xref: /linux/include/net/tcp.h (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 #include <net/xfrm.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 #include <linux/siphash.h>
50 
51 extern struct inet_hashinfo tcp_hashinfo;
52 
53 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
54 int tcp_orphan_count_sum(void);
55 
56 DECLARE_PER_CPU(u32, tcp_tw_isn);
57 
58 void tcp_time_wait(struct sock *sk, int state, int timeo);
59 
60 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
61 #define MAX_TCP_OPTION_SPACE 40
62 #define TCP_MIN_SND_MSS		48
63 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
64 
65 /*
66  * Never offer a window over 32767 without using window scaling. Some
67  * poor stacks do signed 16bit maths!
68  */
69 #define MAX_TCP_WINDOW		32767U
70 
71 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
72 #define TCP_MIN_MSS		88U
73 
74 /* The initial MTU to use for probing */
75 #define TCP_BASE_MSS		1024
76 
77 /* probing interval, default to 10 minutes as per RFC4821 */
78 #define TCP_PROBE_INTERVAL	600
79 
80 /* Specify interval when tcp mtu probing will stop */
81 #define TCP_PROBE_THRESHOLD	8
82 
83 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
84 #define TCP_FASTRETRANS_THRESH 3
85 
86 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
87 #define TCP_MAX_QUICKACKS	16U
88 
89 /* Maximal number of window scale according to RFC1323 */
90 #define TCP_MAX_WSCALE		14U
91 
92 /* urg_data states */
93 #define TCP_URG_VALID	0x0100
94 #define TCP_URG_NOTYET	0x0200
95 #define TCP_URG_READ	0x0400
96 
97 #define TCP_RETR1	3	/*
98 				 * This is how many retries it does before it
99 				 * tries to figure out if the gateway is
100 				 * down. Minimal RFC value is 3; it corresponds
101 				 * to ~3sec-8min depending on RTO.
102 				 */
103 
104 #define TCP_RETR2	15	/*
105 				 * This should take at least
106 				 * 90 minutes to time out.
107 				 * RFC1122 says that the limit is 100 sec.
108 				 * 15 is ~13-30min depending on RTO.
109 				 */
110 
111 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
112 				 * when active opening a connection.
113 				 * RFC1122 says the minimum retry MUST
114 				 * be at least 180secs.  Nevertheless
115 				 * this value is corresponding to
116 				 * 63secs of retransmission with the
117 				 * current initial RTO.
118 				 */
119 
120 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
121 				 * when passive opening a connection.
122 				 * This is corresponding to 31secs of
123 				 * retransmission with the current
124 				 * initial RTO.
125 				 */
126 
127 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
128 				  * state, about 60 seconds	*/
129 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
130                                  /* BSD style FIN_WAIT2 deadlock breaker.
131 				  * It used to be 3min, new value is 60sec,
132 				  * to combine FIN-WAIT-2 timeout with
133 				  * TIME-WAIT timer.
134 				  */
135 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
136 
137 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
138 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
139 
140 #if HZ >= 100
141 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
142 #define TCP_ATO_MIN	((unsigned)(HZ/25))
143 #else
144 #define TCP_DELACK_MIN	4U
145 #define TCP_ATO_MIN	4U
146 #endif
147 #define TCP_RTO_MAX_SEC 120
148 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
149 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
150 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
151 
152 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
153 
154 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
155 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
156 						 * used as a fallback RTO for the
157 						 * initial data transmission if no
158 						 * valid RTT sample has been acquired,
159 						 * most likely due to retrans in 3WHS.
160 						 */
161 
162 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
163 					                 * for local resources.
164 					                 */
165 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
166 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
167 #define TCP_KEEPALIVE_INTVL	(75*HZ)
168 
169 #define MAX_TCP_KEEPIDLE	32767
170 #define MAX_TCP_KEEPINTVL	32767
171 #define MAX_TCP_KEEPCNT		127
172 #define MAX_TCP_SYNCNT		127
173 
174 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
175  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
176  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
177  */
178 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
179 
180 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
181 					 * after this time. It should be equal
182 					 * (or greater than) TCP_TIMEWAIT_LEN
183 					 * to provide reliability equal to one
184 					 * provided by timewait state.
185 					 */
186 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
187 					 * timestamps. It must be less than
188 					 * minimal timewait lifetime.
189 					 */
190 /*
191  *	TCP option
192  */
193 
194 #define TCPOPT_NOP		1	/* Padding */
195 #define TCPOPT_EOL		0	/* End of options */
196 #define TCPOPT_MSS		2	/* Segment size negotiating */
197 #define TCPOPT_WINDOW		3	/* Window scaling */
198 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
199 #define TCPOPT_SACK             5       /* SACK Block */
200 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
201 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
202 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
203 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
204 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
205 #define TCPOPT_EXP		254	/* Experimental */
206 /* Magic number to be after the option value for sharing TCP
207  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
208  */
209 #define TCPOPT_FASTOPEN_MAGIC	0xF989
210 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
211 
212 /*
213  *     TCP option lengths
214  */
215 
216 #define TCPOLEN_MSS            4
217 #define TCPOLEN_WINDOW         3
218 #define TCPOLEN_SACK_PERM      2
219 #define TCPOLEN_TIMESTAMP      10
220 #define TCPOLEN_MD5SIG         18
221 #define TCPOLEN_FASTOPEN_BASE  2
222 #define TCPOLEN_EXP_FASTOPEN_BASE  4
223 #define TCPOLEN_EXP_SMC_BASE   6
224 
225 /* But this is what stacks really send out. */
226 #define TCPOLEN_TSTAMP_ALIGNED		12
227 #define TCPOLEN_WSCALE_ALIGNED		4
228 #define TCPOLEN_SACKPERM_ALIGNED	4
229 #define TCPOLEN_SACK_BASE		2
230 #define TCPOLEN_SACK_BASE_ALIGNED	4
231 #define TCPOLEN_SACK_PERBLOCK		8
232 #define TCPOLEN_MD5SIG_ALIGNED		20
233 #define TCPOLEN_MSS_ALIGNED		4
234 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
235 
236 /* Flags in tp->nonagle */
237 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
238 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
239 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
240 
241 /* TCP thin-stream limits */
242 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
243 
244 /* TCP initial congestion window as per rfc6928 */
245 #define TCP_INIT_CWND		10
246 
247 /* Bit Flags for sysctl_tcp_fastopen */
248 #define	TFO_CLIENT_ENABLE	1
249 #define	TFO_SERVER_ENABLE	2
250 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
251 
252 /* Accept SYN data w/o any cookie option */
253 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
254 
255 /* Force enable TFO on all listeners, i.e., not requiring the
256  * TCP_FASTOPEN socket option.
257  */
258 #define	TFO_SERVER_WO_SOCKOPT1	0x400
259 
260 
261 /* sysctl variables for tcp */
262 extern int sysctl_tcp_max_orphans;
263 extern long sysctl_tcp_mem[3];
264 
265 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
266 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
267 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
268 
269 extern atomic_long_t tcp_memory_allocated;
270 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
271 
272 extern struct percpu_counter tcp_sockets_allocated;
273 extern unsigned long tcp_memory_pressure;
274 
275 /* optimized version of sk_under_memory_pressure() for TCP sockets */
276 static inline bool tcp_under_memory_pressure(const struct sock *sk)
277 {
278 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
279 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
280 		return true;
281 
282 	return READ_ONCE(tcp_memory_pressure);
283 }
284 /*
285  * The next routines deal with comparing 32 bit unsigned ints
286  * and worry about wraparound (automatic with unsigned arithmetic).
