1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* Default sending frequency of accurate ECN option per RTT */ 104 #define TCP_ACCECN_OPTION_BEACON 3 105 106 /* urg_data states */ 107 #define TCP_URG_VALID 0x0100 108 #define TCP_URG_NOTYET 0x0200 109 #define TCP_URG_READ 0x0400 110 111 #define TCP_RETR1 3 /* 112 * This is how many retries it does before it 113 * tries to figure out if the gateway is 114 * down. Minimal RFC value is 3; it corresponds 115 * to ~3sec-8min depending on RTO. 116 */ 117 118 #define TCP_RETR2 15 /* 119 * This should take at least 120 * 90 minutes to time out. 121 * RFC1122 says that the limit is 100 sec. 122 * 15 is ~13-30min depending on RTO. 123 */ 124 125 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 126 * when active opening a connection. 127 * RFC1122 says the minimum retry MUST 128 * be at least 180secs. Nevertheless 129 * this value is corresponding to 130 * 63secs of retransmission with the 131 * current initial RTO. 132 */ 133 134 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 135 * when passive opening a connection. 136 * This is corresponding to 31secs of 137 * retransmission with the current 138 * initial RTO. 139 */ 140 141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 142 * state, about 60 seconds */ 143 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 144 /* BSD style FIN_WAIT2 deadlock breaker. 145 * It used to be 3min, new value is 60sec, 146 * to combine FIN-WAIT-2 timeout with 147 * TIME-WAIT timer. 148 */ 149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 150 151 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 153 154 #if HZ >= 100 155 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 156 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 157 #else 158 #define TCP_DELACK_MIN 4U 159 #define TCP_ATO_MIN 4U 160 #endif 161 #define TCP_RTO_MAX_SEC 120 162 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 163 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 164 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 165 166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 167 168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 170 * used as a fallback RTO for the 171 * initial data transmission if no 172 * valid RTT sample has been acquired, 173 * most likely due to retrans in 3WHS. 174 */ 175 176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 177 * for local resources. 178 */ 179 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 180 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 181 #define TCP_KEEPALIVE_INTVL (75*HZ) 182 183 #define MAX_TCP_KEEPIDLE 32767 184 #define MAX_TCP_KEEPINTVL 32767 185 #define MAX_TCP_KEEPCNT 127 186 #define MAX_TCP_SYNCNT 127 187 188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 189 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 190 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 191 */ 192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 193 194 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 195 * after this time. It should be equal 196 * (or greater than) TCP_TIMEWAIT_LEN 197 * to provide reliability equal to one 198 * provided by timewait state. 199 */ 200 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 201 * timestamps. It must be less than 202 * minimal timewait lifetime. 203 */ 204 /* 205 * TCP option 206 */ 207 208 #define TCPOPT_NOP 1 /* Padding */ 209 #define TCPOPT_EOL 0 /* End of options */ 210 #define TCPOPT_MSS 2 /* Segment size negotiating */ 211 #define TCPOPT_WINDOW 3 /* Window scaling */ 212 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 213 #define TCPOPT_SACK 5 /* SACK Block */ 214 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 215 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 216 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 217 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 218 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 219 #define TCPOPT_ACCECN0 172 /* 0xAC: Accurate ECN Order 0 */ 220 #define TCPOPT_ACCECN1 174 /* 0xAE: Accurate ECN Order 1 */ 221 #define TCPOPT_EXP 254 /* Experimental */ 222 /* Magic number to be after the option value for sharing TCP 223 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 224 */ 225 #define TCPOPT_FASTOPEN_MAGIC 0xF989 226 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 227 228 /* 229 * TCP option lengths 230 */ 231 232 #define TCPOLEN_MSS 4 233 #define TCPOLEN_WINDOW 3 234 #define TCPOLEN_SACK_PERM 2 235 #define TCPOLEN_TIMESTAMP 10 236 #define TCPOLEN_MD5SIG 18 237 #define TCPOLEN_FASTOPEN_BASE 2 238 #define TCPOLEN_ACCECN_BASE 2 239 #define TCPOLEN_EXP_FASTOPEN_BASE 4 240 #define TCPOLEN_EXP_SMC_BASE 6 241 242 /* But this is what stacks really send out. */ 243 #define TCPOLEN_TSTAMP_ALIGNED 12 244 #define TCPOLEN_WSCALE_ALIGNED 4 245 #define TCPOLEN_SACKPERM_ALIGNED 4 246 #define TCPOLEN_SACK_BASE 2 247 #define TCPOLEN_SACK_BASE_ALIGNED 4 248 #define TCPOLEN_SACK_PERBLOCK 8 249 #define TCPOLEN_MD5SIG_ALIGNED 20 250 #define TCPOLEN_MSS_ALIGNED 4 251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 252 #define TCPOLEN_ACCECN_PERFIELD 3 253 254 /* Maximum number of byte counters in AccECN option + size */ 255 #define TCP_ACCECN_NUMFIELDS 3 256 #define TCP_ACCECN_MAXSIZE (TCPOLEN_ACCECN_BASE + \ 257 TCPOLEN_ACCECN_PERFIELD * \ 258 TCP_ACCECN_NUMFIELDS) 259 #define TCP_ACCECN_SAFETY_SHIFT 1 /* SAFETY_FACTOR in accecn draft */ 260 261 /* Flags in tp->nonagle */ 262 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 263 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 264 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 265 266 /* TCP thin-stream limits */ 267 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 268 269 /* TCP initial congestion window as per rfc6928 */ 270 #define TCP_INIT_CWND 10 271 272 /* Bit Flags for sysctl_tcp_fastopen */ 273 #define TFO_CLIENT_ENABLE 1 274 #define TFO_SERVER_ENABLE 2 275 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 276 277 /* Accept SYN data w/o any cookie option */ 278 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 279 280 /* Force enable TFO on all listeners, i.e., not requiring the 281 * TCP_FASTOPEN socket option. 282 */ 283 #define TFO_SERVER_WO_SOCKOPT1 0x400 284 285 286 /* sysctl variables for tcp */ 287 extern int sysctl_tcp_max_orphans; 288 extern long sysctl_tcp_mem[3]; 289 290 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 291 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 292 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 293 294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 295 296 extern struct percpu_counter tcp_sockets_allocated; 297 extern unsigned long tcp_memory_pressure; 298 299 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 300 static inline bool tcp_under_memory_pressure(const struct sock *sk) 301 { 302 if (mem_cgroup_sk_enabled(sk) && 303 mem_cgroup_sk_under_memory_pressure(sk)) 304 return true; 305 306 return READ_ONCE(tcp_memory_pressure); 307 } 308 /* 309 * The next routines deal with comparing 32 bit unsigned ints 310 * and worry about wraparound (automatic with unsigned arithmetic). 311 */ 312 313 static inline bool before(__u32 seq1, __u32 seq2) 314 { 315 return (__s32)(seq1-seq2) < 0; 316 } 317 #define after(seq2, seq1) before(seq1, seq2) 318 319 /* is s2<=s1<=s3 ? */ 320 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 321 { 322 return seq3 - seq2 >= seq1 - seq2; 323 } 324 325 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 326 { 327 sk_wmem_queued_add(sk, -skb->truesize); 328 if (!skb_zcopy_pure(skb)) 329 sk_mem_uncharge(sk, skb->truesize); 330 else 331 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 332 __kfree_skb(skb); 333 } 334 335 void sk_forced_mem_schedule(struct sock *sk, int size); 336 337 bool tcp_check_oom(const struct sock *sk, int shift); 338 339 340 extern struct proto tcp_prot; 341 342 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 343 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 344 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 345 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 346 347 void tcp_tsq_work_init(void); 348 349 int tcp_v4_err(struct sk_buff *skb, u32); 350 351 void tcp_shutdown(struct sock *sk, int how); 352 353 int tcp_v4_early_demux(struct sk_buff *skb); 354 int tcp_v4_rcv(struct sk_buff *skb); 355 356 void tcp_remove_empty_skb(struct sock *sk); 357 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 358 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 359 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 360 size_t size, struct ubuf_info *uarg); 361 void tcp_splice_eof(struct socket *sock); 362 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 363 int tcp_wmem_schedule(struct sock *sk, int copy); 364 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 365 int size_goal); 366 void tcp_release_cb(struct sock *sk); 367 void tcp_wfree(struct sk_buff *skb); 368 void tcp_write_timer_handler(struct sock *sk); 369 void tcp_delack_timer_handler(struct sock *sk); 370 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 371 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 373 void tcp_rcv_space_adjust(struct sock *sk); 374 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 375 void tcp_twsk_destructor(struct sock *sk); 376 void tcp_twsk_purge(struct list_head *net_exit_list); 377 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 378 struct pipe_inode_info *pipe, size_t len, 379 unsigned int flags); 380 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 381 bool force_schedule); 382 383 static inline void tcp_dec_quickack_mode(struct sock *sk) 384 { 385 struct inet_connection_sock *icsk = inet_csk(sk); 386 387 if (icsk->icsk_ack.quick) { 388 /* How many ACKs S/ACKing new data have we sent? */ 389 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 390 391 if (pkts >= icsk->icsk_ack.quick) { 392 icsk->icsk_ack.quick = 0; 393 /* Leaving quickack mode we deflate ATO. */ 394 icsk->icsk_ack.ato = TCP_ATO_MIN; 395 } else 396 icsk->icsk_ack.quick -= pkts; 397 } 398 } 399 400 #define TCP_ECN_MODE_RFC3168 BIT(0) 401 #define TCP_ECN_QUEUE_CWR BIT(1) 402 #define TCP_ECN_DEMAND_CWR BIT(2) 403 #define TCP_ECN_SEEN BIT(3) 404 #define TCP_ECN_MODE_ACCECN BIT(4) 405 406 #define TCP_ECN_DISABLED 0 407 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 408 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 409 410 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 411 { 412 return tp->ecn_flags & TCP_ECN_MODE_ANY; 413 } 414 415 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 416 { 417 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 418 } 419 420 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 421 { 422 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 423 } 424 425 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 426 { 427 return !tcp_ecn_mode_any(tp); 428 } 429 430 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 431 { 432 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 433 } 434 435 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 436 { 437 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 438 tp->ecn_flags |= mode; 439 } 440 441 enum tcp_tw_status { 442 TCP_TW_SUCCESS = 0, 443 TCP_TW_RST = 1, 444 TCP_TW_ACK = 2, 445 TCP_TW_SYN = 3, 446 TCP_TW_ACK_OOW = 