xref: /linux/include/net/tcp.h (revision ccde82e909467abdf098a8ee6f63e1ecf9a47ce5)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	return READ_ONCE(tcp_memory_pressure);
307 }
308 /*
309  * The next routines deal with comparing 32 bit unsigned ints
310  * and worry about wraparound (automatic with unsigned arithmetic).
311  */
312 
313 static inline bool before(__u32 seq1, __u32 seq2)
314 {
315         return (__s32)(seq1-seq2) < 0;
316 }
317 #define after(seq2, seq1) 	before(seq1, seq2)
318 
319 /* is s2<=s1<=s3 ? */
320 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
321 {
322 	return seq3 - seq2 >= seq1 - seq2;
323 }
324 
325 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
326 {
327 	sk_wmem_queued_add(sk, -skb->truesize);
328 	if (!skb_zcopy_pure(skb))
329 		sk_mem_uncharge(sk, skb->truesize);
330 	else
331 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
332 	__kfree_skb(skb);
333 }
334 
335 void sk_forced_mem_schedule(struct sock *sk, int size);
336 
337 bool tcp_check_oom(const struct sock *sk, int shift);
338 
339 
340 extern struct proto tcp_prot;
341 
342 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
343 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
344 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
345 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
346 
347 void tcp_tsq_work_init(void);
348 
349 int tcp_v4_err(struct sk_buff *skb, u32);
350 
351 void tcp_shutdown(struct sock *sk, int how);
352 
353 int tcp_v4_early_demux(struct sk_buff *skb);
354 int tcp_v4_rcv(struct sk_buff *skb);
355 
356 void tcp_remove_empty_skb(struct sock *sk);
357 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
358 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
359 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
360 			 size_t size, struct ubuf_info *uarg);
361 void tcp_splice_eof(struct socket *sock);
362 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
363 int tcp_wmem_schedule(struct sock *sk, int copy);
364 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
365 	      int size_goal);
366 void tcp_release_cb(struct sock *sk);
367 void tcp_wfree(struct sk_buff *skb);
368 void tcp_write_timer_handler(struct sock *sk);
369 void tcp_delack_timer_handler(struct sock *sk);
370 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
371 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
372 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
373 void tcp_rcv_space_adjust(struct sock *sk);
374 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
375 void tcp_twsk_destructor(struct sock *sk);
376 void tcp_twsk_purge(struct list_head *net_exit_list);
377 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
378 			struct pipe_inode_info *pipe, size_t len,
379 			unsigned int flags);
380 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
381 				     bool force_schedule);
382 
383 static inline void tcp_dec_quickack_mode(struct sock *sk)
384 {
385 	struct inet_connection_sock *icsk = inet_csk(sk);
386 
387 	if (icsk->icsk_ack.quick) {
388 		/* How many ACKs S/ACKing new data have we sent? */
389 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
390 
391 		if (pkts >= icsk->icsk_ack.quick) {
392 			icsk->icsk_ack.quick = 0;
393 			/* Leaving quickack mode we deflate ATO. */
394 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
395 		} else
396 			icsk->icsk_ack.quick -= pkts;
397 	}
398 }
399 
400 #define	TCP_ECN_MODE_RFC3168	BIT(0)
401 #define	TCP_ECN_QUEUE_CWR	BIT(1)
402 #define	TCP_ECN_DEMAND_CWR	BIT(2)
403 #define	TCP_ECN_SEEN		BIT(3)
404 #define	TCP_ECN_MODE_ACCECN	BIT(4)
405 
406 #define	TCP_ECN_DISABLED	0
407 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
408 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
409 
410 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
411 {
412 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
413 }
414 
415 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
416 {
417 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
418 }
419 
420 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
421 {
422 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
423 }
424 
425 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
426 {
427 	return !tcp_ecn_mode_any(tp);
428 }
429 
430 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
431 {
432 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
433 }
434 
435 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
436 {
437 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
438 	tp->ecn_flags |= mode;
439 }
440 
441 enum tcp_tw_status {
442 	TCP_TW_SUCCESS = 0,
443 	TCP_TW_RST = 1,
444 	TCP_TW_ACK = 2,
445 	TCP_TW_SYN = 3,
446 	TCP_TW_ACK_OOW = 4
447 };
448 
449 
450 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
451 					      struct sk_buff *skb,
452 					      const struct tcphdr *th,
453 					      u32 *tw_isn,
454 					      enum skb_drop_reason *drop_reason);
455 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
456 			   struct request_sock *req, bool fastopen,
457 			   bool *lost_race, enum skb_drop_reason *drop_reason);
458 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
459 				       struct sk_buff *skb);
460 void tcp_enter_loss(struct sock *sk);
461 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
462 void tcp_clear_retrans(struct tcp_sock *tp);
463 void tcp_update_metrics(struct sock *sk);
464 void tcp_init_metrics(struct sock *sk);
465 void tcp_metrics_init(void);
466 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
467 void __tcp_close(struct sock *sk, long timeout);
468 void tcp_close(struct sock *sk, long timeout);
469 void tcp_init_sock(struct sock *sk);
470 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
471 __poll_t tcp_poll(struct file *file, struct socket *sock,
472 		      struct poll_table_struct *wait);
473 int do_tcp_getsockopt(struct sock *sk, int level,
474 		      int optname, sockptr_t optval, sockptr_t optlen);
475 int tcp_getsockopt(struct sock *sk, int level, int optname,
476 		   char __user *optval, int __user *optlen);
477 bool tcp_bpf_bypass_getsockopt(int level, int optname);
478 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
479 		      sockptr_t optval, unsigned int optlen);
480 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
481 		   unsigned int optlen);
482 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
483 void tcp_set_keepalive(struct sock *sk, int val);
484 void tcp_syn_ack_timeout(const struct request_sock *req);
485 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
486 		int flags, int *addr_len);
487 int tcp_set_rcvlowat(struct sock *sk, int val);
488 int tcp_set_window_clamp(struct sock *sk, int val);
489 void tcp_update_recv_tstamps(struct sk_buff *skb,
490 			     struct scm_timestamping_internal *tss);
491 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
492 			struct scm_timestamping_internal *tss);
493 void tcp_data_ready(struct sock *sk);
494 #ifdef CONFIG_MMU
495 int tcp_mmap(struct file *file, struct socket *sock,
496 	     struct vm_area_struct *vma);
497 #endif
498 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
499 		       struct tcp_options_received *opt_rx,
500 		       int estab, struct tcp_fastopen_cookie *foc);
501 
502 /*
503  *	BPF SKB-less helpers
504  */
505 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
506 			 struct tcphdr *th, u32 *cookie);
507 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
508 			 struct tcphdr *th, u32 *cookie);
509 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
510 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
511 			  const struct tcp_request_sock_ops *af_ops,
512 			  struct sock *sk, struct tcphdr *th);
513 /*
514  *	TCP v4 functions exported for the inet6 API
515  */
516 
517 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
518 void tcp_v4_mtu_reduced(struct sock *sk);
519 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
520 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
521 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
522 struct sock *tcp_create_openreq_child(const struct sock *sk,
523 				      struct request_sock *req,
524 				      struct sk_buff *skb);
525 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
526 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
527 				  struct request_sock *req,
528 				  struct dst_entry *dst,
529 				  struct request_sock *req_unhash,
530 				  bool *own_req);
531 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
532 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
533 int tcp_connect(struct sock *sk);
534 enum tcp_synack_type {
535 	TCP_SYNACK_NORMAL,
536 	TCP_SYNACK_FASTOPEN,
537 	TCP_SYNACK_COOKIE,
538 };
539 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
540 				struct request_sock *req,
541 				struct tcp_fastopen_cookie *foc,
542 				enum tcp_synack_type synack_type,
543 				struct sk_buff *syn_skb);
544 int tcp_disconnect(struct sock *sk, int flags);
545 
546 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
547 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
548 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
549 
550 /* From syncookies.c */
551 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
552 				 struct request_sock *req,
553 				 struct dst_entry *dst);
554 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
555 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
556 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
557 					    struct sock *sk, struct sk_buff *skb,
558 					    struct tcp_options_received *tcp_opt,
559 					    int mss, u32 tsoff);
560 
561 #if IS_ENABLED(CONFIG_BPF)
562 struct bpf_tcp_req_attrs {
563 	u32 rcv_tsval;
564 	u32 rcv_tsecr;
565 	u16 mss;
566 	u8 rcv_wscale;
567 	u8 snd_wscale;
568 	u8 ecn_ok;
569 	u8 wscale_ok;
570 	u8 sack_ok;
571 	u8 tstamp_ok;
572 	u8 usec_ts_ok;
573 	u8 reserved[3];
574 };
575 #endif
576 
577 #ifdef CONFIG_SYN_COOKIES
578 
579 /* Syncookies use a monotonic timer which increments every 60 seconds.
580  * This counter is used both as a hash input and partially encoded into
581  * the cookie value.  A cookie is only validated further if the delta
582  * between the current counter value and the encoded one is less than this,
583  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
584  * the counter advances immediately after a cookie is generated).
585  */
586 #define MAX_SYNCOOKIE_AGE	2
587 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
588 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
589 
590 /* syncookies: remember time of last synqueue overflow
591  * But do not dirty this field too often (once per second is enough)
592  * It is racy as we do not hold a lock, but race is very minor.
