfile()'-style from a TCP socket */
665 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
666 		  sk_read_actor_t recv_actor);
667 
668 void tcp_initialize_rcv_mss(struct sock *sk);
669 
670 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
671 int tcp_mss_to_mtu(struct sock *sk, int mss);
672 void tcp_mtup_init(struct sock *sk);
673 
674 static inline void tcp_bound_rto(const struct sock *sk)
675 {
676 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
677 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
678 }
679 
680 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
681 {
682 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
683 }
684 
685 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
686 {
687 	/* mptcp hooks are only on the slow path */
688 	if (sk_is_mptcp((struct sock *)tp))
689 		return;
690 
691 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
692 			       ntohl(TCP_FLAG_ACK) |
693 			       snd_wnd);
694 }
695 
696 static inline void tcp_fast_path_on(struct tcp_sock *tp)
697 {
698 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
699 }
700 
701 static inline void tcp_fast_path_check(struct sock *sk)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 
705 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
706 	    tp->rcv_wnd &&
707 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
708 	    !tp->urg_data)
709 		tcp_fast_path_on(tp);
710 }
711 
712 /* Compute the actual rto_min value */
713 static inline u32 tcp_rto_min(struct sock *sk)
714 {
715 	const struct dst_entry *dst = __sk_dst_get(sk);
716 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
717 
718 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
719 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
720 	return rto_min;
721 }
722 
723 static inline u32 tcp_rto_min_us(struct sock *sk)
724 {
725 	return jiffies_to_usecs(tcp_rto_min(sk));
726 }
727 
728 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
729 {
730 	return dst_metric_locked(dst, RTAX_CC_ALGO);
731 }
732 
733 /* Minimum RTT in usec. ~0 means not available. */
734 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
735 {
736 	return minmax_get(&tp->rtt_min);
737 }
738 
739 /* Compute the actual receive window we are currently advertising.
740  * Rcv_nxt can be after the window if our peer push more data
741  * than the offered window.
742  */
743 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
744 {
745 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
746 
747 	if (win < 0)
748 		win = 0;
749 	return (u32) win;
750 }
751 
752 /* Choose a new window, without checks for shrinking, and without
753  * scaling applied to the result.  The caller does these things
754  * if necessary.  This is a "raw" window selection.
755  */
756 u32 __tcp_select_window(struct sock *sk);
757 
758 void tcp_send_window_probe(struct sock *sk);
759 
760 /* TCP uses 32bit jiffies to save some space.
761  * Note that this is different from tcp_time_stamp, which
762  * historically has been the same until linux-4.13.
763  */
764 #define tcp_jiffies32 ((u32)jiffies)
765 
766 /*
767  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
768  * It is no longer tied to jiffies, but to 1 ms clock.
769  * Note: double check if you want to use tcp_jiffies32 instead of this.
770  */
771 #define TCP_TS_HZ	1000
772 
773 static inline u64 tcp_clock_ns(void)
774 {
775 	return ktime_get_ns();
776 }
777 
778 static inline u64 tcp_clock_us(void)
779 {
780 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
781 }
782 
783 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
784 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
785 {
786 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
787 }
788 
789 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
790 static inline u32 tcp_ns_to_ts(u64 ns)
791 {
792 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
793 }
794 
795 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
796 static inline u32 tcp_time_stamp_raw(void)
797 {
798 	return tcp_ns_to_ts(tcp_clock_ns());
799 }
800 
801 void tcp_mstamp_refresh(struct tcp_sock *tp);
802 
803 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
804 {
805 	return max_t(s64, t1 - t0, 0);
806 }
807 
808 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
809 {
810 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
811 }
812 
813 /* provide the departure time in us unit */
814 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
815 {
816 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
817 }
818 
819 
820 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
821 
822 #define TCPHDR_FIN 0x01
823 #define TCPHDR_SYN 0x02
824 #define TCPHDR_RST 0x04
825 #define TCPHDR_PSH 0x08
826 #define TCPHDR_ACK 0x10
827 #define TCPHDR_URG 0x20
828 #define TCPHDR_ECE 0x40
829 #define TCPHDR_CWR 0x80
830 
831 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
832 
833 /* This is what the send packet queuing engine uses to pass
834  * TCP per-packet control information to the transmission code.
835  * We also store the host-order sequence numbers in here too.
836  * This is 44 bytes if IPV6 is enabled.
837  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
838  */
839 struct tcp_skb_cb {
840 	__u32		seq;		/* Starting sequence number	*/
841 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
842 	union {
843 		/* Note : tcp_tw_isn is used in input path only
844 		 *	  (isn chosen by tcp_timewait_state_process())
845 		 *
846 		 * 	  tcp_gso_segs/size are used in write queue only,
847 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
848 		 */
849 		__u32		tcp_tw_isn;
850 		struct {
851 			u16	tcp_gso_segs;
852 			u16	tcp_gso_size;
853 		};
854 	};
855 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
856 
857 	__u8		sacked;		/* State flags for SACK.	*/
858 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
859 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
860 #define TCPCB_LOST		0x04	/* SKB is lost			*/
861 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
862 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
863 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
864 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
865 				TCPCB_REPAIRED)
866 
867 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
868 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
869 			eor:1,		/* Is skb MSG_EOR marked? */
870 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
871 			unused:5;
872 	__u32		ack_seq;	/* Sequence number ACK'd	*/
873 	union {
874 		struct {
875 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
876 			/* There is space for up to 24 bytes */
877 			__u32 is_app_limited:1, /* cwnd not fully used? */
878 			      delivered_ce:20,
879 			      unused:11;
880 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
881 			__u32 delivered;
882 			/* start of send pipeline phase */
883 			u64 first_tx_mstamp;
884 			/* when we reached the "delivered" count */
885 			u64 delivered_mstamp;
886 		} tx;   /* only used for outgoing skbs */
887 		union {
888 			struct inet_skb_parm	h4;
889 #if IS_ENABLED(CONFIG_IPV6)
890 			struct inet6_skb_parm	h6;
891 #endif
892 		} header;	/* For incoming skbs */
893 	};
894 };
895 
896 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
897 
898 extern const struct inet_connection_sock_af_ops ipv4_specific;
899 
900 #if IS_ENABLED(CONFIG_IPV6)
901 /* This is the variant of inet6_iif() that must be used by TCP,
902  * as TCP moves IP6CB into a different location in skb->cb[]
903  */
904 static inline int tcp_v6_iif(const struct sk_buff *skb)
905 {
906 	return TCP_SKB_CB(skb)->header.h6.iif;
907 }
908 
909 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
910 {
911 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
912 
913 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
914 }
915 
916 /* TCP_SKB_CB reference means this can not be used from early demux */
917 static inline int tcp_v6_sdif(const struct sk_buff *skb)
918 {
919 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
920 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
921 		return TCP_SKB_CB(skb)->header.h6.iif;
922 #endif
923 	return 0;
924 }
925 
926 extern const struct inet_connection_sock_af_ops ipv6_specific;
927 
928 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
929 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
930 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
931 
932 #endif
933 
934 /* TCP_SKB_CB reference means this can not be used from early demux */
935 static inline int tcp_v4_sdif(struct sk_buff *skb)
936 {
937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
939 		return TCP_SKB_CB(skb)->header.h4.iif;
940 #endif
941 	return 0;
942 }
943 
944 /* Due to TSO, an SKB can be composed of multiple actual
945  * packets.  To keep these tracked properly, we use this.
