xref: /linux/include/net/tcp.h (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define TCP_DEBUG 1
22 #define FASTRETRANS_DEBUG 1
23 
24 #include <linux/list.h>
25 #include <linux/tcp.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34 
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46 
47 #include <linux/seq_file.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS		88U
65 
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS		512
68 
69 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
70 #define TCP_FASTRETRANS_THRESH 3
71 
72 /* Maximal reordering. */
73 #define TCP_MAX_REORDERING	127
74 
75 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
76 #define TCP_MAX_QUICKACKS	16U
77 
78 /* urg_data states */
79 #define TCP_URG_VALID	0x0100
80 #define TCP_URG_NOTYET	0x0200
81 #define TCP_URG_READ	0x0400
82 
83 #define TCP_RETR1	3	/*
84 				 * This is how many retries it does before it
85 				 * tries to figure out if the gateway is
86 				 * down. Minimal RFC value is 3; it corresponds
87 				 * to ~3sec-8min depending on RTO.
88 				 */
89 
90 #define TCP_RETR2	15	/*
91 				 * This should take at least
92 				 * 90 minutes to time out.
93 				 * RFC1122 says that the limit is 100 sec.
94 				 * 15 is ~13-30min depending on RTO.
95 				 */
96 
97 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
98 				 * connection: ~180sec is RFC minimum	*/
99 
100 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 
104 #define TCP_ORPHAN_RETRIES 7	/* number of times to retry on an orphaned
105 				 * socket. 7 is ~50sec-16min.
106 				 */
107 
108 
109 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
110 				  * state, about 60 seconds	*/
111 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
112                                  /* BSD style FIN_WAIT2 deadlock breaker.
113 				  * It used to be 3min, new value is 60sec,
114 				  * to combine FIN-WAIT-2 timeout with
115 				  * TIME-WAIT timer.
116 				  */
117 
118 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
119 #if HZ >= 100
120 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
121 #define TCP_ATO_MIN	((unsigned)(HZ/25))
122 #else
123 #define TCP_DELACK_MIN	4U
124 #define TCP_ATO_MIN	4U
125 #endif
126 #define TCP_RTO_MAX	((unsigned)(120*HZ))
127 #define TCP_RTO_MIN	((unsigned)(HZ/5))
128 #define TCP_TIMEOUT_INIT ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value	*/
129 
130 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
131 					                 * for local resources.
132 					                 */
133 
134 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
135 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
136 #define TCP_KEEPALIVE_INTVL	(75*HZ)
137 
138 #define MAX_TCP_KEEPIDLE	32767
139 #define MAX_TCP_KEEPINTVL	32767
140 #define MAX_TCP_KEEPCNT		127
141 #define MAX_TCP_SYNCNT		127
142 
143 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
144 
145 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
146 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
147 					 * after this time. It should be equal
148 					 * (or greater than) TCP_TIMEWAIT_LEN
149 					 * to provide reliability equal to one
150 					 * provided by timewait state.
151 					 */
152 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
153 					 * timestamps. It must be less than
154 					 * minimal timewait lifetime.
155 					 */
156 /*
157  *	TCP option
158  */
159 
160 #define TCPOPT_NOP		1	/* Padding */
161 #define TCPOPT_EOL		0	/* End of options */
162 #define TCPOPT_MSS		2	/* Segment size negotiating */
163 #define TCPOPT_WINDOW		3	/* Window scaling */
164 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
165 #define TCPOPT_SACK             5       /* SACK Block */
166 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
167 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
168 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
169 
170 /*
171  *     TCP option lengths
172  */
173 
174 #define TCPOLEN_MSS            4
175 #define TCPOLEN_WINDOW         3
176 #define TCPOLEN_SACK_PERM      2
177 #define TCPOLEN_TIMESTAMP      10
178 #define TCPOLEN_MD5SIG         18
179 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
180 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
181 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
182 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
183 
184 /* But this is what stacks really send out. */
185 #define TCPOLEN_TSTAMP_ALIGNED		12
186 #define TCPOLEN_WSCALE_ALIGNED		4
187 #define TCPOLEN_SACKPERM_ALIGNED	4
188 #define TCPOLEN_SACK_BASE		2
189 #define TCPOLEN_SACK_BASE_ALIGNED	4
190 #define TCPOLEN_SACK_PERBLOCK		8
191 #define TCPOLEN_MD5SIG_ALIGNED		20
192 #define TCPOLEN_MSS_ALIGNED		4
193 
194 /* Flags in tp->nonagle */
195 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
196 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
197 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
198 