4 447 }; 448 449 450 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 451 struct sk_buff *skb, 452 const struct tcphdr *th, 453 u32 *tw_isn, 454 enum skb_drop_reason *drop_reason); 455 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 456 struct request_sock *req, bool fastopen, 457 bool *lost_race, enum skb_drop_reason *drop_reason); 458 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 459 struct sk_buff *skb); 460 void tcp_enter_loss(struct sock *sk); 461 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 462 void tcp_clear_retrans(struct tcp_sock *tp); 463 void tcp_update_metrics(struct sock *sk); 464 void tcp_init_metrics(struct sock *sk); 465 void tcp_metrics_init(void); 466 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 467 void __tcp_close(struct sock *sk, long timeout); 468 void tcp_close(struct sock *sk, long timeout); 469 void tcp_init_sock(struct sock *sk); 470 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 471 __poll_t tcp_poll(struct file *file, struct socket *sock, 472 struct poll_table_struct *wait); 473 int do_tcp_getsockopt(struct sock *sk, int level, 474 int optname, sockptr_t optval, sockptr_t optlen); 475 int tcp_getsockopt(struct sock *sk, int level, int optname, 476 char __user *optval, int __user *optlen); 477 bool tcp_bpf_bypass_getsockopt(int level, int optname); 478 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 479 sockptr_t optval, unsigned int optlen); 480 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 481 unsigned int optlen); 482 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 483 void tcp_set_keepalive(struct sock *sk, int val); 484 void tcp_syn_ack_timeout(const struct request_sock *req); 485 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 486 int flags, int *addr_len); 487 int tcp_set_rcvlowat(struct sock *sk, int val); 488 int tcp_set_window_clamp(struct sock *sk, int val); 489 void tcp_update_recv_tstamps(struct sk_buff *skb, 490 struct scm_timestamping_internal *tss); 491 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 492 struct scm_timestamping_internal *tss); 493 void tcp_data_ready(struct sock *sk); 494 #ifdef CONFIG_MMU 495 int tcp_mmap(struct file *file, struct socket *sock, 496 struct vm_area_struct *vma); 497 #endif 498 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 499 struct tcp_options_received *opt_rx, 500 int estab, struct tcp_fastopen_cookie *foc); 501 502 /* 503 * BPF SKB-less helpers 504 */ 505 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 506 struct tcphdr *th, u32 *cookie); 507 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 508 struct tcphdr *th, u32 *cookie); 509 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 510 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 511 const struct tcp_request_sock_ops *af_ops, 512 struct sock *sk, struct tcphdr *th); 513 /* 514 * TCP v4 functions exported for the inet6 API 515 */ 516 517 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 518 void tcp_v4_mtu_reduced(struct sock *sk); 519 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 520 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 521 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 522 struct sock *tcp_create_openreq_child(const struct sock *sk, 523 struct request_sock *req, 524 struct sk_buff *skb); 525 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 526 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 527 struct request_sock *req, 528 struct dst_entry *dst, 529 struct request_sock *req_unhash, 530 bool *own_req); 531 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 532 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 533 int tcp_connect(struct sock *sk); 534 enum tcp_synack_type { 535 TCP_SYNACK_NORMAL, 536 TCP_SYNACK_FASTOPEN, 537 TCP_SYNACK_COOKIE, 538 }; 539 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 540 struct request_sock *req, 541 struct tcp_fastopen_cookie *foc, 542 enum tcp_synack_type synack_type, 543 struct sk_buff *syn_skb); 544 int tcp_disconnect(struct sock *sk, int flags); 545 546 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 547 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 548 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 549 550 /* From syncookies.c */ 551 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 552 struct request_sock *req, 553 struct dst_entry *dst); 554 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 555 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 556 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 557 struct sock *sk, struct sk_buff *skb, 558 struct tcp_options_received *tcp_opt, 559 int mss, u32 tsoff); 560 561 #if IS_ENABLED(CONFIG_BPF) 562 struct bpf_tcp_req_attrs { 563 u32 rcv_tsval; 564 u32 rcv_tsecr; 565 u16 mss; 566 u8 rcv_wscale; 567 u8 snd_wscale; 568 u8 ecn_ok; 569 u8 wscale_ok; 570 u8 sack_ok; 571 u8 tstamp_ok; 572 u8 usec_ts_ok; 573 u8 reserved[3]; 574 }; 575 #endif 576 577 #ifdef CONFIG_SYN_COOKIES 578 579 /* Syncookies use a monotonic timer which increments every 60 seconds. 580 * This counter is used both as a hash input and partially encoded into 581 * the cookie value. A cookie is only validated further if the delta 582 * between the current counter value and the encoded one is less than this, 583 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 584 * the counter advances immediately after a cookie is generated). 585 */ 586 #define MAX_SYNCOOKIE_AGE 2 587 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 588 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 589 590 /* syncookies: remember time of last synqueue overflow 591 * But do not dirty this field too often (once per second is enough) 592 * It is racy as we do not hold a lock, but race is very minor. 593 */ 594 static inline void tcp_synq_overflow(const struct sock *sk) 595 { 596 unsigned int last_overflow; 597 unsigned int now = jiffies; 598 599 if (sk->sk_reuseport) { 600 struct sock_reuseport *reuse; 601 602 reuse = rcu_dereference(sk->sk_reuseport_cb); 603 if (likely(reuse)) { 604 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 605 if (!time_between32(now, last_overflow, 606 last_overflow + HZ)) 607 WRITE_ONCE(reuse->synq_overflow_ts, now); 608 return; 609 } 610 } 611 612 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 613 if (!time_between32(now, last_overflow, last_overflow + HZ)) 614 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 615 } 616 617 /* syncookies: no recent synqueue overflow on this listening socket? */ 618 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 619 { 620 unsigned int last_overflow; 621 unsigned int now = jiffies; 622 623 if (sk->sk_reuseport) { 624 struct sock_reuseport *reuse; 625 626 reuse = rcu_dereference(sk->sk_reuseport_cb); 627 if (likely(reuse)) { 628 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 629 return !time_between32(now, last_overflow - HZ, 630 last_overflow + 631 TCP_SYNCOOKIE_VALID); 632 } 633 } 634 635 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 636 637 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 638 * then we're under synflood. However, we have to use 639 * 'last_overflow - HZ' as lower bound. That's because a concurrent 640 * tcp_synq_overflow() could update .ts_recent_stamp after we read 641 * jiffies but before we store .ts_recent_stamp into last_overflow, 642 * which could lead to rejecting a valid syncookie. 643 */ 644 return !time_between32(now, last_overflow - HZ, 645 last_overflow + TCP_SYNCOOKIE_VALID); 646 } 647 648 static inline u32 tcp_cookie_time(void) 649 { 650 u64 val = get_jiffies_64(); 651 652 do_div(val, TCP_SYNCOOKIE_PERIOD); 653 return val; 654 } 655 656 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 657 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 658 { 659 if (usec_ts) 660 return div_u64(val, NSEC_PER_USEC); 661 662 return div_u64(val, NSEC_PER_MSEC); 663 } 664 665 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 666 u16 *mssp); 667 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 668 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 669 bool cookie_timestamp_decode(const struct net *net, 670 struct tcp_options_received *opt); 671 672 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 673 { 674 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 675 dst_feature(dst, RTAX_FEATURE_ECN); 676 } 677 678 #if IS_ENABLED(CONFIG_BPF) 679 static inline bool cookie_bpf_ok(struct sk_buff *skb) 680 { 681 return skb->sk; 682 } 683 684 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 685 #else 686 static inline bool cookie_bpf_ok(struct sk_buff *skb) 687 { 688 return false; 689 } 690 691 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 692 struct sk_buff *skb) 693 { 694 return NULL; 695 } 696 #endif 697 698 /* From net/ipv6/syncookies.c */ 699 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 700 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 701 702 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 703 const struct tcphdr *th, u16 *mssp); 704 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 705 #endif 706 /* tcp_output.c */ 707 708 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 709 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 710 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 711 int nonagle); 712 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 713 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 714 void tcp_retransmit_timer(struct sock *sk); 715 void tcp_xmit_retransmit_queue(struct sock *); 716 void tcp_simple_retransmit(struct sock *); 717 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 718 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 719 enum tcp_queue { 720 TCP_FRAG_IN_WRITE_QUEUE, 721 TCP_FRAG_IN_RTX_QUEUE, 722 }; 723 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 724 struct sk_buff *skb, u32 len, 725 unsigned int mss_now, gfp_t gfp); 726 727 void tcp_send_probe0(struct sock *); 728 int tcp_write_wakeup(struct sock *, int mib); 729 void tcp_send_fin(struct sock *sk); 730 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 731 enum sk_rst_reason reason); 732 int tcp_send_synack(struct sock *); 733 void tcp_push_one(struct sock *, unsigned int mss_now); 734 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 735 void tcp_send_ack(struct sock *sk); 736 void tcp_send_delayed_ack(struct sock *sk); 737 void tcp_send_loss_probe(struct sock *sk); 738 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 739 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 740 const struct sk_buff *next_skb); 741 742 /* tcp_input.c */ 743 void tcp_rearm_rto(struct sock *sk); 744 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 745 void tcp_done_with_error(struct sock *sk, int err); 746 void tcp_reset(struct sock *sk, struct sk_buff *skb); 747 void tcp_fin(struct sock *sk); 748 void tcp_check_space(struct sock *sk); 749 void tcp_sack_compress_send_ack(struct sock *sk); 750 751 static inline void tcp_cleanup_skb(struct sk_buff *skb) 752 { 753 skb_dst_drop(skb); 754 secpath_reset(skb); 755 } 756 757 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 758 { 759 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 760 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 761 __skb_queue_tail(&sk->sk_receive_queue, skb); 762 } 763 764 /* tcp_timer.c */ 765 void tcp_init_xmit_timers(struct sock *); 766 static inline void tcp_clear_xmit_timers(struct sock *sk) 767 { 768 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 769 __sock_put(sk); 770 771 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 772 __sock_put(sk); 773 774 inet_csk_clear_xmit_timers(sk); 775 } 776 777 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 778 unsigned int tcp_current_mss(struct sock *sk); 779 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 780 781 /* Bound MSS / TSO packet size with the half of the window */ 782 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 783 { 784 int cutoff; 785 786 /* When peer uses tiny windows, there is no use in packetizing 787 * to sub-MSS pieces for the sake of SWS or making sure there 788 * are enough packets in the pipe for fast recovery. 