xref: /linux/include/net/tcp.h (revision d8f87aa5fa0a4276491fa8ef436cd22605a3f9ba)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	if (sk->sk_bypass_prot_mem)
307 		return false;
308 
309 	return READ_ONCE(tcp_memory_pressure);
310 }
311 /*
312  * The next routines deal with comparing 32 bit unsigned ints
313  * and worry about wraparound (automatic with unsigned arithmetic).
314  */
315 
316 static inline bool before(__u32 seq1, __u32 seq2)
317 {
318         return (__s32)(seq1-seq2) < 0;
319 }
320 #define after(seq2, seq1) 	before(seq1, seq2)
321 
322 /* is s2<=s1<=s3 ? */
323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
324 {
325 	return seq3 - seq2 >= seq1 - seq2;
326 }
327 
328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
329 {
330 	sk_wmem_queued_add(sk, -skb->truesize);
331 	if (!skb_zcopy_pure(skb))
332 		sk_mem_uncharge(sk, skb->truesize);
333 	else
334 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
335 	__kfree_skb(skb);
336 }
337 
338 void sk_forced_mem_schedule(struct sock *sk, int size);
339 
340 bool tcp_check_oom(const struct sock *sk, int shift);
341 
342 
343 extern struct proto tcp_prot;
344 
345 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349 
350 void tcp_tsq_work_init(void);
351 
352 int tcp_v4_err(struct sk_buff *skb, u32);
353 
354 void tcp_shutdown(struct sock *sk, int how);
355 
356 int tcp_v4_early_demux(struct sk_buff *skb);
357 int tcp_v4_rcv(struct sk_buff *skb);
358 
359 void tcp_remove_empty_skb(struct sock *sk);
360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
363 			 size_t size, struct ubuf_info *uarg);
364 void tcp_splice_eof(struct socket *sock);
365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
366 int tcp_wmem_schedule(struct sock *sk, int copy);
367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
368 	      int size_goal);
369 void tcp_release_cb(struct sock *sk);
370 void tcp_wfree(struct sk_buff *skb);
371 void tcp_write_timer_handler(struct sock *sk);
372 void tcp_delack_timer_handler(struct sock *sk);
373 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval);
377 void tcp_rcv_space_adjust(struct sock *sk);
378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
379 void tcp_twsk_destructor(struct sock *sk);
380 void tcp_twsk_purge(struct list_head *net_exit_list);
381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
382 			struct pipe_inode_info *pipe, size_t len,
383 			unsigned int flags);
384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
385 				     bool force_schedule);
386 
387 static inline void tcp_dec_quickack_mode(struct sock *sk)
388 {
389 	struct inet_connection_sock *icsk = inet_csk(sk);
390 
391 	if (icsk->icsk_ack.quick) {
392 		/* How many ACKs S/ACKing new data have we sent? */
393 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
394 
395 		if (pkts >= icsk->icsk_ack.quick) {
396 			icsk->icsk_ack.quick = 0;
397 			/* Leaving quickack mode we deflate ATO. */
398 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
399 		} else
400 			icsk->icsk_ack.quick -= pkts;
401 	}
402 }
403 
404 #define	TCP_ECN_MODE_RFC3168	BIT(0)
405 #define	TCP_ECN_QUEUE_CWR	BIT(1)
406 #define	TCP_ECN_DEMAND_CWR	BIT(2)
407 #define	TCP_ECN_SEEN		BIT(3)
408 #define	TCP_ECN_MODE_ACCECN	BIT(4)
409 
410 #define	TCP_ECN_DISABLED	0
411 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
412 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
413 
414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
415 {
416 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
417 }
418 
419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
420 {
421 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
422 }
423 
424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
425 {
426 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
427 }
428 
429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
430 {
431 	return !tcp_ecn_mode_any(tp);
432 }
433 
434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
435 {
436 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
437 }
438 
439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
440 {
441 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
442 	tp->ecn_flags |= mode;
443 }
444 
445 enum tcp_tw_status {
446 	TCP_TW_SUCCESS = 0,
447 	TCP_TW_RST = 1,
448 	TCP_TW_ACK = 2,
449 	TCP_TW_SYN = 3,
450 	TCP_TW_ACK_OOW = 4
451 };
452 
453 
454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
455 					      struct sk_buff *skb,
456 					      const struct tcphdr *th,
457 					      u32 *tw_isn,
458 					      enum skb_drop_reason *drop_reason);
459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
460 			   struct request_sock *req, bool fastopen,
461 			   bool *lost_race, enum skb_drop_reason *drop_reason);
462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
463 				       struct sk_buff *skb);
464 void tcp_enter_loss(struct sock *sk);
465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
466 void tcp_clear_retrans(struct tcp_sock *tp);
467 void tcp_update_pacing_rate(struct sock *sk);
468 void tcp_set_rto(struct sock *sk);
469 void tcp_update_metrics(struct sock *sk);
470 void tcp_init_metrics(struct sock *sk);
471 void tcp_metrics_init(void);
472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
473 void __tcp_close(struct sock *sk, long timeout);
474 void tcp_close(struct sock *sk, long timeout);
475 void tcp_init_sock(struct sock *sk);
476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
477 __poll_t tcp_poll(struct file *file, struct socket *sock,
478 		      struct poll_table_struct *wait);
479 int do_tcp_getsockopt(struct sock *sk, int level,
480 		      int optname, sockptr_t optval, sockptr_t optlen);
481 int tcp_getsockopt(struct sock *sk, int level, int optname,
482 		   char __user *optval, int __user *optlen);
483 bool tcp_bpf_bypass_getsockopt(int level, int optname);
484 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
485 		      sockptr_t optval, unsigned int optlen);
486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
487 		   unsigned int optlen);
488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
489 void tcp_set_keepalive(struct sock *sk, int val);
490 void tcp_syn_ack_timeout(const struct request_sock *req);
491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
492 		int flags, int *addr_len);
493 int tcp_set_rcvlowat(struct sock *sk, int val);
494 int tcp_set_window_clamp(struct sock *sk, int val);
495 void tcp_update_recv_tstamps(struct sk_buff *skb,
496 			     struct scm_timestamping_internal *tss);
497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
498 			struct scm_timestamping_internal *tss);
499 void tcp_data_ready(struct sock *sk);
500 #ifdef CONFIG_MMU
501 int tcp_mmap(struct file *file, struct socket *sock,
502 	     struct vm_area_struct *vma);
503 #endif
504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
505 		       struct tcp_options_received *opt_rx,
506 		       int estab, struct tcp_fastopen_cookie *foc);
507 
508 /*
509  *	BPF SKB-less helpers
510  */
511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
512 			 struct tcphdr *th, u32 *cookie);
513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
514 			 struct tcphdr *th, u32 *cookie);
515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
517 			  const struct tcp_request_sock_ops *af_ops,
518 			  struct sock *sk, struct tcphdr *th);
519 /*
520  *	TCP v4 functions exported for the inet6 API
521  */
522 
523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
524 void tcp_v4_mtu_reduced(struct sock *sk);
525 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
528 struct sock *tcp_create_openreq_child(const struct sock *sk,
529 				      struct request_sock *req,
530 				      struct sk_buff *skb);
531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
533 				  struct request_sock *req,
534 				  struct dst_entry *dst,
535 				  struct request_sock *req_unhash,
536 				  bool *own_req);
537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
538 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len);
539 int tcp_connect(struct sock *sk);
540 enum tcp_synack_type {
541 	TCP_SYNACK_NORMAL,
542 	TCP_SYNACK_FASTOPEN,
543 	TCP_SYNACK_COOKIE,
544 };
545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
546 				struct request_sock *req,
547 				struct tcp_fastopen_cookie *foc,
548 				enum tcp_synack_type synack_type,
549 				struct sk_buff *syn_skb);
550 int tcp_disconnect(struct sock *sk, int flags);
551 
552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
555 
556 /* From syncookies.c */
557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
558 				 struct request_sock *req,
559 				 struct dst_entry *dst);
560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
563 					    struct sock *sk, struct sk_buff *skb,
564 					    struct tcp_options_received *tcp_opt,
565 					    int mss, u32 tsoff);
566 
567 #if IS_ENABLED(CONFIG_BPF)
568 struct bpf_tcp_req_attrs {
569 	u32 rcv_tsval;
570 	u32 rcv_tsecr;
571 	u16 mss;
572 	u8 rcv_wscale;
573 	u8 snd_wscale;
574 	u8 ecn_ok;
575 	u8 wscale_ok;
576 	u8 sack_ok;
577 	u8 tstamp_ok;
578 	u8 usec_ts_ok;
579 	u8 reserved[3];
580 };
581 #endif
582 
583 #ifdef CONFIG_SYN_COOKIES
584 
585 /* Syncookies use a monotonic timer which increments every 60 seconds.
586  * This counter is used both as a hash input and partially encoded into
587  * the cookie value.  A cookie is only validated further if the delta
588  * between the current counter value and the encoded one is less than this,
589  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
590  * the counter advances immediately after a cookie is generated).
591  */
592 #define MAX_SYNCOOKIE_AGE	2
593 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
594 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
595 
596 /* syncookies: remember time of last synqueue overflow
597  * But do not dirty this field too often (once per second is enough)
598  * It is racy as we do not hold a lock, but race is very minor.
