1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* Default sending frequency of accurate ECN option per RTT */ 104 #define TCP_ACCECN_OPTION_BEACON 3 105 106 /* urg_data states */ 107 #define TCP_URG_VALID 0x0100 108 #define TCP_URG_NOTYET 0x0200 109 #define TCP_URG_READ 0x0400 110 111 #define TCP_RETR1 3 /* 112 * This is how many retries it does before it 113 * tries to figure out if the gateway is 114 * down. Minimal RFC value is 3; it corresponds 115 * to ~3sec-8min depending on RTO. 116 */ 117 118 #define TCP_RETR2 15 /* 119 * This should take at least 120 * 90 minutes to time out. 121 * RFC1122 says that the limit is 100 sec. 122 * 15 is ~13-30min depending on RTO. 123 */ 124 125 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 126 * when active opening a connection. 127 * RFC1122 says the minimum retry MUST 128 * be at least 180secs. Nevertheless 129 * this value is corresponding to 130 * 63secs of retransmission with the 131 * current initial RTO. 132 */ 133 134 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 135 * when passive opening a connection. 136 * This is corresponding to 31secs of 137 * retransmission with the current 138 * initial RTO. 139 */ 140 141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 142 * state, about 60 seconds */ 143 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 144 /* BSD style FIN_WAIT2 deadlock breaker. 145 * It used to be 3min, new value is 60sec, 146 * to combine FIN-WAIT-2 timeout with 147 * TIME-WAIT timer. 148 */ 149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 150 151 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 153 154 #if HZ >= 100 155 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 156 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 157 #else 158 #define TCP_DELACK_MIN 4U 159 #define TCP_ATO_MIN 4U 160 #endif 161 #define TCP_RTO_MAX_SEC 120 162 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 163 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 164 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 165 166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 167 168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 170 * used as a fallback RTO for the 171 * initial data transmission if no 172 * valid RTT sample has been acquired, 173 * most likely due to retrans in 3WHS. 174 */ 175 176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 177 * for local resources. 178 */ 179 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 180 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 181 #define TCP_KEEPALIVE_INTVL (75*HZ) 182 183 #define MAX_TCP_KEEPIDLE 32767 184 #define MAX_TCP_KEEPINTVL 32767 185 #define MAX_TCP_KEEPCNT 127 186 #define MAX_TCP_SYNCNT 127 187 188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 189 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 190 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 191 */ 192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 193 194 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 195 * after this time. It should be equal 196 * (or greater than) TCP_TIMEWAIT_LEN 197 * to provide reliability equal to one 198 * provided by timewait state. 199 */ 200 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 201 * timestamps. It must be less than 202 * minimal timewait lifetime. 203 */ 204 /* 205 * TCP option 206 */ 207 208 #define TCPOPT_NOP 1 /* Padding */ 209 #define TCPOPT_EOL 0 /* End of options */ 210 #define TCPOPT_MSS 2 /* Segment size negotiating */ 211 #define TCPOPT_WINDOW 3 /* Window scaling */ 212 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 213 #define TCPOPT_SACK 5 /* SACK Block */ 214 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 215 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 216 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 217 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 218 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 219 #define TCPOPT_ACCECN0 172 /* 0xAC: Accurate ECN Order 0 */ 220 #define TCPOPT_ACCECN1 174 /* 0xAE: Accurate ECN Order 1 */ 221 #define TCPOPT_EXP 254 /* Experimental */ 222 /* Magic number to be after the option value for sharing TCP 223 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 224 */ 225 #define TCPOPT_FASTOPEN_MAGIC 0xF989 226 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 227 228 /* 229 * TCP option lengths 230 */ 231 232 #define TCPOLEN_MSS 4 233 #define TCPOLEN_WINDOW 3 234 #define TCPOLEN_SACK_PERM 2 235 #define TCPOLEN_TIMESTAMP 10 236 #define TCPOLEN_MD5SIG 18 237 #define TCPOLEN_FASTOPEN_BASE 2 238 #define TCPOLEN_ACCECN_BASE 2 239 #define TCPOLEN_EXP_FASTOPEN_BASE 4 240 #define TCPOLEN_EXP_SMC_BASE 6 241 242 /* But this is what stacks really send out. */ 243 #define TCPOLEN_TSTAMP_ALIGNED 12 244 #define TCPOLEN_WSCALE_ALIGNED 4 245 #define TCPOLEN_SACKPERM_ALIGNED 4 246 #define TCPOLEN_SACK_BASE 2 247 #define TCPOLEN_SACK_BASE_ALIGNED 4 248 #define TCPOLEN_SACK_PERBLOCK 8 249 #define TCPOLEN_MD5SIG_ALIGNED 20 250 #define TCPOLEN_MSS_ALIGNED 4 251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 252 #define TCPOLEN_ACCECN_PERFIELD 3 253 254 /* Maximum number of byte counters in AccECN option + size */ 255 #define TCP_ACCECN_NUMFIELDS 3 256 #define TCP_ACCECN_MAXSIZE (TCPOLEN_ACCECN_BASE + \ 257 TCPOLEN_ACCECN_PERFIELD * \ 258 TCP_ACCECN_NUMFIELDS) 259 #define TCP_ACCECN_SAFETY_SHIFT 1 /* SAFETY_FACTOR in accecn draft */ 260 261 /* Flags in tp->nonagle */ 262 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 263 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 264 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 265 266 /* TCP thin-stream limits */ 267 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 268 269 /* TCP initial congestion window as per rfc6928 */ 270 #define TCP_INIT_CWND 10 271 272 /* Bit Flags for sysctl_tcp_fastopen */ 273 #define TFO_CLIENT_ENABLE 1 274 #define TFO_SERVER_ENABLE 2 275 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 276 277 /* Accept SYN data w/o any cookie option */ 278 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 279 280 /* Force enable TFO on all listeners, i.e., not requiring the 281 * TCP_FASTOPEN socket option. 282 */ 283 #define TFO_SERVER_WO_SOCKOPT1 0x400 284 285 286 /* sysctl variables for tcp */ 287 extern int sysctl_tcp_max_orphans; 288 extern long sysctl_tcp_mem[3]; 289 290 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 291 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 292 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 293 294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 295 296 extern struct percpu_counter tcp_sockets_allocated; 297 extern unsigned long tcp_memory_pressure; 298 299 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 300 static inline bool tcp_under_memory_pressure(const struct sock *sk) 301 { 302 if (mem_cgroup_sk_enabled(sk) && 303 mem_cgroup_sk_under_memory_pressure(sk)) 304 return true; 305 306 if (sk->sk_bypass_prot_mem) 307 return false; 308 309 return READ_ONCE(tcp_memory_pressure); 310 } 311 /* 312 * The next routines deal with comparing 32 bit unsigned ints 313 * and worry about wraparound (automatic with unsigned arithmetic). 314 */ 315 316 static inline bool before(__u32 seq1, __u32 seq2) 317 { 318 return (__s32)(seq1-seq2) < 0; 319 } 320 #define after(seq2, seq1) before(seq1, seq2) 321 322 /* is s2<=s1<=s3 ? */ 323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 324 { 325 return seq3 - seq2 >= seq1 - seq2; 326 } 327 328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 329 { 330 sk_wmem_queued_add(sk, -skb->truesize); 331 if (!skb_zcopy_pure(skb)) 332 sk_mem_uncharge(sk, skb->truesize); 333 else 334 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 335 __kfree_skb(skb); 336 } 337 338 void sk_forced_mem_schedule(struct sock *sk, int size); 339 340 bool tcp_check_oom(const struct sock *sk, int shift); 341 342 343 extern struct proto tcp_prot; 344 345 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 346 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 347 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 348 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 349 350 void tcp_tsq_work_init(void); 351 352 int tcp_v4_err(struct sk_buff *skb, u32); 353 354 void tcp_shutdown(struct sock *sk, int how); 355 356 int tcp_v4_early_demux(struct sk_buff *skb); 357 int tcp_v4_rcv(struct sk_buff *skb); 358 359 void tcp_remove_empty_skb(struct sock *sk); 360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 363 size_t size, struct ubuf_info *uarg); 364 void tcp_splice_eof(struct socket *sock); 365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 366 int tcp_wmem_schedule(struct sock *sk, int copy); 367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 368 int size_goal); 369 void tcp_release_cb(struct sock *sk); 370 void tcp_wfree(struct sk_buff *skb); 371 void tcp_write_timer_handler(struct sock *sk); 372 void tcp_delack_timer_handler(struct sock *sk); 373 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval); 377 void tcp_rcv_space_adjust(struct sock *sk); 378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 379 void tcp_twsk_destructor(struct sock *sk); 380 void tcp_twsk_purge(struct list_head *net_exit_list); 381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 382 struct pipe_inode_info *pipe, size_t len, 383 unsigned int flags); 384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 385 bool force_schedule); 386 387 static inline void tcp_dec_quickack_mode(struct sock *sk) 388 { 389 struct inet_connection_sock *icsk = inet_csk(sk); 390 391 if (icsk->icsk_ack.quick) { 392 /* How many ACKs S/ACKing new data have we sent? */ 393 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 394 395 if (pkts >= icsk->icsk_ack.quick) { 396 icsk->icsk_ack.quick = 0; 397 /* Leaving quickack mode we deflate ATO. */ 398 icsk->icsk_ack.ato = TCP_ATO_MIN; 399 } else 400 icsk->icsk_ack.quick -= pkts; 401 } 402 } 403 404 #define TCP_ECN_MODE_RFC3168 BIT(0) 405 #define TCP_ECN_QUEUE_CWR BIT(1) 406 #define TCP_ECN_DEMAND_CWR BIT(2) 407 #define TCP_ECN_SEEN BIT(3) 408 #define TCP_ECN_MODE_ACCECN BIT(4) 409 410 #define TCP_ECN_DISABLED 0 411 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 412 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 413 414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 415 { 416 return tp->ecn_flags & TCP_ECN_MODE_ANY; 417 } 418 419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 420 { 421 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 422 } 423 424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 425 { 426 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 427 } 428 429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 430 { 431 return !tcp_ecn_mode_any(tp); 432 } 433 434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 435 { 436 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 437 } 438 439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 440 { 441 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 442 tp->ecn_flags |= mode; 443 } 444 445 enum tcp_tw_status { 446 TCP_TW_SUCCESS = 0, 447 TCP_TW_RST = 1, 448 TCP_TW_ACK = 2, 449 TCP_TW_SYN = 3, 450 TCP_TW_ACK_OOW = 4 451 }; 452 453 454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 