xref: /linux/include/net/tcp.h (revision d9afbb3509900a953f5cf90bc57e793ee80c1108)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 
29 #include <net/inet_connection_sock.h>
30 #include <net/inet_timewait_sock.h>
31 #include <net/inet_hashtables.h>
32 #include <net/checksum.h>
33 #include <net/request_sock.h>
34 #include <net/sock_reuseport.h>
35 #include <net/sock.h>
36 #include <net/snmp.h>
37 #include <net/ip.h>
38 #include <net/tcp_states.h>
39 #include <net/inet_ecn.h>
40 #include <net/dst.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47 
48 extern struct inet_hashinfo tcp_hashinfo;
49 
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52 
53 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS		48
56 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
186 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
187 #define TCPOPT_EXP		254	/* Experimental */
188 /* Magic number to be after the option value for sharing TCP
189  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
190  */
191 #define TCPOPT_FASTOPEN_MAGIC	0xF989
192 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
193 
194 /*
195  *     TCP option lengths
196  */
197 
198 #define TCPOLEN_MSS            4
199 #define TCPOLEN_WINDOW         3
200 #define TCPOLEN_SACK_PERM      2
201 #define TCPOLEN_TIMESTAMP      10
202 #define TCPOLEN_MD5SIG         18
203 #define TCPOLEN_FASTOPEN_BASE  2
204 #define TCPOLEN_EXP_FASTOPEN_BASE  4
205 #define TCPOLEN_EXP_SMC_BASE   6
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
217 
218 /* Flags in tp->nonagle */
219 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
220 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
221 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
222 
223 /* TCP thin-stream limits */
224 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
225 
226 /* TCP initial congestion window as per rfc6928 */
227 #define TCP_INIT_CWND		10
228 
229 /* Bit Flags for sysctl_tcp_fastopen */
230 #define	TFO_CLIENT_ENABLE	1
231 #define	TFO_SERVER_ENABLE	2
232 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
233 
234 /* Accept SYN data w/o any cookie option */
235 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
236 
237 /* Force enable TFO on all listeners, i.e., not requiring the
238  * TCP_FASTOPEN socket option.
239  */
240 #define	TFO_SERVER_WO_SOCKOPT1	0x400
241 
242 
243 /* sysctl variables for tcp */
244 extern int sysctl_tcp_max_orphans;
245 extern long sysctl_tcp_mem[3];
246 
247 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
248 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
249 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
250 
251 extern atomic_long_t tcp_memory_allocated;
252 extern struct percpu_counter tcp_sockets_allocated;
253 extern unsigned long tcp_memory_pressure;
254 
255 /* optimized version of sk_under_memory_pressure() for TCP sockets */
256 static inline bool tcp_under_memory_pressure(const struct sock *sk)
257 {
258 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
259 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
260 		return true;
261 
262 	return READ_ONCE(tcp_memory_pressure);
263 }
264 /*
265  * The next routines deal with comparing 32 bit unsigned ints
266  * and worry about wraparound (automatic with unsigned arithmetic).
267  */
268 
269 static inline bool before(__u32 seq1, __u32 seq2)
270 {
271         return (__s32)(seq1-seq2) < 0;
272 }
273 #define after(seq2, seq1) 	before(seq1, seq2)
274 
275 /* is s2<=s1<=s3 ? */
276 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
277 {
278 	return seq3 - seq2 >= seq1 - seq2;
279 }
280 
281 static inline bool tcp_out_of_memory(struct sock *sk)
282 {
283 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
284 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
285 		return true;
286 	return false;
287 }
288 
289 void sk_forced_mem_schedule(struct sock *sk, int size);
290 
291 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
292 {
293 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
294 	int orphans = percpu_counter_read_positive(ocp);
295 
296 	if (orphans << shift > sysctl_tcp_max_orphans) {
297 		orphans = percpu_counter_sum_positive(ocp);
298 		if (orphans << shift > sysctl_tcp_max_orphans)
299 			return true;
300 	}
301 	return false;
302 }
303 
304 bool tcp_check_oom(struct sock *sk, int shift);
305 
306 
307 extern struct proto tcp_prot;
308 
309 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 void tcp_tasklet_init(void);
315 
316 int tcp_v4_err(struct sk_buff *skb, u32);
317 
318 void tcp_shutdown(struct sock *sk, int how);
319 
320 int tcp_v4_early_demux(struct sk_buff *skb);
321 int tcp_v4_rcv(struct sk_buff *skb);
322 
323 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
324 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
326 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
327 		 int flags);
328 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
329 			size_t size, int flags);
330 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
331 		 size_t size, int flags);
332 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
333 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
334 	      int size_goal);
335 void tcp_release_cb(struct sock *sk);
336 void tcp_wfree(struct sk_buff *skb);
337 void tcp_write_timer_handler(struct sock *sk);
338 void tcp_delack_timer_handler(struct sock *sk);
339 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
340 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
341 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_space_adjust(struct sock *sk);
343 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
344 void tcp_twsk_destructor(struct sock *sk);
345 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
346 			struct pipe_inode_info *pipe, size_t len,
347 			unsigned int flags);
348 
349 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
350 static inline void tcp_dec_quickack_mode(struct sock *sk,
351 					 const unsigned int pkts)
352 {
353 	struct inet_connection_sock *icsk = inet_csk(sk);
354 
355 	if (icsk->icsk_ack.quick) {
356 		if (pkts >= icsk->icsk_ack.quick) {
357 			icsk->icsk_ack.quick = 0;
358 			/* Leaving quickack mode we deflate ATO. */
359 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
360 		} else
361 			icsk->icsk_ack.quick -= pkts;
362 	}
363 }
364 
365 #define	TCP_ECN_OK		1
366 #define	TCP_ECN_QUEUE_CWR	2
367 #define	TCP_ECN_DEMAND_CWR	4
368 #define	TCP_ECN_SEEN		8
369 
370 enum tcp_tw_status {
371 	TCP_TW_SUCCESS = 0,
372 	TCP_TW_RST = 1,
373 	TCP_TW_ACK = 2,
374 	TCP_TW_SYN = 3
375 };
376 
377 
378 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
379 					      struct sk_buff *skb,
380 					      const struct tcphdr *th);
381 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
382 			   struct request_sock *req, bool fastopen,
383 			   bool *lost_race);
384 int tcp_child_process(struct sock *parent, struct sock *child,
385 		      struct sk_buff *skb);
386 void tcp_enter_loss(struct sock *sk);
387 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
388 void tcp_clear_retrans(struct tcp_sock *tp);
389 void tcp_update_metrics(struct sock *sk);
390 void tcp_init_metrics(struct sock *sk);
391 void tcp_metrics_init(void);
392 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
393 void tcp_close(struct sock *sk, long timeout);
394 void tcp_init_sock(struct sock *sk);
395 void tcp_init_transfer(struct sock *sk, int bpf_op);
396 __poll_t tcp_poll(struct file *file, struct socket *sock,
397 		      struct poll_table_struct *wait);
398 int tcp_getsockopt(struct sock *sk, int level, int optname,
399 		   char __user *optval, int __user *optlen);
400 int tcp_setsockopt(struct sock *sk, int level, int optname,
401 		   char __user *optval, unsigned int optlen);
402 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
403 			  char __user *optval, int __user *optlen);
404 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
405 			  char __user *optval, unsigned int optlen);
406 void tcp_set_keepalive(struct sock *sk, int val);
407 void tcp_syn_ack_timeout(const struct request_sock *req);
408 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
409 		int flags, int *addr_len);
410 int tcp_set_rcvlowat(struct sock *sk, int val);
411 void tcp_data_ready(struct sock *sk);
412 #ifdef CONFIG_MMU
413 int tcp_mmap(struct file *file, struct socket *sock,
414 	     struct vm_area_struct *vma);
415 #endif
416 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
417 		       struct tcp_options_received *opt_rx,
418 		       int estab, struct tcp_fastopen_cookie *foc);
419 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
420 
421 /*
422  *	BPF SKB-less helpers
423  */
424 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
425 			 struct tcphdr *th, u32 *cookie);
426 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
427 			 struct tcphdr *th, u32 *cookie);
428 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
429 			  const struct tcp_request_sock_ops *af_ops,
430 			  struct sock *sk, struct tcphdr *th);
431 /*
432  *	TCP v4 functions exported for the inet6 API
433  */
434 
435 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
436 void tcp_v4_mtu_reduced(struct sock *sk);
437 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
438 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
439 struct sock *tcp_create_openreq_child(const struct sock *sk,
440 				      struct request_sock *req,
441 				      struct sk_buff *skb);
442 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
443 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
444 				  struct request_sock *req,
445 				  struct dst_entry *dst,
446 				  struct request_sock *req_unhash,
447 				  bool *own_req);
448 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
449 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
450 int tcp_connect(struct sock *sk);
451 enum tcp_synack_type {
452 	TCP_SYNACK_NORMAL,
453 	TCP_SYNACK_FASTOPEN,
454 	TCP_SYNACK_COOKIE,
455 };
456 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
457 				struct request_sock *req,
458 				struct tcp_fastopen_cookie *foc,
459 				enum tcp_synack_type synack_type);
460 int tcp_disconnect(struct sock *sk, int flags);
461 
462 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
463 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
464 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
465 
466 /* From syncookies.c */
467 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
468 				 struct request_sock *req,
469 				 struct dst_entry *dst, u32 tsoff);
470 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
471 		      u32 cookie);
472 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
473 #ifdef CONFIG_SYN_COOKIES
474 
475 /* Syncookies use a monotonic timer which increments every 60 seconds.
