1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/tcp_ao.h> 41 #include <net/inet_ecn.h> 42 #include <net/dst.h> 43 #include <net/mptcp.h> 44 #include <net/xfrm.h> 45 46 #include <linux/seq_file.h> 47 #include <linux/memcontrol.h> 48 #include <linux/bpf-cgroup.h> 49 #include <linux/siphash.h> 50 51 extern struct inet_hashinfo tcp_hashinfo; 52 53 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 54 int tcp_orphan_count_sum(void); 55 56 DECLARE_PER_CPU(u32, tcp_tw_isn); 57 58 void tcp_time_wait(struct sock *sk, int state, int timeo); 59 60 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 61 #define MAX_TCP_OPTION_SPACE 40 62 #define TCP_MIN_SND_MSS 48 63 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 64 65 /* 66 * Never offer a window over 32767 without using window scaling. Some 67 * poor stacks do signed 16bit maths! 68 */ 69 #define MAX_TCP_WINDOW 32767U 70 71 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 72 #define TCP_MIN_MSS 88U 73 74 /* The initial MTU to use for probing */ 75 #define TCP_BASE_MSS 1024 76 77 /* probing interval, default to 10 minutes as per RFC4821 */ 78 #define TCP_PROBE_INTERVAL 600 79 80 /* Specify interval when tcp mtu probing will stop */ 81 #define TCP_PROBE_THRESHOLD 8 82 83 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 84 #define TCP_FASTRETRANS_THRESH 3 85 86 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 87 #define TCP_MAX_QUICKACKS 16U 88 89 /* Maximal number of window scale according to RFC1323 */ 90 #define TCP_MAX_WSCALE 14U 91 92 /* urg_data states */ 93 #define TCP_URG_VALID 0x0100 94 #define TCP_URG_NOTYET 0x0200 95 #define TCP_URG_READ 0x0400 96 97 #define TCP_RETR1 3 /* 98 * This is how many retries it does before it 99 * tries to figure out if the gateway is 100 * down. Minimal RFC value is 3; it corresponds 101 * to ~3sec-8min depending on RTO. 102 */ 103 104 #define TCP_RETR2 15 /* 105 * This should take at least 106 * 90 minutes to time out. 107 * RFC1122 says that the limit is 100 sec. 108 * 15 is ~13-30min depending on RTO. 109 */ 110 111 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 112 * when active opening a connection. 113 * RFC1122 says the minimum retry MUST 114 * be at least 180secs. Nevertheless 115 * this value is corresponding to 116 * 63secs of retransmission with the 117 * current initial RTO. 118 */ 119 120 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 121 * when passive opening a connection. 122 * This is corresponding to 31secs of 123 * retransmission with the current 124 * initial RTO. 125 */ 126 127 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 128 * state, about 60 seconds */ 129 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 130 /* BSD style FIN_WAIT2 deadlock breaker. 131 * It used to be 3min, new value is 60sec, 132 * to combine FIN-WAIT-2 timeout with 133 * TIME-WAIT timer. 134 */ 135 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 136 137 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 138 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 139 140 #if HZ >= 100 141 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 142 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 143 #else 144 #define TCP_DELACK_MIN 4U 145 #define TCP_ATO_MIN 4U 146 #endif 147 #define TCP_RTO_MAX_SEC 120 148 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 149 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 150 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 151 152 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 153 154 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 155 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 156 * used as a fallback RTO for the 157 * initial data transmission if no 158 * valid RTT sample has been acquired, 159 * most likely due to retrans in 3WHS. 160 */ 161 162 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 163 * for local resources. 164 */ 165 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 166 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 167 #define TCP_KEEPALIVE_INTVL (75*HZ) 168 169 #define MAX_TCP_KEEPIDLE 32767 170 #define MAX_TCP_KEEPINTVL 32767 171 #define MAX_TCP_KEEPCNT 127 172 #define MAX_TCP_SYNCNT 127 173 174 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 175 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 176 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 177 */ 178 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 179 180 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 181 * after this time. It should be equal 182 * (or greater than) TCP_TIMEWAIT_LEN 183 * to provide reliability equal to one 184 * provided by timewait state. 185 */ 186 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 187 * timestamps. It must be less than 188 * minimal timewait lifetime. 189 */ 190 /* 191 * TCP option 192 */ 193 194 #define TCPOPT_NOP 1 /* Padding */ 195 #define TCPOPT_EOL 0 /* End of options */ 196 #define TCPOPT_MSS 2 /* Segment size negotiating */ 197 #define TCPOPT_WINDOW 3 /* Window scaling */ 198 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 199 #define TCPOPT_SACK 5 /* SACK Block */ 200 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 201 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 202 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 203 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 204 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 205 #define TCPOPT_EXP 254 /* Experimental */ 206 /* Magic number to be after the option value for sharing TCP 207 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 208 */ 209 #define TCPOPT_FASTOPEN_MAGIC 0xF989 210 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 211 212 /* 213 * TCP option lengths 214 */ 215 216 #define TCPOLEN_MSS 4 217 #define TCPOLEN_WINDOW 3 218 #define TCPOLEN_SACK_PERM 2 219 #define TCPOLEN_TIMESTAMP 10 220 #define TCPOLEN_MD5SIG 18 221 #define TCPOLEN_FASTOPEN_BASE 2 222 #define TCPOLEN_EXP_FASTOPEN_BASE 4 223 #define TCPOLEN_EXP_SMC_BASE 6 224 225 /* But this is what stacks really send out. */ 226 #define TCPOLEN_TSTAMP_ALIGNED 12 227 #define TCPOLEN_WSCALE_ALIGNED 4 228 #define TCPOLEN_SACKPERM_ALIGNED 4 229 #define TCPOLEN_SACK_BASE 2 230 #define TCPOLEN_SACK_BASE_ALIGNED 4 231 #define TCPOLEN_SACK_PERBLOCK 8 232 #define TCPOLEN_MD5SIG_ALIGNED 20 233 #define TCPOLEN_MSS_ALIGNED 4 234 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 235 236 /* Flags in tp->nonagle */ 237 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 238 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 239 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 240 241 /* TCP thin-stream limits */ 242 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 243 244 /* TCP initial congestion window as per rfc6928 */ 245 #define TCP_INIT_CWND 10 246 247 /* Bit Flags for sysctl_tcp_fastopen */ 248 #define TFO_CLIENT_ENABLE 1 249 #define TFO_SERVER_ENABLE 2 250 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 251 252 /* Accept SYN data w/o any cookie option */ 253 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 254 255 /* Force enable TFO on all listeners, i.e., not requiring the 256 * TCP_FASTOPEN socket option. 257 */ 258 #define TFO_SERVER_WO_SOCKOPT1 0x400 259 260 261 /* sysctl variables for tcp */ 262 extern int sysctl_tcp_max_orphans; 263 extern long sysctl_tcp_mem[3]; 264 265 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 266 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 267 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 268 269 extern atomic_long_t tcp_memory_allocated; 270 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 271 272 extern struct percpu_counter tcp_sockets_allocated; 273 extern unsigned long tcp_memory_pressure; 274 275 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 276 static inline bool tcp_under_memory_pressure(const struct sock *sk) 277 { 278 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 279 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 280 return true; 281 282 return READ_ONCE(tcp_memory_pressure); 283 } 284 /* 285 * The next routines deal with comparing 32 bit unsigned ints 286 * and worry about wraparound (automatic with unsigned arithmetic). 287 */ 288 289 static inline bool before(__u32 seq1, __u32 seq2) 290 { 291 return (__s32)(seq1-seq2) < 0; 292 } 293 #define after(seq2, seq1) before(seq1, seq2) 294 295 /* is s2<=s1<=s3 ? */ 296 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 297 { 298 return seq3 - seq2 >= seq1 - seq2; 299 } 300 301 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 302 { 303 sk_wmem_queued_add(sk, -skb->truesize); 304 if (!skb_zcopy_pure(skb)) 305 sk_mem_uncharge(sk, skb->truesize); 306 else 307 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 308 __kfree_skb(skb); 309 } 310 311 void sk_forced_mem_schedule(struct sock *sk, int size); 312 313 bool tcp_check_oom(const struct sock *sk, int shift); 314 315 316 extern struct proto tcp_prot; 317 318 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 319 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 320 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 321 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 322 323 void tcp_tasklet_init(void); 324 325 int tcp_v4_err(struct sk_buff *skb, u32); 326 327 void tcp_shutdown(struct sock *sk, int how); 328 329 int tcp_v4_early_demux(struct sk_buff *skb); 330 int tcp_v4_rcv(struct sk_buff *skb); 331 332 void tcp_remove_empty_skb(struct sock *sk); 333 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 334 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 335 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 336 size_t size, struct ubuf_info *uarg); 337 void tcp_splice_eof(struct socket *sock); 338 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 339 int tcp_wmem_schedule(struct sock *sk, int copy); 340 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 341 int size_goal); 342 void tcp_release_cb(struct sock *sk); 343 void tcp_wfree(struct sk_buff *skb); 344 void tcp_write_timer_handler(struct sock *sk); 345 void tcp_delack_timer_handler(struct sock *sk); 346 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 347 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 348 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 349 void tcp_rcv_space_adjust(struct sock *sk); 350 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 351 void tcp_twsk_destructor(struct sock *sk); 352 void tcp_twsk_purge(struct list_head *net_exit_list); 353 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 354 struct pipe_inode_info *pipe, size_t len, 355 unsigned int flags); 356 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 357 bool force_schedule); 358 359 static inline void tcp_dec_quickack_mode(struct sock *sk) 360 { 361 struct inet_connection_sock *icsk = inet_csk(sk); 362 363 if (icsk->icsk_ack.quick) { 364 /* How many ACKs S/ACKing new data have we sent? */ 365 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 366 367 if (pkts >= icsk->icsk_ack.quick) { 368 icsk->icsk_ack.quick = 0; 369 /* Leaving quickack mode we deflate ATO. */ 370 icsk->icsk_ack.ato = TCP_ATO_MIN; 371 } else 372 icsk->icsk_ack.quick -= pkts; 373 } 374 } 