199 /* TCP thin-stream limits */
200 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
201 
202 extern struct inet_timewait_death_row tcp_death_row;
203 
204 /* sysctl variables for tcp */
205 extern int sysctl_tcp_timestamps;
206 extern int sysctl_tcp_window_scaling;
207 extern int sysctl_tcp_sack;
208 extern int sysctl_tcp_fin_timeout;
209 extern int sysctl_tcp_keepalive_time;
210 extern int sysctl_tcp_keepalive_probes;
211 extern int sysctl_tcp_keepalive_intvl;
212 extern int sysctl_tcp_syn_retries;
213 extern int sysctl_tcp_synack_retries;
214 extern int sysctl_tcp_retries1;
215 extern int sysctl_tcp_retries2;
216 extern int sysctl_tcp_orphan_retries;
217 extern int sysctl_tcp_syncookies;
218 extern int sysctl_tcp_retrans_collapse;
219 extern int sysctl_tcp_stdurg;
220 extern int sysctl_tcp_rfc1337;
221 extern int sysctl_tcp_abort_on_overflow;
222 extern int sysctl_tcp_max_orphans;
223 extern int sysctl_tcp_fack;
224 extern int sysctl_tcp_reordering;
225 extern int sysctl_tcp_ecn;
226 extern int sysctl_tcp_dsack;
227 extern int sysctl_tcp_mem[3];
228 extern int sysctl_tcp_wmem[3];
229 extern int sysctl_tcp_rmem[3];
230 extern int sysctl_tcp_app_win;
231 extern int sysctl_tcp_adv_win_scale;
232 extern int sysctl_tcp_tw_reuse;
233 extern int sysctl_tcp_frto;
234 extern int sysctl_tcp_frto_response;
235 extern int sysctl_tcp_low_latency;
236 extern int sysctl_tcp_dma_copybreak;
237 extern int sysctl_tcp_nometrics_save;
238 extern int sysctl_tcp_moderate_rcvbuf;
239 extern int sysctl_tcp_tso_win_divisor;
240 extern int sysctl_tcp_abc;
241 extern int sysctl_tcp_mtu_probing;
242 extern int sysctl_tcp_base_mss;
243 extern int sysctl_tcp_workaround_signed_windows;
244 extern int sysctl_tcp_slow_start_after_idle;
245 extern int sysctl_tcp_max_ssthresh;
246 extern int sysctl_tcp_cookie_size;
247 extern int sysctl_tcp_thin_linear_timeouts;
248 extern int sysctl_tcp_thin_dupack;
249 
250 extern atomic_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern int tcp_memory_pressure;
253 
254 /*
255  * The next routines deal with comparing 32 bit unsigned ints
256  * and worry about wraparound (automatic with unsigned arithmetic).
257  */
258 
259 static inline int before(__u32 seq1, __u32 seq2)
260 {
261         return (__s32)(seq1-seq2) < 0;
262 }
263 #define after(seq2, seq1) 	before(seq1, seq2)
264 
265 /* is s2<=s1<=s3 ? */
266 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
267 {
268 	return seq3 - seq2 >= seq1 - seq2;
269 }
270 
271 static inline int tcp_too_many_orphans(struct sock *sk, int num)
272 {
273 	return (num > sysctl_tcp_max_orphans) ||
274 		(sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
275 		 atomic_read(&tcp_memory_allocated) > sysctl_tcp_mem[2]);
276 }
277 
278 /* syncookies: remember time of last synqueue overflow */
279 static inline void tcp_synq_overflow(struct sock *sk)
280 {
281 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
282 }
283 
284 /* syncookies: no recent synqueue overflow on this listening socket? */
285 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
286 {
287 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
288 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_INIT);
289 }
290 
291 extern struct proto tcp_prot;
292 
293 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
294 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
295 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
296 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
297 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
298 
299 extern void tcp_v4_err(struct sk_buff *skb, u32);
300 
301 extern void tcp_shutdown (struct sock *sk, int how);
302 
303 extern int tcp_v4_rcv(struct sk_buff *skb);
304 
305 extern int tcp_v4_remember_stamp(struct sock *sk);
306 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
307 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
308 		       size_t size);
309 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
310 			size_t size, int flags);
311 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
312 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
313 				 struct tcphdr *th, unsigned len);
314 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
315 			       struct tcphdr *th, unsigned len);
316 extern void tcp_rcv_space_adjust(struct sock *sk);
317 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
318 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
319 extern void tcp_twsk_destructor(struct sock *sk);
320 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
321 			       struct pipe_inode_info *pipe, size_t len,
322 			       unsigned int flags);
323 
324 static inline void tcp_dec_quickack_mode(struct sock *sk,
325 					 const unsigned int pkts)
326 {
327 	struct inet_connection_sock *icsk = inet_csk(sk);
328 
329 	if (icsk->icsk_ack.quick) {
330 		if (pkts >= icsk->icsk_ack.quick) {
331 			icsk->icsk_ack.quick = 0;
332 			/* Leaving quickack mode we deflate ATO. */