599  */
600 static inline void tcp_synq_overflow(const struct sock *sk)
601 {
602 	unsigned int last_overflow;
603 	unsigned int now = jiffies;
604 
605 	if (sk->sk_reuseport) {
606 		struct sock_reuseport *reuse;
607 
608 		reuse = rcu_dereference(sk->sk_reuseport_cb);
609 		if (likely(reuse)) {
610 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
611 			if (!time_between32(now, last_overflow,
612 					    last_overflow + HZ))
613 				WRITE_ONCE(reuse->synq_overflow_ts, now);
614 			return;
615 		}
616 	}
617 
618 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
619 	if (!time_between32(now, last_overflow, last_overflow + HZ))
620 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
621 }
622 
623 /* syncookies: no recent synqueue overflow on this listening socket? */
624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
625 {
626 	unsigned int last_overflow;
627 	unsigned int now = jiffies;
628 
629 	if (sk->sk_reuseport) {
630 		struct sock_reuseport *reuse;
631 
632 		reuse = rcu_dereference(sk->sk_reuseport_cb);
633 		if (likely(reuse)) {
634 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
635 			return !time_between32(now, last_overflow - HZ,
636 					       last_overflow +
637 					       TCP_SYNCOOKIE_VALID);
638 		}
639 	}
640 
641 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
642 
643 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
644 	 * then we're under synflood. However, we have to use
645 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
646 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
647 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
648 	 * which could lead to rejecting a valid syncookie.
649 	 */
650 	return !time_between32(now, last_overflow - HZ,
651 			       last_overflow + TCP_SYNCOOKIE_VALID);
652 }
653 
654 static inline u32 tcp_cookie_time(void)
655 {
656 	u64 val = get_jiffies_64();
657 
658 	do_div(val, TCP_SYNCOOKIE_PERIOD);
659 	return val;
660 }
661 
662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
664 {
665 	if (usec_ts)
666 		return div_u64(val, NSEC_PER_USEC);
667 
668 	return div_u64(val, NSEC_PER_MSEC);
669 }
670 
671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
672 			      u16 *mssp);
673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
674 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
675 bool cookie_timestamp_decode(const struct net *net,
676 			     struct tcp_options_received *opt);
677 
678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
679 {
680 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
681 		dst_feature(dst, RTAX_FEATURE_ECN);
682 }
683 
684 #if IS_ENABLED(CONFIG_BPF)
685 static inline bool cookie_bpf_ok(struct sk_buff *skb)
686 {
687 	return skb->sk;
688 }
689 
690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
691 #else
692 static inline bool cookie_bpf_ok(struct sk_buff *skb)
693 {
694 	return false;
695 }
696 
697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
698 						    struct sk_buff *skb)
699 {
700 	return NULL;
701 }
702 #endif
703 
704 /* From net/ipv6/syncookies.c */
705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
707 
708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
709 			      const struct tcphdr *th, u16 *mssp);
710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
711 #endif
712 /* tcp_output.c */
713 
714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
717 			       int nonagle);
718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
720 void tcp_retransmit_timer(struct sock *sk);
721 void tcp_xmit_retransmit_queue(struct sock *);
722 void tcp_simple_retransmit(struct sock *);
723 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
724 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
725 enum tcp_queue {
726 	TCP_FRAG_IN_WRITE_QUEUE,
727 	TCP_FRAG_IN_RTX_QUEUE,
728 };
729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
730 		 struct sk_buff *skb, u32 len,
731 		 unsigned int mss_now, gfp_t gfp);
732 
733 void tcp_send_probe0(struct sock *);
734 int tcp_write_wakeup(struct sock *, int mib);
735 void tcp_send_fin(struct sock *sk);
736 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
737 			   enum sk_rst_reason reason);
738 int tcp_send_synack(struct sock *);
739 void tcp_push_one(struct sock *, unsigned int mss_now);
740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
741 void tcp_send_ack(struct sock *sk);
742 void tcp_send_delayed_ack(struct sock *sk);
743 void tcp_send_loss_probe(struct sock *sk);
744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
745 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
746 			     const struct sk_buff *next_skb);
747 
748 /* tcp_input.c */
749 void tcp_rearm_rto(struct sock *sk);
750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
751 void tcp_done_with_error(struct sock *sk, int err);
752 void tcp_reset(struct sock *sk, struct sk_buff *skb);
753 void tcp_fin(struct sock *sk);
754 void tcp_check_space(struct sock *sk);
755 void tcp_sack_compress_send_ack(struct sock *sk);
756 
757 static inline void tcp_cleanup_skb(struct sk_buff *skb)
758 {
759 	skb_dst_drop(skb);
760 	secpath_reset(skb);
761 }
762 
763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
764 {
765 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
766 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
767 	__skb_queue_tail(&sk->sk_receive_queue, skb);
768 }
769 
770 /* tcp_timer.c */
771 void tcp_init_xmit_timers(struct sock *);
772 static inline void tcp_clear_xmit_timers(struct sock *sk)
773 {
774 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
775 		__sock_put(sk);
776 
777 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
778 		__sock_put(sk);
779 
780 	inet_csk_clear_xmit_timers(sk);
781 }
782 
783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
784 unsigned int tcp_current_mss(struct sock *sk);
785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
786 
787 /* Bound MSS / TSO packet size with the half of the window */
788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
789 {
790 	int cutoff;
791 
792 	/* When peer uses tiny windows, there is no use in packetizing
793 	 * to sub-MSS pieces for the sake of SWS or making sure there
794 	 * are enough packets in the pipe for fast recovery.
795 	 *
796 	 * On the other hand, for extremely large MSS devices, handling
797 	 * smaller than MSS windows in this way does make sense.
798 	 */
799 	if (tp->max_window > TCP_MSS_DEFAULT)
800 		cutoff = (tp->max_window >> 1);
801 	else
802 		cutoff = tp->max_window;
803 
804 	if (cutoff && pktsize > cutoff)
805 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
806 	else
807 		return pktsize;
808 }
809 
810 /* tcp.c */
811 void tcp_get_info(struct sock *, struct tcp_info *);
812 
813 /* Read 'sendfile()'-style from a TCP socket */
814 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
815 		  sk_read_actor_t recv_actor);
816 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
817 			sk_read_actor_t recv_actor, bool noack,
818 			u32 *copied_seq);
819 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
820 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
821 void tcp_read_done(struct sock *sk, size_t len);
822 
823 void tcp_initialize_rcv_mss(struct sock *sk);
824 
825 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
826 int tcp_mss_to_mtu(struct sock *sk, int mss);
827 void tcp_mtup_init(struct sock *sk);
828 
829 static inline unsigned int tcp_rto_max(const struct sock *sk)
830 {
831 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
832 }
833 
834 static inline void tcp_bound_rto(struct sock *sk)
835 {
836 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
837 }
838 
839 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
840 {
841 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
842 }
843 
844 static inline unsigned long tcp_reqsk_timeout(struct request_sock *req)
845 {
846 	u64 timeout = (u64)req->timeout << req->num_timeout;
847 
848 	return (unsigned long)min_t(u64, timeout,
849 				    tcp_rto_max(req->rsk_listener));
850 }
851 
852 u32 tcp_delack_max(const struct sock *sk);
853 
854 /* Compute the actual rto_min value */
855 static inline u32 tcp_rto_min(const struct sock *sk)
856 {
857 	const struct dst_entry *dst = __sk_dst_get(sk);
858 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
859 
860 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
861 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
862 	return rto_min;
863 }
864 
865 static inline u32 tcp_rto_min_us(const struct sock *sk)
866 {
867 	return jiffies_to_usecs(tcp_rto_min(sk));
868 }
869 
870 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
871 {
872 	return dst_metric_locked(dst, RTAX_CC_ALGO);
873 }
874 
875 /* Minimum RTT in usec. ~0 means not available. */
876 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
877 {
878 	return minmax_get(&tp->rtt_min);
879 }
880 
881 /* Compute the actual receive window we are currently advertising.
882  * Rcv_nxt can be after the window if our peer push more data
883  * than the offered window.
884  */
885 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
886 {
887 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
888 
889 	if (win < 0)
890 		win = 0;
891 	return (u32) win;
892 }
893 
894 /* Choose a new window, without checks for shrinking, and without
895  * scaling applied to the result.  The caller does these things
896  * if necessary.  This is a "raw" window selection.
897  */
898 u32 __tcp_select_window(struct sock *sk);
899 
900 void tcp_send_window_probe(struct sock *sk);
901 
902 /* TCP uses 32bit jiffies to save some space.
903  * Note that this is different from tcp_time_stamp, which
904  * historically has been the same until linux-4.13.
905  */
906 #define tcp_jiffies32 ((u32)jiffies)
907 
908 /*
909  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
910  * It is no longer tied to jiffies, but to 1 ms clock.
911  * Note: double check if you want to use tcp_jiffies32 instead of this.
912  */
913 #define TCP_TS_HZ	1000
914 
915 static inline u64 tcp_clock_ns(void)
916 {
917 	return ktime_get_ns();
918 }
919 
920 static inline u64 tcp_clock_us(void)
921 {
922 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
923 }
924 
925 static inline u64 tcp_clock_ms(void)
926 {
927 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
928 }
929 
930 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
931  * or usec resolution. Each socket carries a flag to select one or other
932  * resolution, as the route attribute could change anytime.
933  * Each flow must stick to initial resolution.
