xref: /linux/include/net/tcp.h (revision dd220a00e8bd5ad7f98ecdc3eed699a7cfabdc27)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/slab.h>
26 #include <linux/cache.h>
27 #include <linux/percpu.h>
28 #include <linux/skbuff.h>
29 #include <linux/dmaengine.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Offer an initial receive window of 10 mss. */
64 #define TCP_DEFAULT_INIT_RCVWND	10
65 
66 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
67 #define TCP_MIN_MSS		88U
68 
69 /* The least MTU to use for probing */
70 #define TCP_BASE_MSS		512
71 
72 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
73 #define TCP_FASTRETRANS_THRESH 3
74 
75 /* Maximal reordering. */
76 #define TCP_MAX_REORDERING	127
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
104 				 * connection: ~180sec is RFC minimum	*/
105 
106 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
107 				  * state, about 60 seconds	*/
108 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
109                                  /* BSD style FIN_WAIT2 deadlock breaker.
110 				  * It used to be 3min, new value is 60sec,
111 				  * to combine FIN-WAIT-2 timeout with
112 				  * TIME-WAIT timer.
113 				  */
114 
115 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
116 #if HZ >= 100
117 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
118 #define TCP_ATO_MIN	((unsigned)(HZ/25))
119 #else
120 #define TCP_DELACK_MIN	4U
121 #define TCP_ATO_MIN	4U
122 #endif
123 #define TCP_RTO_MAX	((unsigned)(120*HZ))
124 #define TCP_RTO_MIN	((unsigned)(HZ/5))
125 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC2988bis initial RTO value	*/
126 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
127 						 * used as a fallback RTO for the
128 						 * initial data transmission if no
129 						 * valid RTT sample has been acquired,
130 						 * most likely due to retrans in 3WHS.
131 						 */
132 
133 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
134 					                 * for local resources.
135 					                 */
136 
137 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
138 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
139 #define TCP_KEEPALIVE_INTVL	(75*HZ)
140 
141 #define MAX_TCP_KEEPIDLE	32767
142 #define MAX_TCP_KEEPINTVL	32767
143 #define MAX_TCP_KEEPCNT		127
144 #define MAX_TCP_SYNCNT		127
145 
146 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
147 
148 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
149 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
150 					 * after this time. It should be equal
151 					 * (or greater than) TCP_TIMEWAIT_LEN
152 					 * to provide reliability equal to one
153 					 * provided by timewait state.
154 					 */
155 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
156 					 * timestamps. It must be less than
157 					 * minimal timewait lifetime.
158 					 */
159 /*
160  *	TCP option
161  */
162 
163 #define TCPOPT_NOP		1	/* Padding */
164 #define TCPOPT_EOL		0	/* End of options */
165 #define TCPOPT_MSS		2	/* Segment size negotiating */
166 #define TCPOPT_WINDOW		3	/* Window scaling */
167 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
168 #define TCPOPT_SACK             5       /* SACK Block */
169 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
170 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
171 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
172 
173 /*
174  *     TCP option lengths
175  */
176 
177 #define TCPOLEN_MSS            4
178 #define TCPOLEN_WINDOW         3
179 #define TCPOLEN_SACK_PERM      2
180 #define TCPOLEN_TIMESTAMP      10
181 #define TCPOLEN_MD5SIG         18
182 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
183 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
184 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
185 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
186 
187 /* But this is what stacks really send out. */
188 #define TCPOLEN_TSTAMP_ALIGNED		12
189 #define TCPOLEN_WSCALE_ALIGNED		4
190 #define TCPOLEN_SACKPERM_ALIGNED	4
191 #define TCPOLEN_SACK_BASE		2
192 #define TCPOLEN_SACK_BASE_ALIGNED	4
193 #define TCPOLEN_SACK_PERBLOCK		8
194 #define TCPOLEN_MD5SIG_ALIGNED		20
195 #define TCPOLEN_MSS_ALIGNED		4
196 
197 /* Flags in tp->nonagle */
198 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
199 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
200 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
201 
202 /* TCP thin-stream limits */
203 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
204 
205 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
206 #define TCP_INIT_CWND		10
207 
208 extern struct inet_timewait_death_row tcp_death_row;
209 
210 /* sysctl variables for tcp */
211 extern int sysctl_tcp_timestamps;
212 extern int sysctl_tcp_window_scaling;
213 extern int sysctl_tcp_sack;
214 extern int sysctl_tcp_fin_timeout;
215 extern int sysctl_tcp_keepalive_time;
216 extern int sysctl_tcp_keepalive_probes;
217 extern int sysctl_tcp_keepalive_intvl;
218 extern int sysctl_tcp_syn_retries;
219 extern int sysctl_tcp_synack_retries;
220 extern int sysctl_tcp_retries1;
221 extern int sysctl_tcp_retries2;
222 extern int sysctl_tcp_orphan_retries;
223 extern int sysctl_tcp_syncookies;
224 extern int sysctl_tcp_retrans_collapse;
225 extern int sysctl_tcp_stdurg;
226 extern int sysctl_tcp_rfc1337;
227 extern int sysctl_tcp_abort_on_overflow;
228 extern int sysctl_tcp_max_orphans;
229 extern int sysctl_tcp_fack;
230 extern int sysctl_tcp_reordering;
231 extern int sysctl_tcp_ecn;
232 extern int sysctl_tcp_dsack;
233 extern int sysctl_tcp_wmem[3];
234 extern int sysctl_tcp_rmem[3];
235 extern int sysctl_tcp_app_win;
236 extern int sysctl_tcp_adv_win_scale;
237 extern int sysctl_tcp_tw_reuse;
238 extern int sysctl_tcp_frto;
239 extern int sysctl_tcp_frto_response;
240 extern int sysctl_tcp_low_latency;
241 extern int sysctl_tcp_dma_copybreak;
242 extern int sysctl_tcp_nometrics_save;
243 extern int sysctl_tcp_moderate_rcvbuf;
244 extern int sysctl_tcp_tso_win_divisor;
245 extern int sysctl_tcp_abc;
246 extern int sysctl_tcp_mtu_probing;
247 extern int sysctl_tcp_base_mss;
248 extern int sysctl_tcp_workaround_signed_windows;
249 extern int sysctl_tcp_slow_start_after_idle;
250 extern int sysctl_tcp_max_ssthresh;
251 extern int sysctl_tcp_cookie_size;
252 extern int sysctl_tcp_thin_linear_timeouts;
253 extern int sysctl_tcp_thin_dupack;
254 
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern int tcp_memory_pressure;
258 
259 /*
260  * The next routines deal with comparing 32 bit unsigned ints
261  * and worry about wraparound (automatic with unsigned arithmetic).
