1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/tcp_ao.h> 41 #include <net/inet_ecn.h> 42 #include <net/dst.h> 43 #include <net/mptcp.h> 44 45 #include <linux/seq_file.h> 46 #include <linux/memcontrol.h> 47 #include <linux/bpf-cgroup.h> 48 #include <linux/siphash.h> 49 50 extern struct inet_hashinfo tcp_hashinfo; 51 52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 53 int tcp_orphan_count_sum(void); 54 55 DECLARE_PER_CPU(u32, tcp_tw_isn); 56 57 void tcp_time_wait(struct sock *sk, int state, int timeo); 58 59 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 60 #define MAX_TCP_OPTION_SPACE 40 61 #define TCP_MIN_SND_MSS 48 62 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 63 64 /* 65 * Never offer a window over 32767 without using window scaling. Some 66 * poor stacks do signed 16bit maths! 67 */ 68 #define MAX_TCP_WINDOW 32767U 69 70 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 71 #define TCP_MIN_MSS 88U 72 73 /* The initial MTU to use for probing */ 74 #define TCP_BASE_MSS 1024 75 76 /* probing interval, default to 10 minutes as per RFC4821 */ 77 #define TCP_PROBE_INTERVAL 600 78 79 /* Specify interval when tcp mtu probing will stop */ 80 #define TCP_PROBE_THRESHOLD 8 81 82 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 83 #define TCP_FASTRETRANS_THRESH 3 84 85 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 86 #define TCP_MAX_QUICKACKS 16U 87 88 /* Maximal number of window scale according to RFC1323 */ 89 #define TCP_MAX_WSCALE 14U 90 91 /* urg_data states */ 92 #define TCP_URG_VALID 0x0100 93 #define TCP_URG_NOTYET 0x0200 94 #define TCP_URG_READ 0x0400 95 96 #define TCP_RETR1 3 /* 97 * This is how many retries it does before it 98 * tries to figure out if the gateway is 99 * down. Minimal RFC value is 3; it corresponds 100 * to ~3sec-8min depending on RTO. 101 */ 102 103 #define TCP_RETR2 15 /* 104 * This should take at least 105 * 90 minutes to time out. 106 * RFC1122 says that the limit is 100 sec. 107 * 15 is ~13-30min depending on RTO. 108 */ 109 110 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 111 * when active opening a connection. 112 * RFC1122 says the minimum retry MUST 113 * be at least 180secs. Nevertheless 114 * this value is corresponding to 115 * 63secs of retransmission with the 116 * current initial RTO. 117 */ 118 119 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 120 * when passive opening a connection. 121 * This is corresponding to 31secs of 122 * retransmission with the current 123 * initial RTO. 124 */ 125 126 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 127 * state, about 60 seconds */ 128 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 129 /* BSD style FIN_WAIT2 deadlock breaker. 130 * It used to be 3min, new value is 60sec, 131 * to combine FIN-WAIT-2 timeout with 132 * TIME-WAIT timer. 133 */ 134 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 135 136 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 137 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 138 139 #if HZ >= 100 140 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 141 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 142 #else 143 #define TCP_DELACK_MIN 4U 144 #define TCP_ATO_MIN 4U 145 #endif 146 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 147 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 148 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 149 150 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 151 152 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 153 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 154 * used as a fallback RTO for the 155 * initial data transmission if no 156 * valid RTT sample has been acquired, 157 * most likely due to retrans in 3WHS. 158 */ 159 160 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 161 * for local resources. 162 */ 163 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 164 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 165 #define TCP_KEEPALIVE_INTVL (75*HZ) 166 167 #define MAX_TCP_KEEPIDLE 32767 168 #define MAX_TCP_KEEPINTVL 32767 169 #define MAX_TCP_KEEPCNT 127 170 #define MAX_TCP_SYNCNT 127 171 172 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 173 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 174 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 175 */ 176 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 177 178 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 179 * after this time. It should be equal 180 * (or greater than) TCP_TIMEWAIT_LEN 181 * to provide reliability equal to one 182 * provided by timewait state. 183 */ 184 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 185 * timestamps. It must be less than 186 * minimal timewait lifetime. 187 */ 188 /* 189 * TCP option 190 */ 191 192 #define TCPOPT_NOP 1 /* Padding */ 193 #define TCPOPT_EOL 0 /* End of options */ 194 #define TCPOPT_MSS 2 /* Segment size negotiating */ 195 #define TCPOPT_WINDOW 3 /* Window scaling */ 196 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 197 #define TCPOPT_SACK 5 /* SACK Block */ 198 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 199 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 200 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 201 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 202 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 203 #define TCPOPT_EXP 254 /* Experimental */ 204 /* Magic number to be after the option value for sharing TCP 205 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 206 */ 207 #define TCPOPT_FASTOPEN_MAGIC 0xF989 208 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 209 210 /* 211 * TCP option lengths 212 */ 213 214 #define TCPOLEN_MSS 4 215 #define TCPOLEN_WINDOW 3 216 #define TCPOLEN_SACK_PERM 2 217 #define TCPOLEN_TIMESTAMP 10 218 #define TCPOLEN_MD5SIG 18 219 #define TCPOLEN_FASTOPEN_BASE 2 220 #define TCPOLEN_EXP_FASTOPEN_BASE 4 221 #define TCPOLEN_EXP_SMC_BASE 6 222 223 /* But this is what stacks really send out. */ 224 #define TCPOLEN_TSTAMP_ALIGNED 12 225 #define TCPOLEN_WSCALE_ALIGNED 4 226 #define TCPOLEN_SACKPERM_ALIGNED 4 227 #define TCPOLEN_SACK_BASE 2 228 #define TCPOLEN_SACK_BASE_ALIGNED 4 229 #define TCPOLEN_SACK_PERBLOCK 8 230 #define TCPOLEN_MD5SIG_ALIGNED 20 231 #define TCPOLEN_MSS_ALIGNED 4 232 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 233 234 /* Flags in tp->nonagle */ 235 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 236 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 237 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 238 239 /* TCP thin-stream limits */ 240 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 241 242 /* TCP initial congestion window as per rfc6928 */ 243 #define TCP_INIT_CWND 10 244 245 /* Bit Flags for sysctl_tcp_fastopen */ 246 #define TFO_CLIENT_ENABLE 1 247 #define TFO_SERVER_ENABLE 2 248 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 249 250 /* Accept SYN data w/o any cookie option */ 251 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 252 253 /* Force enable TFO on all listeners, i.e., not requiring the 254 * TCP_FASTOPEN socket option. 255 */ 256 #define TFO_SERVER_WO_SOCKOPT1 0x400 257 258 259 /* sysctl variables for tcp */ 260 extern int sysctl_tcp_max_orphans; 261 extern long sysctl_tcp_mem[3]; 262 263 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 264 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 265 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 266 267 extern atomic_long_t tcp_memory_allocated; 268 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 269 270 extern struct percpu_counter tcp_sockets_allocated; 271 extern unsigned long tcp_memory_pressure; 272 273 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 274 static inline bool tcp_under_memory_pressure(const struct sock *sk) 275 { 276 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 277 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 278 return true; 279 280 return READ_ONCE(tcp_memory_pressure); 281 } 282 /* 283 * The next routines deal with comparing 32 bit unsigned ints 284 * and worry about wraparound (automatic with unsigned arithmetic). 285 */ 286 287 static inline bool before(__u32 seq1, __u32 seq2) 288 { 289 return (__s32)(seq1-seq2) < 0; 290 } 291 #define after(seq2, seq1) before(seq1, seq2) 292 293 /* is s2<=s1<=s3 ? */ 294 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 295 { 296 return seq3 - seq2 >= seq1 - seq2; 297 } 298 299 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 300 { 301 sk_wmem_queued_add(sk, -skb->truesize); 302 if (!skb_zcopy_pure(skb)) 303 sk_mem_uncharge(sk, skb->truesize); 304 else 305 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 306 __kfree_skb(skb); 307 } 308 309 void sk_forced_mem_schedule(struct sock *sk, int size); 310 311 bool tcp_check_oom(const struct sock *sk, int shift); 312 313 314 extern struct proto tcp_prot; 315 316 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 317 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 318 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 319 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 320 321 void tcp_tasklet_init(void); 322 323 int tcp_v4_err(struct sk_buff *skb, u32); 324 325 void tcp_shutdown(struct sock *sk, int how); 326 327 int tcp_v4_early_demux(struct sk_buff *skb); 328 int tcp_v4_rcv(struct sk_buff *skb); 329 330 void tcp_remove_empty_skb(struct sock *sk); 331 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 332 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 333 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 334 size_t size, struct ubuf_info *uarg); 335 void tcp_splice_eof(struct socket *sock); 336 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 337 int tcp_wmem_schedule(struct sock *sk, int copy); 338 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 339 int size_goal); 340 void tcp_release_cb(struct sock *sk); 341 void tcp_wfree(struct sk_buff *skb); 342 void tcp_write_timer_handler(struct sock *sk); 343 void tcp_delack_timer_handler(struct sock *sk); 344 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 345 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 346 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 347 void tcp_rcv_space_adjust(struct sock *sk); 348 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 349 void tcp_twsk_destructor(struct sock *sk); 350 void tcp_twsk_purge(struct list_head *net_exit_list); 351 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 352 struct pipe_inode_info *pipe, size_t len, 353 unsigned int flags); 354 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 355 bool force_schedule); 356 357 static inline void tcp_dec_quickack_mode(struct sock *sk) 358 { 359 struct inet_connection_sock *icsk = inet_csk(sk); 360 361 if (icsk->icsk_ack.quick) { 362 /* How many ACKs S/ACKing new data have we sent? */ 363 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 364 365 if (pkts >= icsk->icsk_ack.quick) { 366 icsk->icsk_ack.quick = 0; 367 /* Leaving quickack mode we deflate ATO. */ 368 icsk->icsk_ack.ato = TCP_ATO_MIN; 369 } else 370 icsk->icsk_ack.quick -= pkts; 371 } 372 } 373 374 #define TCP_ECN_OK 1 375 #define TCP_ECN_QUEUE_CWR 2 376 #define TCP_ECN_DEMAND_CWR 