375 376 #define TCP_ECN_OK 1 377 #define TCP_ECN_QUEUE_CWR 2 378 #define TCP_ECN_DEMAND_CWR 4 379 #define TCP_ECN_SEEN 8 380 381 enum tcp_tw_status { 382 TCP_TW_SUCCESS = 0, 383 TCP_TW_RST = 1, 384 TCP_TW_ACK = 2, 385 TCP_TW_SYN = 3 386 }; 387 388 389 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 390 struct sk_buff *skb, 391 const struct tcphdr *th, 392 u32 *tw_isn); 393 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 394 struct request_sock *req, bool fastopen, 395 bool *lost_race, enum skb_drop_reason *drop_reason); 396 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 397 struct sk_buff *skb); 398 void tcp_enter_loss(struct sock *sk); 399 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 400 void tcp_clear_retrans(struct tcp_sock *tp); 401 void tcp_update_metrics(struct sock *sk); 402 void tcp_init_metrics(struct sock *sk); 403 void tcp_metrics_init(void); 404 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 405 void __tcp_close(struct sock *sk, long timeout); 406 void tcp_close(struct sock *sk, long timeout); 407 void tcp_init_sock(struct sock *sk); 408 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 409 __poll_t tcp_poll(struct file *file, struct socket *sock, 410 struct poll_table_struct *wait); 411 int do_tcp_getsockopt(struct sock *sk, int level, 412 int optname, sockptr_t optval, sockptr_t optlen); 413 int tcp_getsockopt(struct sock *sk, int level, int optname, 414 char __user *optval, int __user *optlen); 415 bool tcp_bpf_bypass_getsockopt(int level, int optname); 416 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 417 sockptr_t optval, unsigned int optlen); 418 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 419 unsigned int optlen); 420 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 421 void tcp_set_keepalive(struct sock *sk, int val); 422 void tcp_syn_ack_timeout(const struct request_sock *req); 423 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 424 int flags, int *addr_len); 425 int tcp_set_rcvlowat(struct sock *sk, int val); 426 int tcp_set_window_clamp(struct sock *sk, int val); 427 void tcp_update_recv_tstamps(struct sk_buff *skb, 428 struct scm_timestamping_internal *tss); 429 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 430 struct scm_timestamping_internal *tss); 431 void tcp_data_ready(struct sock *sk); 432 #ifdef CONFIG_MMU 433 int tcp_mmap(struct file *file, struct socket *sock, 434 struct vm_area_struct *vma); 435 #endif 436 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 437 struct tcp_options_received *opt_rx, 438 int estab, struct tcp_fastopen_cookie *foc); 439 440 /* 441 * BPF SKB-less helpers 442 */ 443 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 444 struct tcphdr *th, u32 *cookie); 445 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 446 struct tcphdr *th, u32 *cookie); 447 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 448 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 449 const struct tcp_request_sock_ops *af_ops, 450 struct sock *sk, struct tcphdr *th); 451 /* 452 * TCP v4 functions exported for the inet6 API 453 */ 454 455 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 456 void tcp_v4_mtu_reduced(struct sock *sk); 457 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 458 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 459 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 460 struct sock *tcp_create_openreq_child(const struct sock *sk, 461 struct request_sock *req, 462 struct sk_buff *skb); 463 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 464 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 465 struct request_sock *req, 466 struct dst_entry *dst, 467 struct request_sock *req_unhash, 468 bool *own_req); 469 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 470 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 471 int tcp_connect(struct sock *sk); 472 enum tcp_synack_type { 473 TCP_SYNACK_NORMAL, 474 TCP_SYNACK_FASTOPEN, 475 TCP_SYNACK_COOKIE, 476 }; 477 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 478 struct request_sock *req, 479 struct tcp_fastopen_cookie *foc, 480 enum tcp_synack_type synack_type, 481 struct sk_buff *syn_skb); 482 int tcp_disconnect(struct sock *sk, int flags); 483 484 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 485 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 486 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 487 488 /* From syncookies.c */ 489 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 490 struct request_sock *req, 491 struct dst_entry *dst); 492 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 493 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 494 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 495 struct sock *sk, struct sk_buff *skb, 496 struct tcp_options_received *tcp_opt, 497 int mss, u32 tsoff); 498 499 #if IS_ENABLED(CONFIG_BPF) 500 struct bpf_tcp_req_attrs { 501 u32 rcv_tsval; 502 u32 rcv_tsecr; 503 u16 mss; 504 u8 rcv_wscale; 505 u8 snd_wscale; 506 u8 ecn_ok; 507 u8 wscale_ok; 508 u8 sack_ok; 509 u8 tstamp_ok; 510 u8 usec_ts_ok; 511 u8 reserved[3]; 512 }; 513 #endif 514 515 #ifdef CONFIG_SYN_COOKIES 516 517 /* Syncookies use a monotonic timer which increments every 60 seconds. 518 * This counter is used both as a hash input and partially encoded into 519 * the cookie value. A cookie is only validated further if the delta 520 * between the current counter value and the encoded one is less than this, 521 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 522 * the counter advances immediately after a cookie is generated). 523 */ 524 #define MAX_SYNCOOKIE_AGE 2 525 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 526 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 527 528 /* syncookies: remember time of last synqueue overflow 529 * But do not dirty this field too often (once per second is enough) 530 * It is racy as we do not hold a lock, but race is very minor. 531 */ 532 static inline void tcp_synq_overflow(const struct sock *sk) 533 { 534 unsigned int last_overflow; 535 unsigned int now = jiffies; 536 537 if (sk->sk_reuseport) { 538 struct sock_reuseport *reuse; 539 540 reuse = rcu_dereference(sk->sk_reuseport_cb); 541 if (likely(reuse)) { 542 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 543 if (!time_between32(now, last_overflow, 544 last_overflow + HZ)) 545 WRITE_ONCE(reuse->synq_overflow_ts, now); 546 return; 547 } 548 } 549 550 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 551 if (!time_between32(now, last_overflow, last_overflow + HZ)) 552 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 553 } 554 555 /* syncookies: no recent synqueue overflow on this listening socket? */ 556 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 557 { 558 unsigned int last_overflow; 559 unsigned int now = jiffies; 560 561 if (sk->sk_reuseport) { 562 struct sock_reuseport *reuse; 563 564 reuse = rcu_dereference(sk->sk_reuseport_cb); 565 if (likely(reuse)) { 566 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 567 return !time_between32(now, last_overflow - HZ, 568 last_overflow + 569 TCP_SYNCOOKIE_VALID); 570 } 571 } 572 573 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 574 575 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 576 * then we're under synflood. However, we have to use 577 * 'last_overflow - HZ' as lower bound. That's because a concurrent 578 * tcp_synq_overflow() could update .ts_recent_stamp after we read 579 * jiffies but before we store .ts_recent_stamp into last_overflow, 580 * which could lead to rejecting a valid syncookie. 581 */ 582 return !time_between32(now, last_overflow - HZ, 583 last_overflow + TCP_SYNCOOKIE_VALID); 584 } 585 586 static inline u32 tcp_cookie_time(void) 587 { 588 u64 val = get_jiffies_64(); 589 590 do_div(val, TCP_SYNCOOKIE_PERIOD); 591 return val; 592 } 593 594 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 595 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 596 { 597 if (usec_ts) 598 return div_u64(val, NSEC_PER_USEC); 599 600 return div_u64(val, NSEC_PER_MSEC); 601 } 602 603 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 604 u16 *mssp); 605 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 606 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 607 bool cookie_timestamp_decode(const struct net *net, 608 struct tcp_options_received *opt); 609 610 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 611 { 612 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 613 dst_feature(dst, RTAX_FEATURE_ECN); 614 } 615 616 #if IS_ENABLED(CONFIG_BPF) 617 static inline bool cookie_bpf_ok(struct sk_buff *skb) 618 { 619 return skb->sk; 620 } 621 622 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 623 #else 624 static inline bool cookie_bpf_ok(struct sk_buff *skb) 625 { 626 return false; 627 } 628 629 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 630 struct sk_buff *skb) 631 { 632 return NULL; 633 } 634 #endif 635 636 /* From net/ipv6/syncookies.c */ 637 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 638 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 639 640 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 641 const struct tcphdr *th, u16 *mssp); 642 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 643 #endif 644 /* tcp_output.c */ 645 646 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 647 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 648 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 649 int nonagle); 650 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 651 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 652 void tcp_retransmit_timer(struct sock *sk); 653 void tcp_xmit_retransmit_queue(struct sock *); 654 void tcp_simple_retransmit(struct sock *); 655 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 656 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 657 enum tcp_queue { 658 TCP_FRAG_IN_WRITE_QUEUE, 659 TCP_FRAG_IN_RTX_QUEUE, 660 }; 661 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 662 struct sk_buff *skb, u32 len, 663 unsigned int mss_now, gfp_t gfp); 664 665 void tcp_send_probe0(struct sock *); 666 int tcp_write_wakeup(struct sock *, int mib); 667 void tcp_send_fin(struct sock *sk); 668 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 669 enum sk_rst_reason reason); 670 int tcp_send_synack(struct sock *); 671 void tcp_push_one(struct sock *, unsigned int mss_now); 672 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 673 void tcp_send_ack(struct sock *sk); 674 void tcp_send_delayed_ack(struct sock *sk); 675 void tcp_send_loss_probe(struct sock *sk); 676 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 677 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 678 const struct sk_buff *next_skb); 679 680 /* tcp_input.c */ 681 void tcp_rearm_rto(struct sock *sk); 682 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 683 void tcp_done_with_error(struct sock *sk, int err); 684 void tcp_reset(struct sock *sk, struct sk_buff *skb); 685 void tcp_fin(struct sock *sk); 686 void tcp_check_space(struct sock *sk); 687 void tcp_sack_compress_send_ack(struct sock *sk); 688 689 static inline void tcp_cleanup_skb(struct sk_buff *skb) 690 { 691 skb_dst_drop(skb); 692 secpath_reset(skb); 693 } 694 695 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 696 { 697 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 698 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 699 __skb_queue_tail(&sk->sk_receive_queue, skb); 700 } 701 702 /* tcp_timer.c */ 703 void tcp_init_xmit_timers(struct sock *); 704 static inline void tcp_clear_xmit_timers(struct sock *sk) 705 { 706 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 707 __sock_put(sk); 708 709 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 710 __sock_put(sk); 711 712 inet_csk_clear_xmit_timers(sk); 713 } 714 715 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 716 unsigned int tcp_current_mss(struct sock *sk); 717 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 718 719 /* Bound MSS / TSO packet size with the half of the window */ 720 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 721 { 722 int cutoff; 723 724 /* When peer uses tiny windows, there is no use in packetizing 725 * to sub-MSS pieces for the sake of SWS or making sure there 726 * are enough packets in the pipe for fast recovery. 