946  */
947 static inline int tcp_skb_pcount(const struct sk_buff *skb)
948 {
949 	return TCP_SKB_CB(skb)->tcp_gso_segs;
950 }
951 
952 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
953 {
954 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
955 }
956 
957 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
958 {
959 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
960 }
961 
962 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
963 static inline int tcp_skb_mss(const struct sk_buff *skb)
964 {
965 	return TCP_SKB_CB(skb)->tcp_gso_size;
966 }
967 
968 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
969 {
970 	return likely(!TCP_SKB_CB(skb)->eor);
971 }
972 
973 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
974 					const struct sk_buff *from)
975 {
976 	return likely(tcp_skb_can_collapse_to(to) &&
977 		      mptcp_skb_can_collapse(to, from));
978 }
979 
980 /* Events passed to congestion control interface */
981 enum tcp_ca_event {
982 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
983 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
984 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
985 	CA_EVENT_LOSS,		/* loss timeout */
986 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
987 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
988 };
989 
990 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
991 enum tcp_ca_ack_event_flags {
992 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
993 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
994 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
995 };
996 
997 /*
998  * Interface for adding new TCP congestion control handlers
999  */
1000 #define TCP_CA_NAME_MAX	16
1001 #define TCP_CA_MAX	128
1002 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1003 
1004 #define TCP_CA_UNSPEC	0
1005 
1006 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1007 #define TCP_CONG_NON_RESTRICTED 0x1
1008 /* Requires ECN/ECT set on all packets */
1009 #define TCP_CONG_NEEDS_ECN	0x2
1010 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1011 
1012 union tcp_cc_info;
1013 
1014 struct ack_sample {
1015 	u32 pkts_acked;
1016 	s32 rtt_us;
1017 	u32 in_flight;
1018 };
1019 
1020 /* A rate sample measures the number of (original/retransmitted) data
1021  * packets delivered "delivered" over an interval of time "interval_us".
1022  * The tcp_rate.c code fills in the rate sample, and congestion
1023  * control modules that define a cong_control function to run at the end
1024  * of ACK processing can optionally chose to consult this sample when
1025  * setting cwnd and pacing rate.
1026  * A sample is invalid if "delivered" or "interval_us" is negative.
1027  */
1028 struct rate_sample {
1029 	u64  prior_mstamp; /* starting timestamp for interval */
1030 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1031 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1032 	s32  delivered;		/* number of packets delivered over interval */
1033 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1034 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1035 	u32 snd_interval_us;	/* snd interval for delivered packets */
1036 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1037 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1038 	int  losses;		/* number of packets marked lost upon ACK */
1039 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1040 	u32  prior_in_flight;	/* in flight before this ACK */
1041 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1042 	bool is_retrans;	/* is sample from retransmission? */
1043 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1044 };
1045 
1046 struct tcp_congestion_ops {
1047 /* fast path fields are put first to fill one cache line */
1048 
1049 	/* return slow start threshold (required) */
1050 	u32 (*ssthresh)(struct sock *sk);
1051 
1052 	/* do new cwnd calculation (required) */
1053 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1054 
1055 	/* call before changing ca_state (optional) */
1056 	void (*set_state)(struct sock *sk, u8 new_state);
1057 
1058 	/* call when cwnd event occurs (optional) */
1059 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1060 
1061 	/* call when ack arrives (optional) */
1062 	void (*in_ack_event)(struct sock *sk, u32 flags);
1063 
1064 	/* hook for packet ack accounting (optional) */
1065 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1066 
1067 	/* override sysctl_tcp_min_tso_segs */
1068 	u32 (*min_tso_segs)(struct sock *sk);
1069 
1070 	/* call when packets are delivered to update cwnd and pacing rate,
1071 	 * after all the ca_state processing. (optional)
1072 	 */
1073 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1074 
1075 
1076 	/* new value of cwnd after loss (required) */
1077 	u32  (*undo_cwnd)(struct sock *sk);
1078 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1079 	u32 (*sndbuf_expand)(struct sock *sk);
1080 
1081 /* control/slow paths put last */
1082 	/* get info for inet_diag (optional) */
1083 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1084 			   union tcp_cc_info *info);
1085 
1086 	char 			name[TCP_CA_NAME_MAX];
1087 	struct module		*owner;
1088 	struct list_head	list;
1089 	u32			key;
1090 	u32			flags;
1091 
1092 	/* initialize private data (optional) */
1093 	void (*init)(struct sock *sk);
1094 	/* cleanup private data  (optional) */
1095 	void (*release)(struct sock *sk);
1096 } ____cacheline_aligned_in_smp;
1097 
1098 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1099 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1100 
1101 void tcp_assign_congestion_control(struct sock *sk);
1102 void tcp_init_congestion_control(struct sock *sk);
1103 void tcp_cleanup_congestion_control(struct sock *sk);
1104 int tcp_set_default_congestion_control(struct net *net, const char *name);
1105 void tcp_get_default_congestion_control(struct net *net, char *name);
1106 void tcp_get_available_congestion_control(char *buf, size_t len);
1107 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1108 int tcp_set_allowed_congestion_control(char *allowed);
1109 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1110 			       bool cap_net_admin);
1111 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1112 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1113 
1114 u32 tcp_reno_ssthresh(struct sock *sk);
1115 u32 tcp_reno_undo_cwnd(struct sock *sk);
1116 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1117 extern struct tcp_congestion_ops tcp_reno;
1118 
1119 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1120 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1121 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1122 #ifdef CONFIG_INET