476  * This counter is used both as a hash input and partially encoded into
477  * the cookie value.  A cookie is only validated further if the delta
478  * between the current counter value and the encoded one is less than this,
479  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
480  * the counter advances immediately after a cookie is generated).
481  */
482 #define MAX_SYNCOOKIE_AGE	2
483 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
484 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
485 
486 /* syncookies: remember time of last synqueue overflow
487  * But do not dirty this field too often (once per second is enough)
488  * It is racy as we do not hold a lock, but race is very minor.
489  */
490 static inline void tcp_synq_overflow(const struct sock *sk)
491 {
492 	unsigned int last_overflow;
493 	unsigned int now = jiffies;
494 
495 	if (sk->sk_reuseport) {
496 		struct sock_reuseport *reuse;
497 
498 		reuse = rcu_dereference(sk->sk_reuseport_cb);
499 		if (likely(reuse)) {
500 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
501 			if (!time_between32(now, last_overflow,
502 					    last_overflow + HZ))
503 				WRITE_ONCE(reuse->synq_overflow_ts, now);
504 			return;
505 		}
506 	}
507 
508 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
509 	if (!time_between32(now, last_overflow, last_overflow + HZ))
510 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
511 }
512 
513 /* syncookies: no recent synqueue overflow on this listening socket? */
514 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
515 {
516 	unsigned int last_overflow;
517 	unsigned int now = jiffies;
518 
519 	if (sk->sk_reuseport) {
520 		struct sock_reuseport *reuse;
521 
522 		reuse = rcu_dereference(sk->sk_reuseport_cb);
523 		if (likely(reuse)) {
524 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
525 			return !time_between32(now, last_overflow - HZ,
526 					       last_overflow +
527 					       TCP_SYNCOOKIE_VALID);
528 		}
529 	}
530 
531 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
532 
533 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
534 	 * then we're under synflood. However, we have to use
535 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
536 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
537 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
538 	 * which could lead to rejecting a valid syncookie.
539 	 */
540 	return !time_between32(now, last_overflow - HZ,
541 			       last_overflow + TCP_SYNCOOKIE_VALID);
542 }
543 
544 static inline u32 tcp_cookie_time(void)
545 {
546 	u64 val = get_jiffies_64();
547 
548 	do_div(val, TCP_SYNCOOKIE_PERIOD);
549 	return val;
550 }
551 
552 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
553 			      u16 *mssp);
554 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
555 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
556 bool cookie_timestamp_decode(const struct net *net,
557 			     struct tcp_options_received *opt);
558 bool cookie_ecn_ok(const struct tcp_options_received *opt,
559 		   const struct net *net, const struct dst_entry *dst);
560 
561 /* From net/ipv6/syncookies.c */
562 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
563 		      u32 cookie);
564 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
565 
566 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
567 			      const struct tcphdr *th, u16 *mssp);
568 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
569 #endif
570 /* tcp_output.c */
571 
572 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
573 			       int nonagle);
574 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
575 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
576 void tcp_retransmit_timer(struct sock *sk);
577 void tcp_xmit_retransmit_queue(struct sock *);
578 void tcp_simple_retransmit(struct sock *);
579 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
580 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
581 enum tcp_queue {
582 	TCP_FRAG_IN_WRITE_QUEUE,
583 	TCP_FRAG_IN_RTX_QUEUE,
584 };
585 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
586 		 struct sk_buff *skb, u32 len,
587 		 unsigned int mss_now, gfp_t gfp);
588 
589 void tcp_send_probe0(struct sock *);
590 void tcp_send_partial(struct sock *);
591 int tcp_write_wakeup(struct sock *, int mib);
592 void tcp_send_fin(struct sock *sk);
593 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
594 int tcp_send_synack(struct sock *);
595 void tcp_push_one(struct sock *, unsigned int mss_now);
596 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
597 void tcp_send_ack(struct sock *sk);
598 void tcp_send_delayed_ack(struct sock *sk);
599 void tcp_send_loss_probe(struct sock *sk);
600 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
601 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
602 			     const struct sk_buff *next_skb);
603 
604 /* tcp_input.c */
605 void tcp_rearm_rto(struct sock *sk);
606 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
607 void tcp_reset(struct sock *sk);
608 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
609 void tcp_fin(struct sock *sk);
610 
611 /* tcp_timer.c */
612 void tcp_init_xmit_timers(struct sock *);
613 static inline void tcp_clear_xmit_timers(struct sock *sk)
614 {
615 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
616 		__sock_put(sk);
617 
618 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
619 		__sock_put(sk);
620 
621 	inet_csk_clear_xmit_timers(sk);
622 }
623 
624 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
625 unsigned int tcp_current_mss(struct sock *sk);
626 
627 /* Bound MSS / TSO packet size with the half of the window */
628 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
629 {
630 	int cutoff;
631 
632 	/* When peer uses tiny windows, there is no use in packetizing
633 	 * to sub-MSS pieces for the sake of SWS or making sure there
634 	 * are enough packets in the pipe for fast recovery.
635 	 *
636 	 * On the other hand, for extremely large MSS devices, handling
637 	 * smaller than MSS windows in this way does make sense.