455 struct sk_buff *skb, 456 const struct tcphdr *th, 457 u32 *tw_isn, 458 enum skb_drop_reason *drop_reason); 459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 460 struct request_sock *req, bool fastopen, 461 bool *lost_race, enum skb_drop_reason *drop_reason); 462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 463 struct sk_buff *skb); 464 void tcp_enter_loss(struct sock *sk); 465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 466 void tcp_clear_retrans(struct tcp_sock *tp); 467 void tcp_update_pacing_rate(struct sock *sk); 468 void tcp_set_rto(struct sock *sk); 469 void tcp_update_metrics(struct sock *sk); 470 void tcp_init_metrics(struct sock *sk); 471 void tcp_metrics_init(void); 472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 473 void __tcp_close(struct sock *sk, long timeout); 474 void tcp_close(struct sock *sk, long timeout); 475 void tcp_init_sock(struct sock *sk); 476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 477 __poll_t tcp_poll(struct file *file, struct socket *sock, 478 struct poll_table_struct *wait); 479 int do_tcp_getsockopt(struct sock *sk, int level, 480 int optname, sockptr_t optval, sockptr_t optlen); 481 int tcp_getsockopt(struct sock *sk, int level, int optname, 482 char __user *optval, int __user *optlen); 483 bool tcp_bpf_bypass_getsockopt(int level, int optname); 484 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 485 sockptr_t optval, unsigned int optlen); 486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 487 unsigned int optlen); 488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 489 void tcp_set_keepalive(struct sock *sk, int val); 490 void tcp_syn_ack_timeout(const struct request_sock *req); 491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 492 int flags, int *addr_len); 493 int tcp_set_rcvlowat(struct sock *sk, int val); 494 int tcp_set_window_clamp(struct sock *sk, int val); 495 void tcp_update_recv_tstamps(struct sk_buff *skb, 496 struct scm_timestamping_internal *tss); 497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 498 struct scm_timestamping_internal *tss); 499 void tcp_data_ready(struct sock *sk); 500 #ifdef CONFIG_MMU 501 int tcp_mmap(struct file *file, struct socket *sock, 502 struct vm_area_struct *vma); 503 #endif 504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 505 struct tcp_options_received *opt_rx, 506 int estab, struct tcp_fastopen_cookie *foc); 507 508 /* 509 * BPF SKB-less helpers 510 */ 511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 512 struct tcphdr *th, u32 *cookie); 513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 514 struct tcphdr *th, u32 *cookie); 515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 517 const struct tcp_request_sock_ops *af_ops, 518 struct sock *sk, struct tcphdr *th); 519 /* 520 * TCP v4 functions exported for the inet6 API 521 */ 522 523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 524 void tcp_v4_mtu_reduced(struct sock *sk); 525 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 528 struct sock *tcp_create_openreq_child(const struct sock *sk, 529 struct request_sock *req, 530 struct sk_buff *skb); 531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 533 struct request_sock *req, 534 struct dst_entry *dst, 535 struct request_sock *req_unhash, 536 bool *own_req); 537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 538 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len); 539 int tcp_connect(struct sock *sk); 540 enum tcp_synack_type { 541 TCP_SYNACK_NORMAL, 542 TCP_SYNACK_FASTOPEN, 543 TCP_SYNACK_COOKIE, 544 }; 545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 546 struct request_sock *req, 547 struct tcp_fastopen_cookie *foc, 548 enum tcp_synack_type synack_type, 549 struct sk_buff *syn_skb); 550 int tcp_disconnect(struct sock *sk, int flags); 551 552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 555 556 /* From syncookies.c */ 557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 558 struct request_sock *req, 559 struct dst_entry *dst); 560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 563 struct sock *sk, struct sk_buff *skb, 564 struct tcp_options_received *tcp_opt, 565 int mss, u32 tsoff); 566 567 #if IS_ENABLED(CONFIG_BPF) 568 struct bpf_tcp_req_attrs { 569 u32 rcv_tsval; 570 u32 rcv_tsecr; 571 u16 mss; 572 u8 rcv_wscale; 573 u8 snd_wscale; 574 u8 ecn_ok; 575 u8 wscale_ok; 576 u8 sack_ok; 577 u8 tstamp_ok; 578 u8 usec_ts_ok; 579 u8 reserved[3]; 580 }; 581 #endif 582 583 #ifdef CONFIG_SYN_COOKIES 584 585 /* Syncookies use a monotonic timer which increments every 60 seconds. 586 * This counter is used both as a hash input and partially encoded into 587 * the cookie value. A cookie is only validated further if the delta 588 * between the current counter value and the encoded one is less than this, 589 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 590 * the counter advances immediately after a cookie is generated). 591 */ 592 #define MAX_SYNCOOKIE_AGE 2 593 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 594 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 595 596 /* syncookies: remember time of last synqueue overflow 597 * But do not dirty this field too often (once per second is enough) 598 * It is racy as we do not hold a lock, but race is very minor. 599 */ 600 static inline void tcp_synq_overflow(const struct sock *sk) 601 { 602 unsigned int last_overflow; 603 unsigned int now = jiffies; 604 605 if (sk->sk_reuseport) { 606 struct sock_reuseport *reuse; 607 608 reuse = rcu_dereference(sk->sk_reuseport_cb); 609 if (likely(reuse)) { 610 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 611 if (!time_between32(now, last_overflow, 612 last_overflow + HZ)) 613 WRITE_ONCE(reuse->synq_overflow_ts, now); 614 return; 615 } 616 } 617 618 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 619 if (!time_between32(now, last_overflow, last_overflow + HZ)) 620 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 621 } 622 623 /* syncookies: no recent synqueue overflow on this listening socket? */ 624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 625 { 626 unsigned int last_overflow; 627 unsigned int now = jiffies; 628 629 if (sk->sk_reuseport) { 630 struct sock_reuseport *reuse; 631 632 reuse = rcu_dereference(sk->sk_reuseport_cb); 633 if (likely(reuse)) { 634 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 635 return !time_between32(now, last_overflow - HZ, 636 last_overflow + 637 TCP_SYNCOOKIE_VALID); 638 } 639 } 640 641 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 642 643 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 644 * then we're under synflood. However, we have to use 645 * 'last_overflow - HZ' as lower bound. That's because a concurrent 646 * tcp_synq_overflow() could update .ts_recent_stamp after we read 647 * jiffies but before we store .ts_recent_stamp into last_overflow, 648 * which could lead to rejecting a valid syncookie. 649 */ 650 return !time_between32(now, last_overflow - HZ, 651 last_overflow + TCP_SYNCOOKIE_VALID); 652 } 653 654 static inline u32 tcp_cookie_time(void) 655 { 656 u64 val = get_jiffies_64(); 657 658 do_div(val, TCP_SYNCOOKIE_PERIOD); 659 return val; 660 } 661 662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 664 { 665 if (usec_ts) 666 return div_u64(val, NSEC_PER_USEC); 667 668 return div_u64(val, NSEC_PER_MSEC); 669 } 670 671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 672 u16 *mssp); 673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 674 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 675 bool cookie_timestamp_decode(const struct net *net, 676 struct tcp_options_received *opt); 677 678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 679 { 680 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 681 dst_feature(dst, RTAX_FEATURE_ECN); 682 } 683 684 #if IS_ENABLED(CONFIG_BPF) 685 static inline bool cookie_bpf_ok(struct sk_buff *skb) 686 { 687 return skb->sk; 688 } 689 690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 691 #else 692 static inline bool cookie_bpf_ok(struct sk_buff *skb) 693 { 694 return false; 695 } 696 697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 698 struct sk_buff *skb) 699 { 700 return NULL; 701 } 702 #endif 703 704 /* From net/ipv6/syncookies.c */ 705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 707 708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 709 const struct tcphdr *th, u16 *mssp); 710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 711 #endif 712 /* tcp_output.c */ 713 714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 717 int nonagle); 718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 720 void tcp_retransmit_timer(struct sock *sk); 721 void tcp_xmit_retransmit_queue(struct sock *); 722 void tcp_simple_retransmit(struct sock *); 723 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 724 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 725 enum tcp_queue { 726 TCP_FRAG_IN_WRITE_QUEUE, 727 TCP_FRAG_IN_RTX_QUEUE, 728 }; 729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 730 struct sk_buff *skb, u32 len, 731 unsigned int mss_now, gfp_t gfp); 732 733 void tcp_send_probe0(struct sock *); 734 int tcp_write_wakeup(struct sock *, int mib); 735 void tcp_send_fin(struct sock *sk); 736 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 737 enum sk_rst_reason reason); 738 int tcp_send_synack(struct sock *); 739 void tcp_push_one(struct sock *, unsigned int mss_now); 740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 741 void tcp_send_ack(struct sock *sk); 742 void tcp_send_delayed_ack(struct sock *sk); 743 void tcp_send_loss_probe(struct sock *sk); 744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 745 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 746 const struct sk_buff *next_skb); 747 748 /* tcp_input.c */ 749 void tcp_rearm_rto(struct sock *sk); 750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 751 void tcp_done_with_error(struct sock *sk, int err); 752 void tcp_reset(struct sock *sk, struct sk_buff *skb); 753 void tcp_fin(struct sock *sk); 754 void tcp_check_space(struct sock *sk); 755 void tcp_sack_compress_send_ack(struct sock *sk); 756 757 static inline void tcp_cleanup_skb(struct sk_buff *skb) 758 { 759 skb_dst_drop(skb); 760 secpath_reset(skb); 761 } 762 763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 764 { 765 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 766 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 767 __skb_queue_tail(&sk->sk_receive_queue, skb); 768 } 769 770 /* tcp_timer.c */ 771 void tcp_init_xmit_timers(struct sock *); 772 static inline void tcp_clear_xmit_timers(struct sock *sk) 773 { 774 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 775 __sock_put(sk); 776 777 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 778 __sock_put(sk); 779 780 inet_csk_clear_xmit_timers(sk); 781 } 782 783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 784 unsigned int tcp_current_mss(struct sock *sk); 785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 786 787 /* Bound MSS / TSO packet size with the half of the window */ 788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 789 { 790 int cutoff; 791 792 /* When peer uses tiny windows, there is no use in packetizing 793 * to sub-MSS pieces for the sake of SWS or making sure there 794 * are enough packets in the pipe for fast recovery. 