287  */
288 
289 static inline bool before(__u32 seq1, __u32 seq2)
290 {
291         return (__s32)(seq1-seq2) < 0;
292 }
293 #define after(seq2, seq1) 	before(seq1, seq2)
294 
295 /* is s2<=s1<=s3 ? */
296 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
297 {
298 	return seq3 - seq2 >= seq1 - seq2;
299 }
300 
301 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
302 {
303 	sk_wmem_queued_add(sk, -skb->truesize);
304 	if (!skb_zcopy_pure(skb))
305 		sk_mem_uncharge(sk, skb->truesize);
306 	else
307 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
308 	__kfree_skb(skb);
309 }
310 
311 void sk_forced_mem_schedule(struct sock *sk, int size);
312 
313 bool tcp_check_oom(const struct sock *sk, int shift);
314 
315 
316 extern struct proto tcp_prot;
317 
318 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
319 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
320 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
321 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
322 
323 void tcp_tasklet_init(void);
324 
325 int tcp_v4_err(struct sk_buff *skb, u32);
326 
327 void tcp_shutdown(struct sock *sk, int how);
328 
329 int tcp_v4_early_demux(struct sk_buff *skb);
330 int tcp_v4_rcv(struct sk_buff *skb);
331 
332 void tcp_remove_empty_skb(struct sock *sk);
333 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
334 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
335 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
336 			 size_t size, struct ubuf_info *uarg);
337 void tcp_splice_eof(struct socket *sock);
338 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
339 int tcp_wmem_schedule(struct sock *sk, int copy);
340 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
341 	      int size_goal);
342 void tcp_release_cb(struct sock *sk);
343 void tcp_wfree(struct sk_buff *skb);
344 void tcp_write_timer_handler(struct sock *sk);
345 void tcp_delack_timer_handler(struct sock *sk);
346 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
347 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
348 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
349 void tcp_rcv_space_adjust(struct sock *sk);
350 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
351 void tcp_twsk_destructor(struct sock *sk);
352 void tcp_twsk_purge(struct list_head *net_exit_list);
353 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
354 			struct pipe_inode_info *pipe, size_t len,
355 			unsigned int flags);
356 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
357 				     bool force_schedule);
358 
359 static inline void tcp_dec_quickack_mode(struct sock *sk)
360 {
361 	struct inet_connection_sock *icsk = inet_csk(sk);
362 
363 	if (icsk->icsk_ack.quick) {
364 		/* How many ACKs S/ACKing new data have we sent? */
365 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
366 
367 		if (pkts >= icsk->icsk_ack.quick) {
368 			icsk->icsk_ack.quick = 0;
369 			/* Leaving quickack mode we deflate ATO. */
370 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
371 		} else
372 			icsk->icsk_ack.quick -= pkts;
373 	}
374 }
375 
376 #define	TCP_ECN_OK		1
377 #define	TCP_ECN_QUEUE_CWR	2
378 #define	TCP_ECN_DEMAND_CWR	4
379 #define	TCP_ECN_SEEN		8
380 
381 enum tcp_tw_status {
382 	TCP_TW_SUCCESS = 0,
383 	TCP_TW_RST = 1,
384 	TCP_TW_ACK = 2,
385 	TCP_TW_SYN = 3
386 };
387 
388 
389 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
390 					      struct sk_buff *skb,
391 					      const struct tcphdr *th,
392 					      u32 *tw_isn);
393 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
394 			   struct request_sock *req, bool fastopen,
395 			   bool *lost_race, enum skb_drop_reason *drop_reason);
396 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
397 				       struct sk_buff *skb);
398 void tcp_enter_loss(struct sock *sk);
399 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
400 void tcp_clear_retrans(struct tcp_sock *tp);
401 void tcp_update_metrics(struct sock *sk);
402 void tcp_init_metrics(struct sock *sk);
403 void tcp_metrics_init(void);
404 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
405 void __tcp_close(struct sock *sk, long timeout);
406 void tcp_close(struct sock *sk, long timeout);
407 void tcp_init_sock(struct sock *sk);
408 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
409 __poll_t tcp_poll(struct file *file, struct socket *sock,
410 		      struct poll_table_struct *wait);
411 int do_tcp_getsockopt(struct sock *sk, int level,
412 		      int optname, sockptr_t optval, sockptr_t optlen);
413 int tcp_getsockopt(struct sock *sk, int level, int optname,
414 		   char __user *optval, int __user *optlen);
415 bool tcp_bpf_bypass_getsockopt(int level, int optname);
416 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
417 		      sockptr_t optval, unsigned int optlen);
418 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
419 		   unsigned int optlen);
420 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
421 void tcp_set_keepalive(struct sock *sk, int val);
422 void tcp_syn_ack_timeout(const struct request_sock *req);
423 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
424 		int flags, int *addr_len);
425 int tcp_set_rcvlowat(struct sock *sk, int val);
426 int tcp_set_window_clamp(struct sock *sk, int val);
427 void tcp_update_recv_tstamps(struct sk_buff *skb,
428 			     struct scm_timestamping_internal *tss);
429 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
430 			struct scm_timestamping_internal *tss);
431 void tcp_data_ready(struct sock *sk);
432 #ifdef CONFIG_MMU
433 int tcp_mmap(struct file *file, struct socket *sock,
434 	     struct vm_area_struct *vma);
435 #endif
436 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
437 		       struct tcp_options_received *opt_rx,
438 		       int estab, struct tcp_fastopen_cookie *foc);
439 
440 /*
441  *	BPF SKB-less helpers
442  */
443 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
444 			 struct tcphdr *th, u32 *cookie);
445 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
446 			 struct tcphdr *th, u32 *cookie);
447 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
448 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
449 			  const struct tcp_request_sock_ops *af_ops,
450 			  struct sock *sk, struct tcphdr *th);
451 /*
452  *	TCP v4 functions exported for the inet6 API
453  */
454 
455 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
456 void tcp_v4_mtu_reduced(struct sock *sk);
457 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
458 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
459 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
460 struct sock *tcp_create_openreq_child(const struct sock *sk,
461 				      struct request_sock *req,
462 				      struct sk_buff *skb);
463 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
464 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
465 				  struct request_sock *req,
466 				  struct dst_entry *dst,
467 				  struct request_sock *req_unhash,
468 				  bool *own_req);
469 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
470 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
471 int tcp_connect(struct sock *sk);
472 enum tcp_synack_type {
473 	TCP_SYNACK_NORMAL,
474 	TCP_SYNACK_FASTOPEN,
475 	TCP_SYNACK_COOKIE,
476 };
477 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
478 				struct request_sock *req,
479 				struct tcp_fastopen_cookie *foc,
480 				enum tcp_synack_type synack_type,
481 				struct sk_buff *syn_skb);
482 int tcp_disconnect(struct sock *sk, int flags);
483 
484 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
485 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
486 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
487 
488 /* From syncookies.c */
489 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
490 				 struct request_sock *req,
491 				 struct dst_entry *dst);
492 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
493 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
494 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
495 					    struct sock *sk, struct sk_buff *skb,
496 					    struct tcp_options_received *tcp_opt,
497 					    int mss, u32 tsoff);
498 
499 #if IS_ENABLED(CONFIG_BPF)
500 struct bpf_tcp_req_attrs {
501 	u32 rcv_tsval;
502 	u32 rcv_tsecr;
503 	u16 mss;
504 	u8 rcv_wscale;
505 	u8 snd_wscale;
506 	u8 ecn_ok;
507 	u8 wscale_ok;
508 	u8 sack_ok;
509 	u8 tstamp_ok;
510 	u8 usec_ts_ok;
511 	u8 reserved[3];
512 };
513 #endif
514 
515 #ifdef CONFIG_SYN_COOKIES
516 
517 /* Syncookies use a monotonic timer which increments every 60 seconds.
518  * This counter is used both as a hash input and partially encoded into
519  * the cookie value.  A cookie is only validated further if the delta
520  * between the current counter value and the encoded one is less than this,
521  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
522  * the counter advances immediately after a cookie is generated).
523  */
524 #define MAX_SYNCOOKIE_AGE	2
525 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
526 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
527 
528 /* syncookies: remember time of last synqueue overflow
529  * But do not dirty this field too often (once per second is enough)
530  * It is racy as we do not hold a lock, but race is very minor.
531  */
532 static inline void tcp_synq_overflow(const struct sock *sk)
533 {
534 	unsigned int last_overflow;
535 	unsigned int now = jiffies;
536 
537 	if (sk->sk_reuseport) {
538 		struct sock_reuseport *reuse;
539 
540 		reuse = rcu_dereference(sk->sk_reuseport_cb);
541 		if (likely(reuse)) {
542 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
543 			if (!time_between32(now, last_overflow,
544 					    last_overflow + HZ))
545 				WRITE_ONCE(reuse->synq_overflow_ts, now);
546 			return;
547 		}
548 	}
549 
550 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
551 	if (!time_between32(now, last_overflow, last_overflow + HZ))
552 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
553 }
554 
555 /* syncookies: no recent synqueue overflow on this listening socket? */
556 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
557 {
558 	unsigned int last_overflow;
559 	unsigned int now = jiffies;
560 
561 	if (sk->sk_reuseport) {
562 		struct sock_reuseport *reuse;
563 
564 		reuse = rcu_dereference(sk->sk_reuseport_cb);
565 		if (likely(reuse)) {
566 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
567 			return !time_between32(now, last_overflow - HZ,
568 					       last_overflow +
569 					       TCP_SYNCOOKIE_VALID);
570 		}
571 	}
572 
573 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
574 
575 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
576 	 * then we're under synflood. However, we have to use
577 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
578 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
579 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
580 	 * which could lead to rejecting a valid syncookie.
581 	 */
582 	return !time_between32(now, last_overflow - HZ,
583 			       last_overflow + TCP_SYNCOOKIE_VALID);
584 }
585 
586 static inline u32 tcp_cookie_time(void)
587 {
588 	u64 val = get_jiffies_64();
589 
590 	do_div(val, TCP_SYNCOOKIE_PERIOD);
591 	return val;
592 }
593 
594 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
595 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
596 {
597 	if (usec_ts)
598 		return div_u64(val, NSEC_PER_USEC);
599 
600 	return div_u64(val, NSEC_PER_MSEC);
601 }
602 
603 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
604 			      u16 *mssp);
605 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
606 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
607 bool cookie_timestamp_decode(const struct net *net,
608 			     struct tcp_options_received *opt);
609 
610 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
611 {
612 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
613 		dst_feature(dst, RTAX_FEATURE_ECN);
614 }
615 
616 #if IS_ENABLED(CONFIG_BPF)
617 static inline bool cookie_bpf_ok(struct sk_buff *skb)
618 {
619 	return skb->sk;
620 }
621 
622 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
623 #else
624 static inline bool cookie_bpf_ok(struct sk_buff *skb)
625 {
626 	return false;
627 }
628 
629 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
630 						    struct sk_buff *skb)
631 {
632 	return NULL;
633 }
634 #endif
635 
636 /* From net/ipv6/syncookies.c */
637 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
638 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
639 
640 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
641 			      const struct tcphdr *th, u16 *mssp);
642 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
643 #endif
644 /* tcp_output.c */
645 
646 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
647 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
648 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
649 			       int nonagle);
650 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
651 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
652 void tcp_retransmit_timer(struct sock *sk);
653 void tcp_xmit_retransmit_queue(struct sock *);
654 void tcp_simple_retransmit(struct sock *);
655 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
656 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
657 enum tcp_queue {
658 	TCP_FRAG_IN_WRITE_QUEUE,
659 	TCP_FRAG_IN_RTX_QUEUE,
660 };
661 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
662 		 struct sk_buff *skb, u32 len,
663 		 unsigned int mss_now, gfp_t gfp);
664 
665 void tcp_send_probe0(struct sock *);
666 int tcp_write_wakeup(struct sock *, int mib);
667 void tcp_send_fin(struct sock *sk);
668 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
669 			   enum sk_rst_reason reason);
670 int tcp_send_synack(struct sock *);
671 void tcp_push_one(struct sock *, unsigned int mss_now);
672 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
673 void tcp_send_ack(struct sock *sk);
674 void tcp_send_delayed_ack(struct sock *sk);
675 void tcp_send_loss_probe(struct sock *sk);
676 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
677 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
678 			     const struct sk_buff *next_skb);
679 
680 /* tcp_input.c */
681 void tcp_rearm_rto(struct sock *sk);
682 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
683 void tcp_done_with_error(struct sock *sk, int err);
684 void tcp_reset(struct sock *sk, struct sk_buff *skb);
685 void tcp_fin(struct sock *sk);
686 void tcp_check_space(struct sock *sk);
687 void tcp_sack_compress_send_ack(struct sock *sk);
688 
689 static inline void tcp_cleanup_skb(struct sk_buff *skb)
690 {
691 	skb_dst_drop(skb);
692 	secpath_reset(skb);
693 }
694 
695 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
696 {
697 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
698 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
699 	__skb_queue_tail(&sk->sk_receive_queue, skb);
700 }
701 
702 /* tcp_timer.c */
703 void tcp_init_xmit_timers(struct sock *);
704 static inline void tcp_clear_xmit_timers(struct sock *sk)
705 {
706 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
707 		__sock_put(sk);
708 
709 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
710 		__sock_put(sk);
711 
712 	inet_csk_clear_xmit_timers(sk);
713 }
714 
715 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
716 unsigned int tcp_current_mss(struct sock *sk);
717 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
718 
719 /* Bound MSS / TSO packet size with the half of the window */
720 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
721 {
722 	int cutoff;
723 
724 	/* When peer uses tiny windows, there is no use in packetizing
725 	 * to sub-MSS pieces for the sake of SWS or making sure there
726 	 * are enough packets in the pipe for fast recovery.