262  */
263 
264 static inline int before(__u32 seq1, __u32 seq2)
265 {
266         return (__s32)(seq1-seq2) < 0;
267 }
268 #define after(seq2, seq1) 	before(seq1, seq2)
269 
270 /* is s2<=s1<=s3 ? */
271 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
272 {
273 	return seq3 - seq2 >= seq1 - seq2;
274 }
275 
276 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
277 {
278 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
279 	int orphans = percpu_counter_read_positive(ocp);
280 
281 	if (orphans << shift > sysctl_tcp_max_orphans) {
282 		orphans = percpu_counter_sum_positive(ocp);
283 		if (orphans << shift > sysctl_tcp_max_orphans)
284 			return true;
285 	}
286 
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 /* syncookies: remember time of last synqueue overflow */
294 static inline void tcp_synq_overflow(struct sock *sk)
295 {
296 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
297 }
298 
299 /* syncookies: no recent synqueue overflow on this listening socket? */
300 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
301 {
302 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
303 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
304 }
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 extern void tcp_init_mem(struct net *net);
315 
316 extern void tcp_v4_err(struct sk_buff *skb, u32);
317 
318 extern void tcp_shutdown (struct sock *sk, int how);
319 
320 extern int tcp_v4_rcv(struct sk_buff *skb);
321 
322 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
323 extern void *tcp_v4_tw_get_peer(struct sock *sk);
324 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
325 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
326 		       size_t size);
327 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
330 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
331 				 const struct tcphdr *th, unsigned int len);
332 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
333 			       const struct tcphdr *th, unsigned int len);
334 extern void tcp_rcv_space_adjust(struct sock *sk);
335 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
336 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
337 extern void tcp_twsk_destructor(struct sock *sk);
338 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
339 			       struct pipe_inode_info *pipe, size_t len,
340 			       unsigned int flags);
341 
342 static inline void tcp_dec_quickack_mode(struct sock *sk,
343 					 const unsigned int pkts)
344 {
345 	struct inet_connection_sock *icsk = inet_csk(sk);
346 
347 	if (icsk->icsk_ack.quick) {
348 		if (pkts >= icsk->icsk_ack.quick) {
349 			icsk->icsk_ack.quick = 0;
350 			/* Leaving quickack mode we deflate ATO. */
351 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
352 		} else
353 			icsk->icsk_ack.quick -= pkts;
354 	}
355 }
356 
357 #define	TCP_ECN_OK		1
358 #define	TCP_ECN_QUEUE_CWR	2
359 #define	TCP_ECN_DEMAND_CWR	4
360 #define	TCP_ECN_SEEN		8
361 
362 static __inline__ void
363 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
364 {
365 	if (sysctl_tcp_ecn && th->ece && th->cwr)
366 		inet_rsk(req)->ecn_ok = 1;
367 }
368 
369 enum tcp_tw_status {
370 	TCP_TW_SUCCESS = 0,
371 	TCP_TW_RST = 1,
372 	TCP_TW_ACK = 2,
373 	TCP_TW_SYN = 3
374 };
375 
376 
377 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
378 						     struct sk_buff *skb,
379 						     const struct tcphdr *th);
380 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
381 				   struct request_sock *req,
382 				   struct request_sock **prev);
383 extern int tcp_child_process(struct sock *parent, struct sock *child,
384 			     struct sk_buff *skb);
385 extern int tcp_use_frto(struct sock *sk);
386 extern void tcp_enter_frto(struct sock *sk);
387 extern void tcp_enter_loss(struct sock *sk, int how);
388 extern void tcp_clear_retrans(struct tcp_sock *tp);
389 extern void tcp_update_metrics(struct sock *sk);
390 extern void tcp_close(struct sock *sk, long timeout);
391 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
392 			     struct poll_table_struct *wait);
393 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
394 			  char __user *optval, int __user *optlen);
395 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
396 			  char __user *optval, unsigned int optlen);
397 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 				 char __user *optval, int __user *optlen);
399 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 				 char __user *optval, unsigned int optlen);
401 extern void tcp_set_keepalive(struct sock *sk, int val);
402 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
403 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
404 		       size_t len, int nonblock, int flags, int *addr_len);
405 extern void tcp_parse_options(const struct sk_buff *skb,
406 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
407 			      int estab);
408 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
409 
410 /*
411  *	TCP v4 functions exported for the inet6 API
412  */
413 
414 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
415 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
416 extern struct sock * tcp_create_openreq_child(struct sock *sk,
417 					      struct request_sock *req,
418 					      struct sk_buff *skb);
419 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
420 					  struct request_sock *req,
421 					  struct dst_entry *dst);
422 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
423 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
424 			  int addr_len);
425 extern int tcp_connect(struct sock *sk);
426 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
427 					struct request_sock *req,
428 					struct request_values *rvp);
429 extern int tcp_disconnect(struct sock *sk, int flags);
430 
431 
432 /* From syncookies.c */
433 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
434 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
435 				    struct ip_options *opt);
436 #ifdef CONFIG_SYN_COOKIES
437 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
438 				     __u16 *mss);
439 #else
440 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