727 * 728 * On the other hand, for extremely large MSS devices, handling 729 * smaller than MSS windows in this way does make sense. 730 */ 731 if (tp->max_window > TCP_MSS_DEFAULT) 732 cutoff = (tp->max_window >> 1); 733 else 734 cutoff = tp->max_window; 735 736 if (cutoff && pktsize > cutoff) 737 return max_t(int, cutoff, 68U - tp->tcp_header_len); 738 else 739 return pktsize; 740 } 741 742 /* tcp.c */ 743 void tcp_get_info(struct sock *, struct tcp_info *); 744 745 /* Read 'sendfile()'-style from a TCP socket */ 746 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 747 sk_read_actor_t recv_actor); 748 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 749 sk_read_actor_t recv_actor, bool noack, 750 u32 *copied_seq); 751 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 752 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 753 void tcp_read_done(struct sock *sk, size_t len); 754 755 void tcp_initialize_rcv_mss(struct sock *sk); 756 757 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 758 int tcp_mss_to_mtu(struct sock *sk, int mss); 759 void tcp_mtup_init(struct sock *sk); 760 761 static inline unsigned int tcp_rto_max(const struct sock *sk) 762 { 763 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 764 } 765 766 static inline void tcp_bound_rto(struct sock *sk) 767 { 768 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 769 } 770 771 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 772 { 773 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 774 } 775 776 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 777 { 778 /* mptcp hooks are only on the slow path */ 779 if (sk_is_mptcp((struct sock *)tp)) 780 return; 781 782 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 783 ntohl(TCP_FLAG_ACK) | 784 snd_wnd); 785 } 786 787 static inline void tcp_fast_path_on(struct tcp_sock *tp) 788 { 789 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 790 } 791 792 static inline void tcp_fast_path_check(struct sock *sk) 793 { 794 struct tcp_sock *tp = tcp_sk(sk); 795 796 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 797 tp->rcv_wnd && 798 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 799 !tp->urg_data) 800 tcp_fast_path_on(tp); 801 } 802 803 u32 tcp_delack_max(const struct sock *sk); 804 805 /* Compute the actual rto_min value */ 806 static inline u32 tcp_rto_min(const struct sock *sk) 807 { 808 const struct dst_entry *dst = __sk_dst_get(sk); 809 u32 rto_min = inet_csk(sk)->icsk_rto_min; 810 811 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 812 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 813 return rto_min; 814 } 815 816 static inline u32 tcp_rto_min_us(const struct sock *sk) 817 { 818 return jiffies_to_usecs(tcp_rto_min(sk)); 819 } 820 821 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 822 { 823 return dst_metric_locked(dst, RTAX_CC_ALGO); 824 } 825 826 /* Minimum RTT in usec. ~0 means not available. */ 827 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 828 { 829 return minmax_get(&tp->rtt_min); 830 } 831 832 /* Compute the actual receive window we are currently advertising. 833 * Rcv_nxt can be after the window if our peer push more data 834 * than the offered window. 835 */ 836 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 837 { 838 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 839 840 if (win < 0) 841 win = 0; 842 return (u32) win; 843 } 844 845 /* Choose a new window, without checks for shrinking, and without 846 * scaling applied to the result. The caller does these things 847 * if necessary. This is a "raw" window selection. 848 */ 849 u32 __tcp_select_window(struct sock *sk); 850 851 void tcp_send_window_probe(struct sock *sk); 852 853 /* TCP uses 32bit jiffies to save some space. 854 * Note that this is different from tcp_time_stamp, which 855 * historically has been the same until linux-4.13. 856 */ 857 #define tcp_jiffies32 ((u32)jiffies) 858 859 /* 860 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 861 * It is no longer tied to jiffies, but to 1 ms clock. 862 * Note: double check if you want to use tcp_jiffies32 instead of this. 863 */ 864 #define TCP_TS_HZ 1000 865 866 static inline u64 tcp_clock_ns(void) 867 { 868 return ktime_get_ns(); 869 } 870 871 static inline u64 tcp_clock_us(void) 872 { 873 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 874 } 875 876 static inline u64 tcp_clock_ms(void) 877 { 878 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 879 } 880 881 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 882 * or usec resolution. Each socket carries a flag to select one or other 883 * resolution, as the route attribute could change anytime. 884 * Each flow must stick to initial resolution. 885 */ 886 static inline u32 tcp_clock_ts(bool usec_ts) 887 { 888 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 889 } 890 891 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 892 { 893 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 894 } 895 896 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 897 { 898 if (tp->tcp_usec_ts) 899 return tp->tcp_mstamp; 900 return tcp_time_stamp_ms(tp); 901 } 902 903 void tcp_mstamp_refresh(struct tcp_sock *tp); 904 905 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 906 { 907 return max_t(s64, t1 - t0, 0); 908 } 909 910 /* provide the departure time in us unit */ 911 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 912 { 913 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 914 } 915 916 /* Provide skb TSval in usec or ms unit */ 917 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 918 { 919 if (usec_ts) 920 return tcp_skb_timestamp_us(skb); 921 922 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 923 } 924 925 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 926 { 927 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 928 } 929 930 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 931 { 932 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 933 } 934 935 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 936 937 #define TCPHDR_FIN 0x01 938 #define TCPHDR_SYN 0x02 939 #define TCPHDR_RST 0x04 940 #define TCPHDR_PSH 0x08 941 #define TCPHDR_ACK 0x10 942 #define TCPHDR_URG 0x20 943 #define TCPHDR_ECE 0x40 944 #define TCPHDR_CWR 0x80 945 946 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 947 948 /* State flags for sacked in struct tcp_skb_cb */ 949 enum tcp_skb_cb_sacked_flags { 950 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 951 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 952 TCPCB_LOST = (1 << 2), /* SKB is lost */ 953 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 954 TCPCB_LOST), /* All tag bits */ 955 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 956 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 957 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 958 TCPCB_REPAIRED), 959 }; 960 961 /* This is what the send packet queuing engine uses to pass 962 * TCP per-packet control information to the transmission code. 963 * We also store the host-order sequence numbers in here too. 964 * This is 44 bytes if IPV6 is enabled. 965 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 966 */ 967 struct tcp_skb_cb { 968 __u32 seq; /* Starting sequence number */ 969 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 970 union { 971 /* Note : 972 * tcp_gso_segs/size are used in write queue only, 973 * cf tcp_skb_pcount()/tcp_skb_mss() 974 */ 975 struct { 976 u16 tcp_gso_segs; 977 u16 tcp_gso_size; 978 }; 979 }; 980 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 981 982 __u8 sacked; /* State flags for SACK. */ 983 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 984 #define TSTAMP_ACK_SK 0x1 985 #define TSTAMP_ACK_BPF 0x2 986 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 987 eor:1, /* Is skb MSG_EOR marked? */ 988 has_rxtstamp:1, /* SKB has a RX timestamp */ 989 unused:4; 990 __u32 ack_seq; /* Sequence number ACK'd */ 991 union { 992 struct { 993 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 994 /* There is space for up to 24 bytes */ 995 __u32 is_app_limited:1, /* cwnd not fully used? */ 996 delivered_ce:20, 997 unused:11; 998 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 999 __u32 delivered; 1000 /* start of send pipeline phase */ 1001 u64 first_tx_mstamp; 1002 /* when we reached the "delivered" count */ 1003 u64 delivered_mstamp; 1004 } tx; /* only used for outgoing skbs */ 1005 union { 1006 struct inet_skb_parm h4; 1007 #if IS_ENABLED(CONFIG_IPV6) 1008 struct inet6_skb_parm h6; 1009 #endif 1010 } header; /* For incoming skbs */ 1011 }; 1012 }; 1013 1014 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1015 1016 extern const struct inet_connection_sock_af_ops ipv4_specific; 1017 1018 #if IS_ENABLED(CONFIG_IPV6) 1019 /* This is the variant of inet6_iif() that must be used by TCP, 1020 * as TCP moves IP6CB into a different location in skb->cb[] 1021 */ 1022 static inline int tcp_v6_iif(const struct sk_buff *skb) 1023 { 1024 return TCP_SKB_CB(skb)->header.h6.iif; 1025 } 1026 1027 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1028 { 1029 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1030 1031 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1032 } 1033 1034 /* TCP_SKB_CB reference means this can not be used from early demux */ 1035 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1036 { 1037 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1038 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1039 return TCP_SKB_CB(skb)->header.h6.iif; 1040 #endif 1041 return 0; 1042 } 1043 1044 extern const struct inet_connection_sock_af_ops ipv6_specific; 1045 1046 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1047 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1048 void tcp_v6_early_demux(struct sk_buff *skb); 1049 1050 #endif 1051 1052 /* TCP_SKB_CB reference means this can not be used from early demux */ 1053 static inline int tcp_v4_sdif(struct sk_buff *skb) 1054 { 1055 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1056 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1057 