1123 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1124 #else
1125 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1126 {
1127 	return NULL;
1128 }
1129 #endif
1130 
1131 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1132 {
1133 	const struct inet_connection_sock *icsk = inet_csk(sk);
1134 
1135 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1136 }
1137 
1138 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1139 {
1140 	struct inet_connection_sock *icsk = inet_csk(sk);
1141 
1142 	if (icsk->icsk_ca_ops->set_state)
1143 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1144 	icsk->icsk_ca_state = ca_state;
1145 }
1146 
1147 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1148 {
1149 	const struct inet_connection_sock *icsk = inet_csk(sk);
1150 
1151 	if (icsk->icsk_ca_ops->cwnd_event)
1152 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1153 }
1154 
1155 /* From tcp_rate.c */
1156 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1157 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1158 			    struct rate_sample *rs);
1159 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1160 		  bool is_sack_reneg, struct rate_sample *rs);
1161 void tcp_rate_check_app_limited(struct sock *sk);
1162 
1163 /* These functions determine how the current flow behaves in respect of SACK
1164  * handling. SACK is negotiated with the peer, and therefore it can vary
1165  * between different flows.
1166  *
1167  * tcp_is_sack - SACK enabled
1168  * tcp_is_reno - No SACK
1169  */
1170 static inline int tcp_is_sack(const struct tcp_sock *tp)
1171 {
1172 	return likely(tp->rx_opt.sack_ok);
1173 }
1174 
1175 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1176 {
1177 	return !tcp_is_sack(tp);
1178 }
1179 
1180 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1181 {
1182 	return tp->sacked_out + tp->lost_out;
1183 }
1184 
1185 /* This determines how many packets are "in the network" to the best
1186  * of our knowledge.  In many cases it is conservative, but where
1187  * detailed information is available from the receiver (via SACK
1188  * blocks etc.) we can make more aggressive calculations.
1189  *
1190  * Use this for decisions involving congestion control, use just
1191  * tp->packets_out to determine if the send queue is empty or not.
1192  *
1193  * Read this equation as:
1194  *
1195  *	"Packets sent once on transmission queue" MINUS
1196  *	"Packets left network, but not honestly ACKed yet" PLUS
1197  *	"Packets fast retransmitted"
1198  */
1199 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1200 {
1201 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1202 }
1203 
1204 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1205 
1206 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1207 {
1208 	return tp->snd_cwnd < tp->snd_ssthresh;
1209 }
1210 
1211 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1212 {
1213 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1214 }
1215 
1216 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1217 {
1218 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1219 	       (1 << inet_csk(sk)->icsk_ca_state);
1220 }
1221 
1222 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1223  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1224  * ssthresh.
1225  */
1226 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1227 {
1228 	const struct tcp_sock *tp = tcp_sk(sk);
1229 
1230 	if (tcp_in_cwnd_reduction(sk))
1231 		return tp->snd_ssthresh;
1232 	else
1233 		return max(tp->snd_ssthresh,
1234 			   ((tp->snd_cwnd >> 1) +
1235 			    (tp->snd_cwnd >> 2)));
1236 }
1237 
1238 /* Use define here intentionally to get WARN_ON location shown at the caller */
1239 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1240 
1241 void tcp_enter_cwr(struct sock *sk);
1242 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1243 
1244 /* The maximum number of MSS of available cwnd for which TSO defers
1245  * sending if not using sysctl_tcp_tso_win_divisor.
1246  */
1247 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1248 {
1249 	return 3;
1250 }
1251 
1252 /* Returns end sequence number of the receiver's advertised window */
1253 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1254 {
1255 	return tp->snd_una + tp->snd_wnd;
1256 }
1257 
1258 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1259  * flexible approach. The RFC suggests cwnd should not be raised unless
1260  * it was fully used previously. And that's exactly what we do in
1261  * congestion avoidance mode. But in slow start we allow cwnd to grow
1262  * as long as the application has used half the cwnd.
1263  * Example :
1264  *    cwnd is 10 (IW10), but application sends 9 frames.
1265  *    We allow cwnd to reach 18 when all frames are ACKed.
1266  * This check is safe because it's as aggressive as slow start which already
1267  * risks 100% overshoot. The advantage is that we discourage application to
1268  * either send more filler packets or data to artificially blow up the cwnd
1269  * usage, and allow application-limited process to probe bw more aggressively.
1270  */
1271 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1272 {
1273 	const struct tcp_sock *tp = tcp_sk(sk);
1274 
1275 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1276 	if (tcp_in_slow_start(tp))
1277 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1278 
1279 	return tp->is_cwnd_limited;
1280 }
1281 
1282 /* BBR congestion control needs pacing.
1283  * Same remark for SO_MAX_PACING_RATE.
1284  * sch_fq packet scheduler is efficiently handling pacing,
1285  * but is not always installed/used.
1286  * Return true if TCP stack should pace packets itself.
1287  */
1288 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1289 {
1290 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1291 }
1292 
1293 /* Estimates in how many jiffies next packet for this flow can be sent.
1294  * Scheduling a retransmit timer too early would be silly.
1295  */
1296 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1297 {
1298 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1299 
1300 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1301 }
1302 
1303 static inline void tcp_reset_xmit_timer(struct sock *sk,
1304 					const int what,
1305 					unsigned long when,
1306 					const unsigned long max_when)
1307 {
1308 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1309 				  max_when);
1310 }
1311 
1312 /* Something is really bad, we could not queue an additional packet,
1313  * because qdisc is full or receiver sent a 0 window, or we are paced.
