xref: /linux/include/net/tcp.h (revision de77b966ce8adcb4c58d50e2f087320d5479812a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		1024
68 
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL	600
71 
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD	8
74 
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* Maximal number of window scale according to RFC1323 */
82 #define TCP_MAX_WSCALE		14U
83 
84 /* urg_data states */
85 #define TCP_URG_VALID	0x0100
86 #define TCP_URG_NOTYET	0x0200
87 #define TCP_URG_READ	0x0400
88 
89 #define TCP_RETR1	3	/*
90 				 * This is how many retries it does before it
91 				 * tries to figure out if the gateway is
92 				 * down. Minimal RFC value is 3; it corresponds
93 				 * to ~3sec-8min depending on RTO.
94 				 */
95 
96 #define TCP_RETR2	15	/*
97 				 * This should take at least
98 				 * 90 minutes to time out.
99 				 * RFC1122 says that the limit is 100 sec.
100 				 * 15 is ~13-30min depending on RTO.
101 				 */
102 
103 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
104 				 * when active opening a connection.
105 				 * RFC1122 says the minimum retry MUST
106 				 * be at least 180secs.  Nevertheless
107 				 * this value is corresponding to
108 				 * 63secs of retransmission with the
109 				 * current initial RTO.
110 				 */
111 
112 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
113 				 * when passive opening a connection.
114 				 * This is corresponding to 31secs of
115 				 * retransmission with the current
116 				 * initial RTO.
117 				 */
118 
119 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
120 				  * state, about 60 seconds	*/
121 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
122                                  /* BSD style FIN_WAIT2 deadlock breaker.
123 				  * It used to be 3min, new value is 60sec,
124 				  * to combine FIN-WAIT-2 timeout with
125 				  * TIME-WAIT timer.
126 				  */
127 
128 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
129 #if HZ >= 100
130 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
131 #define TCP_ATO_MIN	((unsigned)(HZ/25))
132 #else
133 #define TCP_DELACK_MIN	4U
134 #define TCP_ATO_MIN	4U
135 #endif
136 #define TCP_RTO_MAX	((unsigned)(120*HZ))
137 #define TCP_RTO_MIN	((unsigned)(HZ/5))
138 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
139 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
140 						 * used as a fallback RTO for the
141 						 * initial data transmission if no
142 						 * valid RTT sample has been acquired,
143 						 * most likely due to retrans in 3WHS.
144 						 */
145 
146 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
147 					                 * for local resources.
148 					                 */
149 #define TCP_REO_TIMEOUT_MIN	(2000) /* Min RACK reordering timeout in usec */
150 
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 
192 /*
193  *     TCP option lengths
194  */
195 
196 #define TCPOLEN_MSS            4
197 #define TCPOLEN_WINDOW         3
198 #define TCPOLEN_SACK_PERM      2
199 #define TCPOLEN_TIMESTAMP      10
200 #define TCPOLEN_MD5SIG         18
201 #define TCPOLEN_FASTOPEN_BASE  2
202 #define TCPOLEN_EXP_FASTOPEN_BASE  4
203 
204 /* But this is what stacks really send out. */
205 #define TCPOLEN_TSTAMP_ALIGNED		12
206 #define TCPOLEN_WSCALE_ALIGNED		4
207 #define TCPOLEN_SACKPERM_ALIGNED	4
208 #define TCPOLEN_SACK_BASE		2
209 #define TCPOLEN_SACK_BASE_ALIGNED	4
210 #define TCPOLEN_SACK_PERBLOCK		8
211 #define TCPOLEN_MD5SIG_ALIGNED		20
212 #define TCPOLEN_MSS_ALIGNED		4
213 
214 /* Flags in tp->nonagle */
215 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
216 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
217 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
218 
219 /* TCP thin-stream limits */
220 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
221 
222 /* TCP initial congestion window as per rfc6928 */
223 #define TCP_INIT_CWND		10
224 
225 /* Bit Flags for sysctl_tcp_fastopen */
226 #define	TFO_CLIENT_ENABLE	1
227 #define	TFO_SERVER_ENABLE	2
228 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
229 
230 /* Accept SYN data w/o any cookie option */
231 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
232 
233 /* Force enable TFO on all listeners, i.e., not requiring the
234  * TCP_FASTOPEN socket option.
235  */
236 #define	TFO_SERVER_WO_SOCKOPT1	0x400
237 
238 
239 /* sysctl variables for tcp */
240 extern int sysctl_tcp_fastopen;
241 extern int sysctl_tcp_retrans_collapse;
242 extern int sysctl_tcp_stdurg;
243 extern int sysctl_tcp_rfc1337;
244 extern int sysctl_tcp_abort_on_overflow;
245 extern int sysctl_tcp_max_orphans;
246 extern int sysctl_tcp_fack;
247 extern int sysctl_tcp_reordering;
248 extern int sysctl_tcp_max_reordering;
249 extern int sysctl_tcp_dsack;
250 extern long sysctl_tcp_mem[3];
251 extern int sysctl_tcp_wmem[3];
252 extern int sysctl_tcp_rmem[3];
253 extern int sysctl_tcp_app_win;
254 extern int sysctl_tcp_adv_win_scale;
255 extern int sysctl_tcp_frto;
256 extern int sysctl_tcp_low_latency;
257 extern int sysctl_tcp_nometrics_save;
258 extern int sysctl_tcp_moderate_rcvbuf;
259 extern int sysctl_tcp_tso_win_divisor;
260 extern int sysctl_tcp_workaround_signed_windows;
261 extern int sysctl_tcp_slow_start_after_idle;
262 extern int sysctl_tcp_thin_linear_timeouts;
263 extern int sysctl_tcp_thin_dupack;
264 extern int sysctl_tcp_early_retrans;
265 extern int sysctl_tcp_recovery;
266 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
267 
268 extern int sysctl_tcp_limit_output_bytes;
269 extern int sysctl_tcp_challenge_ack_limit;
270 extern int sysctl_tcp_min_tso_segs;
271 extern int sysctl_tcp_min_rtt_wlen;
272 extern int sysctl_tcp_autocorking;
273 extern int sysctl_tcp_invalid_ratelimit;
274 extern int sysctl_tcp_pacing_ss_ratio;
275 extern int sysctl_tcp_pacing_ca_ratio;
276 
277 extern atomic_long_t tcp_memory_allocated;
278 extern struct percpu_counter tcp_sockets_allocated;
279 extern unsigned long tcp_memory_pressure;
280 
281 /* optimized version of sk_under_memory_pressure() for TCP sockets */
282 static inline bool tcp_under_memory_pressure(const struct sock *sk)
283 {
284 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
285 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
286 		return true;
287 
288 	return tcp_memory_pressure;
289 }
290 /*
291  * The next routines deal with comparing 32 bit unsigned ints
292  * and worry about wraparound (automatic with unsigned arithmetic).