934  */
935 static inline u32 tcp_clock_ts(bool usec_ts)
936 {
937 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
938 }
939 
940 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
941 {
942 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
943 }
944 
945 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
946 {
947 	if (tp->tcp_usec_ts)
948 		return tp->tcp_mstamp;
949 	return tcp_time_stamp_ms(tp);
950 }
951 
952 void tcp_mstamp_refresh(struct tcp_sock *tp);
953 
954 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
955 {
956 	return max_t(s64, t1 - t0, 0);
957 }
958 
959 /* provide the departure time in us unit */
960 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
961 {
962 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
963 }
964 
965 /* Provide skb TSval in usec or ms unit */
966 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
967 {
968 	if (usec_ts)
969 		return tcp_skb_timestamp_us(skb);
970 
971 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
972 }
973 
974 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
975 {
976 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
977 }
978 
979 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
980 {
981 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
982 }
983 
984 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
985 
986 #define TCPHDR_FIN	BIT(0)
987 #define TCPHDR_SYN	BIT(1)
988 #define TCPHDR_RST	BIT(2)
989 #define TCPHDR_PSH	BIT(3)
990 #define TCPHDR_ACK	BIT(4)
991 #define TCPHDR_URG	BIT(5)
992 #define TCPHDR_ECE	BIT(6)
993 #define TCPHDR_CWR	BIT(7)
994 #define TCPHDR_AE	BIT(8)
995 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
996 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
997 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
998 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
999 			    TCPHDR_FLAGS_MASK)
1000 
1001 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
1002 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
1003 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
1004 
1005 #define TCP_ACCECN_CEP_ACE_MASK 0x7
1006 #define TCP_ACCECN_ACE_MAX_DELTA 6
1007 
1008 /* To avoid/detect middlebox interference, not all counters start at 0.
1009  * See draft-ietf-tcpm-accurate-ecn for the latest values.
1010  */
1011 #define TCP_ACCECN_CEP_INIT_OFFSET 5
1012 #define TCP_ACCECN_E1B_INIT_OFFSET 1
1013 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1014 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1015 
1016 /* State flags for sacked in struct tcp_skb_cb */
1017 enum tcp_skb_cb_sacked_flags {
1018 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1019 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1020 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1021 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1022 				   TCPCB_LOST),	/* All tag bits			*/
1023 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1024 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1025 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1026 				   TCPCB_REPAIRED),
1027 };
1028 
1029 /* This is what the send packet queuing engine uses to pass
1030  * TCP per-packet control information to the transmission code.
1031  * We also store the host-order sequence numbers in here too.
1032  * This is 44 bytes if IPV6 is enabled.
1033  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1034  */
1035 struct tcp_skb_cb {
1036 	__u32		seq;		/* Starting sequence number	*/
1037 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1038 	union {
1039 		/* Note :
1040 		 * 	  tcp_gso_segs/size are used in write queue only,
1041 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1042 		 */
1043 		struct {
1044 			u16	tcp_gso_segs;
1045 			u16	tcp_gso_size;
1046 		};
1047 	};
1048 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1049 
1050 	__u8		sacked;		/* State flags for SACK.	*/
1051 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1052 #define TSTAMP_ACK_SK	0x1
1053 #define TSTAMP_ACK_BPF	0x2
1054 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1055 			eor:1,		/* Is skb MSG_EOR marked? */
1056 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1057 			unused:4;
1058 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1059 	union {
1060 		struct {
1061 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1062 			/* There is space for up to 24 bytes */
1063 			__u32 is_app_limited:1, /* cwnd not fully used? */
1064 			      delivered_ce:20,
1065 			      unused:11;
1066 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1067 			__u32 delivered;
1068 			/* start of send pipeline phase */
1069 			u64 first_tx_mstamp;
1070 			/* when we reached the "delivered" count */
1071 			u64 delivered_mstamp;
1072 		} tx;   /* only used for outgoing skbs */
1073 		union {
1074 			struct inet_skb_parm	h4;
1075 #if IS_ENABLED(CONFIG_IPV6)
1076 			struct inet6_skb_parm	h6;
1077 #endif
1078 		} header;	/* For incoming skbs */
1079 	};
1080 };
1081 
1082 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1083 
1084 extern const struct inet_connection_sock_af_ops ipv4_specific;
1085 
1086 #if IS_ENABLED(CONFIG_IPV6)
1087 /* This is the variant of inet6_iif() that must be used by TCP,
1088  * as TCP moves IP6CB into a different location in skb->cb[]
1089  */
1090 static inline int tcp_v6_iif(const struct sk_buff *skb)
1091 {
1092 	return TCP_SKB_CB(skb)->header.h6.iif;
1093 }
1094 
1095 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1096 {
1097 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1098 
1099 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1100 }
1101 
1102 /* TCP_SKB_CB reference means this can not be used from early demux */
1103 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1104 {
1105 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1106 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1107 		return TCP_SKB_CB(skb)->header.h6.iif;
1108 #endif
1109 	return 0;
1110 }
1111 
1112 extern const struct inet_connection_sock_af_ops ipv6_specific;
1113 
1114 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1115 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1116 void tcp_v6_early_demux(struct sk_buff *skb);
1117 
1118 #endif
1119 
1120 /* TCP_SKB_CB reference means this can not be used from early demux */
1121 static inline int tcp_v4_sdif(struct sk_buff *skb)
1122 {
1123 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1124 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1125 		return TCP_SKB_CB(skb)->header.h4.iif;
1126 #endif
1127 	return 0;
1128 }
1129 
1130 /* Due to TSO, an SKB can be composed of multiple actual
1131  * packets.  To keep these tracked properly, we use this.
1132  */
1133 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1134 {
1135 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1136 }
1137 
1138 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1139 {
1140 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1141 }
1142 
1143 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1144 {
1145 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1146 }
1147 
1148 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1149 static inline int tcp_skb_mss(const struct sk_buff *skb)
1150 {
1151 	return TCP_SKB_CB(skb)->tcp_gso_size;
1152 }
1153 
1154 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1155 {
1156 	return likely(!TCP_SKB_CB(skb)->eor);
1157 }
1158 
1159 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1160 					const struct sk_buff *from)
1161 {
1162 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1163 	return likely(tcp_skb_can_collapse_to(to) &&
1164 		      mptcp_skb_can_collapse(to, from) &&
1165 		      skb_pure_zcopy_same(to, from) &&
1166 		      skb_frags_readable(to) == skb_frags_readable(from));
1167 }
1168 
1169 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1170 					   const struct sk_buff *from)
1171 {
1172 	return likely(mptcp_skb_can_collapse(to, from) &&
1173 		      !skb_cmp_decrypted(to, from));
1174 }
1175 
1176 /* Events passed to congestion control interface */
1177 enum tcp_ca_event {
1178 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1179 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1180 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1181 	CA_EVENT_LOSS,		/* loss timeout */
1182 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1183 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1184 };
1185 
1186 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1187 enum tcp_ca_ack_event_flags {
1188 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1189 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1190 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1191 };
1192 
1193 /*
1194  * Interface for adding new TCP congestion control handlers
1195  */
1196 #define TCP_CA_NAME_MAX	16
1197 #define TCP_CA_MAX	128
1198 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1199 
1200 #define TCP_CA_UNSPEC	0
1201 
1202 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1203 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1204 /* Requires ECN/ECT set on all packets */
1205 #define TCP_CONG_NEEDS_ECN		BIT(1)
1206 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1207 
1208 union tcp_cc_info;
1209 
1210 struct ack_sample {
1211 	u32 pkts_acked;
1212 	s32 rtt_us;
1213 	u32 in_flight;
1214 };
1215 
1216 /* A rate sample measures the number of (original/retransmitted) data
1217  * packets delivered "delivered" over an interval of time "interval_us".
1218  * The tcp_rate.c code fills in the rate sample, and congestion
1219  * control modules that define a cong_control function to run at the end
1220  * of ACK processing can optionally chose to consult this sample when
1221  * setting cwnd and pacing rate.
1222  * A sample is invalid if "delivered" or "interval_us" is negative.
1223  */
1224 struct rate_sample {
1225 	u64  prior_mstamp; /* starting timestamp for interval */
1226 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1227 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1228 	s32  delivered;		/* number of packets delivered over interval */
1229 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1230 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1231 	u32 snd_interval_us;	/* snd interval for delivered packets */
1232 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1233 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1234 	int  losses;		/* number of packets marked lost upon ACK */
1235 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1236 	u32  prior_in_flight;	/* in flight before this ACK */
1237 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1238 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1239 	bool is_retrans;	/* is sample from retransmission? */
1240 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1241 };
1242 
1243 struct tcp_congestion_ops {
1244 /* fast path fields are put first to fill one cache line */
1245 
1246 	/* A congestion control (CC) must provide one of either:
1247 	 *
1248 	 * (a) a cong_avoid function, if the CC wants to use the core TCP
1249 	 *     stack's default functionality to implement a "classic"
1250 	 *     (Reno/CUBIC-style) response to packet loss, RFC3168 ECN,
1251 	 *     idle periods, pacing rate computations, etc.
1252 	 *
1253 	 * (b) a cong_control function, if the CC wants custom behavior and
1254 	 *      complete control of all congestion control behaviors.
1255 	 */
1256 	/* (a) "classic" response: calculate new cwnd.
1257 	 */
1258 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1259 	/* (b) "custom" response: call when packets are delivered to update
1260 	 * cwnd and pacing rate, after all the ca_state processing.