return TCP_SKB_CB(skb)->header.h4.iif; 1058 #endif 1059 return 0; 1060 } 1061 1062 /* Due to TSO, an SKB can be composed of multiple actual 1063 * packets. To keep these tracked properly, we use this. 1064 */ 1065 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1066 { 1067 return TCP_SKB_CB(skb)->tcp_gso_segs; 1068 } 1069 1070 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1071 { 1072 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1073 } 1074 1075 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1076 { 1077 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1078 } 1079 1080 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1081 static inline int tcp_skb_mss(const struct sk_buff *skb) 1082 { 1083 return TCP_SKB_CB(skb)->tcp_gso_size; 1084 } 1085 1086 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1087 { 1088 return likely(!TCP_SKB_CB(skb)->eor); 1089 } 1090 1091 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1092 const struct sk_buff *from) 1093 { 1094 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1095 return likely(tcp_skb_can_collapse_to(to) && 1096 mptcp_skb_can_collapse(to, from) && 1097 skb_pure_zcopy_same(to, from) && 1098 skb_frags_readable(to) == skb_frags_readable(from)); 1099 } 1100 1101 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1102 const struct sk_buff *from) 1103 { 1104 return likely(mptcp_skb_can_collapse(to, from) && 1105 !skb_cmp_decrypted(to, from)); 1106 } 1107 1108 /* Events passed to congestion control interface */ 1109 enum tcp_ca_event { 1110 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1111 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1112 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1113 CA_EVENT_LOSS, /* loss timeout */ 1114 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1115 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1116 }; 1117 1118 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1119 enum tcp_ca_ack_event_flags { 1120 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1121 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1122 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1123 }; 1124 1125 /* 1126 * Interface for adding new TCP congestion control handlers 1127 */ 1128 #define TCP_CA_NAME_MAX 16 1129 #define TCP_CA_MAX 128 1130 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1131 1132 #define TCP_CA_UNSPEC 0 1133 1134 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1135 #define TCP_CONG_NON_RESTRICTED 0x1 1136 /* Requires ECN/ECT set on all packets */ 1137 #define TCP_CONG_NEEDS_ECN 0x2 1138 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1139 1140 union tcp_cc_info; 1141 1142 struct ack_sample { 1143 u32 pkts_acked; 1144 s32 rtt_us; 1145 u32 in_flight; 1146 }; 1147 1148 /* A rate sample measures the number of (original/retransmitted) data 1149 * packets delivered "delivered" over an interval of time "interval_us". 1150 * The tcp_rate.c code fills in the rate sample, and congestion 1151 * control modules that define a cong_control function to run at the end 1152 * of ACK processing can optionally chose to consult this sample when 1153 * setting cwnd and pacing rate. 1154 * A sample is invalid if "delivered" or "interval_us" is negative. 1155 */ 1156 struct rate_sample { 1157 u64 prior_mstamp; /* starting timestamp for interval */ 1158 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1159 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1160 s32 delivered; /* number of packets delivered over interval */ 1161 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1162 long interval_us; /* time for tp->delivered to incr "delivered" */ 1163 u32 snd_interval_us; /* snd interval for delivered packets */ 1164 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1165 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1166 int losses; /* number of packets marked lost upon ACK */ 1167 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1168 u32 prior_in_flight; /* in flight before this ACK */ 1169 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1170 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1171 bool is_retrans; /* is sample from retransmission? */ 1172 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1173 }; 1174 1175 struct tcp_congestion_ops { 1176 /* fast path fields are put first to fill one cache line */ 1177 1178 /* return slow start threshold (required) */ 1179 u32 (*ssthresh)(struct sock *sk); 1180 1181 /* do new cwnd calculation (required) */ 1182 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1183 1184 /* call before changing ca_state (optional) */ 1185 void (*set_state)(struct sock *sk, u8 new_state); 1186 1187 /* call when cwnd event occurs (optional) */ 1188 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1189 1190 /* call when ack arrives (optional) */ 1191 void (*in_ack_event)(struct sock *sk, u32 flags); 1192 1193 /* hook for packet ack accounting (optional) */ 1194 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1195 1196 /* override sysctl_tcp_min_tso_segs */ 1197 u32 (*min_tso_segs)(struct sock *sk); 1198 1199 /* call when packets are delivered to update cwnd and pacing rate, 1200 * after all the ca_state processing. (optional) 1201 */ 1202 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1203 1204 1205 /* new value of cwnd after loss (required) */ 1206 u32 (*undo_cwnd)(struct sock *sk); 1207 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1208 u32 (*sndbuf_expand)(struct sock *sk); 1209 1210 /* control/slow paths put last */ 1211 /* get info for inet_diag (optional) */ 1212 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1213 union tcp_cc_info *info); 1214 1215 char name[TCP_CA_NAME_MAX]; 1216 struct module *owner; 1217 struct list_head list; 1218 u32 key; 1219 u32 flags; 1220 1221 /* initialize private data (optional) */ 1222 void (*init)(struct sock *sk); 1223 /* cleanup private data (optional) */ 1224 void (*release)(struct sock *sk); 1225 } ____cacheline_aligned_in_smp; 1226 1227 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1228 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1229 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1230 struct tcp_congestion_ops *old_type); 1231 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1232 1233 void tcp_assign_congestion_control(struct sock *sk); 1234 void tcp_init_congestion_control(struct sock *sk); 1235 void tcp_cleanup_congestion_control(struct sock *sk); 1236 int tcp_set_default_congestion_control(struct net *net, const char *name); 1237 void tcp_get_default_congestion_control(struct net *net, char *name); 1238 void tcp_get_available_congestion_control(char *buf, size_t len); 1239 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1240 int tcp_set_allowed_congestion_control(char *allowed); 1241 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1242 bool cap_net_admin); 1243 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1244 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1245 1246 u32 tcp_reno_ssthresh(struct sock *sk); 1247 u32 tcp_reno_undo_cwnd(struct sock *sk); 1248 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1249 extern struct tcp_congestion_ops tcp_reno; 1250 1251 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1252 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1253 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1254 #ifdef CONFIG_INET 1255 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1256 #else 1257 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1258 { 1259 return NULL; 1260 } 1261 #endif 1262 1263 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1264 { 1265 const struct inet_connection_sock *icsk = inet_csk(sk); 1266 1267 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1268 } 1269 1270 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1271 { 1272 const struct inet_connection_sock *icsk = inet_csk(sk); 1273 1274 if (icsk->icsk_ca_ops->cwnd_event) 1275 icsk->icsk_ca_ops->cwnd_event(sk, event); 1276 } 1277 1278 /* From tcp_cong.c */ 1279 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1280 1281 /* From tcp_rate.c */ 1282 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1283 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1284 struct rate_sample *rs); 1285 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1286 bool is_sack_reneg, struct rate_sample *rs); 1287 void tcp_rate_check_app_limited(struct sock *sk); 1288 1289 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1290 { 1291 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1292 } 1293 1294 /* These functions determine how the current flow behaves in respect of SACK 1295 * handling. SACK is negotiated with the peer, and therefore it can vary 1296 * between different flows. 1297 * 1298 * tcp_is_sack - SACK enabled 1299 * tcp_is_reno - No SACK 1300 */ 1301 static inline int tcp_is_sack(const struct tcp_sock *tp) 1302 { 1303 return likely(tp->rx_opt.sack_ok); 1304 } 1305 1306 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1307 { 1308 return !tcp_is_sack(tp); 1309 } 1310 1311 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1312 { 1313 return tp->sacked_out + tp->lost_out; 1314 } 1315 1316 /* This determines how many packets are "in the network" to the best 1317 * of our knowledge. In many cases it is conservative, but where 1318 * detailed information is available from the receiver (via SACK 1319 * blocks etc.) we can make more aggressive calculations. 1320 * 1321 * Use this for decisions involving congestion control, use just 1322 * tp->packets_out to determine if the send queue is empty or not. 1323 * 1324 * Read this equation as: 1325 * 1326 * "Packets sent once on transmission queue" MINUS 1327 * "Packets left network, but not honestly ACKed yet" PLUS 1328 * "Packets fast retransmitted" 1329 */ 1330 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1331 { 1332 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1333 } 1334 1335 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1336 1337 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1338 { 1339 return tp->snd_cwnd; 1340 } 1341 1342 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1343 { 1344 WARN_ON_ONCE((int)val <= 0); 1345 tp->snd_cwnd = val; 1346 } 1347 1348 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1349 { 1350 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1351 } 1352 1353 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1354 { 1355 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1356 } 1357 1358 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1359 { 1360 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1361 (1 << inet_csk(sk)->icsk_ca_state); 1362 } 1363 1364 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1365 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1366 * ssthresh. 1367 */ 1368 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1369 { 1370 const struct tcp_sock *tp = tcp_sk(sk); 1371 1372 if (tcp_in_cwnd_reduction(sk)) 1373 return tp->snd_ssthresh; 1374 else 1375 return max(tp->snd_ssthresh, 1376 ((tcp_snd_cwnd(tp) >> 1) + 1377 (tcp_snd_cwnd(tp) >> 2))); 1378 } 1379 1380 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1381 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1382 1383 void tcp_enter_cwr(struct sock *sk); 1384 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1385 1386 /* The maximum number of MSS of available cwnd for which TSO defers 1387 * sending if not using sysctl_tcp_tso_win_divisor. 