593  */
594 static inline void tcp_synq_overflow(const struct sock *sk)
595 {
596 	unsigned int last_overflow;
597 	unsigned int now = jiffies;
598 
599 	if (sk->sk_reuseport) {
600 		struct sock_reuseport *reuse;
601 
602 		reuse = rcu_dereference(sk->sk_reuseport_cb);
603 		if (likely(reuse)) {
604 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
605 			if (!time_between32(now, last_overflow,
606 					    last_overflow + HZ))
607 				WRITE_ONCE(reuse->synq_overflow_ts, now);
608 			return;
609 		}
610 	}
611 
612 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
613 	if (!time_between32(now, last_overflow, last_overflow + HZ))
614 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
615 }
616 
617 /* syncookies: no recent synqueue overflow on this listening socket? */
618 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
619 {
620 	unsigned int last_overflow;
621 	unsigned int now = jiffies;
622 
623 	if (sk->sk_reuseport) {
624 		struct sock_reuseport *reuse;
625 
626 		reuse = rcu_dereference(sk->sk_reuseport_cb);
627 		if (likely(reuse)) {
628 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
629 			return !time_between32(now, last_overflow - HZ,
630 					       last_overflow +
631 					       TCP_SYNCOOKIE_VALID);
632 		}
633 	}
634 
635 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
636 
637 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
638 	 * then we're under synflood. However, we have to use
639 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
640 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
641 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
642 	 * which could lead to rejecting a valid syncookie.
643 	 */
644 	return !time_between32(now, last_overflow - HZ,
645 			       last_overflow + TCP_SYNCOOKIE_VALID);
646 }
647 
648 static inline u32 tcp_cookie_time(void)
649 {
650 	u64 val = get_jiffies_64();
651 
652 	do_div(val, TCP_SYNCOOKIE_PERIOD);
653 	return val;
654 }
655 
656 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
657 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
658 {
659 	if (usec_ts)
660 		return div_u64(val, NSEC_PER_USEC);
661 
662 	return div_u64(val, NSEC_PER_MSEC);
663 }
664 
665 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
666 			      u16 *mssp);
667 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
668 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
669 bool cookie_timestamp_decode(const struct net *net,
670 			     struct tcp_options_received *opt);
671 
672 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
673 {
674 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
675 		dst_feature(dst, RTAX_FEATURE_ECN);
676 }
677 
678 #if IS_ENABLED(CONFIG_BPF)
679 static inline bool cookie_bpf_ok(struct sk_buff *skb)
680 {
681 	return skb->sk;
682 }
683 
684 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
685 #else
686 static inline bool cookie_bpf_ok(struct sk_buff *skb)
687 {
688 	return false;
689 }
690 
691 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
692 						    struct sk_buff *skb)
693 {
694 	return NULL;
695 }
696 #endif
697 
698 /* From net/ipv6/syncookies.c */
699 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
700 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
701 
702 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
703 			      const struct tcphdr *th, u16 *mssp);
704 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
705 #endif
706 /* tcp_output.c */
707 
708 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
709 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
710 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
711 			       int nonagle);
712 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
713 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
714 void tcp_retransmit_timer(struct sock *sk);
715 void tcp_xmit_retransmit_queue(struct sock *);
716 void tcp_simple_retransmit(struct sock *);
717 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
718 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
719 enum tcp_queue {
720 	TCP_FRAG_IN_WRITE_QUEUE,
721 	TCP_FRAG_IN_RTX_QUEUE,
722 };
723 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
724 		 struct sk_buff *skb, u32 len,
725 		 unsigned int mss_now, gfp_t gfp);
726 
727 void tcp_send_probe0(struct sock *);
728 int tcp_write_wakeup(struct sock *, int mib);
729 void tcp_send_fin(struct sock *sk);
730 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
731 			   enum sk_rst_reason reason);
732 int tcp_send_synack(struct sock *);
733 void tcp_push_one(struct sock *, unsigned int mss_now);
734 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
735 void tcp_send_ack(struct sock *sk);
736 void tcp_send_delayed_ack(struct sock *sk);
737 void tcp_send_loss_probe(struct sock *sk);
738 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
739 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
740 			     const struct sk_buff *next_skb);
741 
742 /* tcp_input.c */
743 void tcp_rearm_rto(struct sock *sk);
744 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
745 void tcp_done_with_error(struct sock *sk, int err);
746 void tcp_reset(struct sock *sk, struct sk_buff *skb);
747 void tcp_fin(struct sock *sk);
748 void tcp_check_space(struct sock *sk);
749 void tcp_sack_compress_send_ack(struct sock *sk);
750 
751 static inline void tcp_cleanup_skb(struct sk_buff *skb)
752 {
753 	skb_dst_drop(skb);
754 	secpath_reset(skb);
755 }
756 
757 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
758 {
759 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
760 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
761 	__skb_queue_tail(&sk->sk_receive_queue, skb);
762 }
763 
764 /* tcp_timer.c */
765 void tcp_init_xmit_timers(struct sock *);
766 static inline void tcp_clear_xmit_timers(struct sock *sk)
767 {
768 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
769 		__sock_put(sk);
770 
771 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
772 		__sock_put(sk);
773 
774 	inet_csk_clear_xmit_timers(sk);
775 }
776 
777 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
778 unsigned int tcp_current_mss(struct sock *sk);
779 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
780 
781 /* Bound MSS / TSO packet size with the half of the window */
782 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
783 {
784 	int cutoff;
785 
786 	/* When peer uses tiny windows, there is no use in packetizing
787 	 * to sub-MSS pieces for the sake of SWS or making sure there
788 	 * are enough packets in the pipe for fast recovery.
789 	 *
790 	 * On the other hand, for extremely large MSS devices, handling
791 	 * smaller than MSS windows in this way does make sense.
792 	 */
793 	if (tp->max_window > TCP_MSS_DEFAULT)
794 		cutoff = (tp->max_window >> 1);
795 	else
796 		cutoff = tp->max_window;
797 
798 	if (cutoff && pktsize > cutoff)
799 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
800 	else
801 		return pktsize;
802 }
803 
804 /* tcp.c */
805 void tcp_get_info(struct sock *, struct tcp_info *);
806 
807 /* Read 'sendfile()'-style from a TCP socket */
808 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
809 		  sk_read_actor_t recv_actor);
810 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
811 			sk_read_actor_t recv_actor, bool noack,
812 			u32 *copied_seq);
813 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
814 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
815 void tcp_read_done(struct sock *sk, size_t len);
816 
817 void tcp_initialize_rcv_mss(struct sock *sk);
818 
819 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
820 int tcp_mss_to_mtu(struct sock *sk, int mss);
821 void tcp_mtup_init(struct sock *sk);
822 
823 static inline unsigned int tcp_rto_max(const struct sock *sk)
824 {
825 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
826 }
827 
828 static inline void tcp_bound_rto(struct sock *sk)
829 {
830 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
831 }
832 
833 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
834 {
835 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
836 }
837 
838 u32 tcp_delack_max(const struct sock *sk);
839 
840 /* Compute the actual rto_min value */
841 static inline u32 tcp_rto_min(const struct sock *sk)
842 {
843 	const struct dst_entry *dst = __sk_dst_get(sk);
844 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
845 
846 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
847 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
848 	return rto_min;
849 }
850 
851 static inline u32 tcp_rto_min_us(const struct sock *sk)
852 {
853 	return jiffies_to_usecs(tcp_rto_min(sk));
854 }
855 
856 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
857 {
858 	return dst_metric_locked(dst, RTAX_CC_ALGO);
859 }
860 
861 /* Minimum RTT in usec. ~0 means not available. */
862 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
863 {
864 	return minmax_get(&tp->rtt_min);
865 }
866 
867 /* Compute the actual receive window we are currently advertising.
868  * Rcv_nxt can be after the window if our peer push more data
869  * than the offered window.
870  */
871 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
872 {
873 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
874 
875 	if (win < 0)
876 		win = 0;
877 	return (u32) win;
878 }
879 
880 /* Choose a new window, without checks for shrinking, and without
881  * scaling applied to the result.  The caller does these things
882  * if necessary.  This is a "raw" window selection.
883  */
884 u32 __tcp_select_window(struct sock *sk);
885 
886 void tcp_send_window_probe(struct sock *sk);
887 
888 /* TCP uses 32bit jiffies to save some space.
889  * Note that this is different from tcp_time_stamp, which
890  * historically has been the same until linux-4.13.
891  */
892 #define tcp_jiffies32 ((u32)jiffies)
893 
894 /*
895  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
896  * It is no longer tied to jiffies, but to 1 ms clock.
897  * Note: double check if you want to use tcp_jiffies32 instead of this.
898  */
899 #define TCP_TS_HZ	1000
900 
901 static inline u64 tcp_clock_ns(void)
902 {
903 	return ktime_get_ns();
904 }
905 
906 static inline u64 tcp_clock_us(void)
907 {
908 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
909 }
910 
911 static inline u64 tcp_clock_ms(void)
912 {
913 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
914 }
915 
916 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
917  * or usec resolution. Each socket carries a flag to select one or other
918  * resolution, as the route attribute could change anytime.
919  * Each flow must stick to initial resolution.