789 * 790 * On the other hand, for extremely large MSS devices, handling 791 * smaller than MSS windows in this way does make sense. 792 */ 793 if (tp->max_window > TCP_MSS_DEFAULT) 794 cutoff = (tp->max_window >> 1); 795 else 796 cutoff = tp->max_window; 797 798 if (cutoff && pktsize > cutoff) 799 return max_t(int, cutoff, 68U - tp->tcp_header_len); 800 else 801 return pktsize; 802 } 803 804 /* tcp.c */ 805 void tcp_get_info(struct sock *, struct tcp_info *); 806 807 /* Read 'sendfile()'-style from a TCP socket */ 808 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 809 sk_read_actor_t recv_actor); 810 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 811 sk_read_actor_t recv_actor, bool noack, 812 u32 *copied_seq); 813 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 814 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 815 void tcp_read_done(struct sock *sk, size_t len); 816 817 void tcp_initialize_rcv_mss(struct sock *sk); 818 819 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 820 int tcp_mss_to_mtu(struct sock *sk, int mss); 821 void tcp_mtup_init(struct sock *sk); 822 823 static inline unsigned int tcp_rto_max(const struct sock *sk) 824 { 825 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 826 } 827 828 static inline void tcp_bound_rto(struct sock *sk) 829 { 830 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 831 } 832 833 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 834 { 835 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 836 } 837 838 u32 tcp_delack_max(const struct sock *sk); 839 840 /* Compute the actual rto_min value */ 841 static inline u32 tcp_rto_min(const struct sock *sk) 842 { 843 const struct dst_entry *dst = __sk_dst_get(sk); 844 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 845 846 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 847 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 848 return rto_min; 849 } 850 851 static inline u32 tcp_rto_min_us(const struct sock *sk) 852 { 853 return jiffies_to_usecs(tcp_rto_min(sk)); 854 } 855 856 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 857 { 858 return dst_metric_locked(dst, RTAX_CC_ALGO); 859 } 860 861 /* Minimum RTT in usec. ~0 means not available. */ 862 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 863 { 864 return minmax_get(&tp->rtt_min); 865 } 866 867 /* Compute the actual receive window we are currently advertising. 868 * Rcv_nxt can be after the window if our peer push more data 869 * than the offered window. 870 */ 871 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 872 { 873 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 874 875 if (win < 0) 876 win = 0; 877 return (u32) win; 878 } 879 880 /* Choose a new window, without checks for shrinking, and without 881 * scaling applied to the result. The caller does these things 882 * if necessary. This is a "raw" window selection. 883 */ 884 u32 __tcp_select_window(struct sock *sk); 885 886 void tcp_send_window_probe(struct sock *sk); 887 888 /* TCP uses 32bit jiffies to save some space. 889 * Note that this is different from tcp_time_stamp, which 890 * historically has been the same until linux-4.13. 891 */ 892 #define tcp_jiffies32 ((u32)jiffies) 893 894 /* 895 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 896 * It is no longer tied to jiffies, but to 1 ms clock. 897 * Note: double check if you want to use tcp_jiffies32 instead of this. 898 */ 899 #define TCP_TS_HZ 1000 900 901 static inline u64 tcp_clock_ns(void) 902 { 903 return ktime_get_ns(); 904 } 905 906 static inline u64 tcp_clock_us(void) 907 { 908 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 909 } 910 911 static inline u64 tcp_clock_ms(void) 912 { 913 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 914 } 915 916 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 917 * or usec resolution. Each socket carries a flag to select one or other 918 * resolution, as the route attribute could change anytime. 919 * Each flow must stick to initial resolution. 920 */ 921 static inline u32 tcp_clock_ts(bool usec_ts) 922 { 923 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 924 } 925 926 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 927 { 928 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 929 } 930 931 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 932 { 933 if (tp->tcp_usec_ts) 934 return tp->tcp_mstamp; 935 return tcp_time_stamp_ms(tp); 936 } 937 938 void tcp_mstamp_refresh(struct tcp_sock *tp); 939 940 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 941 { 942 return max_t(s64, t1 - t0, 0); 943 } 944 945 /* provide the departure time in us unit */ 946 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 947 { 948 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 949 } 950 951 /* Provide skb TSval in usec or ms unit */ 952 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 953 { 954 if (usec_ts) 955 return tcp_skb_timestamp_us(skb); 956 957 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 958 } 959 960 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 961 { 962 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 963 } 964 965 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 966 { 967 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 968 } 969 970 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 971 972 #define TCPHDR_FIN BIT(0) 973 #define TCPHDR_SYN BIT(1) 974 #define TCPHDR_RST BIT(2) 975 #define TCPHDR_PSH BIT(3) 976 #define TCPHDR_ACK BIT(4) 977 #define TCPHDR_URG BIT(5) 978 #define TCPHDR_ECE BIT(6) 979 #define TCPHDR_CWR BIT(7) 980 #define TCPHDR_AE BIT(8) 981 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 982 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 983 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 984 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 985 TCPHDR_FLAGS_MASK) 986 987 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 988 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 989 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR) 990 991 #define TCP_ACCECN_CEP_ACE_MASK 0x7 992 #define TCP_ACCECN_ACE_MAX_DELTA 6 993 994 /* To avoid/detect middlebox interference, not all counters start at 0. 995 * See draft-ietf-tcpm-accurate-ecn for the latest values. 996 */ 997 #define TCP_ACCECN_CEP_INIT_OFFSET 5 998 #define TCP_ACCECN_E1B_INIT_OFFSET 1 999 #define TCP_ACCECN_E0B_INIT_OFFSET 1 1000 #define TCP_ACCECN_CEB_INIT_OFFSET 0 1001 1002 /* State flags for sacked in struct tcp_skb_cb */ 1003 enum tcp_skb_cb_sacked_flags { 1004 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1005 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1006 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1007 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1008 TCPCB_LOST), /* All tag bits */ 1009 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1010 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1011 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1012 TCPCB_REPAIRED), 1013 }; 1014 1015 /* This is what the send packet queuing engine uses to pass 1016 * TCP per-packet control information to the transmission code. 1017 * We also store the host-order sequence numbers in here too. 1018 * This is 44 bytes if IPV6 is enabled. 1019 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1020 */ 1021 struct tcp_skb_cb { 1022 __u32 seq; /* Starting sequence number */ 1023 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1024 union { 1025 /* Note : 1026 * tcp_gso_segs/size are used in write queue only, 1027 * cf tcp_skb_pcount()/tcp_skb_mss() 1028 */ 1029 struct { 1030 u16 tcp_gso_segs; 1031 u16 tcp_gso_size; 1032 }; 1033 }; 1034 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1035 1036 __u8 sacked; /* State flags for SACK. */ 1037 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1038 #define TSTAMP_ACK_SK 0x1 1039 #define TSTAMP_ACK_BPF 0x2 1040 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1041 eor:1, /* Is skb MSG_EOR marked? */ 1042 has_rxtstamp:1, /* SKB has a RX timestamp */ 1043 unused:4; 1044 __u32 ack_seq; /* Sequence number ACK'd */ 1045 union { 1046 struct { 1047 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1048 /* There is space for up to 24 bytes */ 1049 __u32 is_app_limited:1, /* cwnd not fully used? */ 1050 delivered_ce:20, 1051 unused:11; 1052 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1053 __u32 delivered; 1054 /* start of send pipeline phase */ 1055 u64 first_tx_mstamp; 1056 /* when we reached the "delivered" count */ 1057 u64 delivered_mstamp; 1058 } tx; /* only used for outgoing skbs */ 1059 union { 1060 struct inet_skb_parm h4; 1061 #if IS_ENABLED(CONFIG_IPV6) 1062 struct inet6_skb_parm h6; 1063 #endif 1064 } header; /* For incoming skbs */ 1065 }; 1066 }; 1067 1068 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1069 1070 extern const struct inet_connection_sock_af_ops ipv4_specific; 1071 1072 #if IS_ENABLED(CONFIG_IPV6) 1073 /* This is the variant of inet6_iif() that must be used by TCP, 1074 * as TCP moves IP6CB into a different location in skb->cb[] 1075 */ 1076 static inline int tcp_v6_iif(const struct sk_buff *skb) 1077 { 1078 return TCP_SKB_CB(skb)->header.h6.iif; 1079 } 1080 1081 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1082 { 1083 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1084 1085 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1086 } 1087 1088 /* TCP_SKB_CB reference means this can not be used from early demux */ 1089 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1090 { 1091 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1092 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1093 return TCP_SKB_CB(skb)->header.h6.iif; 1094 #endif 1095 return 0; 1096 } 1097 1098 extern const struct inet_connection_sock_af_ops ipv6_specific; 1099 1100 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1101 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1102 void tcp_v6_early_demux(struct sk_buff *skb); 1103 1104 #endif 1105 1106 /* TCP_SKB_CB reference means this can not be used from early demux */ 1107 static inline int tcp_v4_sdif(struct sk_buff *skb) 1108 { 1109 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1110 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1111 return TCP_SKB_CB(skb)->header.h4.iif; 1112 #endif 1113 return 0; 1114 } 1115 1116 /* Due to TSO, an SKB can be composed of multiple actual 1117 * packets. To keep these tracked properly, we use this. 1118 */ 1119 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1120 { 1121 return TCP_SKB_CB(skb)->tcp_gso_segs; 1122 } 1123 1124 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1125 { 1126 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1127 } 1128 1129 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1130 { 1131 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1132 } 1133 1134 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1135 static inline int tcp_skb_mss(const struct sk_buff *skb) 1136 { 1137 return TCP_SKB_CB(skb)->tcp_gso_size; 1138 } 1139 1140 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1141 { 1142 return likely(!TCP_SKB_CB(skb)->eor); 1143 } 1144 1145 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1146 const struct sk_buff *from) 1147 { 1148 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1149 return likely(tcp_skb_can_collapse_to(to) && 1150 mptcp_skb_can_collapse(to, from) && 1151 skb_pure_zcopy_same(to, from) && 1152 skb_frags_readable(to) == skb_frags_readable(from)); 1153 } 1154 1155 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1156 const struct sk_buff *from) 1157 { 1158 return likely(mptcp_skb_can_collapse(to, from) && 1159 !skb_cmp_decrypted(to, from)); 1160 } 1161 1162 /* Events passed to congestion control interface */ 1163 enum tcp_ca_event { 1164 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1165 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1166 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1167 CA_EVENT_LOSS, /* loss timeout */ 1168 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1169 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1170 }; 1171 1172 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1173 enum tcp_ca_ack_event_flags { 1174 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1175 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1176 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1177 }; 1178 1179 /* 1180 * Interface for adding new TCP congestion control handlers 1181 */ 1182 #define TCP_CA_NAME_MAX 16 1183 #define TCP_CA_MAX 128 1184 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1185 1186 #define TCP_CA_UNSPEC 0 1187 1188 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1189 #define TCP_CONG_NON_RESTRICTED BIT(0) 1190 /* Requires ECN/ECT set on all packets */ 1191 #define TCP_CONG_NEEDS_ECN BIT(1) 1192 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1193 1194 union tcp_cc_info; 1195 1196 struct ack_sample { 1197 u32 pkts_acked; 1198 s32 rtt_us; 1199 u32 in_flight; 1200 }; 1201 1202 /* A rate sample measures the number of (original/retransmitted) data 1203 * packets delivered "delivered" over an interval of time "interval_us". 1204 * The tcp_rate.c code fills in the rate sample, and congestion 1205 * control modules that define a cong_control function to run at the end 1206 * of ACK processing can optionally chose to consult this sample when 1207 * setting cwnd and pacing rate. 1208 * A sample is invalid if "delivered" or "interval_us" is negative. 1209 */ 1210 struct rate_sample { 1211 u64 prior_mstamp; /* starting timestamp for interval */ 1212 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1213 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1214 s32 delivered; /* number of packets delivered over interval */ 1215 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1216 long interval_us; /* time for tp->delivered to incr "delivered" */ 1217 u32 snd_interval_us; /* snd interval for delivered packets */ 1218 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1219 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1220 int losses; /* number of packets marked lost upon ACK */ 1221 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1222 u32 prior_in_flight; /* in flight before this ACK */ 1223 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1224 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1225 bool is_retrans; /* is sample from retransmission? */ 1226 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1227 }; 1228 1229 struct tcp_congestion_ops { 1230 /* fast path fields are put first to fill one cache line */ 1231 1232 /* return slow start threshold (required) */ 1233 u32 (*ssthresh)(struct sock *sk); 1234 1235 /* do new cwnd calculation (required) */ 1236 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1237 1238 /* call before changing ca_state (optional) */ 1239 void (*set_state)(struct sock *sk, u8 new_state); 1240 1241 /* call when cwnd event occurs (optional) */ 1242 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1243 1244 /* call when ack arrives (optional) */ 1245 void (*in_ack_event)(struct sock *sk, u32 flags); 1246 1247 /* hook for packet ack accounting (optional) */ 1248 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1249 1250 /* override sysctl_tcp_min_tso_segs */ 1251 u32 (*min_tso_segs)(struct sock *sk); 1252 1253 /* call when packets are delivered to update cwnd and pacing rate, 1254 * after all the ca_state processing. (optional) 1255 */ 1256 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1257 1258 1259 /* new value of cwnd after loss (required) */ 1260 u32 (*undo_cwnd)(struct sock *sk); 1261 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1262 u32 (*sndbuf_expand)(struct sock *sk); 1263 1264 /* control/slow paths put last */ 1265 /* get info for inet_diag (optional) */ 1266 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1267 union tcp_cc_info *info); 1268 1269 char name[TCP_CA_NAME_MAX]; 1270 struct module *owner; 1271 struct list_head list; 1272 u32 key; 1273 u32 flags; 1274 1275 /* initialize private data (optional) */ 1276 void (*init)(struct sock *sk); 1277 /* cleanup private data (optional) */ 1278 void (*release)(struct sock *sk); 1279 } ____cacheline_aligned_in_smp; 1280 1281 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1282 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1283 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1284 struct tcp_congestion_ops *old_type); 1285 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1286 1287 void tcp_assign_congestion_control(struct sock *sk); 1288 void tcp_init_congestion_control(struct sock *sk); 1289 void tcp_cleanup_congestion_control(struct sock *sk); 1290 int tcp_set_default_congestion_control(struct net *net, const char *name); 1291 void tcp_get_default_congestion_control(struct net *net, char *name); 1292 void tcp_get_available_congestion_control(char *buf, size_t len); 1293 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1294 int tcp_set_allowed_congestion_control(char *allowed); 1295 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1296 bool cap_net_admin); 1297 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1298 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1299 1300 u32 tcp_reno_ssthresh(struct sock *sk); 1301 u32 tcp_reno_undo_cwnd(struct sock *sk); 1302 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1303 extern struct tcp_congestion_ops tcp_reno; 1304 1305 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1306 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1307 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1308 #ifdef CONFIG_INET 1309 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1310 #else 1311 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1312 { 1313 return NULL; 1314 } 1315 #endif 1316 1317 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1318 { 1319 const struct inet_connection_sock *icsk = inet_csk(sk); 1320 1321 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1322 } 1323 1324 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1325 { 1326 const struct inet_connection_sock *icsk = inet_csk(sk); 1327 1328 if (icsk->icsk_ca_ops->cwnd_event) 1329 icsk->icsk_ca_ops->cwnd_event(sk, event); 1330 } 1331 1332 /* From tcp_cong.c */ 1333 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1334 1335 /* From tcp_rate.c */ 1336 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1337 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1338 struct rate_sample *rs); 1339 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1340 bool is_sack_reneg, struct rate_sample *rs); 1341 void tcp_rate_check_app_limited(struct sock *sk); 1342 1343 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1344 { 1345 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1346 } 1347 1348 /* These functions determine how the current flow behaves in respect of SACK 1349 * handling. SACK is negotiated with the peer, and therefore it can vary 1350 * between different flows. 1351 * 1352 * tcp_is_sack - SACK enabled 1353 * tcp_is_reno - No SACK 1354 */ 1355 static inline int tcp_is_sack(const struct tcp_sock *tp) 1356 { 1357 return likely(tp->rx_opt.sack_ok); 1358 } 1359 1360 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1361 { 1362 return !tcp_is_sack(tp); 1363 } 1364 1365 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1366 { 1367 return tp->sacked_out + tp->lost_out; 1368 } 1369 1370 /* This determines how many packets are "in the network" to the best 1371 * of our knowledge. In many cases it is conservative, but where 1372 * detailed information is available from the receiver (via SACK 1373 * blocks etc.) we can make more aggressive calculations. 1374 * 1375 * Use this for decisions involving congestion control, use just 1376 * tp->packets_out to determine if the send queue is empty or not. 1377 * 1378 * Read this equation as: 1379 * 1380 * "Packets sent once on transmission queue" MINUS 1381 * "Packets left network, but not honestly ACKed yet" PLUS 1382 * "Packets fast retransmitted" 1383 */ 1384 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1385 { 1386 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1387 } 1388 1389 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1390 1391 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1392 { 1393 return tp->snd_cwnd; 1394 } 1395 1396 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1397 { 1398 WARN_ON_ONCE((int)val <= 0); 1399 tp->snd_cwnd = val; 1400 } 1401 1402 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1403 { 1404 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1405 } 1406 1407 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1408 { 1409 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1410 } 1411 1412 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1413 { 1414 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1415 (1 << inet_csk(sk)->icsk_ca_state); 1416 } 1417 1418 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1419 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1420 * ssthresh. 1421 */ 1422 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1423 { 1424 const struct tcp_sock *tp = tcp_sk(sk); 1425 1426 if (tcp_in_cwnd_reduction(sk)) 1427 return tp->snd_ssthresh; 1428 else 1429 return max(tp->snd_ssthresh, 1430 ((tcp_snd_cwnd(tp) >> 1) + 1431 (tcp_snd_cwnd(tp) >> 2))); 1432 } 1433 1434 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1435 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1436 1437 void tcp_enter_cwr(struct sock *sk); 1438 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1439 1440 /* The maximum number of MSS of available cwnd for which TSO defers 1441 * sending if not using sysctl_tcp_tso_win_divisor. 