293  */
294 
295 static inline bool before(__u32 seq1, __u32 seq2)
296 {
297         return (__s32)(seq1-seq2) < 0;
298 }
299 #define after(seq2, seq1) 	before(seq1, seq2)
300 
301 /* is s2<=s1<=s3 ? */
302 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
303 {
304 	return seq3 - seq2 >= seq1 - seq2;
305 }
306 
307 static inline bool tcp_out_of_memory(struct sock *sk)
308 {
309 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
310 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
311 		return true;
312 	return false;
313 }
314 
315 void sk_forced_mem_schedule(struct sock *sk, int size);
316 
317 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
318 {
319 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
320 	int orphans = percpu_counter_read_positive(ocp);
321 
322 	if (orphans << shift > sysctl_tcp_max_orphans) {
323 		orphans = percpu_counter_sum_positive(ocp);
324 		if (orphans << shift > sysctl_tcp_max_orphans)
325 			return true;
326 	}
327 	return false;
328 }
329 
330 bool tcp_check_oom(struct sock *sk, int shift);
331 
332 
333 extern struct proto tcp_prot;
334 
335 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
336 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
337 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
338 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
339 
340 void tcp_tasklet_init(void);
341 
342 void tcp_v4_err(struct sk_buff *skb, u32);
343 
344 void tcp_shutdown(struct sock *sk, int how);
345 
346 void tcp_v4_early_demux(struct sk_buff *skb);
347 int tcp_v4_rcv(struct sk_buff *skb);
348 
349 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
350 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
351 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
352 		 int flags);
353 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
354 		 size_t size, int flags);
355 void tcp_release_cb(struct sock *sk);
356 void tcp_wfree(struct sk_buff *skb);
357 void tcp_write_timer_handler(struct sock *sk);
358 void tcp_delack_timer_handler(struct sock *sk);
359 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
360 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
361 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
362 			 const struct tcphdr *th, unsigned int len);
363 void tcp_rcv_space_adjust(struct sock *sk);
364 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
365 void tcp_twsk_destructor(struct sock *sk);
366 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
367 			struct pipe_inode_info *pipe, size_t len,
368 			unsigned int flags);
369 
370 static inline void tcp_dec_quickack_mode(struct sock *sk,
371 					 const unsigned int pkts)
372 {
373 	struct inet_connection_sock *icsk = inet_csk(sk);
374 
375 	if (icsk->icsk_ack.quick) {
376 		if (pkts >= icsk->icsk_ack.quick) {
377 			icsk->icsk_ack.quick = 0;
378 			/* Leaving quickack mode we deflate ATO. */
379 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
380 		} else
381 			icsk->icsk_ack.quick -= pkts;
382 	}
383 }
384 
385 #define	TCP_ECN_OK		1
386 #define	TCP_ECN_QUEUE_CWR	2
387 #define	TCP_ECN_DEMAND_CWR	4
388 #define	TCP_ECN_SEEN		8
389 
390 enum tcp_tw_status {
391 	TCP_TW_SUCCESS = 0,
392 	TCP_TW_RST = 1,
393 	TCP_TW_ACK = 2,
394 	TCP_TW_SYN = 3
395 };
396 
397 
398 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
399 					      struct sk_buff *skb,
400 					      const struct tcphdr *th);
401 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
402 			   struct request_sock *req, bool fastopen);
403 int tcp_child_process(struct sock *parent, struct sock *child,
404 		      struct sk_buff *skb);
405 void tcp_enter_loss(struct sock *sk);
406 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
407 void tcp_clear_retrans(struct tcp_sock *tp);
408 void tcp_update_metrics(struct sock *sk);
409 void tcp_init_metrics(struct sock *sk);
410 void tcp_metrics_init(void);
411 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
412 void tcp_disable_fack(struct tcp_sock *tp);
413 void tcp_close(struct sock *sk, long timeout);
414 void tcp_init_sock(struct sock *sk);
415 unsigned int tcp_poll(struct file *file, struct socket *sock,
416 		      struct poll_table_struct *wait);
417 int tcp_getsockopt(struct sock *sk, int level, int optname,
418 		   char __user *optval, int __user *optlen);
419 int tcp_setsockopt(struct sock *sk, int level, int optname,
420 		   char __user *optval, unsigned int optlen);
421 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
422 			  char __user *optval, int __user *optlen);
423 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
424 			  char __user *optval, unsigned int optlen);
425 void tcp_set_keepalive(struct sock *sk, int val);
426 void tcp_syn_ack_timeout(const struct request_sock *req);
427 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
428 		int flags, int *addr_len);
429 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
430 		       struct tcp_options_received *opt_rx,
431 		       int estab, struct tcp_fastopen_cookie *foc);
432 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433 
434 /*
435  *	TCP v4 functions exported for the inet6 API
436  */
437 
438 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
439 void tcp_v4_mtu_reduced(struct sock *sk);
440 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
442 struct sock *tcp_create_openreq_child(const struct sock *sk,
443 				      struct request_sock *req,
444 				      struct sk_buff *skb);
445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
447 				  struct request_sock *req,
448 				  struct dst_entry *dst,
449 				  struct request_sock *req_unhash,
450 				  bool *own_req);
451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
453 int tcp_connect(struct sock *sk);
454 enum tcp_synack_type {
455 	TCP_SYNACK_NORMAL,
456 	TCP_SYNACK_FASTOPEN,
457 	TCP_SYNACK_COOKIE,
458 };
459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc,
462 				enum tcp_synack_type synack_type);
463 int tcp_disconnect(struct sock *sk, int flags);
464 
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471 				 struct request_sock *req,
472 				 struct dst_entry *dst, u32 tsoff);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 		      u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE	2
486 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
487 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
496 	unsigned long now = jiffies;
497 
498 	if (time_after(now, last_overflow + HZ))
499 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
500 }
501 
502 /* syncookies: no recent synqueue overflow on this listening socket? */
503 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
504 {
505 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
506 
507 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
508 }
509 
510 static inline u32 tcp_cookie_time(void)
511 {
512 	u64 val = get_jiffies_64();
513 
514 	do_div(val, TCP_SYNCOOKIE_PERIOD);
515 	return val;
516 }
517 
518 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
519 			      u16 *mssp);
520 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
521 u64 cookie_init_timestamp(struct request_sock *req);
522 bool cookie_timestamp_decode(const struct net *net,
523 			     struct tcp_options_received *opt);
524 bool cookie_ecn_ok(const struct tcp_options_received *opt,
525 		   const struct net *net, const struct dst_entry *dst);
526 
527 /* From net/ipv6/syncookies.c */
528 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
529 		      u32 cookie);
530 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
531 
532 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
533 			      const struct tcphdr *th, u16 *mssp);
534 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
535 #endif
536 /* tcp_output.c */
537 
538 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
539 		     int min_tso_segs);
540 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
541 			       int nonagle);
542 bool tcp_may_send_now(struct sock *sk);
543 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
544 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
545 void tcp_retransmit_timer(struct sock *sk);
546 void tcp_xmit_retransmit_queue(struct sock *);
547 void tcp_simple_retransmit(struct sock *);
548 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
549 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
550 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
551 
552 void tcp_send_probe0(struct sock *);
553 void tcp_send_partial(struct sock *);
554 int tcp_write_wakeup(struct sock *, int mib);
555 void tcp_send_fin(struct sock *sk);
556 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
557 int tcp_send_synack(struct sock *);
558 void tcp_push_one(struct sock *, unsigned int mss_now);
559 void tcp_send_ack(struct sock *sk);
560 void tcp_send_delayed_ack(struct sock *sk);
561 void tcp_send_loss_probe(struct sock *sk);
562 bool tcp_schedule_loss_probe(struct sock *sk);
563 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
564 			     const struct sk_buff *next_skb);
565 
566 /* tcp_input.c */
567 void tcp_rearm_rto(struct sock *sk);
568 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
569 void tcp_reset(struct sock *sk);
570 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
571 void tcp_fin(struct sock *sk);
572 
573 /* tcp_timer.c */
574 void tcp_init_xmit_timers(struct sock *);
575 static inline void tcp_clear_xmit_timers(struct sock *sk)
576 {
577 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
578 	inet_csk_clear_xmit_timers(sk);
579 }
580 
581 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
582 unsigned int tcp_current_mss(struct sock *sk);
583 
584 /* Bound MSS / TSO packet size with the half of the window */
585 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
586 {
587 	int cutoff;
588 
589 	/* When peer uses tiny windows, there is no use in packetizing
590 	 * to sub-MSS pieces for the sake of SWS or making sure there
591 	 * are enough packets in the pipe for fast recovery.