1388 */ 1389 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1390 { 1391 return 3; 1392 } 1393 1394 /* Returns end sequence number of the receiver's advertised window */ 1395 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1396 { 1397 return tp->snd_una + tp->snd_wnd; 1398 } 1399 1400 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1401 * flexible approach. The RFC suggests cwnd should not be raised unless 1402 * it was fully used previously. And that's exactly what we do in 1403 * congestion avoidance mode. But in slow start we allow cwnd to grow 1404 * as long as the application has used half the cwnd. 1405 * Example : 1406 * cwnd is 10 (IW10), but application sends 9 frames. 1407 * We allow cwnd to reach 18 when all frames are ACKed. 1408 * This check is safe because it's as aggressive as slow start which already 1409 * risks 100% overshoot. The advantage is that we discourage application to 1410 * either send more filler packets or data to artificially blow up the cwnd 1411 * usage, and allow application-limited process to probe bw more aggressively. 1412 */ 1413 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1414 { 1415 const struct tcp_sock *tp = tcp_sk(sk); 1416 1417 if (tp->is_cwnd_limited) 1418 return true; 1419 1420 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1421 if (tcp_in_slow_start(tp)) 1422 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1423 1424 return false; 1425 } 1426 1427 /* BBR congestion control needs pacing. 1428 * Same remark for SO_MAX_PACING_RATE. 1429 * sch_fq packet scheduler is efficiently handling pacing, 1430 * but is not always installed/used. 1431 * Return true if TCP stack should pace packets itself. 1432 */ 1433 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1434 { 1435 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1436 } 1437 1438 /* Estimates in how many jiffies next packet for this flow can be sent. 1439 * Scheduling a retransmit timer too early would be silly. 1440 */ 1441 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1442 { 1443 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1444 1445 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1446 } 1447 1448 static inline void tcp_reset_xmit_timer(struct sock *sk, 1449 const int what, 1450 unsigned long when, 1451 bool pace_delay) 1452 { 1453 if (pace_delay) 1454 when += tcp_pacing_delay(sk); 1455 inet_csk_reset_xmit_timer(sk, what, when, 1456 tcp_rto_max(sk)); 1457 } 1458 1459 /* Something is really bad, we could not queue an additional packet, 1460 * because qdisc is full or receiver sent a 0 window, or we are paced. 1461 * We do not want to add fuel to the fire, or abort too early, 1462 * so make sure the timer we arm now is at least 200ms in the future, 1463 * regardless of current icsk_rto value (as it could be ~2ms) 1464 */ 1465 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1466 { 1467 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1468 } 1469 1470 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1471 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1472 unsigned long max_when) 1473 { 1474 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1475 inet_csk(sk)->icsk_backoff); 1476 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1477 1478 return (unsigned long)min_t(u64, when, max_when); 1479 } 1480 1481 static inline void tcp_check_probe_timer(struct sock *sk) 1482 { 1483 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1484 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1485 tcp_probe0_base(sk), true); 1486 } 1487 1488 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1489 { 1490 tp->snd_wl1 = seq; 1491 } 1492 1493 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1494 { 1495 tp->snd_wl1 = seq; 1496 } 1497 1498 /* 1499 * Calculate(/check) TCP checksum 1500 */ 1501 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1502 __be32 daddr, __wsum base) 1503 { 1504 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1505 } 1506 1507 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1508 { 1509 return !skb_csum_unnecessary(skb) && 1510 __skb_checksum_complete(skb); 1511 } 1512 1513 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1514 enum skb_drop_reason *reason); 1515 1516 1517 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1518 void tcp_set_state(struct sock *sk, int state); 1519 void tcp_done(struct sock *sk); 1520 int tcp_abort(struct sock *sk, int err); 1521 1522 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1523 { 1524 rx_opt->dsack = 0; 1525 rx_opt->num_sacks = 0; 1526 } 1527 1528 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1529 1530 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1531 { 1532 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 s32 delta; 1535 1536 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1537 tp->packets_out || ca_ops->cong_control) 1538 return; 1539 delta = tcp_jiffies32 - tp->lsndtime; 1540 if (delta > inet_csk(sk)->icsk_rto) 1541 tcp_cwnd_restart(sk, delta); 1542 } 1543 1544 /* Determine a window scaling and initial window to offer. */ 1545 void tcp_select_initial_window(const struct sock *sk, int __space, 1546 __u32 mss, __u32 *rcv_wnd, 1547 __u32 *window_clamp, int wscale_ok, 1548 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1549 1550 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1551 { 1552 s64 scaled_space = (s64)space * scaling_ratio; 1553 1554 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1555 } 1556 1557 static inline int tcp_win_from_space(const struct sock *sk, int space) 1558 { 1559 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1560 } 1561 1562 /* inverse of __tcp_win_from_space() */ 1563 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1564 { 1565 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1566 1567 do_div(val, scaling_ratio); 1568 return val; 1569 } 1570 1571 static inline int tcp_space_from_win(const struct sock *sk, int win) 1572 { 1573 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1574 } 1575 1576 /* Assume a 50% default for skb->len/skb->truesize ratio. 1577 * This may be adjusted later in tcp_measure_rcv_mss(). 1578 */ 1579 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1580 1581 static inline void tcp_scaling_ratio_init(struct sock *sk) 1582 { 1583 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1584 } 1585 1586 /* Note: caller must be prepared to deal with negative returns */ 1587 static inline int tcp_space(const struct sock *sk) 1588 { 1589 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1590 READ_ONCE(sk->sk_backlog.len) - 1591 atomic_read(&sk->sk_rmem_alloc)); 1592 } 1593 1594 static inline int tcp_full_space(const struct sock *sk) 1595 { 1596 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1597 } 1598 1599 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1600 { 1601 int unused_mem = sk_unused_reserved_mem(sk); 1602 struct tcp_sock *tp = tcp_sk(sk); 1603 1604 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1605 if (unused_mem) 1606 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1607 tcp_win_from_space(sk, unused_mem)); 1608 } 1609 1610 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1611 { 1612 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1613 } 1614 1615 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1616 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1617 1618 1619 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1620 * If 87.5 % (7/8) of the space has been consumed, we want to override 1621 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1622 * len/truesize ratio. 1623 */ 1624 static inline bool tcp_rmem_pressure(const struct sock *sk) 1625 { 1626 int rcvbuf, threshold; 1627 1628 if (tcp_under_memory_pressure(sk)) 1629 return true; 1630 1631 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1632 threshold = rcvbuf - (rcvbuf >> 3); 1633 1634 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1635 } 1636 1637 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1638 { 1639 const struct tcp_sock *tp = tcp_sk(sk); 1640 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1641 1642 if (avail <= 0) 1643 return false; 1644 1645 return (avail >= target) || tcp_rmem_pressure(sk) || 1646 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1647 } 1648 1649 extern void tcp_openreq_init_rwin(struct request_sock *req, 1650 const struct sock *sk_listener, 1651 const struct dst_entry *dst); 1652 1653 void tcp_enter_memory_pressure(struct sock *sk); 1654 void tcp_leave_memory_pressure(struct sock *sk); 1655 1656 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1657 { 1658 struct net *net = sock_net((struct sock *)tp); 1659 int val; 1660 1661 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1662 * and do_tcp_setsockopt(). 1663 */ 1664 val = READ_ONCE(tp->keepalive_intvl); 1665 1666 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1667 } 1668 1669 static inline int keepalive_time_when(const struct tcp_sock *tp) 1670 { 1671 struct net *net = sock_net((struct sock *)tp); 1672 int val; 1673 1674 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1675 val = READ_ONCE(tp->keepalive_time); 1676 1677 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1678 } 1679 1680 static inline int keepalive_probes(const struct tcp_sock *tp) 1681 { 1682 struct net *net = sock_net((struct sock *)tp); 1683 int val; 1684 1685 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1686 * and do_tcp_setsockopt(). 1687 */ 1688 val = READ_ONCE(tp->keepalive_probes); 1689 1690 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1691 } 1692 1693 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1694 { 1695 const struct inet_connection_sock *icsk = &tp->inet_conn; 1696 1697 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1698 tcp_jiffies32 - tp->rcv_tstamp); 1699 } 1700 1701 static inline int tcp_fin_time(const struct sock *sk) 1702 { 1703 int fin_timeout = tcp_sk(sk)->linger2 ? : 1704 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1705 const int rto = inet_csk(sk)->icsk_rto; 1706 1707 if (fin_timeout < (rto << 2) - (rto >> 1)) 1708 fin_timeout = (rto << 2) - (rto >> 1); 1709 1710 return fin_timeout; 1711 } 1712 1713 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1714 int paws_win) 1715 { 1716 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1717 return true; 1718 if (unlikely(!time_before32(ktime_get_seconds(), 1719 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1720 return true; 1721 /* 1722 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1723 * then following tcp messages have valid values. Ignore 0 value, 1724 * or else 'negative' tsval might forbid us to accept their packets. 1725 */ 1726 if (!rx_opt->ts_recent) 1727 return true; 1728 return false; 1729 } 1730 1731 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1732 int rst) 1733 { 1734 if (tcp_paws_check(rx_opt, 0)) 1735 return false; 1736 1737 /* RST segments are not recommended to carry timestamp, 1738 and, if they do, it is recommended to ignore PAWS because 1739 "their cleanup function should take precedence over timestamps." 