1442 */ 1443 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1444 { 1445 return 3; 1446 } 1447 1448 /* Returns end sequence number of the receiver's advertised window */ 1449 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1450 { 1451 return tp->snd_una + tp->snd_wnd; 1452 } 1453 1454 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1455 * flexible approach. The RFC suggests cwnd should not be raised unless 1456 * it was fully used previously. And that's exactly what we do in 1457 * congestion avoidance mode. But in slow start we allow cwnd to grow 1458 * as long as the application has used half the cwnd. 1459 * Example : 1460 * cwnd is 10 (IW10), but application sends 9 frames. 1461 * We allow cwnd to reach 18 when all frames are ACKed. 1462 * This check is safe because it's as aggressive as slow start which already 1463 * risks 100% overshoot. The advantage is that we discourage application to 1464 * either send more filler packets or data to artificially blow up the cwnd 1465 * usage, and allow application-limited process to probe bw more aggressively. 1466 */ 1467 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1468 { 1469 const struct tcp_sock *tp = tcp_sk(sk); 1470 1471 if (tp->is_cwnd_limited) 1472 return true; 1473 1474 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1475 if (tcp_in_slow_start(tp)) 1476 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1477 1478 return false; 1479 } 1480 1481 /* BBR congestion control needs pacing. 1482 * Same remark for SO_MAX_PACING_RATE. 1483 * sch_fq packet scheduler is efficiently handling pacing, 1484 * but is not always installed/used. 1485 * Return true if TCP stack should pace packets itself. 1486 */ 1487 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1488 { 1489 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1490 } 1491 1492 /* Estimates in how many jiffies next packet for this flow can be sent. 1493 * Scheduling a retransmit timer too early would be silly. 1494 */ 1495 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1496 { 1497 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1498 1499 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1500 } 1501 1502 static inline void tcp_reset_xmit_timer(struct sock *sk, 1503 const int what, 1504 unsigned long when, 1505 bool pace_delay) 1506 { 1507 if (pace_delay) 1508 when += tcp_pacing_delay(sk); 1509 inet_csk_reset_xmit_timer(sk, what, when, 1510 tcp_rto_max(sk)); 1511 } 1512 1513 /* Something is really bad, we could not queue an additional packet, 1514 * because qdisc is full or receiver sent a 0 window, or we are paced. 1515 * We do not want to add fuel to the fire, or abort too early, 1516 * so make sure the timer we arm now is at least 200ms in the future, 1517 * regardless of current icsk_rto value (as it could be ~2ms) 1518 */ 1519 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1520 { 1521 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1522 } 1523 1524 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1525 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1526 unsigned long max_when) 1527 { 1528 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1529 inet_csk(sk)->icsk_backoff); 1530 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1531 1532 return (unsigned long)min_t(u64, when, max_when); 1533 } 1534 1535 static inline void tcp_check_probe_timer(struct sock *sk) 1536 { 1537 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1538 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1539 tcp_probe0_base(sk), true); 1540 } 1541 1542 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1543 { 1544 tp->snd_wl1 = seq; 1545 } 1546 1547 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1548 { 1549 tp->snd_wl1 = seq; 1550 } 1551 1552 /* 1553 * Calculate(/check) TCP checksum 1554 */ 1555 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1556 __be32 daddr, __wsum base) 1557 { 1558 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1559 } 1560 1561 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1562 { 1563 return !skb_csum_unnecessary(skb) && 1564 __skb_checksum_complete(skb); 1565 } 1566 1567 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1568 enum skb_drop_reason *reason); 1569 1570 1571 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1572 void tcp_set_state(struct sock *sk, int state); 1573 void tcp_done(struct sock *sk); 1574 int tcp_abort(struct sock *sk, int err); 1575 1576 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1577 { 1578 rx_opt->dsack = 0; 1579 rx_opt->num_sacks = 0; 1580 } 1581 1582 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1583 1584 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1585 { 1586 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1587 struct tcp_sock *tp = tcp_sk(sk); 1588 s32 delta; 1589 1590 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1591 tp->packets_out || ca_ops->cong_control) 1592 return; 1593 delta = tcp_jiffies32 - tp->lsndtime; 1594 if (delta > inet_csk(sk)->icsk_rto) 1595 tcp_cwnd_restart(sk, delta); 1596 } 1597 1598 /* Determine a window scaling and initial window to offer. */ 1599 void tcp_select_initial_window(const struct sock *sk, int __space, 1600 __u32 mss, __u32 *rcv_wnd, 1601 __u32 *window_clamp, int wscale_ok, 1602 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1603 1604 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1605 { 1606 s64 scaled_space = (s64)space * scaling_ratio; 1607 1608 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1609 } 1610 1611 static inline int tcp_win_from_space(const struct sock *sk, int space) 1612 { 1613 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1614 } 1615 1616 /* inverse of __tcp_win_from_space() */ 1617 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1618 { 1619 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1620 1621 do_div(val, scaling_ratio); 1622 return val; 1623 } 1624 1625 static inline int tcp_space_from_win(const struct sock *sk, int win) 1626 { 1627 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1628 } 1629 1630 /* Assume a 50% default for skb->len/skb->truesize ratio. 1631 * This may be adjusted later in tcp_measure_rcv_mss(). 1632 */ 1633 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1634 1635 static inline void tcp_scaling_ratio_init(struct sock *sk) 1636 { 1637 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1638 } 1639 1640 /* Note: caller must be prepared to deal with negative returns */ 1641 static inline int tcp_space(const struct sock *sk) 1642 { 1643 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1644 READ_ONCE(sk->sk_backlog.len) - 1645 atomic_read(&sk->sk_rmem_alloc)); 1646 } 1647 1648 static inline int tcp_full_space(const struct sock *sk) 1649 { 1650 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1651 } 1652 1653 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1654 { 1655 int unused_mem = sk_unused_reserved_mem(sk); 1656 struct tcp_sock *tp = tcp_sk(sk); 1657 1658 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1659 if (unused_mem) 1660 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1661 tcp_win_from_space(sk, unused_mem)); 1662 } 1663 1664 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1665 { 1666 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1667 } 1668 1669 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1670 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1671 1672 1673 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1674 * If 87.5 % (7/8) of the space has been consumed, we want to override 1675 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1676 * len/truesize ratio. 1677 */ 1678 static inline bool tcp_rmem_pressure(const struct sock *sk) 1679 { 1680 int rcvbuf, threshold; 1681 1682 if (tcp_under_memory_pressure(sk)) 1683 return true; 1684 1685 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1686 threshold = rcvbuf - (rcvbuf >> 3); 1687 1688 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1689 } 1690 1691 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1692 { 1693 const struct tcp_sock *tp = tcp_sk(sk); 1694 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1695 1696 if (avail <= 0) 1697 return false; 1698 1699 return (avail >= target) || tcp_rmem_pressure(sk) || 1700 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1701 } 1702 1703 extern void tcp_openreq_init_rwin(struct request_sock *req, 1704 const struct sock *sk_listener, 1705 const struct dst_entry *dst); 1706 1707 void tcp_enter_memory_pressure(struct sock *sk); 1708 void tcp_leave_memory_pressure(struct sock *sk); 1709 1710 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1711 { 1712 struct net *net = sock_net((struct sock *)tp); 1713 int val; 1714 1715 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1716 * and do_tcp_setsockopt(). 1717 */ 1718 val = READ_ONCE(tp->keepalive_intvl); 1719 1720 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1721 } 1722 1723 static inline int keepalive_time_when(const struct tcp_sock *tp) 1724 { 1725 struct net *net = sock_net((struct sock *)tp); 1726 int val; 1727 1728 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1729 val = READ_ONCE(tp->keepalive_time); 1730 1731 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1732 } 1733 1734 static inline int keepalive_probes(const struct tcp_sock *tp) 1735 { 1736 struct net *net = sock_net((struct sock *)tp); 1737 int val; 1738 1739 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1740 * and do_tcp_setsockopt(). 1741 */ 1742 val = READ_ONCE(tp->keepalive_probes); 1743 1744 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1745 } 1746 1747 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1748 { 1749 const struct inet_connection_sock *icsk = &tp->inet_conn; 1750 1751 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1752 tcp_jiffies32 - tp->rcv_tstamp); 1753 } 1754 1755 static inline int tcp_fin_time(const struct sock *sk) 1756 { 1757 int fin_timeout = tcp_sk(sk)->linger2 ? : 1758 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1759 const int rto = inet_csk(sk)->icsk_rto; 1760 1761 if (fin_timeout < (rto << 2) - (rto >> 1)) 1762 fin_timeout = (rto << 2) - (rto >> 1); 1763 1764 return fin_timeout; 1765 } 1766 1767 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1768 int paws_win) 1769 { 1770 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1771 return true; 1772 if (unlikely(!time_before32(ktime_get_seconds(), 1773 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1774 return true; 1775 /* 1776 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1777 * then following tcp messages have valid values. Ignore 0 value, 1778 * or else 'negative' tsval might forbid us to accept their packets. 1779 */ 1780 if (!rx_opt->ts_recent) 1781 return true; 1782 return false; 1783 } 1784 1785 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1786 int rst) 1787 { 1788 if (tcp_paws_check(rx_opt, 0)) 1789 return false; 1790 1791 /* RST segments are not recommended to carry timestamp, 1792 and, if they do, it is recommended to ignore PAWS because 1793 "their cleanup function should take precedence over timestamps." 1794 Certainly, it is mistake. It is necessary to understand the reasons 1795 of this constraint to relax it: if peer reboots, clock may go 1796 out-of-sync and half-open connections will not be reset. 