333 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
334 		} else
335 			icsk->icsk_ack.quick -= pkts;
336 	}
337 }
338 
339 extern void tcp_enter_quickack_mode(struct sock *sk);
340 
341 #define	TCP_ECN_OK		1
342 #define	TCP_ECN_QUEUE_CWR	2
343 #define	TCP_ECN_DEMAND_CWR	4
344 
345 static __inline__ void
346 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
347 {
348 	if (sysctl_tcp_ecn && th->ece && th->cwr)
349 		inet_rsk(req)->ecn_ok = 1;
350 }
351 
352 enum tcp_tw_status {
353 	TCP_TW_SUCCESS = 0,
354 	TCP_TW_RST = 1,
355 	TCP_TW_ACK = 2,
356 	TCP_TW_SYN = 3
357 };
358 
359 
360 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
361 						     struct sk_buff *skb,
362 						     const struct tcphdr *th);
363 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
364 				   struct request_sock *req,
365 				   struct request_sock **prev);
366 extern int tcp_child_process(struct sock *parent, struct sock *child,
367 			     struct sk_buff *skb);
368 extern int tcp_use_frto(struct sock *sk);
369 extern void tcp_enter_frto(struct sock *sk);
370 extern void tcp_enter_loss(struct sock *sk, int how);
371 extern void tcp_clear_retrans(struct tcp_sock *tp);
372 extern void tcp_update_metrics(struct sock *sk);
373 extern void tcp_close(struct sock *sk, long timeout);
374 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
375 			     struct poll_table_struct *wait);
376 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
377 			  char __user *optval, int __user *optlen);
378 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
379 			  char __user *optval, unsigned int optlen);
380 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
381 				 char __user *optval, int __user *optlen);
382 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
383 				 char __user *optval, unsigned int optlen);
384 extern void tcp_set_keepalive(struct sock *sk, int val);
385 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
386 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
387 		       size_t len, int nonblock, int flags, int *addr_len);
388 extern void tcp_parse_options(struct sk_buff *skb,
389 			      struct tcp_options_received *opt_rx, u8 **hvpp,
390 			      int estab);
391 extern u8 *tcp_parse_md5sig_option(struct tcphdr *th);
392 
393 /*
394  *	TCP v4 functions exported for the inet6 API
395  */
396 
397 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
398 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
399 extern struct sock * tcp_create_openreq_child(struct sock *sk,
400 					      struct request_sock *req,
401 					      struct sk_buff *skb);
402 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
403 					  struct request_sock *req,
404 					  struct dst_entry *dst);
405 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
406 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
407 			  int addr_len);
408 extern int tcp_connect(struct sock *sk);
409 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
410 					struct request_sock *req,
411 					struct request_values *rvp);
412 extern int tcp_disconnect(struct sock *sk, int flags);
413 
414 
415 /* From syncookies.c */
416 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
417 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
418 				    struct ip_options *opt);
419 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
420 				     __u16 *mss);
421 
422 extern __u32 cookie_init_timestamp(struct request_sock *req);
423 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
424 
425 /* From net/ipv6/syncookies.c */
426 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
427 extern __u32 cookie_v6_init_sequence(struct sock *sk, struct sk_buff *skb,
428 				     __u16 *mss);
429 
430 /* tcp_output.c */
431 
432 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
433 				      int nonagle);
434 extern int tcp_may_send_now(struct sock *sk);
435 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
436 extern void tcp_retransmit_timer(struct sock *sk);
437 extern void tcp_xmit_retransmit_queue(struct sock *);
438 extern void tcp_simple_retransmit(struct sock *);
439 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
440 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
441 
442 extern void tcp_send_probe0(struct sock *);
443 extern void tcp_send_partial(struct sock *);
444 extern int tcp_write_wakeup(struct sock *);
445 extern void tcp_send_fin(struct sock *sk);
446 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
447 extern int tcp_send_synack(struct sock *);
448 extern void tcp_push_one(struct sock *, unsigned int mss_now);
449 extern void tcp_send_ack(struct sock *sk);
450 extern void tcp_send_delayed_ack(struct sock *sk);
451 
452 /* tcp_input.c */
453 extern void tcp_cwnd_application_limited(struct sock *sk);
454 
455 /* tcp_timer.c */
456 extern void tcp_init_xmit_timers(struct sock *);
457 static inline void tcp_clear_xmit_timers(struct sock *sk)