592 	 *
593 	 * On the other hand, for extremely large MSS devices, handling
594 	 * smaller than MSS windows in this way does make sense.
595 	 */
596 	if (tp->max_window > TCP_MSS_DEFAULT)
597 		cutoff = (tp->max_window >> 1);
598 	else
599 		cutoff = tp->max_window;
600 
601 	if (cutoff && pktsize > cutoff)
602 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
603 	else
604 		return pktsize;
605 }
606 
607 /* tcp.c */
608 void tcp_get_info(struct sock *, struct tcp_info *);
609 
610 /* Read 'sendfile()'-style from a TCP socket */
611 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
612 		  sk_read_actor_t recv_actor);
613 
614 void tcp_initialize_rcv_mss(struct sock *sk);
615 
616 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
617 int tcp_mss_to_mtu(struct sock *sk, int mss);
618 void tcp_mtup_init(struct sock *sk);
619 void tcp_init_buffer_space(struct sock *sk);
620 
621 static inline void tcp_bound_rto(const struct sock *sk)
622 {
623 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
624 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
625 }
626 
627 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
628 {
629 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
630 }
631 
632 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
633 {
634 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
635 			       ntohl(TCP_FLAG_ACK) |
636 			       snd_wnd);
637 }
638 
639 static inline void tcp_fast_path_on(struct tcp_sock *tp)
640 {
641 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
642 }
643 
644 static inline void tcp_fast_path_check(struct sock *sk)
645 {
646 	struct tcp_sock *tp = tcp_sk(sk);
647 
648 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
649 	    tp->rcv_wnd &&
650 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
651 	    !tp->urg_data)
652 		tcp_fast_path_on(tp);
653 }
654 
655 /* Compute the actual rto_min value */
656 static inline u32 tcp_rto_min(struct sock *sk)
657 {
658 	const struct dst_entry *dst = __sk_dst_get(sk);
659 	u32 rto_min = TCP_RTO_MIN;
660 
661 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
662 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
663 	return rto_min;
664 }
665 
666 static inline u32 tcp_rto_min_us(struct sock *sk)
667 {
668 	return jiffies_to_usecs(tcp_rto_min(sk));
669 }
670 
671 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
672 {
673 	return dst_metric_locked(dst, RTAX_CC_ALGO);
674 }
675 
676 /* Minimum RTT in usec. ~0 means not available. */
677 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
678 {
679 	return minmax_get(&tp->rtt_min);
680 }
681 
682 /* Compute the actual receive window we are currently advertising.
683  * Rcv_nxt can be after the window if our peer push more data
684  * than the offered window.
685  */
686 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
687 {
688 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
689 
690 	if (win < 0)
691 		win = 0;
692 	return (u32) win;
693 }
694 
695 /* Choose a new window, without checks for shrinking, and without
696  * scaling applied to the result.  The caller does these things
697  * if necessary.  This is a "raw" window selection.
698  */
699 u32 __tcp_select_window(struct sock *sk);
700 
701 void tcp_send_window_probe(struct sock *sk);
702 
703 /* TCP uses 32bit jiffies to save some space.
704  * Note that this is different from tcp_time_stamp, which
705  * historically has been the same until linux-4.13.
706  */
707 #define tcp_jiffies32 ((u32)jiffies)
708 
709 /*
710  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
711  * It is no longer tied to jiffies, but to 1 ms clock.
712  * Note: double check if you want to use tcp_jiffies32 instead of this.
713  */
714 #define TCP_TS_HZ	1000
715 
716 static inline u64 tcp_clock_ns(void)
717 {
718 	return local_clock();
719 }
720 
721 static inline u64 tcp_clock_us(void)
722 {
723 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
724 }
725 
726 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
727 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
728 {
729 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
730 }
731 
732 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
733 static inline u32 tcp_time_stamp_raw(void)
734 {
735 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
736 }
737 
738 
739 /* Refresh 1us clock of a TCP socket,
740  * ensuring monotically increasing values.
741  */
742 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
743 {
744 	u64 val = tcp_clock_us();
745 
746 	if (val > tp->tcp_mstamp)
747 		tp->tcp_mstamp = val;
748 }
749 
750 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
751 {
752 	return max_t(s64, t1 - t0, 0);
753 }
754 
755 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
756 {
757 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
758 }
759 
760 
761 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
762 
763 #define TCPHDR_FIN 0x01
764 #define TCPHDR_SYN 0x02
765 #define TCPHDR_RST 0x04
766 #define TCPHDR_PSH 0x08
767 #define TCPHDR_ACK 0x10
768 #define TCPHDR_URG 0x20
769 #define TCPHDR_ECE 0x40
770 #define TCPHDR_CWR 0x80
771 
772 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
773 
774 /* This is what the send packet queuing engine uses to pass
775  * TCP per-packet control information to the transmission code.
776  * We also store the host-order sequence numbers in here too.
777  * This is 44 bytes if IPV6 is enabled.