1740 Certainly, it is mistake. It is necessary to understand the reasons 1741 of this constraint to relax it: if peer reboots, clock may go 1742 out-of-sync and half-open connections will not be reset. 1743 Actually, the problem would be not existing if all 1744 the implementations followed draft about maintaining clock 1745 via reboots. Linux-2.2 DOES NOT! 1746 1747 However, we can relax time bounds for RST segments to MSL. 1748 */ 1749 if (rst && !time_before32(ktime_get_seconds(), 1750 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1751 return false; 1752 return true; 1753 } 1754 1755 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1756 int mib_idx, u32 *last_oow_ack_time); 1757 1758 static inline void tcp_mib_init(struct net *net) 1759 { 1760 /* See RFC 2012 */ 1761 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1762 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1763 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1764 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1765 } 1766 1767 /* from STCP */ 1768 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1769 { 1770 tp->lost_skb_hint = NULL; 1771 } 1772 1773 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1774 { 1775 tcp_clear_retrans_hints_partial(tp); 1776 tp->retransmit_skb_hint = NULL; 1777 } 1778 1779 #define tcp_md5_addr tcp_ao_addr 1780 1781 /* - key database */ 1782 struct tcp_md5sig_key { 1783 struct hlist_node node; 1784 u8 keylen; 1785 u8 family; /* AF_INET or AF_INET6 */ 1786 u8 prefixlen; 1787 u8 flags; 1788 union tcp_md5_addr addr; 1789 int l3index; /* set if key added with L3 scope */ 1790 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1791 struct rcu_head rcu; 1792 }; 1793 1794 /* - sock block */ 1795 struct tcp_md5sig_info { 1796 struct hlist_head head; 1797 struct rcu_head rcu; 1798 }; 1799 1800 /* - pseudo header */ 1801 struct tcp4_pseudohdr { 1802 __be32 saddr; 1803 __be32 daddr; 1804 __u8 pad; 1805 __u8 protocol; 1806 __be16 len; 1807 }; 1808 1809 struct tcp6_pseudohdr { 1810 struct in6_addr saddr; 1811 struct in6_addr daddr; 1812 __be32 len; 1813 __be32 protocol; /* including padding */ 1814 }; 1815 1816 union tcp_md5sum_block { 1817 struct tcp4_pseudohdr ip4; 1818 #if IS_ENABLED(CONFIG_IPV6) 1819 struct tcp6_pseudohdr ip6; 1820 #endif 1821 }; 1822 1823 /* 1824 * struct tcp_sigpool - per-CPU pool of ahash_requests 1825 * @scratch: per-CPU temporary area, that can be used between 1826 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1827 * crypto request 1828 * @req: pre-allocated ahash request 1829 */ 1830 struct tcp_sigpool { 1831 void *scratch; 1832 struct ahash_request *req; 1833 }; 1834 1835 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1836 void tcp_sigpool_get(unsigned int id); 1837 void tcp_sigpool_release(unsigned int id); 1838 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1839 const struct sk_buff *skb, 1840 unsigned int header_len); 1841 1842 /** 1843 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1844 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1845 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1846 * 1847 * Returns: 0 on success, error otherwise. 1848 */ 1849 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1850 /** 1851 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1852 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1853 */ 1854 void tcp_sigpool_end(struct tcp_sigpool *c); 1855 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1856 /* - functions */ 1857 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1858 const struct sock *sk, const struct sk_buff *skb); 1859 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1860 int family, u8 prefixlen, int l3index, u8 flags, 1861 const u8 *newkey, u8 newkeylen); 1862 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1863 int family, u8 prefixlen, int l3index, 1864 struct tcp_md5sig_key *key); 1865 1866 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1867 int family, u8 prefixlen, int l3index, u8 flags); 1868 void tcp_clear_md5_list(struct sock *sk); 1869 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1870 const struct sock *addr_sk); 1871 1872 #ifdef CONFIG_TCP_MD5SIG 1873 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1874 const union tcp_md5_addr *addr, 1875 int family, bool any_l3index); 1876 static inline struct tcp_md5sig_key * 1877 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1878 const union tcp_md5_addr *addr, int family) 1879 { 1880 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1881 return NULL; 1882 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1883 } 1884 1885 static inline struct tcp_md5sig_key * 1886 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1887 const union tcp_md5_addr *addr, int family) 1888 { 1889 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1890 return NULL; 1891 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1892 } 1893 1894 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1895 #else 1896 static inline struct tcp_md5sig_key * 1897 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1898 const union tcp_md5_addr *addr, int family) 1899 { 1900 return NULL; 1901 } 1902 1903 static inline struct tcp_md5sig_key * 1904 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1905 const union tcp_md5_addr *addr, int family) 1906 { 1907 return NULL; 1908 } 1909 1910 #define tcp_twsk_md5_key(twsk) NULL 1911 #endif 1912 1913 int tcp_md5_alloc_sigpool(void); 1914 void tcp_md5_release_sigpool(void); 1915 void tcp_md5_add_sigpool(void); 1916 extern int tcp_md5_sigpool_id; 1917 1918 int tcp_md5_hash_key(struct tcp_sigpool *hp, 1919 const struct tcp_md5sig_key *key); 1920 1921 /* From tcp_fastopen.c */ 1922 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1923 struct tcp_fastopen_cookie *cookie); 1924 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1925 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1926 u16 try_exp); 1927 struct tcp_fastopen_request { 1928 /* Fast Open cookie. Size 0 means a cookie request */ 1929 struct tcp_fastopen_cookie cookie; 1930 struct msghdr *data; /* data in MSG_FASTOPEN */ 1931 size_t size; 1932 int copied; /* queued in tcp_connect() */ 1933 struct ubuf_info *uarg; 1934 }; 1935 void tcp_free_fastopen_req(struct tcp_sock *tp); 1936 void tcp_fastopen_destroy_cipher(struct sock *sk); 1937 void tcp_fastopen_ctx_destroy(struct net *net); 1938 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1939 void *primary_key, void *backup_key); 1940 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1941 u64 *key); 1942 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1943 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1944 struct request_sock *req, 1945 struct tcp_fastopen_cookie *foc, 1946 const struct dst_entry *dst); 1947 void tcp_fastopen_init_key_once(struct net *net); 1948 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1949 struct tcp_fastopen_cookie *cookie); 1950 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1951 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1952 #define TCP_FASTOPEN_KEY_MAX 2 1953 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1954 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1955 1956 /* Fastopen key context */ 1957 struct tcp_fastopen_context { 1958 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1959 int num; 1960 struct rcu_head rcu; 1961 }; 1962 1963 void tcp_fastopen_active_disable(struct sock *sk); 1964 bool tcp_fastopen_active_should_disable(struct sock *sk); 1965 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1966 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1967 1968 /* Caller needs to wrap with rcu_read_(un)lock() */ 1969 static inline 1970 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1971 { 1972 struct tcp_fastopen_context *ctx; 1973 1974 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1975 if (!ctx) 1976 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1977 return ctx; 1978 } 1979 1980 static inline 1981 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1982 const struct tcp_fastopen_cookie *orig) 1983 { 1984 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1985 orig->len == foc->len && 1986 !memcmp(orig->val, foc->val, foc->len)) 1987 return true; 1988 return false; 1989 } 1990 1991 static inline 1992 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1993 { 1994 return ctx->num; 1995 } 1996 1997 /* Latencies incurred by various limits for a sender. They are 1998 * chronograph-like stats that are mutually exclusive. 1999 */ 2000 enum tcp_chrono { 2001 TCP_CHRONO_UNSPEC, 2002 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2003 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2004 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2005 __TCP_CHRONO_MAX, 2006 }; 2007 2008 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2009 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2010 2011 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2012 * the same memory storage than skb->destructor/_skb_refdst 2013 */ 2014 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2015 { 2016 skb->destructor = NULL; 2017 skb->_skb_refdst = 0UL; 2018 } 2019 2020 #define tcp_skb_tsorted_save(skb) { \ 2021 unsigned long _save = skb->_skb_refdst; \ 2022 skb->_skb_refdst = 0UL; 2023 2024 #define tcp_skb_tsorted_restore(skb) \ 2025 skb->_skb_refdst = _save; \ 2026 } 2027 2028 void tcp_write_queue_purge(struct sock *sk); 2029 2030 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2031 { 2032 return skb_rb_first(&sk->tcp_rtx_queue); 2033 } 2034 2035 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2036 { 2037 return skb_rb_last(&sk->tcp_rtx_queue); 2038 } 2039 2040 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2041 { 2042 return skb_peek_tail(&sk->sk_write_queue); 2043 } 2044 2045 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2046 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2047 2048 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2049 { 2050 return skb_peek(&sk->sk_write_queue); 2051 } 2052 2053 static inline bool tcp_skb_is_last(const struct sock *sk, 2054 const struct sk_buff *skb) 2055 { 2056 return skb_queue_is_last(&sk->sk_write_queue, skb); 2057 } 2058 2059 /** 2060 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2061 * @sk: socket 2062 * 2063 * Since the write queue can have a temporary empty skb in it, 2064 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2065 */ 2066 static inline bool tcp_write_queue_empty(const struct sock *sk) 2067 { 2068 const struct tcp_sock *tp = tcp_sk(sk); 2069 2070 return tp->write_seq == tp->snd_nxt; 2071 } 2072 2073 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2074 { 2075 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2076 } 2077 2078 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2079 { 2080 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2081 } 2082 2083 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2084 { 2085 __skb_queue_tail(&sk->sk_write_queue, skb); 2086 2087 /* Queue it, remembering where we must start sending. */ 2088 if (sk->sk_write_queue.next == skb) 2089 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2090 } 2091 2092 /* Insert new before skb on the write queue of sk. */ 2093 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2094 struct sk_buff *skb, 2095 struct sock *sk) 2096 { 2097 __skb_queue_before(&sk->sk_write_queue, skb, new); 2098 } 2099 2100 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2101 { 2102 tcp_skb_tsorted_anchor_cleanup(skb); 2103 __skb_unlink(skb, &sk->sk_write_queue); 2104 } 2105 2106 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2107 2108 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2109 { 2110 tcp_skb_tsorted_anchor_cleanup(skb); 2111 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2112 } 2113 2114 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2115 { 2116 list_del(&skb->tcp_tsorted_anchor); 2117 tcp_rtx_queue_unlink(skb, sk); 2118 tcp_wmem_free_skb(sk, skb); 2119 } 2120 2121 static inline void tcp_write_collapse_fence(struct sock *sk) 2122 { 2123 struct sk_buff *skb = tcp_write_queue_tail(sk); 2124 2125 if (skb) 2126 TCP_SKB_CB(skb)->eor = 1; 2127 } 2128 2129 static inline void tcp_push_pending_frames(struct sock *sk) 2130 { 2131 if (tcp_send_head(sk)) { 2132 struct tcp_sock *tp = tcp_sk(sk); 2133 2134 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2135 } 2136 } 2137 2138 /* Start sequence of the skb just after the highest skb with SACKed 2139 * bit, valid only if sacked_out > 0 or when the caller has ensured 2140 * validity by itself. 