1797 Actually, the problem would be not existing if all 1798 the implementations followed draft about maintaining clock 1799 via reboots. Linux-2.2 DOES NOT! 1800 1801 However, we can relax time bounds for RST segments to MSL. 1802 */ 1803 if (rst && !time_before32(ktime_get_seconds(), 1804 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1805 return false; 1806 return true; 1807 } 1808 1809 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1810 { 1811 u32 ace; 1812 1813 /* mptcp hooks are only on the slow path */ 1814 if (sk_is_mptcp((struct sock *)tp)) 1815 return; 1816 1817 ace = tcp_ecn_mode_accecn(tp) ? 1818 ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) & 1819 TCP_ACCECN_CEP_ACE_MASK) : 0; 1820 1821 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1822 (ace << 22) | 1823 ntohl(TCP_FLAG_ACK) | 1824 snd_wnd); 1825 } 1826 1827 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1828 { 1829 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1830 } 1831 1832 static inline void tcp_fast_path_check(struct sock *sk) 1833 { 1834 struct tcp_sock *tp = tcp_sk(sk); 1835 1836 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1837 tp->rcv_wnd && 1838 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1839 !tp->urg_data) 1840 tcp_fast_path_on(tp); 1841 } 1842 1843 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1844 int mib_idx, u32 *last_oow_ack_time); 1845 1846 static inline void tcp_mib_init(struct net *net) 1847 { 1848 /* See RFC 2012 */ 1849 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1850 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1851 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1852 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1853 } 1854 1855 /* from STCP */ 1856 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1857 { 1858 tp->retransmit_skb_hint = NULL; 1859 } 1860 1861 #define tcp_md5_addr tcp_ao_addr 1862 1863 /* - key database */ 1864 struct tcp_md5sig_key { 1865 struct hlist_node node; 1866 u8 keylen; 1867 u8 family; /* AF_INET or AF_INET6 */ 1868 u8 prefixlen; 1869 u8 flags; 1870 union tcp_md5_addr addr; 1871 int l3index; /* set if key added with L3 scope */ 1872 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1873 struct rcu_head rcu; 1874 }; 1875 1876 /* - sock block */ 1877 struct tcp_md5sig_info { 1878 struct hlist_head head; 1879 struct rcu_head rcu; 1880 }; 1881 1882 /* - pseudo header */ 1883 struct tcp4_pseudohdr { 1884 __be32 saddr; 1885 __be32 daddr; 1886 __u8 pad; 1887 __u8 protocol; 1888 __be16 len; 1889 }; 1890 1891 struct tcp6_pseudohdr { 1892 struct in6_addr saddr; 1893 struct in6_addr daddr; 1894 __be32 len; 1895 __be32 protocol; /* including padding */ 1896 }; 1897 1898 union tcp_md5sum_block { 1899 struct tcp4_pseudohdr ip4; 1900 #if IS_ENABLED(CONFIG_IPV6) 1901 struct tcp6_pseudohdr ip6; 1902 #endif 1903 }; 1904 1905 /* 1906 * struct tcp_sigpool - per-CPU pool of ahash_requests 1907 * @scratch: per-CPU temporary area, that can be used between 1908 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1909 * crypto request 1910 * @req: pre-allocated ahash request 1911 */ 1912 struct tcp_sigpool { 1913 void *scratch; 1914 struct ahash_request *req; 1915 }; 1916 1917 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1918 void tcp_sigpool_get(unsigned int id); 1919 void tcp_sigpool_release(unsigned int id); 1920 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1921 const struct sk_buff *skb, 1922 unsigned int header_len); 1923 1924 /** 1925 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1926 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1927 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1928 * 1929 * Returns: 0 on success, error otherwise. 1930 */ 1931 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1932 /** 1933 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1934 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1935 */ 1936 void tcp_sigpool_end(struct tcp_sigpool *c); 1937 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1938 /* - functions */ 1939 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1940 const struct sock *sk, const struct sk_buff *skb); 1941 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1942 int family, u8 prefixlen, int l3index, u8 flags, 1943 const u8 *newkey, u8 newkeylen); 1944 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1945 int family, u8 prefixlen, int l3index, 1946 struct tcp_md5sig_key *key); 1947 1948 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1949 int family, u8 prefixlen, int l3index, u8 flags); 1950 void tcp_clear_md5_list(struct sock *sk); 1951 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1952 const struct sock *addr_sk); 1953 1954 #ifdef CONFIG_TCP_MD5SIG 1955 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1956 const union tcp_md5_addr *addr, 1957 int family, bool any_l3index); 1958 static inline struct tcp_md5sig_key * 1959 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1960 const union tcp_md5_addr *addr, int family) 1961 { 1962 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1963 return NULL; 1964 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1965 } 1966 1967 static inline struct tcp_md5sig_key * 1968 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1969 const union tcp_md5_addr *addr, int family) 1970 { 1971 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1972 return NULL; 1973 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1974 } 1975 1976 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1977 void tcp_md5_destruct_sock(struct sock *sk); 1978 #else 1979 static inline struct tcp_md5sig_key * 1980 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1981 const union tcp_md5_addr *addr, int family) 1982 { 1983 return NULL; 1984 } 1985 1986 static inline struct tcp_md5sig_key * 1987 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1988 const union tcp_md5_addr *addr, int family) 1989 { 1990 return NULL; 1991 } 1992 1993 #define tcp_twsk_md5_key(twsk) NULL 1994 static inline void tcp_md5_destruct_sock(struct sock *sk) 1995 { 1996 } 1997 #endif 1998 1999 int tcp_md5_alloc_sigpool(void); 2000 void tcp_md5_release_sigpool(void); 2001 void tcp_md5_add_sigpool(void); 2002 extern int tcp_md5_sigpool_id; 2003 2004 int tcp_md5_hash_key(struct tcp_sigpool *hp, 2005 const struct tcp_md5sig_key *key); 2006 2007 /* From tcp_fastopen.c */ 2008 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 2009 struct tcp_fastopen_cookie *cookie); 2010 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 2011 struct tcp_fastopen_cookie *cookie, bool syn_lost, 2012 u16 try_exp); 2013 struct tcp_fastopen_request { 2014 /* Fast Open cookie. Size 0 means a cookie request */ 2015 struct tcp_fastopen_cookie cookie; 2016 struct msghdr *data; /* data in MSG_FASTOPEN */ 2017 size_t size; 2018 int copied; /* queued in tcp_connect() */ 2019 struct ubuf_info *uarg; 2020 }; 2021 void tcp_free_fastopen_req(struct tcp_sock *tp); 2022 void tcp_fastopen_destroy_cipher(struct sock *sk); 2023 void tcp_fastopen_ctx_destroy(struct net *net); 2024 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 2025 void *primary_key, void *backup_key); 2026 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 2027 u64 *key); 2028 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 2029 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 2030 struct request_sock *req, 2031 struct tcp_fastopen_cookie *foc, 2032 const struct dst_entry *dst); 2033 void tcp_fastopen_init_key_once(struct net *net); 2034 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2035 struct tcp_fastopen_cookie *cookie); 2036 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2037 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2038 #define TCP_FASTOPEN_KEY_MAX 2 2039 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2040 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2041 2042 /* Fastopen key context */ 2043 struct tcp_fastopen_context { 2044 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2045 int num; 2046 struct rcu_head rcu; 2047 }; 2048 2049 void tcp_fastopen_active_disable(struct sock *sk); 2050 bool tcp_fastopen_active_should_disable(struct sock *sk); 2051 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2052 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2053 2054 /* Caller needs to wrap with rcu_read_(un)lock() */ 2055 static inline 2056 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2057 { 2058 struct tcp_fastopen_context *ctx; 2059 2060 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2061 if (!ctx) 2062 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2063 return ctx; 2064 } 2065 2066 static inline 2067 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2068 const struct tcp_fastopen_cookie *orig) 2069 { 2070 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2071 orig->len == foc->len && 2072 !memcmp(orig->val, foc->val, foc->len)) 2073 return true; 2074 return false; 2075 } 2076 2077 static inline 2078 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2079 { 2080 return ctx->num; 2081 } 2082 2083 /* Latencies incurred by various limits for a sender. They are 2084 * chronograph-like stats that are mutually exclusive. 2085 */ 2086 enum tcp_chrono { 2087 TCP_CHRONO_UNSPEC, 2088 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2089 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2090 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2091 __TCP_CHRONO_MAX, 2092 }; 2093 2094 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2095 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2096 2097 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2098 * the same memory storage than skb->destructor/_skb_refdst 2099 */ 2100 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2101 { 2102 skb->destructor = NULL; 2103 skb->_skb_refdst = 0UL; 2104 } 2105 2106 #define tcp_skb_tsorted_save(skb) { \ 2107 unsigned long _save = skb->_skb_refdst; \ 2108 skb->_skb_refdst = 0UL; 2109 2110 #define tcp_skb_tsorted_restore(skb) \ 2111 skb->_skb_refdst = _save; \ 2112 } 2113 2114 void tcp_write_queue_purge(struct sock *sk); 2115 2116 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2117 { 2118 return skb_rb_first(&sk->tcp_rtx_queue); 2119 } 2120 2121 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2122 { 2123 return skb_rb_last(&sk->tcp_rtx_queue); 2124 } 2125 2126 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2127 { 2128 return skb_peek_tail(&sk->sk_write_queue); 2129 } 2130 2131 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2132 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2133 2134 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2135 { 2136 return skb_peek(&sk->sk_write_queue); 2137 } 2138 2139 static inline bool tcp_skb_is_last(const struct sock *sk, 2140 const struct sk_buff *skb) 2141 { 2142 return skb_queue_is_last(&sk->sk_write_queue, skb); 2143 } 2144 2145 /** 2146 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2147 * @sk: socket 2148 * 2149 * Since the write queue can have a temporary empty skb in it, 2150 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2151 */ 2152 static inline bool tcp_write_queue_empty(const struct sock *sk) 2153 { 2154 const struct tcp_sock *tp = tcp_sk(sk); 2155 2156 return tp->write_seq == tp->snd_nxt; 2157 } 2158 2159 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2160 { 2161 