795 * 796 * On the other hand, for extremely large MSS devices, handling 797 * smaller than MSS windows in this way does make sense. 798 */ 799 if (tp->max_window > TCP_MSS_DEFAULT) 800 cutoff = (tp->max_window >> 1); 801 else 802 cutoff = tp->max_window; 803 804 if (cutoff && pktsize > cutoff) 805 return max_t(int, cutoff, 68U - tp->tcp_header_len); 806 else 807 return pktsize; 808 } 809 810 /* tcp.c */ 811 void tcp_get_info(struct sock *, struct tcp_info *); 812 813 /* Read 'sendfile()'-style from a TCP socket */ 814 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 815 sk_read_actor_t recv_actor); 816 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 817 sk_read_actor_t recv_actor, bool noack, 818 u32 *copied_seq); 819 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 820 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 821 void tcp_read_done(struct sock *sk, size_t len); 822 823 void tcp_initialize_rcv_mss(struct sock *sk); 824 825 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 826 int tcp_mss_to_mtu(struct sock *sk, int mss); 827 void tcp_mtup_init(struct sock *sk); 828 829 static inline unsigned int tcp_rto_max(const struct sock *sk) 830 { 831 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 832 } 833 834 static inline void tcp_bound_rto(struct sock *sk) 835 { 836 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 837 } 838 839 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 840 { 841 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 842 } 843 844 static inline unsigned long tcp_reqsk_timeout(struct request_sock *req) 845 { 846 u64 timeout = (u64)req->timeout << req->num_timeout; 847 848 return (unsigned long)min_t(u64, timeout, 849 tcp_rto_max(req->rsk_listener)); 850 } 851 852 u32 tcp_delack_max(const struct sock *sk); 853 854 /* Compute the actual rto_min value */ 855 static inline u32 tcp_rto_min(const struct sock *sk) 856 { 857 const struct dst_entry *dst = __sk_dst_get(sk); 858 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 859 860 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 861 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 862 return rto_min; 863 } 864 865 static inline u32 tcp_rto_min_us(const struct sock *sk) 866 { 867 return jiffies_to_usecs(tcp_rto_min(sk)); 868 } 869 870 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 871 { 872 return dst_metric_locked(dst, RTAX_CC_ALGO); 873 } 874 875 /* Minimum RTT in usec. ~0 means not available. */ 876 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 877 { 878 return minmax_get(&tp->rtt_min); 879 } 880 881 /* Compute the actual receive window we are currently advertising. 882 * Rcv_nxt can be after the window if our peer push more data 883 * than the offered window. 884 */ 885 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 886 { 887 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 888 889 if (win < 0) 890 win = 0; 891 return (u32) win; 892 } 893 894 /* Choose a new window, without checks for shrinking, and without 895 * scaling applied to the result. The caller does these things 896 * if necessary. This is a "raw" window selection. 897 */ 898 u32 __tcp_select_window(struct sock *sk); 899 900 void tcp_send_window_probe(struct sock *sk); 901 902 /* TCP uses 32bit jiffies to save some space. 903 * Note that this is different from tcp_time_stamp, which 904 * historically has been the same until linux-4.13. 905 */ 906 #define tcp_jiffies32 ((u32)jiffies) 907 908 /* 909 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 910 * It is no longer tied to jiffies, but to 1 ms clock. 911 * Note: double check if you want to use tcp_jiffies32 instead of this. 912 */ 913 #define TCP_TS_HZ 1000 914 915 static inline u64 tcp_clock_ns(void) 916 { 917 return ktime_get_ns(); 918 } 919 920 static inline u64 tcp_clock_us(void) 921 { 922 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 923 } 924 925 static inline u64 tcp_clock_ms(void) 926 { 927 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 928 } 929 930 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 931 * or usec resolution. Each socket carries a flag to select one or other 932 * resolution, as the route attribute could change anytime. 933 * Each flow must stick to initial resolution. 934 */ 935 static inline u32 tcp_clock_ts(bool usec_ts) 936 { 937 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 938 } 939 940 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 941 { 942 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 943 } 944 945 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 946 { 947 if (tp->tcp_usec_ts) 948 return tp->tcp_mstamp; 949 return tcp_time_stamp_ms(tp); 950 } 951 952 void tcp_mstamp_refresh(struct tcp_sock *tp); 953 954 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 955 { 956 return max_t(s64, t1 - t0, 0); 957 } 958 959 /* provide the departure time in us unit */ 960 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 961 { 962 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 963 } 964 965 /* Provide skb TSval in usec or ms unit */ 966 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 967 { 968 if (usec_ts) 969 return tcp_skb_timestamp_us(skb); 970 971 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 972 } 973 974 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 975 { 976 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 977 } 978 979 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 980 { 981 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 982 } 983 984 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 985 986 #define TCPHDR_FIN BIT(0) 987 #define TCPHDR_SYN BIT(1) 988 #define TCPHDR_RST BIT(2) 989 #define TCPHDR_PSH BIT(3) 990 #define TCPHDR_ACK BIT(4) 991 #define TCPHDR_URG BIT(5) 992 #define TCPHDR_ECE BIT(6) 993 #define TCPHDR_CWR BIT(7) 994 #define TCPHDR_AE BIT(8) 995 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 996 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 997 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 998 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 999 TCPHDR_FLAGS_MASK) 1000 1001 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 1002 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 1003 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR) 1004 1005 #define TCP_ACCECN_CEP_ACE_MASK 0x7 1006 #define TCP_ACCECN_ACE_MAX_DELTA 6 1007 1008 /* To avoid/detect middlebox interference, not all counters start at 0. 1009 * See draft-ietf-tcpm-accurate-ecn for the latest values. 1010 */ 1011 #define TCP_ACCECN_CEP_INIT_OFFSET 5 1012 #define TCP_ACCECN_E1B_INIT_OFFSET 1 1013 #define TCP_ACCECN_E0B_INIT_OFFSET 1 1014 #define TCP_ACCECN_CEB_INIT_OFFSET 0 1015 1016 /* State flags for sacked in struct tcp_skb_cb */ 1017 enum tcp_skb_cb_sacked_flags { 1018 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1019 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1020 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1021 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1022 TCPCB_LOST), /* All tag bits */ 1023 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1024 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1025 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1026 TCPCB_REPAIRED), 1027 }; 1028 1029 /* This is what the send packet queuing engine uses to pass 1030 * TCP per-packet control information to the transmission code. 1031 * We also store the host-order sequence numbers in here too. 1032 * This is 44 bytes if IPV6 is enabled. 1033 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1034 */ 1035 struct tcp_skb_cb { 1036 __u32 seq; /* Starting sequence number */ 1037 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1038 union { 1039 /* Note : 1040 * tcp_gso_segs/size are used in write queue only, 1041 * cf tcp_skb_pcount()/tcp_skb_mss() 1042 */ 1043 struct { 1044 u16 tcp_gso_segs; 1045 u16 tcp_gso_size; 1046 }; 1047 }; 1048 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1049 1050 __u8 sacked; /* State flags for SACK. */ 1051 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1052 #define TSTAMP_ACK_SK 0x1 1053 #define TSTAMP_ACK_BPF 0x2 1054 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1055 eor:1, /* Is skb MSG_EOR marked? */ 1056 has_rxtstamp:1, /* SKB has a RX timestamp */ 1057 unused:4; 1058 __u32 ack_seq; /* Sequence number ACK'd */ 1059 union { 1060 struct { 1061 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1062 /* There is space for up to 24 bytes */ 1063 __u32 is_app_limited:1, /* cwnd not fully used? */ 1064 delivered_ce:20, 1065 unused:11; 1066 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1067 __u32 delivered; 1068 /* start of send pipeline phase */ 1069 u64 first_tx_mstamp; 1070 /* when we reached the "delivered" count */ 1071 u64 delivered_mstamp; 1072 } tx; /* only used for outgoing skbs */ 1073 union { 1074 struct inet_skb_parm h4; 1075 #if IS_ENABLED(CONFIG_IPV6) 1076 struct inet6_skb_parm h6; 1077 #endif 1078 } header; /* For incoming skbs */ 1079 }; 1080 }; 1081 1082 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1083 1084 extern const struct inet_connection_sock_af_ops ipv4_specific; 1085 1086 #if IS_ENABLED(CONFIG_IPV6) 1087 /* This is the variant of inet6_iif() that must be used by TCP, 1088 * as TCP moves IP6CB into a different location in skb->cb[] 1089 */ 1090 static inline int tcp_v6_iif(const struct sk_buff *skb) 1091 { 1092 return TCP_SKB_CB(skb)->header.h6.iif; 1093 } 1094 1095 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1096 { 1097 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1098 1099 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1100 } 1101 1102 /* TCP_SKB_CB reference means this can not be used from early demux */ 1103 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1104 { 1105 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1106 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1107 return TCP_SKB_CB(skb)->header.h6.iif; 1108 #endif 1109 return 0; 1110 } 1111 1112 extern const struct inet_connection_sock_af_ops ipv6_specific; 1113 1114 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1115 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1116 void tcp_v6_early_demux(struct sk_buff *skb); 1117 1118 #endif 1119 1120 /* TCP_SKB_CB reference means this can not be used from early demux */ 1121 static inline int tcp_v4_sdif(struct sk_buff *skb) 1122 { 1123 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1124 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1125 return TCP_SKB_CB(skb)->header.h4.iif; 1126 #endif 1127 return 0; 1128 } 1129 1130 /* Due to TSO, an SKB can be composed of multiple actual 1131 * packets. To keep these tracked properly, we use this. 1132 */ 1133 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1134 { 1135 return TCP_SKB_CB(skb)->tcp_gso_segs; 1136 } 1137 1138 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1139 { 1140 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1141 } 1142 1143 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1144 { 1145 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1146 } 1147 1148 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1149 