458 {
459 	inet_csk_clear_xmit_timers(sk);
460 }
461 
462 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
463 extern unsigned int tcp_current_mss(struct sock *sk);
464 
465 /* Bound MSS / TSO packet size with the half of the window */
466 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
467 {
468 	if (tp->max_window && pktsize > (tp->max_window >> 1))
469 		return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
470 	else
471 		return pktsize;
472 }
473 
474 /* tcp.c */
475 extern void tcp_get_info(struct sock *, struct tcp_info *);
476 
477 /* Read 'sendfile()'-style from a TCP socket */
478 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
479 				unsigned int, size_t);
480 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
481 			 sk_read_actor_t recv_actor);
482 
483 extern void tcp_initialize_rcv_mss(struct sock *sk);
484 
485 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
486 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
487 extern void tcp_mtup_init(struct sock *sk);
488 
489 static inline void tcp_bound_rto(const struct sock *sk)
490 {
491 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
492 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
493 }
494 
495 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
496 {
497 	return (tp->srtt >> 3) + tp->rttvar;
498 }
499 
500 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
501 {
502 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
503 			       ntohl(TCP_FLAG_ACK) |
504 			       snd_wnd);
505 }
506 
507 static inline void tcp_fast_path_on(struct tcp_sock *tp)
508 {
509 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
510 }
511 
512 static inline void tcp_fast_path_check(struct sock *sk)
513 {
514 	struct tcp_sock *tp = tcp_sk(sk);
515 
516 	if (skb_queue_empty(&tp->out_of_order_queue) &&
517 	    tp->rcv_wnd &&
518 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
519 	    !tp->urg_data)
520 		tcp_fast_path_on(tp);
521 }
522 
523 /* Compute the actual rto_min value */
524 static inline u32 tcp_rto_min(struct sock *sk)
525 {
526 	struct dst_entry *dst = __sk_dst_get(sk);
527 	u32 rto_min = TCP_RTO_MIN;
528 
529 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
530 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
531 	return rto_min;
532 }
533 
534 /* Compute the actual receive window we are currently advertising.
535  * Rcv_nxt can be after the window if our peer push more data
536  * than the offered window.
537  */
538 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
539 {
540 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
541 
542 	if (win < 0)
543 		win = 0;
544 	return (u32) win;
545 }
546 
547 /* Choose a new window, without checks for shrinking, and without
548  * scaling applied to the result.  The caller does these things
549  * if necessary.  This is a "raw" window selection.
550  */
551 extern u32 __tcp_select_window(struct sock *sk);
552 
553 /* TCP timestamps are only 32-bits, this causes a slight
554  * complication on 64-bit systems since we store a snapshot
555  * of jiffies in the buffer control blocks below.  We decided
556  * to use only the low 32-bits of jiffies and hide the ugly
557  * casts with the following macro.
558  */
559 #define tcp_time_stamp		((__u32)(jiffies))
560 
561 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
562 
563 #define TCPHDR_FIN 0x01
564 #define TCPHDR_SYN 0x02
565 #define TCPHDR_RST 0x04
566 #define TCPHDR_PSH 0x08
567 #define TCPHDR_ACK 0x10
568 #define TCPHDR_URG 0x20
569 #define TCPHDR_ECE 0x40
570 #define TCPHDR_CWR 0x80
571 
572 /* This is what the send packet queuing engine uses to pass
573  * TCP per-packet control information to the transmission code.
574  * We also store the host-order sequence numbers in here too.
575  * This is 44 bytes if IPV6 is enabled.
576  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
577  */
578 struct tcp_skb_cb {
579 	union {
580 		struct inet_skb_parm	h4;
581 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
582 		struct inet6_skb_parm	h6;
583 #endif
584 	} header;	/* For incoming frames		*/
585 	__u32		seq;		/* Starting sequence number	*/
586 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
587 	__u32		when;		/* used to compute rtt's	*/
588 	__u8		flags;		/* TCP header flags.		*/
589 	__u8		sacked;		/* State flags for SACK/FACK.	*/
590 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
591 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
592 #define TCPCB_LOST		0x04	/* SKB is lost			*/
593 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
594 
595 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
596 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
597 
598 	__u32		ack_seq;	/* Sequence number ACK'd	*/
599 };
600 
601 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
602 
603 /* Due to TSO, an SKB can be composed of multiple actual
604  * packets.  To keep these tracked properly, we use this.