920  */
921 static inline u32 tcp_clock_ts(bool usec_ts)
922 {
923 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
924 }
925 
926 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
927 {
928 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
929 }
930 
931 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
932 {
933 	if (tp->tcp_usec_ts)
934 		return tp->tcp_mstamp;
935 	return tcp_time_stamp_ms(tp);
936 }
937 
938 void tcp_mstamp_refresh(struct tcp_sock *tp);
939 
940 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
941 {
942 	return max_t(s64, t1 - t0, 0);
943 }
944 
945 /* provide the departure time in us unit */
946 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
947 {
948 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
949 }
950 
951 /* Provide skb TSval in usec or ms unit */
952 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
953 {
954 	if (usec_ts)
955 		return tcp_skb_timestamp_us(skb);
956 
957 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
958 }
959 
960 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
961 {
962 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
963 }
964 
965 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
966 {
967 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
968 }
969 
970 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
971 
972 #define TCPHDR_FIN	BIT(0)
973 #define TCPHDR_SYN	BIT(1)
974 #define TCPHDR_RST	BIT(2)
975 #define TCPHDR_PSH	BIT(3)
976 #define TCPHDR_ACK	BIT(4)
977 #define TCPHDR_URG	BIT(5)
978 #define TCPHDR_ECE	BIT(6)
979 #define TCPHDR_CWR	BIT(7)
980 #define TCPHDR_AE	BIT(8)
981 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
982 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
983 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
984 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
985 			    TCPHDR_FLAGS_MASK)
986 
987 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
988 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
989 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
990 
991 #define TCP_ACCECN_CEP_ACE_MASK 0x7
992 #define TCP_ACCECN_ACE_MAX_DELTA 6
993 
994 /* To avoid/detect middlebox interference, not all counters start at 0.
995  * See draft-ietf-tcpm-accurate-ecn for the latest values.
996  */
997 #define TCP_ACCECN_CEP_INIT_OFFSET 5
998 #define TCP_ACCECN_E1B_INIT_OFFSET 1
999 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1000 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1001 
1002 /* State flags for sacked in struct tcp_skb_cb */
1003 enum tcp_skb_cb_sacked_flags {
1004 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1005 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1006 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1007 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1008 				   TCPCB_LOST),	/* All tag bits			*/
1009 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1010 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1011 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1012 				   TCPCB_REPAIRED),
1013 };
1014 
1015 /* This is what the send packet queuing engine uses to pass
1016  * TCP per-packet control information to the transmission code.
1017  * We also store the host-order sequence numbers in here too.
1018  * This is 44 bytes if IPV6 is enabled.
1019  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1020  */
1021 struct tcp_skb_cb {
1022 	__u32		seq;		/* Starting sequence number	*/
1023 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1024 	union {
1025 		/* Note :
1026 		 * 	  tcp_gso_segs/size are used in write queue only,
1027 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1028 		 */
1029 		struct {
1030 			u16	tcp_gso_segs;
1031 			u16	tcp_gso_size;
1032 		};
1033 	};
1034 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1035 
1036 	__u8		sacked;		/* State flags for SACK.	*/
1037 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1038 #define TSTAMP_ACK_SK	0x1
1039 #define TSTAMP_ACK_BPF	0x2
1040 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1041 			eor:1,		/* Is skb MSG_EOR marked? */
1042 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1043 			unused:4;
1044 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1045 	union {
1046 		struct {
1047 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1048 			/* There is space for up to 24 bytes */
1049 			__u32 is_app_limited:1, /* cwnd not fully used? */
1050 			      delivered_ce:20,
1051 			      unused:11;
1052 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1053 			__u32 delivered;
1054 			/* start of send pipeline phase */
1055 			u64 first_tx_mstamp;
1056 			/* when we reached the "delivered" count */
1057 			u64 delivered_mstamp;
1058 		} tx;   /* only used for outgoing skbs */
1059 		union {
1060 			struct inet_skb_parm	h4;
1061 #if IS_ENABLED(CONFIG_IPV6)
1062 			struct inet6_skb_parm	h6;
1063 #endif
1064 		} header;	/* For incoming skbs */
1065 	};
1066 };
1067 
1068 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1069 
1070 extern const struct inet_connection_sock_af_ops ipv4_specific;
1071 
1072 #if IS_ENABLED(CONFIG_IPV6)
1073 /* This is the variant of inet6_iif() that must be used by TCP,
1074  * as TCP moves IP6CB into a different location in skb->cb[]
1075  */
1076 static inline int tcp_v6_iif(const struct sk_buff *skb)
1077 {
1078 	return TCP_SKB_CB(skb)->header.h6.iif;
1079 }
1080 
1081 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1082 {
1083 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1084 
1085 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1086 }
1087 
1088 /* TCP_SKB_CB reference means this can not be used from early demux */
1089 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1090 {
1091 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1092 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1093 		return TCP_SKB_CB(skb)->header.h6.iif;
1094 #endif
1095 	return 0;
1096 }
1097 
1098 extern const struct inet_connection_sock_af_ops ipv6_specific;
1099 
1100 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1101 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1102 void tcp_v6_early_demux(struct sk_buff *skb);
1103 
1104 #endif
1105 
1106 /* TCP_SKB_CB reference means this can not be used from early demux */
1107 static inline int tcp_v4_sdif(struct sk_buff *skb)
1108 {
1109 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1110 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1111 		return TCP_SKB_CB(skb)->header.h4.iif;
1112 #endif
1113 	return 0;
1114 }
1115 
1116 /* Due to TSO, an SKB can be composed of multiple actual
1117  * packets.  To keep these tracked properly, we use this.
1118  */
1119 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1120 {
1121 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1122 }
1123 
1124 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1125 {
1126 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1127 }
1128 
1129 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1130 {
1131 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1132 }
1133 
1134 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1135 static inline int tcp_skb_mss(const struct sk_buff *skb)
1136 {
1137 	return TCP_SKB_CB(skb)->tcp_gso_size;
1138 }
1139 
1140 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1141 {
1142 	return likely(!TCP_SKB_CB(skb)->eor);
1143 }
1144 
1145 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1146 					const struct sk_buff *from)
1147 {
1148 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1149 	return likely(tcp_skb_can_collapse_to(to) &&
1150 		      mptcp_skb_can_collapse(to, from) &&
1151 		      skb_pure_zcopy_same(to, from) &&
1152 		      skb_frags_readable(to) == skb_frags_readable(from));
1153 }
1154 
1155 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1156 					   const struct sk_buff *from)
1157 {
1158 	return likely(mptcp_skb_can_collapse(to, from) &&
1159 		      !skb_cmp_decrypted(to, from));
1160 }
1161 
1162 /* Events passed to congestion control interface */
1163 enum tcp_ca_event {
1164 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1165 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1166 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1167 	CA_EVENT_LOSS,		/* loss timeout */
1168 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1169 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1170 };
1171 
1172 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1173 enum tcp_ca_ack_event_flags {
1174 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1175 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1176 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1177 };
1178 
1179 /*
1180  * Interface for adding new TCP congestion control handlers
1181  */
1182 #define TCP_CA_NAME_MAX	16
1183 #define TCP_CA_MAX	128
1184 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1185 
1186 #define TCP_CA_UNSPEC	0
1187 
1188 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1189 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1190 /* Requires ECN/ECT set on all packets */
1191 #define TCP_CONG_NEEDS_ECN		BIT(1)
1192 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1193 
1194 union tcp_cc_info;
1195 
1196 struct ack_sample {
1197 	u32 pkts_acked;
1198 	s32 rtt_us;
1199 	u32 in_flight;
1200 };
1201 
1202 /* A rate sample measures the number of (original/retransmitted) data
1203  * packets delivered "delivered" over an interval of time "interval_us".
1204  * The tcp_rate.c code fills in the rate sample, and congestion
1205  * control modules that define a cong_control function to run at the end
1206  * of ACK processing can optionally chose to consult this sample when
1207  * setting cwnd and pacing rate.
1208  * A sample is invalid if "delivered" or "interval_us" is negative.