638 	 */
639 	if (tp->max_window > TCP_MSS_DEFAULT)
640 		cutoff = (tp->max_window >> 1);
641 	else
642 		cutoff = tp->max_window;
643 
644 	if (cutoff && pktsize > cutoff)
645 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
646 	else
647 		return pktsize;
648 }
649 
650 /* tcp.c */
651 void tcp_get_info(struct sock *, struct tcp_info *);
652 
653 /* Read 'sendfile()'-style from a TCP socket */
654 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
655 		  sk_read_actor_t recv_actor);
656 
657 void tcp_initialize_rcv_mss(struct sock *sk);
658 
659 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
660 int tcp_mss_to_mtu(struct sock *sk, int mss);
661 void tcp_mtup_init(struct sock *sk);
662 void tcp_init_buffer_space(struct sock *sk);
663 
664 static inline void tcp_bound_rto(const struct sock *sk)
665 {
666 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
667 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
668 }
669 
670 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
671 {
672 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
673 }
674 
675 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
676 {
677 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
678 			       ntohl(TCP_FLAG_ACK) |
679 			       snd_wnd);
680 }
681 
682 static inline void tcp_fast_path_on(struct tcp_sock *tp)
683 {
684 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
685 }
686 
687 static inline void tcp_fast_path_check(struct sock *sk)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 
691 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
692 	    tp->rcv_wnd &&
693 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
694 	    !tp->urg_data)
695 		tcp_fast_path_on(tp);
696 }
697 
698 /* Compute the actual rto_min value */
699 static inline u32 tcp_rto_min(struct sock *sk)
700 {
701 	const struct dst_entry *dst = __sk_dst_get(sk);
702 	u32 rto_min = TCP_RTO_MIN;
703 
704 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
705 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
706 	return rto_min;
707 }
708 
709 static inline u32 tcp_rto_min_us(struct sock *sk)
710 {
711 	return jiffies_to_usecs(tcp_rto_min(sk));
712 }
713 
714 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
715 {
716 	return dst_metric_locked(dst, RTAX_CC_ALGO);
717 }
718 
719 /* Minimum RTT in usec. ~0 means not available. */
720 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
721 {
722 	return minmax_get(&tp->rtt_min);
723 }
724 
725 /* Compute the actual receive window we are currently advertising.
726  * Rcv_nxt can be after the window if our peer push more data
727  * than the offered window.
728  */
729 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
730 {
731 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
732 
733 	if (win < 0)
734 		win = 0;
735 	return (u32) win;
736 }
737 
738 /* Choose a new window, without checks for shrinking, and without
739  * scaling applied to the result.  The caller does these things
740  * if necessary.  This is a "raw" window selection.
741  */
742 u32 __tcp_select_window(struct sock *sk);
743 
744 void tcp_send_window_probe(struct sock *sk);
745 
746 /* TCP uses 32bit jiffies to save some space.
747  * Note that this is different from tcp_time_stamp, which
748  * historically has been the same until linux-4.13.
749  */
750 #define tcp_jiffies32 ((u32)jiffies)
751 
752 /*
753  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
754  * It is no longer tied to jiffies, but to 1 ms clock.
755  * Note: double check if you want to use tcp_jiffies32 instead of this.
756  */
757 #define TCP_TS_HZ	1000
758 
759 static inline u64 tcp_clock_ns(void)
760 {
761 	return ktime_get_ns();
762 }
763 
764 static inline u64 tcp_clock_us(void)
765 {
766 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
767 }
768 
769 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
770 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
771 {
772 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
773 }
774 
775 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
776 static inline u32 tcp_ns_to_ts(u64 ns)
777 {
778 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
779 }
780 
781 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
782 static inline u32 tcp_time_stamp_raw(void)
783 {
784 	return tcp_ns_to_ts(tcp_clock_ns());
785 }
786 
787 void tcp_mstamp_refresh(struct tcp_sock *tp);
788 
789 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
790 {
791 	return max_t(s64, t1 - t0, 0);
792 }
793 
794 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
795 {
796 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
797 }
798 
799 /* provide the departure time in us unit */
800 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
801 {
802 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
803 }
804 
805 
806 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
807 
808 #define TCPHDR_FIN 0x01
809 #define TCPHDR_SYN 0x02
810 #define TCPHDR_RST 0x04
811 #define TCPHDR_PSH 0x08
812 #define TCPHDR_ACK 0x10
813 #define TCPHDR_URG 0x20
814 #define TCPHDR_ECE 0x40
815 #define TCPHDR_CWR 0x80
816 
817 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
818 
819 /* This is what the send packet queuing engine uses to pass
820  * TCP per-packet control information to the transmission code.
821  * We also store the host-order sequence numbers in here too.
822  * This is 44 bytes if IPV6 is enabled.
823  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
824  */
825 struct tcp_skb_cb {
826 	__u32		seq;		/* Starting sequence number	*/
827 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
828 	union {
829 		/* Note : tcp_tw_isn is used in input path only
830 		 *	  (isn chosen by tcp_timewait_state_process())
831 		 *
832 		 * 	  tcp_gso_segs/size are used in write queue only,
833 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
834 		 */
835 		__u32		tcp_tw_isn;
836 		struct {
837 			u16	tcp_gso_segs;
838 			u16	tcp_gso_size;
839 		};
840 	};
841 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
842 
843 	__u8		sacked;		/* State flags for SACK.	*/
844 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
845 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
846 #define TCPCB_LOST		0x04	/* SKB is lost			*/
847 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
848 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
849 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
850 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
851 				TCPCB_REPAIRED)
852 
853 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
854 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
855 			eor:1,		/* Is skb MSG_EOR marked? */
856 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
857 			unused:5;
858 	__u32		ack_seq;	/* Sequence number ACK'd	*/
859 	union {
860 		struct {
861 			/* There is space for up to 24 bytes */
862 			__u32 in_flight:30,/* Bytes in flight at transmit */
863 			      is_app_limited:1, /* cwnd not fully used? */
864 			      unused:1;
865 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
866 			__u32 delivered;
867 			/* start of send pipeline phase */
868 			u64 first_tx_mstamp;
869 			/* when we reached the "delivered" count */
870 			u64 delivered_mstamp;
871 		} tx;   /* only used for outgoing skbs */
872 		union {
873 			struct inet_skb_parm	h4;
874 #if IS_ENABLED(CONFIG_IPV6)
875 			struct inet6_skb_parm	h6;
876 #endif
877 		} header;	/* For incoming skbs */
878 		struct {
879 			__u32 flags;
880 			struct sock *sk_redir;
881 			void *data_end;
882 		} bpf;
883 	};
884 };
885 
886 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
887 
888 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
889 {
890 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
891 }
892 
893 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
894 {
895 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
896 }
897 
898 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
899 {
900 	return TCP_SKB_CB(skb)->bpf.sk_redir;
901 }
902 
903 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
904 {
905 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
906 }
907 
908 #if IS_ENABLED(CONFIG_IPV6)
909 /* This is the variant of inet6_iif() that must be used by TCP,
910  * as TCP moves IP6CB into a different location in skb->cb[]
911  */
912 static inline int tcp_v6_iif(const struct sk_buff *skb)
913 {
914 	return TCP_SKB_CB(skb)->header.h6.iif;
915 }
916 
917 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
918 {
919 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
920 
921 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
922 }
923 
924 /* TCP_SKB_CB reference means this can not be used from early demux */
925 static inline int tcp_v6_sdif(const struct sk_buff *skb)
926 {
927 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
928 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
929 		return TCP_SKB_CB(skb)->header.h6.iif;
930 #endif
931 	return 0;
932 }
933 #endif
934 
935 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
936 {
937 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
939 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
940 		return true;
941 #endif
942 	return false;
943 }
944 
945 /* TCP_SKB_CB reference means this can not be used from early demux */
946 static inline int tcp_v4_sdif(struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
950 		return TCP_SKB_CB(skb)->header.h4.iif;
951 #endif
952 	return 0;
953 }
954 
955 /* Due to TSO, an SKB can be composed of multiple actual
956  * packets.  To keep these tracked properly, we use this.