1261 	 */
1262 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1263 
1264 	/* return slow start threshold (required) */
1265 	u32 (*ssthresh)(struct sock *sk);
1266 
1267 	/* call before changing ca_state (optional) */
1268 	void (*set_state)(struct sock *sk, u8 new_state);
1269 
1270 	/* call when cwnd event occurs (optional) */
1271 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1272 
1273 	/* call when ack arrives (optional) */
1274 	void (*in_ack_event)(struct sock *sk, u32 flags);
1275 
1276 	/* hook for packet ack accounting (optional) */
1277 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1278 
1279 	/* override sysctl_tcp_min_tso_segs (optional) */
1280 	u32 (*min_tso_segs)(struct sock *sk);
1281 
1282 	/* new value of cwnd after loss (required) */
1283 	u32  (*undo_cwnd)(struct sock *sk);
1284 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1285 	u32 (*sndbuf_expand)(struct sock *sk);
1286 
1287 /* control/slow paths put last */
1288 	/* get info for inet_diag (optional) */
1289 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1290 			   union tcp_cc_info *info);
1291 
1292 	char 			name[TCP_CA_NAME_MAX];
1293 	struct module		*owner;
1294 	struct list_head	list;
1295 	u32			key;
1296 	u32			flags;
1297 
1298 	/* initialize private data (optional) */
1299 	void (*init)(struct sock *sk);
1300 	/* cleanup private data  (optional) */
1301 	void (*release)(struct sock *sk);
1302 } ____cacheline_aligned_in_smp;
1303 
1304 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1305 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1306 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1307 				  struct tcp_congestion_ops *old_type);
1308 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1309 
1310 void tcp_assign_congestion_control(struct sock *sk);
1311 void tcp_init_congestion_control(struct sock *sk);
1312 void tcp_cleanup_congestion_control(struct sock *sk);
1313 int tcp_set_default_congestion_control(struct net *net, const char *name);
1314 void tcp_get_default_congestion_control(struct net *net, char *name);
1315 void tcp_get_available_congestion_control(char *buf, size_t len);
1316 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1317 int tcp_set_allowed_congestion_control(char *allowed);
1318 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1319 			       bool cap_net_admin);
1320 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1321 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1322 
1323 u32 tcp_reno_ssthresh(struct sock *sk);
1324 u32 tcp_reno_undo_cwnd(struct sock *sk);
1325 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1326 extern struct tcp_congestion_ops tcp_reno;
1327 
1328 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1329 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1330 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1331 #ifdef CONFIG_INET
1332 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1333 #else
1334 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1335 {
1336 	return NULL;
1337 }
1338 #endif
1339 
1340 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1341 {
1342 	const struct inet_connection_sock *icsk = inet_csk(sk);
1343 
1344 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1345 }
1346 
1347 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1348 {
1349 	const struct inet_connection_sock *icsk = inet_csk(sk);
1350 
1351 	if (icsk->icsk_ca_ops->cwnd_event)
1352 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1353 }
1354 
1355 /* From tcp_cong.c */
1356 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1357 
1358 /* From tcp_rate.c */
1359 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1360 		  bool is_sack_reneg, struct rate_sample *rs);
1361 void tcp_rate_check_app_limited(struct sock *sk);
1362 
1363 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1364 {
1365 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1366 }
1367 
1368 /* These functions determine how the current flow behaves in respect of SACK
1369  * handling. SACK is negotiated with the peer, and therefore it can vary
1370  * between different flows.
1371  *
1372  * tcp_is_sack - SACK enabled
1373  * tcp_is_reno - No SACK
1374  */
1375 static inline int tcp_is_sack(const struct tcp_sock *tp)
1376 {
1377 	return likely(tp->rx_opt.sack_ok);
1378 }
1379 
1380 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1381 {
1382 	return !tcp_is_sack(tp);
1383 }
1384 
1385 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1386 {
1387 	return tp->sacked_out + tp->lost_out;
1388 }
1389 
1390 /* This determines how many packets are "in the network" to the best
1391  * of our knowledge.  In many cases it is conservative, but where
1392  * detailed information is available from the receiver (via SACK
1393  * blocks etc.) we can make more aggressive calculations.
1394  *
1395  * Use this for decisions involving congestion control, use just
1396  * tp->packets_out to determine if the send queue is empty or not.
1397  *
1398  * Read this equation as:
1399  *
1400  *	"Packets sent once on transmission queue" MINUS
1401  *	"Packets left network, but not honestly ACKed yet" PLUS
1402  *	"Packets fast retransmitted"
1403  */
1404 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1405 {
1406 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1407 }
1408 
1409 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1410 
1411 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1412 {
1413 	return tp->snd_cwnd;
1414 }
1415 
1416 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1417 {
1418 	WARN_ON_ONCE((int)val <= 0);
1419 	tp->snd_cwnd = val;
1420 }
1421 
1422 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1423 {
1424 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1425 }
1426 
1427 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1428 {
1429 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1430 }
1431 
1432 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1433 {
1434 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1435 	       (1 << inet_csk(sk)->icsk_ca_state);
1436 }
1437 
1438 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1439  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1440  * ssthresh.
1441  */
1442 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1443 {
1444 	const struct tcp_sock *tp = tcp_sk(sk);
1445 
1446 	if (tcp_in_cwnd_reduction(sk))
1447 		return tp->snd_ssthresh;
1448 	else
1449 		return max(tp->snd_ssthresh,
1450 			   ((tcp_snd_cwnd(tp) >> 1) +
1451 			    (tcp_snd_cwnd(tp) >> 2)));
1452 }
1453 
1454 /* Use define here intentionally to get WARN_ON location shown at the caller */
1455 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1456 
1457 void tcp_enter_cwr(struct sock *sk);
1458 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1459 
1460 /* The maximum number of MSS of available cwnd for which TSO defers
1461  * sending if not using sysctl_tcp_tso_win_divisor.
1462  */
1463 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1464 {
1465 	return 3;
1466 }
1467 
1468 /* Returns end sequence number of the receiver's advertised window */
1469 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1470 {
1471 	return tp->snd_una + tp->snd_wnd;
1472 }
1473 
1474 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1475  * flexible approach. The RFC suggests cwnd should not be raised unless
1476  * it was fully used previously. And that's exactly what we do in
1477  * congestion avoidance mode. But in slow start we allow cwnd to grow
1478  * as long as the application has used half the cwnd.
1479  * Example :
1480  *    cwnd is 10 (IW10), but application sends 9 frames.
1481  *    We allow cwnd to reach 18 when all frames are ACKed.
1482  * This check is safe because it's as aggressive as slow start which already
1483  * risks 100% overshoot. The advantage is that we discourage application to
1484  * either send more filler packets or data to artificially blow up the cwnd
1485  * usage, and allow application-limited process to probe bw more aggressively.
1486  */
1487 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1488 {
1489 	const struct tcp_sock *tp = tcp_sk(sk);
1490 
1491 	if (tp->is_cwnd_limited)
1492 		return true;
1493 
1494 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1495 	if (tcp_in_slow_start(tp))
1496 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1497 
1498 	return false;
1499 }
1500 
1501 /* BBR congestion control needs pacing.
1502  * Same remark for SO_MAX_PACING_RATE.
1503  * sch_fq packet scheduler is efficiently handling pacing,
1504  * but is not always installed/used.
1505  * Return true if TCP stack should pace packets itself.
1506  */
1507 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1508 {
1509 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1510 }
1511 
1512 /* Estimates in how many jiffies next packet for this flow can be sent.
1513  * Scheduling a retransmit timer too early would be silly.
1514  */
1515 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1516 {
1517 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1518 
1519 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1520 }
1521 
1522 static inline void tcp_reset_xmit_timer(struct sock *sk,
1523 					const int what,
1524 					unsigned long when,
1525 					bool pace_delay)
1526 {
1527 	if (pace_delay)
1528 		when += tcp_pacing_delay(sk);
1529 	inet_csk_reset_xmit_timer(sk, what, when,
1530 				  tcp_rto_max(sk));
1531 }
1532 
1533 /* Something is really bad, we could not queue an additional packet,
1534  * because qdisc is full or receiver sent a 0 window, or we are paced.