778  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
779  */
780 struct tcp_skb_cb {
781 	__u32		seq;		/* Starting sequence number	*/
782 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
783 	union {
784 		/* Note : tcp_tw_isn is used in input path only
785 		 *	  (isn chosen by tcp_timewait_state_process())
786 		 *
787 		 * 	  tcp_gso_segs/size are used in write queue only,
788 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
789 		 */
790 		__u32		tcp_tw_isn;
791 		struct {
792 			u16	tcp_gso_segs;
793 			u16	tcp_gso_size;
794 		};
795 	};
796 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
797 
798 	__u8		sacked;		/* State flags for SACK/FACK.	*/
799 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
800 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
801 #define TCPCB_LOST		0x04	/* SKB is lost			*/
802 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
803 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
804 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
805 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
806 				TCPCB_REPAIRED)
807 
808 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
809 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
810 			eor:1,		/* Is skb MSG_EOR marked? */
811 			unused:6;
812 	__u32		ack_seq;	/* Sequence number ACK'd	*/
813 	union {
814 		struct {
815 			/* There is space for up to 24 bytes */
816 			__u32 in_flight:30,/* Bytes in flight at transmit */
817 			      is_app_limited:1, /* cwnd not fully used? */
818 			      unused:1;
819 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
820 			__u32 delivered;
821 			/* start of send pipeline phase */
822 			u64 first_tx_mstamp;
823 			/* when we reached the "delivered" count */
824 			u64 delivered_mstamp;
825 		} tx;   /* only used for outgoing skbs */
826 		union {
827 			struct inet_skb_parm	h4;
828 #if IS_ENABLED(CONFIG_IPV6)
829 			struct inet6_skb_parm	h6;
830 #endif
831 		} header;	/* For incoming skbs */
832 	};
833 };
834 
835 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
836 
837 
838 #if IS_ENABLED(CONFIG_IPV6)
839 /* This is the variant of inet6_iif() that must be used by TCP,
840  * as TCP moves IP6CB into a different location in skb->cb[]
841  */
842 static inline int tcp_v6_iif(const struct sk_buff *skb)
843 {
844 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
845 
846 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
847 }
848 #endif
849 
850 /* TCP_SKB_CB reference means this can not be used from early demux */
851 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
852 {
853 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
854 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
855 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
856 		return true;
857 #endif
858 	return false;
859 }
860 
861 /* Due to TSO, an SKB can be composed of multiple actual
862  * packets.  To keep these tracked properly, we use this.
863  */
864 static inline int tcp_skb_pcount(const struct sk_buff *skb)
865 {
866 	return TCP_SKB_CB(skb)->tcp_gso_segs;
867 }
868 
869 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
870 {
871 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
872 }
873 
874 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
875 {
876 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
877 }
878 
879 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
880 static inline int tcp_skb_mss(const struct sk_buff *skb)
881 {
882 	return TCP_SKB_CB(skb)->tcp_gso_size;
883 }
884 
885 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
886 {
887 	return likely(!TCP_SKB_CB(skb)->eor);
888 }
889 
890 /* Events passed to congestion control interface */
891 enum tcp_ca_event {
892 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
893 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
894 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
895 	CA_EVENT_LOSS,		/* loss timeout */
896 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
897 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
898 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
899 	CA_EVENT_NON_DELAYED_ACK,
900 };
901 
902 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
903 enum tcp_ca_ack_event_flags {
904 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
905 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
906 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
907 };
908 
909 /*
910  * Interface for adding new TCP congestion control handlers
911  */
912 #define TCP_CA_NAME_MAX	16
913 #define TCP_CA_MAX	128
914 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
915 
916 #define TCP_CA_UNSPEC	0
917 
918 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
919 #define TCP_CONG_NON_RESTRICTED 0x1
920 /* Requires ECN/ECT set on all packets */
921 #define TCP_CONG_NEEDS_ECN	0x2
922 
923 union tcp_cc_info;
924 
925 struct ack_sample {
926 	u32 pkts_acked;
927 	s32 rtt_us;
928 	u32 in_flight;
929 };
930 
931 /* A rate sample measures the number of (original/retransmitted) data
932  * packets delivered "delivered" over an interval of time "interval_us".
933  * The tcp_rate.c code fills in the rate sample, and congestion
934  * control modules that define a cong_control function to run at the end
935  * of ACK processing can optionally chose to consult this sample when
936  * setting cwnd and pacing rate.
937  * A sample is invalid if "delivered" or "interval_us" is negative.
938  */
939 struct rate_sample {
940 	u64  prior_mstamp; /* starting timestamp for interval */
941 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
942 	s32  delivered;		/* number of packets delivered over interval */
943 	long interval_us;	/* time for tp->delivered to incr "delivered" */
944 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
945 	int  losses;		/* number of packets marked lost upon ACK */
946 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
947 	u32  prior_in_flight;	/* in flight before this ACK */
948 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
949 	bool is_retrans;	/* is sample from retransmission? */
950 };
951 
952 struct tcp_congestion_ops {
953 	struct list_head	list;
954 	u32 key;
955 	u32 flags;
956 
957 	/* initialize private data (optional) */
958 	void (*init)(struct sock *sk);
959 	/* cleanup private data  (optional) */
960 	void (*release)(struct sock *sk);
961 
962 	/* return slow start threshold (required) */
963 	u32 (*ssthresh)(struct sock *sk);
964 	/* do new cwnd calculation (required) */
965 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
966 	/* call before changing ca_state (optional) */
967 	void (*set_state)(struct sock *sk, u8 new_state);
968 	/* call when cwnd event occurs (optional) */
969 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
970 	/* call when ack arrives (optional) */
971 	void (*in_ack_event)(struct sock *sk, u32 flags);
972 	/* new value of cwnd after loss (required) */
973 	u32  (*undo_cwnd)(struct sock *sk);
974 	/* hook for packet ack accounting (optional) */
975 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
976 	/* suggest number of segments for each skb to transmit (optional) */
977 	u32 (*tso_segs_goal)(struct sock *sk);
978 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
979 	u32 (*sndbuf_expand)(struct sock *sk);
980 	/* call when packets are delivered to update cwnd and pacing rate,
981 	 * after all the ca_state processing. (optional)
982 	 */
983 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
984 	/* get info for inet_diag (optional) */
985 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
986 			   union tcp_cc_info *info);
987 
988 	char 		name[TCP_CA_NAME_MAX];
989 	struct module 	*owner;
990 };
991 
992 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
993 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
994 
995 void tcp_assign_congestion_control(struct sock *sk);
996 void tcp_init_congestion_control(struct sock *sk);
997 void tcp_cleanup_congestion_control(struct sock *sk);
998 int tcp_set_default_congestion_control(const char *name);
999 void tcp_get_default_congestion_control(char *name);
1000 void tcp_get_available_congestion_control(char *buf, size_t len);
1001 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1002 int tcp_set_allowed_congestion_control(char *allowed);
1003 int tcp_set_congestion_control(struct sock *sk, const char *name);
1004 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1005 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1006 
1007 u32 tcp_reno_ssthresh(struct sock *sk);
1008 u32 tcp_reno_undo_cwnd(struct sock *sk);
1009 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1010 extern struct tcp_congestion_ops tcp_reno;
1011 
1012 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1013 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1014 #ifdef CONFIG_INET
1015 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1016 #else
1017 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1018 {
1019 	return NULL;
1020 }
1021 #endif
1022 
1023 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1024 {
1025 	const struct inet_connection_sock *icsk = inet_csk(sk);
1026 
1027 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1028 }
1029 
1030 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1031 {
1032 	struct inet_connection_sock *icsk = inet_csk(sk);
1033 
1034 	if (icsk->icsk_ca_ops->set_state)
1035 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1036 	icsk->icsk_ca_state = ca_state;
1037 }
1038 
1039 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1040 {
1041 	const struct inet_connection_sock *icsk = inet_csk(sk);
1042 
1043 	if (icsk->icsk_ca_ops->cwnd_event)
1044 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1045 }
1046 
1047 /* From tcp_rate.c */
1048 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1049 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1050 			    struct rate_sample *rs);
1051 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1052 		  struct rate_sample *rs);
1053 void tcp_rate_check_app_limited(struct sock *sk);
1054 
1055 /* These functions determine how the current flow behaves in respect of SACK
1056  * handling. SACK is negotiated with the peer, and therefore it can vary
1057  * between different flows.