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2162 } 2163 2164 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2165 { 2166 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2167 } 2168 2169 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2170 { 2171 __skb_queue_tail(&sk->sk_write_queue, skb); 2172 2173 /* Queue it, remembering where we must start sending. */ 2174 if (sk->sk_write_queue.next == skb) 2175 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2176 } 2177 2178 /* Insert new before skb on the write queue of sk. */ 2179 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2180 struct sk_buff *skb, 2181 struct sock *sk) 2182 { 2183 __skb_queue_before(&sk->sk_write_queue, skb, new); 2184 } 2185 2186 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2187 { 2188 tcp_skb_tsorted_anchor_cleanup(skb); 2189 __skb_unlink(skb, &sk->sk_write_queue); 2190 } 2191 2192 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2193 2194 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2195 { 2196 tcp_skb_tsorted_anchor_cleanup(skb); 2197 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2198 } 2199 2200 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2201 { 2202 list_del(&skb->tcp_tsorted_anchor); 2203 tcp_rtx_queue_unlink(skb, sk); 2204 tcp_wmem_free_skb(sk, skb); 2205 } 2206 2207 static inline void tcp_write_collapse_fence(struct sock *sk) 2208 { 2209 struct sk_buff *skb = tcp_write_queue_tail(sk); 2210 2211 if (skb) 2212 TCP_SKB_CB(skb)->eor = 1; 2213 } 2214 2215 static inline void tcp_push_pending_frames(struct sock *sk) 2216 { 2217 if (tcp_send_head(sk)) { 2218 struct tcp_sock *tp = tcp_sk(sk); 2219 2220 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2221 } 2222 } 2223 2224 /* Start sequence of the skb just after the highest skb with SACKed 2225 * bit, valid only if sacked_out > 0 or when the caller has ensured 2226 * validity by itself. 2227 */ 2228 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2229 { 2230 if (!tp->sacked_out) 2231 return tp->snd_una; 2232 2233 if (tp->highest_sack == NULL) 2234 return tp->snd_nxt; 2235 2236 return TCP_SKB_CB(tp->highest_sack)->seq; 2237 } 2238 2239 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2240 { 2241 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2242 } 2243 2244 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2245 { 2246 return tcp_sk(sk)->highest_sack; 2247 } 2248 2249 static inline void tcp_highest_sack_reset(struct sock *sk) 2250 { 2251 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2252 } 2253 2254 /* Called when old skb is about to be deleted and replaced by new skb */ 2255 static inline void tcp_highest_sack_replace(struct sock *sk, 2256 struct sk_buff *old, 2257 struct sk_buff *new) 2258 { 2259 if (old == tcp_highest_sack(sk)) 2260 tcp_sk(sk)->highest_sack = new; 2261 } 2262 2263 /* This helper checks if socket has IP_TRANSPARENT set */ 2264 static inline bool inet_sk_transparent(const struct sock *sk) 2265 { 2266 switch (sk->sk_state) { 2267 case TCP_TIME_WAIT: 2268 return inet_twsk(sk)->tw_transparent; 2269 case TCP_NEW_SYN_RECV: 2270 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2271 } 2272 return inet_test_bit(TRANSPARENT, sk); 2273 } 2274 2275 /* Determines whether this is a thin stream (which may suffer from 2276 * increased latency). Used to trigger latency-reducing mechanisms. 2277 */ 2278 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2279 { 2280 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2281 } 2282 2283 /* /proc */ 2284 enum tcp_seq_states { 2285 TCP_SEQ_STATE_LISTENING, 2286 TCP_SEQ_STATE_ESTABLISHED, 2287 }; 2288 2289 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2290 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2291 void tcp_seq_stop(struct seq_file *seq, void *v); 2292 2293 struct tcp_seq_afinfo { 2294 sa_family_t family; 2295 }; 2296 2297 struct tcp_iter_state { 2298 struct seq_net_private p; 2299 enum tcp_seq_states state; 2300 struct sock *syn_wait_sk; 2301 int bucket, offset, sbucket, num; 2302 loff_t last_pos; 2303 }; 2304 2305 extern struct request_sock_ops tcp_request_sock_ops; 2306 extern struct request_sock_ops tcp6_request_sock_ops; 2307 2308 void tcp_v4_destroy_sock(struct sock *sk); 2309 2310 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2311 netdev_features_t features); 2312 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2313 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2314 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2315 struct tcphdr *th); 2316 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2317 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2318 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2319 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2320 #ifdef CONFIG_INET 2321 void tcp_gro_complete(struct sk_buff *skb); 2322 #else 2323 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2324 #endif 2325 2326 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2327 2328 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2329 { 2330 struct net *net = sock_net((struct sock *)tp); 2331 u32 val; 2332 2333 val = READ_ONCE(tp->notsent_lowat); 2334 2335 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2336 } 2337 2338 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2339 2340 #ifdef CONFIG_PROC_FS 2341 int tcp4_proc_init(void); 2342 void tcp4_proc_exit(void); 2343 #endif 2344 2345 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2346 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2347 const struct tcp_request_sock_ops *af_ops, 2348 struct sock *sk, struct sk_buff *skb); 2349 2350 /* TCP af-specific functions */ 2351 struct tcp_sock_af_ops { 2352 #ifdef CONFIG_TCP_MD5SIG 2353 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2354 const struct sock *addr_sk); 2355 int (*calc_md5_hash)(char *location, 2356 const struct tcp_md5sig_key *md5, 2357 const struct sock *sk, 2358 const struct sk_buff *skb); 2359 int (*md5_parse)(struct sock *sk, 2360 int optname, 2361 sockptr_t optval, 2362 int optlen); 2363 #endif 2364 #ifdef CONFIG_TCP_AO 2365 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2366 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2367 struct sock *addr_sk, 2368 int sndid, int rcvid); 2369 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2370 const struct sock *sk, 2371 __be32 sisn, __be32 disn, bool send); 2372 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2373 const struct sock *sk, const struct sk_buff *skb, 2374 const u8 *tkey, int hash_offset, u32 sne); 2375 #endif 2376 }; 2377 2378 struct tcp_request_sock_ops { 2379 u16 mss_clamp; 2380 #ifdef CONFIG_TCP_MD5SIG 2381 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2382 const struct sock *addr_sk); 2383 int (*calc_md5_hash) (char *location, 2384 const struct tcp_md5sig_key *md5, 2385 const struct sock *sk, 2386 const struct sk_buff *skb); 2387 #endif 2388 #ifdef CONFIG_TCP_AO 2389 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2390 struct request_sock *req, 2391 int sndid, int rcvid); 2392 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2393 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2394 struct request_sock *req, const struct sk_buff *skb, 2395 int hash_offset, u32 sne); 2396 #endif 2397 #ifdef CONFIG_SYN_COOKIES 2398 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2399 __u16 *mss); 2400 #endif 2401 struct dst_entry *(*route_req)(const struct sock *sk, 2402 struct sk_buff *skb, 2403 struct flowi *fl, 2404 struct request_sock *req, 2405 u32 tw_isn); 2406 u32 (*init_seq)(const struct sk_buff *skb); 2407 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2408 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2409 struct flowi *fl, struct request_sock *req, 2410 struct tcp_fastopen_cookie *foc, 2411 enum tcp_synack_type synack_type, 2412 struct sk_buff *syn_skb); 2413 }; 2414 2415 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2416 #if IS_ENABLED(CONFIG_IPV6) 2417 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2418 #endif 2419 2420 #ifdef CONFIG_SYN_COOKIES 2421 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2422 const struct sock *sk, struct sk_buff *skb, 2423 __u16 *mss) 2424 { 2425 tcp_synq_overflow(sk); 2426 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2427 return ops->cookie_init_seq(skb, mss); 2428 } 2429 #else 2430 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2431 const struct sock *sk, struct sk_buff *skb, 2432 __u16 *mss) 2433 { 2434 return 0; 2435 } 2436 #endif 2437 2438 struct tcp_key { 2439 union { 2440 struct { 2441 struct tcp_ao_key *ao_key; 2442 char *traffic_key; 2443 u32 sne; 2444 u8 rcv_next; 2445 }; 2446 struct tcp_md5sig_key *md5_key; 2447 }; 2448 enum { 2449 TCP_KEY_NONE = 0, 2450 TCP_KEY_MD5, 2451 TCP_KEY_AO, 2452 } type; 2453 }; 2454 2455 static inline void tcp_get_current_key(const struct sock *sk, 2456 struct tcp_key *out) 2457 { 2458 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2459 const struct tcp_sock *tp = tcp_sk(sk); 2460 #endif 2461 2462 #ifdef CONFIG_TCP_AO 2463 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2464 struct tcp_ao_info *ao; 2465 2466 ao = rcu_dereference_protected(tp->ao_info, 2467 lockdep_sock_is_held(sk)); 2468 if (ao) { 2469 out->ao_key = READ_ONCE(ao->current_key); 2470 out->type = TCP_KEY_AO; 2471 return; 2472 } 2473 } 2474 #endif 2475 #ifdef CONFIG_TCP_MD5SIG 2476 if (static_branch_unlikely(&tcp_md5_needed.key) && 2477 rcu_access_pointer(tp->md5sig_info)) { 2478 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2479 if (out->md5_key) { 2480 out->type = TCP_KEY_MD5; 2481 return; 2482 } 2483 } 2484 #endif 2485 out->type = TCP_KEY_NONE; 2486 } 2487 2488 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2489 { 2490 if (static_branch_tcp_md5()) 2491 return key->type == TCP_KEY_MD5; 2492 return false; 2493 } 2494 2495 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2496 { 2497 if (static_branch_tcp_ao()) 2498 return key->type == TCP_KEY_AO; 2499 return false; 2500 } 2501 2502 int tcpv4_offload_init(void); 2503 2504 void tcp_v4_init(void); 2505 void tcp_init(void); 2506 2507 /* tcp_recovery.c */ 2508 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2509 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2510 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2511 u32 reo_wnd); 2512 extern bool tcp_rack_mark_lost(struct sock *sk); 2513 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2514 u64 xmit_time); 2515 extern void tcp_rack_reo_timeout(struct sock *sk); 2516 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2517 2518 /* tcp_plb.c */ 2519 2520 /* 2521 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2522 * expects cong_ratio which represents fraction of traffic that experienced 2523 * congestion over a single RTT. In order to avoid floating point operations, 2524 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2525 */ 2526 #define TCP_PLB_SCALE 8 2527 2528 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2529 struct tcp_plb_state { 2530 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2531 unused:3; 2532 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2533 }; 2534 2535 static inline void tcp_plb_init(const struct sock *sk, 2536 struct tcp_plb_state *plb) 2537 { 2538 plb->consec_cong_rounds = 0; 2539 plb->pause_until = 0; 2540 } 2541 