1314  * We do not want to add fuel to the fire, or abort too early,
1315  * so make sure the timer we arm now is at least 200ms in the future,
1316  * regardless of current icsk_rto value (as it could be ~2ms)
1317  */
1318 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1319 {
1320 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1321 }
1322 
1323 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1324 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1325 					    unsigned long max_when)
1326 {
1327 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1328 			   inet_csk(sk)->icsk_backoff);
1329 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1330 
1331 	return (unsigned long)min_t(u64, when, max_when);
1332 }
1333 
1334 static inline void tcp_check_probe_timer(struct sock *sk)
1335 {
1336 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1337 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1338 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1339 }
1340 
1341 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1342 {
1343 	tp->snd_wl1 = seq;
1344 }
1345 
1346 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1347 {
1348 	tp->snd_wl1 = seq;
1349 }
1350 
1351 /*
1352  * Calculate(/check) TCP checksum
1353  */
1354 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1355 				   __be32 daddr, __wsum base)
1356 {
1357 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1358 }
1359 
1360 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1361 {
1362 	return !skb_csum_unnecessary(skb) &&
1363 		__skb_checksum_complete(skb);
1364 }
1365 
1366 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1367 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1368 void tcp_set_state(struct sock *sk, int state);
1369 void tcp_done(struct sock *sk);
1370 int tcp_abort(struct sock *sk, int err);
1371 
1372 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1373 {
1374 	rx_opt->dsack = 0;
1375 	rx_opt->num_sacks = 0;
1376 }
1377 
1378 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1379 
1380 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1381 {
1382 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	s32 delta;
1385 
1386 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1387 	    ca_ops->cong_control)
1388 		return;
1389 	delta = tcp_jiffies32 - tp->lsndtime;
1390 	if (delta > inet_csk(sk)->icsk_rto)
1391 		tcp_cwnd_restart(sk, delta);
1392 }
1393 
1394 /* Determine a window scaling and initial window to offer. */
1395 void tcp_select_initial_window(const struct sock *sk, int __space,
1396 			       __u32 mss, __u32 *rcv_wnd,
1397 			       __u32 *window_clamp, int wscale_ok,
1398 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1399 
1400 static inline int tcp_win_from_space(const struct sock *sk, int space)
1401 {
1402 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1403 
1404 	return tcp_adv_win_scale <= 0 ?
1405 		(space>>(-tcp_adv_win_scale)) :
1406 		space - (space>>tcp_adv_win_scale);
1407 }
1408 
1409 /* Note: caller must be prepared to deal with negative returns */
1410 static inline int tcp_space(const struct sock *sk)
1411 {
1412 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1413 				  READ_ONCE(sk->sk_backlog.len) -
1414 				  atomic_read(&sk->sk_rmem_alloc));
1415 }
1416 
1417 static inline int tcp_full_space(const struct sock *sk)
1418 {
1419 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1420 }
1421 
1422 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1423 {
1424 	int unused_mem = sk_unused_reserved_mem(sk);
1425 	struct tcp_sock *tp = tcp_sk(sk);
1426 
1427 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1428 	if (unused_mem)
1429 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1430 					 tcp_win_from_space(sk, unused_mem));
1431 }
1432 
1433 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1434 
1435 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1436  * If 87.5 % (7/8) of the space has been consumed, we want to override
1437  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1438  * len/truesize ratio.
1439  */
1440 static inline bool tcp_rmem_pressure(const struct sock *sk)
1441 {
1442 	int rcvbuf, threshold;
1443 
1444 	if (tcp_under_memory_pressure(sk))
1445 		return true;
1446 
1447 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1448 	threshold = rcvbuf - (rcvbuf >> 3);
1449 
1450 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1451 }
1452 
1453 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1454 {
1455 	const struct tcp_sock *tp = tcp_sk(sk);
1456 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1457 
1458 	if (avail <= 0)
1459 		return false;
1460 
1461 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1462 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1463 }
1464 
1465 extern void tcp_openreq_init_rwin(struct request_sock *req,
1466 				  const struct sock *sk_listener,
1467 				  const struct dst_entry *dst);
1468 
1469 void tcp_enter_memory_pressure(struct sock *sk);
1470 void tcp_leave_memory_pressure(struct sock *sk);
1471 
1472 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1473 {
1474 	struct net *net = sock_net((struct sock *)tp);
1475 
1476 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1477 }
1478 
1479 static inline int keepalive_time_when(const struct tcp_sock *tp)
1480 {
1481 	struct net *net = sock_net((struct sock *)tp);
1482 
1483 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1484 }
1485 
1486 static inline int keepalive_probes(const struct tcp_sock *tp)
1487 {
1488 	struct net *net = sock_net((struct sock *)tp);
1489 
1490 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1491 }
1492 
1493 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1494 {
1495 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1496 
1497 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1498 			  tcp_jiffies32 - tp->rcv_tstamp);
1499 }
1500 
1501 static inline int tcp_fin_time(const struct sock *sk)
1502 {
1503 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1504 	const int rto = inet_csk(sk)->icsk_rto;
1505 
1506 	if (fin_timeout < (rto << 2) - (rto >> 1))
1507 		fin_timeout = (rto << 2) - (rto >> 1);
1508 
1509 	return fin_timeout;
1510 }
1511 
1512 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1513 				  int paws_win)
1514 {
1515 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1516 		return true;
1517 	if (unlikely(!time_before32(ktime_get_seconds(),
1518 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1519 		return true;
1520 	/*
1521 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1522 	 * then following tcp messages have valid values. Ignore 0 value,
1523 	 * or else 'negative' tsval might forbid us to accept their packets.
1524 	 */
1525 	if (!rx_opt->ts_recent)
1526 		return true;
1527 	return false;
1528 }
1529 
1530 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1531 				   int rst)
1532 {
1533 	if (tcp_paws_check(rx_opt, 0))
1534 		return false;
1535 
1536 	/* RST segments are not recommended to carry timestamp,
1537 	   and, if they do, it is recommended to ignore PAWS because
1538 	   "their cleanup function should take precedence over timestamps."