1058  *
1059  * tcp_is_sack - SACK enabled
1060  * tcp_is_reno - No SACK
1061  * tcp_is_fack - FACK enabled, implies SACK enabled
1062  */
1063 static inline int tcp_is_sack(const struct tcp_sock *tp)
1064 {
1065 	return tp->rx_opt.sack_ok;
1066 }
1067 
1068 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1069 {
1070 	return !tcp_is_sack(tp);
1071 }
1072 
1073 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1074 {
1075 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1076 }
1077 
1078 static inline void tcp_enable_fack(struct tcp_sock *tp)
1079 {
1080 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1081 }
1082 
1083 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1084 {
1085 	return tp->sacked_out + tp->lost_out;
1086 }
1087 
1088 /* This determines how many packets are "in the network" to the best
1089  * of our knowledge.  In many cases it is conservative, but where
1090  * detailed information is available from the receiver (via SACK
1091  * blocks etc.) we can make more aggressive calculations.
1092  *
1093  * Use this for decisions involving congestion control, use just
1094  * tp->packets_out to determine if the send queue is empty or not.
1095  *
1096  * Read this equation as:
1097  *
1098  *	"Packets sent once on transmission queue" MINUS
1099  *	"Packets left network, but not honestly ACKed yet" PLUS
1100  *	"Packets fast retransmitted"
1101  */
1102 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1103 {
1104 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1105 }
1106 
1107 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1108 
1109 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1110 {
1111 	return tp->snd_cwnd < tp->snd_ssthresh;
1112 }
1113 
1114 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1115 {
1116 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1117 }
1118 
1119 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1120 {
1121 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1122 	       (1 << inet_csk(sk)->icsk_ca_state);
1123 }
1124 
1125 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1126  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1127  * ssthresh.
1128  */
1129 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1130 {
1131 	const struct tcp_sock *tp = tcp_sk(sk);
1132 
1133 	if (tcp_in_cwnd_reduction(sk))
1134 		return tp->snd_ssthresh;
1135 	else
1136 		return max(tp->snd_ssthresh,
1137 			   ((tp->snd_cwnd >> 1) +
1138 			    (tp->snd_cwnd >> 2)));
1139 }
1140 
1141 /* Use define here intentionally to get WARN_ON location shown at the caller */
1142 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1143 
1144 void tcp_enter_cwr(struct sock *sk);
1145 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1146 
1147 /* The maximum number of MSS of available cwnd for which TSO defers
1148  * sending if not using sysctl_tcp_tso_win_divisor.
1149  */
1150 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1151 {
1152 	return 3;
1153 }
1154 
1155 /* Returns end sequence number of the receiver's advertised window */
1156 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1157 {
1158 	return tp->snd_una + tp->snd_wnd;
1159 }
1160 
1161 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1162  * flexible approach. The RFC suggests cwnd should not be raised unless
1163  * it was fully used previously. And that's exactly what we do in
1164  * congestion avoidance mode. But in slow start we allow cwnd to grow
1165  * as long as the application has used half the cwnd.
1166  * Example :
1167  *    cwnd is 10 (IW10), but application sends 9 frames.
1168  *    We allow cwnd to reach 18 when all frames are ACKed.
1169  * This check is safe because it's as aggressive as slow start which already
1170  * risks 100% overshoot. The advantage is that we discourage application to
1171  * either send more filler packets or data to artificially blow up the cwnd
1172  * usage, and allow application-limited process to probe bw more aggressively.
1173  */
1174 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1175 {
1176 	const struct tcp_sock *tp = tcp_sk(sk);
1177 
1178 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1179 	if (tcp_in_slow_start(tp))
1180 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1181 
1182 	return tp->is_cwnd_limited;
1183 }
1184 
1185 /* Something is really bad, we could not queue an additional packet,
1186  * because qdisc is full or receiver sent a 0 window.
1187  * We do not want to add fuel to the fire, or abort too early,
1188  * so make sure the timer we arm now is at least 200ms in the future,
1189  * regardless of current icsk_rto value (as it could be ~2ms)
1190  */
1191 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1192 {
1193 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1194 }
1195 
1196 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1197 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1198 					    unsigned long max_when)
1199 {
1200 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1201 
1202 	return (unsigned long)min_t(u64, when, max_when);
1203 }
1204 
1205 static inline void tcp_check_probe_timer(struct sock *sk)
1206 {
1207 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1208 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1209 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1210 }
1211 
1212 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1213 {
1214 	tp->snd_wl1 = seq;
1215 }
1216 
1217 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1218 {
1219 	tp->snd_wl1 = seq;
1220 }
1221 
1222 /*
1223  * Calculate(/check) TCP checksum
1224  */
1225 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1226 				   __be32 daddr, __wsum base)
1227 {
1228 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1229 }
1230 
1231 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1232 {
1233 	return __skb_checksum_complete(skb);
1234 }
1235 
1236 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1237 {
1238 	return !skb_csum_unnecessary(skb) &&
1239 		__tcp_checksum_complete(skb);
1240 }
1241 
1242 /* Prequeue for VJ style copy to user, combined with checksumming. */
1243 
1244 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1245 {
1246 	tp->ucopy.task = NULL;
1247 	tp->ucopy.len = 0;
1248 	tp->ucopy.memory = 0;
1249 	skb_queue_head_init(&tp->ucopy.prequeue);
1250 }
1251 
1252 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1253 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1254 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1255 
1256 #undef STATE_TRACE
1257 
1258 #ifdef STATE_TRACE
1259 static const char *statename[]={
1260 	"Unused","Established","Syn Sent","Syn Recv",
1261 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1262 	"Close Wait","Last ACK","Listen","Closing"
1263 };
1264 #endif
1265 void tcp_set_state(struct sock *sk, int state);
1266 
1267 void tcp_done(struct sock *sk);
1268 
1269 int tcp_abort(struct sock *sk, int err);
1270 
1271 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1272 {
1273 	rx_opt->dsack = 0;
1274 	rx_opt->num_sacks = 0;
1275 }
1276 
1277 u32 tcp_default_init_rwnd(u32 mss);
1278 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1279 
1280 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1281 {
1282 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1283 	struct tcp_sock *tp = tcp_sk(sk);
1284 	s32 delta;
1285 
1286 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1287 	    ca_ops->cong_control)
1288 		return;
1289 	delta = tcp_jiffies32 - tp->lsndtime;
1290 	if (delta > inet_csk(sk)->icsk_rto)
1291 		tcp_cwnd_restart(sk, delta);
1292 }
1293 
1294 /* Determine a window scaling and initial window to offer. */
1295 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1296 			       __u32 *window_clamp, int wscale_ok,
1297 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1298 
1299 static inline int tcp_win_from_space(int space)
1300 {
1301 	int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1302 
1303 	return tcp_adv_win_scale <= 0 ?