441 					    struct sk_buff *skb,
442 					    __u16 *mss)
443 {
444 	return 0;
445 }
446 #endif
447 
448 extern __u32 cookie_init_timestamp(struct request_sock *req);
449 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
450 
451 /* From net/ipv6/syncookies.c */
452 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
453 #ifdef CONFIG_SYN_COOKIES
454 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
455 				     __u16 *mss);
456 #else
457 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
458 					    struct sk_buff *skb,
459 					    __u16 *mss)
460 {
461 	return 0;
462 }
463 #endif
464 /* tcp_output.c */
465 
466 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
467 				      int nonagle);
468 extern int tcp_may_send_now(struct sock *sk);
469 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
470 extern void tcp_retransmit_timer(struct sock *sk);
471 extern void tcp_xmit_retransmit_queue(struct sock *);
472 extern void tcp_simple_retransmit(struct sock *);
473 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
474 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
475 
476 extern void tcp_send_probe0(struct sock *);
477 extern void tcp_send_partial(struct sock *);
478 extern int tcp_write_wakeup(struct sock *);
479 extern void tcp_send_fin(struct sock *sk);
480 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
481 extern int tcp_send_synack(struct sock *);
482 extern int tcp_syn_flood_action(struct sock *sk,
483 				const struct sk_buff *skb,
484 				const char *proto);
485 extern void tcp_push_one(struct sock *, unsigned int mss_now);
486 extern void tcp_send_ack(struct sock *sk);
487 extern void tcp_send_delayed_ack(struct sock *sk);
488 
489 /* tcp_input.c */
490 extern void tcp_cwnd_application_limited(struct sock *sk);
491 
492 /* tcp_timer.c */
493 extern void tcp_init_xmit_timers(struct sock *);
494 static inline void tcp_clear_xmit_timers(struct sock *sk)
495 {
496 	inet_csk_clear_xmit_timers(sk);
497 }
498 
499 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
500 extern unsigned int tcp_current_mss(struct sock *sk);
501 
502 /* Bound MSS / TSO packet size with the half of the window */
503 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
504 {
505 	int cutoff;
506 
507 	/* When peer uses tiny windows, there is no use in packetizing
508 	 * to sub-MSS pieces for the sake of SWS or making sure there
509 	 * are enough packets in the pipe for fast recovery.
510 	 *
511 	 * On the other hand, for extremely large MSS devices, handling
512 	 * smaller than MSS windows in this way does make sense.
513 	 */
514 	if (tp->max_window >= 512)
515 		cutoff = (tp->max_window >> 1);
516 	else
517 		cutoff = tp->max_window;
518 
519 	if (cutoff && pktsize > cutoff)
520 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
521 	else
522 		return pktsize;
523 }
524 
525 /* tcp.c */
526 extern void tcp_get_info(const struct sock *, struct tcp_info *);
527 
528 /* Read 'sendfile()'-style from a TCP socket */
529 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
530 				unsigned int, size_t);
531 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
532 			 sk_read_actor_t recv_actor);
533 
534 extern void tcp_initialize_rcv_mss(struct sock *sk);
535 
536 extern int tcp_mtu_to_mss(const struct sock *sk, int pmtu);
537 extern int tcp_mss_to_mtu(const struct sock *sk, int mss);
538 extern void tcp_mtup_init(struct sock *sk);
539 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
540 
541 static inline void tcp_bound_rto(const struct sock *sk)
542 {
543 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
544 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
545 }
546 
547 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
548 {
549 	return (tp->srtt >> 3) + tp->rttvar;
550 }
551 
552 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
553 {
554 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
555 			       ntohl(TCP_FLAG_ACK) |
556 			       snd_wnd);
557 }
558 
559 static inline void tcp_fast_path_on(struct tcp_sock *tp)
560 {
561 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
562 }
563 
564 static inline void tcp_fast_path_check(struct sock *sk)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 
568 	if (skb_queue_empty(&tp->out_of_order_queue) &&
569 	    tp->rcv_wnd &&
570 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
571 	    !tp->urg_data)
572 		tcp_fast_path_on(tp);
573 }
574 
575 /* Compute the actual rto_min value */
576 static inline u32 tcp_rto_min(struct sock *sk)
577 {
578 	const struct dst_entry *dst = __sk_dst_get(sk);
579 	u32 rto_min = TCP_RTO_MIN;
580 
581 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
582 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
583 	return rto_min;
584 }
585 
586 /* Compute the actual receive window we are currently advertising.
587  * Rcv_nxt can be after the window if our peer push more data
588  * than the offered window.
589  */
590 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
591 {
592 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
593 
594 	if (win < 0)
595 		win = 0;
596 	return (u32) win;
597 }
598 
599 /* Choose a new window, without checks for shrinking, and without
600  * scaling applied to the result.  The caller does these things
601  * if necessary.  This is a "raw" window selection.
602  */
603 extern u32 __tcp_select_window(struct sock *sk);
604 
605 /* TCP timestamps are only 32-bits, this causes a slight
606  * complication on 64-bit systems since we store a snapshot
607  * of jiffies in the buffer control blocks below.  We decided
608  * to use only the low 32-bits of jiffies and hide the ugly
609  * casts with the following macro.
610  */
611 #define tcp_time_stamp		((__u32)(jiffies))
612 
613 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
614 
615 #define TCPHDR_FIN 0x01
616 #define TCPHDR_SYN 0x02
617 #define TCPHDR_RST 0x04
618 #define TCPHDR_PSH 0x08
619 #define TCPHDR_ACK 0x10
620 #define TCPHDR_URG 0x20
621 #define TCPHDR_ECE 0x40
622 #define TCPHDR_CWR 0x80
623 
624 /* This is what the send packet queuing engine uses to pass
625  * TCP per-packet control information to the transmission code.