4 377 #define TCP_ECN_SEEN 8 378 379 enum tcp_tw_status { 380 TCP_TW_SUCCESS = 0, 381 TCP_TW_RST = 1, 382 TCP_TW_ACK = 2, 383 TCP_TW_SYN = 3 384 }; 385 386 387 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 388 struct sk_buff *skb, 389 const struct tcphdr *th, 390 u32 *tw_isn); 391 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 392 struct request_sock *req, bool fastopen, 393 bool *lost_race); 394 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 395 struct sk_buff *skb); 396 void tcp_enter_loss(struct sock *sk); 397 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 398 void tcp_clear_retrans(struct tcp_sock *tp); 399 void tcp_update_metrics(struct sock *sk); 400 void tcp_init_metrics(struct sock *sk); 401 void tcp_metrics_init(void); 402 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 403 void __tcp_close(struct sock *sk, long timeout); 404 void tcp_close(struct sock *sk, long timeout); 405 void tcp_init_sock(struct sock *sk); 406 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 407 __poll_t tcp_poll(struct file *file, struct socket *sock, 408 struct poll_table_struct *wait); 409 int do_tcp_getsockopt(struct sock *sk, int level, 410 int optname, sockptr_t optval, sockptr_t optlen); 411 int tcp_getsockopt(struct sock *sk, int level, int optname, 412 char __user *optval, int __user *optlen); 413 bool tcp_bpf_bypass_getsockopt(int level, int optname); 414 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 415 sockptr_t optval, unsigned int optlen); 416 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 417 unsigned int optlen); 418 void tcp_set_keepalive(struct sock *sk, int val); 419 void tcp_syn_ack_timeout(const struct request_sock *req); 420 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 421 int flags, int *addr_len); 422 int tcp_set_rcvlowat(struct sock *sk, int val); 423 int tcp_set_window_clamp(struct sock *sk, int val); 424 void tcp_update_recv_tstamps(struct sk_buff *skb, 425 struct scm_timestamping_internal *tss); 426 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 427 struct scm_timestamping_internal *tss); 428 void tcp_data_ready(struct sock *sk); 429 #ifdef CONFIG_MMU 430 int tcp_mmap(struct file *file, struct socket *sock, 431 struct vm_area_struct *vma); 432 #endif 433 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 434 struct tcp_options_received *opt_rx, 435 int estab, struct tcp_fastopen_cookie *foc); 436 437 /* 438 * BPF SKB-less helpers 439 */ 440 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 441 struct tcphdr *th, u32 *cookie); 442 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 443 struct tcphdr *th, u32 *cookie); 444 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 445 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 446 const struct tcp_request_sock_ops *af_ops, 447 struct sock *sk, struct tcphdr *th); 448 /* 449 * TCP v4 functions exported for the inet6 API 450 */ 451 452 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 453 void tcp_v4_mtu_reduced(struct sock *sk); 454 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 455 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 456 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 457 struct sock *tcp_create_openreq_child(const struct sock *sk, 458 struct request_sock *req, 459 struct sk_buff *skb); 460 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 461 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 462 struct request_sock *req, 463 struct dst_entry *dst, 464 struct request_sock *req_unhash, 465 bool *own_req); 466 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 467 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 468 int tcp_connect(struct sock *sk); 469 enum tcp_synack_type { 470 TCP_SYNACK_NORMAL, 471 TCP_SYNACK_FASTOPEN, 472 TCP_SYNACK_COOKIE, 473 }; 474 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 475 struct request_sock *req, 476 struct tcp_fastopen_cookie *foc, 477 enum tcp_synack_type synack_type, 478 struct sk_buff *syn_skb); 479 int tcp_disconnect(struct sock *sk, int flags); 480 481 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 483 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 484 485 /* From syncookies.c */ 486 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 487 struct request_sock *req, 488 struct dst_entry *dst); 489 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 490 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 491 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 492 struct sock *sk, struct sk_buff *skb, 493 struct tcp_options_received *tcp_opt, 494 int mss, u32 tsoff); 495 496 #if IS_ENABLED(CONFIG_BPF) 497 struct bpf_tcp_req_attrs { 498 u32 rcv_tsval; 499 u32 rcv_tsecr; 500 u16 mss; 501 u8 rcv_wscale; 502 u8 snd_wscale; 503 u8 ecn_ok; 504 u8 wscale_ok; 505 u8 sack_ok; 506 u8 tstamp_ok; 507 u8 usec_ts_ok; 508 u8 reserved[3]; 509 }; 510 #endif 511 512 #ifdef CONFIG_SYN_COOKIES 513 514 /* Syncookies use a monotonic timer which increments every 60 seconds. 515 * This counter is used both as a hash input and partially encoded into 516 * the cookie value. A cookie is only validated further if the delta 517 * between the current counter value and the encoded one is less than this, 518 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 519 * the counter advances immediately after a cookie is generated). 520 */ 521 #define MAX_SYNCOOKIE_AGE 2 522 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 523 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 524 525 /* syncookies: remember time of last synqueue overflow 526 * But do not dirty this field too often (once per second is enough) 527 * It is racy as we do not hold a lock, but race is very minor. 528 */ 529 static inline void tcp_synq_overflow(const struct sock *sk) 530 { 531 unsigned int last_overflow; 532 unsigned int now = jiffies; 533 534 if (sk->sk_reuseport) { 535 struct sock_reuseport *reuse; 536 537 reuse = rcu_dereference(sk->sk_reuseport_cb); 538 if (likely(reuse)) { 539 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 540 if (!time_between32(now, last_overflow, 541 last_overflow + HZ)) 542 WRITE_ONCE(reuse->synq_overflow_ts, now); 543 return; 544 } 545 } 546 547 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 548 if (!time_between32(now, last_overflow, last_overflow + HZ)) 549 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 550 } 551 552 /* syncookies: no recent synqueue overflow on this listening socket? */ 553 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 554 { 555 unsigned int last_overflow; 556 unsigned int now = jiffies; 557 558 if (sk->sk_reuseport) { 559 struct sock_reuseport *reuse; 560 561 reuse = rcu_dereference(sk->sk_reuseport_cb); 562 if (likely(reuse)) { 563 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 564 return !time_between32(now, last_overflow - HZ, 565 last_overflow + 566 TCP_SYNCOOKIE_VALID); 567 } 568 } 569 570 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 571 572 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 573 * then we're under synflood. However, we have to use 574 * 'last_overflow - HZ' as lower bound. That's because a concurrent 575 * tcp_synq_overflow() could update .ts_recent_stamp after we read 576 * jiffies but before we store .ts_recent_stamp into last_overflow, 577 * which could lead to rejecting a valid syncookie. 578 */ 579 return !time_between32(now, last_overflow - HZ, 580 last_overflow + TCP_SYNCOOKIE_VALID); 581 } 582 583 static inline u32 tcp_cookie_time(void) 584 { 585 u64 val = get_jiffies_64(); 586 587 do_div(val, TCP_SYNCOOKIE_PERIOD); 588 return val; 589 } 590 591 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 592 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 593 { 594 if (usec_ts) 595 return div_u64(val, NSEC_PER_USEC); 596 597 return div_u64(val, NSEC_PER_MSEC); 598 } 599 600 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 601 u16 *mssp); 602 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 603 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 604 bool cookie_timestamp_decode(const struct net *net, 605 struct tcp_options_received *opt); 606 607 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 608 { 609 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 610 dst_feature(dst, RTAX_FEATURE_ECN); 611 } 612 613 #if IS_ENABLED(CONFIG_BPF) 614 static inline bool cookie_bpf_ok(struct sk_buff *skb) 615 { 616 return skb->sk; 617 } 618 619 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 620 #else 621 static inline bool cookie_bpf_ok(struct sk_buff *skb) 622 { 623 return false; 624 } 625 626 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 627 struct sk_buff *skb) 628 { 629 return NULL; 630 } 631 #endif 632 633 /* From net/ipv6/syncookies.c */ 634 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 635 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 636 637 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 638 const struct tcphdr *th, u16 *mssp); 639 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 640 #endif 641 /* tcp_output.c */ 642 643 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 645 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 646 int nonagle); 647 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 648 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 649 void tcp_retransmit_timer(struct sock *sk); 650 void tcp_xmit_retransmit_queue(struct sock *); 651 void tcp_simple_retransmit(struct sock *); 652 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 653 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 654 enum tcp_queue { 655 TCP_FRAG_IN_WRITE_QUEUE, 656 TCP_FRAG_IN_RTX_QUEUE, 657 }; 658 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 659 struct sk_buff *skb, u32 len, 660 unsigned int mss_now, gfp_t gfp); 661 662 void tcp_send_probe0(struct sock *); 663 int tcp_write_wakeup(struct sock *, int mib); 664 void tcp_send_fin(struct sock *sk); 665 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 666 enum sk_rst_reason reason); 667 int tcp_send_synack(struct sock *); 668 void tcp_push_one(struct sock *, unsigned int mss_now); 669 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 670 void tcp_send_ack(struct sock *sk); 671 void tcp_send_delayed_ack(struct sock *sk); 672 void tcp_send_loss_probe(struct sock *sk); 673 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 674 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 675 const struct sk_buff *next_skb); 676 677 /* tcp_input.c */ 678 void tcp_rearm_rto(struct sock *sk); 679 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 680 void tcp_reset(struct sock *sk, struct sk_buff *skb); 681 void tcp_fin(struct sock *sk); 682 void tcp_check_space(struct sock *sk); 683 void tcp_sack_compress_send_ack(struct sock *sk); 684 685 /* tcp_timer.c */ 686 void tcp_init_xmit_timers(struct sock *); 687 static inline void tcp_clear_xmit_timers(struct sock *sk) 688 { 689 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 690 __sock_put(sk); 691 692 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 693 __sock_put(sk); 694 695 inet_csk_clear_xmit_timers(sk); 696 } 697 698 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 699 unsigned int tcp_current_mss(struct sock *sk); 700 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 701 702 /* Bound MSS / TSO packet size with the half of the window */ 703 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 704 { 705 int cutoff; 706 707 /* When peer uses tiny windows, there is no use in packetizing 708 * to sub-MSS pieces for the sake of SWS or making sure there 709 * are enough packets in the pipe for fast recovery. 