1304 		(space>>(-tcp_adv_win_scale)) :
1305 		space - (space>>tcp_adv_win_scale);
1306 }
1307 
1308 /* Note: caller must be prepared to deal with negative returns */
1309 static inline int tcp_space(const struct sock *sk)
1310 {
1311 	return tcp_win_from_space(sk->sk_rcvbuf -
1312 				  atomic_read(&sk->sk_rmem_alloc));
1313 }
1314 
1315 static inline int tcp_full_space(const struct sock *sk)
1316 {
1317 	return tcp_win_from_space(sk->sk_rcvbuf);
1318 }
1319 
1320 extern void tcp_openreq_init_rwin(struct request_sock *req,
1321 				  const struct sock *sk_listener,
1322 				  const struct dst_entry *dst);
1323 
1324 void tcp_enter_memory_pressure(struct sock *sk);
1325 void tcp_leave_memory_pressure(struct sock *sk);
1326 
1327 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1328 {
1329 	struct net *net = sock_net((struct sock *)tp);
1330 
1331 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1332 }
1333 
1334 static inline int keepalive_time_when(const struct tcp_sock *tp)
1335 {
1336 	struct net *net = sock_net((struct sock *)tp);
1337 
1338 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1339 }
1340 
1341 static inline int keepalive_probes(const struct tcp_sock *tp)
1342 {
1343 	struct net *net = sock_net((struct sock *)tp);
1344 
1345 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1346 }
1347 
1348 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1349 {
1350 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1351 
1352 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1353 			  tcp_jiffies32 - tp->rcv_tstamp);
1354 }
1355 
1356 static inline int tcp_fin_time(const struct sock *sk)
1357 {
1358 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1359 	const int rto = inet_csk(sk)->icsk_rto;
1360 
1361 	if (fin_timeout < (rto << 2) - (rto >> 1))
1362 		fin_timeout = (rto << 2) - (rto >> 1);
1363 
1364 	return fin_timeout;
1365 }
1366 
1367 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1368 				  int paws_win)
1369 {
1370 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1371 		return true;
1372 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1373 		return true;
1374 	/*
1375 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1376 	 * then following tcp messages have valid values. Ignore 0 value,
1377 	 * or else 'negative' tsval might forbid us to accept their packets.
1378 	 */
1379 	if (!rx_opt->ts_recent)
1380 		return true;
1381 	return false;
1382 }
1383 
1384 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1385 				   int rst)
1386 {
1387 	if (tcp_paws_check(rx_opt, 0))
1388 		return false;
1389 
1390 	/* RST segments are not recommended to carry timestamp,
1391 	   and, if they do, it is recommended to ignore PAWS because
1392 	   "their cleanup function should take precedence over timestamps."
1393 	   Certainly, it is mistake. It is necessary to understand the reasons
1394 	   of this constraint to relax it: if peer reboots, clock may go
1395 	   out-of-sync and half-open connections will not be reset.
1396 	   Actually, the problem would be not existing if all
1397 	   the implementations followed draft about maintaining clock
1398 	   via reboots. Linux-2.2 DOES NOT!
1399 
1400 	   However, we can relax time bounds for RST segments to MSL.
1401 	 */
1402 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1403 		return false;
1404 	return true;
1405 }
1406 
1407 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1408 			  int mib_idx, u32 *last_oow_ack_time);
1409 
1410 static inline void tcp_mib_init(struct net *net)
1411 {
1412 	/* See RFC 2012 */
1413 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1414 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1415 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1416 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1417 }
1418 
1419 /* from STCP */
1420 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1421 {
1422 	tp->lost_skb_hint = NULL;
1423 }
1424 
1425 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1426 {
1427 	tcp_clear_retrans_hints_partial(tp);
1428 	tp->retransmit_skb_hint = NULL;
1429 }
1430 
1431 union tcp_md5_addr {
1432 	struct in_addr  a4;
1433 #if IS_ENABLED(CONFIG_IPV6)
1434 	struct in6_addr	a6;
1435 #endif
1436 };
1437 
1438 /* - key database */
1439 struct tcp_md5sig_key {
1440 	struct hlist_node	node;
1441 	u8			keylen;
1442 	u8			family; /* AF_INET or AF_INET6 */
1443 	union tcp_md5_addr	addr;
1444 	u8			prefixlen;
1445 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1446 	struct rcu_head		rcu;
1447 };
1448 
1449 /* - sock block */
1450 struct tcp_md5sig_info {
1451 	struct hlist_head	head;
1452 	struct rcu_head		rcu;
1453 };
1454 
1455 /* - pseudo header */
1456 struct tcp4_pseudohdr {
1457 	__be32		saddr;
1458 	__be32		daddr;
1459 	__u8		pad;
1460 	__u8		protocol;
1461 	__be16		len;
1462 };
1463 
1464 struct tcp6_pseudohdr {
1465 	struct in6_addr	saddr;
1466 	struct in6_addr daddr;
1467 	__be32		len;
1468 	__be32		protocol;	/* including padding */
1469 };
1470 
1471 union tcp_md5sum_block {
1472 	struct tcp4_pseudohdr ip4;
1473 #if IS_ENABLED(CONFIG_IPV6)
1474 	struct tcp6_pseudohdr ip6;
1475 #endif
1476 };
1477 
1478 /* - pool: digest algorithm, hash description and scratch buffer */
1479 struct tcp_md5sig_pool {
1480 	struct ahash_request	*md5_req;
1481 	void			*scratch;
1482 };
1483 
1484 /* - functions */
1485 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1486 			const struct sock *sk, const struct sk_buff *skb);
1487 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1488 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1489 		   gfp_t gfp);
1490 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1491 		   int family, u8 prefixlen);
1492 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1493 					 const struct sock *addr_sk);
1494 
1495 #ifdef CONFIG_TCP_MD5SIG
1496 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1497 					 const union tcp_md5_addr *addr,
1498 					 int family);
1499 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1500 #else
1501 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1502 					 const union tcp_md5_addr *addr,
1503 					 int family)
1504 {
1505 	return NULL;
1506 }
1507 #define tcp_twsk_md5_key(twsk)	NULL
1508 #endif
1509 
1510 bool tcp_alloc_md5sig_pool(void);
1511 
1512 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1513 static inline void tcp_put_md5sig_pool(void)
1514 {
1515 	local_bh_enable();
1516 }
1517 
1518 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1519 			  unsigned int header_len);
1520 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1521 		     const struct tcp_md5sig_key *key);
1522 
1523 /* From tcp_fastopen.c */
1524 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1525 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1526 			    unsigned long *last_syn_loss);
1527 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1528 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1529 			    u16 try_exp);
1530 struct tcp_fastopen_request {
1531 	/* Fast Open cookie. Size 0 means a cookie request */
1532 	struct tcp_fastopen_cookie	cookie;
1533 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1534 	size_t				size;
1535 	int				copied;	/* queued in tcp_connect() */
1536 };
1537 void tcp_free_fastopen_req(struct tcp_sock *tp);
1538 
1539 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1540 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1541 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1542 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1543 			      struct request_sock *req,
1544 			      struct tcp_fastopen_cookie *foc,
1545 			      struct dst_entry *dst);
1546 void tcp_fastopen_init_key_once(bool publish);
1547 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1548 			     struct tcp_fastopen_cookie *cookie);
1549 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1550 #define TCP_FASTOPEN_KEY_LENGTH 16
1551 
1552 /* Fastopen key context */
1553 struct tcp_fastopen_context {
1554 	struct crypto_cipher	*tfm;
1555 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1556 	struct rcu_head		rcu;
1557 };
1558 
1559 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1560 void tcp_fastopen_active_disable(struct sock *sk);
1561 bool tcp_fastopen_active_should_disable(struct sock *sk);
1562 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1563 void tcp_fastopen_active_timeout_reset(void);
1564 
1565 /* Latencies incurred by various limits for a sender. They are
1566  * chronograph-like stats that are mutually exclusive.