626  * We also store the host-order sequence numbers in here too.
627  * This is 44 bytes if IPV6 is enabled.
628  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
629  */
630 struct tcp_skb_cb {
631 	union {
632 		struct inet_skb_parm	h4;
633 #if IS_ENABLED(CONFIG_IPV6)
634 		struct inet6_skb_parm	h6;
635 #endif
636 	} header;	/* For incoming frames		*/
637 	__u32		seq;		/* Starting sequence number	*/
638 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
639 	__u32		when;		/* used to compute rtt's	*/
640 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
641 	__u8		sacked;		/* State flags for SACK/FACK.	*/
642 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
643 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
644 #define TCPCB_LOST		0x04	/* SKB is lost			*/
645 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
646 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
647 	/* 1 byte hole */
648 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
649 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
650 
651 	__u32		ack_seq;	/* Sequence number ACK'd	*/
652 };
653 
654 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
655 
656 /* Due to TSO, an SKB can be composed of multiple actual
657  * packets.  To keep these tracked properly, we use this.
658  */
659 static inline int tcp_skb_pcount(const struct sk_buff *skb)
660 {
661 	return skb_shinfo(skb)->gso_segs;
662 }
663 
664 /* This is valid iff tcp_skb_pcount() > 1. */
665 static inline int tcp_skb_mss(const struct sk_buff *skb)
666 {
667 	return skb_shinfo(skb)->gso_size;
668 }
669 
670 /* Events passed to congestion control interface */
671 enum tcp_ca_event {
672 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
673 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
674 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
675 	CA_EVENT_FRTO,		/* fast recovery timeout */
676 	CA_EVENT_LOSS,		/* loss timeout */
677 	CA_EVENT_FAST_ACK,	/* in sequence ack */
678 	CA_EVENT_SLOW_ACK,	/* other ack */
679 };
680 
681 /*
682  * Interface for adding new TCP congestion control handlers
683  */
684 #define TCP_CA_NAME_MAX	16
685 #define TCP_CA_MAX	128
686 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
687 
688 #define TCP_CONG_NON_RESTRICTED 0x1
689 #define TCP_CONG_RTT_STAMP	0x2
690 
691 struct tcp_congestion_ops {
692 	struct list_head	list;
693 	unsigned long flags;
694 
695 	/* initialize private data (optional) */
696 	void (*init)(struct sock *sk);
697 	/* cleanup private data  (optional) */
698 	void (*release)(struct sock *sk);
699 
700 	/* return slow start threshold (required) */
701 	u32 (*ssthresh)(struct sock *sk);
702 	/* lower bound for congestion window (optional) */
703 	u32 (*min_cwnd)(const struct sock *sk);
704 	/* do new cwnd calculation (required) */
705 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
706 	/* call before changing ca_state (optional) */
707 	void (*set_state)(struct sock *sk, u8 new_state);
708 	/* call when cwnd event occurs (optional) */
709 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
710 	/* new value of cwnd after loss (optional) */
711 	u32  (*undo_cwnd)(struct sock *sk);
712 	/* hook for packet ack accounting (optional) */
713 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
714 	/* get info for inet_diag (optional) */
715 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
716 
717 	char 		name[TCP_CA_NAME_MAX];
718 	struct module 	*owner;
719 };
720 
721 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
722 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
723 
724 extern void tcp_init_congestion_control(struct sock *sk);
725 extern void tcp_cleanup_congestion_control(struct sock *sk);
726 extern int tcp_set_default_congestion_control(const char *name);
727 extern void tcp_get_default_congestion_control(char *name);
728 extern void tcp_get_available_congestion_control(char *buf, size_t len);
729 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
730 extern int tcp_set_allowed_congestion_control(char *allowed);
731 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
732 extern void tcp_slow_start(struct tcp_sock *tp);
733 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
734 
735 extern struct tcp_congestion_ops tcp_init_congestion_ops;
736 extern u32 tcp_reno_ssthresh(struct sock *sk);
737 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
738 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
739 extern struct tcp_congestion_ops tcp_reno;
740 
741 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
742 {
743 	struct inet_connection_sock *icsk = inet_csk(sk);
744 
745 	if (icsk->icsk_ca_ops->set_state)
746 		icsk->icsk_ca_ops->set_state(sk, ca_state);
747 	icsk->icsk_ca_state = ca_state;
748 }
749 
750 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
751 {
752 	const struct inet_connection_sock *icsk = inet_csk(sk);
753 
754 	if (icsk->icsk_ca_ops->cwnd_event)
755 		icsk->icsk_ca_ops->cwnd_event(sk, event);
756 }
757 
758 /* These functions determine how the current flow behaves in respect of SACK
759  * handling. SACK is negotiated with the peer, and therefore it can vary
760  * between different flows.
761  *
762  * tcp_is_sack - SACK enabled
763  * tcp_is_reno - No SACK
764  * tcp_is_fack - FACK enabled, implies SACK enabled
765  */
766 static inline int tcp_is_sack(const struct tcp_sock *tp)
767 {
768 	return tp->rx_opt.sack_ok;
769 }
770 
771 static inline int tcp_is_reno(const struct tcp_sock *tp)
772 {
773 	return !tcp_is_sack(tp);
774 }
775 
776 static inline int tcp_is_fack(const struct tcp_sock *tp)
777 {
778 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
779 }
780 
781 static inline void tcp_enable_fack(struct tcp_sock *tp)
782 {
783 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
784 }
785 
786 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
787 {
788 	return tp->sacked_out + tp->lost_out;
789 }
790 
791 /* This determines how many packets are "in the network" to the best
792  * of our knowledge.  In many cases it is conservative, but where
793  * detailed information is available from the receiver (via SACK
794  * blocks etc.) we can make more aggressive calculations.
795  *
796  * Use this for decisions involving congestion control, use just
797  * tp->packets_out to determine if the send queue is empty or not.