1539 	   Certainly, it is mistake. It is necessary to understand the reasons
1540 	   of this constraint to relax it: if peer reboots, clock may go
1541 	   out-of-sync and half-open connections will not be reset.
1542 	   Actually, the problem would be not existing if all
1543 	   the implementations followed draft about maintaining clock
1544 	   via reboots. Linux-2.2 DOES NOT!
1545 
1546 	   However, we can relax time bounds for RST segments to MSL.
1547 	 */
1548 	if (rst && !time_before32(ktime_get_seconds(),
1549 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1550 		return false;
1551 	return true;
1552 }
1553 
1554 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1555 			  int mib_idx, u32 *last_oow_ack_time);
1556 
1557 static inline void tcp_mib_init(struct net *net)
1558 {
1559 	/* See RFC 2012 */
1560 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1561 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1562 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1563 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1564 }
1565 
1566 /* from STCP */
1567 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1568 {
1569 	tp->lost_skb_hint = NULL;
1570 }
1571 
1572 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1573 {
1574 	tcp_clear_retrans_hints_partial(tp);
1575 	tp->retransmit_skb_hint = NULL;
1576 }
1577 
1578 union tcp_md5_addr {
1579 	struct in_addr  a4;
1580 #if IS_ENABLED(CONFIG_IPV6)
1581 	struct in6_addr	a6;
1582 #endif
1583 };
1584 
1585 /* - key database */
1586 struct tcp_md5sig_key {
1587 	struct hlist_node	node;
1588 	u8			keylen;
1589 	u8			family; /* AF_INET or AF_INET6 */
1590 	u8			prefixlen;
1591 	u8			flags;
1592 	union tcp_md5_addr	addr;
1593 	int			l3index; /* set if key added with L3 scope */
1594 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1595 	struct rcu_head		rcu;
1596 };
1597 
1598 /* - sock block */
1599 struct tcp_md5sig_info {
1600 	struct hlist_head	head;
1601 	struct rcu_head		rcu;
1602 };
1603 
1604 /* - pseudo header */
1605 struct tcp4_pseudohdr {
1606 	__be32		saddr;
1607 	__be32		daddr;
1608 	__u8		pad;
1609 	__u8		protocol;
1610 	__be16		len;
1611 };
1612 
1613 struct tcp6_pseudohdr {
1614 	struct in6_addr	saddr;
1615 	struct in6_addr daddr;
1616 	__be32		len;
1617 	__be32		protocol;	/* including padding */
1618 };
1619 
1620 union tcp_md5sum_block {
1621 	struct tcp4_pseudohdr ip4;
1622 #if IS_ENABLED(CONFIG_IPV6)
1623 	struct tcp6_pseudohdr ip6;
1624 #endif
1625 };
1626 
1627 /* - pool: digest algorithm, hash description and scratch buffer */
1628 struct tcp_md5sig_pool {
1629 	struct ahash_request	*md5_req;
1630 	void			*scratch;
1631 };
1632 
1633 /* - functions */
1634 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1635 			const struct sock *sk, const struct sk_buff *skb);
1636 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1637 		   int family, u8 prefixlen, int l3index, u8 flags,
1638 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1639 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1640 		   int family, u8 prefixlen, int l3index, u8 flags);
1641 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1642 					 const struct sock *addr_sk);
1643 
1644 #ifdef CONFIG_TCP_MD5SIG
1645 #include <linux/jump_label.h>
1646 extern struct static_key_false tcp_md5_needed;
1647 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1648 					   const union tcp_md5_addr *addr,
1649 					   int family);
1650 static inline struct tcp_md5sig_key *
1651 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1652 		  const union tcp_md5_addr *addr, int family)
1653 {
1654 	if (!static_branch_unlikely(&tcp_md5_needed))
1655 		return NULL;
1656 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1657 }
1658 
1659 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1660 #else
1661 static inline struct tcp_md5sig_key *
1662 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1663 		  const union tcp_md5_addr *addr, int family)
1664 {
1665 	return NULL;
1666 }
1667 #define tcp_twsk_md5_key(twsk)	NULL
1668 #endif
1669 
1670 bool tcp_alloc_md5sig_pool(void);
1671 
1672 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1673 static inline void tcp_put_md5sig_pool(void)
1674 {
1675 	local_bh_enable();
1676 }
1677 
1678 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1679 			  unsigned int header_len);
1680 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1681 		     const struct tcp_md5sig_key *key);
1682 
1683 /* From tcp_fastopen.c */
1684 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1685 			    struct tcp_fastopen_cookie *cookie);
1686 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1687 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1688 			    u16 try_exp);
1689 struct tcp_fastopen_request {
1690 	/* Fast Open cookie. Size 0 means a cookie request */
1691 	struct tcp_fastopen_cookie	cookie;
1692 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1693 	size_t				size;
1694 	int				copied;	/* queued in tcp_connect() */
1695 	struct ubuf_info		*uarg;
1696 };
1697 void tcp_free_fastopen_req(struct tcp_sock *tp);
1698 void tcp_fastopen_destroy_cipher(struct sock *sk);
1699 void tcp_fastopen_ctx_destroy(struct net *net);
1700 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1701 			      void *primary_key, void *backup_key);
1702 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1703 			    u64 *key);
1704 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1705 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1706 			      struct request_sock *req,
1707 			      struct tcp_fastopen_cookie *foc,
1708 			      const struct dst_entry *dst);
1709 void tcp_fastopen_init_key_once(struct net *net);
1710 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1711 			     struct tcp_fastopen_cookie *cookie);
1712 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1713 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1714 #define TCP_FASTOPEN_KEY_MAX 2
1715 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1716 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1717 
1718 /* Fastopen key context */
1719 struct tcp_fastopen_context {
1720 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1721 	int		num;
1722 	struct rcu_head	rcu;
1723 };
1724 
1725 void tcp_fastopen_active_disable(struct sock *sk);
1726 bool tcp_fastopen_active_should_disable(struct sock *sk);
1727 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1728 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1729 
1730 /* Caller needs to wrap with rcu_read_(un)lock() */
1731 static inline
1732 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1733 {
1734 	struct tcp_fastopen_context *ctx;
1735 
1736 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1737 	if (!ctx)
1738 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1739 	return ctx;
1740 }
1741 
1742 static inline
1743 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1744 			       const struct tcp_fastopen_cookie *orig)
1745 {
1746 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1747 	    orig->len == foc->len &&
1748 	    !memcmp(orig->val, foc->val, foc->len))
1749 		return true;
1750 	return false;
1751 }
1752 
1753 static inline
1754 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1755 {
1756 	return ctx->num;
1757 }
1758 
1759 /* Latencies incurred by various limits for a sender. They are
1760  * chronograph-like stats that are mutually exclusive.