1535  * We do not want to add fuel to the fire, or abort too early,
1536  * so make sure the timer we arm now is at least 200ms in the future,
1537  * regardless of current icsk_rto value (as it could be ~2ms)
1538  */
1539 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1540 {
1541 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1542 }
1543 
1544 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1545 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1546 					    unsigned long max_when)
1547 {
1548 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1549 			   inet_csk(sk)->icsk_backoff);
1550 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1551 
1552 	return (unsigned long)min_t(u64, when, max_when);
1553 }
1554 
1555 static inline void tcp_check_probe_timer(struct sock *sk)
1556 {
1557 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1558 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1559 				     tcp_probe0_base(sk), true);
1560 }
1561 
1562 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1563 {
1564 	tp->snd_wl1 = seq;
1565 }
1566 
1567 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1568 {
1569 	tp->snd_wl1 = seq;
1570 }
1571 
1572 /*
1573  * Calculate(/check) TCP checksum
1574  */
1575 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1576 				   __be32 daddr, __wsum base)
1577 {
1578 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1579 }
1580 
1581 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1582 {
1583 	return !skb_csum_unnecessary(skb) &&
1584 		__skb_checksum_complete(skb);
1585 }
1586 
1587 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1588 		     enum skb_drop_reason *reason);
1589 
1590 
1591 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1592 void tcp_set_state(struct sock *sk, int state);
1593 void tcp_done(struct sock *sk);
1594 int tcp_abort(struct sock *sk, int err);
1595 
1596 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1597 {
1598 	rx_opt->dsack = 0;
1599 	rx_opt->num_sacks = 0;
1600 }
1601 
1602 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1603 
1604 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1605 {
1606 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1607 	struct tcp_sock *tp = tcp_sk(sk);
1608 	s32 delta;
1609 
1610 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1611 	    tp->packets_out || ca_ops->cong_control)
1612 		return;
1613 	delta = tcp_jiffies32 - tp->lsndtime;
1614 	if (delta > inet_csk(sk)->icsk_rto)
1615 		tcp_cwnd_restart(sk, delta);
1616 }
1617 
1618 /* Determine a window scaling and initial window to offer. */
1619 void tcp_select_initial_window(const struct sock *sk, int __space,
1620 			       __u32 mss, __u32 *rcv_wnd,
1621 			       __u32 *window_clamp, int wscale_ok,
1622 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1623 
1624 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1625 {
1626 	s64 scaled_space = (s64)space * scaling_ratio;
1627 
1628 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1629 }
1630 
1631 static inline int tcp_win_from_space(const struct sock *sk, int space)
1632 {
1633 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1634 }
1635 
1636 /* inverse of __tcp_win_from_space() */
1637 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1638 {
1639 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1640 
1641 	do_div(val, scaling_ratio);
1642 	return val;
1643 }
1644 
1645 static inline int tcp_space_from_win(const struct sock *sk, int win)
1646 {
1647 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1648 }
1649 
1650 /* Assume a 50% default for skb->len/skb->truesize ratio.
1651  * This may be adjusted later in tcp_measure_rcv_mss().
1652  */
1653 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1654 
1655 static inline void tcp_scaling_ratio_init(struct sock *sk)
1656 {
1657 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1658 }
1659 
1660 /* Note: caller must be prepared to deal with negative returns */
1661 static inline int tcp_space(const struct sock *sk)
1662 {
1663 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1664 				  READ_ONCE(sk->sk_backlog.len) -
1665 				  atomic_read(&sk->sk_rmem_alloc));
1666 }
1667 
1668 static inline int tcp_full_space(const struct sock *sk)
1669 {
1670 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1671 }
1672 
1673 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1674 {
1675 	int unused_mem = sk_unused_reserved_mem(sk);
1676 	struct tcp_sock *tp = tcp_sk(sk);
1677 
1678 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1679 	if (unused_mem)
1680 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1681 					 tcp_win_from_space(sk, unused_mem));
1682 }
1683 
1684 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1685 {
1686 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1687 }
1688 
1689 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1690 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1691 
1692 
1693 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1694  * If 87.5 % (7/8) of the space has been consumed, we want to override
1695  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1696  * len/truesize ratio.
1697  */
1698 static inline bool tcp_rmem_pressure(const struct sock *sk)
1699 {
1700 	int rcvbuf, threshold;
1701 
1702 	if (tcp_under_memory_pressure(sk))
1703 		return true;
1704 
1705 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1706 	threshold = rcvbuf - (rcvbuf >> 3);
1707 
1708 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1709 }
1710 
1711 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1712 {
1713 	const struct tcp_sock *tp = tcp_sk(sk);
1714 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1715 
1716 	if (avail <= 0)
1717 		return false;
1718 
1719 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1720 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1721 }
1722 
1723 extern void tcp_openreq_init_rwin(struct request_sock *req,
1724 				  const struct sock *sk_listener,
1725 				  const struct dst_entry *dst);
1726 
1727 void tcp_enter_memory_pressure(struct sock *sk);
1728 void tcp_leave_memory_pressure(struct sock *sk);
1729 
1730 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1731 {
1732 	struct net *net = sock_net((struct sock *)tp);
1733 	int val;
1734 
1735 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1736 	 * and do_tcp_setsockopt().
1737 	 */
1738 	val = READ_ONCE(tp->keepalive_intvl);
1739 
1740 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1741 }
1742 
1743 static inline int keepalive_time_when(const struct tcp_sock *tp)
1744 {
1745 	struct net *net = sock_net((struct sock *)tp);
1746 	int val;
1747 
1748 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1749 	val = READ_ONCE(tp->keepalive_time);
1750 
1751 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1752 }
1753 
1754 static inline int keepalive_probes(const struct tcp_sock *tp)
1755 {
1756 	struct net *net = sock_net((struct sock *)tp);
1757 	int val;
1758 
1759 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1760 	 * and do_tcp_setsockopt().
1761 	 */
1762 	val = READ_ONCE(tp->keepalive_probes);
1763 
1764 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1765 }
1766 
1767 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1768 {
1769 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1770 
1771 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1772 			  tcp_jiffies32 - tp->rcv_tstamp);
1773 }
1774 
1775 static inline int tcp_fin_time(const struct sock *sk)
1776 {
1777 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1778 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1779 	const int rto = inet_csk(sk)->icsk_rto;
1780 
1781 	if (fin_timeout < (rto << 2) - (rto >> 1))
1782 		fin_timeout = (rto << 2) - (rto >> 1);
1783 
1784 	return fin_timeout;
1785 }
1786 
1787 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1788 				  int paws_win)
1789 {
1790 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1791 		return true;
1792 	if (unlikely(!time_before32(ktime_get_seconds(),
1793 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1794 		return true;
1795 	/*
1796 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1797 	 * then following tcp messages have valid values. Ignore 0 value,
1798 	 * or else 'negative' tsval might forbid us to accept their packets.
1799 	 */
1800 	if (!rx_opt->ts_recent)
1801 		return true;
1802 	return false;
1803 }
1804 
1805 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1806 				   int rst)
1807 {
1808 	if (tcp_paws_check(rx_opt, 0))
1809 		return false;
1810 
1811 	/* RST segments are not recommended to carry timestamp,
1812 	   and, if they do, it is recommended to ignore PAWS because
1813 	   "their cleanup function should take precedence over timestamps."
1814 	   Certainly, it is mistake. It is necessary to understand the reasons
1815 	   of this constraint to relax it: if peer reboots, clock may go
1816 	   out-of-sync and half-open connections will not be reset.
1817 	   Actually, the problem would be not existing if all
1818 	   the implementations followed draft about maintaining clock
1819 	   via reboots. Linux-2.2 DOES NOT!
1820 
1821 	   However, we can relax time bounds for RST segments to MSL.
1822 	 */
1823 	if (rst && !time_before32(ktime_get_seconds(),
1824 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1825 		return false;
1826 	return true;
1827 }
1828 
1829 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1830 {
1831 	u32 ace;
1832 
1833 	/* mptcp hooks are only on the slow path */
1834 	if (sk_is_mptcp((struct sock *)tp))
1835 		return;
1836 
1837 	ace = tcp_ecn_mode_accecn(tp) ?
1838 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1839 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1840 
1841 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1842 			       (ace << 22) |
1843 			       ntohl(TCP_FLAG_ACK) |
1844 			       snd_wnd);
1845 }
1846 
1847 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1848 {
1849 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1850 }
1851 
1852 static inline void tcp_fast_path_check(struct sock *sk)
1853 {
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 
1856 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1857 	    tp->rcv_wnd &&
1858 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1859 	    !tp->urg_data)
1860 		tcp_fast_path_on(tp);
1861 }
1862 
1863 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1864 			  int mib_idx, u32 *last_oow_ack_time);
1865 
1866 static inline void tcp_mib_init(struct net *net)
1867 {
1868 	/* See RFC 2012 */
1869 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1870 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1871 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1872 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1873 }
1874 
1875 /* from STCP */
1876 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1877 {
1878 	tp->retransmit_skb_hint = NULL;
1879 }
1880 
1881 #define tcp_md5_addr tcp_ao_addr
1882 
1883 /* - key database */
1884 struct tcp_md5sig_key {
1885 	struct hlist_node	node;
1886 	u8			keylen;
1887 	u8			family; /* AF_INET or AF_INET6 */
1888 	u8			prefixlen;
1889 	u8			flags;
1890 	union tcp_md5_addr	addr;
1891 	int			l3index; /* set if key added with L3 scope */
1892 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1893 	struct rcu_head		rcu;
1894 };
1895 
1896 /* - sock block */
1897 struct tcp_md5sig_info {
1898 	struct hlist_head	head;
1899 	struct rcu_head		rcu;
1900 };
1901 
1902 /* - pseudo header */
1903 struct tcp4_pseudohdr {
1904 	__be32		saddr;
1905 	__be32		daddr;
1906 	__u8		pad;
1907 	__u8		protocol;
1908 	__be16		len;
1909 };
1910 
1911 struct tcp6_pseudohdr {
1912 	struct in6_addr	saddr;
1913 	struct in6_addr daddr;
1914 	__be32		len;
1915 	__be32		protocol;	/* including padding */
1916 };
1917 
1918 /*
1919  * struct tcp_sigpool - per-CPU pool of ahash_requests
1920  * @scratch: per-CPU temporary area, that can be used between
1921  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1922  *	     crypto request
1923  * @req: pre-allocated ahash request
1924  */
1925 struct tcp_sigpool {
1926 	void *scratch;
1927 	struct ahash_request *req;
1928 };
1929 
1930 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1931 void tcp_sigpool_get(unsigned int id);
1932 void tcp_sigpool_release(unsigned int id);
1933 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1934 			      const struct sk_buff *skb,
1935 			      unsigned int header_len);
1936 
1937 /**
1938  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1939  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1940  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1941  *
1942  * Returns: 0 on success, error otherwise.