static inline int tcp_skb_mss(const struct sk_buff *skb) 1150 { 1151 return TCP_SKB_CB(skb)->tcp_gso_size; 1152 } 1153 1154 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1155 { 1156 return likely(!TCP_SKB_CB(skb)->eor); 1157 } 1158 1159 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1160 const struct sk_buff *from) 1161 { 1162 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1163 return likely(tcp_skb_can_collapse_to(to) && 1164 mptcp_skb_can_collapse(to, from) && 1165 skb_pure_zcopy_same(to, from) && 1166 skb_frags_readable(to) == skb_frags_readable(from)); 1167 } 1168 1169 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1170 const struct sk_buff *from) 1171 { 1172 return likely(mptcp_skb_can_collapse(to, from) && 1173 !skb_cmp_decrypted(to, from)); 1174 } 1175 1176 /* Events passed to congestion control interface */ 1177 enum tcp_ca_event { 1178 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1179 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1180 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1181 CA_EVENT_LOSS, /* loss timeout */ 1182 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1183 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1184 }; 1185 1186 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1187 enum tcp_ca_ack_event_flags { 1188 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1189 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1190 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1191 }; 1192 1193 /* 1194 * Interface for adding new TCP congestion control handlers 1195 */ 1196 #define TCP_CA_NAME_MAX 16 1197 #define TCP_CA_MAX 128 1198 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1199 1200 #define TCP_CA_UNSPEC 0 1201 1202 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1203 #define TCP_CONG_NON_RESTRICTED BIT(0) 1204 /* Requires ECN/ECT set on all packets */ 1205 #define TCP_CONG_NEEDS_ECN BIT(1) 1206 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1207 1208 union tcp_cc_info; 1209 1210 struct ack_sample { 1211 u32 pkts_acked; 1212 s32 rtt_us; 1213 u32 in_flight; 1214 }; 1215 1216 /* A rate sample measures the number of (original/retransmitted) data 1217 * packets delivered "delivered" over an interval of time "interval_us". 1218 * The tcp_rate.c code fills in the rate sample, and congestion 1219 * control modules that define a cong_control function to run at the end 1220 * of ACK processing can optionally chose to consult this sample when 1221 * setting cwnd and pacing rate. 1222 * A sample is invalid if "delivered" or "interval_us" is negative. 1223 */ 1224 struct rate_sample { 1225 u64 prior_mstamp; /* starting timestamp for interval */ 1226 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1227 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1228 s32 delivered; /* number of packets delivered over interval */ 1229 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1230 long interval_us; /* time for tp->delivered to incr "delivered" */ 1231 u32 snd_interval_us; /* snd interval for delivered packets */ 1232 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1233 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1234 int losses; /* number of packets marked lost upon ACK */ 1235 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1236 u32 prior_in_flight; /* in flight before this ACK */ 1237 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1238 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1239 bool is_retrans; /* is sample from retransmission? */ 1240 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1241 }; 1242 1243 struct tcp_congestion_ops { 1244 /* fast path fields are put first to fill one cache line */ 1245 1246 /* A congestion control (CC) must provide one of either: 1247 * 1248 * (a) a cong_avoid function, if the CC wants to use the core TCP 1249 * stack's default functionality to implement a "classic" 1250 * (Reno/CUBIC-style) response to packet loss, RFC3168 ECN, 1251 * idle periods, pacing rate computations, etc. 1252 * 1253 * (b) a cong_control function, if the CC wants custom behavior and 1254 * complete control of all congestion control behaviors. 1255 */ 1256 /* (a) "classic" response: calculate new cwnd. 1257 */ 1258 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1259 /* (b) "custom" response: call when packets are delivered to update 1260 * cwnd and pacing rate, after all the ca_state processing. 1261 */ 1262 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1263 1264 /* return slow start threshold (required) */ 1265 u32 (*ssthresh)(struct sock *sk); 1266 1267 /* call before changing ca_state (optional) */ 1268 void (*set_state)(struct sock *sk, u8 new_state); 1269 1270 /* call when cwnd event occurs (optional) */ 1271 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1272 1273 /* call when ack arrives (optional) */ 1274 void (*in_ack_event)(struct sock *sk, u32 flags); 1275 1276 /* hook for packet ack accounting (optional) */ 1277 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1278 1279 /* override sysctl_tcp_min_tso_segs (optional) */ 1280 u32 (*min_tso_segs)(struct sock *sk); 1281 1282 /* new value of cwnd after loss (required) */ 1283 u32 (*undo_cwnd)(struct sock *sk); 1284 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1285 u32 (*sndbuf_expand)(struct sock *sk); 1286 1287 /* control/slow paths put last */ 1288 /* get info for inet_diag (optional) */ 1289 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1290 union tcp_cc_info *info); 1291 1292 char name[TCP_CA_NAME_MAX]; 1293 struct module *owner; 1294 struct list_head list; 1295 u32 key; 1296 u32 flags; 1297 1298 /* initialize private data (optional) */ 1299 void (*init)(struct sock *sk); 1300 /* cleanup private data (optional) */ 1301 void (*release)(struct sock *sk); 1302 } ____cacheline_aligned_in_smp; 1303 1304 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1305 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1306 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1307 struct tcp_congestion_ops *old_type); 1308 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1309 1310 void tcp_assign_congestion_control(struct sock *sk); 1311 void tcp_init_congestion_control(struct sock *sk); 1312 void tcp_cleanup_congestion_control(struct sock *sk); 1313 int tcp_set_default_congestion_control(struct net *net, const char *name); 1314 void tcp_get_default_congestion_control(struct net *net, char *name); 1315 void tcp_get_available_congestion_control(char *buf, size_t len); 1316 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1317 int tcp_set_allowed_congestion_control(char *allowed); 1318 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1319 bool cap_net_admin); 1320 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1321 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1322 1323 u32 tcp_reno_ssthresh(struct sock *sk); 1324 u32 tcp_reno_undo_cwnd(struct sock *sk); 1325 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1326 extern struct tcp_congestion_ops tcp_reno; 1327 1328 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1329 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1330 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1331 #ifdef CONFIG_INET 1332 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1333 #else 1334 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1335 { 1336 return NULL; 1337 } 1338 #endif 1339 1340 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1341 { 1342 const struct inet_connection_sock *icsk = inet_csk(sk); 1343 1344 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1345 } 1346 1347 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1348 { 1349 const struct inet_connection_sock *icsk = inet_csk(sk); 1350 1351 if (icsk->icsk_ca_ops->cwnd_event) 1352 icsk->icsk_ca_ops->cwnd_event(sk, event); 1353 } 1354 1355 /* From tcp_cong.c */ 1356 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1357 1358 /* From tcp_rate.c */ 1359 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1360 bool is_sack_reneg, struct rate_sample *rs); 1361 void tcp_rate_check_app_limited(struct sock *sk); 1362 1363 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1364 { 1365 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1366 } 1367 1368 /* These functions determine how the current flow behaves in respect of SACK 1369 * handling. SACK is negotiated with the peer, and therefore it can vary 1370 * between different flows. 1371 * 1372 * tcp_is_sack - SACK enabled 1373 * tcp_is_reno - No SACK 1374 */ 1375 static inline int tcp_is_sack(const struct tcp_sock *tp) 1376 { 1377 return likely(tp->rx_opt.sack_ok); 1378 } 1379 1380 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1381 { 1382 return !tcp_is_sack(tp); 1383 } 1384 1385 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1386 { 1387 return tp->sacked_out + tp->lost_out; 1388 } 1389 1390 /* This determines how many packets are "in the network" to the best 1391 * of our knowledge. In many cases it is conservative, but where 1392 * detailed information is available from the receiver (via SACK 1393 * blocks etc.) we can make more aggressive calculations. 1394 * 1395 * Use this for decisions involving congestion control, use just 1396 * tp->packets_out to determine if the send queue is empty or not. 1397 * 1398 * Read this equation as: 1399 * 1400 * "Packets sent once on transmission queue" MINUS 1401 * "Packets left network, but not honestly ACKed yet" PLUS 1402 * "Packets fast retransmitted" 1403 */ 1404 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1405 { 1406 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1407 } 1408 1409 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1410 1411 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1412 { 1413 return tp->snd_cwnd; 1414 } 1415 1416 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1417 { 1418 WARN_ON_ONCE((int)val <= 0); 1419 tp->snd_cwnd = val; 1420 } 1421 1422 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1423 { 1424 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1425 } 1426 1427 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1428 { 1429 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1430 } 1431 1432 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1433 { 1434 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1435 (1 << inet_csk(sk)->icsk_ca_state); 1436 } 1437 1438 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1439 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1440 * ssthresh. 1441 */ 1442 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1443 { 1444 const struct tcp_sock *tp = tcp_sk(sk); 1445 1446 if (tcp_in_cwnd_reduction(sk)) 1447 return tp->snd_ssthresh; 1448 else 1449 return max(tp->snd_ssthresh, 1450 ((tcp_snd_cwnd(tp) >> 1) + 1451 (tcp_snd_cwnd(tp) >> 2))); 1452 } 1453 1454 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1455 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1456 1457 void tcp_enter_cwr(struct sock *sk); 1458 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1459 1460 /* The maximum number of MSS of available cwnd for which TSO defers 1461 * sending if not using sysctl_tcp_tso_win_divisor. 