1761  */
1762 enum tcp_chrono {
1763 	TCP_CHRONO_UNSPEC,
1764 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1765 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1766 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1767 	__TCP_CHRONO_MAX,
1768 };
1769 
1770 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1771 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1772 
1773 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1774  * the same memory storage than skb->destructor/_skb_refdst
1775  */
1776 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1777 {
1778 	skb->destructor = NULL;
1779 	skb->_skb_refdst = 0UL;
1780 }
1781 
1782 #define tcp_skb_tsorted_save(skb) {		\
1783 	unsigned long _save = skb->_skb_refdst;	\
1784 	skb->_skb_refdst = 0UL;
1785 
1786 #define tcp_skb_tsorted_restore(skb)		\
1787 	skb->_skb_refdst = _save;		\
1788 }
1789 
1790 void tcp_write_queue_purge(struct sock *sk);
1791 
1792 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1793 {
1794 	return skb_rb_first(&sk->tcp_rtx_queue);
1795 }
1796 
1797 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1798 {
1799 	return skb_rb_last(&sk->tcp_rtx_queue);
1800 }
1801 
1802 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1803 {
1804 	return skb_peek(&sk->sk_write_queue);
1805 }
1806 
1807 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1808 {
1809 	return skb_peek_tail(&sk->sk_write_queue);
1810 }
1811 
1812 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1813 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1814 
1815 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1816 {
1817 	return skb_peek(&sk->sk_write_queue);
1818 }
1819 
1820 static inline bool tcp_skb_is_last(const struct sock *sk,
1821 				   const struct sk_buff *skb)
1822 {
1823 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1824 }
1825 
1826 /**
1827  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1828  * @sk: socket
1829  *
1830  * Since the write queue can have a temporary empty skb in it,
1831  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1832  */
1833 static inline bool tcp_write_queue_empty(const struct sock *sk)
1834 {
1835 	const struct tcp_sock *tp = tcp_sk(sk);
1836 
1837 	return tp->write_seq == tp->snd_nxt;
1838 }
1839 
1840 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1841 {
1842 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1843 }
1844 
1845 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1846 {
1847 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1848 }
1849 
1850 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1851 {
1852 	__skb_queue_tail(&sk->sk_write_queue, skb);
1853 
1854 	/* Queue it, remembering where we must start sending. */
1855 	if (sk->sk_write_queue.next == skb)
1856 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1857 }
1858 
1859 /* Insert new before skb on the write queue of sk.  */
1860 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1861 						  struct sk_buff *skb,
1862 						  struct sock *sk)
1863 {
1864 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1865 }
1866 
1867 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1868 {
1869 	tcp_skb_tsorted_anchor_cleanup(skb);
1870 	__skb_unlink(skb, &sk->sk_write_queue);
1871 }
1872 
1873 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1874 
1875 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1876 {
1877 	tcp_skb_tsorted_anchor_cleanup(skb);
1878 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1879 }
1880 
1881 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1882 {
1883 	list_del(&skb->tcp_tsorted_anchor);
1884 	tcp_rtx_queue_unlink(skb, sk);
1885 	tcp_wmem_free_skb(sk, skb);
1886 }
1887 
1888 static inline void tcp_push_pending_frames(struct sock *sk)
1889 {
1890 	if (tcp_send_head(sk)) {
1891 		struct tcp_sock *tp = tcp_sk(sk);
1892 
1893 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1894 	}
1895 }
1896 
1897 /* Start sequence of the skb just after the highest skb with SACKed
1898  * bit, valid only if sacked_out > 0 or when the caller has ensured
1899  * validity by itself.
1900  */
1901 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1902 {
1903 	if (!tp->sacked_out)
1904 		return tp->snd_una;
1905 
1906 	if (tp->highest_sack == NULL)
1907 		return tp->snd_nxt;
1908 
1909 	return TCP_SKB_CB(tp->highest_sack)->seq;
1910 }
1911 
1912 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1913 {
1914 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1915 }
1916 
1917 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1918 {
1919 	return tcp_sk(sk)->highest_sack;
1920 }
1921 
1922 static inline void tcp_highest_sack_reset(struct sock *sk)
1923 {
1924 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1925 }
1926 
1927 /* Called when old skb is about to be deleted and replaced by new skb */
1928 static inline void tcp_highest_sack_replace(struct sock *sk,
1929 					    struct sk_buff *old,
1930 					    struct sk_buff *new)
1931 {
1932 	if (old == tcp_highest_sack(sk))
1933 		tcp_sk(sk)->highest_sack = new;
1934 }
1935 
1936 /* This helper checks if socket has IP_TRANSPARENT set */
1937 static inline bool inet_sk_transparent(const struct sock *sk)
1938 {
1939 	switch (sk->sk_state) {
1940 	case TCP_TIME_WAIT:
1941 		return inet_twsk(sk)->tw_transparent;
1942 	case TCP_NEW_SYN_RECV:
1943 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1944 	}
1945 	return inet_sk(sk)->transparent;
1946 }
1947 
1948 /* Determines whether this is a thin stream (which may suffer from
1949  * increased latency). Used to trigger latency-reducing mechanisms.