1943  */
1944 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1945 /**
1946  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1947  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1948  */
1949 void tcp_sigpool_end(struct tcp_sigpool *c);
1950 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1951 /* - functions */
1952 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1953 			 const struct sock *sk, const struct sk_buff *skb);
1954 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1955 		   int family, u8 prefixlen, int l3index, u8 flags,
1956 		   const u8 *newkey, u8 newkeylen);
1957 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1958 		     int family, u8 prefixlen, int l3index,
1959 		     struct tcp_md5sig_key *key);
1960 
1961 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1962 		   int family, u8 prefixlen, int l3index, u8 flags);
1963 void tcp_clear_md5_list(struct sock *sk);
1964 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1965 					 const struct sock *addr_sk);
1966 
1967 #ifdef CONFIG_TCP_MD5SIG
1968 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1969 					   const union tcp_md5_addr *addr,
1970 					   int family, bool any_l3index);
1971 static inline struct tcp_md5sig_key *
1972 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1973 		  const union tcp_md5_addr *addr, int family)
1974 {
1975 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1976 		return NULL;
1977 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1978 }
1979 
1980 static inline struct tcp_md5sig_key *
1981 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1982 			      const union tcp_md5_addr *addr, int family)
1983 {
1984 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1985 		return NULL;
1986 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1987 }
1988 
1989 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1990 void tcp_md5_destruct_sock(struct sock *sk);
1991 #else
1992 static inline struct tcp_md5sig_key *
1993 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1994 		  const union tcp_md5_addr *addr, int family)
1995 {
1996 	return NULL;
1997 }
1998 
1999 static inline struct tcp_md5sig_key *
2000 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
2001 			      const union tcp_md5_addr *addr, int family)
2002 {
2003 	return NULL;
2004 }
2005 
2006 #define tcp_twsk_md5_key(twsk)	NULL
2007 static inline void tcp_md5_destruct_sock(struct sock *sk)
2008 {
2009 }
2010 #endif
2011 
2012 struct md5_ctx;
2013 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
2014 			   unsigned int header_len);
2015 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key);
2016 
2017 /* From tcp_fastopen.c */
2018 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2019 			    struct tcp_fastopen_cookie *cookie);
2020 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2021 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2022 			    u16 try_exp);
2023 struct tcp_fastopen_request {
2024 	/* Fast Open cookie. Size 0 means a cookie request */
2025 	struct tcp_fastopen_cookie	cookie;
2026 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2027 	size_t				size;
2028 	int				copied;	/* queued in tcp_connect() */
2029 	struct ubuf_info		*uarg;
2030 };
2031 void tcp_free_fastopen_req(struct tcp_sock *tp);
2032 void tcp_fastopen_destroy_cipher(struct sock *sk);
2033 void tcp_fastopen_ctx_destroy(struct net *net);
2034 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2035 			      void *primary_key, void *backup_key);
2036 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2037 			    u64 *key);
2038 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2039 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2040 			      struct request_sock *req,
2041 			      struct tcp_fastopen_cookie *foc,
2042 			      const struct dst_entry *dst);
2043 void tcp_fastopen_init_key_once(struct net *net);
2044 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2045 			     struct tcp_fastopen_cookie *cookie);
2046 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2047 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2048 #define TCP_FASTOPEN_KEY_MAX 2
2049 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2050 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2051 
2052 /* Fastopen key context */
2053 struct tcp_fastopen_context {
2054 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2055 	int		num;
2056 	struct rcu_head	rcu;
2057 };
2058 
2059 void tcp_fastopen_active_disable(struct sock *sk);
2060 bool tcp_fastopen_active_should_disable(struct sock *sk);
2061 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2062 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2063 
2064 /* Caller needs to wrap with rcu_read_(un)lock() */
2065 static inline
2066 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2067 {
2068 	struct tcp_fastopen_context *ctx;
2069 
2070 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2071 	if (!ctx)
2072 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2073 	return ctx;
2074 }
2075 
2076 static inline
2077 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2078 			       const struct tcp_fastopen_cookie *orig)
2079 {
2080 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2081 	    orig->len == foc->len &&
2082 	    !memcmp(orig->val, foc->val, foc->len))
2083 		return true;
2084 	return false;
2085 }
2086 
2087 static inline
2088 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2089 {
2090 	return ctx->num;
2091 }
2092 
2093 /* Latencies incurred by various limits for a sender. They are
2094  * chronograph-like stats that are mutually exclusive.
2095  */
2096 enum tcp_chrono {
2097 	TCP_CHRONO_UNSPEC,
2098 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2099 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2100 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2101 	__TCP_CHRONO_MAX,
2102 };
2103 
2104 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2105 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2106 
2107 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2108  * the same memory storage than skb->destructor/_skb_refdst
2109  */
2110 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2111 {
2112 	skb->destructor = NULL;
2113 	skb->_skb_refdst = 0UL;
2114 }
2115 
2116 #define tcp_skb_tsorted_save(skb) {		\
2117 	unsigned long _save = skb->_skb_refdst;	\
2118 	skb->_skb_refdst = 0UL;
2119 
2120 #define tcp_skb_tsorted_restore(skb)		\
2121 	skb->_skb_refdst = _save;		\
2122 }
2123 
2124 void tcp_write_queue_purge(struct sock *sk);
2125 
2126 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2127 {
2128 	return skb_rb_first(&sk->tcp_rtx_queue);
2129 }
2130 
2131 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2132 {
2133 	return skb_rb_last(&sk->tcp_rtx_queue);
2134 }
2135 
2136 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2137 {
2138 	return skb_peek_tail(&sk->sk_write_queue);
2139 }
2140 
2141 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2142 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2143 
2144 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2145 {
2146 	return skb_peek(&sk->sk_write_queue);
2147 }
2148 
2149 static inline bool tcp_skb_is_last(const struct sock *sk,
2150 				   const struct sk_buff *skb)
2151 {
2152 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2153 }
2154 
2155 /**
2156  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2157  * @sk: socket
2158  *
2159  * Since the write queue can have a temporary empty skb in it,
2160  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2161  */
2162 static inline bool tcp_write_queue_empty(const struct sock *sk)
2163 {
2164 	const struct tcp_sock *tp = tcp_sk(sk);
2165 
2166 	return tp->write_seq == tp->snd_nxt;
2167 }
2168 
2169 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2170 {
2171 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2172 }
2173 
2174 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2175 {
2176 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2177 }
2178 
2179 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2180 {
2181 	__skb_queue_tail(&sk->sk_write_queue, skb);
2182 
2183 	/* Queue it, remembering where we must start sending. */
2184 	if (sk->sk_write_queue.next == skb)
2185 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2186 }
2187 
2188 /* Insert new before skb on the write queue of sk.  */
2189 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2190 						  struct sk_buff *skb,
2191 						  struct sock *sk)
2192 {
2193 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2194 }
2195 
2196 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2197 {
2198 	tcp_skb_tsorted_anchor_cleanup(skb);
2199 	__skb_unlink(skb, &sk->sk_write_queue);
2200 }
2201 
2202 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2203 
2204 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2205 {
2206 	tcp_skb_tsorted_anchor_cleanup(skb);
2207 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2208 }
2209 
2210 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2211 {
2212 	list_del(&skb->tcp_tsorted_anchor);
2213 	tcp_rtx_queue_unlink(skb, sk);
2214 	tcp_wmem_free_skb(sk, skb);
2215 }
2216 
2217 static inline void tcp_write_collapse_fence(struct sock *sk)
2218 {
2219 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2220 
2221 	if (skb)
2222 		TCP_SKB_CB(skb)->eor = 1;
2223 }
2224 
2225 static inline void tcp_push_pending_frames(struct sock *sk)
2226 {
2227 	if (tcp_send_head(sk)) {
2228 		struct tcp_sock *tp = tcp_sk(sk);
2229 
2230 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2231 	}
2232 }
2233 
2234 /* Start sequence of the skb just after the highest skb with SACKed
2235  * bit, valid only if sacked_out > 0 or when the caller has ensured
2236  * validity by itself.
2237  */
2238 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2239 {
2240 	if (!tp->sacked_out)
2241 		return tp->snd_una;
2242 
2243 	if (tp->highest_sack == NULL)
2244 		return tp->snd_nxt;
2245 
2246 	return TCP_SKB_CB(tp->highest_sack)->seq;
2247 }
2248 
2249 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2250 {
2251 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2252 }
2253 
2254 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2255 {
2256 	return tcp_sk(sk)->highest_sack;
2257 }
2258 
2259 static inline void tcp_highest_sack_reset(struct sock *sk)
2260 {
2261 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2262 }
2263 
2264 /* Called when old skb is about to be deleted and replaced by new skb */
2265 static inline void tcp_highest_sack_replace(struct sock *sk,
2266 					    struct sk_buff *old,
2267 					    struct sk_buff *new)
2268 {
2269 	if (old == tcp_highest_sack(sk))
2270 		tcp_sk(sk)->highest_sack = new;
2271 }
2272 
2273 /* This helper checks if socket has IP_TRANSPARENT set */
2274 static inline bool inet_sk_transparent(const struct sock *sk)
2275 {
2276 	switch (sk->sk_state) {
2277 	case TCP_TIME_WAIT:
2278 		return inet_twsk(sk)->tw_transparent;
2279 	case TCP_NEW_SYN_RECV:
2280 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2281 	}
2282 	return inet_test_bit(TRANSPARENT, sk);
2283 }
2284 
2285 /* Determines whether this is a thin stream (which may suffer from
2286  * increased latency). Used to trigger latency-reducing mechanisms.