710 * 711 * On the other hand, for extremely large MSS devices, handling 712 * smaller than MSS windows in this way does make sense. 713 */ 714 if (tp->max_window > TCP_MSS_DEFAULT) 715 cutoff = (tp->max_window >> 1); 716 else 717 cutoff = tp->max_window; 718 719 if (cutoff && pktsize > cutoff) 720 return max_t(int, cutoff, 68U - tp->tcp_header_len); 721 else 722 return pktsize; 723 } 724 725 /* tcp.c */ 726 void tcp_get_info(struct sock *, struct tcp_info *); 727 728 /* Read 'sendfile()'-style from a TCP socket */ 729 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 730 sk_read_actor_t recv_actor); 731 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 732 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 733 void tcp_read_done(struct sock *sk, size_t len); 734 735 void tcp_initialize_rcv_mss(struct sock *sk); 736 737 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 738 int tcp_mss_to_mtu(struct sock *sk, int mss); 739 void tcp_mtup_init(struct sock *sk); 740 741 static inline void tcp_bound_rto(struct sock *sk) 742 { 743 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 744 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 745 } 746 747 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 748 { 749 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 750 } 751 752 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 753 { 754 /* mptcp hooks are only on the slow path */ 755 if (sk_is_mptcp((struct sock *)tp)) 756 return; 757 758 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 759 ntohl(TCP_FLAG_ACK) | 760 snd_wnd); 761 } 762 763 static inline void tcp_fast_path_on(struct tcp_sock *tp) 764 { 765 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 766 } 767 768 static inline void tcp_fast_path_check(struct sock *sk) 769 { 770 struct tcp_sock *tp = tcp_sk(sk); 771 772 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 773 tp->rcv_wnd && 774 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 775 !tp->urg_data) 776 tcp_fast_path_on(tp); 777 } 778 779 u32 tcp_delack_max(const struct sock *sk); 780 781 /* Compute the actual rto_min value */ 782 static inline u32 tcp_rto_min(const struct sock *sk) 783 { 784 const struct dst_entry *dst = __sk_dst_get(sk); 785 u32 rto_min = inet_csk(sk)->icsk_rto_min; 786 787 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 788 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 789 return rto_min; 790 } 791 792 static inline u32 tcp_rto_min_us(const struct sock *sk) 793 { 794 return jiffies_to_usecs(tcp_rto_min(sk)); 795 } 796 797 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 798 { 799 return dst_metric_locked(dst, RTAX_CC_ALGO); 800 } 801 802 /* Minimum RTT in usec. ~0 means not available. */ 803 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 804 { 805 return minmax_get(&tp->rtt_min); 806 } 807 808 /* Compute the actual receive window we are currently advertising. 809 * Rcv_nxt can be after the window if our peer push more data 810 * than the offered window. 811 */ 812 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 813 { 814 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 815 816 if (win < 0) 817 win = 0; 818 return (u32) win; 819 } 820 821 /* Choose a new window, without checks for shrinking, and without 822 * scaling applied to the result. The caller does these things 823 * if necessary. This is a "raw" window selection. 824 */ 825 u32 __tcp_select_window(struct sock *sk); 826 827 void tcp_send_window_probe(struct sock *sk); 828 829 /* TCP uses 32bit jiffies to save some space. 830 * Note that this is different from tcp_time_stamp, which 831 * historically has been the same until linux-4.13. 832 */ 833 #define tcp_jiffies32 ((u32)jiffies) 834 835 /* 836 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 837 * It is no longer tied to jiffies, but to 1 ms clock. 838 * Note: double check if you want to use tcp_jiffies32 instead of this. 839 */ 840 #define TCP_TS_HZ 1000 841 842 static inline u64 tcp_clock_ns(void) 843 { 844 return ktime_get_ns(); 845 } 846 847 static inline u64 tcp_clock_us(void) 848 { 849 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 850 } 851 852 static inline u64 tcp_clock_ms(void) 853 { 854 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 855 } 856 857 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 858 * or usec resolution. Each socket carries a flag to select one or other 859 * resolution, as the route attribute could change anytime. 860 * Each flow must stick to initial resolution. 861 */ 862 static inline u32 tcp_clock_ts(bool usec_ts) 863 { 864 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 865 } 866 867 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 868 { 869 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 870 } 871 872 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 873 { 874 if (tp->tcp_usec_ts) 875 return tp->tcp_mstamp; 876 return tcp_time_stamp_ms(tp); 877 } 878 879 void tcp_mstamp_refresh(struct tcp_sock *tp); 880 881 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 882 { 883 return max_t(s64, t1 - t0, 0); 884 } 885 886 /* provide the departure time in us unit */ 887 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 888 { 889 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 890 } 891 892 /* Provide skb TSval in usec or ms unit */ 893 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 894 { 895 if (usec_ts) 896 return tcp_skb_timestamp_us(skb); 897 898 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 899 } 900 901 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 902 { 903 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 904 } 905 906 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 907 { 908 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 909 } 910 911 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 912 913 #define TCPHDR_FIN 0x01 914 #define TCPHDR_SYN 0x02 915 #define TCPHDR_RST 0x04 916 #define TCPHDR_PSH 0x08 917 #define TCPHDR_ACK 0x10 918 #define TCPHDR_URG 0x20 919 #define TCPHDR_ECE 0x40 920 #define TCPHDR_CWR 0x80 921 922 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 923 924 /* State flags for sacked in struct tcp_skb_cb */ 925 enum tcp_skb_cb_sacked_flags { 926 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 927 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 928 TCPCB_LOST = (1 << 2), /* SKB is lost */ 929 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 930 TCPCB_LOST), /* All tag bits */ 931 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 932 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 933 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 934 TCPCB_REPAIRED), 935 }; 936 937 /* This is what the send packet queuing engine uses to pass 938 * TCP per-packet control information to the transmission code. 939 * We also store the host-order sequence numbers in here too. 940 * This is 44 bytes if IPV6 is enabled. 941 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 942 */ 943 struct tcp_skb_cb { 944 __u32 seq; /* Starting sequence number */ 945 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 946 union { 947 /* Note : 948 * tcp_gso_segs/size are used in write queue only, 949 * cf tcp_skb_pcount()/tcp_skb_mss() 950 */ 951 struct { 952 u16 tcp_gso_segs; 953 u16 tcp_gso_size; 954 }; 955 }; 956 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 957 958 __u8 sacked; /* State flags for SACK. */ 959 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 960 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 961 eor:1, /* Is skb MSG_EOR marked? */ 962 has_rxtstamp:1, /* SKB has a RX timestamp */ 963 unused:5; 964 __u32 ack_seq; /* Sequence number ACK'd */ 965 union { 966 struct { 967 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 968 /* There is space for up to 24 bytes */ 969 __u32 is_app_limited:1, /* cwnd not fully used? */ 970 delivered_ce:20, 971 unused:11; 972 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 973 __u32 delivered; 974 /* start of send pipeline phase */ 975 u64 first_tx_mstamp; 976 /* when we reached the "delivered" count */ 977 u64 delivered_mstamp; 978 } tx; /* only used for outgoing skbs */ 979 union { 980 struct inet_skb_parm h4; 981 #if IS_ENABLED(CONFIG_IPV6) 982 struct inet6_skb_parm h6; 983 #endif 984 } header; /* For incoming skbs */ 985 }; 986 }; 987 988 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 989 990 extern const struct inet_connection_sock_af_ops ipv4_specific; 991 992 #if IS_ENABLED(CONFIG_IPV6) 993 /* This is the variant of inet6_iif() that must be used by TCP, 994 * as TCP moves IP6CB into a different location in skb->cb[] 995 */ 996 static inline int tcp_v6_iif(const struct sk_buff *skb) 997 { 998 return TCP_SKB_CB(skb)->header.h6.iif; 999 } 1000 1001 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1002 { 1003 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1004 1005 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1006 } 1007 1008 /* TCP_SKB_CB reference means this can not be used from early demux */ 1009 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1010 { 1011 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1012 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1013 return TCP_SKB_CB(skb)->header.h6.iif; 1014 #endif 1015 return 0; 1016 } 1017 1018 extern const struct inet_connection_sock_af_ops ipv6_specific; 1019 1020 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1021 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1022 void tcp_v6_early_demux(struct sk_buff *skb); 1023 1024 #endif 1025 1026 /* TCP_SKB_CB reference means this can not be used from early demux */ 1027 static inline int tcp_v4_sdif(struct sk_buff *skb) 1028 { 1029 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1030 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1031 return TCP_SKB_CB(skb)->header.h4.iif; 1032 #endif 1033 return 0; 1034 } 1035 1036 /* Due to TSO, an SKB can be composed of multiple actual 1037 * packets. To keep these tracked properly, we use this. 1038 */ 1039 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1040 { 1041 return TCP_SKB_CB(skb)->tcp_gso_segs; 1042 } 1043 1044 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1045 { 1046 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1047 } 1048 1049 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1050 { 1051 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1052 } 1053 1054 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1055 static inline int tcp_skb_mss(const struct sk_buff *skb) 1056 { 1057 return TCP_SKB_CB(skb)->tcp_gso_size; 1058 } 1059 1060 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1061 { 1062 return likely(!TCP_SKB_CB(skb)->eor); 1063 } 1064 1065 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1066 const struct sk_buff *from) 1067 { 1068 return likely(tcp_skb_can_collapse_to(to) && 1069 mptcp_skb_can_collapse(to, from) && 1070 skb_pure_zcopy_same(to, from)); 1071 } 1072 1073 /* Events passed to congestion control interface */ 1074 enum tcp_ca_event { 1075 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1076 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1077 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1078 CA_EVENT_LOSS, /* loss timeout */ 1079 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1080 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1081 }; 1082 1083 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1084 enum tcp_ca_ack_event_flags { 1085 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1086 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1087 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1088 }; 1089 1090 /* 1091 * Interface for adding new TCP congestion control handlers 1092 */ 1093 #define TCP_CA_NAME_MAX 16 1094 #define TCP_CA_MAX 128 1095 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1096 1097 #define TCP_CA_UNSPEC 0 1098 1099 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1100 #define TCP_CONG_NON_RESTRICTED 0x1 1101 /* Requires ECN/ECT set on all packets */ 1102 #define TCP_CONG_NEEDS_ECN 0x2 1103 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1104 1105 union tcp_cc_info; 1106 1107 struct ack_sample { 1108 u32 pkts_acked; 1109 s32 rtt_us; 1110 u32 in_flight; 1111 }; 1112 1113 /* A rate sample measures the number of (original/retransmitted) data 1114 * packets delivered "delivered" over an interval of time "interval_us". 