727 	 *
728 	 * On the other hand, for extremely large MSS devices, handling
729 	 * smaller than MSS windows in this way does make sense.
730 	 */
731 	if (tp->max_window > TCP_MSS_DEFAULT)
732 		cutoff = (tp->max_window >> 1);
733 	else
734 		cutoff = tp->max_window;
735 
736 	if (cutoff && pktsize > cutoff)
737 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
738 	else
739 		return pktsize;
740 }
741 
742 /* tcp.c */
743 void tcp_get_info(struct sock *, struct tcp_info *);
744 
745 /* Read 'sendfile()'-style from a TCP socket */
746 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
747 		  sk_read_actor_t recv_actor);
748 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
749 			sk_read_actor_t recv_actor, bool noack,
750 			u32 *copied_seq);
751 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
752 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
753 void tcp_read_done(struct sock *sk, size_t len);
754 
755 void tcp_initialize_rcv_mss(struct sock *sk);
756 
757 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
758 int tcp_mss_to_mtu(struct sock *sk, int mss);
759 void tcp_mtup_init(struct sock *sk);
760 
761 static inline unsigned int tcp_rto_max(const struct sock *sk)
762 {
763 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
764 }
765 
766 static inline void tcp_bound_rto(struct sock *sk)
767 {
768 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
769 }
770 
771 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
772 {
773 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
774 }
775 
776 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
777 {
778 	/* mptcp hooks are only on the slow path */
779 	if (sk_is_mptcp((struct sock *)tp))
780 		return;
781 
782 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
783 			       ntohl(TCP_FLAG_ACK) |
784 			       snd_wnd);
785 }
786 
787 static inline void tcp_fast_path_on(struct tcp_sock *tp)
788 {
789 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
790 }
791 
792 static inline void tcp_fast_path_check(struct sock *sk)
793 {
794 	struct tcp_sock *tp = tcp_sk(sk);
795 
796 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
797 	    tp->rcv_wnd &&
798 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
799 	    !tp->urg_data)
800 		tcp_fast_path_on(tp);
801 }
802 
803 u32 tcp_delack_max(const struct sock *sk);
804 
805 /* Compute the actual rto_min value */
806 static inline u32 tcp_rto_min(const struct sock *sk)
807 {
808 	const struct dst_entry *dst = __sk_dst_get(sk);
809 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
810 
811 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
812 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
813 	return rto_min;
814 }
815 
816 static inline u32 tcp_rto_min_us(const struct sock *sk)
817 {
818 	return jiffies_to_usecs(tcp_rto_min(sk));
819 }
820 
821 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
822 {
823 	return dst_metric_locked(dst, RTAX_CC_ALGO);
824 }
825 
826 /* Minimum RTT in usec. ~0 means not available. */
827 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
828 {
829 	return minmax_get(&tp->rtt_min);
830 }
831 
832 /* Compute the actual receive window we are currently advertising.
833  * Rcv_nxt can be after the window if our peer push more data
834  * than the offered window.
835  */
836 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
837 {
838 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
839 
840 	if (win < 0)
841 		win = 0;
842 	return (u32) win;
843 }
844 
845 /* Choose a new window, without checks for shrinking, and without
846  * scaling applied to the result.  The caller does these things
847  * if necessary.  This is a "raw" window selection.
848  */
849 u32 __tcp_select_window(struct sock *sk);
850 
851 void tcp_send_window_probe(struct sock *sk);
852 
853 /* TCP uses 32bit jiffies to save some space.
854  * Note that this is different from tcp_time_stamp, which
855  * historically has been the same until linux-4.13.
856  */
857 #define tcp_jiffies32 ((u32)jiffies)
858 
859 /*
860  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
861  * It is no longer tied to jiffies, but to 1 ms clock.
862  * Note: double check if you want to use tcp_jiffies32 instead of this.
863  */
864 #define TCP_TS_HZ	1000
865 
866 static inline u64 tcp_clock_ns(void)
867 {
868 	return ktime_get_ns();
869 }
870 
871 static inline u64 tcp_clock_us(void)
872 {
873 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
874 }
875 
876 static inline u64 tcp_clock_ms(void)
877 {
878 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
879 }
880 
881 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
882  * or usec resolution. Each socket carries a flag to select one or other
883  * resolution, as the route attribute could change anytime.
884  * Each flow must stick to initial resolution.
885  */
886 static inline u32 tcp_clock_ts(bool usec_ts)
887 {
888 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
889 }
890 
891 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
892 {
893 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
894 }
895 
896 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
897 {
898 	if (tp->tcp_usec_ts)
899 		return tp->tcp_mstamp;
900 	return tcp_time_stamp_ms(tp);
901 }
902 
903 void tcp_mstamp_refresh(struct tcp_sock *tp);
904 
905 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
906 {
907 	return max_t(s64, t1 - t0, 0);
908 }
909 
910 /* provide the departure time in us unit */
911 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
912 {
913 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
914 }
915 
916 /* Provide skb TSval in usec or ms unit */
917 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
918 {
919 	if (usec_ts)
920 		return tcp_skb_timestamp_us(skb);
921 
922 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
923 }
924 
925 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
926 {
927 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
928 }
929 
930 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
931 {
932 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
933 }
934 
935 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
936 
937 #define TCPHDR_FIN 0x01
938 #define TCPHDR_SYN 0x02
939 #define TCPHDR_RST 0x04
940 #define TCPHDR_PSH 0x08
941 #define TCPHDR_ACK 0x10
942 #define TCPHDR_URG 0x20
943 #define TCPHDR_ECE 0x40
944 #define TCPHDR_CWR 0x80
945 
946 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
947 
948 /* State flags for sacked in struct tcp_skb_cb */
949 enum tcp_skb_cb_sacked_flags {
950 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
951 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
952 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
953 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
954 				   TCPCB_LOST),	/* All tag bits			*/
955 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
956 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
957 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
958 				   TCPCB_REPAIRED),
959 };
960 
961 /* This is what the send packet queuing engine uses to pass
962  * TCP per-packet control information to the transmission code.
963  * We also store the host-order sequence numbers in here too.
964  * This is 44 bytes if IPV6 is enabled.
965  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
966  */
967 struct tcp_skb_cb {
968 	__u32		seq;		/* Starting sequence number	*/
969 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
970 	union {
971 		/* Note :
972 		 * 	  tcp_gso_segs/size are used in write queue only,
973 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
974 		 */
975 		struct {
976 			u16	tcp_gso_segs;
977 			u16	tcp_gso_size;
978 		};
979 	};
980 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
981 
982 	__u8		sacked;		/* State flags for SACK.	*/
983 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
984 #define TSTAMP_ACK_SK	0x1
985 #define TSTAMP_ACK_BPF	0x2
986 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
987 			eor:1,		/* Is skb MSG_EOR marked? */
988 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
989 			unused:4;
990 	__u32		ack_seq;	/* Sequence number ACK'd	*/
991 	union {
992 		struct {
993 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
994 			/* There is space for up to 24 bytes */
995 			__u32 is_app_limited:1, /* cwnd not fully used? */
996 			      delivered_ce:20,
997 			      unused:11;
998 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
999 			__u32 delivered;
1000 			/* start of send pipeline phase */
1001 			u64 first_tx_mstamp;
1002 			/* when we reached the "delivered" count */
1003 			u64 delivered_mstamp;
1004 		} tx;   /* only used for outgoing skbs */
1005 		union {
1006 			struct inet_skb_parm	h4;
1007 #if IS_ENABLED(CONFIG_IPV6)
1008 			struct inet6_skb_parm	h6;
1009 #endif
1010 		} header;	/* For incoming skbs */
1011 	};
1012 };
1013 
1014 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1015 
1016 extern const struct inet_connection_sock_af_ops ipv4_specific;
1017 
1018 #if IS_ENABLED(CONFIG_IPV6)
1019 /* This is the variant of inet6_iif() that must be used by TCP,
1020  * as TCP moves IP6CB into a different location in skb->cb[]
1021  */
1022 static inline int tcp_v6_iif(const struct sk_buff *skb)
1023 {
1024 	return TCP_SKB_CB(skb)->header.h6.iif;
1025 }
1026 
1027 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1028 {
1029 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1030 
1031 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1032 }
1033 
1034 /* TCP_SKB_CB reference means this can not be used from early demux */
1035 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1036 {
1037 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1038 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1039 		return TCP_SKB_CB(skb)->header.h6.iif;
1040 #endif
1041 	return 0;
1042 }
1043 
1044 extern const struct inet_connection_sock_af_ops ipv6_specific;
1045 
1046 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1047 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1048 void tcp_v6_early_demux(struct sk_buff *skb);
1049 
1050 #endif
1051 
1052 /* TCP_SKB_CB reference means this can not be used from early demux */
1053 static inline int tcp_v4_sdif(struct sk_buff *skb)
1054 {
1055 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1056 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1057 		return TCP_SKB_CB(skb)->header.h4.iif;
1058 #endif
1059 	return 0;
1060 }
1061 
1062 /* Due to TSO, an SKB can be composed of multiple actual
1063  * packets.  To keep these tracked properly, we use this.