1567  */
1568 enum tcp_chrono {
1569 	TCP_CHRONO_UNSPEC,
1570 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1571 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1572 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1573 	__TCP_CHRONO_MAX,
1574 };
1575 
1576 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1577 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1578 
1579 /* write queue abstraction */
1580 static inline void tcp_write_queue_purge(struct sock *sk)
1581 {
1582 	struct sk_buff *skb;
1583 
1584 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1585 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1586 		sk_wmem_free_skb(sk, skb);
1587 	sk_mem_reclaim(sk);
1588 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1589 }
1590 
1591 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1592 {
1593 	return skb_peek(&sk->sk_write_queue);
1594 }
1595 
1596 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1597 {
1598 	return skb_peek_tail(&sk->sk_write_queue);
1599 }
1600 
1601 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1602 						   const struct sk_buff *skb)
1603 {
1604 	return skb_queue_next(&sk->sk_write_queue, skb);
1605 }
1606 
1607 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1608 						   const struct sk_buff *skb)
1609 {
1610 	return skb_queue_prev(&sk->sk_write_queue, skb);
1611 }
1612 
1613 #define tcp_for_write_queue(skb, sk)					\
1614 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1615 
1616 #define tcp_for_write_queue_from(skb, sk)				\
1617 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1618 
1619 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1620 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1621 
1622 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1623 {
1624 	return sk->sk_send_head;
1625 }
1626 
1627 static inline bool tcp_skb_is_last(const struct sock *sk,
1628 				   const struct sk_buff *skb)
1629 {
1630 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1631 }
1632 
1633 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1634 {
1635 	if (tcp_skb_is_last(sk, skb))
1636 		sk->sk_send_head = NULL;
1637 	else
1638 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1639 }
1640 
1641 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1642 {
1643 	if (sk->sk_send_head == skb_unlinked) {
1644 		sk->sk_send_head = NULL;
1645 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1646 	}
1647 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1648 		tcp_sk(sk)->highest_sack = NULL;
1649 }
1650 
1651 static inline void tcp_init_send_head(struct sock *sk)
1652 {
1653 	sk->sk_send_head = NULL;
1654 }
1655 
1656 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1657 {
1658 	__skb_queue_tail(&sk->sk_write_queue, skb);
1659 }
1660 
1661 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1662 {
1663 	__tcp_add_write_queue_tail(sk, skb);
1664 
1665 	/* Queue it, remembering where we must start sending. */
1666 	if (sk->sk_send_head == NULL) {
1667 		sk->sk_send_head = skb;
1668 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1669 
1670 		if (tcp_sk(sk)->highest_sack == NULL)
1671 			tcp_sk(sk)->highest_sack = skb;
1672 	}
1673 }
1674 
1675 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1676 {
1677 	__skb_queue_head(&sk->sk_write_queue, skb);
1678 }
1679 
1680 /* Insert buff after skb on the write queue of sk.  */
1681 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1682 						struct sk_buff *buff,
1683 						struct sock *sk)
1684 {
1685 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1686 }
1687 
1688 /* Insert new before skb on the write queue of sk.  */
1689 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1690 						  struct sk_buff *skb,
1691 						  struct sock *sk)
1692 {
1693 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1694 
1695 	if (sk->sk_send_head == skb)
1696 		sk->sk_send_head = new;
1697 }
1698 
1699 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1700 {
1701 	__skb_unlink(skb, &sk->sk_write_queue);
1702 }
1703 
1704 static inline bool tcp_write_queue_empty(struct sock *sk)
1705 {
1706 	return skb_queue_empty(&sk->sk_write_queue);
1707 }
1708 
1709 static inline void tcp_push_pending_frames(struct sock *sk)
1710 {
1711 	if (tcp_send_head(sk)) {
1712 		struct tcp_sock *tp = tcp_sk(sk);
1713 
1714 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1715 	}
1716 }
1717 
1718 /* Start sequence of the skb just after the highest skb with SACKed
1719  * bit, valid only if sacked_out > 0 or when the caller has ensured
1720  * validity by itself.
1721  */
1722 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1723 {
1724 	if (!tp->sacked_out)
1725 		return tp->snd_una;
1726 
1727 	if (tp->highest_sack == NULL)
1728 		return tp->snd_nxt;
1729 
1730 	return TCP_SKB_CB(tp->highest_sack)->seq;
1731 }
1732 
1733 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1734 {
1735 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1736 						tcp_write_queue_next(sk, skb);
1737 }
1738 
1739 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1740 {
1741 	return tcp_sk(sk)->highest_sack;
1742 }
1743 
1744 static inline void tcp_highest_sack_reset(struct sock *sk)
1745 {
1746 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1747 }
1748 
1749 /* Called when old skb is about to be deleted (to be combined with new skb) */
1750 static inline void tcp_highest_sack_combine(struct sock *sk,
1751 					    struct sk_buff *old,
1752 					    struct sk_buff *new)
1753 {
1754 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1755 		tcp_sk(sk)->highest_sack = new;
1756 }
1757 
1758 /* This helper checks if socket has IP_TRANSPARENT set */
1759 static inline bool inet_sk_transparent(const struct sock *sk)
1760 {
1761 	switch (sk->sk_state) {
1762 	case TCP_TIME_WAIT:
1763 		return inet_twsk(sk)->tw_transparent;
1764 	case TCP_NEW_SYN_RECV:
1765 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1766 	}
1767 	return inet_sk(sk)->transparent;
1768 }
1769 
1770 /* Determines whether this is a thin stream (which may suffer from
1771  * increased latency). Used to trigger latency-reducing mechanisms.