1462 */ 1463 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1464 { 1465 return 3; 1466 } 1467 1468 /* Returns end sequence number of the receiver's advertised window */ 1469 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1470 { 1471 return tp->snd_una + tp->snd_wnd; 1472 } 1473 1474 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1475 * flexible approach. The RFC suggests cwnd should not be raised unless 1476 * it was fully used previously. And that's exactly what we do in 1477 * congestion avoidance mode. But in slow start we allow cwnd to grow 1478 * as long as the application has used half the cwnd. 1479 * Example : 1480 * cwnd is 10 (IW10), but application sends 9 frames. 1481 * We allow cwnd to reach 18 when all frames are ACKed. 1482 * This check is safe because it's as aggressive as slow start which already 1483 * risks 100% overshoot. The advantage is that we discourage application to 1484 * either send more filler packets or data to artificially blow up the cwnd 1485 * usage, and allow application-limited process to probe bw more aggressively. 1486 */ 1487 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1488 { 1489 const struct tcp_sock *tp = tcp_sk(sk); 1490 1491 if (tp->is_cwnd_limited) 1492 return true; 1493 1494 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1495 if (tcp_in_slow_start(tp)) 1496 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1497 1498 return false; 1499 } 1500 1501 /* BBR congestion control needs pacing. 1502 * Same remark for SO_MAX_PACING_RATE. 1503 * sch_fq packet scheduler is efficiently handling pacing, 1504 * but is not always installed/used. 1505 * Return true if TCP stack should pace packets itself. 1506 */ 1507 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1508 { 1509 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1510 } 1511 1512 /* Estimates in how many jiffies next packet for this flow can be sent. 1513 * Scheduling a retransmit timer too early would be silly. 1514 */ 1515 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1516 { 1517 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1518 1519 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1520 } 1521 1522 static inline void tcp_reset_xmit_timer(struct sock *sk, 1523 const int what, 1524 unsigned long when, 1525 bool pace_delay) 1526 { 1527 if (pace_delay) 1528 when += tcp_pacing_delay(sk); 1529 inet_csk_reset_xmit_timer(sk, what, when, 1530 tcp_rto_max(sk)); 1531 } 1532 1533 /* Something is really bad, we could not queue an additional packet, 1534 * because qdisc is full or receiver sent a 0 window, or we are paced. 1535 * We do not want to add fuel to the fire, or abort too early, 1536 * so make sure the timer we arm now is at least 200ms in the future, 1537 * regardless of current icsk_rto value (as it could be ~2ms) 1538 */ 1539 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1540 { 1541 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1542 } 1543 1544 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1545 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1546 unsigned long max_when) 1547 { 1548 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1549 inet_csk(sk)->icsk_backoff); 1550 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1551 1552 return (unsigned long)min_t(u64, when, max_when); 1553 } 1554 1555 static inline void tcp_check_probe_timer(struct sock *sk) 1556 { 1557 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1558 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1559 tcp_probe0_base(sk), true); 1560 } 1561 1562 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1563 { 1564 tp->snd_wl1 = seq; 1565 } 1566 1567 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1568 { 1569 tp->snd_wl1 = seq; 1570 } 1571 1572 /* 1573 * Calculate(/check) TCP checksum 1574 */ 1575 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1576 __be32 daddr, __wsum base) 1577 { 1578 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1579 } 1580 1581 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1582 { 1583 return !skb_csum_unnecessary(skb) && 1584 __skb_checksum_complete(skb); 1585 } 1586 1587 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1588 enum skb_drop_reason *reason); 1589 1590 1591 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1592 void tcp_set_state(struct sock *sk, int state); 1593 void tcp_done(struct sock *sk); 1594 int tcp_abort(struct sock *sk, int err); 1595 1596 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1597 { 1598 rx_opt->dsack = 0; 1599 rx_opt->num_sacks = 0; 1600 } 1601 1602 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1603 1604 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1605 { 1606 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1607 struct tcp_sock *tp = tcp_sk(sk); 1608 s32 delta; 1609 1610 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1611 tp->packets_out || ca_ops->cong_control) 1612 return; 1613 delta = tcp_jiffies32 - tp->lsndtime; 1614 if (delta > inet_csk(sk)->icsk_rto) 1615 tcp_cwnd_restart(sk, delta); 1616 } 1617 1618 /* Determine a window scaling and initial window to offer. */ 1619 void tcp_select_initial_window(const struct sock *sk, int __space, 1620 __u32 mss, __u32 *rcv_wnd, 1621 __u32 *window_clamp, int wscale_ok, 1622 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1623 1624 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1625 { 1626 s64 scaled_space = (s64)space * scaling_ratio; 1627 1628 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1629 } 1630 1631 static inline int tcp_win_from_space(const struct sock *sk, int space) 1632 { 1633 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1634 } 1635 1636 /* inverse of __tcp_win_from_space() */ 1637 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1638 { 1639 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1640 1641 do_div(val, scaling_ratio); 1642 return val; 1643 } 1644 1645 static inline int tcp_space_from_win(const struct sock *sk, int win) 1646 { 1647 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1648 } 1649 1650 /* Assume a 50% default for skb->len/skb->truesize ratio. 1651 * This may be adjusted later in tcp_measure_rcv_mss(). 1652 */ 1653 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1654 1655 static inline void tcp_scaling_ratio_init(struct sock *sk) 1656 { 1657 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1658 } 1659 1660 /* Note: caller must be prepared to deal with negative returns */ 1661 static inline int tcp_space(const struct sock *sk) 1662 { 1663 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1664 READ_ONCE(sk->sk_backlog.len) - 1665 atomic_read(&sk->sk_rmem_alloc)); 1666 } 1667 1668 static inline int tcp_full_space(const struct sock *sk) 1669 { 1670 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1671 } 1672 1673 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1674 { 1675 int unused_mem = sk_unused_reserved_mem(sk); 1676 struct tcp_sock *tp = tcp_sk(sk); 1677 1678 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1679 if (unused_mem) 1680 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1681 tcp_win_from_space(sk, unused_mem)); 1682 } 1683 1684 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1685 { 1686 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1687 } 1688 1689 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1690 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1691 1692 1693 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1694 * If 87.5 % (7/8) of the space has been consumed, we want to override 1695 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1696 * len/truesize ratio. 1697 */ 1698 static inline bool tcp_rmem_pressure(const struct sock *sk) 1699 { 1700 int rcvbuf, threshold; 1701 1702 if (tcp_under_memory_pressure(sk)) 1703 return true; 1704 1705 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1706 threshold = rcvbuf - (rcvbuf >> 3); 1707 1708 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1709 } 1710 1711 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1712 { 1713 const struct tcp_sock *tp = tcp_sk(sk); 1714 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1715 1716 if (avail <= 0) 1717 return false; 1718 1719 return (avail >= target) || tcp_rmem_pressure(sk) || 1720 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1721 } 1722 1723 extern void tcp_openreq_init_rwin(struct request_sock *req, 1724 const struct sock *sk_listener, 1725 const struct dst_entry *dst); 1726 1727 void tcp_enter_memory_pressure(struct sock *sk); 1728 void tcp_leave_memory_pressure(struct sock *sk); 1729 1730 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1731 { 1732 struct net *net = sock_net((struct sock *)tp); 1733 int val; 1734 1735 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1736 * and do_tcp_setsockopt(). 1737 */ 1738 val = READ_ONCE(tp->keepalive_intvl); 1739 1740 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1741 } 1742 1743 static inline int keepalive_time_when(const struct tcp_sock *tp) 1744 { 1745 struct net *net = sock_net((struct sock *)tp); 1746 int val; 1747 1748 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1749 val = READ_ONCE(tp->keepalive_time); 1750 1751 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1752 } 1753 1754 static inline int keepalive_probes(const struct tcp_sock *tp) 1755 { 1756 struct net *net = sock_net((struct sock *)tp); 1757 int val; 1758 1759 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1760 * and do_tcp_setsockopt(). 1761 */ 1762 val = READ_ONCE(tp->keepalive_probes); 1763 1764 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1765 } 1766 1767 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1768 { 1769 const struct inet_connection_sock *icsk = &tp->inet_conn; 1770 1771 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1772 tcp_jiffies32 - tp->rcv_tstamp); 1773 } 1774 1775 static inline int tcp_fin_time(const struct sock *sk) 1776 { 1777 int fin_timeout = tcp_sk(sk)->linger2 ? : 1778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1779 const int rto = inet_csk(sk)->icsk_rto; 1780 1781 if (fin_timeout < (rto << 2) - (rto >> 1)) 1782 fin_timeout = (rto << 2) - (rto >> 1); 1783 1784 return fin_timeout; 1785 } 1786 1787 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1788 int paws_win) 1789 { 1790 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1791 return true; 1792 if (unlikely(!time_before32(ktime_get_seconds(), 1793 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1794 return true; 1795 /* 1796 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1797 * then following tcp messages have valid values. Ignore 0 value, 1798 * or else 'negative' tsval might forbid us to accept their packets. 1799 */ 1800 if (!rx_opt->ts_recent) 1801 return true; 1802 return false; 1803 } 1804 1805 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1806 int rst) 1807 { 1808 if (tcp_paws_check(rx_opt, 0)) 1809 return false; 1810 1811 /* RST segments are not recommended to carry timestamp, 1812 and, if they do, it is recommended to ignore PAWS because 1813 "their cleanup function should take precedence over timestamps." 1814 Certainly, it is mistake. It is necessary to understand the reasons 1815 of this constraint to relax it: if peer reboots, clock may go 1816 out-of-sync and half-open connections will not be reset. 