957  */
958 static inline int tcp_skb_pcount(const struct sk_buff *skb)
959 {
960 	return TCP_SKB_CB(skb)->tcp_gso_segs;
961 }
962 
963 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
964 {
965 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
966 }
967 
968 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
969 {
970 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
971 }
972 
973 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
974 static inline int tcp_skb_mss(const struct sk_buff *skb)
975 {
976 	return TCP_SKB_CB(skb)->tcp_gso_size;
977 }
978 
979 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
980 {
981 	return likely(!TCP_SKB_CB(skb)->eor);
982 }
983 
984 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
985 					const struct sk_buff *from)
986 {
987 	return likely(tcp_skb_can_collapse_to(to) &&
988 		      mptcp_skb_can_collapse(to, from));
989 }
990 
991 /* Events passed to congestion control interface */
992 enum tcp_ca_event {
993 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
994 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
995 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
996 	CA_EVENT_LOSS,		/* loss timeout */
997 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
998 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
999 };
1000 
1001 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1002 enum tcp_ca_ack_event_flags {
1003 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1004 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1005 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1006 };
1007 
1008 /*
1009  * Interface for adding new TCP congestion control handlers
1010  */
1011 #define TCP_CA_NAME_MAX	16
1012 #define TCP_CA_MAX	128
1013 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1014 
1015 #define TCP_CA_UNSPEC	0
1016 
1017 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1018 #define TCP_CONG_NON_RESTRICTED 0x1
1019 /* Requires ECN/ECT set on all packets */
1020 #define TCP_CONG_NEEDS_ECN	0x2
1021 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1022 
1023 union tcp_cc_info;
1024 
1025 struct ack_sample {
1026 	u32 pkts_acked;
1027 	s32 rtt_us;
1028 	u32 in_flight;
1029 };
1030 
1031 /* A rate sample measures the number of (original/retransmitted) data
1032  * packets delivered "delivered" over an interval of time "interval_us".
1033  * The tcp_rate.c code fills in the rate sample, and congestion
1034  * control modules that define a cong_control function to run at the end
1035  * of ACK processing can optionally chose to consult this sample when
1036  * setting cwnd and pacing rate.
1037  * A sample is invalid if "delivered" or "interval_us" is negative.
1038  */
1039 struct rate_sample {
1040 	u64  prior_mstamp; /* starting timestamp for interval */
1041 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1042 	s32  delivered;		/* number of packets delivered over interval */
1043 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1044 	u32 snd_interval_us;	/* snd interval for delivered packets */
1045 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1046 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1047 	int  losses;		/* number of packets marked lost upon ACK */
1048 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1049 	u32  prior_in_flight;	/* in flight before this ACK */
1050 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1051 	bool is_retrans;	/* is sample from retransmission? */
1052 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1053 };
1054 
1055 struct tcp_congestion_ops {
1056 	struct list_head	list;
1057 	u32 key;
1058 	u32 flags;
1059 
1060 	/* initialize private data (optional) */
1061 	void (*init)(struct sock *sk);
1062 	/* cleanup private data  (optional) */
1063 	void (*release)(struct sock *sk);
1064 
1065 	/* return slow start threshold (required) */
1066 	u32 (*ssthresh)(struct sock *sk);
1067 	/* do new cwnd calculation (required) */
1068 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1069 	/* call before changing ca_state (optional) */
1070 	void (*set_state)(struct sock *sk, u8 new_state);
1071 	/* call when cwnd event occurs (optional) */
1072 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1073 	/* call when ack arrives (optional) */
1074 	void (*in_ack_event)(struct sock *sk, u32 flags);
1075 	/* new value of cwnd after loss (required) */
1076 	u32  (*undo_cwnd)(struct sock *sk);
1077 	/* hook for packet ack accounting (optional) */
1078 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1079 	/* override sysctl_tcp_min_tso_segs */
1080 	u32 (*min_tso_segs)(struct sock *sk);
1081 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1082 	u32 (*sndbuf_expand)(struct sock *sk);
1083 	/* call when packets are delivered to update cwnd and pacing rate,
1084 	 * after all the ca_state processing. (optional)
1085 	 */
1086 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1087 	/* get info for inet_diag (optional) */
1088 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1089 			   union tcp_cc_info *info);
1090 
1091 	char 		name[TCP_CA_NAME_MAX];
1092 	struct module 	*owner;
1093 };
1094 
1095 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1096 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1097 
1098 void tcp_assign_congestion_control(struct sock *sk);
1099 void tcp_init_congestion_control(struct sock *sk);
1100 void tcp_cleanup_congestion_control(struct sock *sk);
1101 int tcp_set_default_congestion_control(struct net *net, const char *name);
1102 void tcp_get_default_congestion_control(struct net *net, char *name);
1103 void tcp_get_available_congestion_control(char *buf, size_t len);
1104 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1105 int tcp_set_allowed_congestion_control(char *allowed);
1106 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1107 			       bool reinit, bool cap_net_admin);
1108 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1109 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1110 
1111 u32 tcp_reno_ssthresh(struct sock *sk);
1112 u32 tcp_reno_undo_cwnd(struct sock *sk);
1113 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1114 extern struct tcp_congestion_ops tcp_reno;
1115 
1116 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1117 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1118 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1119 #ifdef CONFIG_INET
1120 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1121 #else
1122 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1123 {
1124 	return NULL;
1125 }
1126 #endif
1127 
1128 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1129 {
1130 	const struct inet_connection_sock *icsk = inet_csk(sk);
1131 
1132 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1133 }
1134 
1135 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1136 {
1137 	struct inet_connection_sock *icsk = inet_csk(sk);
1138 
1139 	if (icsk->icsk_ca_ops->set_state)
1140 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1141 	icsk->icsk_ca_state = ca_state;
1142 }
1143 
1144 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1145 {
1146 	const struct inet_connection_sock *icsk = inet_csk(sk);
1147 
1148 	if (icsk->icsk_ca_ops->cwnd_event)
1149 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1150 }
1151 
1152 /* From tcp_rate.c */
1153 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1154 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1155 			    struct rate_sample *rs);
1156 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1157 		  bool is_sack_reneg, struct rate_sample *rs);
1158 void tcp_rate_check_app_limited(struct sock *sk);
1159 
1160 /* These functions determine how the current flow behaves in respect of SACK
1161  * handling. SACK is negotiated with the peer, and therefore it can vary
1162  * between different flows.
1163  *
1164  * tcp_is_sack - SACK enabled
1165  * tcp_is_reno - No SACK
1166  */
1167 static inline int tcp_is_sack(const struct tcp_sock *tp)
1168 {
1169 	return likely(tp->rx_opt.sack_ok);
1170 }
1171 
1172 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1173 {
1174 	return !tcp_is_sack(tp);
1175 }
1176 
1177 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1178 {
1179 	return tp->sacked_out + tp->lost_out;
1180 }
1181 
1182 /* This determines how many packets are "in the network" to the best
1183  * of our knowledge.  In many cases it is conservative, but where
1184  * detailed information is available from the receiver (via SACK
1185  * blocks etc.) we can make more aggressive calculations.
1186  *
1187  * Use this for decisions involving congestion control, use just
1188  * tp->packets_out to determine if the send queue is empty or not.
1189  *
1190  * Read this equation as:
1191  *
1192  *	"Packets sent once on transmission queue" MINUS
1193  *	"Packets left network, but not honestly ACKed yet" PLUS
1194  *	"Packets fast retransmitted"
1195  */
1196 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1197 {
1198 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1199 }
1200 
1201 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1202 
1203 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1204 {
1205 	return tp->snd_cwnd < tp->snd_ssthresh;
1206 }
1207 
1208 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1209 {
1210 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1211 }
1212 
1213 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1214 {
1215 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1216 	       (1 << inet_csk(sk)->icsk_ca_state);
1217 }
1218 
1219 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1220  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1221  * ssthresh.
1222  */
1223 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1224 {
1225 	const struct tcp_sock *tp = tcp_sk(sk);
1226 
1227 	if (tcp_in_cwnd_reduction(sk))
1228 		return tp->snd_ssthresh;
1229 	else
1230 		return max(tp->snd_ssthresh,
1231 			   ((tp->snd_cwnd >> 1) +
1232 			    (tp->snd_cwnd >> 2)));
1233 }
1234 
1235 /* Use define here intentionally to get WARN_ON location shown at the caller */
1236 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1237 
1238 void tcp_enter_cwr(struct sock *sk);
1239 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1240 
1241 /* The maximum number of MSS of available cwnd for which TSO defers
1242  * sending if not using sysctl_tcp_tso_win_divisor.