2287  */
2288 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2289 {
2290 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2291 }
2292 
2293 /* /proc */
2294 enum tcp_seq_states {
2295 	TCP_SEQ_STATE_LISTENING,
2296 	TCP_SEQ_STATE_ESTABLISHED,
2297 };
2298 
2299 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2300 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2301 void tcp_seq_stop(struct seq_file *seq, void *v);
2302 
2303 struct tcp_seq_afinfo {
2304 	sa_family_t			family;
2305 };
2306 
2307 struct tcp_iter_state {
2308 	struct seq_net_private	p;
2309 	enum tcp_seq_states	state;
2310 	struct sock		*syn_wait_sk;
2311 	int			bucket, offset, sbucket, num;
2312 	loff_t			last_pos;
2313 };
2314 
2315 extern struct request_sock_ops tcp_request_sock_ops;
2316 extern struct request_sock_ops tcp6_request_sock_ops;
2317 
2318 void tcp_v4_destroy_sock(struct sock *sk);
2319 
2320 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2321 				netdev_features_t features);
2322 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2323 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2324 				struct tcphdr *th);
2325 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2326 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2327 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2328 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2329 #ifdef CONFIG_INET
2330 void tcp_gro_complete(struct sk_buff *skb);
2331 #else
2332 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2333 #endif
2334 
2335 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2336 
2337 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2338 {
2339 	struct net *net = sock_net((struct sock *)tp);
2340 	u32 val;
2341 
2342 	val = READ_ONCE(tp->notsent_lowat);
2343 
2344 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2345 }
2346 
2347 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2348 
2349 #ifdef CONFIG_PROC_FS
2350 int tcp4_proc_init(void);
2351 void tcp4_proc_exit(void);
2352 #endif
2353 
2354 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2355 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2356 		     const struct tcp_request_sock_ops *af_ops,
2357 		     struct sock *sk, struct sk_buff *skb);
2358 
2359 /* TCP af-specific functions */
2360 struct tcp_sock_af_ops {
2361 #ifdef CONFIG_TCP_MD5SIG
2362 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2363 						const struct sock *addr_sk);
2364 	void		(*calc_md5_hash)(char *location,
2365 					 const struct tcp_md5sig_key *md5,
2366 					 const struct sock *sk,
2367 					 const struct sk_buff *skb);
2368 	int		(*md5_parse)(struct sock *sk,
2369 				     int optname,
2370 				     sockptr_t optval,
2371 				     int optlen);
2372 #endif
2373 #ifdef CONFIG_TCP_AO
2374 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2375 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2376 					struct sock *addr_sk,
2377 					int sndid, int rcvid);
2378 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2379 			      const struct sock *sk,
2380 			      __be32 sisn, __be32 disn, bool send);
2381 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2382 			    const struct sock *sk, const struct sk_buff *skb,
2383 			    const u8 *tkey, int hash_offset, u32 sne);
2384 #endif
2385 };
2386 
2387 struct tcp_request_sock_ops {
2388 	u16 mss_clamp;
2389 #ifdef CONFIG_TCP_MD5SIG
2390 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2391 						 const struct sock *addr_sk);
2392 	void		(*calc_md5_hash) (char *location,
2393 					  const struct tcp_md5sig_key *md5,
2394 					  const struct sock *sk,
2395 					  const struct sk_buff *skb);
2396 #endif
2397 #ifdef CONFIG_TCP_AO
2398 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2399 					struct request_sock *req,
2400 					int sndid, int rcvid);
2401 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2402 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2403 			      struct request_sock *req, const struct sk_buff *skb,
2404 			      int hash_offset, u32 sne);
2405 #endif
2406 #ifdef CONFIG_SYN_COOKIES
2407 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2408 				 __u16 *mss);
2409 #endif
2410 	struct dst_entry *(*route_req)(const struct sock *sk,
2411 				       struct sk_buff *skb,
2412 				       struct flowi *fl,
2413 				       struct request_sock *req,
2414 				       u32 tw_isn);
2415 	u32 (*init_seq)(const struct sk_buff *skb);
2416 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2417 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2418 			   struct flowi *fl, struct request_sock *req,
2419 			   struct tcp_fastopen_cookie *foc,
2420 			   enum tcp_synack_type synack_type,
2421 			   struct sk_buff *syn_skb);
2422 };
2423 
2424 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2425 #if IS_ENABLED(CONFIG_IPV6)
2426 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2427 #endif
2428 
2429 #ifdef CONFIG_SYN_COOKIES
2430 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2431 					 const struct sock *sk, struct sk_buff *skb,
2432 					 __u16 *mss)
2433 {
2434 	tcp_synq_overflow(sk);
2435 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2436 	return ops->cookie_init_seq(skb, mss);
2437 }
2438 #else
2439 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2440 					 const struct sock *sk, struct sk_buff *skb,
2441 					 __u16 *mss)
2442 {
2443 	return 0;
2444 }
2445 #endif
2446 
2447 struct tcp_key {
2448 	union {
2449 		struct {
2450 			struct tcp_ao_key *ao_key;
2451 			char *traffic_key;
2452 			u32 sne;
2453 			u8 rcv_next;
2454 		};
2455 		struct tcp_md5sig_key *md5_key;
2456 	};
2457 	enum {
2458 		TCP_KEY_NONE = 0,
2459 		TCP_KEY_MD5,
2460 		TCP_KEY_AO,
2461 	} type;
2462 };
2463 
2464 static inline void tcp_get_current_key(const struct sock *sk,
2465 				       struct tcp_key *out)
2466 {
2467 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2468 	const struct tcp_sock *tp = tcp_sk(sk);
2469 #endif
2470 
2471 #ifdef CONFIG_TCP_AO
2472 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2473 		struct tcp_ao_info *ao;
2474 
2475 		ao = rcu_dereference_protected(tp->ao_info,
2476 					       lockdep_sock_is_held(sk));
2477 		if (ao) {
2478 			out->ao_key = READ_ONCE(ao->current_key);
2479 			out->type = TCP_KEY_AO;
2480 			return;
2481 		}
2482 	}
2483 #endif
2484 #ifdef CONFIG_TCP_MD5SIG
2485 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2486 	    rcu_access_pointer(tp->md5sig_info)) {
2487 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2488 		if (out->md5_key) {
2489 			out->type = TCP_KEY_MD5;
2490 			return;
2491 		}
2492 	}
2493 #endif
2494 	out->type = TCP_KEY_NONE;
2495 }
2496 
2497 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2498 {
2499 	if (static_branch_tcp_md5())
2500 		return key->type == TCP_KEY_MD5;
2501 	return false;
2502 }
2503 
2504 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2505 {
2506 	if (static_branch_tcp_ao())
2507 		return key->type == TCP_KEY_AO;
2508 	return false;
2509 }
2510 
2511 int tcpv4_offload_init(void);
2512 
2513 void tcp_v4_init(void);
2514 void tcp_init(void);
2515 
2516 /* tcp_recovery.c */
2517 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2518 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2519 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2520 				u32 reo_wnd);
2521 extern bool tcp_rack_mark_lost(struct sock *sk);
2522 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2523 			     u64 xmit_time);
2524 extern void tcp_rack_reo_timeout(struct sock *sk);
2525 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2526 
2527 /* tcp_plb.c */
2528 
2529 /*
2530  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2531  * expects cong_ratio which represents fraction of traffic that experienced
2532  * congestion over a single RTT. In order to avoid floating point operations,
2533  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2534  */
2535 #define TCP_PLB_SCALE 8
2536 
2537 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2538 struct tcp_plb_state {
2539 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2540 		unused:3;
2541 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2542 };
2543 
2544 static inline void tcp_plb_init(const struct sock *sk,
2545 				struct tcp_plb_state *plb)
2546 {
2547 	plb->consec_cong_rounds = 0;
2548 	plb->pause_until = 0;
2549 }
2550 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2551 			  const int cong_ratio);
2552 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2553 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2554 
2555 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2556 {
2557 	WARN_ONCE(cond,
2558 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2559 		  str,
2560 		  tcp_snd_cwnd(tcp_sk(sk)),
2561 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2562 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2563 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2564 		  inet_csk(sk)->icsk_ca_state,
2565 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2566 		  inet_csk(sk)->icsk_pmtu_cookie);
2567 }
2568 
2569 /* At how many usecs into the future should the RTO fire? */
2570 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2571 {
2572 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2573 	u32 rto = inet_csk(sk)->icsk_rto;
2574 
2575 	if (likely(skb)) {
2576 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2577 
2578 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2579 	} else {
2580 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2581 		return jiffies_to_usecs(rto);
2582 	}
2583 
2584 }
2585 
2586 /*
2587  * Save and compile IPv4 options, return a pointer to it
2588  */
2589 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2590 							 struct sk_buff *skb)
2591 {
2592 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2593 	struct ip_options_rcu *dopt = NULL;
2594 
2595 	if (opt->optlen) {
2596 		int opt_size = sizeof(*dopt) + opt->optlen;
2597 
2598 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2599 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2600 			kfree(dopt);
2601 			dopt = NULL;
2602 		}
2603 	}
2604 	return dopt;
2605 }
2606 
2607 /* locally generated TCP pure ACKs have skb->truesize == 2
2608  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2609  * This is much faster than dissecting the packet to find out.