1115 * The tcp_rate.c code fills in the rate sample, and congestion 1116 * control modules that define a cong_control function to run at the end 1117 * of ACK processing can optionally chose to consult this sample when 1118 * setting cwnd and pacing rate. 1119 * A sample is invalid if "delivered" or "interval_us" is negative. 1120 */ 1121 struct rate_sample { 1122 u64 prior_mstamp; /* starting timestamp for interval */ 1123 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1124 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1125 s32 delivered; /* number of packets delivered over interval */ 1126 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1127 long interval_us; /* time for tp->delivered to incr "delivered" */ 1128 u32 snd_interval_us; /* snd interval for delivered packets */ 1129 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1130 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1131 int losses; /* number of packets marked lost upon ACK */ 1132 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1133 u32 prior_in_flight; /* in flight before this ACK */ 1134 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1135 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1136 bool is_retrans; /* is sample from retransmission? */ 1137 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1138 }; 1139 1140 struct tcp_congestion_ops { 1141 /* fast path fields are put first to fill one cache line */ 1142 1143 /* return slow start threshold (required) */ 1144 u32 (*ssthresh)(struct sock *sk); 1145 1146 /* do new cwnd calculation (required) */ 1147 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1148 1149 /* call before changing ca_state (optional) */ 1150 void (*set_state)(struct sock *sk, u8 new_state); 1151 1152 /* call when cwnd event occurs (optional) */ 1153 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1154 1155 /* call when ack arrives (optional) */ 1156 void (*in_ack_event)(struct sock *sk, u32 flags); 1157 1158 /* hook for packet ack accounting (optional) */ 1159 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1160 1161 /* override sysctl_tcp_min_tso_segs */ 1162 u32 (*min_tso_segs)(struct sock *sk); 1163 1164 /* call when packets are delivered to update cwnd and pacing rate, 1165 * after all the ca_state processing. (optional) 1166 */ 1167 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1168 1169 1170 /* new value of cwnd after loss (required) */ 1171 u32 (*undo_cwnd)(struct sock *sk); 1172 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1173 u32 (*sndbuf_expand)(struct sock *sk); 1174 1175 /* control/slow paths put last */ 1176 /* get info for inet_diag (optional) */ 1177 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1178 union tcp_cc_info *info); 1179 1180 char name[TCP_CA_NAME_MAX]; 1181 struct module *owner; 1182 struct list_head list; 1183 u32 key; 1184 u32 flags; 1185 1186 /* initialize private data (optional) */ 1187 void (*init)(struct sock *sk); 1188 /* cleanup private data (optional) */ 1189 void (*release)(struct sock *sk); 1190 } ____cacheline_aligned_in_smp; 1191 1192 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1193 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1194 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1195 struct tcp_congestion_ops *old_type); 1196 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1197 1198 void tcp_assign_congestion_control(struct sock *sk); 1199 void tcp_init_congestion_control(struct sock *sk); 1200 void tcp_cleanup_congestion_control(struct sock *sk); 1201 int tcp_set_default_congestion_control(struct net *net, const char *name); 1202 void tcp_get_default_congestion_control(struct net *net, char *name); 1203 void tcp_get_available_congestion_control(char *buf, size_t len); 1204 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1205 int tcp_set_allowed_congestion_control(char *allowed); 1206 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1207 bool cap_net_admin); 1208 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1209 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1210 1211 u32 tcp_reno_ssthresh(struct sock *sk); 1212 u32 tcp_reno_undo_cwnd(struct sock *sk); 1213 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1214 extern struct tcp_congestion_ops tcp_reno; 1215 1216 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1217 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1218 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1219 #ifdef CONFIG_INET 1220 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1221 #else 1222 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1223 { 1224 return NULL; 1225 } 1226 #endif 1227 1228 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1229 { 1230 const struct inet_connection_sock *icsk = inet_csk(sk); 1231 1232 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1233 } 1234 1235 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1236 { 1237 const struct inet_connection_sock *icsk = inet_csk(sk); 1238 1239 if (icsk->icsk_ca_ops->cwnd_event) 1240 icsk->icsk_ca_ops->cwnd_event(sk, event); 1241 } 1242 1243 /* From tcp_cong.c */ 1244 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1245 1246 /* From tcp_rate.c */ 1247 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1248 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1249 struct rate_sample *rs); 1250 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1251 bool is_sack_reneg, struct rate_sample *rs); 1252 void tcp_rate_check_app_limited(struct sock *sk); 1253 1254 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1255 { 1256 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1257 } 1258 1259 /* These functions determine how the current flow behaves in respect of SACK 1260 * handling. SACK is negotiated with the peer, and therefore it can vary 1261 * between different flows. 1262 * 1263 * tcp_is_sack - SACK enabled 1264 * tcp_is_reno - No SACK 1265 */ 1266 static inline int tcp_is_sack(const struct tcp_sock *tp) 1267 { 1268 return likely(tp->rx_opt.sack_ok); 1269 } 1270 1271 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1272 { 1273 return !tcp_is_sack(tp); 1274 } 1275 1276 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1277 { 1278 return tp->sacked_out + tp->lost_out; 1279 } 1280 1281 /* This determines how many packets are "in the network" to the best 1282 * of our knowledge. In many cases it is conservative, but where 1283 * detailed information is available from the receiver (via SACK 1284 * blocks etc.) we can make more aggressive calculations. 1285 * 1286 * Use this for decisions involving congestion control, use just 1287 * tp->packets_out to determine if the send queue is empty or not. 1288 * 1289 * Read this equation as: 1290 * 1291 * "Packets sent once on transmission queue" MINUS 1292 * "Packets left network, but not honestly ACKed yet" PLUS 1293 * "Packets fast retransmitted" 1294 */ 1295 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1296 { 1297 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1298 } 1299 1300 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1301 1302 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1303 { 1304 return tp->snd_cwnd; 1305 } 1306 1307 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1308 { 1309 WARN_ON_ONCE((int)val <= 0); 1310 tp->snd_cwnd = val; 1311 } 1312 1313 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1314 { 1315 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1316 } 1317 1318 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1319 { 1320 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1321 } 1322 1323 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1324 { 1325 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1326 (1 << inet_csk(sk)->icsk_ca_state); 1327 } 1328 1329 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1330 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1331 * ssthresh. 1332 */ 1333 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1334 { 1335 const struct tcp_sock *tp = tcp_sk(sk); 1336 1337 if (tcp_in_cwnd_reduction(sk)) 1338 return tp->snd_ssthresh; 1339 else 1340 return max(tp->snd_ssthresh, 1341 ((tcp_snd_cwnd(tp) >> 1) + 1342 (tcp_snd_cwnd(tp) >> 2))); 1343 } 1344 1345 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1346 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1347 1348 void tcp_enter_cwr(struct sock *sk); 1349 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1350 1351 /* The maximum number of MSS of available cwnd for which TSO defers 1352 * sending if not using sysctl_tcp_tso_win_divisor. 1353 */ 1354 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1355 { 1356 return 3; 1357 } 1358 1359 /* Returns end sequence number of the receiver's advertised window */ 1360 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1361 { 1362 return tp->snd_una + tp->snd_wnd; 1363 } 1364 1365 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1366 * flexible approach. The RFC suggests cwnd should not be raised unless 1367 * it was fully used previously. And that's exactly what we do in 1368 * congestion avoidance mode. But in slow start we allow cwnd to grow 1369 * as long as the application has used half the cwnd. 1370 * Example : 1371 * cwnd is 10 (IW10), but application sends 9 frames. 1372 * We allow cwnd to reach 18 when all frames are ACKed. 1373 * This check is safe because it's as aggressive as slow start which already 1374 * risks 100% overshoot. The advantage is that we discourage application to 1375 * either send more filler packets or data to artificially blow up the cwnd 1376 * usage, and allow application-limited process to probe bw more aggressively. 