1209  */
1210 struct rate_sample {
1211 	u64  prior_mstamp; /* starting timestamp for interval */
1212 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1213 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1214 	s32  delivered;		/* number of packets delivered over interval */
1215 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1216 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1217 	u32 snd_interval_us;	/* snd interval for delivered packets */
1218 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1219 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1220 	int  losses;		/* number of packets marked lost upon ACK */
1221 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1222 	u32  prior_in_flight;	/* in flight before this ACK */
1223 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1224 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1225 	bool is_retrans;	/* is sample from retransmission? */
1226 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1227 };
1228 
1229 struct tcp_congestion_ops {
1230 /* fast path fields are put first to fill one cache line */
1231 
1232 	/* return slow start threshold (required) */
1233 	u32 (*ssthresh)(struct sock *sk);
1234 
1235 	/* do new cwnd calculation (required) */
1236 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1237 
1238 	/* call before changing ca_state (optional) */
1239 	void (*set_state)(struct sock *sk, u8 new_state);
1240 
1241 	/* call when cwnd event occurs (optional) */
1242 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1243 
1244 	/* call when ack arrives (optional) */
1245 	void (*in_ack_event)(struct sock *sk, u32 flags);
1246 
1247 	/* hook for packet ack accounting (optional) */
1248 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1249 
1250 	/* override sysctl_tcp_min_tso_segs */
1251 	u32 (*min_tso_segs)(struct sock *sk);
1252 
1253 	/* call when packets are delivered to update cwnd and pacing rate,
1254 	 * after all the ca_state processing. (optional)
1255 	 */
1256 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1257 
1258 
1259 	/* new value of cwnd after loss (required) */
1260 	u32  (*undo_cwnd)(struct sock *sk);
1261 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1262 	u32 (*sndbuf_expand)(struct sock *sk);
1263 
1264 /* control/slow paths put last */
1265 	/* get info for inet_diag (optional) */
1266 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1267 			   union tcp_cc_info *info);
1268 
1269 	char 			name[TCP_CA_NAME_MAX];
1270 	struct module		*owner;
1271 	struct list_head	list;
1272 	u32			key;
1273 	u32			flags;
1274 
1275 	/* initialize private data (optional) */
1276 	void (*init)(struct sock *sk);
1277 	/* cleanup private data  (optional) */
1278 	void (*release)(struct sock *sk);
1279 } ____cacheline_aligned_in_smp;
1280 
1281 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1282 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1283 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1284 				  struct tcp_congestion_ops *old_type);
1285 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1286 
1287 void tcp_assign_congestion_control(struct sock *sk);
1288 void tcp_init_congestion_control(struct sock *sk);
1289 void tcp_cleanup_congestion_control(struct sock *sk);
1290 int tcp_set_default_congestion_control(struct net *net, const char *name);
1291 void tcp_get_default_congestion_control(struct net *net, char *name);
1292 void tcp_get_available_congestion_control(char *buf, size_t len);
1293 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1294 int tcp_set_allowed_congestion_control(char *allowed);
1295 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1296 			       bool cap_net_admin);
1297 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1298 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1299 
1300 u32 tcp_reno_ssthresh(struct sock *sk);
1301 u32 tcp_reno_undo_cwnd(struct sock *sk);
1302 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1303 extern struct tcp_congestion_ops tcp_reno;
1304 
1305 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1306 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1307 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1308 #ifdef CONFIG_INET
1309 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1310 #else
1311 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1312 {
1313 	return NULL;
1314 }
1315 #endif
1316 
1317 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1318 {
1319 	const struct inet_connection_sock *icsk = inet_csk(sk);
1320 
1321 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1322 }
1323 
1324 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1325 {
1326 	const struct inet_connection_sock *icsk = inet_csk(sk);
1327 
1328 	if (icsk->icsk_ca_ops->cwnd_event)
1329 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1330 }
1331 
1332 /* From tcp_cong.c */
1333 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1334 
1335 /* From tcp_rate.c */
1336 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1337 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1338 			    struct rate_sample *rs);
1339 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1340 		  bool is_sack_reneg, struct rate_sample *rs);
1341 void tcp_rate_check_app_limited(struct sock *sk);
1342 
1343 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1344 {
1345 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1346 }
1347 
1348 /* These functions determine how the current flow behaves in respect of SACK
1349  * handling. SACK is negotiated with the peer, and therefore it can vary
1350  * between different flows.
1351  *
1352  * tcp_is_sack - SACK enabled
1353  * tcp_is_reno - No SACK
1354  */
1355 static inline int tcp_is_sack(const struct tcp_sock *tp)
1356 {
1357 	return likely(tp->rx_opt.sack_ok);
1358 }
1359 
1360 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1361 {
1362 	return !tcp_is_sack(tp);
1363 }
1364 
1365 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1366 {
1367 	return tp->sacked_out + tp->lost_out;
1368 }
1369 
1370 /* This determines how many packets are "in the network" to the best
1371  * of our knowledge.  In many cases it is conservative, but where
1372  * detailed information is available from the receiver (via SACK
1373  * blocks etc.) we can make more aggressive calculations.
1374  *
1375  * Use this for decisions involving congestion control, use just
1376  * tp->packets_out to determine if the send queue is empty or not.
1377  *
1378  * Read this equation as:
1379  *
1380  *	"Packets sent once on transmission queue" MINUS
1381  *	"Packets left network, but not honestly ACKed yet" PLUS
1382  *	"Packets fast retransmitted"
1383  */
1384 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1385 {
1386 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1387 }
1388 
1389 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1390 
1391 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1392 {
1393 	return tp->snd_cwnd;
1394 }
1395 
1396 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1397 {
1398 	WARN_ON_ONCE((int)val <= 0);
1399 	tp->snd_cwnd = val;
1400 }
1401 
1402 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1403 {
1404 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1405 }
1406 
1407 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1408 {
1409 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1410 }
1411 
1412 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1413 {
1414 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1415 	       (1 << inet_csk(sk)->icsk_ca_state);
1416 }
1417 
1418 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1419  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1420  * ssthresh.
1421  */
1422 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1423 {
1424 	const struct tcp_sock *tp = tcp_sk(sk);
1425 
1426 	if (tcp_in_cwnd_reduction(sk))
1427 		return tp->snd_ssthresh;
1428 	else
1429 		return max(tp->snd_ssthresh,
1430 			   ((tcp_snd_cwnd(tp) >> 1) +
1431 			    (tcp_snd_cwnd(tp) >> 2)));
1432 }
1433 
1434 /* Use define here intentionally to get WARN_ON location shown at the caller */
1435 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1436 
1437 void tcp_enter_cwr(struct sock *sk);
1438 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1439 
1440 /* The maximum number of MSS of available cwnd for which TSO defers
1441  * sending if not using sysctl_tcp_tso_win_divisor.
1442  */
1443 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1444 {
1445 	return 3;
1446 }
1447 
1448 /* Returns end sequence number of the receiver's advertised window */
1449 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1450 {
1451 	return tp->snd_una + tp->snd_wnd;
1452 }
1453 
1454 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1455  * flexible approach. The RFC suggests cwnd should not be raised unless
1456  * it was fully used previously. And that's exactly what we do in
1457  * congestion avoidance mode. But in slow start we allow cwnd to grow
1458  * as long as the application has used half the cwnd.
1459  * Example :
1460  *    cwnd is 10 (IW10), but application sends 9 frames.
1461  *    We allow cwnd to reach 18 when all frames are ACKed.
1462  * This check is safe because it's as aggressive as slow start which already
1463  * risks 100% overshoot. The advantage is that we discourage application to
1464  * either send more filler packets or data to artificially blow up the cwnd
1465  * usage, and allow application-limited process to probe bw more aggressively.
1466  */
1467 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1468 {
1469 	const struct tcp_sock *tp = tcp_sk(sk);
1470 
1471 	if (tp->is_cwnd_limited)
1472 		return true;
1473 
1474 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1475 	if (tcp_in_slow_start(tp))
1476 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1477 
1478 	return false;
1479 }
1480 
1481 /* BBR congestion control needs pacing.
1482  * Same remark for SO_MAX_PACING_RATE.
1483  * sch_fq packet scheduler is efficiently handling pacing,
1484  * but is not always installed/used.
1485  * Return true if TCP stack should pace packets itself.
1486  */
1487 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1488 {
1489 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1490 }
1491 
1492 /* Estimates in how many jiffies next packet for this flow can be sent.
1493  * Scheduling a retransmit timer too early would be silly.
1494  */
1495 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1496 {
1497 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1498 
1499 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1500 }
1501 
1502 static inline void tcp_reset_xmit_timer(struct sock *sk,
1503 					const int what,
1504 					unsigned long when,
1505 					bool pace_delay)
1506 {
1507 	if (pace_delay)
1508 		when += tcp_pacing_delay(sk);
1509 	inet_csk_reset_xmit_timer(sk, what, when,
1510 				  tcp_rto_max(sk));
1511 }
1512 
1513 /* Something is really bad, we could not queue an additional packet,
1514  * because qdisc is full or receiver sent a 0 window, or we are paced.
1515  * We do not want to add fuel to the fire, or abort too early,
1516  * so make sure the timer we arm now is at least 200ms in the future,
1517  * regardless of current icsk_rto value (as it could be ~2ms)
1518  */
1519 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1520 {
1521 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1522 }
1523 
1524 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1525 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1526 					    unsigned long max_when)
1527 {
1528 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1529 			   inet_csk(sk)->icsk_backoff);
1530 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1531 
1532 	return (unsigned long)min_t(u64, when, max_when);
1533 }
1534 
1535 static inline void tcp_check_probe_timer(struct sock *sk)
1536 {
1537 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1538 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1539 				     tcp_probe0_base(sk), true);
1540 }
1541 
1542 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1543 {
1544 	tp->snd_wl1 = seq;
1545 }
1546 
1547 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1548 {
1549 	tp->snd_wl1 = seq;
1550 }
1551 
1552 /*
1553  * Calculate(/check) TCP checksum
1554  */
1555 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1556 				   __be32 daddr, __wsum base)
1557 {
1558 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1559 }
1560 
1561 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1562 {
1563 	return !skb_csum_unnecessary(skb) &&
1564 		__skb_checksum_complete(skb);
1565 }
1566 
1567 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1568 		     enum skb_drop_reason *reason);
1569 
1570 
1571 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1572 void tcp_set_state(struct sock *sk, int state);
1573 void tcp_done(struct sock *sk);
1574 int tcp_abort(struct sock *sk, int err);
1575 
1576 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1577 {
1578 	rx_opt->dsack = 0;
1579 	rx_opt->num_sacks = 0;
1580 }
1581 
1582 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1583 
1584 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1585 {
1586 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1587 	struct tcp_sock *tp = tcp_sk(sk);
1588 	s32 delta;
1589 
1590 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1591 	    tp->packets_out || ca_ops->cong_control)
1592 		return;
1593 	delta = tcp_jiffies32 - tp->lsndtime;
1594 	if (delta > inet_csk(sk)->icsk_rto)
1595 		tcp_cwnd_restart(sk, delta);
1596 }
1597 
1598 /* Determine a window scaling and initial window to offer. */
1599 void tcp_select_initial_window(const struct sock *sk, int __space,
1600 			       __u32 mss, __u32 *rcv_wnd,
1601 			       __u32 *window_clamp, int wscale_ok,
1602 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1603 
1604 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1605 {
1606 	s64 scaled_space = (s64)space * scaling_ratio;
1607 
1608 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1609 }
1610 
1611 static inline int tcp_win_from_space(const struct sock *sk, int space)
1612 {
1613 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1614 }
1615 
1616 /* inverse of __tcp_win_from_space() */
1617 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1618 {
1619 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1620 
1621 	do_div(val, scaling_ratio);
1622 	return val;
1623 }
1624 
1625 static inline int tcp_space_from_win(const struct sock *sk, int win)
1626 {
1627 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1628 }
1629 
1630 /* Assume a 50% default for skb->len/skb->truesize ratio.