1772  */
1773 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1774 {
1775 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1776 }
1777 
1778 /* /proc */
1779 enum tcp_seq_states {
1780 	TCP_SEQ_STATE_LISTENING,
1781 	TCP_SEQ_STATE_ESTABLISHED,
1782 };
1783 
1784 int tcp_seq_open(struct inode *inode, struct file *file);
1785 
1786 struct tcp_seq_afinfo {
1787 	char				*name;
1788 	sa_family_t			family;
1789 	const struct file_operations	*seq_fops;
1790 	struct seq_operations		seq_ops;
1791 };
1792 
1793 struct tcp_iter_state {
1794 	struct seq_net_private	p;
1795 	sa_family_t		family;
1796 	enum tcp_seq_states	state;
1797 	struct sock		*syn_wait_sk;
1798 	int			bucket, offset, sbucket, num;
1799 	loff_t			last_pos;
1800 };
1801 
1802 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1803 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1804 
1805 extern struct request_sock_ops tcp_request_sock_ops;
1806 extern struct request_sock_ops tcp6_request_sock_ops;
1807 
1808 void tcp_v4_destroy_sock(struct sock *sk);
1809 
1810 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1811 				netdev_features_t features);
1812 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1813 int tcp_gro_complete(struct sk_buff *skb);
1814 
1815 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1816 
1817 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1818 {
1819 	struct net *net = sock_net((struct sock *)tp);
1820 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1821 }
1822 
1823 static inline bool tcp_stream_memory_free(const struct sock *sk)
1824 {
1825 	const struct tcp_sock *tp = tcp_sk(sk);
1826 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1827 
1828 	return notsent_bytes < tcp_notsent_lowat(tp);
1829 }
1830 
1831 #ifdef CONFIG_PROC_FS
1832 int tcp4_proc_init(void);
1833 void tcp4_proc_exit(void);
1834 #endif
1835 
1836 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1837 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1838 		     const struct tcp_request_sock_ops *af_ops,
1839 		     struct sock *sk, struct sk_buff *skb);
1840 
1841 /* TCP af-specific functions */
1842 struct tcp_sock_af_ops {
1843 #ifdef CONFIG_TCP_MD5SIG
1844 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1845 						const struct sock *addr_sk);
1846 	int		(*calc_md5_hash)(char *location,
1847 					 const struct tcp_md5sig_key *md5,
1848 					 const struct sock *sk,
1849 					 const struct sk_buff *skb);
1850 	int		(*md5_parse)(struct sock *sk,
1851 				     int optname,
1852 				     char __user *optval,
1853 				     int optlen);
1854 #endif
1855 };
1856 
1857 struct tcp_request_sock_ops {
1858 	u16 mss_clamp;
1859 #ifdef CONFIG_TCP_MD5SIG
1860 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1861 						 const struct sock *addr_sk);
1862 	int		(*calc_md5_hash) (char *location,
1863 					  const struct tcp_md5sig_key *md5,
1864 					  const struct sock *sk,
1865 					  const struct sk_buff *skb);
1866 #endif
1867 	void (*init_req)(struct request_sock *req,
1868 			 const struct sock *sk_listener,
1869 			 struct sk_buff *skb);
1870 #ifdef CONFIG_SYN_COOKIES
1871 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1872 				 __u16 *mss);
1873 #endif
1874 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1875 				       const struct request_sock *req);
1876 	u32 (*init_seq)(const struct sk_buff *skb);
1877 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1878 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1879 			   struct flowi *fl, struct request_sock *req,
1880 			   struct tcp_fastopen_cookie *foc,
1881 			   enum tcp_synack_type synack_type);
1882 };
1883 
1884 #ifdef CONFIG_SYN_COOKIES
1885 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1886 					 const struct sock *sk, struct sk_buff *skb,
1887 					 __u16 *mss)
1888 {
1889 	tcp_synq_overflow(sk);
1890 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1891 	return ops->cookie_init_seq(skb, mss);
1892 }
1893 #else
1894 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1895 					 const struct sock *sk, struct sk_buff *skb,
1896 					 __u16 *mss)
1897 {
1898 	return 0;
1899 }
1900 #endif
1901 
1902 int tcpv4_offload_init(void);
1903 
1904 void tcp_v4_init(void);
1905 void tcp_init(void);
1906 
1907 /* tcp_recovery.c */
1908 extern void tcp_rack_mark_lost(struct sock *sk);
1909 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1910 			     u64 xmit_time);
1911 extern void tcp_rack_reo_timeout(struct sock *sk);
1912 
1913 /*
1914  * Save and compile IPv4 options, return a pointer to it
1915  */
1916 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1917 {
1918 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1919 	struct ip_options_rcu *dopt = NULL;
1920 
1921 	if (opt->optlen) {
1922 		int opt_size = sizeof(*dopt) + opt->optlen;
1923 
1924 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1925 		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1926 			kfree(dopt);
1927 			dopt = NULL;
1928 		}
1929 	}
1930 	return dopt;
1931 }
1932 
1933 /* locally generated TCP pure ACKs have skb->truesize == 2
1934  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1935  * This is much faster than dissecting the packet to find out.
1936  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1937  */
1938 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1939 {
1940 	return skb->truesize == 2;
1941 }
1942 
1943 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1944 {
1945 	skb->truesize = 2;
1946 }
1947 
1948 static inline int tcp_inq(struct sock *sk)
1949 {
1950 	struct tcp_sock *tp = tcp_sk(sk);
1951 	int answ;
1952 
1953 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1954 		answ = 0;
1955 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1956 		   !tp->urg_data ||
1957 		   before(tp->urg_seq, tp->copied_seq) ||
1958 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1959 
1960 		answ = tp->rcv_nxt - tp->copied_seq;
1961 
1962 		/* Subtract 1, if FIN was received */
1963 		if (answ && sock_flag(sk, SOCK_DONE))
1964 			answ--;
1965 	} else {
1966 		answ = tp->urg_seq - tp->copied_seq;
1967 	}
1968 
1969 	return answ;
1970 }
1971 
1972 int tcp_peek_len(struct socket *sock);
1973 
1974 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1975 {
1976 	u16 segs_in;
1977 
1978 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1979 	tp->segs_in += segs_in;
1980 	if (skb->len > tcp_hdrlen(skb))
1981 		tp->data_segs_in += segs_in;
1982 }
1983 
1984 /*
1985  * TCP listen path runs lockless.
1986  * We forced "struct sock" to be const qualified to make sure
1987  * we don't modify one of its field by mistake.
1988  * Here, we increment sk_drops which is an atomic_t, so we can safely
1989  * make sock writable again.
1990  */
1991 static inline void tcp_listendrop(const struct sock *sk)
1992 {
1993 	atomic_inc(&((struct sock *)sk)->sk_drops);
1994 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1995 }
1996 
1997 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1998 
1999 /*
2000  * Interface for adding Upper Level Protocols over TCP
2001  */
2002 
2003 #define TCP_ULP_NAME_MAX	16
2004 #define TCP_ULP_MAX		128
2005 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2006 
2007 struct tcp_ulp_ops {
2008 	struct list_head	list;
2009 
2010 	/* initialize ulp */
2011 	int (*init)(struct sock *sk);
2012 	/* cleanup ulp */
2013 	void (*release)(struct sock *sk);
2014 
2015 	char		name[TCP_ULP_NAME_MAX];
2016 	struct module	*owner;
2017 };
2018 int tcp_register_ulp(struct tcp_ulp_ops *type);
2019 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2020 int tcp_set_ulp(struct sock *sk, const char *name);
2021 void tcp_get_available_ulp(char *buf, size_t len);
2022 void tcp_cleanup_ulp(struct sock *sk);
2023 
2024 #endif	/* _TCP_H */
2025