1377 */ 1378 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1379 { 1380 const struct tcp_sock *tp = tcp_sk(sk); 1381 1382 if (tp->is_cwnd_limited) 1383 return true; 1384 1385 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1386 if (tcp_in_slow_start(tp)) 1387 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1388 1389 return false; 1390 } 1391 1392 /* BBR congestion control needs pacing. 1393 * Same remark for SO_MAX_PACING_RATE. 1394 * sch_fq packet scheduler is efficiently handling pacing, 1395 * but is not always installed/used. 1396 * Return true if TCP stack should pace packets itself. 1397 */ 1398 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1399 { 1400 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1401 } 1402 1403 /* Estimates in how many jiffies next packet for this flow can be sent. 1404 * Scheduling a retransmit timer too early would be silly. 1405 */ 1406 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1407 { 1408 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1409 1410 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1411 } 1412 1413 static inline void tcp_reset_xmit_timer(struct sock *sk, 1414 const int what, 1415 unsigned long when, 1416 const unsigned long max_when) 1417 { 1418 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk), 1419 max_when); 1420 } 1421 1422 /* Something is really bad, we could not queue an additional packet, 1423 * because qdisc is full or receiver sent a 0 window, or we are paced. 1424 * We do not want to add fuel to the fire, or abort too early, 1425 * so make sure the timer we arm now is at least 200ms in the future, 1426 * regardless of current icsk_rto value (as it could be ~2ms) 1427 */ 1428 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1429 { 1430 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1431 } 1432 1433 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1434 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1435 unsigned long max_when) 1436 { 1437 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1438 inet_csk(sk)->icsk_backoff); 1439 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1440 1441 return (unsigned long)min_t(u64, when, max_when); 1442 } 1443 1444 static inline void tcp_check_probe_timer(struct sock *sk) 1445 { 1446 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1447 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1448 tcp_probe0_base(sk), TCP_RTO_MAX); 1449 } 1450 1451 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1452 { 1453 tp->snd_wl1 = seq; 1454 } 1455 1456 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1457 { 1458 tp->snd_wl1 = seq; 1459 } 1460 1461 /* 1462 * Calculate(/check) TCP checksum 1463 */ 1464 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1465 __be32 daddr, __wsum base) 1466 { 1467 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1468 } 1469 1470 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1471 { 1472 return !skb_csum_unnecessary(skb) && 1473 __skb_checksum_complete(skb); 1474 } 1475 1476 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1477 enum skb_drop_reason *reason); 1478 1479 1480 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1481 void tcp_set_state(struct sock *sk, int state); 1482 void tcp_done(struct sock *sk); 1483 int tcp_abort(struct sock *sk, int err); 1484 1485 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1486 { 1487 rx_opt->dsack = 0; 1488 rx_opt->num_sacks = 0; 1489 } 1490 1491 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1492 1493 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1494 { 1495 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1496 struct tcp_sock *tp = tcp_sk(sk); 1497 s32 delta; 1498 1499 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1500 tp->packets_out || ca_ops->cong_control) 1501 return; 1502 delta = tcp_jiffies32 - tp->lsndtime; 1503 if (delta > inet_csk(sk)->icsk_rto) 1504 tcp_cwnd_restart(sk, delta); 1505 } 1506 1507 /* Determine a window scaling and initial window to offer. */ 1508 void tcp_select_initial_window(const struct sock *sk, int __space, 1509 __u32 mss, __u32 *rcv_wnd, 1510 __u32 *window_clamp, int wscale_ok, 1511 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1512 1513 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1514 { 1515 s64 scaled_space = (s64)space * scaling_ratio; 1516 1517 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1518 } 1519 1520 static inline int tcp_win_from_space(const struct sock *sk, int space) 1521 { 1522 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1523 } 1524 1525 /* inverse of __tcp_win_from_space() */ 1526 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1527 { 1528 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1529 1530 do_div(val, scaling_ratio); 1531 return val; 1532 } 1533 1534 static inline int tcp_space_from_win(const struct sock *sk, int win) 1535 { 1536 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1537 } 1538 1539 /* Assume a 50% default for skb->len/skb->truesize ratio. 1540 * This may be adjusted later in tcp_measure_rcv_mss(). 1541 */ 1542 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1543 1544 static inline void tcp_scaling_ratio_init(struct sock *sk) 1545 { 1546 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1547 } 1548 1549 /* Note: caller must be prepared to deal with negative returns */ 1550 static inline int tcp_space(const struct sock *sk) 1551 { 1552 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1553 READ_ONCE(sk->sk_backlog.len) - 1554 atomic_read(&sk->sk_rmem_alloc)); 1555 } 1556 1557 static inline int tcp_full_space(const struct sock *sk) 1558 { 1559 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1560 } 1561 1562 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1563 { 1564 int unused_mem = sk_unused_reserved_mem(sk); 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 1567 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1568 if (unused_mem) 1569 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1570 tcp_win_from_space(sk, unused_mem)); 1571 } 1572 1573 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1574 { 1575 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1576 } 1577 1578 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1579 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1580 1581 1582 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1583 * If 87.5 % (7/8) of the space has been consumed, we want to override 1584 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1585 * len/truesize ratio. 1586 */ 1587 static inline bool tcp_rmem_pressure(const struct sock *sk) 1588 { 1589 int rcvbuf, threshold; 1590 1591 if (tcp_under_memory_pressure(sk)) 1592 return true; 1593 1594 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1595 threshold = rcvbuf - (rcvbuf >> 3); 1596 1597 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1598 } 1599 1600 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1601 { 1602 const struct tcp_sock *tp = tcp_sk(sk); 1603 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1604 1605 if (avail <= 0) 1606 return false; 1607 1608 return (avail >= target) || tcp_rmem_pressure(sk) || 1609 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1610 } 1611 1612 extern void tcp_openreq_init_rwin(struct request_sock *req, 1613 const struct sock *sk_listener, 1614 const struct dst_entry *dst); 1615 1616 void tcp_enter_memory_pressure(struct sock *sk); 1617 void tcp_leave_memory_pressure(struct sock *sk); 1618 1619 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1620 { 1621 struct net *net = sock_net((struct sock *)tp); 1622 int val; 1623 1624 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1625 * and do_tcp_setsockopt(). 1626 */ 1627 val = READ_ONCE(tp->keepalive_intvl); 1628 1629 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1630 } 1631 1632 static inline int keepalive_time_when(const struct tcp_sock *tp) 1633 { 1634 struct net *net = sock_net((struct sock *)tp); 1635 int val; 1636 1637 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1638 val = READ_ONCE(tp->keepalive_time); 1639 1640 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1641 } 1642 1643 static inline int keepalive_probes(const struct tcp_sock *tp) 1644 { 1645 struct net *net = sock_net((struct sock *)tp); 1646 int val; 1647 1648 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1649 * and do_tcp_setsockopt(). 1650 */ 1651 val = READ_ONCE(tp->keepalive_probes); 1652 1653 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1654 } 1655 1656 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1657 { 1658 const struct inet_connection_sock *icsk = &tp->inet_conn; 1659 1660 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1661 tcp_jiffies32 - tp->rcv_tstamp); 1662 } 1663 1664 static inline int tcp_fin_time(const struct sock *sk) 1665 { 1666 int fin_timeout = tcp_sk(sk)->linger2 ? : 1667 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1668 const int rto = inet_csk(sk)->icsk_rto; 1669 1670 if (fin_timeout < (rto << 2) - (rto >> 1)) 1671 fin_timeout = (rto << 2) - (rto >> 1); 1672 1673 return fin_timeout; 1674 } 1675 1676 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1677 int paws_win) 1678 { 1679 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1680 return true; 1681 if (unlikely(!time_before32(ktime_get_seconds(), 1682 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1683 return true; 1684 /* 1685 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1686 * then following tcp messages have valid values. Ignore 0 value, 1687 * or else 'negative' tsval might forbid us to accept their packets. 1688 */ 1689 if (!rx_opt->ts_recent) 1690 return true; 1691 return false; 1692 } 1693 1694 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1695 int rst) 1696 { 1697 if (tcp_paws_check(rx_opt, 0)) 1698 return false; 1699 1700 /* RST segments are not recommended to carry timestamp, 1701 and, if they do, it is recommended to ignore PAWS because 1702 "their cleanup function should take precedence over timestamps." 1703 Certainly, it is mistake. It is necessary to understand the reasons 1704 of this constraint to relax it: if peer reboots, clock may go 1705 out-of-sync and half-open connections will not be reset. 