1631  * This may be adjusted later in tcp_measure_rcv_mss().
1632  */
1633 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1634 
1635 static inline void tcp_scaling_ratio_init(struct sock *sk)
1636 {
1637 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1638 }
1639 
1640 /* Note: caller must be prepared to deal with negative returns */
1641 static inline int tcp_space(const struct sock *sk)
1642 {
1643 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1644 				  READ_ONCE(sk->sk_backlog.len) -
1645 				  atomic_read(&sk->sk_rmem_alloc));
1646 }
1647 
1648 static inline int tcp_full_space(const struct sock *sk)
1649 {
1650 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1651 }
1652 
1653 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1654 {
1655 	int unused_mem = sk_unused_reserved_mem(sk);
1656 	struct tcp_sock *tp = tcp_sk(sk);
1657 
1658 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1659 	if (unused_mem)
1660 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1661 					 tcp_win_from_space(sk, unused_mem));
1662 }
1663 
1664 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1665 {
1666 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1667 }
1668 
1669 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1670 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1671 
1672 
1673 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1674  * If 87.5 % (7/8) of the space has been consumed, we want to override
1675  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1676  * len/truesize ratio.
1677  */
1678 static inline bool tcp_rmem_pressure(const struct sock *sk)
1679 {
1680 	int rcvbuf, threshold;
1681 
1682 	if (tcp_under_memory_pressure(sk))
1683 		return true;
1684 
1685 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1686 	threshold = rcvbuf - (rcvbuf >> 3);
1687 
1688 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1689 }
1690 
1691 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1692 {
1693 	const struct tcp_sock *tp = tcp_sk(sk);
1694 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1695 
1696 	if (avail <= 0)
1697 		return false;
1698 
1699 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1700 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1701 }
1702 
1703 extern void tcp_openreq_init_rwin(struct request_sock *req,
1704 				  const struct sock *sk_listener,
1705 				  const struct dst_entry *dst);
1706 
1707 void tcp_enter_memory_pressure(struct sock *sk);
1708 void tcp_leave_memory_pressure(struct sock *sk);
1709 
1710 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1711 {
1712 	struct net *net = sock_net((struct sock *)tp);
1713 	int val;
1714 
1715 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1716 	 * and do_tcp_setsockopt().
1717 	 */
1718 	val = READ_ONCE(tp->keepalive_intvl);
1719 
1720 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1721 }
1722 
1723 static inline int keepalive_time_when(const struct tcp_sock *tp)
1724 {
1725 	struct net *net = sock_net((struct sock *)tp);
1726 	int val;
1727 
1728 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1729 	val = READ_ONCE(tp->keepalive_time);
1730 
1731 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1732 }
1733 
1734 static inline int keepalive_probes(const struct tcp_sock *tp)
1735 {
1736 	struct net *net = sock_net((struct sock *)tp);
1737 	int val;
1738 
1739 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1740 	 * and do_tcp_setsockopt().
1741 	 */
1742 	val = READ_ONCE(tp->keepalive_probes);
1743 
1744 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1745 }
1746 
1747 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1748 {
1749 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1750 
1751 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1752 			  tcp_jiffies32 - tp->rcv_tstamp);
1753 }
1754 
1755 static inline int tcp_fin_time(const struct sock *sk)
1756 {
1757 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1758 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1759 	const int rto = inet_csk(sk)->icsk_rto;
1760 
1761 	if (fin_timeout < (rto << 2) - (rto >> 1))
1762 		fin_timeout = (rto << 2) - (rto >> 1);
1763 
1764 	return fin_timeout;
1765 }
1766 
1767 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1768 				  int paws_win)
1769 {
1770 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1771 		return true;
1772 	if (unlikely(!time_before32(ktime_get_seconds(),
1773 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1774 		return true;
1775 	/*
1776 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1777 	 * then following tcp messages have valid values. Ignore 0 value,
1778 	 * or else 'negative' tsval might forbid us to accept their packets.
1779 	 */
1780 	if (!rx_opt->ts_recent)
1781 		return true;
1782 	return false;
1783 }
1784 
1785 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1786 				   int rst)
1787 {
1788 	if (tcp_paws_check(rx_opt, 0))
1789 		return false;
1790 
1791 	/* RST segments are not recommended to carry timestamp,
1792 	   and, if they do, it is recommended to ignore PAWS because
1793 	   "their cleanup function should take precedence over timestamps."
1794 	   Certainly, it is mistake. It is necessary to understand the reasons
1795 	   of this constraint to relax it: if peer reboots, clock may go
1796 	   out-of-sync and half-open connections will not be reset.
1797 	   Actually, the problem would be not existing if all
1798 	   the implementations followed draft about maintaining clock
1799 	   via reboots. Linux-2.2 DOES NOT!
1800 
1801 	   However, we can relax time bounds for RST segments to MSL.
1802 	 */
1803 	if (rst && !time_before32(ktime_get_seconds(),
1804 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1805 		return false;
1806 	return true;
1807 }
1808 
1809 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1810 {
1811 	u32 ace;
1812 
1813 	/* mptcp hooks are only on the slow path */
1814 	if (sk_is_mptcp((struct sock *)tp))
1815 		return;
1816 
1817 	ace = tcp_ecn_mode_accecn(tp) ?
1818 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1819 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1820 
1821 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1822 			       (ace << 22) |
1823 			       ntohl(TCP_FLAG_ACK) |
1824 			       snd_wnd);
1825 }
1826 
1827 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1828 {
1829 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1830 }
1831 
1832 static inline void tcp_fast_path_check(struct sock *sk)
1833 {
1834 	struct tcp_sock *tp = tcp_sk(sk);
1835 
1836 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1837 	    tp->rcv_wnd &&
1838 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1839 	    !tp->urg_data)
1840 		tcp_fast_path_on(tp);
1841 }
1842 
1843 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1844 			  int mib_idx, u32 *last_oow_ack_time);
1845 
1846 static inline void tcp_mib_init(struct net *net)
1847 {
1848 	/* See RFC 2012 */
1849 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1850 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1851 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1852 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1853 }
1854 
1855 /* from STCP */
1856 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1857 {
1858 	tp->retransmit_skb_hint = NULL;
1859 }
1860 
1861 #define tcp_md5_addr tcp_ao_addr
1862 
1863 /* - key database */
1864 struct tcp_md5sig_key {
1865 	struct hlist_node	node;
1866 	u8			keylen;
1867 	u8			family; /* AF_INET or AF_INET6 */
1868 	u8			prefixlen;
1869 	u8			flags;
1870 	union tcp_md5_addr	addr;
1871 	int			l3index; /* set if key added with L3 scope */
1872 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1873 	struct rcu_head		rcu;
1874 };
1875 
1876 /* - sock block */
1877 struct tcp_md5sig_info {
1878 	struct hlist_head	head;
1879 	struct rcu_head		rcu;
1880 };
1881 
1882 /* - pseudo header */
1883 struct tcp4_pseudohdr {
1884 	__be32		saddr;
1885 	__be32		daddr;
1886 	__u8		pad;
1887 	__u8		protocol;
1888 	__be16		len;
1889 };
1890 
1891 struct tcp6_pseudohdr {
1892 	struct in6_addr	saddr;
1893 	struct in6_addr daddr;
1894 	__be32		len;
1895 	__be32		protocol;	/* including padding */
1896 };
1897 
1898 union tcp_md5sum_block {
1899 	struct tcp4_pseudohdr ip4;
1900 #if IS_ENABLED(CONFIG_IPV6)
1901 	struct tcp6_pseudohdr ip6;
1902 #endif
1903 };
1904 
1905 /*
1906  * struct tcp_sigpool - per-CPU pool of ahash_requests
1907  * @scratch: per-CPU temporary area, that can be used between
1908  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1909  *	     crypto request
1910  * @req: pre-allocated ahash request
1911  */
1912 struct tcp_sigpool {
1913 	void *scratch;
1914 	struct ahash_request *req;
1915 };
1916 
1917 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1918 void tcp_sigpool_get(unsigned int id);
1919 void tcp_sigpool_release(unsigned int id);
1920 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1921 			      const struct sk_buff *skb,
1922 			      unsigned int header_len);
1923 
1924 /**
1925  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1926  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1927  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1928  *
1929  * Returns: 0 on success, error otherwise.