1243  */
1244 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1245 {
1246 	return 3;
1247 }
1248 
1249 /* Returns end sequence number of the receiver's advertised window */
1250 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1251 {
1252 	return tp->snd_una + tp->snd_wnd;
1253 }
1254 
1255 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1256  * flexible approach. The RFC suggests cwnd should not be raised unless
1257  * it was fully used previously. And that's exactly what we do in
1258  * congestion avoidance mode. But in slow start we allow cwnd to grow
1259  * as long as the application has used half the cwnd.
1260  * Example :
1261  *    cwnd is 10 (IW10), but application sends 9 frames.
1262  *    We allow cwnd to reach 18 when all frames are ACKed.
1263  * This check is safe because it's as aggressive as slow start which already
1264  * risks 100% overshoot. The advantage is that we discourage application to
1265  * either send more filler packets or data to artificially blow up the cwnd
1266  * usage, and allow application-limited process to probe bw more aggressively.
1267  */
1268 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1269 {
1270 	const struct tcp_sock *tp = tcp_sk(sk);
1271 
1272 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1273 	if (tcp_in_slow_start(tp))
1274 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1275 
1276 	return tp->is_cwnd_limited;
1277 }
1278 
1279 /* BBR congestion control needs pacing.
1280  * Same remark for SO_MAX_PACING_RATE.
1281  * sch_fq packet scheduler is efficiently handling pacing,
1282  * but is not always installed/used.
1283  * Return true if TCP stack should pace packets itself.
1284  */
1285 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1286 {
1287 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1288 }
1289 
1290 /* Return in jiffies the delay before one skb is sent.
1291  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1292  */
1293 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1294 					     const struct sk_buff *skb)
1295 {
1296 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1297 
1298 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1299 
1300 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1301 }
1302 
1303 static inline void tcp_reset_xmit_timer(struct sock *sk,
1304 					const int what,
1305 					unsigned long when,
1306 					const unsigned long max_when,
1307 					const struct sk_buff *skb)
1308 {
1309 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1310 				  max_when);
1311 }
1312 
1313 /* Something is really bad, we could not queue an additional packet,
1314  * because qdisc is full or receiver sent a 0 window, or we are paced.
1315  * We do not want to add fuel to the fire, or abort too early,
1316  * so make sure the timer we arm now is at least 200ms in the future,
1317  * regardless of current icsk_rto value (as it could be ~2ms)
1318  */
1319 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1320 {
1321 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1322 }
1323 
1324 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1325 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1326 					    unsigned long max_when)
1327 {
1328 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1329 
1330 	return (unsigned long)min_t(u64, when, max_when);
1331 }
1332 
1333 static inline void tcp_check_probe_timer(struct sock *sk)
1334 {
1335 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1336 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1337 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1338 				     NULL);
1339 }
1340 
1341 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1342 {
1343 	tp->snd_wl1 = seq;
1344 }
1345 
1346 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1347 {
1348 	tp->snd_wl1 = seq;
1349 }
1350 
1351 /*
1352  * Calculate(/check) TCP checksum
1353  */
1354 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1355 				   __be32 daddr, __wsum base)
1356 {
1357 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1358 }
1359 
1360 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1361 {
1362 	return !skb_csum_unnecessary(skb) &&
1363 		__skb_checksum_complete(skb);
1364 }
1365 
1366 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1367 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1368 void tcp_set_state(struct sock *sk, int state);
1369 void tcp_done(struct sock *sk);
1370 int tcp_abort(struct sock *sk, int err);
1371 
1372 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1373 {
1374 	rx_opt->dsack = 0;
1375 	rx_opt->num_sacks = 0;
1376 }
1377 
1378 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1379 
1380 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1381 {
1382 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	s32 delta;
1385 
1386 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1387 	    ca_ops->cong_control)
1388 		return;
1389 	delta = tcp_jiffies32 - tp->lsndtime;
1390 	if (delta > inet_csk(sk)->icsk_rto)
1391 		tcp_cwnd_restart(sk, delta);
1392 }
1393 
1394 /* Determine a window scaling and initial window to offer. */
1395 void tcp_select_initial_window(const struct sock *sk, int __space,
1396 			       __u32 mss, __u32 *rcv_wnd,
1397 			       __u32 *window_clamp, int wscale_ok,
1398 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1399 
1400 static inline int tcp_win_from_space(const struct sock *sk, int space)
1401 {
1402 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1403 
1404 	return tcp_adv_win_scale <= 0 ?
1405 		(space>>(-tcp_adv_win_scale)) :
1406 		space - (space>>tcp_adv_win_scale);
1407 }
1408 
1409 /* Note: caller must be prepared to deal with negative returns */
1410 static inline int tcp_space(const struct sock *sk)
1411 {
1412 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1413 				  READ_ONCE(sk->sk_backlog.len) -
1414 				  atomic_read(&sk->sk_rmem_alloc));
1415 }
1416 
1417 static inline int tcp_full_space(const struct sock *sk)
1418 {
1419 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1420 }
1421 
1422 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1423  * If 87.5 % (7/8) of the space has been consumed, we want to override
1424  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1425  * len/truesize ratio.
1426  */
1427 static inline bool tcp_rmem_pressure(const struct sock *sk)
1428 {
1429 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1430 	int threshold = rcvbuf - (rcvbuf >> 3);
1431 
1432 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1433 }
1434 
1435 extern void tcp_openreq_init_rwin(struct request_sock *req,
1436 				  const struct sock *sk_listener,
1437 				  const struct dst_entry *dst);
1438 
1439 void tcp_enter_memory_pressure(struct sock *sk);
1440 void tcp_leave_memory_pressure(struct sock *sk);
1441 
1442 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1443 {
1444 	struct net *net = sock_net((struct sock *)tp);
1445 
1446 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1447 }
1448 
1449 static inline int keepalive_time_when(const struct tcp_sock *tp)
1450 {
1451 	struct net *net = sock_net((struct sock *)tp);
1452 
1453 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1454 }
1455 
1456 static inline int keepalive_probes(const struct tcp_sock *tp)
1457 {
1458 	struct net *net = sock_net((struct sock *)tp);
1459 
1460 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1461 }
1462 
1463 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1464 {
1465 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1466 
1467 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1468 			  tcp_jiffies32 - tp->rcv_tstamp);
1469 }
1470 
1471 static inline int tcp_fin_time(const struct sock *sk)
1472 {
1473 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1474 	const int rto = inet_csk(sk)->icsk_rto;
1475 
1476 	if (fin_timeout < (rto << 2) - (rto >> 1))
1477 		fin_timeout = (rto << 2) - (rto >> 1);
1478 
1479 	return fin_timeout;
1480 }
1481 
1482 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1483 				  int paws_win)
1484 {
1485 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1486 		return true;
1487 	if (unlikely(!time_before32(ktime_get_seconds(),
1488 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1489 		return true;
1490 	/*
1491 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1492 	 * then following tcp messages have valid values. Ignore 0 value,
1493 	 * or else 'negative' tsval might forbid us to accept their packets.
1494 	 */
1495 	if (!rx_opt->ts_recent)
1496 		return true;
1497 	return false;
1498 }
1499 
1500 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1501 				   int rst)
1502 {
1503 	if (tcp_paws_check(rx_opt, 0))
1504 		return false;
1505 
1506 	/* RST segments are not recommended to carry timestamp,
1507 	   and, if they do, it is recommended to ignore PAWS because
1508 	   "their cleanup function should take precedence over timestamps."
1509 	   Certainly, it is mistake. It is necessary to understand the reasons
1510 	   of this constraint to relax it: if peer reboots, clock may go
1511 	   out-of-sync and half-open connections will not be reset.
1512 	   Actually, the problem would be not existing if all
1513 	   the implementations followed draft about maintaining clock
1514 	   via reboots. Linux-2.2 DOES NOT!