1706 Actually, the problem would be not existing if all 1707 the implementations followed draft about maintaining clock 1708 via reboots. Linux-2.2 DOES NOT! 1709 1710 However, we can relax time bounds for RST segments to MSL. 1711 */ 1712 if (rst && !time_before32(ktime_get_seconds(), 1713 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1714 return false; 1715 return true; 1716 } 1717 1718 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1719 int mib_idx, u32 *last_oow_ack_time); 1720 1721 static inline void tcp_mib_init(struct net *net) 1722 { 1723 /* See RFC 2012 */ 1724 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1725 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1726 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1727 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1728 } 1729 1730 /* from STCP */ 1731 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1732 { 1733 tp->lost_skb_hint = NULL; 1734 } 1735 1736 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1737 { 1738 tcp_clear_retrans_hints_partial(tp); 1739 tp->retransmit_skb_hint = NULL; 1740 } 1741 1742 #define tcp_md5_addr tcp_ao_addr 1743 1744 /* - key database */ 1745 struct tcp_md5sig_key { 1746 struct hlist_node node; 1747 u8 keylen; 1748 u8 family; /* AF_INET or AF_INET6 */ 1749 u8 prefixlen; 1750 u8 flags; 1751 union tcp_md5_addr addr; 1752 int l3index; /* set if key added with L3 scope */ 1753 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1754 struct rcu_head rcu; 1755 }; 1756 1757 /* - sock block */ 1758 struct tcp_md5sig_info { 1759 struct hlist_head head; 1760 struct rcu_head rcu; 1761 }; 1762 1763 /* - pseudo header */ 1764 struct tcp4_pseudohdr { 1765 __be32 saddr; 1766 __be32 daddr; 1767 __u8 pad; 1768 __u8 protocol; 1769 __be16 len; 1770 }; 1771 1772 struct tcp6_pseudohdr { 1773 struct in6_addr saddr; 1774 struct in6_addr daddr; 1775 __be32 len; 1776 __be32 protocol; /* including padding */ 1777 }; 1778 1779 union tcp_md5sum_block { 1780 struct tcp4_pseudohdr ip4; 1781 #if IS_ENABLED(CONFIG_IPV6) 1782 struct tcp6_pseudohdr ip6; 1783 #endif 1784 }; 1785 1786 /* 1787 * struct tcp_sigpool - per-CPU pool of ahash_requests 1788 * @scratch: per-CPU temporary area, that can be used between 1789 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1790 * crypto request 1791 * @req: pre-allocated ahash request 1792 */ 1793 struct tcp_sigpool { 1794 void *scratch; 1795 struct ahash_request *req; 1796 }; 1797 1798 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1799 void tcp_sigpool_get(unsigned int id); 1800 void tcp_sigpool_release(unsigned int id); 1801 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1802 const struct sk_buff *skb, 1803 unsigned int header_len); 1804 1805 /** 1806 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1807 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1808 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1809 * 1810 * Returns 0 on success, error otherwise. 1811 */ 1812 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1813 /** 1814 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1815 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1816 */ 1817 void tcp_sigpool_end(struct tcp_sigpool *c); 1818 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1819 /* - functions */ 1820 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1821 const struct sock *sk, const struct sk_buff *skb); 1822 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1823 int family, u8 prefixlen, int l3index, u8 flags, 1824 const u8 *newkey, u8 newkeylen); 1825 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1826 int family, u8 prefixlen, int l3index, 1827 struct tcp_md5sig_key *key); 1828 1829 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1830 int family, u8 prefixlen, int l3index, u8 flags); 1831 void tcp_clear_md5_list(struct sock *sk); 1832 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1833 const struct sock *addr_sk); 1834 1835 #ifdef CONFIG_TCP_MD5SIG 1836 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1837 const union tcp_md5_addr *addr, 1838 int family, bool any_l3index); 1839 static inline struct tcp_md5sig_key * 1840 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1841 const union tcp_md5_addr *addr, int family) 1842 { 1843 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1844 return NULL; 1845 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1846 } 1847 1848 static inline struct tcp_md5sig_key * 1849 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1850 const union tcp_md5_addr *addr, int family) 1851 { 1852 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1853 return NULL; 1854 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1855 } 1856 1857 enum skb_drop_reason 1858 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1859 const void *saddr, const void *daddr, 1860 int family, int l3index, const __u8 *hash_location); 1861 1862 1863 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1864 #else 1865 static inline struct tcp_md5sig_key * 1866 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1867 const union tcp_md5_addr *addr, int family) 1868 { 1869 return NULL; 1870 } 1871 1872 static inline struct tcp_md5sig_key * 1873 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1874 const union tcp_md5_addr *addr, int family) 1875 { 1876 return NULL; 1877 } 1878 1879 static inline enum skb_drop_reason 1880 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 1881 const void *saddr, const void *daddr, 1882 int family, int l3index, const __u8 *hash_location) 1883 { 1884 return SKB_NOT_DROPPED_YET; 1885 } 1886 #define tcp_twsk_md5_key(twsk) NULL 1887 #endif 1888 1889 int tcp_md5_alloc_sigpool(void); 1890 void tcp_md5_release_sigpool(void); 1891 void tcp_md5_add_sigpool(void); 1892 extern int tcp_md5_sigpool_id; 1893 1894 int tcp_md5_hash_key(struct tcp_sigpool *hp, 1895 const struct tcp_md5sig_key *key); 1896 1897 /* From tcp_fastopen.c */ 1898 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1899 struct tcp_fastopen_cookie *cookie); 1900 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1901 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1902 u16 try_exp); 1903 struct tcp_fastopen_request { 1904 /* Fast Open cookie. Size 0 means a cookie request */ 1905 struct tcp_fastopen_cookie cookie; 1906 struct msghdr *data; /* data in MSG_FASTOPEN */ 1907 size_t size; 1908 int copied; /* queued in tcp_connect() */ 1909 struct ubuf_info *uarg; 1910 }; 1911 void tcp_free_fastopen_req(struct tcp_sock *tp); 1912 void tcp_fastopen_destroy_cipher(struct sock *sk); 1913 void tcp_fastopen_ctx_destroy(struct net *net); 1914 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1915 void *primary_key, void *backup_key); 1916 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1917 u64 *key); 1918 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1919 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1920 struct request_sock *req, 1921 struct tcp_fastopen_cookie *foc, 1922 const struct dst_entry *dst); 1923 void tcp_fastopen_init_key_once(struct net *net); 1924 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1925 struct tcp_fastopen_cookie *cookie); 1926 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1927 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1928 #define TCP_FASTOPEN_KEY_MAX 2 1929 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1930 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1931 1932 /* Fastopen key context */ 1933 struct tcp_fastopen_context { 1934 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1935 int num; 1936 struct rcu_head rcu; 1937 }; 1938 1939 void tcp_fastopen_active_disable(struct sock *sk); 1940 bool tcp_fastopen_active_should_disable(struct sock *sk); 1941 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1942 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1943 1944 /* Caller needs to wrap with rcu_read_(un)lock() */ 1945 static inline 1946 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1947 { 1948 struct tcp_fastopen_context *ctx; 1949 1950 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1951 if (!ctx) 1952 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1953 return ctx; 1954 } 1955 1956 static inline 1957 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1958 const struct tcp_fastopen_cookie *orig) 1959 { 1960 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1961 orig->len == foc->len && 1962 !memcmp(orig->val, foc->val, foc->len)) 1963 return true; 1964 return false; 1965 } 1966 1967 static inline 1968 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1969 { 1970 return ctx->num; 1971 } 1972 1973 /* Latencies incurred by various limits for a sender. They are 1974 * chronograph-like stats that are mutually exclusive. 1975 */ 1976 enum tcp_chrono { 1977 TCP_CHRONO_UNSPEC, 1978 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1979 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1980 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1981 __TCP_CHRONO_MAX, 1982 }; 1983 1984 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1985 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1986 1987 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1988 * the same memory storage than skb->destructor/_skb_refdst 1989 */ 1990 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1991 { 1992 skb->destructor = NULL; 1993 skb->_skb_refdst = 0UL; 1994 } 1995 1996 #define tcp_skb_tsorted_save(skb) { \ 1997 unsigned long _save = skb->_skb_refdst; \ 1998 skb->_skb_refdst = 0UL; 1999 2000 #define tcp_skb_tsorted_restore(skb) \ 2001 skb->_skb_refdst = _save; \ 2002 } 2003 2004 void tcp_write_queue_purge(struct sock *sk); 2005 2006 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2007 { 2008 return skb_rb_first(&sk->tcp_rtx_queue); 2009 } 2010 2011 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2012 { 2013 return skb_rb_last(&sk->tcp_rtx_queue); 2014 } 2015 2016 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2017 { 2018 return skb_peek_tail(&sk->sk_write_queue); 2019 } 2020 2021 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2022 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2023 2024 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2025 { 2026 return skb_peek(&sk->sk_write_queue); 2027 } 2028 2029 static inline bool tcp_skb_is_last(const struct sock *sk, 2030 const struct sk_buff *skb) 2031 { 2032 return skb_queue_is_last(&sk->sk_write_queue, skb); 2033 } 2034 2035 /** 2036 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2037 * @sk: socket 2038 * 2039 * Since the write queue can have a temporary empty skb in it, 2040 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2041 */ 2042 static inline bool tcp_write_queue_empty(const struct sock *sk) 2043 { 2044 const struct tcp_sock *tp = tcp_sk(sk); 2045 2046 return tp->write_seq == tp->snd_nxt; 2047 } 2048 2049 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2050 { 2051 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2052 } 2053 2054 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2055 { 2056 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2057 } 2058 2059 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2060 { 2061 __skb_queue_tail(&sk->sk_write_queue, skb); 2062 2063 /* Queue it, remembering where we must start sending. */ 2064 if (sk->sk_write_queue.next == skb) 2065 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2066 } 2067 2068 /* Insert new before skb on the write queue of sk. */ 2069 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2070 struct sk_buff *skb, 2071 struct sock *sk) 2072 { 2073 __skb_queue_before(&sk->sk_write_queue, skb, new); 2074 } 2075 2076 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2077 { 2078 tcp_skb_tsorted_anchor_cleanup(skb); 2079 __skb_unlink(skb, &sk->sk_write_queue); 2080 } 2081 2082 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2083 2084 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2085 { 2086 tcp_skb_tsorted_anchor_cleanup(skb); 2087 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2088 } 2089 2090 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2091 { 2092 list_del(&skb->tcp_tsorted_anchor); 2093 tcp_rtx_queue_unlink(skb, sk); 2094 tcp_wmem_free_skb(sk, skb); 2095 } 2096 2097 static inline void tcp_push_pending_frames(struct sock *sk) 2098 { 2099 if (tcp_send_head(sk)) { 2100 struct tcp_sock *tp = tcp_sk(sk); 2101 2102 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2103 } 2104 } 2105 2106 /* Start sequence of the skb just after the highest skb with SACKed 2107 * bit, valid only if sacked_out > 0 or when the caller has ensured 2108 * validity by itself. 