605  */
606 static inline int tcp_skb_pcount(const struct sk_buff *skb)
607 {
608 	return skb_shinfo(skb)->gso_segs;
609 }
610 
611 /* This is valid iff tcp_skb_pcount() > 1. */
612 static inline int tcp_skb_mss(const struct sk_buff *skb)
613 {
614 	return skb_shinfo(skb)->gso_size;
615 }
616 
617 /* Events passed to congestion control interface */
618 enum tcp_ca_event {
619 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
620 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
621 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
622 	CA_EVENT_FRTO,		/* fast recovery timeout */
623 	CA_EVENT_LOSS,		/* loss timeout */
624 	CA_EVENT_FAST_ACK,	/* in sequence ack */
625 	CA_EVENT_SLOW_ACK,	/* other ack */
626 };
627 
628 /*
629  * Interface for adding new TCP congestion control handlers
630  */
631 #define TCP_CA_NAME_MAX	16
632 #define TCP_CA_MAX	128
633 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
634 
635 #define TCP_CONG_NON_RESTRICTED 0x1
636 #define TCP_CONG_RTT_STAMP	0x2
637 
638 struct tcp_congestion_ops {
639 	struct list_head	list;
640 	unsigned long flags;
641 
642 	/* initialize private data (optional) */
643 	void (*init)(struct sock *sk);
644 	/* cleanup private data  (optional) */
645 	void (*release)(struct sock *sk);
646 
647 	/* return slow start threshold (required) */
648 	u32 (*ssthresh)(struct sock *sk);
649 	/* lower bound for congestion window (optional) */
650 	u32 (*min_cwnd)(const struct sock *sk);
651 	/* do new cwnd calculation (required) */
652 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
653 	/* call before changing ca_state (optional) */
654 	void (*set_state)(struct sock *sk, u8 new_state);
655 	/* call when cwnd event occurs (optional) */
656 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
657 	/* new value of cwnd after loss (optional) */
658 	u32  (*undo_cwnd)(struct sock *sk);
659 	/* hook for packet ack accounting (optional) */
660 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
661 	/* get info for inet_diag (optional) */
662 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
663 
664 	char 		name[TCP_CA_NAME_MAX];
665 	struct module 	*owner;
666 };
667 
668 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
669 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
670 
671 extern void tcp_init_congestion_control(struct sock *sk);
672 extern void tcp_cleanup_congestion_control(struct sock *sk);
673 extern int tcp_set_default_congestion_control(const char *name);
674 extern void tcp_get_default_congestion_control(char *name);
675 extern void tcp_get_available_congestion_control(char *buf, size_t len);
676 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
677 extern int tcp_set_allowed_congestion_control(char *allowed);
678 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
679 extern void tcp_slow_start(struct tcp_sock *tp);
680 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
681 
682 extern struct tcp_congestion_ops tcp_init_congestion_ops;
683 extern u32 tcp_reno_ssthresh(struct sock *sk);
684 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
685 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
686 extern struct tcp_congestion_ops tcp_reno;
687 
688 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
689 {
690 	struct inet_connection_sock *icsk = inet_csk(sk);
691 
692 	if (icsk->icsk_ca_ops->set_state)
693 		icsk->icsk_ca_ops->set_state(sk, ca_state);
694 	icsk->icsk_ca_state = ca_state;
695 }
696 
697 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
698 {
699 	const struct inet_connection_sock *icsk = inet_csk(sk);
700 
701 	if (icsk->icsk_ca_ops->cwnd_event)
702 		icsk->icsk_ca_ops->cwnd_event(sk, event);
703 }
704 
705 /* These functions determine how the current flow behaves in respect of SACK
706  * handling. SACK is negotiated with the peer, and therefore it can vary
707  * between different flows.
708  *
709  * tcp_is_sack - SACK enabled
710  * tcp_is_reno - No SACK
711  * tcp_is_fack - FACK enabled, implies SACK enabled
712  */
713 static inline int tcp_is_sack(const struct tcp_sock *tp)
714 {
715 	return tp->rx_opt.sack_ok;
716 }
717 
718 static inline int tcp_is_reno(const struct tcp_sock *tp)
719 {
720 	return !tcp_is_sack(tp);
721 }
722 
723 static inline int tcp_is_fack(const struct tcp_sock *tp)
724 {
725 	return tp->rx_opt.sack_ok & 2;
726 }
727 
728 static inline void tcp_enable_fack(struct tcp_sock *tp)
729 {
730 	tp->rx_opt.sack_ok |= 2;
731 }
732 
733 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
734 {
735 	return tp->sacked_out + tp->lost_out;
736 }
737 
738 /* This determines how many packets are "in the network" to the best
739  * of our knowledge.  In many cases it is conservative, but where
740  * detailed information is available from the receiver (via SACK
741  * blocks etc.) we can make more aggressive calculations.
742  *
743  * Use this for decisions involving congestion control, use just
744  * tp->packets_out to determine if the send queue is empty or not.
745  *
746  * Read this equation as:
747  *
748  *	"Packets sent once on transmission queue" MINUS
749  *	"Packets left network, but not honestly ACKed yet" PLUS
750  *	"Packets fast retransmitted"
751  */
752 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
753 {
754 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
755 }
756 
757 #define TCP_INFINITE_SSTHRESH	0x7fffffff
758 
759 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
760 {
761 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
762 }
763 
764 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
765  * The exception is rate halving phase, when cwnd is decreasing towards
766  * ssthresh.