1064  */
1065 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1066 {
1067 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1068 }
1069 
1070 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1071 {
1072 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1073 }
1074 
1075 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1076 {
1077 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1078 }
1079 
1080 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1081 static inline int tcp_skb_mss(const struct sk_buff *skb)
1082 {
1083 	return TCP_SKB_CB(skb)->tcp_gso_size;
1084 }
1085 
1086 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1087 {
1088 	return likely(!TCP_SKB_CB(skb)->eor);
1089 }
1090 
1091 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1092 					const struct sk_buff *from)
1093 {
1094 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1095 	return likely(tcp_skb_can_collapse_to(to) &&
1096 		      mptcp_skb_can_collapse(to, from) &&
1097 		      skb_pure_zcopy_same(to, from) &&
1098 		      skb_frags_readable(to) == skb_frags_readable(from));
1099 }
1100 
1101 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1102 					   const struct sk_buff *from)
1103 {
1104 	return likely(mptcp_skb_can_collapse(to, from) &&
1105 		      !skb_cmp_decrypted(to, from));
1106 }
1107 
1108 /* Events passed to congestion control interface */
1109 enum tcp_ca_event {
1110 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1111 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1112 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1113 	CA_EVENT_LOSS,		/* loss timeout */
1114 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1115 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1116 };
1117 
1118 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1119 enum tcp_ca_ack_event_flags {
1120 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1121 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1122 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1123 };
1124 
1125 /*
1126  * Interface for adding new TCP congestion control handlers
1127  */
1128 #define TCP_CA_NAME_MAX	16
1129 #define TCP_CA_MAX	128
1130 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1131 
1132 #define TCP_CA_UNSPEC	0
1133 
1134 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1135 #define TCP_CONG_NON_RESTRICTED 0x1
1136 /* Requires ECN/ECT set on all packets */
1137 #define TCP_CONG_NEEDS_ECN	0x2
1138 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1139 
1140 union tcp_cc_info;
1141 
1142 struct ack_sample {
1143 	u32 pkts_acked;
1144 	s32 rtt_us;
1145 	u32 in_flight;
1146 };
1147 
1148 /* A rate sample measures the number of (original/retransmitted) data
1149  * packets delivered "delivered" over an interval of time "interval_us".
1150  * The tcp_rate.c code fills in the rate sample, and congestion
1151  * control modules that define a cong_control function to run at the end
1152  * of ACK processing can optionally chose to consult this sample when
1153  * setting cwnd and pacing rate.
1154  * A sample is invalid if "delivered" or "interval_us" is negative.
1155  */
1156 struct rate_sample {
1157 	u64  prior_mstamp; /* starting timestamp for interval */
1158 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1159 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1160 	s32  delivered;		/* number of packets delivered over interval */
1161 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1162 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1163 	u32 snd_interval_us;	/* snd interval for delivered packets */
1164 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1165 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1166 	int  losses;		/* number of packets marked lost upon ACK */
1167 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1168 	u32  prior_in_flight;	/* in flight before this ACK */
1169 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1170 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1171 	bool is_retrans;	/* is sample from retransmission? */
1172 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1173 };
1174 
1175 struct tcp_congestion_ops {
1176 /* fast path fields are put first to fill one cache line */
1177 
1178 	/* return slow start threshold (required) */
1179 	u32 (*ssthresh)(struct sock *sk);
1180 
1181 	/* do new cwnd calculation (required) */
1182 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1183 
1184 	/* call before changing ca_state (optional) */
1185 	void (*set_state)(struct sock *sk, u8 new_state);
1186 
1187 	/* call when cwnd event occurs (optional) */
1188 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1189 
1190 	/* call when ack arrives (optional) */
1191 	void (*in_ack_event)(struct sock *sk, u32 flags);
1192 
1193 	/* hook for packet ack accounting (optional) */
1194 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1195 
1196 	/* override sysctl_tcp_min_tso_segs */
1197 	u32 (*min_tso_segs)(struct sock *sk);
1198 
1199 	/* call when packets are delivered to update cwnd and pacing rate,
1200 	 * after all the ca_state processing. (optional)
1201 	 */
1202 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1203 
1204 
1205 	/* new value of cwnd after loss (required) */
1206 	u32  (*undo_cwnd)(struct sock *sk);
1207 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1208 	u32 (*sndbuf_expand)(struct sock *sk);
1209 
1210 /* control/slow paths put last */
1211 	/* get info for inet_diag (optional) */
1212 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1213 			   union tcp_cc_info *info);
1214 
1215 	char 			name[TCP_CA_NAME_MAX];
1216 	struct module		*owner;
1217 	struct list_head	list;
1218 	u32			key;
1219 	u32			flags;
1220 
1221 	/* initialize private data (optional) */
1222 	void (*init)(struct sock *sk);
1223 	/* cleanup private data  (optional) */
1224 	void (*release)(struct sock *sk);
1225 } ____cacheline_aligned_in_smp;
1226 
1227 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1228 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1229 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1230 				  struct tcp_congestion_ops *old_type);
1231 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1232 
1233 void tcp_assign_congestion_control(struct sock *sk);
1234 void tcp_init_congestion_control(struct sock *sk);
1235 void tcp_cleanup_congestion_control(struct sock *sk);
1236 int tcp_set_default_congestion_control(struct net *net, const char *name);
1237 void tcp_get_default_congestion_control(struct net *net, char *name);
1238 void tcp_get_available_congestion_control(char *buf, size_t len);
1239 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1240 int tcp_set_allowed_congestion_control(char *allowed);
1241 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1242 			       bool cap_net_admin);
1243 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1244 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1245 
1246 u32 tcp_reno_ssthresh(struct sock *sk);
1247 u32 tcp_reno_undo_cwnd(struct sock *sk);
1248 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1249 extern struct tcp_congestion_ops tcp_reno;
1250 
1251 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1252 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1253 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1254 #ifdef CONFIG_INET
1255 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1256 #else
1257 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1258 {
1259 	return NULL;
1260 }
1261 #endif
1262 
1263 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1264 {
1265 	const struct inet_connection_sock *icsk = inet_csk(sk);
1266 
1267 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1268 }
1269 
1270 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1271 {
1272 	const struct inet_connection_sock *icsk = inet_csk(sk);
1273 
1274 	if (icsk->icsk_ca_ops->cwnd_event)
1275 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1276 }
1277 
1278 /* From tcp_cong.c */
1279 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1280 
1281 /* From tcp_rate.c */
1282 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1283 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1284 			    struct rate_sample *rs);
1285 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1286 		  bool is_sack_reneg, struct rate_sample *rs);
1287 void tcp_rate_check_app_limited(struct sock *sk);
1288 
1289 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1290 {
1291 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1292 }
1293 
1294 /* These functions determine how the current flow behaves in respect of SACK
1295  * handling. SACK is negotiated with the peer, and therefore it can vary
1296  * between different flows.
1297  *
1298  * tcp_is_sack - SACK enabled
1299  * tcp_is_reno - No SACK
1300  */
1301 static inline int tcp_is_sack(const struct tcp_sock *tp)
1302 {
1303 	return likely(tp->rx_opt.sack_ok);
1304 }
1305 
1306 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1307 {
1308 	return !tcp_is_sack(tp);
1309 }
1310 
1311 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1312 {
1313 	return tp->sacked_out + tp->lost_out;
1314 }
1315 
1316 /* This determines how many packets are "in the network" to the best
1317  * of our knowledge.  In many cases it is conservative, but where
1318  * detailed information is available from the receiver (via SACK
1319  * blocks etc.) we can make more aggressive calculations.
1320  *
1321  * Use this for decisions involving congestion control, use just
1322  * tp->packets_out to determine if the send queue is empty or not.
1323  *
1324  * Read this equation as:
1325  *
1326  *	"Packets sent once on transmission queue" MINUS
1327  *	"Packets left network, but not honestly ACKed yet" PLUS
1328  *	"Packets fast retransmitted"
1329  */
1330 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1331 {
1332 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1333 }
1334 
1335 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1336 
1337 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1338 {
1339 	return tp->snd_cwnd;
1340 }
1341 
1342 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1343 {
1344 	WARN_ON_ONCE((int)val <= 0);
1345 	tp->snd_cwnd = val;
1346 }
1347 
1348 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1349 {
1350 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1351 }
1352 
1353 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1354 {
1355 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1356 }
1357 
1358 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1359 {
1360 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1361 	       (1 << inet_csk(sk)->icsk_ca_state);
1362 }
1363 
1364 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1365  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1366  * ssthresh.
1367  */
1368 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1369 {
1370 	const struct tcp_sock *tp = tcp_sk(sk);
1371 
1372 	if (tcp_in_cwnd_reduction(sk))
1373 		return tp->snd_ssthresh;
1374 	else
1375 		return max(tp->snd_ssthresh,
1376 			   ((tcp_snd_cwnd(tp) >> 1) +
1377 			    (tcp_snd_cwnd(tp) >> 2)));
1378 }
1379 
1380 /* Use define here intentionally to get WARN_ON location shown at the caller */
1381 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1382 
1383 void tcp_enter_cwr(struct sock *sk);
1384 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1385 
1386 /* The maximum number of MSS of available cwnd for which TSO defers
1387  * sending if not using sysctl_tcp_tso_win_divisor.
1388  */
1389 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1390 {
1391 	return 3;
1392 }
1393 
1394 /* Returns end sequence number of the receiver's advertised window */
1395 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1396 {
1397 	return tp->snd_una + tp->snd_wnd;
1398 }
1399 
1400 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1401  * flexible approach. The RFC suggests cwnd should not be raised unless
1402  * it was fully used previously. And that's exactly what we do in
1403  * congestion avoidance mode. But in slow start we allow cwnd to grow
1404  * as long as the application has used half the cwnd.