2109 */ 2110 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2111 { 2112 if (!tp->sacked_out) 2113 return tp->snd_una; 2114 2115 if (tp->highest_sack == NULL) 2116 return tp->snd_nxt; 2117 2118 return TCP_SKB_CB(tp->highest_sack)->seq; 2119 } 2120 2121 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2122 { 2123 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2124 } 2125 2126 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2127 { 2128 return tcp_sk(sk)->highest_sack; 2129 } 2130 2131 static inline void tcp_highest_sack_reset(struct sock *sk) 2132 { 2133 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2134 } 2135 2136 /* Called when old skb is about to be deleted and replaced by new skb */ 2137 static inline void tcp_highest_sack_replace(struct sock *sk, 2138 struct sk_buff *old, 2139 struct sk_buff *new) 2140 { 2141 if (old == tcp_highest_sack(sk)) 2142 tcp_sk(sk)->highest_sack = new; 2143 } 2144 2145 /* This helper checks if socket has IP_TRANSPARENT set */ 2146 static inline bool inet_sk_transparent(const struct sock *sk) 2147 { 2148 switch (sk->sk_state) { 2149 case TCP_TIME_WAIT: 2150 return inet_twsk(sk)->tw_transparent; 2151 case TCP_NEW_SYN_RECV: 2152 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2153 } 2154 return inet_test_bit(TRANSPARENT, sk); 2155 } 2156 2157 /* Determines whether this is a thin stream (which may suffer from 2158 * increased latency). Used to trigger latency-reducing mechanisms. 2159 */ 2160 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2161 { 2162 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2163 } 2164 2165 /* /proc */ 2166 enum tcp_seq_states { 2167 TCP_SEQ_STATE_LISTENING, 2168 TCP_SEQ_STATE_ESTABLISHED, 2169 }; 2170 2171 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2172 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2173 void tcp_seq_stop(struct seq_file *seq, void *v); 2174 2175 struct tcp_seq_afinfo { 2176 sa_family_t family; 2177 }; 2178 2179 struct tcp_iter_state { 2180 struct seq_net_private p; 2181 enum tcp_seq_states state; 2182 struct sock *syn_wait_sk; 2183 int bucket, offset, sbucket, num; 2184 loff_t last_pos; 2185 }; 2186 2187 extern struct request_sock_ops tcp_request_sock_ops; 2188 extern struct request_sock_ops tcp6_request_sock_ops; 2189 2190 void tcp_v4_destroy_sock(struct sock *sk); 2191 2192 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2193 netdev_features_t features); 2194 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2195 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2196 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2197 struct tcphdr *th); 2198 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2199 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2200 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2201 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2202 #ifdef CONFIG_INET 2203 void tcp_gro_complete(struct sk_buff *skb); 2204 #else 2205 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2206 #endif 2207 2208 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2209 2210 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2211 { 2212 struct net *net = sock_net((struct sock *)tp); 2213 u32 val; 2214 2215 val = READ_ONCE(tp->notsent_lowat); 2216 2217 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2218 } 2219 2220 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2221 2222 #ifdef CONFIG_PROC_FS 2223 int tcp4_proc_init(void); 2224 void tcp4_proc_exit(void); 2225 #endif 2226 2227 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2228 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2229 const struct tcp_request_sock_ops *af_ops, 2230 struct sock *sk, struct sk_buff *skb); 2231 2232 /* TCP af-specific functions */ 2233 struct tcp_sock_af_ops { 2234 #ifdef CONFIG_TCP_MD5SIG 2235 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2236 const struct sock *addr_sk); 2237 int (*calc_md5_hash)(char *location, 2238 const struct tcp_md5sig_key *md5, 2239 const struct sock *sk, 2240 const struct sk_buff *skb); 2241 int (*md5_parse)(struct sock *sk, 2242 int optname, 2243 sockptr_t optval, 2244 int optlen); 2245 #endif 2246 #ifdef CONFIG_TCP_AO 2247 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2248 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2249 struct sock *addr_sk, 2250 int sndid, int rcvid); 2251 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2252 const struct sock *sk, 2253 __be32 sisn, __be32 disn, bool send); 2254 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2255 const struct sock *sk, const struct sk_buff *skb, 2256 const u8 *tkey, int hash_offset, u32 sne); 2257 #endif 2258 }; 2259 2260 struct tcp_request_sock_ops { 2261 u16 mss_clamp; 2262 #ifdef CONFIG_TCP_MD5SIG 2263 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2264 const struct sock *addr_sk); 2265 int (*calc_md5_hash) (char *location, 2266 const struct tcp_md5sig_key *md5, 2267 const struct sock *sk, 2268 const struct sk_buff *skb); 2269 #endif 2270 #ifdef CONFIG_TCP_AO 2271 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2272 struct request_sock *req, 2273 int sndid, int rcvid); 2274 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2275 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2276 struct request_sock *req, const struct sk_buff *skb, 2277 int hash_offset, u32 sne); 2278 #endif 2279 #ifdef CONFIG_SYN_COOKIES 2280 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2281 __u16 *mss); 2282 #endif 2283 struct dst_entry *(*route_req)(const struct sock *sk, 2284 struct sk_buff *skb, 2285 struct flowi *fl, 2286 struct request_sock *req, 2287 u32 tw_isn); 2288 u32 (*init_seq)(const struct sk_buff *skb); 2289 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2290 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2291 struct flowi *fl, struct request_sock *req, 2292 struct tcp_fastopen_cookie *foc, 2293 enum tcp_synack_type synack_type, 2294 struct sk_buff *syn_skb); 2295 }; 2296 2297 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2298 #if IS_ENABLED(CONFIG_IPV6) 2299 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2300 #endif 2301 2302 #ifdef CONFIG_SYN_COOKIES 2303 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2304 const struct sock *sk, struct sk_buff *skb, 2305 __u16 *mss) 2306 { 2307 tcp_synq_overflow(sk); 2308 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2309 return ops->cookie_init_seq(skb, mss); 2310 } 2311 #else 2312 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2313 const struct sock *sk, struct sk_buff *skb, 2314 __u16 *mss) 2315 { 2316 return 0; 2317 } 2318 #endif 2319 2320 struct tcp_key { 2321 union { 2322 struct { 2323 struct tcp_ao_key *ao_key; 2324 char *traffic_key; 2325 u32 sne; 2326 u8 rcv_next; 2327 }; 2328 struct tcp_md5sig_key *md5_key; 2329 }; 2330 enum { 2331 TCP_KEY_NONE = 0, 2332 TCP_KEY_MD5, 2333 TCP_KEY_AO, 2334 } type; 2335 }; 2336 2337 static inline void tcp_get_current_key(const struct sock *sk, 2338 struct tcp_key *out) 2339 { 2340 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2341 const struct tcp_sock *tp = tcp_sk(sk); 2342 #endif 2343 2344 #ifdef CONFIG_TCP_AO 2345 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2346 struct tcp_ao_info *ao; 2347 2348 ao = rcu_dereference_protected(tp->ao_info, 2349 lockdep_sock_is_held(sk)); 2350 if (ao) { 2351 out->ao_key = READ_ONCE(ao->current_key); 2352 out->type = TCP_KEY_AO; 2353 return; 2354 } 2355 } 2356 #endif 2357 #ifdef CONFIG_TCP_MD5SIG 2358 if (static_branch_unlikely(&tcp_md5_needed.key) && 2359 rcu_access_pointer(tp->md5sig_info)) { 2360 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2361 if (out->md5_key) { 2362 out->type = TCP_KEY_MD5; 2363 return; 2364 } 2365 } 2366 #endif 2367 out->type = TCP_KEY_NONE; 2368 } 2369 2370 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2371 { 2372 #ifdef CONFIG_TCP_MD5SIG 2373 if (static_branch_unlikely(&tcp_md5_needed.key) && 2374 key->type == TCP_KEY_MD5) 2375 return true; 2376 #endif 2377 return false; 2378 } 2379 2380 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2381 { 2382 #ifdef CONFIG_TCP_AO 2383 if (static_branch_unlikely(&tcp_ao_needed.key) && 2384 key->type == TCP_KEY_AO) 2385 return true; 2386 #endif 2387 return false; 2388 } 2389 2390 int tcpv4_offload_init(void); 2391 2392 void tcp_v4_init(void); 2393 void tcp_init(void); 2394 2395 /* tcp_recovery.c */ 2396 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2397 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2398 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2399 u32 reo_wnd); 2400 extern bool tcp_rack_mark_lost(struct sock *sk); 2401 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2402 u64 xmit_time); 2403 extern void tcp_rack_reo_timeout(struct sock *sk); 2404 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2405 2406 /* tcp_plb.c */ 2407 2408 /* 2409 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2410 * expects cong_ratio which represents fraction of traffic that experienced 2411 * congestion over a single RTT. In order to avoid floating point operations, 2412 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2413 */ 2414 #define TCP_PLB_SCALE 8 2415 2416 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2417 struct tcp_plb_state { 2418 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2419 unused:3; 2420 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2421 }; 2422 2423 static inline void tcp_plb_init(const struct sock *sk, 2424 struct tcp_plb_state *plb) 2425 { 2426 plb->consec_cong_rounds = 0; 2427 plb->pause_until = 0; 2428 } 2429 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2430 const int cong_ratio); 2431 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2432 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2433 2434 /* At how many usecs into the future should the RTO fire? */ 2435 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2436 { 2437 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2438 u32 rto = inet_csk(sk)->icsk_rto; 2439 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2440 2441 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2442 } 2443 2444 /* 2445 * Save and compile IPv4 options, return a pointer to it 2446 */ 2447 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2448 struct sk_buff *skb) 2449 { 2450 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2451 struct ip_options_rcu *dopt = NULL; 2452 2453 if (opt->optlen) { 2454 int opt_size = sizeof(*dopt) + opt->optlen; 2455 2456 dopt = kmalloc(opt_size, GFP_ATOMIC); 2457 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2458 kfree(dopt); 2459 dopt = NULL; 2460 } 2461 } 2462 return dopt; 2463 } 2464 2465 /* locally generated TCP pure ACKs have skb->truesize == 2 2466 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2467 * This is much faster than dissecting the packet to find out. 2468 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2469 */ 2470 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2471 { 2472 return skb->truesize == 2; 2473 } 2474 2475 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2476 { 2477 skb->truesize = 2; 2478 } 2479 2480 static inline int tcp_inq(struct sock *sk) 2481 { 2482 struct tcp_sock *tp = tcp_sk(sk); 2483 int answ; 2484 2485 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2486 answ = 0; 2487 } else if (sock_flag(sk, SOCK_URGINLINE) || 2488 !tp->urg_data || 2489 before(tp->urg_seq, tp->copied_seq) || 2490 !before(tp->urg_seq, tp->rcv_nxt)) { 2491 2492 answ = tp->rcv_nxt - tp->copied_seq; 2493 2494 /* Subtract 1, if FIN was received */ 2495 if (answ && sock_flag(sk, SOCK_DONE)) 2496 answ--; 2497 } else { 2498 answ = tp->urg_seq - tp->copied_seq; 2499 } 2500 2501 return answ; 2502 } 2503 2504 int tcp_peek_len(struct socket *sock); 2505 2506 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2507 { 2508 u16 segs_in; 2509 2510 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2511 2512 /* We update these fields while other threads might 2513 * read them from tcp_get_info() 2514 */ 2515 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2516 if (skb->len > tcp_hdrlen(skb)) 2517 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2518 } 2519 2520 /* 2521 * TCP listen path runs lockless. 