767  */
768 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
769 {
770 	const struct tcp_sock *tp = tcp_sk(sk);
771 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
772 		return tp->snd_ssthresh;
773 	else
774 		return max(tp->snd_ssthresh,
775 			   ((tp->snd_cwnd >> 1) +
776 			    (tp->snd_cwnd >> 2)));
777 }
778 
779 /* Use define here intentionally to get WARN_ON location shown at the caller */
780 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
781 
782 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
783 extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
784 
785 /* Slow start with delack produces 3 packets of burst, so that
786  * it is safe "de facto".  This will be the default - same as
787  * the default reordering threshold - but if reordering increases,
788  * we must be able to allow cwnd to burst at least this much in order
789  * to not pull it back when holes are filled.
790  */
791 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
792 {
793 	return tp->reordering;
794 }
795 
796 /* Returns end sequence number of the receiver's advertised window */
797 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
798 {
799 	return tp->snd_una + tp->snd_wnd;
800 }
801 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
802 
803 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
804 				       const struct sk_buff *skb)
805 {
806 	if (skb->len < mss)
807 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
808 }
809 
810 static inline void tcp_check_probe_timer(struct sock *sk)
811 {
812 	struct tcp_sock *tp = tcp_sk(sk);
813 	const struct inet_connection_sock *icsk = inet_csk(sk);
814 
815 	if (!tp->packets_out && !icsk->icsk_pending)
816 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
817 					  icsk->icsk_rto, TCP_RTO_MAX);
818 }
819 
820 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
821 {
822 	tp->snd_wl1 = seq;
823 }
824 
825 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
826 {
827 	tp->snd_wl1 = seq;
828 }
829 
830 /*
831  * Calculate(/check) TCP checksum
832  */
833 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
834 				   __be32 daddr, __wsum base)
835 {
836 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
837 }
838 
839 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
840 {
841 	return __skb_checksum_complete(skb);
842 }
843 
844 static inline int tcp_checksum_complete(struct sk_buff *skb)
845 {
846 	return !skb_csum_unnecessary(skb) &&
847 		__tcp_checksum_complete(skb);
848 }
849 
850 /* Prequeue for VJ style copy to user, combined with checksumming. */
851 
852 static inline void tcp_prequeue_init(struct tcp_sock *tp)
853 {
854 	tp->ucopy.task = NULL;
855 	tp->ucopy.len = 0;
856 	tp->ucopy.memory = 0;
857 	skb_queue_head_init(&tp->ucopy.prequeue);
858 #ifdef CONFIG_NET_DMA
859 	tp->ucopy.dma_chan = NULL;
860 	tp->ucopy.wakeup = 0;
861 	tp->ucopy.pinned_list = NULL;
862 	tp->ucopy.dma_cookie = 0;
863 #endif
864 }
865 
866 /* Packet is added to VJ-style prequeue for processing in process
867  * context, if a reader task is waiting. Apparently, this exciting
868  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
869  * failed somewhere. Latency? Burstiness? Well, at least now we will
870  * see, why it failed. 8)8)				  --ANK
871  *
872  * NOTE: is this not too big to inline?
873  */
874 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
875 {
876 	struct tcp_sock *tp = tcp_sk(sk);
877 
878 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
879 		return 0;
880 
881 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
882 	tp->ucopy.memory += skb->truesize;
883 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
884 		struct sk_buff *skb1;
885 
886 		BUG_ON(sock_owned_by_user(sk));
887 
888 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
889 			sk_backlog_rcv(sk, skb1);
890 			NET_INC_STATS_BH(sock_net(sk),
891 					 LINUX_MIB_TCPPREQUEUEDROPPED);
892 		}
893 
894 		tp->ucopy.memory = 0;
895 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
896 		wake_up_interruptible_sync_poll(sk_sleep(sk),
897 					   POLLIN | POLLRDNORM | POLLRDBAND);
898 		if (!inet_csk_ack_scheduled(sk))
899 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
900 						  (3 * tcp_rto_min(sk)) / 4,
901 						  TCP_RTO_MAX);
902 	}
903 	return 1;
904 }
905 
906 
907 #undef STATE_TRACE
908 
909 #ifdef STATE_TRACE
910 static const char *statename[]={
911 	"Unused","Established","Syn Sent","Syn Recv",
912 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
913 	"Close Wait","Last ACK","Listen","Closing"
914 };
915 #endif
916 extern void tcp_set_state(struct sock *sk, int state);
917 
918 extern void tcp_done(struct sock *sk);
919 
920 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
921 {
922 	rx_opt->dsack = 0;
923 	rx_opt->num_sacks = 0;
924 }
925 
926 /* Determine a window scaling and initial window to offer. */
927 extern void tcp_select_initial_window(int __space, __u32 mss,
928 				      __u32 *rcv_wnd, __u32 *window_clamp,
929 				      int wscale_ok, __u8 *rcv_wscale,
930 				      __u32 init_rcv_wnd);
931 
932 static inline int tcp_win_from_space(int space)
933 {
934 	return sysctl_tcp_adv_win_scale<=0 ?