2610  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2611  */
2612 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2613 {
2614 	return skb->truesize == 2;
2615 }
2616 
2617 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2618 {
2619 	skb->truesize = 2;
2620 }
2621 
2622 static inline int tcp_inq(struct sock *sk)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 	int answ;
2626 
2627 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2628 		answ = 0;
2629 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2630 		   !tp->urg_data ||
2631 		   before(tp->urg_seq, tp->copied_seq) ||
2632 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2633 
2634 		answ = tp->rcv_nxt - tp->copied_seq;
2635 
2636 		/* Subtract 1, if FIN was received */
2637 		if (answ && sock_flag(sk, SOCK_DONE))
2638 			answ--;
2639 	} else {
2640 		answ = tp->urg_seq - tp->copied_seq;
2641 	}
2642 
2643 	return answ;
2644 }
2645 
2646 int tcp_peek_len(struct socket *sock);
2647 
2648 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2649 {
2650 	u16 segs_in;
2651 
2652 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2653 
2654 	/* We update these fields while other threads might
2655 	 * read them from tcp_get_info()
2656 	 */
2657 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2658 	if (skb->len > tcp_hdrlen(skb))
2659 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2660 }
2661 
2662 /*
2663  * TCP listen path runs lockless.
2664  * We forced "struct sock" to be const qualified to make sure
2665  * we don't modify one of its field by mistake.
2666  * Here, we increment sk_drops which is an atomic_t, so we can safely
2667  * make sock writable again.
2668  */
2669 static inline void tcp_listendrop(const struct sock *sk)
2670 {
2671 	sk_drops_inc((struct sock *)sk);
2672 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2673 }
2674 
2675 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2676 
2677 /*
2678  * Interface for adding Upper Level Protocols over TCP
2679  */
2680 
2681 #define TCP_ULP_NAME_MAX	16
2682 #define TCP_ULP_MAX		128
2683 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2684 
2685 struct tcp_ulp_ops {
2686 	struct list_head	list;
2687 
2688 	/* initialize ulp */
2689 	int (*init)(struct sock *sk);
2690 	/* update ulp */
2691 	void (*update)(struct sock *sk, struct proto *p,
2692 		       void (*write_space)(struct sock *sk));
2693 	/* cleanup ulp */
2694 	void (*release)(struct sock *sk);
2695 	/* diagnostic */
2696 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2697 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2698 	/* clone ulp */
2699 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2700 		      const gfp_t priority);
2701 
2702 	char		name[TCP_ULP_NAME_MAX];
2703 	struct module	*owner;
2704 };
2705 int tcp_register_ulp(struct tcp_ulp_ops *type);
2706 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2707 int tcp_set_ulp(struct sock *sk, const char *name);
2708 void tcp_get_available_ulp(char *buf, size_t len);
2709 void tcp_cleanup_ulp(struct sock *sk);
2710 void tcp_update_ulp(struct sock *sk, struct proto *p,
2711 		    void (*write_space)(struct sock *sk));
2712 
2713 #define MODULE_ALIAS_TCP_ULP(name)				\
2714 	MODULE_INFO(alias, name);		\
2715 	MODULE_INFO(alias, "tcp-ulp-" name)
2716 
2717 #ifdef CONFIG_NET_SOCK_MSG
2718 struct sk_msg;
2719 struct sk_psock;
2720 
2721 #ifdef CONFIG_BPF_SYSCALL
2722 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2723 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2724 #ifdef CONFIG_BPF_STREAM_PARSER
2725 struct strparser;
2726 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2727 			   sk_read_actor_t recv_actor);
2728 #endif /* CONFIG_BPF_STREAM_PARSER */
2729 #endif /* CONFIG_BPF_SYSCALL */
2730 
2731 #ifdef CONFIG_INET
2732 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2733 #else
2734 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2735 {
2736 }
2737 #endif
2738 
2739 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2740 			  struct sk_msg *msg, u32 bytes, int flags);
2741 #endif /* CONFIG_NET_SOCK_MSG */
2742 
2743 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2744 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2745 {
2746 }
2747 #endif
2748 
2749 #ifdef CONFIG_CGROUP_BPF
2750 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2751 				      struct sk_buff *skb,
2752 				      unsigned int end_offset)
2753 {
2754 	skops->skb = skb;
2755 	skops->skb_data_end = skb->data + end_offset;
2756 }
2757 #else
2758 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2759 				      struct sk_buff *skb,
2760 				      unsigned int end_offset)
2761 {
2762 }
2763 #endif
2764 
2765 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2766  * is < 0, then the BPF op failed (for example if the loaded BPF
2767  * program does not support the chosen operation or there is no BPF
2768  * program loaded).
2769  */
2770 #ifdef CONFIG_BPF
2771 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2772 {
2773 	struct bpf_sock_ops_kern sock_ops;
2774 	int ret;
2775 
2776 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2777 	if (sk_fullsock(sk)) {
2778 		sock_ops.is_fullsock = 1;
2779 		sock_ops.is_locked_tcp_sock = 1;
2780 		sock_owned_by_me(sk);
2781 	}
2782 
2783 	sock_ops.sk = sk;
2784 	sock_ops.op = op;
2785 	if (nargs > 0)
2786 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2787 
2788 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2789 	if (ret == 0)
2790 		ret = sock_ops.reply;
2791 	else
2792 		ret = -1;
2793 	return ret;
2794 }
2795 
2796 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2797 {
2798 	u32 args[2] = {arg1, arg2};
2799 
2800 	return tcp_call_bpf(sk, op, 2, args);
2801 }
2802 
2803 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2804 				    u32 arg3)
2805 {
2806 	u32 args[3] = {arg1, arg2, arg3};
2807 
2808 	return tcp_call_bpf(sk, op, 3, args);
2809 }
2810 
2811 #else
2812 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2813 {
2814 	return -EPERM;
2815 }
2816 
2817 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2818 {
2819 	return -EPERM;
2820 }
2821 
2822 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2823 				    u32 arg3)
2824 {
2825 	return -EPERM;
2826 }
2827 
2828 #endif
2829 
2830 static inline u32 tcp_timeout_init(struct sock *sk)
2831 {
2832 	int timeout;
2833 
2834 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2835 
2836 	if (timeout <= 0)
2837 		timeout = TCP_TIMEOUT_INIT;
2838 	return min_t(int, timeout, TCP_RTO_MAX);
2839 }
2840 
2841 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2842 {
2843 	int rwnd;
2844 
2845 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2846 
2847 	if (rwnd < 0)
2848 		rwnd = 0;
2849 	return rwnd;
2850 }
2851 
2852 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2853 {
2854 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2855 }
2856 
2857 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2858 {
2859 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2860 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2861 }
2862 
2863 #if IS_ENABLED(CONFIG_SMC)
2864 extern struct static_key_false tcp_have_smc;
2865 #endif
2866 
2867 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2868 void clean_acked_data_enable(struct tcp_sock *tp,
2869 			     void (*cad)(struct sock *sk, u32 ack_seq));
2870 void clean_acked_data_disable(struct tcp_sock *tp);
2871 void clean_acked_data_flush(void);
2872 #endif
2873 
2874 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2875 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2876 				    const struct tcp_sock *tp)
2877 {
2878 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2879 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2880 }
2881 
2882 /* Compute Earliest Departure Time for some control packets
2883  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2884  */
2885 static inline u64 tcp_transmit_time(const struct sock *sk)
2886 {
2887 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2888 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2889 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2890 
2891 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2892 	}
2893 	return 0;
2894 }
2895 
2896 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2897 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2898 {
2899 	const u8 *md5_tmp, *ao_tmp;
2900 	int ret;
2901 
2902 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2903 	if (ret)
2904 		return ret;
2905 
2906 	if (md5_hash)
2907 		*md5_hash = md5_tmp;
2908 
2909 	if (aoh) {
2910 		if (!ao_tmp)
2911 			*aoh = NULL;
2912 		else
2913 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2920 				   int family, int l3index, bool stat_inc)
2921 {
2922 #ifdef CONFIG_TCP_AO
2923 	struct tcp_ao_info *ao_info;
2924 	struct tcp_ao_key *ao_key;
2925 
2926 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2927 		return false;
2928 
2929 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2930 					lockdep_sock_is_held(sk));
2931 	if (!ao_info)
2932 		return false;
2933 
2934 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2935 	if (ao_info->ao_required || ao_key) {
2936 		if (stat_inc) {
2937 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2938 			atomic64_inc(&ao_info->counters.ao_required);
2939 		}
2940 		return true;
2941 	}
2942 #endif
2943 	return false;
2944 }
2945 
2946 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2947 		const struct request_sock *req, const struct sk_buff *skb,
2948 		const void *saddr, const void *daddr,
2949 		int family, int dif, int sdif);
2950 
2951 #endif	/* _TCP_H */
2952