798  *
799  * Read this equation as:
800  *
801  *	"Packets sent once on transmission queue" MINUS
802  *	"Packets left network, but not honestly ACKed yet" PLUS
803  *	"Packets fast retransmitted"
804  */
805 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
806 {
807 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
808 }
809 
810 #define TCP_INFINITE_SSTHRESH	0x7fffffff
811 
812 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
813 {
814 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
815 }
816 
817 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
818  * The exception is rate halving phase, when cwnd is decreasing towards
819  * ssthresh.
820  */
821 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
822 {
823 	const struct tcp_sock *tp = tcp_sk(sk);
824 
825 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
826 		return tp->snd_ssthresh;
827 	else
828 		return max(tp->snd_ssthresh,
829 			   ((tp->snd_cwnd >> 1) +
830 			    (tp->snd_cwnd >> 2)));
831 }
832 
833 /* Use define here intentionally to get WARN_ON location shown at the caller */
834 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
835 
836 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
837 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
838 
839 /* The maximum number of MSS of available cwnd for which TSO defers
840  * sending if not using sysctl_tcp_tso_win_divisor.
841  */
842 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
843 {
844 	return 3;
845 }
846 
847 /* Slow start with delack produces 3 packets of burst, so that
848  * it is safe "de facto".  This will be the default - same as
849  * the default reordering threshold - but if reordering increases,
850  * we must be able to allow cwnd to burst at least this much in order
851  * to not pull it back when holes are filled.
852  */
853 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
854 {
855 	return tp->reordering;
856 }
857 
858 /* Returns end sequence number of the receiver's advertised window */
859 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
860 {
861 	return tp->snd_una + tp->snd_wnd;
862 }
863 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
864 
865 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
866 				       const struct sk_buff *skb)
867 {
868 	if (skb->len < mss)
869 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
870 }
871 
872 static inline void tcp_check_probe_timer(struct sock *sk)
873 {
874 	const struct tcp_sock *tp = tcp_sk(sk);
875 	const struct inet_connection_sock *icsk = inet_csk(sk);
876 
877 	if (!tp->packets_out && !icsk->icsk_pending)
878 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
879 					  icsk->icsk_rto, TCP_RTO_MAX);
880 }
881 
882 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
883 {
884 	tp->snd_wl1 = seq;
885 }
886 
887 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
888 {
889 	tp->snd_wl1 = seq;
890 }
891 
892 /*
893  * Calculate(/check) TCP checksum
894  */
895 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
896 				   __be32 daddr, __wsum base)
897 {
898 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
899 }
900 
901 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
902 {
903 	return __skb_checksum_complete(skb);
904 }
905 
906 static inline int tcp_checksum_complete(struct sk_buff *skb)
907 {
908 	return !skb_csum_unnecessary(skb) &&
909 		__tcp_checksum_complete(skb);
910 }
911 
912 /* Prequeue for VJ style copy to user, combined with checksumming. */
913 
914 static inline void tcp_prequeue_init(struct tcp_sock *tp)
915 {
916 	tp->ucopy.task = NULL;
917 	tp->ucopy.len = 0;
918 	tp->ucopy.memory = 0;
919 	skb_queue_head_init(&tp->ucopy.prequeue);
920 #ifdef CONFIG_NET_DMA
921 	tp->ucopy.dma_chan = NULL;
922 	tp->ucopy.wakeup = 0;
923 	tp->ucopy.pinned_list = NULL;
924 	tp->ucopy.dma_cookie = 0;
925 #endif
926 }
927 
928 /* Packet is added to VJ-style prequeue for processing in process
929  * context, if a reader task is waiting. Apparently, this exciting
930  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
931  * failed somewhere. Latency? Burstiness? Well, at least now we will
932  * see, why it failed. 8)8)				  --ANK
933  *
934  * NOTE: is this not too big to inline?
935  */
936 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
937 {
938 	struct tcp_sock *tp = tcp_sk(sk);
939 
940 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
941 		return 0;
942 
943 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
944 	tp->ucopy.memory += skb->truesize;
945 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
946 		struct sk_buff *skb1;
947 
948 		BUG_ON(sock_owned_by_user(sk));
949 
950 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
951 			sk_backlog_rcv(sk, skb1);
952 			NET_INC_STATS_BH(sock_net(sk),
953 					 LINUX_MIB_TCPPREQUEUEDROPPED);
954 		}
955 
956 		tp->ucopy.memory = 0;
957 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
958 		wake_up_interruptible_sync_poll(sk_sleep(sk),
959 					   POLLIN | POLLRDNORM | POLLRDBAND);
960 		if (!inet_csk_ack_scheduled(sk))
961 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
962 						  (3 * tcp_rto_min(sk)) / 4,
963 						  TCP_RTO_MAX);
964 	}
965 	return 1;
966 }
967 
968 
969 #undef STATE_TRACE
970 
971 #ifdef STATE_TRACE
972 static const char *statename[]={
973 	"Unused","Established","Syn Sent","Syn Recv",
974 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
975 	"Close Wait","Last ACK","Listen","Closing"
976 };
977 #endif
978 extern void tcp_set_state(struct sock *sk, int state);
979 
980 extern void tcp_done(struct sock *sk);
981 
982 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
983 {
984 	rx_opt->dsack = 0;
985 	rx_opt->num_sacks = 0;
986 }
987 
988 /* Determine a window scaling and initial window to offer. */
989 extern void tcp_select_initial_window(int __space, __u32 mss,
990 				      __u32 *rcv_wnd, __u32 *window_clamp,
991 				      int wscale_ok, __u8 *rcv_wscale,
992 				      __u32 init_rcv_wnd);
993 
994 static inline int tcp_win_from_space(int space)
995 {
996 	return sysctl_tcp_adv_win_scale<=0 ?