1930  */
1931 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1932 /**
1933  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1934  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1935  */
1936 void tcp_sigpool_end(struct tcp_sigpool *c);
1937 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1938 /* - functions */
1939 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1940 			const struct sock *sk, const struct sk_buff *skb);
1941 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1942 		   int family, u8 prefixlen, int l3index, u8 flags,
1943 		   const u8 *newkey, u8 newkeylen);
1944 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1945 		     int family, u8 prefixlen, int l3index,
1946 		     struct tcp_md5sig_key *key);
1947 
1948 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1949 		   int family, u8 prefixlen, int l3index, u8 flags);
1950 void tcp_clear_md5_list(struct sock *sk);
1951 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1952 					 const struct sock *addr_sk);
1953 
1954 #ifdef CONFIG_TCP_MD5SIG
1955 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1956 					   const union tcp_md5_addr *addr,
1957 					   int family, bool any_l3index);
1958 static inline struct tcp_md5sig_key *
1959 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1960 		  const union tcp_md5_addr *addr, int family)
1961 {
1962 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1963 		return NULL;
1964 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1965 }
1966 
1967 static inline struct tcp_md5sig_key *
1968 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1969 			      const union tcp_md5_addr *addr, int family)
1970 {
1971 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1972 		return NULL;
1973 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1974 }
1975 
1976 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1977 void tcp_md5_destruct_sock(struct sock *sk);
1978 #else
1979 static inline struct tcp_md5sig_key *
1980 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1981 		  const union tcp_md5_addr *addr, int family)
1982 {
1983 	return NULL;
1984 }
1985 
1986 static inline struct tcp_md5sig_key *
1987 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1988 			      const union tcp_md5_addr *addr, int family)
1989 {
1990 	return NULL;
1991 }
1992 
1993 #define tcp_twsk_md5_key(twsk)	NULL
1994 static inline void tcp_md5_destruct_sock(struct sock *sk)
1995 {
1996 }
1997 #endif
1998 
1999 int tcp_md5_alloc_sigpool(void);
2000 void tcp_md5_release_sigpool(void);
2001 void tcp_md5_add_sigpool(void);
2002 extern int tcp_md5_sigpool_id;
2003 
2004 int tcp_md5_hash_key(struct tcp_sigpool *hp,
2005 		     const struct tcp_md5sig_key *key);
2006 
2007 /* From tcp_fastopen.c */
2008 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2009 			    struct tcp_fastopen_cookie *cookie);
2010 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2011 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2012 			    u16 try_exp);
2013 struct tcp_fastopen_request {
2014 	/* Fast Open cookie. Size 0 means a cookie request */
2015 	struct tcp_fastopen_cookie	cookie;
2016 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2017 	size_t				size;
2018 	int				copied;	/* queued in tcp_connect() */
2019 	struct ubuf_info		*uarg;
2020 };
2021 void tcp_free_fastopen_req(struct tcp_sock *tp);
2022 void tcp_fastopen_destroy_cipher(struct sock *sk);
2023 void tcp_fastopen_ctx_destroy(struct net *net);
2024 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2025 			      void *primary_key, void *backup_key);
2026 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2027 			    u64 *key);
2028 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2029 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2030 			      struct request_sock *req,
2031 			      struct tcp_fastopen_cookie *foc,
2032 			      const struct dst_entry *dst);
2033 void tcp_fastopen_init_key_once(struct net *net);
2034 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2035 			     struct tcp_fastopen_cookie *cookie);
2036 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2037 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2038 #define TCP_FASTOPEN_KEY_MAX 2
2039 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2040 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2041 
2042 /* Fastopen key context */
2043 struct tcp_fastopen_context {
2044 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2045 	int		num;
2046 	struct rcu_head	rcu;
2047 };
2048 
2049 void tcp_fastopen_active_disable(struct sock *sk);
2050 bool tcp_fastopen_active_should_disable(struct sock *sk);
2051 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2052 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2053 
2054 /* Caller needs to wrap with rcu_read_(un)lock() */
2055 static inline
2056 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2057 {
2058 	struct tcp_fastopen_context *ctx;
2059 
2060 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2061 	if (!ctx)
2062 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2063 	return ctx;
2064 }
2065 
2066 static inline
2067 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2068 			       const struct tcp_fastopen_cookie *orig)
2069 {
2070 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2071 	    orig->len == foc->len &&
2072 	    !memcmp(orig->val, foc->val, foc->len))
2073 		return true;
2074 	return false;
2075 }
2076 
2077 static inline
2078 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2079 {
2080 	return ctx->num;
2081 }
2082 
2083 /* Latencies incurred by various limits for a sender. They are
2084  * chronograph-like stats that are mutually exclusive.
2085  */
2086 enum tcp_chrono {
2087 	TCP_CHRONO_UNSPEC,
2088 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2089 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2090 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2091 	__TCP_CHRONO_MAX,
2092 };
2093 
2094 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2095 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2096 
2097 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2098  * the same memory storage than skb->destructor/_skb_refdst
2099  */
2100 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2101 {
2102 	skb->destructor = NULL;
2103 	skb->_skb_refdst = 0UL;
2104 }
2105 
2106 #define tcp_skb_tsorted_save(skb) {		\
2107 	unsigned long _save = skb->_skb_refdst;	\
2108 	skb->_skb_refdst = 0UL;
2109 
2110 #define tcp_skb_tsorted_restore(skb)		\
2111 	skb->_skb_refdst = _save;		\
2112 }
2113 
2114 void tcp_write_queue_purge(struct sock *sk);
2115 
2116 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2117 {
2118 	return skb_rb_first(&sk->tcp_rtx_queue);
2119 }
2120 
2121 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2122 {
2123 	return skb_rb_last(&sk->tcp_rtx_queue);
2124 }
2125 
2126 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2127 {
2128 	return skb_peek_tail(&sk->sk_write_queue);
2129 }
2130 
2131 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2132 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2133 
2134 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2135 {
2136 	return skb_peek(&sk->sk_write_queue);
2137 }
2138 
2139 static inline bool tcp_skb_is_last(const struct sock *sk,
2140 				   const struct sk_buff *skb)
2141 {
2142 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2143 }
2144 
2145 /**
2146  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2147  * @sk: socket
2148  *
2149  * Since the write queue can have a temporary empty skb in it,
2150  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2151  */
2152 static inline bool tcp_write_queue_empty(const struct sock *sk)
2153 {
2154 	const struct tcp_sock *tp = tcp_sk(sk);
2155 
2156 	return tp->write_seq == tp->snd_nxt;
2157 }
2158 
2159 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2160 {
2161 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2162 }
2163 
2164 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2165 {
2166 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2167 }
2168 
2169 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2170 {
2171 	__skb_queue_tail(&sk->sk_write_queue, skb);
2172 
2173 	/* Queue it, remembering where we must start sending. */
2174 	if (sk->sk_write_queue.next == skb)
2175 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2176 }
2177 
2178 /* Insert new before skb on the write queue of sk.  */
2179 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2180 						  struct sk_buff *skb,
2181 						  struct sock *sk)
2182 {
2183 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2184 }
2185 
2186 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2187 {
2188 	tcp_skb_tsorted_anchor_cleanup(skb);
2189 	__skb_unlink(skb, &sk->sk_write_queue);
2190 }
2191 
2192 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2193 
2194 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2195 {
2196 	tcp_skb_tsorted_anchor_cleanup(skb);
2197 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2198 }
2199 
2200 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2201 {
2202 	list_del(&skb->tcp_tsorted_anchor);
2203 	tcp_rtx_queue_unlink(skb, sk);
2204 	tcp_wmem_free_skb(sk, skb);
2205 }
2206 
2207 static inline void tcp_write_collapse_fence(struct sock *sk)
2208 {
2209 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2210 
2211 	if (skb)
2212 		TCP_SKB_CB(skb)->eor = 1;
2213 }
2214 
2215 static inline void tcp_push_pending_frames(struct sock *sk)
2216 {
2217 	if (tcp_send_head(sk)) {
2218 		struct tcp_sock *tp = tcp_sk(sk);
2219 
2220 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2221 	}
2222 }
2223 
2224 /* Start sequence of the skb just after the highest skb with SACKed
2225  * bit, valid only if sacked_out > 0 or when the caller has ensured
2226  * validity by itself.
2227  */
2228 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2229 {
2230 	if (!tp->sacked_out)
2231 		return tp->snd_una;
2232 
2233 	if (tp->highest_sack == NULL)
2234 		return tp->snd_nxt;
2235 
2236 	return TCP_SKB_CB(tp->highest_sack)->seq;
2237 }
2238 
2239 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2240 {
2241 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2242 }
2243 
2244 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2245 {
2246 	return tcp_sk(sk)->highest_sack;
2247 }
2248 
2249 static inline void tcp_highest_sack_reset(struct sock *sk)
2250 {
2251 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2252 }
2253 
2254 /* Called when old skb is about to be deleted and replaced by new skb */
2255 static inline void tcp_highest_sack_replace(struct sock *sk,
2256 					    struct sk_buff *old,
2257 					    struct sk_buff *new)
2258 {
2259 	if (old == tcp_highest_sack(sk))
2260 		tcp_sk(sk)->highest_sack = new;
2261 }
2262 
2263 /* This helper checks if socket has IP_TRANSPARENT set */
2264 static inline bool inet_sk_transparent(const struct sock *sk)
2265 {
2266 	switch (sk->sk_state) {
2267 	case TCP_TIME_WAIT:
2268 		return inet_twsk(sk)->tw_transparent;
2269 	case TCP_NEW_SYN_RECV:
2270 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2271 	}
2272 	return inet_test_bit(TRANSPARENT, sk);
2273 }
2274 
2275 /* Determines whether this is a thin stream (which may suffer from
2276  * increased latency). Used to trigger latency-reducing mechanisms.