1950  */
1951 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1952 {
1953 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1954 }
1955 
1956 /* /proc */
1957 enum tcp_seq_states {
1958 	TCP_SEQ_STATE_LISTENING,
1959 	TCP_SEQ_STATE_ESTABLISHED,
1960 };
1961 
1962 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1963 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1964 void tcp_seq_stop(struct seq_file *seq, void *v);
1965 
1966 struct tcp_seq_afinfo {
1967 	sa_family_t			family;
1968 };
1969 
1970 struct tcp_iter_state {
1971 	struct seq_net_private	p;
1972 	enum tcp_seq_states	state;
1973 	struct sock		*syn_wait_sk;
1974 	int			bucket, offset, sbucket, num;
1975 	loff_t			last_pos;
1976 };
1977 
1978 extern struct request_sock_ops tcp_request_sock_ops;
1979 extern struct request_sock_ops tcp6_request_sock_ops;
1980 
1981 void tcp_v4_destroy_sock(struct sock *sk);
1982 
1983 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1984 				netdev_features_t features);
1985 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1986 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1987 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1988 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1989 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1990 int tcp_gro_complete(struct sk_buff *skb);
1991 
1992 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1993 
1994 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1995 {
1996 	struct net *net = sock_net((struct sock *)tp);
1997 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1998 }
1999 
2000 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2001 
2002 #ifdef CONFIG_PROC_FS
2003 int tcp4_proc_init(void);
2004 void tcp4_proc_exit(void);
2005 #endif
2006 
2007 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2008 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2009 		     const struct tcp_request_sock_ops *af_ops,
2010 		     struct sock *sk, struct sk_buff *skb);
2011 
2012 /* TCP af-specific functions */
2013 struct tcp_sock_af_ops {
2014 #ifdef CONFIG_TCP_MD5SIG
2015 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2016 						const struct sock *addr_sk);
2017 	int		(*calc_md5_hash)(char *location,
2018 					 const struct tcp_md5sig_key *md5,
2019 					 const struct sock *sk,
2020 					 const struct sk_buff *skb);
2021 	int		(*md5_parse)(struct sock *sk,
2022 				     int optname,
2023 				     sockptr_t optval,
2024 				     int optlen);
2025 #endif
2026 };
2027 
2028 struct tcp_request_sock_ops {
2029 	u16 mss_clamp;
2030 #ifdef CONFIG_TCP_MD5SIG
2031 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2032 						 const struct sock *addr_sk);
2033 	int		(*calc_md5_hash) (char *location,
2034 					  const struct tcp_md5sig_key *md5,
2035 					  const struct sock *sk,
2036 					  const struct sk_buff *skb);
2037 #endif
2038 #ifdef CONFIG_SYN_COOKIES
2039 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2040 				 __u16 *mss);
2041 #endif
2042 	struct dst_entry *(*route_req)(const struct sock *sk,
2043 				       struct sk_buff *skb,
2044 				       struct flowi *fl,
2045 				       struct request_sock *req);
2046 	u32 (*init_seq)(const struct sk_buff *skb);
2047 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2048 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2049 			   struct flowi *fl, struct request_sock *req,
2050 			   struct tcp_fastopen_cookie *foc,
2051 			   enum tcp_synack_type synack_type,
2052 			   struct sk_buff *syn_skb);
2053 };
2054 
2055 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2056 #if IS_ENABLED(CONFIG_IPV6)
2057 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2058 #endif
2059 
2060 #ifdef CONFIG_SYN_COOKIES
2061 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2062 					 const struct sock *sk, struct sk_buff *skb,
2063 					 __u16 *mss)
2064 {
2065 	tcp_synq_overflow(sk);
2066 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2067 	return ops->cookie_init_seq(skb, mss);
2068 }
2069 #else
2070 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2071 					 const struct sock *sk, struct sk_buff *skb,
2072 					 __u16 *mss)
2073 {
2074 	return 0;
2075 }
2076 #endif
2077 
2078 int tcpv4_offload_init(void);
2079 
2080 void tcp_v4_init(void);
2081 void tcp_init(void);
2082 
2083 /* tcp_recovery.c */
2084 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2085 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2086 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2087 				u32 reo_wnd);
2088 extern bool tcp_rack_mark_lost(struct sock *sk);
2089 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2090 			     u64 xmit_time);
2091 extern void tcp_rack_reo_timeout(struct sock *sk);
2092 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2093 
2094 /* At how many usecs into the future should the RTO fire? */
2095 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2096 {
2097 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2098 	u32 rto = inet_csk(sk)->icsk_rto;
2099 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2100 
2101 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2102 }
2103 
2104 /*
2105  * Save and compile IPv4 options, return a pointer to it
2106  */
2107 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2108 							 struct sk_buff *skb)
2109 {
2110 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2111 	struct ip_options_rcu *dopt = NULL;
2112 
2113 	if (opt->optlen) {
2114 		int opt_size = sizeof(*dopt) + opt->optlen;
2115 
2116 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2117 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2118 			kfree(dopt);
2119 			dopt = NULL;
2120 		}
2121 	}
2122 	return dopt;
2123 }
2124 
2125 /* locally generated TCP pure ACKs have skb->truesize == 2
2126  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2127  * This is much faster than dissecting the packet to find out.
2128  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2129  */
2130 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2131 {
2132 	return skb->truesize == 2;
2133 }
2134 
2135 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2136 {
2137 	skb->truesize = 2;
2138 }
2139 
2140 static inline int tcp_inq(struct sock *sk)
2141 {
2142 	struct tcp_sock *tp = tcp_sk(sk);
2143 	int answ;
2144 
2145 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2146 		answ = 0;
2147 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2148 		   !tp->urg_data ||
2149 		   before(tp->urg_seq, tp->copied_seq) ||
2150 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2151 
2152 		answ = tp->rcv_nxt - tp->copied_seq;
2153 
2154 		/* Subtract 1, if FIN was received */
2155 		if (answ && sock_flag(sk, SOCK_DONE))
2156 			answ--;
2157 	} else {
2158 		answ = tp->urg_seq - tp->copied_seq;
2159 	}
2160 
2161 	return answ;
2162 }
2163 
2164 int tcp_peek_len(struct socket *sock);
2165 
2166 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2167 {
2168 	u16 segs_in;
2169 
2170 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2171 	tp->segs_in += segs_in;
2172 	if (skb->len > tcp_hdrlen(skb))
2173 		tp->data_segs_in += segs_in;
2174 }
2175 
2176 /*
2177  * TCP listen path runs lockless.