1817 Actually, the problem would be not existing if all 1818 the implementations followed draft about maintaining clock 1819 via reboots. Linux-2.2 DOES NOT! 1820 1821 However, we can relax time bounds for RST segments to MSL. 1822 */ 1823 if (rst && !time_before32(ktime_get_seconds(), 1824 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1825 return false; 1826 return true; 1827 } 1828 1829 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1830 { 1831 u32 ace; 1832 1833 /* mptcp hooks are only on the slow path */ 1834 if (sk_is_mptcp((struct sock *)tp)) 1835 return; 1836 1837 ace = tcp_ecn_mode_accecn(tp) ? 1838 ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) & 1839 TCP_ACCECN_CEP_ACE_MASK) : 0; 1840 1841 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1842 (ace << 22) | 1843 ntohl(TCP_FLAG_ACK) | 1844 snd_wnd); 1845 } 1846 1847 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1848 { 1849 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1850 } 1851 1852 static inline void tcp_fast_path_check(struct sock *sk) 1853 { 1854 struct tcp_sock *tp = tcp_sk(sk); 1855 1856 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1857 tp->rcv_wnd && 1858 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1859 !tp->urg_data) 1860 tcp_fast_path_on(tp); 1861 } 1862 1863 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1864 int mib_idx, u32 *last_oow_ack_time); 1865 1866 static inline void tcp_mib_init(struct net *net) 1867 { 1868 /* See RFC 2012 */ 1869 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1870 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1871 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1872 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1873 } 1874 1875 /* from STCP */ 1876 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1877 { 1878 tp->retransmit_skb_hint = NULL; 1879 } 1880 1881 #define tcp_md5_addr tcp_ao_addr 1882 1883 /* - key database */ 1884 struct tcp_md5sig_key { 1885 struct hlist_node node; 1886 u8 keylen; 1887 u8 family; /* AF_INET or AF_INET6 */ 1888 u8 prefixlen; 1889 u8 flags; 1890 union tcp_md5_addr addr; 1891 int l3index; /* set if key added with L3 scope */ 1892 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1893 struct rcu_head rcu; 1894 }; 1895 1896 /* - sock block */ 1897 struct tcp_md5sig_info { 1898 struct hlist_head head; 1899 struct rcu_head rcu; 1900 }; 1901 1902 /* - pseudo header */ 1903 struct tcp4_pseudohdr { 1904 __be32 saddr; 1905 __be32 daddr; 1906 __u8 pad; 1907 __u8 protocol; 1908 __be16 len; 1909 }; 1910 1911 struct tcp6_pseudohdr { 1912 struct in6_addr saddr; 1913 struct in6_addr daddr; 1914 __be32 len; 1915 __be32 protocol; /* including padding */ 1916 }; 1917 1918 /* 1919 * struct tcp_sigpool - per-CPU pool of ahash_requests 1920 * @scratch: per-CPU temporary area, that can be used between 1921 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1922 * crypto request 1923 * @req: pre-allocated ahash request 1924 */ 1925 struct tcp_sigpool { 1926 void *scratch; 1927 struct ahash_request *req; 1928 }; 1929 1930 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1931 void tcp_sigpool_get(unsigned int id); 1932 void tcp_sigpool_release(unsigned int id); 1933 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1934 const struct sk_buff *skb, 1935 unsigned int header_len); 1936 1937 /** 1938 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1939 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1940 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1941 * 1942 * Returns: 0 on success, error otherwise. 1943 */ 1944 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1945 /** 1946 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1947 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1948 */ 1949 void tcp_sigpool_end(struct tcp_sigpool *c); 1950 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1951 /* - functions */ 1952 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1953 const struct sock *sk, const struct sk_buff *skb); 1954 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1955 int family, u8 prefixlen, int l3index, u8 flags, 1956 const u8 *newkey, u8 newkeylen); 1957 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1958 int family, u8 prefixlen, int l3index, 1959 struct tcp_md5sig_key *key); 1960 1961 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1962 int family, u8 prefixlen, int l3index, u8 flags); 1963 void tcp_clear_md5_list(struct sock *sk); 1964 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1965 const struct sock *addr_sk); 1966 1967 #ifdef CONFIG_TCP_MD5SIG 1968 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1969 const union tcp_md5_addr *addr, 1970 int family, bool any_l3index); 1971 static inline struct tcp_md5sig_key * 1972 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1973 const union tcp_md5_addr *addr, int family) 1974 { 1975 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1976 return NULL; 1977 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1978 } 1979 1980 static inline struct tcp_md5sig_key * 1981 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1982 const union tcp_md5_addr *addr, int family) 1983 { 1984 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1985 return NULL; 1986 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1987 } 1988 1989 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1990 void tcp_md5_destruct_sock(struct sock *sk); 1991 #else 1992 static inline struct tcp_md5sig_key * 1993 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1994 const union tcp_md5_addr *addr, int family) 1995 { 1996 return NULL; 1997 } 1998 1999 static inline struct tcp_md5sig_key * 2000 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 2001 const union tcp_md5_addr *addr, int family) 2002 { 2003 return NULL; 2004 } 2005 2006 #define tcp_twsk_md5_key(twsk) NULL 2007 static inline void tcp_md5_destruct_sock(struct sock *sk) 2008 { 2009 } 2010 #endif 2011 2012 struct md5_ctx; 2013 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb, 2014 unsigned int header_len); 2015 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key); 2016 2017 /* From tcp_fastopen.c */ 2018 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 2019 struct tcp_fastopen_cookie *cookie); 2020 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 2021 struct tcp_fastopen_cookie *cookie, bool syn_lost, 2022 u16 try_exp); 2023 struct tcp_fastopen_request { 2024 /* Fast Open cookie. Size 0 means a cookie request */ 2025 struct tcp_fastopen_cookie cookie; 2026 struct msghdr *data; /* data in MSG_FASTOPEN */ 2027 size_t size; 2028 int copied; /* queued in tcp_connect() */ 2029 struct ubuf_info *uarg; 2030 }; 2031 void tcp_free_fastopen_req(struct tcp_sock *tp); 2032 void tcp_fastopen_destroy_cipher(struct sock *sk); 2033 void tcp_fastopen_ctx_destroy(struct net *net); 2034 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 2035 void *primary_key, void *backup_key); 2036 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 2037 u64 *key); 2038 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 2039 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 2040 struct request_sock *req, 2041 struct tcp_fastopen_cookie *foc, 2042 const struct dst_entry *dst); 2043 void tcp_fastopen_init_key_once(struct net *net); 2044 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2045 struct tcp_fastopen_cookie *cookie); 2046 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2047 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2048 #define TCP_FASTOPEN_KEY_MAX 2 2049 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2050 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2051 2052 /* Fastopen key context */ 2053 struct tcp_fastopen_context { 2054 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2055 int num; 2056 struct rcu_head rcu; 2057 }; 2058 2059 void tcp_fastopen_active_disable(struct sock *sk); 2060 bool tcp_fastopen_active_should_disable(struct sock *sk); 2061 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2062 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2063 2064 /* Caller needs to wrap with rcu_read_(un)lock() */ 2065 static inline 2066 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2067 { 2068 struct tcp_fastopen_context *ctx; 2069 2070 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2071 if (!ctx) 2072 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2073 return ctx; 2074 } 2075 2076 static inline 2077 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2078 const struct tcp_fastopen_cookie *orig) 2079 { 2080 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2081 orig->len == foc->len && 2082 !memcmp(orig->val, foc->val, foc->len)) 2083 return true; 2084 return false; 2085 } 2086 2087 static inline 2088 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2089 { 2090 return ctx->num; 2091 } 2092 2093 /* Latencies incurred by various limits for a sender. They are 2094 * chronograph-like stats that are mutually exclusive. 2095 */ 2096 enum tcp_chrono { 2097 TCP_CHRONO_UNSPEC, 2098 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2099 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2100 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2101 __TCP_CHRONO_MAX, 2102 }; 2103 2104 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2105 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2106 2107 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2108 * the same memory storage than skb->destructor/_skb_refdst 2109 */ 2110 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2111 { 2112 skb->destructor = NULL; 2113 skb->_skb_refdst = 0UL; 2114 } 2115 2116 #define tcp_skb_tsorted_save(skb) { \ 2117 unsigned long _save = skb->_skb_refdst; \ 2118 skb->_skb_refdst = 0UL; 2119 2120 #define tcp_skb_tsorted_restore(skb) \ 2121 skb->_skb_refdst = _save; \ 2122 } 2123 2124 void tcp_write_queue_purge(struct sock *sk); 2125 2126 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2127 { 2128 return skb_rb_first(&sk->tcp_rtx_queue); 2129 } 2130 2131 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2132 { 2133 return skb_rb_last(&sk->tcp_rtx_queue); 2134 } 2135 2136 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2137 { 2138 return skb_peek_tail(&sk->sk_write_queue); 2139 } 2140 2141 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2142 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2143 2144 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2145 { 2146 return skb_peek(&sk->sk_write_queue); 2147 } 2148 2149 static inline bool tcp_skb_is_last(const struct sock *sk, 2150 const struct sk_buff *skb) 2151 { 2152 return skb_queue_is_last(&sk->sk_write_queue, skb); 2153 } 2154 2155 /** 2156 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2157 * @sk: socket 2158 * 2159 * Since the write queue can have a temporary empty skb in it, 2160 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2161 */ 2162 static inline bool tcp_write_queue_empty(const struct sock *sk) 2163 { 2164 const struct tcp_sock *tp = tcp_sk(sk); 2165 2166 return tp->write_seq == tp->snd_nxt; 2167 } 2168 2169 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2170 { 2171 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2172 } 2173 2174 