2277  */
2278 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2279 {
2280 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2281 }
2282 
2283 /* /proc */
2284 enum tcp_seq_states {
2285 	TCP_SEQ_STATE_LISTENING,
2286 	TCP_SEQ_STATE_ESTABLISHED,
2287 };
2288 
2289 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2290 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2291 void tcp_seq_stop(struct seq_file *seq, void *v);
2292 
2293 struct tcp_seq_afinfo {
2294 	sa_family_t			family;
2295 };
2296 
2297 struct tcp_iter_state {
2298 	struct seq_net_private	p;
2299 	enum tcp_seq_states	state;
2300 	struct sock		*syn_wait_sk;
2301 	int			bucket, offset, sbucket, num;
2302 	loff_t			last_pos;
2303 };
2304 
2305 extern struct request_sock_ops tcp_request_sock_ops;
2306 extern struct request_sock_ops tcp6_request_sock_ops;
2307 
2308 void tcp_v4_destroy_sock(struct sock *sk);
2309 
2310 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2311 				netdev_features_t features);
2312 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2313 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2314 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2315 				struct tcphdr *th);
2316 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2317 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2318 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2319 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2320 #ifdef CONFIG_INET
2321 void tcp_gro_complete(struct sk_buff *skb);
2322 #else
2323 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2324 #endif
2325 
2326 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2327 
2328 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2329 {
2330 	struct net *net = sock_net((struct sock *)tp);
2331 	u32 val;
2332 
2333 	val = READ_ONCE(tp->notsent_lowat);
2334 
2335 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2336 }
2337 
2338 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2339 
2340 #ifdef CONFIG_PROC_FS
2341 int tcp4_proc_init(void);
2342 void tcp4_proc_exit(void);
2343 #endif
2344 
2345 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2346 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2347 		     const struct tcp_request_sock_ops *af_ops,
2348 		     struct sock *sk, struct sk_buff *skb);
2349 
2350 /* TCP af-specific functions */
2351 struct tcp_sock_af_ops {
2352 #ifdef CONFIG_TCP_MD5SIG
2353 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2354 						const struct sock *addr_sk);
2355 	int		(*calc_md5_hash)(char *location,
2356 					 const struct tcp_md5sig_key *md5,
2357 					 const struct sock *sk,
2358 					 const struct sk_buff *skb);
2359 	int		(*md5_parse)(struct sock *sk,
2360 				     int optname,
2361 				     sockptr_t optval,
2362 				     int optlen);
2363 #endif
2364 #ifdef CONFIG_TCP_AO
2365 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2366 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2367 					struct sock *addr_sk,
2368 					int sndid, int rcvid);
2369 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2370 			      const struct sock *sk,
2371 			      __be32 sisn, __be32 disn, bool send);
2372 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2373 			    const struct sock *sk, const struct sk_buff *skb,
2374 			    const u8 *tkey, int hash_offset, u32 sne);
2375 #endif
2376 };
2377 
2378 struct tcp_request_sock_ops {
2379 	u16 mss_clamp;
2380 #ifdef CONFIG_TCP_MD5SIG
2381 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2382 						 const struct sock *addr_sk);
2383 	int		(*calc_md5_hash) (char *location,
2384 					  const struct tcp_md5sig_key *md5,
2385 					  const struct sock *sk,
2386 					  const struct sk_buff *skb);
2387 #endif
2388 #ifdef CONFIG_TCP_AO
2389 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2390 					struct request_sock *req,
2391 					int sndid, int rcvid);
2392 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2393 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2394 			      struct request_sock *req, const struct sk_buff *skb,
2395 			      int hash_offset, u32 sne);
2396 #endif
2397 #ifdef CONFIG_SYN_COOKIES
2398 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2399 				 __u16 *mss);
2400 #endif
2401 	struct dst_entry *(*route_req)(const struct sock *sk,
2402 				       struct sk_buff *skb,
2403 				       struct flowi *fl,
2404 				       struct request_sock *req,
2405 				       u32 tw_isn);
2406 	u32 (*init_seq)(const struct sk_buff *skb);
2407 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2408 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2409 			   struct flowi *fl, struct request_sock *req,
2410 			   struct tcp_fastopen_cookie *foc,
2411 			   enum tcp_synack_type synack_type,
2412 			   struct sk_buff *syn_skb);
2413 };
2414 
2415 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2416 #if IS_ENABLED(CONFIG_IPV6)
2417 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2418 #endif
2419 
2420 #ifdef CONFIG_SYN_COOKIES
2421 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2422 					 const struct sock *sk, struct sk_buff *skb,
2423 					 __u16 *mss)
2424 {
2425 	tcp_synq_overflow(sk);
2426 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2427 	return ops->cookie_init_seq(skb, mss);
2428 }
2429 #else
2430 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2431 					 const struct sock *sk, struct sk_buff *skb,
2432 					 __u16 *mss)
2433 {
2434 	return 0;
2435 }
2436 #endif
2437 
2438 struct tcp_key {
2439 	union {
2440 		struct {
2441 			struct tcp_ao_key *ao_key;
2442 			char *traffic_key;
2443 			u32 sne;
2444 			u8 rcv_next;
2445 		};
2446 		struct tcp_md5sig_key *md5_key;
2447 	};
2448 	enum {
2449 		TCP_KEY_NONE = 0,
2450 		TCP_KEY_MD5,
2451 		TCP_KEY_AO,
2452 	} type;
2453 };
2454 
2455 static inline void tcp_get_current_key(const struct sock *sk,
2456 				       struct tcp_key *out)
2457 {
2458 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2459 	const struct tcp_sock *tp = tcp_sk(sk);
2460 #endif
2461 
2462 #ifdef CONFIG_TCP_AO
2463 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2464 		struct tcp_ao_info *ao;
2465 
2466 		ao = rcu_dereference_protected(tp->ao_info,
2467 					       lockdep_sock_is_held(sk));
2468 		if (ao) {
2469 			out->ao_key = READ_ONCE(ao->current_key);
2470 			out->type = TCP_KEY_AO;
2471 			return;
2472 		}
2473 	}
2474 #endif
2475 #ifdef CONFIG_TCP_MD5SIG
2476 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2477 	    rcu_access_pointer(tp->md5sig_info)) {
2478 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2479 		if (out->md5_key) {
2480 			out->type = TCP_KEY_MD5;
2481 			return;
2482 		}
2483 	}
2484 #endif
2485 	out->type = TCP_KEY_NONE;
2486 }
2487 
2488 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2489 {
2490 	if (static_branch_tcp_md5())
2491 		return key->type == TCP_KEY_MD5;
2492 	return false;
2493 }
2494 
2495 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2496 {
2497 	if (static_branch_tcp_ao())
2498 		return key->type == TCP_KEY_AO;
2499 	return false;
2500 }
2501 
2502 int tcpv4_offload_init(void);
2503 
2504 void tcp_v4_init(void);
2505 void tcp_init(void);
2506 
2507 /* tcp_recovery.c */
2508 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2509 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2510 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2511 				u32 reo_wnd);
2512 extern bool tcp_rack_mark_lost(struct sock *sk);
2513 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2514 			     u64 xmit_time);
2515 extern void tcp_rack_reo_timeout(struct sock *sk);
2516 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2517 
2518 /* tcp_plb.c */
2519 
2520 /*
2521  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2522  * expects cong_ratio which represents fraction of traffic that experienced
2523  * congestion over a single RTT. In order to avoid floating point operations,
2524  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2525  */
2526 #define TCP_PLB_SCALE 8
2527 
2528 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2529 struct tcp_plb_state {
2530 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2531 		unused:3;
2532 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2533 };
2534 
2535 static inline void tcp_plb_init(const struct sock *sk,
2536 				struct tcp_plb_state *plb)
2537 {
2538 	plb->consec_cong_rounds = 0;
2539 	plb->pause_until = 0;
2540 }
2541 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2542 			  const int cong_ratio);
2543 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2544 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2545 
2546 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2547 {
2548 	WARN_ONCE(cond,
2549 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2550 		  str,
2551 		  tcp_snd_cwnd(tcp_sk(sk)),
2552 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2553 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2554 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2555 		  inet_csk(sk)->icsk_ca_state,
2556 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2557 		  inet_csk(sk)->icsk_pmtu_cookie);
2558 }
2559 
2560 /* At how many usecs into the future should the RTO fire? */
2561 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2562 {
2563 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2564 	u32 rto = inet_csk(sk)->icsk_rto;
2565 
2566 	if (likely(skb)) {
2567 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2568 
2569 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2570 	} else {
2571 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2572 		return jiffies_to_usecs(rto);
2573 	}
2574 
2575 }
2576 
2577 /*
2578  * Save and compile IPv4 options, return a pointer to it
2579  */
2580 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2581 							 struct sk_buff *skb)
2582 {
2583 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2584 	struct ip_options_rcu *dopt = NULL;
2585 
2586 	if (opt->optlen) {
2587 		int opt_size = sizeof(*dopt) + opt->optlen;
2588 
2589 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2590 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2591 			kfree(dopt);
2592 			dopt = NULL;
2593 		}
2594 	}
2595 	return dopt;
2596 }
2597 
2598 /* locally generated TCP pure ACKs have skb->truesize == 2
2599  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2600  * This is much faster than dissecting the packet to find out.