2178  * We forced "struct sock" to be const qualified to make sure
2179  * we don't modify one of its field by mistake.
2180  * Here, we increment sk_drops which is an atomic_t, so we can safely
2181  * make sock writable again.
2182  */
2183 static inline void tcp_listendrop(const struct sock *sk)
2184 {
2185 	atomic_inc(&((struct sock *)sk)->sk_drops);
2186 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2187 }
2188 
2189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2190 
2191 /*
2192  * Interface for adding Upper Level Protocols over TCP
2193  */
2194 
2195 #define TCP_ULP_NAME_MAX	16
2196 #define TCP_ULP_MAX		128
2197 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2198 
2199 struct tcp_ulp_ops {
2200 	struct list_head	list;
2201 
2202 	/* initialize ulp */
2203 	int (*init)(struct sock *sk);
2204 	/* update ulp */
2205 	void (*update)(struct sock *sk, struct proto *p,
2206 		       void (*write_space)(struct sock *sk));
2207 	/* cleanup ulp */
2208 	void (*release)(struct sock *sk);
2209 	/* diagnostic */
2210 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2211 	size_t (*get_info_size)(const struct sock *sk);
2212 	/* clone ulp */
2213 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2214 		      const gfp_t priority);
2215 
2216 	char		name[TCP_ULP_NAME_MAX];
2217 	struct module	*owner;
2218 };
2219 int tcp_register_ulp(struct tcp_ulp_ops *type);
2220 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2221 int tcp_set_ulp(struct sock *sk, const char *name);
2222 void tcp_get_available_ulp(char *buf, size_t len);
2223 void tcp_cleanup_ulp(struct sock *sk);
2224 void tcp_update_ulp(struct sock *sk, struct proto *p,
2225 		    void (*write_space)(struct sock *sk));
2226 
2227 #define MODULE_ALIAS_TCP_ULP(name)				\
2228 	__MODULE_INFO(alias, alias_userspace, name);		\
2229 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2230 
2231 #ifdef CONFIG_NET_SOCK_MSG
2232 struct sk_msg;
2233 struct sk_psock;
2234 
2235 #ifdef CONFIG_BPF_SYSCALL
2236 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2237 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2238 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2239 #endif /* CONFIG_BPF_SYSCALL */
2240 
2241 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2242 			  int flags);
2243 #endif /* CONFIG_NET_SOCK_MSG */
2244 
2245 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2246 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2247 {
2248 }
2249 #endif
2250 
2251 #ifdef CONFIG_CGROUP_BPF
2252 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2253 				      struct sk_buff *skb,
2254 				      unsigned int end_offset)
2255 {
2256 	skops->skb = skb;
2257 	skops->skb_data_end = skb->data + end_offset;
2258 }
2259 #else
2260 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2261 				      struct sk_buff *skb,
2262 				      unsigned int end_offset)
2263 {
2264 }
2265 #endif
2266 
2267 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2268  * is < 0, then the BPF op failed (for example if the loaded BPF
2269  * program does not support the chosen operation or there is no BPF
2270  * program loaded).
2271  */
2272 #ifdef CONFIG_BPF
2273 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2274 {
2275 	struct bpf_sock_ops_kern sock_ops;
2276 	int ret;
2277 
2278 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2279 	if (sk_fullsock(sk)) {
2280 		sock_ops.is_fullsock = 1;
2281 		sock_owned_by_me(sk);
2282 	}
2283 
2284 	sock_ops.sk = sk;
2285 	sock_ops.op = op;
2286 	if (nargs > 0)
2287 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2288 
2289 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2290 	if (ret == 0)
2291 		ret = sock_ops.reply;
2292 	else
2293 		ret = -1;
2294 	return ret;
2295 }
2296 
2297 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2298 {
2299 	u32 args[2] = {arg1, arg2};
2300 
2301 	return tcp_call_bpf(sk, op, 2, args);
2302 }
2303 
2304 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2305 				    u32 arg3)
2306 {
2307 	u32 args[3] = {arg1, arg2, arg3};
2308 
2309 	return tcp_call_bpf(sk, op, 3, args);
2310 }
2311 
2312 #else
2313 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2314 {
2315 	return -EPERM;
2316 }
2317 
2318 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2319 {
2320 	return -EPERM;
2321 }
2322 
2323 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2324 				    u32 arg3)
2325 {
2326 	return -EPERM;
2327 }
2328 
2329 #endif
2330 
2331 static inline u32 tcp_timeout_init(struct sock *sk)
2332 {
2333 	int timeout;
2334 
2335 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2336 
2337 	if (timeout <= 0)
2338 		timeout = TCP_TIMEOUT_INIT;
2339 	return timeout;
2340 }
2341 
2342 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2343 {
2344 	int rwnd;
2345 
2346 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2347 
2348 	if (rwnd < 0)
2349 		rwnd = 0;
2350 	return rwnd;
2351 }
2352 
2353 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2354 {
2355 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2356 }
2357 
2358 static inline void tcp_bpf_rtt(struct sock *sk)
2359 {
2360 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2361 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2362 }
2363 
2364 #if IS_ENABLED(CONFIG_SMC)
2365 extern struct static_key_false tcp_have_smc;
2366 #endif
2367 
2368 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2369 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2370 			     void (*cad)(struct sock *sk, u32 ack_seq));
2371 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2372 void clean_acked_data_flush(void);
2373 #endif
2374 
2375 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2376 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2377 				    const struct tcp_sock *tp)
2378 {
2379 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2380 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2381 }
2382 
2383 /* Compute Earliest Departure Time for some control packets
2384  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2385  */
2386 static inline u64 tcp_transmit_time(const struct sock *sk)
2387 {
2388 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2389 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2390 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2391 
2392 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2393 	}
2394 	return 0;
2395 }
2396 
2397 #endif	/* _TCP_H */
2398