2522 * We forced "struct sock" to be const qualified to make sure 2523 * we don't modify one of its field by mistake. 2524 * Here, we increment sk_drops which is an atomic_t, so we can safely 2525 * make sock writable again. 2526 */ 2527 static inline void tcp_listendrop(const struct sock *sk) 2528 { 2529 atomic_inc(&((struct sock *)sk)->sk_drops); 2530 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2531 } 2532 2533 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2534 2535 /* 2536 * Interface for adding Upper Level Protocols over TCP 2537 */ 2538 2539 #define TCP_ULP_NAME_MAX 16 2540 #define TCP_ULP_MAX 128 2541 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2542 2543 struct tcp_ulp_ops { 2544 struct list_head list; 2545 2546 /* initialize ulp */ 2547 int (*init)(struct sock *sk); 2548 /* update ulp */ 2549 void (*update)(struct sock *sk, struct proto *p, 2550 void (*write_space)(struct sock *sk)); 2551 /* cleanup ulp */ 2552 void (*release)(struct sock *sk); 2553 /* diagnostic */ 2554 int (*get_info)(struct sock *sk, struct sk_buff *skb); 2555 size_t (*get_info_size)(const struct sock *sk); 2556 /* clone ulp */ 2557 void (*clone)(const struct request_sock *req, struct sock *newsk, 2558 const gfp_t priority); 2559 2560 char name[TCP_ULP_NAME_MAX]; 2561 struct module *owner; 2562 }; 2563 int tcp_register_ulp(struct tcp_ulp_ops *type); 2564 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2565 int tcp_set_ulp(struct sock *sk, const char *name); 2566 void tcp_get_available_ulp(char *buf, size_t len); 2567 void tcp_cleanup_ulp(struct sock *sk); 2568 void tcp_update_ulp(struct sock *sk, struct proto *p, 2569 void (*write_space)(struct sock *sk)); 2570 2571 #define MODULE_ALIAS_TCP_ULP(name) \ 2572 __MODULE_INFO(alias, alias_userspace, name); \ 2573 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2574 2575 #ifdef CONFIG_NET_SOCK_MSG 2576 struct sk_msg; 2577 struct sk_psock; 2578 2579 #ifdef CONFIG_BPF_SYSCALL 2580 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2581 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2582 #endif /* CONFIG_BPF_SYSCALL */ 2583 2584 #ifdef CONFIG_INET 2585 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2586 #else 2587 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2588 { 2589 } 2590 #endif 2591 2592 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2593 struct sk_msg *msg, u32 bytes, int flags); 2594 #endif /* CONFIG_NET_SOCK_MSG */ 2595 2596 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2597 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2598 { 2599 } 2600 #endif 2601 2602 #ifdef CONFIG_CGROUP_BPF 2603 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2604 struct sk_buff *skb, 2605 unsigned int end_offset) 2606 { 2607 skops->skb = skb; 2608 skops->skb_data_end = skb->data + end_offset; 2609 } 2610 #else 2611 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2612 struct sk_buff *skb, 2613 unsigned int end_offset) 2614 { 2615 } 2616 #endif 2617 2618 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2619 * is < 0, then the BPF op failed (for example if the loaded BPF 2620 * program does not support the chosen operation or there is no BPF 2621 * program loaded). 2622 */ 2623 #ifdef CONFIG_BPF 2624 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2625 { 2626 struct bpf_sock_ops_kern sock_ops; 2627 int ret; 2628 2629 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2630 if (sk_fullsock(sk)) { 2631 sock_ops.is_fullsock = 1; 2632 sock_owned_by_me(sk); 2633 } 2634 2635 sock_ops.sk = sk; 2636 sock_ops.op = op; 2637 if (nargs > 0) 2638 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2639 2640 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2641 if (ret == 0) 2642 ret = sock_ops.reply; 2643 else 2644 ret = -1; 2645 return ret; 2646 } 2647 2648 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2649 { 2650 u32 args[2] = {arg1, arg2}; 2651 2652 return tcp_call_bpf(sk, op, 2, args); 2653 } 2654 2655 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2656 u32 arg3) 2657 { 2658 u32 args[3] = {arg1, arg2, arg3}; 2659 2660 return tcp_call_bpf(sk, op, 3, args); 2661 } 2662 2663 #else 2664 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2665 { 2666 return -EPERM; 2667 } 2668 2669 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2670 { 2671 return -EPERM; 2672 } 2673 2674 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2675 u32 arg3) 2676 { 2677 return -EPERM; 2678 } 2679 2680 #endif 2681 2682 static inline u32 tcp_timeout_init(struct sock *sk) 2683 { 2684 int timeout; 2685 2686 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2687 2688 if (timeout <= 0) 2689 timeout = TCP_TIMEOUT_INIT; 2690 return min_t(int, timeout, TCP_RTO_MAX); 2691 } 2692 2693 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2694 { 2695 int rwnd; 2696 2697 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2698 2699 if (rwnd < 0) 2700 rwnd = 0; 2701 return rwnd; 2702 } 2703 2704 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2705 { 2706 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2707 } 2708 2709 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2710 { 2711 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2712 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2713 } 2714 2715 #if IS_ENABLED(CONFIG_SMC) 2716 extern struct static_key_false tcp_have_smc; 2717 #endif 2718 2719 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2720 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2721 void (*cad)(struct sock *sk, u32 ack_seq)); 2722 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2723 void clean_acked_data_flush(void); 2724 #endif 2725 2726 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2727 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2728 const struct tcp_sock *tp) 2729 { 2730 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2731 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2732 } 2733 2734 /* Compute Earliest Departure Time for some control packets 2735 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2736 */ 2737 static inline u64 tcp_transmit_time(const struct sock *sk) 2738 { 2739 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2740 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2741 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2742 2743 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2744 } 2745 return 0; 2746 } 2747 2748 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2749 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2750 { 2751 const u8 *md5_tmp, *ao_tmp; 2752 int ret; 2753 2754 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2755 if (ret) 2756 return ret; 2757 2758 if (md5_hash) 2759 *md5_hash = md5_tmp; 2760 2761 if (aoh) { 2762 if (!ao_tmp) 2763 *aoh = NULL; 2764 else 2765 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2766 } 2767 2768 return 0; 2769 } 2770 2771 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2772 int family, int l3index, bool stat_inc) 2773 { 2774 #ifdef CONFIG_TCP_AO 2775 struct tcp_ao_info *ao_info; 2776 struct tcp_ao_key *ao_key; 2777 2778 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2779 return false; 2780 2781 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2782 lockdep_sock_is_held(sk)); 2783 if (!ao_info) 2784 return false; 2785 2786 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2787 if (ao_info->ao_required || ao_key) { 2788 if (stat_inc) { 2789 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2790 atomic64_inc(&ao_info->counters.ao_required); 2791 } 2792 return true; 2793 } 2794 #endif 2795 return false; 2796 } 2797 2798 /* Called with rcu_read_lock() */ 2799 static inline enum skb_drop_reason 2800 tcp_inbound_hash(struct sock *sk, const struct request_sock *req, 2801 const struct sk_buff *skb, 2802 const void *saddr, const void *daddr, 2803 int family, int dif, int sdif) 2804 { 2805 const struct tcphdr *th = tcp_hdr(skb); 2806 const struct tcp_ao_hdr *aoh; 2807 const __u8 *md5_location; 2808 int l3index; 2809 2810 /* Invalid option or two times meet any of auth options */ 2811 if (tcp_parse_auth_options(th, &md5_location, &aoh)) { 2812 tcp_hash_fail("TCP segment has incorrect auth options set", 2813 family, skb, ""); 2814 return SKB_DROP_REASON_TCP_AUTH_HDR; 2815 } 2816 2817 if (req) { 2818 if (tcp_rsk_used_ao(req) != !!aoh) { 2819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD); 2820 tcp_hash_fail("TCP connection can't start/end using TCP-AO", 2821 family, skb, "%s", 2822 !aoh ? "missing AO" : "AO signed"); 2823 return SKB_DROP_REASON_TCP_AOFAILURE; 2824 } 2825 } 2826 2827 /* sdif set, means packet ingressed via a device 2828 * in an L3 domain and dif is set to the l3mdev 2829 */ 2830 l3index = sdif ? dif : 0; 2831 2832 /* Fast path: unsigned segments */ 2833 if (likely(!md5_location && !aoh)) { 2834 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid 2835 * for the remote peer. On TCP-AO established connection 2836 * the last key is impossible to remove, so there's 2837 * always at least one current_key. 2838 */ 2839 if (tcp_ao_required(sk, saddr, family, l3index, true)) { 2840 tcp_hash_fail("AO hash is required, but not found", 2841 family, skb, "L3 index %d", l3index); 2842 return SKB_DROP_REASON_TCP_AONOTFOUND; 2843 } 2844 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) { 2845 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 2846 tcp_hash_fail("MD5 Hash not found", 2847 family, skb, "L3 index %d", l3index); 2848 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 2849 } 2850 return SKB_NOT_DROPPED_YET; 2851 } 2852 2853 if (aoh) 2854 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh); 2855 2856 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family, 2857 l3index, md5_location); 2858 } 2859 2860 #endif /* _TCP_H */ 2861