1405  * Example :
1406  *    cwnd is 10 (IW10), but application sends 9 frames.
1407  *    We allow cwnd to reach 18 when all frames are ACKed.
1408  * This check is safe because it's as aggressive as slow start which already
1409  * risks 100% overshoot. The advantage is that we discourage application to
1410  * either send more filler packets or data to artificially blow up the cwnd
1411  * usage, and allow application-limited process to probe bw more aggressively.
1412  */
1413 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1414 {
1415 	const struct tcp_sock *tp = tcp_sk(sk);
1416 
1417 	if (tp->is_cwnd_limited)
1418 		return true;
1419 
1420 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1421 	if (tcp_in_slow_start(tp))
1422 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1423 
1424 	return false;
1425 }
1426 
1427 /* BBR congestion control needs pacing.
1428  * Same remark for SO_MAX_PACING_RATE.
1429  * sch_fq packet scheduler is efficiently handling pacing,
1430  * but is not always installed/used.
1431  * Return true if TCP stack should pace packets itself.
1432  */
1433 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1434 {
1435 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1436 }
1437 
1438 /* Estimates in how many jiffies next packet for this flow can be sent.
1439  * Scheduling a retransmit timer too early would be silly.
1440  */
1441 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1442 {
1443 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1444 
1445 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1446 }
1447 
1448 static inline void tcp_reset_xmit_timer(struct sock *sk,
1449 					const int what,
1450 					unsigned long when,
1451 					bool pace_delay)
1452 {
1453 	if (pace_delay)
1454 		when += tcp_pacing_delay(sk);
1455 	inet_csk_reset_xmit_timer(sk, what, when,
1456 				  tcp_rto_max(sk));
1457 }
1458 
1459 /* Something is really bad, we could not queue an additional packet,
1460  * because qdisc is full or receiver sent a 0 window, or we are paced.
1461  * We do not want to add fuel to the fire, or abort too early,
1462  * so make sure the timer we arm now is at least 200ms in the future,
1463  * regardless of current icsk_rto value (as it could be ~2ms)
1464  */
1465 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1466 {
1467 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1468 }
1469 
1470 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1471 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1472 					    unsigned long max_when)
1473 {
1474 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1475 			   inet_csk(sk)->icsk_backoff);
1476 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1477 
1478 	return (unsigned long)min_t(u64, when, max_when);
1479 }
1480 
1481 static inline void tcp_check_probe_timer(struct sock *sk)
1482 {
1483 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1484 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1485 				     tcp_probe0_base(sk), true);
1486 }
1487 
1488 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1489 {
1490 	tp->snd_wl1 = seq;
1491 }
1492 
1493 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1494 {
1495 	tp->snd_wl1 = seq;
1496 }
1497 
1498 /*
1499  * Calculate(/check) TCP checksum
1500  */
1501 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1502 				   __be32 daddr, __wsum base)
1503 {
1504 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1505 }
1506 
1507 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1508 {
1509 	return !skb_csum_unnecessary(skb) &&
1510 		__skb_checksum_complete(skb);
1511 }
1512 
1513 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1514 		     enum skb_drop_reason *reason);
1515 
1516 
1517 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1518 void tcp_set_state(struct sock *sk, int state);
1519 void tcp_done(struct sock *sk);
1520 int tcp_abort(struct sock *sk, int err);
1521 
1522 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1523 {
1524 	rx_opt->dsack = 0;
1525 	rx_opt->num_sacks = 0;
1526 }
1527 
1528 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1529 
1530 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1531 {
1532 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	s32 delta;
1535 
1536 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1537 	    tp->packets_out || ca_ops->cong_control)
1538 		return;
1539 	delta = tcp_jiffies32 - tp->lsndtime;
1540 	if (delta > inet_csk(sk)->icsk_rto)
1541 		tcp_cwnd_restart(sk, delta);
1542 }
1543 
1544 /* Determine a window scaling and initial window to offer. */
1545 void tcp_select_initial_window(const struct sock *sk, int __space,
1546 			       __u32 mss, __u32 *rcv_wnd,
1547 			       __u32 *window_clamp, int wscale_ok,
1548 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1549 
1550 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1551 {
1552 	s64 scaled_space = (s64)space * scaling_ratio;
1553 
1554 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1555 }
1556 
1557 static inline int tcp_win_from_space(const struct sock *sk, int space)
1558 {
1559 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1560 }
1561 
1562 /* inverse of __tcp_win_from_space() */
1563 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1564 {
1565 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1566 
1567 	do_div(val, scaling_ratio);
1568 	return val;
1569 }
1570 
1571 static inline int tcp_space_from_win(const struct sock *sk, int win)
1572 {
1573 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1574 }
1575 
1576 /* Assume a 50% default for skb->len/skb->truesize ratio.
1577  * This may be adjusted later in tcp_measure_rcv_mss().
1578  */
1579 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1580 
1581 static inline void tcp_scaling_ratio_init(struct sock *sk)
1582 {
1583 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1584 }
1585 
1586 /* Note: caller must be prepared to deal with negative returns */
1587 static inline int tcp_space(const struct sock *sk)
1588 {
1589 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1590 				  READ_ONCE(sk->sk_backlog.len) -
1591 				  atomic_read(&sk->sk_rmem_alloc));
1592 }
1593 
1594 static inline int tcp_full_space(const struct sock *sk)
1595 {
1596 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1597 }
1598 
1599 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1600 {
1601 	int unused_mem = sk_unused_reserved_mem(sk);
1602 	struct tcp_sock *tp = tcp_sk(sk);
1603 
1604 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1605 	if (unused_mem)
1606 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1607 					 tcp_win_from_space(sk, unused_mem));
1608 }
1609 
1610 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1611 {
1612 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1613 }
1614 
1615 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1616 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1617 
1618 
1619 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1620  * If 87.5 % (7/8) of the space has been consumed, we want to override
1621  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1622  * len/truesize ratio.
1623  */
1624 static inline bool tcp_rmem_pressure(const struct sock *sk)
1625 {
1626 	int rcvbuf, threshold;
1627 
1628 	if (tcp_under_memory_pressure(sk))
1629 		return true;
1630 
1631 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1632 	threshold = rcvbuf - (rcvbuf >> 3);
1633 
1634 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1635 }
1636 
1637 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1638 {
1639 	const struct tcp_sock *tp = tcp_sk(sk);
1640 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1641 
1642 	if (avail <= 0)
1643 		return false;
1644 
1645 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1646 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1647 }
1648 
1649 extern void tcp_openreq_init_rwin(struct request_sock *req,
1650 				  const struct sock *sk_listener,
1651 				  const struct dst_entry *dst);
1652 
1653 void tcp_enter_memory_pressure(struct sock *sk);
1654 void tcp_leave_memory_pressure(struct sock *sk);
1655 
1656 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1657 {
1658 	struct net *net = sock_net((struct sock *)tp);
1659 	int val;
1660 
1661 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1662 	 * and do_tcp_setsockopt().
1663 	 */
1664 	val = READ_ONCE(tp->keepalive_intvl);
1665 
1666 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1667 }
1668 
1669 static inline int keepalive_time_when(const struct tcp_sock *tp)
1670 {
1671 	struct net *net = sock_net((struct sock *)tp);
1672 	int val;
1673 
1674 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1675 	val = READ_ONCE(tp->keepalive_time);
1676 
1677 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1678 }
1679 
1680 static inline int keepalive_probes(const struct tcp_sock *tp)
1681 {
1682 	struct net *net = sock_net((struct sock *)tp);
1683 	int val;
1684 
1685 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1686 	 * and do_tcp_setsockopt().
1687 	 */
1688 	val = READ_ONCE(tp->keepalive_probes);
1689 
1690 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1691 }
1692 
1693 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1694 {
1695 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1696 
1697 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1698 			  tcp_jiffies32 - tp->rcv_tstamp);
1699 }
1700 
1701 static inline int tcp_fin_time(const struct sock *sk)
1702 {
1703 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1704 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1705 	const int rto = inet_csk(sk)->icsk_rto;
1706 
1707 	if (fin_timeout < (rto << 2) - (rto >> 1))
1708 		fin_timeout = (rto << 2) - (rto >> 1);
1709 
1710 	return fin_timeout;
1711 }
1712 
1713 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1714 				  int paws_win)
1715 {
1716 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1717 		return true;
1718 	if (unlikely(!time_before32(ktime_get_seconds(),
1719 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1720 		return true;
1721 	/*
1722 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1723 	 * then following tcp messages have valid values. Ignore 0 value,
1724 	 * or else 'negative' tsval might forbid us to accept their packets.
1725 	 */
1726 	if (!rx_opt->ts_recent)
1727 		return true;
1728 	return false;
1729 }
1730 
1731 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1732 				   int rst)
1733 {
1734 	if (tcp_paws_check(rx_opt, 0))
1735 		return false;
1736 
1737 	/* RST segments are not recommended to carry timestamp,
1738 	   and, if they do, it is recommended to ignore PAWS because
1739 	   "their cleanup function should take precedence over timestamps."
1740 	   Certainly, it is mistake. It is necessary to understand the reasons
1741 	   of this constraint to relax it: if peer reboots, clock may go
1742 	   out-of-sync and half-open connections will not be reset.
1743 	   Actually, the problem would be not existing if all
1744 	   the implementations followed draft about maintaining clock
1745 	   via reboots. Linux-2.2 DOES NOT!