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2175 { 2176 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2177 } 2178 2179 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2180 { 2181 __skb_queue_tail(&sk->sk_write_queue, skb); 2182 2183 /* Queue it, remembering where we must start sending. */ 2184 if (sk->sk_write_queue.next == skb) 2185 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2186 } 2187 2188 /* Insert new before skb on the write queue of sk. */ 2189 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2190 struct sk_buff *skb, 2191 struct sock *sk) 2192 { 2193 __skb_queue_before(&sk->sk_write_queue, skb, new); 2194 } 2195 2196 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2197 { 2198 tcp_skb_tsorted_anchor_cleanup(skb); 2199 __skb_unlink(skb, &sk->sk_write_queue); 2200 } 2201 2202 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2203 2204 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2205 { 2206 tcp_skb_tsorted_anchor_cleanup(skb); 2207 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2208 } 2209 2210 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2211 { 2212 list_del(&skb->tcp_tsorted_anchor); 2213 tcp_rtx_queue_unlink(skb, sk); 2214 tcp_wmem_free_skb(sk, skb); 2215 } 2216 2217 static inline void tcp_write_collapse_fence(struct sock *sk) 2218 { 2219 struct sk_buff *skb = tcp_write_queue_tail(sk); 2220 2221 if (skb) 2222 TCP_SKB_CB(skb)->eor = 1; 2223 } 2224 2225 static inline void tcp_push_pending_frames(struct sock *sk) 2226 { 2227 if (tcp_send_head(sk)) { 2228 struct tcp_sock *tp = tcp_sk(sk); 2229 2230 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2231 } 2232 } 2233 2234 /* Start sequence of the skb just after the highest skb with SACKed 2235 * bit, valid only if sacked_out > 0 or when the caller has ensured 2236 * validity by itself. 2237 */ 2238 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2239 { 2240 if (!tp->sacked_out) 2241 return tp->snd_una; 2242 2243 if (tp->highest_sack == NULL) 2244 return tp->snd_nxt; 2245 2246 return TCP_SKB_CB(tp->highest_sack)->seq; 2247 } 2248 2249 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2250 { 2251 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2252 } 2253 2254 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2255 { 2256 return tcp_sk(sk)->highest_sack; 2257 } 2258 2259 static inline void tcp_highest_sack_reset(struct sock *sk) 2260 { 2261 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2262 } 2263 2264 /* Called when old skb is about to be deleted and replaced by new skb */ 2265 static inline void tcp_highest_sack_replace(struct sock *sk, 2266 struct sk_buff *old, 2267 struct sk_buff *new) 2268 { 2269 if (old == tcp_highest_sack(sk)) 2270 tcp_sk(sk)->highest_sack = new; 2271 } 2272 2273 /* This helper checks if socket has IP_TRANSPARENT set */ 2274 static inline bool inet_sk_transparent(const struct sock *sk) 2275 { 2276 switch (sk->sk_state) { 2277 case TCP_TIME_WAIT: 2278 return inet_twsk(sk)->tw_transparent; 2279 case TCP_NEW_SYN_RECV: 2280 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2281 } 2282 return inet_test_bit(TRANSPARENT, sk); 2283 } 2284 2285 /* Determines whether this is a thin stream (which may suffer from 2286 * increased latency). Used to trigger latency-reducing mechanisms. 2287 */ 2288 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2289 { 2290 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2291 } 2292 2293 /* /proc */ 2294 enum tcp_seq_states { 2295 TCP_SEQ_STATE_LISTENING, 2296 TCP_SEQ_STATE_ESTABLISHED, 2297 }; 2298 2299 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2300 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2301 void tcp_seq_stop(struct seq_file *seq, void *v); 2302 2303 struct tcp_seq_afinfo { 2304 sa_family_t family; 2305 }; 2306 2307 struct tcp_iter_state { 2308 struct seq_net_private p; 2309 enum tcp_seq_states state; 2310 struct sock *syn_wait_sk; 2311 int bucket, offset, sbucket, num; 2312 loff_t last_pos; 2313 }; 2314 2315 extern struct request_sock_ops tcp_request_sock_ops; 2316 extern struct request_sock_ops tcp6_request_sock_ops; 2317 2318 void tcp_v4_destroy_sock(struct sock *sk); 2319 2320 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2321 netdev_features_t features); 2322 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2323 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2324 struct tcphdr *th); 2325 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2326 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2327 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2328 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2329 #ifdef CONFIG_INET 2330 void tcp_gro_complete(struct sk_buff *skb); 2331 #else 2332 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2333 #endif 2334 2335 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2336 2337 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2338 { 2339 struct net *net = sock_net((struct sock *)tp); 2340 u32 val; 2341 2342 val = READ_ONCE(tp->notsent_lowat); 2343 2344 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2345 } 2346 2347 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2348 2349 #ifdef CONFIG_PROC_FS 2350 int tcp4_proc_init(void); 2351 void tcp4_proc_exit(void); 2352 #endif 2353 2354 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2355 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2356 const struct tcp_request_sock_ops *af_ops, 2357 struct sock *sk, struct sk_buff *skb); 2358 2359 /* TCP af-specific functions */ 2360 struct tcp_sock_af_ops { 2361 #ifdef CONFIG_TCP_MD5SIG 2362 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2363 const struct sock *addr_sk); 2364 void (*calc_md5_hash)(char *location, 2365 const struct tcp_md5sig_key *md5, 2366 const struct sock *sk, 2367 const struct sk_buff *skb); 2368 int (*md5_parse)(struct sock *sk, 2369 int optname, 2370 sockptr_t optval, 2371 int optlen); 2372 #endif 2373 #ifdef CONFIG_TCP_AO 2374 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2375 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2376 struct sock *addr_sk, 2377 int sndid, int rcvid); 2378 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2379 const struct sock *sk, 2380 __be32 sisn, __be32 disn, bool send); 2381 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2382 const struct sock *sk, const struct sk_buff *skb, 2383 const u8 *tkey, int hash_offset, u32 sne); 2384 #endif 2385 }; 2386 2387 struct tcp_request_sock_ops { 2388 u16 mss_clamp; 2389 #ifdef CONFIG_TCP_MD5SIG 2390 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2391 const struct sock *addr_sk); 2392 void (*calc_md5_hash) (char *location, 2393 const struct tcp_md5sig_key *md5, 2394 const struct sock *sk, 2395 const struct sk_buff *skb); 2396 #endif 2397 #ifdef CONFIG_TCP_AO 2398 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2399 struct request_sock *req, 2400 int sndid, int rcvid); 2401 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2402 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2403 struct request_sock *req, const struct sk_buff *skb, 2404 int hash_offset, u32 sne); 2405 #endif 2406 #ifdef CONFIG_SYN_COOKIES 2407 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2408 __u16 *mss); 2409 #endif 2410 struct dst_entry *(*route_req)(const struct sock *sk, 2411 struct sk_buff *skb, 2412 struct flowi *fl, 2413 struct request_sock *req, 2414 u32 tw_isn); 2415 u32 (*init_seq)(const struct sk_buff *skb); 2416 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2417 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2418 struct flowi *fl, struct request_sock *req, 2419 struct tcp_fastopen_cookie *foc, 2420 enum tcp_synack_type synack_type, 2421 struct sk_buff *syn_skb); 2422 }; 2423 2424 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2425 #if IS_ENABLED(CONFIG_IPV6) 2426 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2427 #endif 2428 2429 #ifdef CONFIG_SYN_COOKIES 2430 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2431 const struct sock *sk, struct sk_buff *skb, 2432 __u16 *mss) 2433 { 2434 tcp_synq_overflow(sk); 2435 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2436 return ops->cookie_init_seq(skb, mss); 2437 } 2438 #else 2439 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2440 const struct sock *sk, struct sk_buff *skb, 2441 __u16 *mss) 2442 { 2443 return 0; 2444 } 2445 #endif 2446 2447 struct tcp_key { 2448 union { 2449 struct { 2450 struct tcp_ao_key *ao_key; 2451 char *traffic_key; 2452 u32 sne; 2453 u8 rcv_next; 2454 }; 2455 struct tcp_md5sig_key *md5_key; 2456 }; 2457 enum { 2458 TCP_KEY_NONE = 0, 2459 TCP_KEY_MD5, 2460 TCP_KEY_AO, 2461 } type; 2462 }; 2463 2464 static inline void tcp_get_current_key(const struct sock *sk, 2465 struct tcp_key *out) 2466 { 2467 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2468 const struct tcp_sock *tp = tcp_sk(sk); 2469 #endif 2470 2471 #ifdef CONFIG_TCP_AO 2472 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2473 struct tcp_ao_info *ao; 2474 2475 ao = rcu_dereference_protected(tp->ao_info, 2476 lockdep_sock_is_held(sk)); 2477 if (ao) { 2478 out->ao_key = READ_ONCE(ao->current_key); 2479 out->type = TCP_KEY_AO; 2480 return; 2481 } 2482 } 2483 #endif 2484 #ifdef CONFIG_TCP_MD5SIG 2485 if (static_branch_unlikely(&tcp_md5_needed.key) && 2486 rcu_access_pointer(tp->md5sig_info)) { 2487 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2488 if (out->md5_key) { 2489 out->type = TCP_KEY_MD5; 2490 return; 2491 } 2492 } 2493 #endif 2494 out->type = TCP_KEY_NONE; 2495 } 2496 2497 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2498 { 2499 if (static_branch_tcp_md5()) 2500 return key->type == TCP_KEY_MD5; 2501 return false; 2502 } 2503 2504 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2505 { 2506 if (static_branch_tcp_ao()) 2507 return key->type == TCP_KEY_AO; 2508 return false; 2509 } 2510 2511 int tcpv4_offload_init(void); 2512 2513 void tcp_v4_init(void); 2514 void tcp_init(void); 2515 2516 /* tcp_recovery.c */ 2517 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2518 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2519 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2520 u32 reo_wnd); 2521 extern bool tcp_rack_mark_lost(struct sock *sk); 2522 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2523 u64 xmit_time); 2524 extern void tcp_rack_reo_timeout(struct sock *sk); 2525 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2526 2527 /* tcp_plb.c */ 2528 2529 /* 2530 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2531 * expects cong_ratio which represents fraction of traffic that experienced 2532 * congestion over a single RTT. In order to avoid floating point operations, 2533 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2534 */ 2535 #define TCP_PLB_SCALE 8 2536 2537 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2538 struct tcp_plb_state { 2539 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2540 unused:3; 2541 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2542 }; 2543 2544 static inline void tcp_plb_init(const struct sock *sk, 2545 struct tcp_plb_state *plb) 2546 { 2547 plb->consec_cong_rounds = 0; 2548 plb->pause_until = 0; 2549 } 2550 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2551 const