997 		(space>>(-sysctl_tcp_adv_win_scale)) :
998 		space - (space>>sysctl_tcp_adv_win_scale);
999 }
1000 
1001 /* Note: caller must be prepared to deal with negative returns */
1002 static inline int tcp_space(const struct sock *sk)
1003 {
1004 	return tcp_win_from_space(sk->sk_rcvbuf -
1005 				  atomic_read(&sk->sk_rmem_alloc));
1006 }
1007 
1008 static inline int tcp_full_space(const struct sock *sk)
1009 {
1010 	return tcp_win_from_space(sk->sk_rcvbuf);
1011 }
1012 
1013 static inline void tcp_openreq_init(struct request_sock *req,
1014 				    struct tcp_options_received *rx_opt,
1015 				    struct sk_buff *skb)
1016 {
1017 	struct inet_request_sock *ireq = inet_rsk(req);
1018 
1019 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1020 	req->cookie_ts = 0;
1021 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1022 	req->mss = rx_opt->mss_clamp;
1023 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1024 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1025 	ireq->sack_ok = rx_opt->sack_ok;
1026 	ireq->snd_wscale = rx_opt->snd_wscale;
1027 	ireq->wscale_ok = rx_opt->wscale_ok;
1028 	ireq->acked = 0;
1029 	ireq->ecn_ok = 0;
1030 	ireq->rmt_port = tcp_hdr(skb)->source;
1031 	ireq->loc_port = tcp_hdr(skb)->dest;
1032 }
1033 
1034 extern void tcp_enter_memory_pressure(struct sock *sk);
1035 
1036 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1037 {
1038 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1039 }
1040 
1041 static inline int keepalive_time_when(const struct tcp_sock *tp)
1042 {
1043 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1044 }
1045 
1046 static inline int keepalive_probes(const struct tcp_sock *tp)
1047 {
1048 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1049 }
1050 
1051 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1052 {
1053 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1054 
1055 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1056 			  tcp_time_stamp - tp->rcv_tstamp);
1057 }
1058 
1059 static inline int tcp_fin_time(const struct sock *sk)
1060 {
1061 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1062 	const int rto = inet_csk(sk)->icsk_rto;
1063 
1064 	if (fin_timeout < (rto << 2) - (rto >> 1))
1065 		fin_timeout = (rto << 2) - (rto >> 1);
1066 
1067 	return fin_timeout;
1068 }
1069 
1070 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1071 				 int paws_win)
1072 {
1073 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1074 		return 1;
1075 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1076 		return 1;
1077 	/*
1078 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1079 	 * then following tcp messages have valid values. Ignore 0 value,
1080 	 * or else 'negative' tsval might forbid us to accept their packets.
1081 	 */
1082 	if (!rx_opt->ts_recent)
1083 		return 1;
1084 	return 0;
1085 }
1086 
1087 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1088 				  int rst)
1089 {
1090 	if (tcp_paws_check(rx_opt, 0))
1091 		return 0;
1092 
1093 	/* RST segments are not recommended to carry timestamp,
1094 	   and, if they do, it is recommended to ignore PAWS because
1095 	   "their cleanup function should take precedence over timestamps."
1096 	   Certainly, it is mistake. It is necessary to understand the reasons
1097 	   of this constraint to relax it: if peer reboots, clock may go
1098 	   out-of-sync and half-open connections will not be reset.
1099 	   Actually, the problem would be not existing if all
1100 	   the implementations followed draft about maintaining clock
1101 	   via reboots. Linux-2.2 DOES NOT!
1102 
1103 	   However, we can relax time bounds for RST segments to MSL.
1104 	 */
1105 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1106 		return 0;
1107 	return 1;
1108 }
1109 
1110 static inline void tcp_mib_init(struct net *net)
1111 {
1112 	/* See RFC 2012 */
1113 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1114 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1115 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1116 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1117 }
1118 
1119 /* from STCP */
1120 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1121 {
1122 	tp->lost_skb_hint = NULL;
1123 	tp->scoreboard_skb_hint = NULL;
1124 }
1125 
1126 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1127 {
1128 	tcp_clear_retrans_hints_partial(tp);
1129 	tp->retransmit_skb_hint = NULL;
1130 }
1131 
1132 /* MD5 Signature */
1133 struct crypto_hash;
1134 
1135 /* - key database */
1136 struct tcp_md5sig_key {
1137 	u8			*key;
1138 	u8			keylen;
1139 };
1140 
1141 struct tcp4_md5sig_key {
1142 	struct tcp_md5sig_key	base;
1143 	__be32			addr;
1144 };
1145 
1146 struct tcp6_md5sig_key {
1147 	struct tcp_md5sig_key	base;
1148 #if 0
1149 	u32			scope_id;	/* XXX */
1150 #endif
1151 	struct in6_addr		addr;
1152 };
1153 
1154 /* - sock block */
1155 struct tcp_md5sig_info {
1156 	struct tcp4_md5sig_key	*keys4;
1157 #if IS_ENABLED(CONFIG_IPV6)
1158 	struct tcp6_md5sig_key	*keys6;
1159 	u32			entries6;
1160 	u32			alloced6;
1161 #endif
1162 	u32			entries4;
1163 	u32			alloced4;
1164 };
1165 
1166 /* - pseudo header */
1167 struct tcp4_pseudohdr {
1168 	__be32		saddr;
1169 	__be32		daddr;
1170 	__u8		pad;
1171 	__u8		protocol;
1172 	__be16		len;
1173 };
1174 
1175 struct tcp6_pseudohdr {
1176 	struct in6_addr	saddr;
1177 	struct in6_addr daddr;
1178 	__be32		len;
1179 	__be32		protocol;	/* including padding */
1180 };
1181 
1182 union tcp_md5sum_block {
1183 	struct tcp4_pseudohdr ip4;
1184 #if IS_ENABLED(CONFIG_IPV6)
1185 	struct tcp6_pseudohdr ip6;
1186 #endif
1187 };
1188 
1189 /* - pool: digest algorithm, hash description and scratch buffer */
1190 struct tcp_md5sig_pool {
1191 	struct hash_desc	md5_desc;
1192 	union tcp_md5sum_block	md5_blk;
1193 };
1194 
1195 /* - functions */
1196 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1197 			       const struct sock *sk,
1198 			       const struct request_sock *req,
1199 			       const struct sk_buff *skb);