1746 
1747 	   However, we can relax time bounds for RST segments to MSL.
1748 	 */
1749 	if (rst && !time_before32(ktime_get_seconds(),
1750 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1751 		return false;
1752 	return true;
1753 }
1754 
1755 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1756 			  int mib_idx, u32 *last_oow_ack_time);
1757 
1758 static inline void tcp_mib_init(struct net *net)
1759 {
1760 	/* See RFC 2012 */
1761 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1762 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1763 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1764 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1765 }
1766 
1767 /* from STCP */
1768 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1769 {
1770 	tp->lost_skb_hint = NULL;
1771 }
1772 
1773 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1774 {
1775 	tcp_clear_retrans_hints_partial(tp);
1776 	tp->retransmit_skb_hint = NULL;
1777 }
1778 
1779 #define tcp_md5_addr tcp_ao_addr
1780 
1781 /* - key database */
1782 struct tcp_md5sig_key {
1783 	struct hlist_node	node;
1784 	u8			keylen;
1785 	u8			family; /* AF_INET or AF_INET6 */
1786 	u8			prefixlen;
1787 	u8			flags;
1788 	union tcp_md5_addr	addr;
1789 	int			l3index; /* set if key added with L3 scope */
1790 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1791 	struct rcu_head		rcu;
1792 };
1793 
1794 /* - sock block */
1795 struct tcp_md5sig_info {
1796 	struct hlist_head	head;
1797 	struct rcu_head		rcu;
1798 };
1799 
1800 /* - pseudo header */
1801 struct tcp4_pseudohdr {
1802 	__be32		saddr;
1803 	__be32		daddr;
1804 	__u8		pad;
1805 	__u8		protocol;
1806 	__be16		len;
1807 };
1808 
1809 struct tcp6_pseudohdr {
1810 	struct in6_addr	saddr;
1811 	struct in6_addr daddr;
1812 	__be32		len;
1813 	__be32		protocol;	/* including padding */
1814 };
1815 
1816 union tcp_md5sum_block {
1817 	struct tcp4_pseudohdr ip4;
1818 #if IS_ENABLED(CONFIG_IPV6)
1819 	struct tcp6_pseudohdr ip6;
1820 #endif
1821 };
1822 
1823 /*
1824  * struct tcp_sigpool - per-CPU pool of ahash_requests
1825  * @scratch: per-CPU temporary area, that can be used between
1826  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1827  *	     crypto request
1828  * @req: pre-allocated ahash request
1829  */
1830 struct tcp_sigpool {
1831 	void *scratch;
1832 	struct ahash_request *req;
1833 };
1834 
1835 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1836 void tcp_sigpool_get(unsigned int id);
1837 void tcp_sigpool_release(unsigned int id);
1838 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1839 			      const struct sk_buff *skb,
1840 			      unsigned int header_len);
1841 
1842 /**
1843  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1844  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1845  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1846  *
1847  * Returns: 0 on success, error otherwise.
1848  */
1849 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1850 /**
1851  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1852  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1853  */
1854 void tcp_sigpool_end(struct tcp_sigpool *c);
1855 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1856 /* - functions */
1857 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1858 			const struct sock *sk, const struct sk_buff *skb);
1859 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1860 		   int family, u8 prefixlen, int l3index, u8 flags,
1861 		   const u8 *newkey, u8 newkeylen);
1862 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1863 		     int family, u8 prefixlen, int l3index,
1864 		     struct tcp_md5sig_key *key);
1865 
1866 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1867 		   int family, u8 prefixlen, int l3index, u8 flags);
1868 void tcp_clear_md5_list(struct sock *sk);
1869 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1870 					 const struct sock *addr_sk);
1871 
1872 #ifdef CONFIG_TCP_MD5SIG
1873 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1874 					   const union tcp_md5_addr *addr,
1875 					   int family, bool any_l3index);
1876 static inline struct tcp_md5sig_key *
1877 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1878 		  const union tcp_md5_addr *addr, int family)
1879 {
1880 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1881 		return NULL;
1882 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1883 }
1884 
1885 static inline struct tcp_md5sig_key *
1886 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1887 			      const union tcp_md5_addr *addr, int family)
1888 {
1889 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1890 		return NULL;
1891 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1892 }
1893 
1894 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1895 #else
1896 static inline struct tcp_md5sig_key *
1897 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1898 		  const union tcp_md5_addr *addr, int family)
1899 {
1900 	return NULL;
1901 }
1902 
1903 static inline struct tcp_md5sig_key *
1904 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1905 			      const union tcp_md5_addr *addr, int family)
1906 {
1907 	return NULL;
1908 }
1909 
1910 #define tcp_twsk_md5_key(twsk)	NULL
1911 #endif
1912 
1913 int tcp_md5_alloc_sigpool(void);
1914 void tcp_md5_release_sigpool(void);
1915 void tcp_md5_add_sigpool(void);
1916 extern int tcp_md5_sigpool_id;
1917 
1918 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1919 		     const struct tcp_md5sig_key *key);
1920 
1921 /* From tcp_fastopen.c */
1922 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1923 			    struct tcp_fastopen_cookie *cookie);
1924 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1925 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1926 			    u16 try_exp);
1927 struct tcp_fastopen_request {
1928 	/* Fast Open cookie. Size 0 means a cookie request */
1929 	struct tcp_fastopen_cookie	cookie;
1930 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1931 	size_t				size;
1932 	int				copied;	/* queued in tcp_connect() */
1933 	struct ubuf_info		*uarg;
1934 };
1935 void tcp_free_fastopen_req(struct tcp_sock *tp);
1936 void tcp_fastopen_destroy_cipher(struct sock *sk);
1937 void tcp_fastopen_ctx_destroy(struct net *net);
1938 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1939 			      void *primary_key, void *backup_key);
1940 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1941 			    u64 *key);
1942 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1943 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1944 			      struct request_sock *req,
1945 			      struct tcp_fastopen_cookie *foc,
1946 			      const struct dst_entry *dst);
1947 void tcp_fastopen_init_key_once(struct net *net);
1948 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1949 			     struct tcp_fastopen_cookie *cookie);
1950 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1951 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1952 #define TCP_FASTOPEN_KEY_MAX 2
1953 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1954 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1955 
1956 /* Fastopen key context */
1957 struct tcp_fastopen_context {
1958 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1959 	int		num;
1960 	struct rcu_head	rcu;
1961 };
1962 
1963 void tcp_fastopen_active_disable(struct sock *sk);
1964 bool tcp_fastopen_active_should_disable(struct sock *sk);
1965 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1966 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1967 
1968 /* Caller needs to wrap with rcu_read_(un)lock() */
1969 static inline
1970 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1971 {
1972 	struct tcp_fastopen_context *ctx;
1973 
1974 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1975 	if (!ctx)
1976 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1977 	return ctx;
1978 }
1979 
1980 static inline
1981 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1982 			       const struct tcp_fastopen_cookie *orig)
1983 {
1984 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1985 	    orig->len == foc->len &&
1986 	    !memcmp(orig->val, foc->val, foc->len))
1987 		return true;
1988 	return false;
1989 }
1990 
1991 static inline
1992 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1993 {
1994 	return ctx->num;
1995 }
1996 
1997 /* Latencies incurred by various limits for a sender. They are
1998  * chronograph-like stats that are mutually exclusive.
1999  */
2000 enum tcp_chrono {
2001 	TCP_CHRONO_UNSPEC,
2002 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2003 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2004 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2005 	__TCP_CHRONO_MAX,
2006 };
2007 
2008 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2009 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2010 
2011 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2012  * the same memory storage than skb->destructor/_skb_refdst
2013  */
2014 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2015 {
2016 	skb->destructor = NULL;
2017 	skb->_skb_refdst = 0UL;
2018 }
2019 
2020 #define tcp_skb_tsorted_save(skb) {		\
2021 	unsigned long _save = skb->_skb_refdst;	\
2022 	skb->_skb_refdst = 0UL;
2023 
2024 #define tcp_skb_tsorted_restore(skb)		\
2025 	skb->_skb_refdst = _save;		\
2026 }
2027 
2028 void tcp_write_queue_purge(struct sock *sk);
2029 
2030 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2031 {
2032 	return skb_rb_first(&sk->tcp_rtx_queue);
2033 }
2034 
2035 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2036 {
2037 	return skb_rb_last(&sk->tcp_rtx_queue);
2038 }
2039 
2040 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2041 {
2042 	return skb_peek_tail(&sk->sk_write_queue);
2043 }
2044 
2045 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2046 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2047 
2048 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2049 {
2050 	return skb_peek(&sk->sk_write_queue);
2051 }
2052 
2053 static inline bool tcp_skb_is_last(const struct sock *sk,
2054 				   const struct sk_buff *skb)
2055 {
2056 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2057 }
2058 
2059 /**
2060  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2061  * @sk: socket
2062  *
2063  * Since the write queue can have a temporary empty skb in it,
2064  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2065  */
2066 static inline bool tcp_write_queue_empty(const struct sock *sk)
2067 {
2068 	const struct tcp_sock *tp = tcp_sk(sk);
2069 
2070 	return tp->write_seq == tp->snd_nxt;
2071 }
2072 
2073 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2074 {
2075 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2076 }
2077 
2078 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2079 {
2080 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2081 }
2082 
2083 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2084 {
2085 	__skb_queue_tail(&sk->sk_write_queue, skb);
2086 
2087 	/* Queue it, remembering where we must start sending. */
2088 	if (sk->sk_write_queue.next == skb)
2089 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2090 }
2091 
2092 /* Insert new before skb on the write queue of sk.  */
2093 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2094 						  struct sk_buff *skb,
2095 						  struct sock *sk)
2096 {
2097 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2098 }
2099 
2100 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2101 {
2102 	tcp_skb_tsorted_anchor_cleanup(skb);
2103 	__skb_unlink(skb, &sk->sk_write_queue);
2104 }
2105 
2106 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2107 
2108 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2109 {
2110 	tcp_skb_tsorted_anchor_cleanup(skb);
2111 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2112 }
2113 
2114 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2115 {
2116 	list_del(&skb->tcp_tsorted_anchor);
2117 	tcp_rtx_queue_unlink(skb, sk);
2118 	tcp_wmem_free_skb(sk, skb);
2119 }
2120 
2121 static inline void tcp_write_collapse_fence(struct sock *sk)
2122 {
2123 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2124 
2125 	if (skb)
2126 		TCP_SKB_CB(skb)->eor = 1;
2127 }
2128 
2129 static inline void tcp_push_pending_frames(struct sock *sk)
2130 {
2131 	if (tcp_send_head(sk)) {
2132 		struct tcp_sock *tp = tcp_sk(sk);
2133 
2134 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2135 	}
2136 }
2137 
2138 /* Start sequence of the skb just after the highest skb with SACKed
2139  * bit, valid only if sacked_out > 0 or when the caller has ensured
2140  * validity by itself.