2601  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2602  */
2603 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2604 {
2605 	return skb->truesize == 2;
2606 }
2607 
2608 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2609 {
2610 	skb->truesize = 2;
2611 }
2612 
2613 static inline int tcp_inq(struct sock *sk)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 	int answ;
2617 
2618 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2619 		answ = 0;
2620 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2621 		   !tp->urg_data ||
2622 		   before(tp->urg_seq, tp->copied_seq) ||
2623 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2624 
2625 		answ = tp->rcv_nxt - tp->copied_seq;
2626 
2627 		/* Subtract 1, if FIN was received */
2628 		if (answ && sock_flag(sk, SOCK_DONE))
2629 			answ--;
2630 	} else {
2631 		answ = tp->urg_seq - tp->copied_seq;
2632 	}
2633 
2634 	return answ;
2635 }
2636 
2637 int tcp_peek_len(struct socket *sock);
2638 
2639 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2640 {
2641 	u16 segs_in;
2642 
2643 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2644 
2645 	/* We update these fields while other threads might
2646 	 * read them from tcp_get_info()
2647 	 */
2648 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2649 	if (skb->len > tcp_hdrlen(skb))
2650 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2651 }
2652 
2653 /*
2654  * TCP listen path runs lockless.
2655  * We forced "struct sock" to be const qualified to make sure
2656  * we don't modify one of its field by mistake.
2657  * Here, we increment sk_drops which is an atomic_t, so we can safely
2658  * make sock writable again.
2659  */
2660 static inline void tcp_listendrop(const struct sock *sk)
2661 {
2662 	sk_drops_inc((struct sock *)sk);
2663 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2664 }
2665 
2666 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2667 
2668 /*
2669  * Interface for adding Upper Level Protocols over TCP
2670  */
2671 
2672 #define TCP_ULP_NAME_MAX	16
2673 #define TCP_ULP_MAX		128
2674 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2675 
2676 struct tcp_ulp_ops {
2677 	struct list_head	list;
2678 
2679 	/* initialize ulp */
2680 	int (*init)(struct sock *sk);
2681 	/* update ulp */
2682 	void (*update)(struct sock *sk, struct proto *p,
2683 		       void (*write_space)(struct sock *sk));
2684 	/* cleanup ulp */
2685 	void (*release)(struct sock *sk);
2686 	/* diagnostic */
2687 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2688 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2689 	/* clone ulp */
2690 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2691 		      const gfp_t priority);
2692 
2693 	char		name[TCP_ULP_NAME_MAX];
2694 	struct module	*owner;
2695 };
2696 int tcp_register_ulp(struct tcp_ulp_ops *type);
2697 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2698 int tcp_set_ulp(struct sock *sk, const char *name);
2699 void tcp_get_available_ulp(char *buf, size_t len);
2700 void tcp_cleanup_ulp(struct sock *sk);
2701 void tcp_update_ulp(struct sock *sk, struct proto *p,
2702 		    void (*write_space)(struct sock *sk));
2703 
2704 #define MODULE_ALIAS_TCP_ULP(name)				\
2705 	MODULE_INFO(alias, name);		\
2706 	MODULE_INFO(alias, "tcp-ulp-" name)
2707 
2708 #ifdef CONFIG_NET_SOCK_MSG
2709 struct sk_msg;
2710 struct sk_psock;
2711 
2712 #ifdef CONFIG_BPF_SYSCALL
2713 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2714 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2715 #ifdef CONFIG_BPF_STREAM_PARSER
2716 struct strparser;
2717 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2718 			   sk_read_actor_t recv_actor);
2719 #endif /* CONFIG_BPF_STREAM_PARSER */
2720 #endif /* CONFIG_BPF_SYSCALL */
2721 
2722 #ifdef CONFIG_INET
2723 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2724 #else
2725 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2726 {
2727 }
2728 #endif
2729 
2730 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2731 			  struct sk_msg *msg, u32 bytes, int flags);
2732 #endif /* CONFIG_NET_SOCK_MSG */
2733 
2734 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2735 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2736 {
2737 }
2738 #endif
2739 
2740 #ifdef CONFIG_CGROUP_BPF
2741 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2742 				      struct sk_buff *skb,
2743 				      unsigned int end_offset)
2744 {
2745 	skops->skb = skb;
2746 	skops->skb_data_end = skb->data + end_offset;
2747 }
2748 #else
2749 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2750 				      struct sk_buff *skb,
2751 				      unsigned int end_offset)
2752 {
2753 }
2754 #endif
2755 
2756 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2757  * is < 0, then the BPF op failed (for example if the loaded BPF
2758  * program does not support the chosen operation or there is no BPF
2759  * program loaded).
2760  */
2761 #ifdef CONFIG_BPF
2762 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2763 {
2764 	struct bpf_sock_ops_kern sock_ops;
2765 	int ret;
2766 
2767 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2768 	if (sk_fullsock(sk)) {
2769 		sock_ops.is_fullsock = 1;
2770 		sock_ops.is_locked_tcp_sock = 1;
2771 		sock_owned_by_me(sk);
2772 	}
2773 
2774 	sock_ops.sk = sk;
2775 	sock_ops.op = op;
2776 	if (nargs > 0)
2777 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2778 
2779 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2780 	if (ret == 0)
2781 		ret = sock_ops.reply;
2782 	else
2783 		ret = -1;
2784 	return ret;
2785 }
2786 
2787 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2788 {
2789 	u32 args[2] = {arg1, arg2};
2790 
2791 	return tcp_call_bpf(sk, op, 2, args);
2792 }
2793 
2794 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2795 				    u32 arg3)
2796 {
2797 	u32 args[3] = {arg1, arg2, arg3};
2798 
2799 	return tcp_call_bpf(sk, op, 3, args);
2800 }
2801 
2802 #else
2803 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2804 {
2805 	return -EPERM;
2806 }
2807 
2808 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2809 {
2810 	return -EPERM;
2811 }
2812 
2813 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2814 				    u32 arg3)
2815 {
2816 	return -EPERM;
2817 }
2818 
2819 #endif
2820 
2821 static inline u32 tcp_timeout_init(struct sock *sk)
2822 {
2823 	int timeout;
2824 
2825 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2826 
2827 	if (timeout <= 0)
2828 		timeout = TCP_TIMEOUT_INIT;
2829 	return min_t(int, timeout, TCP_RTO_MAX);
2830 }
2831 
2832 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2833 {
2834 	int rwnd;
2835 
2836 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2837 
2838 	if (rwnd < 0)
2839 		rwnd = 0;
2840 	return rwnd;
2841 }
2842 
2843 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2844 {
2845 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2846 }
2847 
2848 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2849 {
2850 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2851 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2852 }
2853 
2854 #if IS_ENABLED(CONFIG_SMC)
2855 extern struct static_key_false tcp_have_smc;
2856 #endif
2857 
2858 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2859 void clean_acked_data_enable(struct tcp_sock *tp,
2860 			     void (*cad)(struct sock *sk, u32 ack_seq));
2861 void clean_acked_data_disable(struct tcp_sock *tp);
2862 void clean_acked_data_flush(void);
2863 #endif
2864 
2865 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2866 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2867 				    const struct tcp_sock *tp)
2868 {
2869 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2870 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2871 }
2872 
2873 /* Compute Earliest Departure Time for some control packets
2874  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2875  */
2876 static inline u64 tcp_transmit_time(const struct sock *sk)
2877 {
2878 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2879 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2880 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2881 
2882 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2883 	}
2884 	return 0;
2885 }
2886 
2887 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2888 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2889 {
2890 	const u8 *md5_tmp, *ao_tmp;
2891 	int ret;
2892 
2893 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2894 	if (ret)
2895 		return ret;
2896 
2897 	if (md5_hash)
2898 		*md5_hash = md5_tmp;
2899 
2900 	if (aoh) {
2901 		if (!ao_tmp)
2902 			*aoh = NULL;
2903 		else
2904 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2911 				   int family, int l3index, bool stat_inc)
2912 {
2913 #ifdef CONFIG_TCP_AO
2914 	struct tcp_ao_info *ao_info;
2915 	struct tcp_ao_key *ao_key;
2916 
2917 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2918 		return false;
2919 
2920 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2921 					lockdep_sock_is_held(sk));
2922 	if (!ao_info)
2923 		return false;
2924 
2925 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2926 	if (ao_info->ao_required || ao_key) {
2927 		if (stat_inc) {
2928 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2929 			atomic64_inc(&ao_info->counters.ao_required);
2930 		}
2931 		return true;
2932 	}
2933 #endif
2934 	return false;
2935 }
2936 
2937 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2938 		const struct request_sock *req, const struct sk_buff *skb,
2939 		const void *saddr, const void *daddr,
2940 		int family, int dif, int sdif);
2941 
2942 #endif	/* _TCP_H */
2943