int cong_ratio); 2552 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2553 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2554 2555 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2556 { 2557 WARN_ONCE(cond, 2558 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2559 str, 2560 tcp_snd_cwnd(tcp_sk(sk)), 2561 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2562 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2563 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2564 inet_csk(sk)->icsk_ca_state, 2565 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2566 inet_csk(sk)->icsk_pmtu_cookie); 2567 } 2568 2569 /* At how many usecs into the future should the RTO fire? */ 2570 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2571 { 2572 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2573 u32 rto = inet_csk(sk)->icsk_rto; 2574 2575 if (likely(skb)) { 2576 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2577 2578 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2579 } else { 2580 tcp_warn_once(sk, 1, "rtx queue empty: "); 2581 return jiffies_to_usecs(rto); 2582 } 2583 2584 } 2585 2586 /* 2587 * Save and compile IPv4 options, return a pointer to it 2588 */ 2589 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2590 struct sk_buff *skb) 2591 { 2592 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2593 struct ip_options_rcu *dopt = NULL; 2594 2595 if (opt->optlen) { 2596 int opt_size = sizeof(*dopt) + opt->optlen; 2597 2598 dopt = kmalloc(opt_size, GFP_ATOMIC); 2599 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2600 kfree(dopt); 2601 dopt = NULL; 2602 } 2603 } 2604 return dopt; 2605 } 2606 2607 /* locally generated TCP pure ACKs have skb->truesize == 2 2608 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2609 * This is much faster than dissecting the packet to find out. 2610 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2611 */ 2612 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2613 { 2614 return skb->truesize == 2; 2615 } 2616 2617 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2618 { 2619 skb->truesize = 2; 2620 } 2621 2622 static inline int tcp_inq(struct sock *sk) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 int answ; 2626 2627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2628 answ = 0; 2629 } else if (sock_flag(sk, SOCK_URGINLINE) || 2630 !tp->urg_data || 2631 before(tp->urg_seq, tp->copied_seq) || 2632 !before(tp->urg_seq, tp->rcv_nxt)) { 2633 2634 answ = tp->rcv_nxt - tp->copied_seq; 2635 2636 /* Subtract 1, if FIN was received */ 2637 if (answ && sock_flag(sk, SOCK_DONE)) 2638 answ--; 2639 } else { 2640 answ = tp->urg_seq - tp->copied_seq; 2641 } 2642 2643 return answ; 2644 } 2645 2646 int tcp_peek_len(struct socket *sock); 2647 2648 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2649 { 2650 u16 segs_in; 2651 2652 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2653 2654 /* We update these fields while other threads might 2655 * read them from tcp_get_info() 2656 */ 2657 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2658 if (skb->len > tcp_hdrlen(skb)) 2659 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2660 } 2661 2662 /* 2663 * TCP listen path runs lockless. 2664 * We forced "struct sock" to be const qualified to make sure 2665 * we don't modify one of its field by mistake. 2666 * Here, we increment sk_drops which is an atomic_t, so we can safely 2667 * make sock writable again. 2668 */ 2669 static inline void tcp_listendrop(const struct sock *sk) 2670 { 2671 sk_drops_inc((struct sock *)sk); 2672 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2673 } 2674 2675 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2676 2677 /* 2678 * Interface for adding Upper Level Protocols over TCP 2679 */ 2680 2681 #define TCP_ULP_NAME_MAX 16 2682 #define TCP_ULP_MAX 128 2683 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2684 2685 struct tcp_ulp_ops { 2686 struct list_head list; 2687 2688 /* initialize ulp */ 2689 int (*init)(struct sock *sk); 2690 /* update ulp */ 2691 void (*update)(struct sock *sk, struct proto *p, 2692 void (*write_space)(struct sock *sk)); 2693 /* cleanup ulp */ 2694 void (*release)(struct sock *sk); 2695 /* diagnostic */ 2696 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2697 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2698 /* clone ulp */ 2699 void (*clone)(const struct request_sock *req, struct sock *newsk, 2700 const gfp_t priority); 2701 2702 char name[TCP_ULP_NAME_MAX]; 2703 struct module *owner; 2704 }; 2705 int tcp_register_ulp(struct tcp_ulp_ops *type); 2706 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2707 int tcp_set_ulp(struct sock *sk, const char *name); 2708 void tcp_get_available_ulp(char *buf, size_t len); 2709 void tcp_cleanup_ulp(struct sock *sk); 2710 void tcp_update_ulp(struct sock *sk, struct proto *p, 2711 void (*write_space)(struct sock *sk)); 2712 2713 #define MODULE_ALIAS_TCP_ULP(name) \ 2714 MODULE_INFO(alias, name); \ 2715 MODULE_INFO(alias, "tcp-ulp-" name) 2716 2717 #ifdef CONFIG_NET_SOCK_MSG 2718 struct sk_msg; 2719 struct sk_psock; 2720 2721 #ifdef CONFIG_BPF_SYSCALL 2722 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2723 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2724 #ifdef CONFIG_BPF_STREAM_PARSER 2725 struct strparser; 2726 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2727 sk_read_actor_t recv_actor); 2728 #endif /* CONFIG_BPF_STREAM_PARSER */ 2729 #endif /* CONFIG_BPF_SYSCALL */ 2730 2731 #ifdef CONFIG_INET 2732 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2733 #else 2734 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2735 { 2736 } 2737 #endif 2738 2739 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2740 struct sk_msg *msg, u32 bytes, int flags); 2741 #endif /* CONFIG_NET_SOCK_MSG */ 2742 2743 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2744 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2745 { 2746 } 2747 #endif 2748 2749 #ifdef CONFIG_CGROUP_BPF 2750 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2751 struct sk_buff *skb, 2752 unsigned int end_offset) 2753 { 2754 skops->skb = skb; 2755 skops->skb_data_end = skb->data + end_offset; 2756 } 2757 #else 2758 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2759 struct sk_buff *skb, 2760 unsigned int end_offset) 2761 { 2762 } 2763 #endif 2764 2765 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2766 * is < 0, then the BPF op failed (for example if the loaded BPF 2767 * program does not support the chosen operation or there is no BPF 2768 * program loaded). 2769 */ 2770 #ifdef CONFIG_BPF 2771 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2772 { 2773 struct bpf_sock_ops_kern sock_ops; 2774 int ret; 2775 2776 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2777 if (sk_fullsock(sk)) { 2778 sock_ops.is_fullsock = 1; 2779 sock_ops.is_locked_tcp_sock = 1; 2780 sock_owned_by_me(sk); 2781 } 2782 2783 sock_ops.sk = sk; 2784 sock_ops.op = op; 2785 if (nargs > 0) 2786 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2787 2788 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2789 if (ret == 0) 2790 ret = sock_ops.reply; 2791 else 2792 ret = -1; 2793 return ret; 2794 } 2795 2796 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2797 { 2798 u32 args[2] = {arg1, arg2}; 2799 2800 return tcp_call_bpf(sk, op, 2, args); 2801 } 2802 2803 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2804 u32 arg3) 2805 { 2806 u32 args[3] = {arg1, arg2, arg3}; 2807 2808 return tcp_call_bpf(sk, op, 3, args); 2809 } 2810 2811 #else 2812 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2813 { 2814 return -EPERM; 2815 } 2816 2817 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2818 { 2819 return -EPERM; 2820 } 2821 2822 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2823 u32 arg3) 2824 { 2825 return -EPERM; 2826 } 2827 2828 #endif 2829 2830 static inline u32 tcp_timeout_init(struct sock *sk) 2831 { 2832 int timeout; 2833 2834 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2835 2836 if (timeout <= 0) 2837 timeout = TCP_TIMEOUT_INIT; 2838 return min_t(int, timeout, TCP_RTO_MAX); 2839 } 2840 2841 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2842 { 2843 int rwnd; 2844 2845 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2846 2847 if (rwnd < 0) 2848 rwnd = 0; 2849 return rwnd; 2850 } 2851 2852 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2853 { 2854 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2855 } 2856 2857 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2858 { 2859 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2860 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2861 } 2862 2863 #if IS_ENABLED(CONFIG_SMC) 2864 extern struct static_key_false tcp_have_smc; 2865 #endif 2866 2867 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2868 void clean_acked_data_enable(struct tcp_sock *tp, 2869 void (*cad)(struct sock *sk, u32 ack_seq)); 2870 void clean_acked_data_disable(struct tcp_sock *tp); 2871 void clean_acked_data_flush(void); 2872 #endif 2873 2874 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2875 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2876 const struct tcp_sock *tp) 2877 { 2878 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2879 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2880 } 2881 2882 /* Compute Earliest Departure Time for some control packets 2883 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2884 */ 2885 static inline u64 tcp_transmit_time(const struct sock *sk) 2886 { 2887 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2888 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2889 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2890 2891 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2892 } 2893 return 0; 2894 } 2895 2896 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2897 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2898 { 2899 const u8 *md5_tmp, *ao_tmp; 2900 int ret; 2901 2902 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2903 if (ret) 2904 return ret; 2905 2906 if (md5_hash) 2907 *md5_hash = md5_tmp; 2908 2909 if (aoh) { 2910 if (!ao_tmp) 2911 *aoh = NULL; 2912 else 2913 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2914 } 2915 2916 return 0; 2917 } 2918 2919 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2920 int family, int l3index, bool stat_inc) 2921 { 2922 #ifdef CONFIG_TCP_AO 2923 struct tcp_ao_info *ao_info; 2924 struct tcp_ao_key *ao_key; 2925 2926 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2927 return false; 2928 2929 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2930 lockdep_sock_is_held(sk)); 2931 if (!ao_info) 2932 return false; 2933 2934 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2935 if (ao_info->ao_required || ao_key) { 2936 if (stat_inc) { 2937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2938 atomic64_inc(&ao_info->counters.ao_required); 2939 } 2940 return true; 2941 } 2942 #endif 2943 return false; 2944 } 2945 2946 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2947 const struct request_sock *req, const struct sk_buff *skb, 2948 const void *saddr, const void *daddr, 2949 int family, int dif, int sdif); 2950 2951 #endif /* _TCP_H */ 2952