935 		(space>>(-sysctl_tcp_adv_win_scale)) :
936 		space - (space>>sysctl_tcp_adv_win_scale);
937 }
938 
939 /* Note: caller must be prepared to deal with negative returns */
940 static inline int tcp_space(const struct sock *sk)
941 {
942 	return tcp_win_from_space(sk->sk_rcvbuf -
943 				  atomic_read(&sk->sk_rmem_alloc));
944 }
945 
946 static inline int tcp_full_space(const struct sock *sk)
947 {
948 	return tcp_win_from_space(sk->sk_rcvbuf);
949 }
950 
951 static inline void tcp_openreq_init(struct request_sock *req,
952 				    struct tcp_options_received *rx_opt,
953 				    struct sk_buff *skb)
954 {
955 	struct inet_request_sock *ireq = inet_rsk(req);
956 
957 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
958 	req->cookie_ts = 0;
959 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
960 	req->mss = rx_opt->mss_clamp;
961 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
962 	ireq->tstamp_ok = rx_opt->tstamp_ok;
963 	ireq->sack_ok = rx_opt->sack_ok;
964 	ireq->snd_wscale = rx_opt->snd_wscale;
965 	ireq->wscale_ok = rx_opt->wscale_ok;
966 	ireq->acked = 0;
967 	ireq->ecn_ok = 0;
968 	ireq->rmt_port = tcp_hdr(skb)->source;
969 	ireq->loc_port = tcp_hdr(skb)->dest;
970 }
971 
972 extern void tcp_enter_memory_pressure(struct sock *sk);
973 
974 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
975 {
976 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
977 }
978 
979 static inline int keepalive_time_when(const struct tcp_sock *tp)
980 {
981 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
982 }
983 
984 static inline int keepalive_probes(const struct tcp_sock *tp)
985 {
986 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
987 }
988 
989 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
990 {
991 	const struct inet_connection_sock *icsk = &tp->inet_conn;
992 
993 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
994 			  tcp_time_stamp - tp->rcv_tstamp);
995 }
996 
997 static inline int tcp_fin_time(const struct sock *sk)
998 {
999 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1000 	const int rto = inet_csk(sk)->icsk_rto;
1001 
1002 	if (fin_timeout < (rto << 2) - (rto >> 1))
1003 		fin_timeout = (rto << 2) - (rto >> 1);
1004 
1005 	return fin_timeout;
1006 }
1007 
1008 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1009 				 int paws_win)
1010 {
1011 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1012 		return 1;
1013 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1014 		return 1;
1015 
1016 	return 0;
1017 }
1018 
1019 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1020 				  int rst)
1021 {
1022 	if (tcp_paws_check(rx_opt, 0))
1023 		return 0;
1024 
1025 	/* RST segments are not recommended to carry timestamp,
1026 	   and, if they do, it is recommended to ignore PAWS because
1027 	   "their cleanup function should take precedence over timestamps."
1028 	   Certainly, it is mistake. It is necessary to understand the reasons
1029 	   of this constraint to relax it: if peer reboots, clock may go
1030 	   out-of-sync and half-open connections will not be reset.
1031 	   Actually, the problem would be not existing if all
1032 	   the implementations followed draft about maintaining clock
1033 	   via reboots. Linux-2.2 DOES NOT!