2141 */ 2142 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2143 { 2144 if (!tp->sacked_out) 2145 return tp->snd_una; 2146 2147 if (tp->highest_sack == NULL) 2148 return tp->snd_nxt; 2149 2150 return TCP_SKB_CB(tp->highest_sack)->seq; 2151 } 2152 2153 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2154 { 2155 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2156 } 2157 2158 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2159 { 2160 return tcp_sk(sk)->highest_sack; 2161 } 2162 2163 static inline void tcp_highest_sack_reset(struct sock *sk) 2164 { 2165 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2166 } 2167 2168 /* Called when old skb is about to be deleted and replaced by new skb */ 2169 static inline void tcp_highest_sack_replace(struct sock *sk, 2170 struct sk_buff *old, 2171 struct sk_buff *new) 2172 { 2173 if (old == tcp_highest_sack(sk)) 2174 tcp_sk(sk)->highest_sack = new; 2175 } 2176 2177 /* This helper checks if socket has IP_TRANSPARENT set */ 2178 static inline bool inet_sk_transparent(const struct sock *sk) 2179 { 2180 switch (sk->sk_state) { 2181 case TCP_TIME_WAIT: 2182 return inet_twsk(sk)->tw_transparent; 2183 case TCP_NEW_SYN_RECV: 2184 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2185 } 2186 return inet_test_bit(TRANSPARENT, sk); 2187 } 2188 2189 /* Determines whether this is a thin stream (which may suffer from 2190 * increased latency). Used to trigger latency-reducing mechanisms. 2191 */ 2192 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2193 { 2194 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2195 } 2196 2197 /* /proc */ 2198 enum tcp_seq_states { 2199 TCP_SEQ_STATE_LISTENING, 2200 TCP_SEQ_STATE_ESTABLISHED, 2201 }; 2202 2203 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2204 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2205 void tcp_seq_stop(struct seq_file *seq, void *v); 2206 2207 struct tcp_seq_afinfo { 2208 sa_family_t family; 2209 }; 2210 2211 struct tcp_iter_state { 2212 struct seq_net_private p; 2213 enum tcp_seq_states state; 2214 struct sock *syn_wait_sk; 2215 int bucket, offset, sbucket, num; 2216 loff_t last_pos; 2217 }; 2218 2219 extern struct request_sock_ops tcp_request_sock_ops; 2220 extern struct request_sock_ops tcp6_request_sock_ops; 2221 2222 void tcp_v4_destroy_sock(struct sock *sk); 2223 2224 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2225 netdev_features_t features); 2226 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2227 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2228 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2229 struct tcphdr *th); 2230 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2231 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2232 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2233 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2234 #ifdef CONFIG_INET 2235 void tcp_gro_complete(struct sk_buff *skb); 2236 #else 2237 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2238 #endif 2239 2240 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2241 2242 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2243 { 2244 struct net *net = sock_net((struct sock *)tp); 2245 u32 val; 2246 2247 val = READ_ONCE(tp->notsent_lowat); 2248 2249 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2250 } 2251 2252 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2253 2254 #ifdef CONFIG_PROC_FS 2255 int tcp4_proc_init(void); 2256 void tcp4_proc_exit(void); 2257 #endif 2258 2259 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2260 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2261 const struct tcp_request_sock_ops *af_ops, 2262 struct sock *sk, struct sk_buff *skb); 2263 2264 /* TCP af-specific functions */ 2265 struct tcp_sock_af_ops { 2266 #ifdef CONFIG_TCP_MD5SIG 2267 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2268 const struct sock *addr_sk); 2269 int (*calc_md5_hash)(char *location, 2270 const struct tcp_md5sig_key *md5, 2271 const struct sock *sk, 2272 const struct sk_buff *skb); 2273 int (*md5_parse)(struct sock *sk, 2274 int optname, 2275 sockptr_t optval, 2276 int optlen); 2277 #endif 2278 #ifdef CONFIG_TCP_AO 2279 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2280 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2281 struct sock *addr_sk, 2282 int sndid, int rcvid); 2283 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2284 const struct sock *sk, 2285 __be32 sisn, __be32 disn, bool send); 2286 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2287 const struct sock *sk, const struct sk_buff *skb, 2288 const u8 *tkey, int hash_offset, u32 sne); 2289 #endif 2290 }; 2291 2292 struct tcp_request_sock_ops { 2293 u16 mss_clamp; 2294 #ifdef CONFIG_TCP_MD5SIG 2295 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2296 const struct sock *addr_sk); 2297 int (*calc_md5_hash) (char *location, 2298 const struct tcp_md5sig_key *md5, 2299 const struct sock *sk, 2300 const struct sk_buff *skb); 2301 #endif 2302 #ifdef CONFIG_TCP_AO 2303 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2304 struct request_sock *req, 2305 int sndid, int rcvid); 2306 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2307 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2308 struct request_sock *req, const struct sk_buff *skb, 2309 int hash_offset, u32 sne); 2310 #endif 2311 #ifdef CONFIG_SYN_COOKIES 2312 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2313 __u16 *mss); 2314 #endif 2315 struct dst_entry *(*route_req)(const struct sock *sk, 2316 struct sk_buff *skb, 2317 struct flowi *fl, 2318 struct request_sock *req, 2319 u32 tw_isn); 2320 u32 (*init_seq)(const struct sk_buff *skb); 2321 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2322 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2323 struct flowi *fl, struct request_sock *req, 2324 struct tcp_fastopen_cookie *foc, 2325 enum tcp_synack_type synack_type, 2326 struct sk_buff *syn_skb); 2327 }; 2328 2329 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2330 #if IS_ENABLED(CONFIG_IPV6) 2331 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2332 #endif 2333 2334 #ifdef CONFIG_SYN_COOKIES 2335 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2336 const struct sock *sk, struct sk_buff *skb, 2337 __u16 *mss) 2338 { 2339 tcp_synq_overflow(sk); 2340 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2341 return ops->cookie_init_seq(skb, mss); 2342 } 2343 #else 2344 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2345 const struct sock *sk, struct sk_buff *skb, 2346 __u16 *mss) 2347 { 2348 return 0; 2349 } 2350 #endif 2351 2352 struct tcp_key { 2353 union { 2354 struct { 2355 struct tcp_ao_key *ao_key; 2356 char *traffic_key; 2357 u32 sne; 2358 u8 rcv_next; 2359 }; 2360 struct tcp_md5sig_key *md5_key; 2361 }; 2362 enum { 2363 TCP_KEY_NONE = 0, 2364 TCP_KEY_MD5, 2365 TCP_KEY_AO, 2366 } type; 2367 }; 2368 2369 static inline void tcp_get_current_key(const struct sock *sk, 2370 struct tcp_key *out) 2371 { 2372 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2373 const struct tcp_sock *tp = tcp_sk(sk); 2374 #endif 2375 2376 #ifdef CONFIG_TCP_AO 2377 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2378 struct tcp_ao_info *ao; 2379 2380 ao = rcu_dereference_protected(tp->ao_info, 2381 lockdep_sock_is_held(sk)); 2382 if (ao) { 2383 out->ao_key = READ_ONCE(ao->current_key); 2384 out->type = TCP_KEY_AO; 2385 return; 2386 } 2387 } 2388 #endif 2389 #ifdef CONFIG_TCP_MD5SIG 2390 if (static_branch_unlikely(&tcp_md5_needed.key) && 2391 rcu_access_pointer(tp->md5sig_info)) { 2392 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2393 if (out->md5_key) { 2394 out->type = TCP_KEY_MD5; 2395 return; 2396 } 2397 } 2398 #endif 2399 out->type = TCP_KEY_NONE; 2400 } 2401 2402 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2403 { 2404 if (static_branch_tcp_md5()) 2405 return key->type == TCP_KEY_MD5; 2406 return false; 2407 } 2408 2409 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2410 { 2411 if (static_branch_tcp_ao()) 2412 return key->type == TCP_KEY_AO; 2413 return false; 2414 } 2415 2416 int tcpv4_offload_init(void); 2417 2418 void tcp_v4_init(void); 2419 void tcp_init(void); 2420 2421 /* tcp_recovery.c */ 2422 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2423 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2424 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2425 u32 reo_wnd); 2426 extern bool tcp_rack_mark_lost(struct sock *sk); 2427 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2428 u64 xmit_time); 2429 extern void tcp_rack_reo_timeout(struct sock *sk); 2430 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2431 2432 /* tcp_plb.c */ 2433 2434 /* 2435 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2436 * expects cong_ratio which represents fraction of traffic that experienced 2437 * congestion over a single RTT. In order to avoid floating point operations, 2438 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2439 */ 2440 #define TCP_PLB_SCALE 8 2441 2442 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2443 struct tcp_plb_state { 2444 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2445 unused:3; 2446 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2447 }; 2448 2449 static inline void tcp_plb_init(const struct sock *sk, 2450 struct tcp_plb_state *plb) 2451 { 2452 plb->consec_cong_rounds = 0; 2453 plb->pause_until = 0; 2454 } 2455 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2456 const int cong_ratio); 2457 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2458 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2459 