1515 
1516 	   However, we can relax time bounds for RST segments to MSL.
1517 	 */
1518 	if (rst && !time_before32(ktime_get_seconds(),
1519 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1520 		return false;
1521 	return true;
1522 }
1523 
1524 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1525 			  int mib_idx, u32 *last_oow_ack_time);
1526 
1527 static inline void tcp_mib_init(struct net *net)
1528 {
1529 	/* See RFC 2012 */
1530 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1531 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1532 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1533 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1534 }
1535 
1536 /* from STCP */
1537 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1538 {
1539 	tp->lost_skb_hint = NULL;
1540 }
1541 
1542 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1543 {
1544 	tcp_clear_retrans_hints_partial(tp);
1545 	tp->retransmit_skb_hint = NULL;
1546 }
1547 
1548 union tcp_md5_addr {
1549 	struct in_addr  a4;
1550 #if IS_ENABLED(CONFIG_IPV6)
1551 	struct in6_addr	a6;
1552 #endif
1553 };
1554 
1555 /* - key database */
1556 struct tcp_md5sig_key {
1557 	struct hlist_node	node;
1558 	u8			keylen;
1559 	u8			family; /* AF_INET or AF_INET6 */
1560 	u8			prefixlen;
1561 	union tcp_md5_addr	addr;
1562 	int			l3index; /* set if key added with L3 scope */
1563 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1564 	struct rcu_head		rcu;
1565 };
1566 
1567 /* - sock block */
1568 struct tcp_md5sig_info {
1569 	struct hlist_head	head;
1570 	struct rcu_head		rcu;
1571 };
1572 
1573 /* - pseudo header */
1574 struct tcp4_pseudohdr {
1575 	__be32		saddr;
1576 	__be32		daddr;
1577 	__u8		pad;
1578 	__u8		protocol;
1579 	__be16		len;
1580 };
1581 
1582 struct tcp6_pseudohdr {
1583 	struct in6_addr	saddr;
1584 	struct in6_addr daddr;
1585 	__be32		len;
1586 	__be32		protocol;	/* including padding */
1587 };
1588 
1589 union tcp_md5sum_block {
1590 	struct tcp4_pseudohdr ip4;
1591 #if IS_ENABLED(CONFIG_IPV6)
1592 	struct tcp6_pseudohdr ip6;
1593 #endif
1594 };
1595 
1596 /* - pool: digest algorithm, hash description and scratch buffer */
1597 struct tcp_md5sig_pool {
1598 	struct ahash_request	*md5_req;
1599 	void			*scratch;
1600 };
1601 
1602 /* - functions */
1603 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1604 			const struct sock *sk, const struct sk_buff *skb);
1605 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1606 		   int family, u8 prefixlen, int l3index,
1607 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1608 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1609 		   int family, u8 prefixlen, int l3index);
1610 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1611 					 const struct sock *addr_sk);
1612 
1613 #ifdef CONFIG_TCP_MD5SIG
1614 #include <linux/jump_label.h>
1615 extern struct static_key_false tcp_md5_needed;
1616 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1617 					   const union tcp_md5_addr *addr,
1618 					   int family);
1619 static inline struct tcp_md5sig_key *
1620 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1621 		  const union tcp_md5_addr *addr, int family)
1622 {
1623 	if (!static_branch_unlikely(&tcp_md5_needed))
1624 		return NULL;
1625 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1626 }
1627 
1628 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1629 #else
1630 static inline struct tcp_md5sig_key *
1631 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1632 		  const union tcp_md5_addr *addr, int family)
1633 {
1634 	return NULL;
1635 }
1636 #define tcp_twsk_md5_key(twsk)	NULL
1637 #endif
1638 
1639 bool tcp_alloc_md5sig_pool(void);
1640 
1641 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1642 static inline void tcp_put_md5sig_pool(void)
1643 {
1644 	local_bh_enable();
1645 }
1646 
1647 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1648 			  unsigned int header_len);
1649 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1650 		     const struct tcp_md5sig_key *key);
1651 
1652 /* From tcp_fastopen.c */
1653 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1654 			    struct tcp_fastopen_cookie *cookie);
1655 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1656 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1657 			    u16 try_exp);
1658 struct tcp_fastopen_request {
1659 	/* Fast Open cookie. Size 0 means a cookie request */
1660 	struct tcp_fastopen_cookie	cookie;
1661 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1662 	size_t				size;
1663 	int				copied;	/* queued in tcp_connect() */
1664 	struct ubuf_info		*uarg;
1665 };
1666 void tcp_free_fastopen_req(struct tcp_sock *tp);
1667 void tcp_fastopen_destroy_cipher(struct sock *sk);
1668 void tcp_fastopen_ctx_destroy(struct net *net);
1669 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1670 			      void *primary_key, void *backup_key);
1671 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1672 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1673 			      struct request_sock *req,
1674 			      struct tcp_fastopen_cookie *foc,
1675 			      const struct dst_entry *dst);
1676 void tcp_fastopen_init_key_once(struct net *net);
1677 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1678 			     struct tcp_fastopen_cookie *cookie);
1679 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1680 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1681 #define TCP_FASTOPEN_KEY_MAX 2
1682 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1683 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1684 
1685 /* Fastopen key context */
1686 struct tcp_fastopen_context {
1687 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1688 	int		num;
1689 	struct rcu_head	rcu;
1690 };
1691 
1692 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1693 void tcp_fastopen_active_disable(struct sock *sk);
1694 bool tcp_fastopen_active_should_disable(struct sock *sk);
1695 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1696 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1697 
1698 /* Caller needs to wrap with rcu_read_(un)lock() */
1699 static inline
1700 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1701 {
1702 	struct tcp_fastopen_context *ctx;
1703 
1704 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1705 	if (!ctx)
1706 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1707 	return ctx;
1708 }
1709 
1710 static inline
1711 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1712 			       const struct tcp_fastopen_cookie *orig)
1713 {
1714 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1715 	    orig->len == foc->len &&
1716 	    !memcmp(orig->val, foc->val, foc->len))
1717 		return true;
1718 	return false;
1719 }
1720 
1721 static inline
1722 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1723 {
1724 	return ctx->num;
1725 }
1726 
1727 /* Latencies incurred by various limits for a sender. They are
1728  * chronograph-like stats that are mutually exclusive.