1200 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1201 						 struct sock *addr_sk);
1202 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1203 			     u8 newkeylen);
1204 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1205 
1206 #ifdef CONFIG_TCP_MD5SIG
1207 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1208 				 &(struct tcp_md5sig_key) {		 \
1209 					.key = (twsk)->tw_md5_key,	 \
1210 					.keylen = (twsk)->tw_md5_keylen, \
1211 				} : NULL)
1212 #else
1213 #define tcp_twsk_md5_key(twsk)	NULL
1214 #endif
1215 
1216 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1217 extern void tcp_free_md5sig_pool(void);
1218 
1219 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1220 extern void tcp_put_md5sig_pool(void);
1221 
1222 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1223 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1224 				 unsigned header_len);
1225 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1226 			    const struct tcp_md5sig_key *key);
1227 
1228 /* write queue abstraction */
1229 static inline void tcp_write_queue_purge(struct sock *sk)
1230 {
1231 	struct sk_buff *skb;
1232 
1233 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1234 		sk_wmem_free_skb(sk, skb);
1235 	sk_mem_reclaim(sk);
1236 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1237 }
1238 
1239 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1240 {
1241 	return skb_peek(&sk->sk_write_queue);
1242 }
1243 
1244 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1245 {
1246 	return skb_peek_tail(&sk->sk_write_queue);
1247 }
1248 
1249 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1250 						   const struct sk_buff *skb)
1251 {
1252 	return skb_queue_next(&sk->sk_write_queue, skb);
1253 }
1254 
1255 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1256 						   const struct sk_buff *skb)
1257 {
1258 	return skb_queue_prev(&sk->sk_write_queue, skb);
1259 }
1260 
1261 #define tcp_for_write_queue(skb, sk)					\
1262 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1263 
1264 #define tcp_for_write_queue_from(skb, sk)				\
1265 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1266 
1267 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1268 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1269 
1270 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1271 {
1272 	return sk->sk_send_head;
1273 }
1274 
1275 static inline bool tcp_skb_is_last(const struct sock *sk,
1276 				   const struct sk_buff *skb)
1277 {
1278 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1279 }
1280 
1281 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1282 {
1283 	if (tcp_skb_is_last(sk, skb))
1284 		sk->sk_send_head = NULL;
1285 	else
1286 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1287 }
1288 
1289 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1290 {
1291 	if (sk->sk_send_head == skb_unlinked)
1292 		sk->sk_send_head = NULL;
1293 }
1294 
1295 static inline void tcp_init_send_head(struct sock *sk)
1296 {
1297 	sk->sk_send_head = NULL;
1298 }
1299 
1300 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1301 {
1302 	__skb_queue_tail(&sk->sk_write_queue, skb);
1303 }
1304 
1305 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1306 {
1307 	__tcp_add_write_queue_tail(sk, skb);
1308 
1309 	/* Queue it, remembering where we must start sending. */
1310 	if (sk->sk_send_head == NULL) {
1311 		sk->sk_send_head = skb;
1312 
1313 		if (tcp_sk(sk)->highest_sack == NULL)
1314 			tcp_sk(sk)->highest_sack = skb;
1315 	}
1316 }
1317 
1318 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1319 {
1320 	__skb_queue_head(&sk->sk_write_queue, skb);
1321 }
1322 
1323 /* Insert buff after skb on the write queue of sk.  */
1324 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1325 						struct sk_buff *buff,
1326 						struct sock *sk)
1327 {
1328 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1329 }
1330 
1331 /* Insert new before skb on the write queue of sk.  */
1332 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1333 						  struct sk_buff *skb,
1334 						  struct sock *sk)
1335 {
1336 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1337 
1338 	if (sk->sk_send_head == skb)
1339 		sk->sk_send_head = new;
1340 }
1341 
1342 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1343 {
1344 	__skb_unlink(skb, &sk->sk_write_queue);
1345 }
1346 
1347 static inline int tcp_write_queue_empty(struct sock *sk)
1348 {
1349 	return skb_queue_empty(&sk->sk_write_queue);
1350 }
1351 
1352 static inline void tcp_push_pending_frames(struct sock *sk)
1353 {
1354 	if (tcp_send_head(sk)) {
1355 		struct tcp_sock *tp = tcp_sk(sk);
1356 
1357 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1358 	}
1359 }
1360 
1361 /* Start sequence of the highest skb with SACKed bit, valid only if
1362  * sacked > 0 or when the caller has ensured validity by itself.
1363  */
1364 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1365 {
1366 	if (!tp->sacked_out)
1367 		return tp->snd_una;
1368 
1369 	if (tp->highest_sack == NULL)
1370 		return tp->snd_nxt;
1371 
1372 	return TCP_SKB_CB(tp->highest_sack)->seq;
1373 }
1374 
1375 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1376 {
1377 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1378 						tcp_write_queue_next(sk, skb);
1379 }
1380 
1381 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1382 {
1383 	return tcp_sk(sk)->highest_sack;
1384 }
1385 
1386 static inline void tcp_highest_sack_reset(struct sock *sk)
1387 {
1388 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1389 }
1390 
1391 /* Called when old skb is about to be deleted (to be combined with new skb) */
1392 static inline void tcp_highest_sack_combine(struct sock *sk,
1393 					    struct sk_buff *old,
1394 					    struct sk_buff *new)
1395 {
1396 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1397 		tcp_sk(sk)->highest_sack = new;
1398 }
1399 
1400 /* Determines whether this is a thin stream (which may suffer from
1401  * increased latency). Used to trigger latency-reducing mechanisms.