2460 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2461 { 2462 WARN_ONCE(cond, 2463 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2464 str, 2465 tcp_snd_cwnd(tcp_sk(sk)), 2466 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2467 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2468 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2469 inet_csk(sk)->icsk_ca_state, 2470 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2471 inet_csk(sk)->icsk_pmtu_cookie); 2472 } 2473 2474 /* At how many usecs into the future should the RTO fire? */ 2475 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2476 { 2477 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2478 u32 rto = inet_csk(sk)->icsk_rto; 2479 2480 if (likely(skb)) { 2481 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2482 2483 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2484 } else { 2485 tcp_warn_once(sk, 1, "rtx queue empty: "); 2486 return jiffies_to_usecs(rto); 2487 } 2488 2489 } 2490 2491 /* 2492 * Save and compile IPv4 options, return a pointer to it 2493 */ 2494 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2495 struct sk_buff *skb) 2496 { 2497 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2498 struct ip_options_rcu *dopt = NULL; 2499 2500 if (opt->optlen) { 2501 int opt_size = sizeof(*dopt) + opt->optlen; 2502 2503 dopt = kmalloc(opt_size, GFP_ATOMIC); 2504 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2505 kfree(dopt); 2506 dopt = NULL; 2507 } 2508 } 2509 return dopt; 2510 } 2511 2512 /* locally generated TCP pure ACKs have skb->truesize == 2 2513 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2514 * This is much faster than dissecting the packet to find out. 2515 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2516 */ 2517 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2518 { 2519 return skb->truesize == 2; 2520 } 2521 2522 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2523 { 2524 skb->truesize = 2; 2525 } 2526 2527 static inline int tcp_inq(struct sock *sk) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 int answ; 2531 2532 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2533 answ = 0; 2534 } else if (sock_flag(sk, SOCK_URGINLINE) || 2535 !tp->urg_data || 2536 before(tp->urg_seq, tp->copied_seq) || 2537 !before(tp->urg_seq, tp->rcv_nxt)) { 2538 2539 answ = tp->rcv_nxt - tp->copied_seq; 2540 2541 /* Subtract 1, if FIN was received */ 2542 if (answ && sock_flag(sk, SOCK_DONE)) 2543 answ--; 2544 } else { 2545 answ = tp->urg_seq - tp->copied_seq; 2546 } 2547 2548 return answ; 2549 } 2550 2551 int tcp_peek_len(struct socket *sock); 2552 2553 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2554 { 2555 u16 segs_in; 2556 2557 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2558 2559 /* We update these fields while other threads might 2560 * read them from tcp_get_info() 2561 */ 2562 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2563 if (skb->len > tcp_hdrlen(skb)) 2564 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2565 } 2566 2567 /* 2568 * TCP listen path runs lockless. 2569 * We forced "struct sock" to be const qualified to make sure 2570 * we don't modify one of its field by mistake. 2571 * Here, we increment sk_drops which is an atomic_t, so we can safely 2572 * make sock writable again. 2573 */ 2574 static inline void tcp_listendrop(const struct sock *sk) 2575 { 2576 atomic_inc(&((struct sock *)sk)->sk_drops); 2577 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2578 } 2579 2580 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2581 2582 /* 2583 * Interface for adding Upper Level Protocols over TCP 2584 */ 2585 2586 #define TCP_ULP_NAME_MAX 16 2587 #define TCP_ULP_MAX 128 2588 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2589 2590 struct tcp_ulp_ops { 2591 struct list_head list; 2592 2593 /* initialize ulp */ 2594 int (*init)(struct sock *sk); 2595 /* update ulp */ 2596 void (*update)(struct sock *sk, struct proto *p, 2597 void (*write_space)(struct sock *sk)); 2598 /* cleanup ulp */ 2599 void (*release)(struct sock *sk); 2600 /* diagnostic */ 2601 int (*get_info)(struct sock *sk, struct sk_buff *skb); 2602 size_t (*get_info_size)(const struct sock *sk); 2603 /* clone ulp */ 2604 void (*clone)(const struct request_sock *req, struct sock *newsk, 2605 const gfp_t priority); 2606 2607 char name[TCP_ULP_NAME_MAX]; 2608 struct module *owner; 2609 }; 2610 int tcp_register_ulp(struct tcp_ulp_ops *type); 2611 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2612 int tcp_set_ulp(struct sock *sk, const char *name); 2613 void tcp_get_available_ulp(char *buf, size_t len); 2614 void tcp_cleanup_ulp(struct sock *sk); 2615 void tcp_update_ulp(struct sock *sk, struct proto *p, 2616 void (*write_space)(struct sock *sk)); 2617 2618 #define MODULE_ALIAS_TCP_ULP(name) \ 2619 __MODULE_INFO(alias, alias_userspace, name); \ 2620 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2621 2622 #ifdef CONFIG_NET_SOCK_MSG 2623 struct sk_msg; 2624 struct sk_psock; 2625 2626 #ifdef CONFIG_BPF_SYSCALL 2627 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2628 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2629 #ifdef CONFIG_BPF_STREAM_PARSER 2630 struct strparser; 2631 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2632 sk_read_actor_t recv_actor); 2633 #endif /* CONFIG_BPF_STREAM_PARSER */ 2634 #endif /* CONFIG_BPF_SYSCALL */ 2635 2636 #ifdef CONFIG_INET 2637 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2638 #else 2639 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2640 { 2641 } 2642 #endif 2643 2644 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2645 struct sk_msg *msg, u32 bytes, int flags); 2646 #endif /* CONFIG_NET_SOCK_MSG */ 2647 2648 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2649 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2650 { 2651 } 2652 #endif 2653 2654 #ifdef CONFIG_CGROUP_BPF 2655 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2656 struct sk_buff *skb, 2657 unsigned int end_offset) 2658 { 2659 skops->skb = skb; 2660 skops->skb_data_end = skb->data + end_offset; 2661 } 2662 #else 2663 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2664 struct sk_buff *skb, 2665 unsigned int end_offset) 2666 { 2667 } 2668 #endif 2669 2670 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2671 * is < 0, then the BPF op failed (for example if the loaded BPF 2672 * program does not support the chosen operation or there is no BPF 2673 * program loaded). 2674 */ 2675 #ifdef CONFIG_BPF 2676 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2677 { 2678 struct bpf_sock_ops_kern sock_ops; 2679 int ret; 2680 2681 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2682 if (sk_fullsock(sk)) { 2683 sock_ops.is_fullsock = 1; 2684 sock_ops.is_locked_tcp_sock = 1; 2685 sock_owned_by_me(sk); 2686 } 2687 2688 sock_ops.sk = sk; 2689 sock_ops.op = op; 2690 if (nargs > 0) 2691 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2692 2693 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2694 if (ret == 0) 2695 ret = sock_ops.reply; 2696 else 2697 ret = -1; 2698 return ret; 2699 } 2700 2701 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2702 { 2703 u32 args[2] = {arg1, arg2}; 2704 2705 return tcp_call_bpf(sk, op, 2, args); 2706 } 2707 2708 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2709 u32 arg3) 2710 { 2711 u32 args[3] = {arg1, arg2, arg3}; 2712 2713 return tcp_call_bpf(sk, op, 3, args); 2714 } 2715 2716 #else 2717 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2718 { 2719 return -EPERM; 2720 } 2721 2722 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2723 { 2724 return -EPERM; 2725 } 2726 2727 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2728 u32 arg3) 2729 { 2730 return -EPERM; 2731 } 2732 2733 #endif 2734 2735 static inline u32 tcp_timeout_init(struct sock *sk) 2736 { 2737 int timeout; 2738 2739 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2740 2741 if (timeout <= 0) 2742 timeout = TCP_TIMEOUT_INIT; 2743 return min_t(int, timeout, TCP_RTO_MAX); 2744 } 2745 2746 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2747 { 2748 int rwnd; 2749 2750 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2751 2752 if (rwnd < 0) 2753 rwnd = 0; 2754 return rwnd; 2755 } 2756 2757 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2758 { 2759 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2760 } 2761 2762 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2763 { 2764 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2765 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2766 } 2767 2768 #if IS_ENABLED(CONFIG_SMC) 2769 extern struct static_key_false tcp_have_smc; 2770 #endif 2771 2772 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2773 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2774 void (*cad)(struct sock *sk, u32 ack_seq)); 2775 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2776 void clean_acked_data_flush(void); 2777 #endif 2778 2779 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2780 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2781 const struct tcp_sock *tp) 2782 { 2783 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2784 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2785 } 2786 2787 /* Compute Earliest Departure Time for some control packets 2788 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2789 */ 2790 static inline u64 tcp_transmit_time(const struct sock *sk) 2791 { 2792 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2793 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2794 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2795 2796 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2797 } 2798 return 0; 2799 } 2800 2801 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2802 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2803 { 2804 const u8 *md5_tmp, *ao_tmp; 2805 int ret; 2806 2807 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2808 if (ret) 2809 return ret; 2810 2811 if (md5_hash) 2812 *md5_hash = md5_tmp; 2813 2814 if (aoh) { 2815 if (!ao_tmp) 2816 *aoh = NULL; 2817 else 2818 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2819 } 2820 2821 return 0; 2822 } 2823 2824 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2825 int family, int l3index, bool stat_inc) 2826 { 2827 #ifdef CONFIG_TCP_AO 2828 struct tcp_ao_info *ao_info; 2829 struct tcp_ao_key *ao_key; 2830 2831 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2832 return false; 2833 2834 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2835 lockdep_sock_is_held(sk)); 2836 if (!ao_info) 2837 return false; 2838 2839 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2840 if (ao_info->ao_required || ao_key) { 2841 if (stat_inc) { 2842 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2843 atomic64_inc(&ao_info->counters.ao_required); 2844 } 2845 return true; 2846 } 2847 #endif 2848 return false; 2849 } 2850 2851 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2852 const struct request_sock *req, const struct sk_buff *skb, 2853 const void *saddr, const void *daddr, 2854 int family, int dif, int sdif); 2855 2856 #endif /* _TCP_H */ 2857