1729  */
1730 enum tcp_chrono {
1731 	TCP_CHRONO_UNSPEC,
1732 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1733 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1734 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1735 	__TCP_CHRONO_MAX,
1736 };
1737 
1738 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1739 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1740 
1741 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1742  * the same memory storage than skb->destructor/_skb_refdst
1743  */
1744 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1745 {
1746 	skb->destructor = NULL;
1747 	skb->_skb_refdst = 0UL;
1748 }
1749 
1750 #define tcp_skb_tsorted_save(skb) {		\
1751 	unsigned long _save = skb->_skb_refdst;	\
1752 	skb->_skb_refdst = 0UL;
1753 
1754 #define tcp_skb_tsorted_restore(skb)		\
1755 	skb->_skb_refdst = _save;		\
1756 }
1757 
1758 void tcp_write_queue_purge(struct sock *sk);
1759 
1760 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1761 {
1762 	return skb_rb_first(&sk->tcp_rtx_queue);
1763 }
1764 
1765 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1766 {
1767 	return skb_rb_last(&sk->tcp_rtx_queue);
1768 }
1769 
1770 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1771 {
1772 	return skb_peek(&sk->sk_write_queue);
1773 }
1774 
1775 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1776 {
1777 	return skb_peek_tail(&sk->sk_write_queue);
1778 }
1779 
1780 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1781 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1782 
1783 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1784 {
1785 	return skb_peek(&sk->sk_write_queue);
1786 }
1787 
1788 static inline bool tcp_skb_is_last(const struct sock *sk,
1789 				   const struct sk_buff *skb)
1790 {
1791 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1792 }
1793 
1794 /**
1795  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1796  * @sk: socket
1797  *
1798  * Since the write queue can have a temporary empty skb in it,
1799  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1800  */
1801 static inline bool tcp_write_queue_empty(const struct sock *sk)
1802 {
1803 	const struct tcp_sock *tp = tcp_sk(sk);
1804 
1805 	return tp->write_seq == tp->snd_nxt;
1806 }
1807 
1808 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1809 {
1810 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1811 }
1812 
1813 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1814 {
1815 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1816 }
1817 
1818 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1819 {
1820 	__skb_queue_tail(&sk->sk_write_queue, skb);
1821 
1822 	/* Queue it, remembering where we must start sending. */
1823 	if (sk->sk_write_queue.next == skb)
1824 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1825 }
1826 
1827 /* Insert new before skb on the write queue of sk.  */
1828 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1829 						  struct sk_buff *skb,
1830 						  struct sock *sk)
1831 {
1832 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1833 }
1834 
1835 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1836 {
1837 	tcp_skb_tsorted_anchor_cleanup(skb);
1838 	__skb_unlink(skb, &sk->sk_write_queue);
1839 }
1840 
1841 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1842 
1843 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1844 {
1845 	tcp_skb_tsorted_anchor_cleanup(skb);
1846 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1847 }
1848 
1849 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1850 {
1851 	list_del(&skb->tcp_tsorted_anchor);
1852 	tcp_rtx_queue_unlink(skb, sk);
1853 	sk_wmem_free_skb(sk, skb);
1854 }
1855 
1856 static inline void tcp_push_pending_frames(struct sock *sk)
1857 {
1858 	if (tcp_send_head(sk)) {
1859 		struct tcp_sock *tp = tcp_sk(sk);
1860 
1861 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1862 	}
1863 }
1864 
1865 /* Start sequence of the skb just after the highest skb with SACKed
1866  * bit, valid only if sacked_out > 0 or when the caller has ensured
1867  * validity by itself.
1868  */
1869 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1870 {
1871 	if (!tp->sacked_out)
1872 		return tp->snd_una;
1873 
1874 	if (tp->highest_sack == NULL)
1875 		return tp->snd_nxt;
1876 
1877 	return TCP_SKB_CB(tp->highest_sack)->seq;
1878 }
1879 
1880 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1881 {
1882 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1883 }
1884 
1885 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1886 {
1887 	return tcp_sk(sk)->highest_sack;
1888 }
1889 
1890 static inline void tcp_highest_sack_reset(struct sock *sk)
1891 {
1892 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1893 }
1894 
1895 /* Called when old skb is about to be deleted and replaced by new skb */
1896 static inline void tcp_highest_sack_replace(struct sock *sk,
1897 					    struct sk_buff *old,
1898 					    struct sk_buff *new)
1899 {
1900 	if (old == tcp_highest_sack(sk))
1901 		tcp_sk(sk)->highest_sack = new;
1902 }
1903 
1904 /* This helper checks if socket has IP_TRANSPARENT set */
1905 static inline bool inet_sk_transparent(const struct sock *sk)
1906 {
1907 	switch (sk->sk_state) {
1908 	case TCP_TIME_WAIT:
1909 		return inet_twsk(sk)->tw_transparent;
1910 	case TCP_NEW_SYN_RECV:
1911 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1912 	}
1913 	return inet_sk(sk)->transparent;
1914 }
1915 
1916 /* Determines whether this is a thin stream (which may suffer from
1917  * increased latency). Used to trigger latency-reducing mechanisms.
1918  */
1919 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1920 {
1921 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1922 }
1923 
1924 /* /proc */
1925 enum tcp_seq_states {
1926 	TCP_SEQ_STATE_LISTENING,
1927 	TCP_SEQ_STATE_ESTABLISHED,
1928 };
1929 
1930 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1931 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1932 void tcp_seq_stop(struct seq_file *seq, void *v);
1933 
1934 struct tcp_seq_afinfo {
1935 	sa_family_t			family;
1936 };
1937 
1938 struct tcp_iter_state {
1939 	struct seq_net_private	p;
1940 	enum tcp_seq_states	state;
1941 	struct sock		*syn_wait_sk;
1942 	int			bucket, offset, sbucket, num;
1943 	loff_t			last_pos;
1944 };
1945 
1946 extern struct request_sock_ops tcp_request_sock_ops;
1947 extern struct request_sock_ops tcp6_request_sock_ops;
1948 
1949 void tcp_v4_destroy_sock(struct sock *sk);
1950 
1951 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1952 				netdev_features_t features);
1953 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1954 int tcp_gro_complete(struct sk_buff *skb);
1955 
1956 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1957 
1958 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1959 {
1960 	struct net *net = sock_net((struct sock *)tp);
1961 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1962 }
1963 
1964 /* @wake is one when sk_stream_write_space() calls us.
1965  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1966  * This mimics the strategy used in sock_def_write_space().
1967  */
1968 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1969 {
1970 	const struct tcp_sock *tp = tcp_sk(sk);
1971 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1972 			    READ_ONCE(tp->snd_nxt);
1973 
1974 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1975 }
1976 
1977 #ifdef CONFIG_PROC_FS
1978 int tcp4_proc_init(void);
1979 void tcp4_proc_exit(void);
1980 #endif
1981 
1982 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1983 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1984 		     const struct tcp_request_sock_ops *af_ops,
1985 		     struct sock *sk, struct sk_buff *skb);
1986 
1987 /* TCP af-specific functions */
1988 struct tcp_sock_af_ops {
1989 #ifdef CONFIG_TCP_MD5SIG
1990 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1991 						const struct sock *addr_sk);
1992 	int		(*calc_md5_hash)(char *location,
1993 					 const struct tcp_md5sig_key *md5,
1994 					 const struct sock *sk,
1995 					 const struct sk_buff *skb);
1996 	int		(*md5_parse)(struct sock *sk,
1997 				     int optname,
1998 				     char __user *optval,
1999 				     int optlen);
2000 #endif
2001 };
2002 
2003 struct tcp_request_sock_ops {
2004 	u16 mss_clamp;
2005 #ifdef CONFIG_TCP_MD5SIG
2006 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2007 						 const struct sock *addr_sk);
2008 	int		(*calc_md5_hash) (char *location,
2009 					  const struct tcp_md5sig_key *md5,
2010 					  const struct sock *sk,
2011 					  const struct sk_buff *skb);
2012 #endif
2013 	void (*init_req)(struct request_sock *req,
2014 			 const struct sock *sk_listener,
2015 			 struct sk_buff *skb);
2016 #ifdef CONFIG_SYN_COOKIES
2017 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2018 				 __u16 *mss);
2019 #endif
2020 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2021 				       const struct request_sock *req);
2022 	u32 (*init_seq)(const struct sk_buff *skb);
2023 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2024 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2025 			   struct flowi *fl, struct request_sock *req,
2026 			   struct tcp_fastopen_cookie *foc,
2027 			   enum tcp_synack_type synack_type);
2028 };
2029 
2030 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2031 #if IS_ENABLED(CONFIG_IPV6)
2032 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2033 #endif
2034 
2035 #ifdef CONFIG_SYN_COOKIES
2036 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2037 					 const struct sock *sk, struct sk_buff *skb,
2038 					 __u16 *mss)
2039 {
2040 	tcp_synq_overflow(sk);
2041 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2042 	return ops->cookie_init_seq(skb, mss);
2043 }
2044 #else
2045 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2046 					 const struct sock *sk, struct sk_buff *skb,
2047 					 __u16 *mss)
2048 {
2049 	return 0;
2050 }
2051 #endif
2052 
2053 int tcpv4_offload_init(void);
2054 
2055 void tcp_v4_init(void);
2056 void tcp_init(void);
2057 
2058 /* tcp_recovery.c */
2059 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2060 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2061 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2062 				u32 reo_wnd);
2063 extern void tcp_rack_mark_lost(struct sock *sk);
2064 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2065 			     u64 xmit_time);
2066 extern void tcp_rack_reo_timeout(struct sock *sk);
2067 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2068 
2069 /* At how many usecs into the future should the RTO fire? */
2070 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2071 {
2072 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2073 	u32 rto = inet_csk(sk)->icsk_rto;
2074 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2075 
2076 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2077 }
2078 
2079 /*
2080  * Save and compile IPv4 options, return a pointer to it
2081  */
2082 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2083 							 struct sk_buff *skb)
2084 {
2085 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2086 	struct ip_options_rcu *dopt = NULL;
2087 
2088 	if (opt->optlen) {
2089 		int opt_size = sizeof(*dopt) + opt->optlen;
2090 
2091 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2092 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2093 			kfree(dopt);
2094 			dopt = NULL;
2095 		}
2096 	}
2097 	return dopt;
2098 }
2099 
2100 /* locally generated TCP pure ACKs have skb->truesize == 2
2101  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2102  * This is much faster than dissecting the packet to find out.