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2542 const int cong_ratio); 2543 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2544 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2545 2546 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2547 { 2548 WARN_ONCE(cond, 2549 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2550 str, 2551 tcp_snd_cwnd(tcp_sk(sk)), 2552 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2553 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2554 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2555 inet_csk(sk)->icsk_ca_state, 2556 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2557 inet_csk(sk)->icsk_pmtu_cookie); 2558 } 2559 2560 /* At how many usecs into the future should the RTO fire? */ 2561 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2562 { 2563 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2564 u32 rto = inet_csk(sk)->icsk_rto; 2565 2566 if (likely(skb)) { 2567 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2568 2569 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2570 } else { 2571 tcp_warn_once(sk, 1, "rtx queue empty: "); 2572 return jiffies_to_usecs(rto); 2573 } 2574 2575 } 2576 2577 /* 2578 * Save and compile IPv4 options, return a pointer to it 2579 */ 2580 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2581 struct sk_buff *skb) 2582 { 2583 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2584 struct ip_options_rcu *dopt = NULL; 2585 2586 if (opt->optlen) { 2587 int opt_size = sizeof(*dopt) + opt->optlen; 2588 2589 dopt = kmalloc(opt_size, GFP_ATOMIC); 2590 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2591 kfree(dopt); 2592 dopt = NULL; 2593 } 2594 } 2595 return dopt; 2596 } 2597 2598 /* locally generated TCP pure ACKs have skb->truesize == 2 2599 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2600 * This is much faster than dissecting the packet to find out. 2601 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2602 */ 2603 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2604 { 2605 return skb->truesize == 2; 2606 } 2607 2608 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2609 { 2610 skb->truesize = 2; 2611 } 2612 2613 static inline int tcp_inq(struct sock *sk) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 int answ; 2617 2618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2619 answ = 0; 2620 } else if (sock_flag(sk, SOCK_URGINLINE) || 2621 !tp->urg_data || 2622 before(tp->urg_seq, tp->copied_seq) || 2623 !before(tp->urg_seq, tp->rcv_nxt)) { 2624 2625 answ = tp->rcv_nxt - tp->copied_seq; 2626 2627 /* Subtract 1, if FIN was received */ 2628 if (answ && sock_flag(sk, SOCK_DONE)) 2629 answ--; 2630 } else { 2631 answ = tp->urg_seq - tp->copied_seq; 2632 } 2633 2634 return answ; 2635 } 2636 2637 int tcp_peek_len(struct socket *sock); 2638 2639 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2640 { 2641 u16 segs_in; 2642 2643 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2644 2645 /* We update these fields while other threads might 2646 * read them from tcp_get_info() 2647 */ 2648 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2649 if (skb->len > tcp_hdrlen(skb)) 2650 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2651 } 2652 2653 /* 2654 * TCP listen path runs lockless. 2655 * We forced "struct sock" to be const qualified to make sure 2656 * we don't modify one of its field by mistake. 2657 * Here, we increment sk_drops which is an atomic_t, so we can safely 2658 * make sock writable again. 2659 */ 2660 static inline void tcp_listendrop(const struct sock *sk) 2661 { 2662 sk_drops_inc((struct sock *)sk); 2663 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2664 } 2665 2666 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2667 2668 /* 2669 * Interface for adding Upper Level Protocols over TCP 2670 */ 2671 2672 #define TCP_ULP_NAME_MAX 16 2673 #define TCP_ULP_MAX 128 2674 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2675 2676 struct tcp_ulp_ops { 2677 struct list_head list; 2678 2679 /* initialize ulp */ 2680 int (*init)(struct sock *sk); 2681 /* update ulp */ 2682 void (*update)(struct sock *sk, struct proto *p, 2683 void (*write_space)(struct sock *sk)); 2684 /* cleanup ulp */ 2685 void (*release)(struct sock *sk); 2686 /* diagnostic */ 2687 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2688 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2689 /* clone ulp */ 2690 void (*clone)(const struct request_sock *req, struct sock *newsk, 2691 const gfp_t priority); 2692 2693 char name[TCP_ULP_NAME_MAX]; 2694 struct module *owner; 2695 }; 2696 int tcp_register_ulp(struct tcp_ulp_ops *type); 2697 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2698 int tcp_set_ulp(struct sock *sk, const char *name); 2699 void tcp_get_available_ulp(char *buf, size_t len); 2700 void tcp_cleanup_ulp(struct sock *sk); 2701 void tcp_update_ulp(struct sock *sk, struct proto *p, 2702 void (*write_space)(struct sock *sk)); 2703 2704 #define MODULE_ALIAS_TCP_ULP(name) \ 2705 MODULE_INFO(alias, name); \ 2706 MODULE_INFO(alias, "tcp-ulp-" name) 2707 2708 #ifdef CONFIG_NET_SOCK_MSG 2709 struct sk_msg; 2710 struct sk_psock; 2711 2712 #ifdef CONFIG_BPF_SYSCALL 2713 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2714 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2715 #ifdef CONFIG_BPF_STREAM_PARSER 2716 struct strparser; 2717 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2718 sk_read_actor_t recv_actor); 2719 #endif /* CONFIG_BPF_STREAM_PARSER */ 2720 #endif /* CONFIG_BPF_SYSCALL */ 2721 2722 #ifdef CONFIG_INET 2723 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2724 #else 2725 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2726 { 2727 } 2728 #endif 2729 2730 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2731 struct sk_msg *msg, u32 bytes, int flags); 2732 #endif /* CONFIG_NET_SOCK_MSG */ 2733 2734 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2735 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2736 { 2737 } 2738 #endif 2739 2740 #ifdef CONFIG_CGROUP_BPF 2741 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2742 struct sk_buff *skb, 2743 unsigned int end_offset) 2744 { 2745 skops->skb = skb; 2746 skops->skb_data_end = skb->data + end_offset; 2747 } 2748 #else 2749 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2750 struct sk_buff *skb, 2751 unsigned int end_offset) 2752 { 2753 } 2754 #endif 2755 2756 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2757 * is < 0, then the BPF op failed (for example if the loaded BPF 2758 * program does not support the chosen operation or there is no BPF 2759 * program loaded). 2760 */ 2761 #ifdef CONFIG_BPF 2762 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2763 { 2764 struct bpf_sock_ops_kern sock_ops; 2765 int ret; 2766 2767 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2768 if (sk_fullsock(sk)) { 2769 sock_ops.is_fullsock = 1; 2770 sock_ops.is_locked_tcp_sock = 1; 2771 sock_owned_by_me(sk); 2772 } 2773 2774 sock_ops.sk = sk; 2775 sock_ops.op = op; 2776 if (nargs > 0) 2777 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2778 2779 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2780 if (ret == 0) 2781 ret = sock_ops.reply; 2782 else 2783 ret = -1; 2784 return ret; 2785 } 2786 2787 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2788 { 2789 u32 args[2] = {arg1, arg2}; 2790 2791 return tcp_call_bpf(sk, op, 2, args); 2792 } 2793 2794 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2795 u32 arg3) 2796 { 2797 u32 args[3] = {arg1, arg2, arg3}; 2798 2799 return tcp_call_bpf(sk, op, 3, args); 2800 } 2801 2802 #else 2803 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2804 { 2805 return -EPERM; 2806 } 2807 2808 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2809 { 2810 return -EPERM; 2811 } 2812 2813 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2814 u32 arg3) 2815 { 2816 return -EPERM; 2817 } 2818 2819 #endif 2820 2821 static inline u32 tcp_timeout_init(struct sock *sk) 2822 { 2823 int timeout; 2824 2825 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2826 2827 if (timeout <= 0) 2828 timeout = TCP_TIMEOUT_INIT; 2829 return min_t(int, timeout, TCP_RTO_MAX); 2830 } 2831 2832 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2833 { 2834 int rwnd; 2835 2836 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2837 2838 if (rwnd < 0) 2839 rwnd = 0; 2840 return rwnd; 2841 } 2842 2843 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2844 { 2845 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2846 } 2847 2848 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2849 { 2850 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2851 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2852 } 2853 2854 #if IS_ENABLED(CONFIG_SMC) 2855 extern struct static_key_false tcp_have_smc; 2856 #endif 2857 2858 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2859 void clean_acked_data_enable(struct tcp_sock *tp, 2860 void (*cad)(struct sock *sk, u32 ack_seq)); 2861 void clean_acked_data_disable(struct tcp_sock *tp); 2862 void clean_acked_data_flush(void); 2863 #endif 2864 2865 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2866 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2867 const struct tcp_sock *tp) 2868 { 2869 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2870 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2871 } 2872 2873 /* Compute Earliest Departure Time for some control packets 2874 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2875 */ 2876 static inline u64 tcp_transmit_time(const struct sock *sk) 2877 { 2878 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2879 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2880 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2881 2882 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2883 } 2884 return 0; 2885 } 2886 2887 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2888 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2889 { 2890 const u8 *md5_tmp, *ao_tmp; 2891 int ret; 2892 2893 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2894 if (ret) 2895 return ret; 2896 2897 if (md5_hash) 2898 *md5_hash = md5_tmp; 2899 2900 if (aoh) { 2901 if (!ao_tmp) 2902 *aoh = NULL; 2903 else 2904 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2905 } 2906 2907 return 0; 2908 } 2909 2910 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2911 int family, int l3index, bool stat_inc) 2912 { 2913 #ifdef CONFIG_TCP_AO 2914 struct tcp_ao_info *ao_info; 2915 struct tcp_ao_key *ao_key; 2916 2917 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2918 return false; 2919 2920 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2921 lockdep_sock_is_held(sk)); 2922 if (!ao_info) 2923 return false; 2924 2925 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2926 if (ao_info->ao_required || ao_key) { 2927 if (stat_inc) { 2928 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2929 atomic64_inc(&ao_info->counters.ao_required); 2930 } 2931 return true; 2932 } 2933 #endif 2934 return false; 2935 } 2936 2937 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2938 const struct request_sock *req, const struct sk_buff *skb, 2939 const void *saddr, const void *daddr, 2940 int family, int dif, int sdif); 2941 2942 #endif /* _TCP_H */ 2943