1402  */
1403 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1404 {
1405 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1406 }
1407 
1408 /* /proc */
1409 enum tcp_seq_states {
1410 	TCP_SEQ_STATE_LISTENING,
1411 	TCP_SEQ_STATE_OPENREQ,
1412 	TCP_SEQ_STATE_ESTABLISHED,
1413 	TCP_SEQ_STATE_TIME_WAIT,
1414 };
1415 
1416 int tcp_seq_open(struct inode *inode, struct file *file);
1417 
1418 struct tcp_seq_afinfo {
1419 	char				*name;
1420 	sa_family_t			family;
1421 	const struct file_operations	*seq_fops;
1422 	struct seq_operations		seq_ops;
1423 };
1424 
1425 struct tcp_iter_state {
1426 	struct seq_net_private	p;
1427 	sa_family_t		family;
1428 	enum tcp_seq_states	state;
1429 	struct sock		*syn_wait_sk;
1430 	int			bucket, offset, sbucket, num, uid;
1431 	loff_t			last_pos;
1432 };
1433 
1434 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1435 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1436 
1437 extern struct request_sock_ops tcp_request_sock_ops;
1438 extern struct request_sock_ops tcp6_request_sock_ops;
1439 
1440 extern void tcp_v4_destroy_sock(struct sock *sk);
1441 
1442 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1443 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1444 				       netdev_features_t features);
1445 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1446 					struct sk_buff *skb);
1447 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1448 					 struct sk_buff *skb);
1449 extern int tcp_gro_complete(struct sk_buff *skb);
1450 extern int tcp4_gro_complete(struct sk_buff *skb);
1451 
1452 #ifdef CONFIG_PROC_FS
1453 extern int tcp4_proc_init(void);
1454 extern void tcp4_proc_exit(void);
1455 #endif
1456 
1457 /* TCP af-specific functions */
1458 struct tcp_sock_af_ops {
1459 #ifdef CONFIG_TCP_MD5SIG
1460 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1461 						struct sock *addr_sk);
1462 	int			(*calc_md5_hash) (char *location,
1463 						  struct tcp_md5sig_key *md5,
1464 						  const struct sock *sk,
1465 						  const struct request_sock *req,
1466 						  const struct sk_buff *skb);
1467 	int			(*md5_add) (struct sock *sk,
1468 					    struct sock *addr_sk,
1469 					    u8 *newkey,
1470 					    u8 len);
1471 	int			(*md5_parse) (struct sock *sk,
1472 					      char __user *optval,
1473 					      int optlen);
1474 #endif
1475 };
1476 
1477 struct tcp_request_sock_ops {
1478 #ifdef CONFIG_TCP_MD5SIG
1479 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1480 						struct request_sock *req);
1481 	int			(*calc_md5_hash) (char *location,
1482 						  struct tcp_md5sig_key *md5,
1483 						  const struct sock *sk,
1484 						  const struct request_sock *req,
1485 						  const struct sk_buff *skb);
1486 #endif
1487 };
1488 
1489 /* Using SHA1 for now, define some constants.
1490  */
1491 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1492 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1493 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1494 
1495 extern int tcp_cookie_generator(u32 *bakery);
1496 
1497 /**
1498  *	struct tcp_cookie_values - each socket needs extra space for the
1499  *	cookies, together with (optional) space for any SYN data.
1500  *
1501  *	A tcp_sock contains a pointer to the current value, and this is
1502  *	cloned to the tcp_timewait_sock.
1503  *
1504  * @cookie_pair:	variable data from the option exchange.
1505  *
1506  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1507  *			indicates default (sysctl_tcp_cookie_size).
1508  *			After cookie sent, remembers size of cookie.
1509  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1510  *
1511  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1512  *			constant payload is specified (@s_data_constant),
1513  *			holds its length instead.
1514  *			Range 0 to TCP_MSS_DESIRED.
1515  *
1516  * @s_data_payload:	constant data that is to be included in the
1517  *			payload of SYN or SYNACK segments when the
1518  *			cookie option is present.
1519  */
1520 struct tcp_cookie_values {
1521 	struct kref	kref;
1522 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1523 	u8		cookie_pair_size;
1524 	u8		cookie_desired;
1525 	u16		s_data_desired:11,
1526 			s_data_constant:1,
1527 			s_data_in:1,
1528 			s_data_out:1,
1529 			s_data_unused:2;
1530 	u8		s_data_payload[0];
1531 };
1532 
1533 static inline void tcp_cookie_values_release(struct kref *kref)
1534 {
1535 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1536 }
1537 
1538 /* The length of constant payload data.  Note that s_data_desired is
1539  * overloaded, depending on s_data_constant: either the length of constant
1540  * data (returned here) or the limit on variable data.
1541  */
1542 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1543 {
1544 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1545 		? tp->cookie_values->s_data_desired
1546 		: 0;
1547 }
1548 
1549 /**
1550  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1551  *
1552  *	As tcp_request_sock has already been extended in other places, the
1553  *	only remaining method is to pass stack values along as function
1554  *	parameters.  These parameters are not needed after sending SYNACK.
1555  *
1556  * @cookie_bakery:	cryptographic secret and message workspace.
1557  *
1558  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1559  *			struct tcp_options_received (above).
1560  */
1561 struct tcp_extend_values {
1562 	struct request_values		rv;
1563 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1564 	u8				cookie_plus:6,
1565 					cookie_out_never:1,
1566 					cookie_in_always:1;
1567 };
1568 
1569 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1570 {
1571 	return (struct tcp_extend_values *)rvp;
1572 }
1573 
1574 extern void tcp_v4_init(void);
1575 extern void tcp_init(void);
1576 
1577 #endif	/* _TCP_H */
1578