2141  */
2142 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2143 {
2144 	if (!tp->sacked_out)
2145 		return tp->snd_una;
2146 
2147 	if (tp->highest_sack == NULL)
2148 		return tp->snd_nxt;
2149 
2150 	return TCP_SKB_CB(tp->highest_sack)->seq;
2151 }
2152 
2153 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2154 {
2155 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2156 }
2157 
2158 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2159 {
2160 	return tcp_sk(sk)->highest_sack;
2161 }
2162 
2163 static inline void tcp_highest_sack_reset(struct sock *sk)
2164 {
2165 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2166 }
2167 
2168 /* Called when old skb is about to be deleted and replaced by new skb */
2169 static inline void tcp_highest_sack_replace(struct sock *sk,
2170 					    struct sk_buff *old,
2171 					    struct sk_buff *new)
2172 {
2173 	if (old == tcp_highest_sack(sk))
2174 		tcp_sk(sk)->highest_sack = new;
2175 }
2176 
2177 /* This helper checks if socket has IP_TRANSPARENT set */
2178 static inline bool inet_sk_transparent(const struct sock *sk)
2179 {
2180 	switch (sk->sk_state) {
2181 	case TCP_TIME_WAIT:
2182 		return inet_twsk(sk)->tw_transparent;
2183 	case TCP_NEW_SYN_RECV:
2184 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2185 	}
2186 	return inet_test_bit(TRANSPARENT, sk);
2187 }
2188 
2189 /* Determines whether this is a thin stream (which may suffer from
2190  * increased latency). Used to trigger latency-reducing mechanisms.
2191  */
2192 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2193 {
2194 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2195 }
2196 
2197 /* /proc */
2198 enum tcp_seq_states {
2199 	TCP_SEQ_STATE_LISTENING,
2200 	TCP_SEQ_STATE_ESTABLISHED,
2201 };
2202 
2203 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2204 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2205 void tcp_seq_stop(struct seq_file *seq, void *v);
2206 
2207 struct tcp_seq_afinfo {
2208 	sa_family_t			family;
2209 };
2210 
2211 struct tcp_iter_state {
2212 	struct seq_net_private	p;
2213 	enum tcp_seq_states	state;
2214 	struct sock		*syn_wait_sk;
2215 	int			bucket, offset, sbucket, num;
2216 	loff_t			last_pos;
2217 };
2218 
2219 extern struct request_sock_ops tcp_request_sock_ops;
2220 extern struct request_sock_ops tcp6_request_sock_ops;
2221 
2222 void tcp_v4_destroy_sock(struct sock *sk);
2223 
2224 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2225 				netdev_features_t features);
2226 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2227 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2228 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2229 				struct tcphdr *th);
2230 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2231 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2232 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2233 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2234 #ifdef CONFIG_INET
2235 void tcp_gro_complete(struct sk_buff *skb);
2236 #else
2237 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2238 #endif
2239 
2240 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2241 
2242 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2243 {
2244 	struct net *net = sock_net((struct sock *)tp);
2245 	u32 val;
2246 
2247 	val = READ_ONCE(tp->notsent_lowat);
2248 
2249 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2250 }
2251 
2252 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2253 
2254 #ifdef CONFIG_PROC_FS
2255 int tcp4_proc_init(void);
2256 void tcp4_proc_exit(void);
2257 #endif
2258 
2259 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2260 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2261 		     const struct tcp_request_sock_ops *af_ops,
2262 		     struct sock *sk, struct sk_buff *skb);
2263 
2264 /* TCP af-specific functions */
2265 struct tcp_sock_af_ops {
2266 #ifdef CONFIG_TCP_MD5SIG
2267 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2268 						const struct sock *addr_sk);
2269 	int		(*calc_md5_hash)(char *location,
2270 					 const struct tcp_md5sig_key *md5,
2271 					 const struct sock *sk,
2272 					 const struct sk_buff *skb);
2273 	int		(*md5_parse)(struct sock *sk,
2274 				     int optname,
2275 				     sockptr_t optval,
2276 				     int optlen);
2277 #endif
2278 #ifdef CONFIG_TCP_AO
2279 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2280 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2281 					struct sock *addr_sk,
2282 					int sndid, int rcvid);
2283 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2284 			      const struct sock *sk,
2285 			      __be32 sisn, __be32 disn, bool send);
2286 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2287 			    const struct sock *sk, const struct sk_buff *skb,
2288 			    const u8 *tkey, int hash_offset, u32 sne);
2289 #endif
2290 };
2291 
2292 struct tcp_request_sock_ops {
2293 	u16 mss_clamp;
2294 #ifdef CONFIG_TCP_MD5SIG
2295 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2296 						 const struct sock *addr_sk);
2297 	int		(*calc_md5_hash) (char *location,
2298 					  const struct tcp_md5sig_key *md5,
2299 					  const struct sock *sk,
2300 					  const struct sk_buff *skb);
2301 #endif
2302 #ifdef CONFIG_TCP_AO
2303 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2304 					struct request_sock *req,
2305 					int sndid, int rcvid);
2306 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2307 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2308 			      struct request_sock *req, const struct sk_buff *skb,
2309 			      int hash_offset, u32 sne);
2310 #endif
2311 #ifdef CONFIG_SYN_COOKIES
2312 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2313 				 __u16 *mss);
2314 #endif
2315 	struct dst_entry *(*route_req)(const struct sock *sk,
2316 				       struct sk_buff *skb,
2317 				       struct flowi *fl,
2318 				       struct request_sock *req,
2319 				       u32 tw_isn);
2320 	u32 (*init_seq)(const struct sk_buff *skb);
2321 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2322 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2323 			   struct flowi *fl, struct request_sock *req,
2324 			   struct tcp_fastopen_cookie *foc,
2325 			   enum tcp_synack_type synack_type,
2326 			   struct sk_buff *syn_skb);
2327 };
2328 
2329 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2330 #if IS_ENABLED(CONFIG_IPV6)
2331 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2332 #endif
2333 
2334 #ifdef CONFIG_SYN_COOKIES
2335 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2336 					 const struct sock *sk, struct sk_buff *skb,
2337 					 __u16 *mss)
2338 {
2339 	tcp_synq_overflow(sk);
2340 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2341 	return ops->cookie_init_seq(skb, mss);
2342 }
2343 #else
2344 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2345 					 const struct sock *sk, struct sk_buff *skb,
2346 					 __u16 *mss)
2347 {
2348 	return 0;
2349 }
2350 #endif
2351 
2352 struct tcp_key {
2353 	union {
2354 		struct {
2355 			struct tcp_ao_key *ao_key;
2356 			char *traffic_key;
2357 			u32 sne;
2358 			u8 rcv_next;
2359 		};
2360 		struct tcp_md5sig_key *md5_key;
2361 	};
2362 	enum {
2363 		TCP_KEY_NONE = 0,
2364 		TCP_KEY_MD5,
2365 		TCP_KEY_AO,
2366 	} type;
2367 };
2368 
2369 static inline void tcp_get_current_key(const struct sock *sk,
2370 				       struct tcp_key *out)
2371 {
2372 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2373 	const struct tcp_sock *tp = tcp_sk(sk);
2374 #endif
2375 
2376 #ifdef CONFIG_TCP_AO
2377 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2378 		struct tcp_ao_info *ao;
2379 
2380 		ao = rcu_dereference_protected(tp->ao_info,
2381 					       lockdep_sock_is_held(sk));
2382 		if (ao) {
2383 			out->ao_key = READ_ONCE(ao->current_key);
2384 			out->type = TCP_KEY_AO;
2385 			return;
2386 		}
2387 	}
2388 #endif
2389 #ifdef CONFIG_TCP_MD5SIG
2390 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2391 	    rcu_access_pointer(tp->md5sig_info)) {
2392 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2393 		if (out->md5_key) {
2394 			out->type = TCP_KEY_MD5;
2395 			return;
2396 		}
2397 	}
2398 #endif
2399 	out->type = TCP_KEY_NONE;
2400 }
2401 
2402 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2403 {
2404 	if (static_branch_tcp_md5())
2405 		return key->type == TCP_KEY_MD5;
2406 	return false;
2407 }
2408 
2409 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2410 {
2411 	if (static_branch_tcp_ao())
2412 		return key->type == TCP_KEY_AO;
2413 	return false;
2414 }
2415 
2416 int tcpv4_offload_init(void);
2417 
2418 void tcp_v4_init(void);
2419 void tcp_init(void);
2420 
2421 /* tcp_recovery.c */
2422 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2423 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2424 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2425 				u32 reo_wnd);
2426 extern bool tcp_rack_mark_lost(struct sock *sk);
2427 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2428 			     u64 xmit_time);
2429 extern void tcp_rack_reo_timeout(struct sock *sk);
2430 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2431 
2432 /* tcp_plb.c */
2433 
2434 /*
2435  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2436  * expects cong_ratio which represents fraction of traffic that experienced
2437  * congestion over a single RTT. In order to avoid floating point operations,
2438  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2439  */
2440 #define TCP_PLB_SCALE 8
2441 
2442 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2443 struct tcp_plb_state {
2444 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2445 		unused:3;
2446 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2447 };
2448 
2449 static inline void tcp_plb_init(const struct sock *sk,
2450 				struct tcp_plb_state *plb)
2451 {
2452 	plb->consec_cong_rounds = 0;
2453 	plb->pause_until = 0;
2454 }
2455 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2456 			  const int cong_ratio);
2457 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2458 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2459 
2460 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2461 {
2462 	WARN_ONCE(cond,
2463 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2464 		  str,
2465 		  tcp_snd_cwnd(tcp_sk(sk)),
2466 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2467 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2468 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2469 		  inet_csk(sk)->icsk_ca_state,
2470 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2471 		  inet_csk(sk)->icsk_pmtu_cookie);
2472 }
2473 
2474 /* At how many usecs into the future should the RTO fire? */
2475 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2476 {
2477 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2478 	u32 rto = inet_csk(sk)->icsk_rto;
2479 
2480 	if (likely(skb)) {
2481 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2482 
2483 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2484 	} else {
2485 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2486 		return jiffies_to_usecs(rto);
2487 	}
2488 
2489 }
2490 
2491 /*
2492  * Save and compile IPv4 options, return a pointer to it
2493  */
2494 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2495 							 struct sk_buff *skb)
2496 {
2497 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2498 	struct ip_options_rcu *dopt = NULL;
2499 
2500 	if (opt->optlen) {
2501 		int opt_size = sizeof(*dopt) + opt->optlen;
2502 
2503 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2504 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2505 			kfree(dopt);
2506 			dopt = NULL;
2507 		}
2508 	}
2509 	return dopt;
2510 }
2511 
2512 /* locally generated TCP pure ACKs have skb->truesize == 2
2513  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2514  * This is much faster than dissecting the packet to find out.