2103  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2104  */
2105 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2106 {
2107 	return skb->truesize == 2;
2108 }
2109 
2110 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2111 {
2112 	skb->truesize = 2;
2113 }
2114 
2115 static inline int tcp_inq(struct sock *sk)
2116 {
2117 	struct tcp_sock *tp = tcp_sk(sk);
2118 	int answ;
2119 
2120 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2121 		answ = 0;
2122 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2123 		   !tp->urg_data ||
2124 		   before(tp->urg_seq, tp->copied_seq) ||
2125 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2126 
2127 		answ = tp->rcv_nxt - tp->copied_seq;
2128 
2129 		/* Subtract 1, if FIN was received */
2130 		if (answ && sock_flag(sk, SOCK_DONE))
2131 			answ--;
2132 	} else {
2133 		answ = tp->urg_seq - tp->copied_seq;
2134 	}
2135 
2136 	return answ;
2137 }
2138 
2139 int tcp_peek_len(struct socket *sock);
2140 
2141 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2142 {
2143 	u16 segs_in;
2144 
2145 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2146 	tp->segs_in += segs_in;
2147 	if (skb->len > tcp_hdrlen(skb))
2148 		tp->data_segs_in += segs_in;
2149 }
2150 
2151 /*
2152  * TCP listen path runs lockless.
2153  * We forced "struct sock" to be const qualified to make sure
2154  * we don't modify one of its field by mistake.
2155  * Here, we increment sk_drops which is an atomic_t, so we can safely
2156  * make sock writable again.
2157  */
2158 static inline void tcp_listendrop(const struct sock *sk)
2159 {
2160 	atomic_inc(&((struct sock *)sk)->sk_drops);
2161 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2162 }
2163 
2164 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2165 
2166 /*
2167  * Interface for adding Upper Level Protocols over TCP
2168  */
2169 
2170 #define TCP_ULP_NAME_MAX	16
2171 #define TCP_ULP_MAX		128
2172 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2173 
2174 struct tcp_ulp_ops {
2175 	struct list_head	list;
2176 
2177 	/* initialize ulp */
2178 	int (*init)(struct sock *sk);
2179 	/* update ulp */
2180 	void (*update)(struct sock *sk, struct proto *p,
2181 		       void (*write_space)(struct sock *sk));
2182 	/* cleanup ulp */
2183 	void (*release)(struct sock *sk);
2184 	/* diagnostic */
2185 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2186 	size_t (*get_info_size)(const struct sock *sk);
2187 	/* clone ulp */
2188 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2189 		      const gfp_t priority);
2190 
2191 	char		name[TCP_ULP_NAME_MAX];
2192 	struct module	*owner;
2193 };
2194 int tcp_register_ulp(struct tcp_ulp_ops *type);
2195 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2196 int tcp_set_ulp(struct sock *sk, const char *name);
2197 void tcp_get_available_ulp(char *buf, size_t len);
2198 void tcp_cleanup_ulp(struct sock *sk);
2199 void tcp_update_ulp(struct sock *sk, struct proto *p,
2200 		    void (*write_space)(struct sock *sk));
2201 
2202 #define MODULE_ALIAS_TCP_ULP(name)				\
2203 	__MODULE_INFO(alias, alias_userspace, name);		\
2204 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2205 
2206 struct sk_msg;
2207 struct sk_psock;
2208 
2209 #ifdef CONFIG_BPF_STREAM_PARSER
2210 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2211 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2212 #else
2213 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2214 {
2215 }
2216 #endif /* CONFIG_BPF_STREAM_PARSER */
2217 
2218 #ifdef CONFIG_NET_SOCK_MSG
2219 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2220 			  int flags);
2221 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2222 		      struct msghdr *msg, int len, int flags);
2223 #endif /* CONFIG_NET_SOCK_MSG */
2224 
2225 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2226  * is < 0, then the BPF op failed (for example if the loaded BPF
2227  * program does not support the chosen operation or there is no BPF
2228  * program loaded).
2229  */
2230 #ifdef CONFIG_BPF
2231 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2232 {
2233 	struct bpf_sock_ops_kern sock_ops;
2234 	int ret;
2235 
2236 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2237 	if (sk_fullsock(sk)) {
2238 		sock_ops.is_fullsock = 1;
2239 		sock_owned_by_me(sk);
2240 	}
2241 
2242 	sock_ops.sk = sk;
2243 	sock_ops.op = op;
2244 	if (nargs > 0)
2245 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2246 
2247 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2248 	if (ret == 0)
2249 		ret = sock_ops.reply;
2250 	else
2251 		ret = -1;
2252 	return ret;
2253 }
2254 
2255 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2256 {
2257 	u32 args[2] = {arg1, arg2};
2258 
2259 	return tcp_call_bpf(sk, op, 2, args);
2260 }
2261 
2262 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2263 				    u32 arg3)
2264 {
2265 	u32 args[3] = {arg1, arg2, arg3};
2266 
2267 	return tcp_call_bpf(sk, op, 3, args);
2268 }
2269 
2270 #else
2271 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2272 {
2273 	return -EPERM;
2274 }
2275 
2276 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2277 {
2278 	return -EPERM;
2279 }
2280 
2281 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2282 				    u32 arg3)
2283 {
2284 	return -EPERM;
2285 }
2286 
2287 #endif
2288 
2289 static inline u32 tcp_timeout_init(struct sock *sk)
2290 {
2291 	int timeout;
2292 
2293 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2294 
2295 	if (timeout <= 0)
2296 		timeout = TCP_TIMEOUT_INIT;
2297 	return timeout;
2298 }
2299 
2300 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2301 {
2302 	int rwnd;
2303 
2304 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2305 
2306 	if (rwnd < 0)
2307 		rwnd = 0;
2308 	return rwnd;
2309 }
2310 
2311 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2312 {
2313 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2314 }
2315 
2316 static inline void tcp_bpf_rtt(struct sock *sk)
2317 {
2318 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2319 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2320 }
2321 
2322 #if IS_ENABLED(CONFIG_SMC)
2323 extern struct static_key_false tcp_have_smc;
2324 #endif
2325 
2326 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2327 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2328 			     void (*cad)(struct sock *sk, u32 ack_seq));
2329 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2330 void clean_acked_data_flush(void);
2331 #endif
2332 
2333 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2334 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2335 				    const struct tcp_sock *tp)
2336 {
2337 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2338 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2339 }
2340 
2341 /* Compute Earliest Departure Time for some control packets
2342  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2343  */
2344 static inline u64 tcp_transmit_time(const struct sock *sk)
2345 {
2346 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2347 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2348 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2349 
2350 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2351 	}
2352 	return 0;
2353 }
2354 
2355 #endif	/* _TCP_H */
2356