2515  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2516  */
2517 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2518 {
2519 	return skb->truesize == 2;
2520 }
2521 
2522 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2523 {
2524 	skb->truesize = 2;
2525 }
2526 
2527 static inline int tcp_inq(struct sock *sk)
2528 {
2529 	struct tcp_sock *tp = tcp_sk(sk);
2530 	int answ;
2531 
2532 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2533 		answ = 0;
2534 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2535 		   !tp->urg_data ||
2536 		   before(tp->urg_seq, tp->copied_seq) ||
2537 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2538 
2539 		answ = tp->rcv_nxt - tp->copied_seq;
2540 
2541 		/* Subtract 1, if FIN was received */
2542 		if (answ && sock_flag(sk, SOCK_DONE))
2543 			answ--;
2544 	} else {
2545 		answ = tp->urg_seq - tp->copied_seq;
2546 	}
2547 
2548 	return answ;
2549 }
2550 
2551 int tcp_peek_len(struct socket *sock);
2552 
2553 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2554 {
2555 	u16 segs_in;
2556 
2557 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2558 
2559 	/* We update these fields while other threads might
2560 	 * read them from tcp_get_info()
2561 	 */
2562 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2563 	if (skb->len > tcp_hdrlen(skb))
2564 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2565 }
2566 
2567 /*
2568  * TCP listen path runs lockless.
2569  * We forced "struct sock" to be const qualified to make sure
2570  * we don't modify one of its field by mistake.
2571  * Here, we increment sk_drops which is an atomic_t, so we can safely
2572  * make sock writable again.
2573  */
2574 static inline void tcp_listendrop(const struct sock *sk)
2575 {
2576 	atomic_inc(&((struct sock *)sk)->sk_drops);
2577 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2578 }
2579 
2580 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2581 
2582 /*
2583  * Interface for adding Upper Level Protocols over TCP
2584  */
2585 
2586 #define TCP_ULP_NAME_MAX	16
2587 #define TCP_ULP_MAX		128
2588 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2589 
2590 struct tcp_ulp_ops {
2591 	struct list_head	list;
2592 
2593 	/* initialize ulp */
2594 	int (*init)(struct sock *sk);
2595 	/* update ulp */
2596 	void (*update)(struct sock *sk, struct proto *p,
2597 		       void (*write_space)(struct sock *sk));
2598 	/* cleanup ulp */
2599 	void (*release)(struct sock *sk);
2600 	/* diagnostic */
2601 	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2602 	size_t (*get_info_size)(const struct sock *sk);
2603 	/* clone ulp */
2604 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2605 		      const gfp_t priority);
2606 
2607 	char		name[TCP_ULP_NAME_MAX];
2608 	struct module	*owner;
2609 };
2610 int tcp_register_ulp(struct tcp_ulp_ops *type);
2611 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2612 int tcp_set_ulp(struct sock *sk, const char *name);
2613 void tcp_get_available_ulp(char *buf, size_t len);
2614 void tcp_cleanup_ulp(struct sock *sk);
2615 void tcp_update_ulp(struct sock *sk, struct proto *p,
2616 		    void (*write_space)(struct sock *sk));
2617 
2618 #define MODULE_ALIAS_TCP_ULP(name)				\
2619 	__MODULE_INFO(alias, alias_userspace, name);		\
2620 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2621 
2622 #ifdef CONFIG_NET_SOCK_MSG
2623 struct sk_msg;
2624 struct sk_psock;
2625 
2626 #ifdef CONFIG_BPF_SYSCALL
2627 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2628 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2629 #ifdef CONFIG_BPF_STREAM_PARSER
2630 struct strparser;
2631 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2632 			   sk_read_actor_t recv_actor);
2633 #endif /* CONFIG_BPF_STREAM_PARSER */
2634 #endif /* CONFIG_BPF_SYSCALL */
2635 
2636 #ifdef CONFIG_INET
2637 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2638 #else
2639 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2640 {
2641 }
2642 #endif
2643 
2644 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2645 			  struct sk_msg *msg, u32 bytes, int flags);
2646 #endif /* CONFIG_NET_SOCK_MSG */
2647 
2648 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2649 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2650 {
2651 }
2652 #endif
2653 
2654 #ifdef CONFIG_CGROUP_BPF
2655 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2656 				      struct sk_buff *skb,
2657 				      unsigned int end_offset)
2658 {
2659 	skops->skb = skb;
2660 	skops->skb_data_end = skb->data + end_offset;
2661 }
2662 #else
2663 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2664 				      struct sk_buff *skb,
2665 				      unsigned int end_offset)
2666 {
2667 }
2668 #endif
2669 
2670 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2671  * is < 0, then the BPF op failed (for example if the loaded BPF
2672  * program does not support the chosen operation or there is no BPF
2673  * program loaded).
2674  */
2675 #ifdef CONFIG_BPF
2676 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2677 {
2678 	struct bpf_sock_ops_kern sock_ops;
2679 	int ret;
2680 
2681 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2682 	if (sk_fullsock(sk)) {
2683 		sock_ops.is_fullsock = 1;
2684 		sock_ops.is_locked_tcp_sock = 1;
2685 		sock_owned_by_me(sk);
2686 	}
2687 
2688 	sock_ops.sk = sk;
2689 	sock_ops.op = op;
2690 	if (nargs > 0)
2691 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2692 
2693 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2694 	if (ret == 0)
2695 		ret = sock_ops.reply;
2696 	else
2697 		ret = -1;
2698 	return ret;
2699 }
2700 
2701 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2702 {
2703 	u32 args[2] = {arg1, arg2};
2704 
2705 	return tcp_call_bpf(sk, op, 2, args);
2706 }
2707 
2708 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2709 				    u32 arg3)
2710 {
2711 	u32 args[3] = {arg1, arg2, arg3};
2712 
2713 	return tcp_call_bpf(sk, op, 3, args);
2714 }
2715 
2716 #else
2717 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2718 {
2719 	return -EPERM;
2720 }
2721 
2722 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2723 {
2724 	return -EPERM;
2725 }
2726 
2727 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2728 				    u32 arg3)
2729 {
2730 	return -EPERM;
2731 }
2732 
2733 #endif
2734 
2735 static inline u32 tcp_timeout_init(struct sock *sk)
2736 {
2737 	int timeout;
2738 
2739 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2740 
2741 	if (timeout <= 0)
2742 		timeout = TCP_TIMEOUT_INIT;
2743 	return min_t(int, timeout, TCP_RTO_MAX);
2744 }
2745 
2746 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2747 {
2748 	int rwnd;
2749 
2750 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2751 
2752 	if (rwnd < 0)
2753 		rwnd = 0;
2754 	return rwnd;
2755 }
2756 
2757 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2758 {
2759 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2760 }
2761 
2762 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2763 {
2764 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2765 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2766 }
2767 
2768 #if IS_ENABLED(CONFIG_SMC)
2769 extern struct static_key_false tcp_have_smc;
2770 #endif
2771 
2772 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2773 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2774 			     void (*cad)(struct sock *sk, u32 ack_seq));
2775 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2776 void clean_acked_data_flush(void);
2777 #endif
2778 
2779 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2780 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2781 				    const struct tcp_sock *tp)
2782 {
2783 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2784 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2785 }
2786 
2787 /* Compute Earliest Departure Time for some control packets
2788  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2789  */
2790 static inline u64 tcp_transmit_time(const struct sock *sk)
2791 {
2792 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2793 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2794 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2795 
2796 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2797 	}
2798 	return 0;
2799 }
2800 
2801 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2802 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2803 {
2804 	const u8 *md5_tmp, *ao_tmp;
2805 	int ret;
2806 
2807 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2808 	if (ret)
2809 		return ret;
2810 
2811 	if (md5_hash)
2812 		*md5_hash = md5_tmp;
2813 
2814 	if (aoh) {
2815 		if (!ao_tmp)
2816 			*aoh = NULL;
2817 		else
2818 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2819 	}
2820 
2821 	return 0;
2822 }
2823 
2824 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2825 				   int family, int l3index, bool stat_inc)
2826 {
2827 #ifdef CONFIG_TCP_AO
2828 	struct tcp_ao_info *ao_info;
2829 	struct tcp_ao_key *ao_key;
2830 
2831 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2832 		return false;
2833 
2834 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2835 					lockdep_sock_is_held(sk));
2836 	if (!ao_info)
2837 		return false;
2838 
2839 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2840 	if (ao_info->ao_required || ao_key) {
2841 		if (stat_inc) {
2842 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2843 			atomic64_inc(&ao_info->counters.ao_required);
2844 		}
2845 		return true;
2846 	}
2847 #endif
2848 	return false;
2849 }
2850 
2851 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2852 		const struct request_sock *req, const struct sk_buff *skb,
2853 		const void *saddr, const void *daddr,
2854 		int family, int dif, int sdif);
2855 
2856 #endif	/* _TCP_H */
2857