1034 
1035 	   However, we can relax time bounds for RST segments to MSL.
1036 	 */
1037 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1038 		return 0;
1039 	return 1;
1040 }
1041 
1042 #define TCP_CHECK_TIMER(sk) do { } while (0)
1043 
1044 static inline void tcp_mib_init(struct net *net)
1045 {
1046 	/* See RFC 2012 */
1047 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1048 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1049 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1050 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1051 }
1052 
1053 /* from STCP */
1054 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1055 {
1056 	tp->lost_skb_hint = NULL;
1057 	tp->scoreboard_skb_hint = NULL;
1058 }
1059 
1060 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1061 {
1062 	tcp_clear_retrans_hints_partial(tp);
1063 	tp->retransmit_skb_hint = NULL;
1064 }
1065 
1066 /* MD5 Signature */
1067 struct crypto_hash;
1068 
1069 /* - key database */
1070 struct tcp_md5sig_key {
1071 	u8			*key;
1072 	u8			keylen;
1073 };
1074 
1075 struct tcp4_md5sig_key {
1076 	struct tcp_md5sig_key	base;
1077 	__be32			addr;
1078 };
1079 
1080 struct tcp6_md5sig_key {
1081 	struct tcp_md5sig_key	base;
1082 #if 0
1083 	u32			scope_id;	/* XXX */
1084 #endif
1085 	struct in6_addr		addr;
1086 };
1087 
1088 /* - sock block */
1089 struct tcp_md5sig_info {
1090 	struct tcp4_md5sig_key	*keys4;
1091 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1092 	struct tcp6_md5sig_key	*keys6;
1093 	u32			entries6;
1094 	u32			alloced6;
1095 #endif
1096 	u32			entries4;
1097 	u32			alloced4;
1098 };
1099 
1100 /* - pseudo header */
1101 struct tcp4_pseudohdr {
1102 	__be32		saddr;
1103 	__be32		daddr;
1104 	__u8		pad;
1105 	__u8		protocol;
1106 	__be16		len;
1107 };
1108 
1109 struct tcp6_pseudohdr {
1110 	struct in6_addr	saddr;
1111 	struct in6_addr daddr;
1112 	__be32		len;
1113 	__be32		protocol;	/* including padding */
1114 };
1115 
1116 union tcp_md5sum_block {
1117 	struct tcp4_pseudohdr ip4;
1118 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1119 	struct tcp6_pseudohdr ip6;
1120 #endif
1121 };
1122 
1123 /* - pool: digest algorithm, hash description and scratch buffer */
1124 struct tcp_md5sig_pool {
1125 	struct hash_desc	md5_desc;
1126 	union tcp_md5sum_block	md5_blk;
1127 };
1128 
1129 #define TCP_MD5SIG_MAXKEYS	(~(u32)0)	/* really?! */
1130 
1131 /* - functions */
1132 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1133 			       struct sock *sk, struct request_sock *req,
1134 			       struct sk_buff *skb);
1135 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1136 						 struct sock *addr_sk);
1137 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1138 			     u8 newkeylen);
1139 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1140 
1141 #ifdef CONFIG_TCP_MD5SIG
1142 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1143 				 &(struct tcp_md5sig_key) {		 \
1144 					.key = (twsk)->tw_md5_key,	 \
1145 					.keylen = (twsk)->tw_md5_keylen, \
1146 				} : NULL)
1147 #else
1148 #define tcp_twsk_md5_key(twsk)	NULL
1149 #endif
1150 
1151 extern struct tcp_md5sig_pool * __percpu *tcp_alloc_md5sig_pool(struct sock *);
1152 extern void tcp_free_md5sig_pool(void);
1153 
1154 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1155 extern void tcp_put_md5sig_pool(void);
1156 
1157 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, struct tcphdr *);
1158 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, struct sk_buff *,
1159 				 unsigned header_len);
1160 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1161 			    struct tcp_md5sig_key *key);
1162 
1163 /* write queue abstraction */
1164 static inline void tcp_write_queue_purge(struct sock *sk)
1165 {
1166 	struct sk_buff *skb;
1167 
1168 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1169 		sk_wmem_free_skb(sk, skb);
1170 	sk_mem_reclaim(sk);
1171 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1172 }
1173 
1174 static inline struct sk_buff *tcp_write_queue_head(struct sock *sk)
1175 {
1176 	return skb_peek(&sk->sk_write_queue);
1177 }
1178 
1179 static inline struct sk_buff *tcp_write_queue_tail(struct sock *sk)
1180 {
1181 	return skb_peek_tail(&sk->sk_write_queue);
1182 }
1183 
1184 static inline struct sk_buff *tcp_write_queue_next(struct sock *sk, struct sk_buff *skb)
1185 {
1186 	return skb_queue_next(&sk->sk_write_queue, skb);
1187 }
1188 
1189 static inline struct sk_buff *tcp_write_queue_prev(struct sock *sk, struct sk_buff *skb)
1190 {
1191 	return skb_queue_prev(&sk->sk_write_queue, skb);
1192 }
1193 
1194 #define tcp_for_write_queue(skb, sk)					\
1195 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1196 
1197 #define tcp_for_write_queue_from(skb, sk)				\
1198 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1199 
1200 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1201 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1202 
1203 static inline struct sk_buff *tcp_send_head(struct sock *sk)
1204 {
1205 	return sk->sk_send_head;
1206 }
1207 
1208 static inline bool tcp_skb_is_last(const struct sock *sk,
1209 				   const struct sk_buff *skb)
1210 {
1211 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1212 }
1213 
1214 static inline void tcp_advance_send_head(struct sock *sk, struct sk_buff *skb)
1215 {
1216 	if (tcp_skb_is_last(sk, skb))
1217 		sk->sk_send_head = NULL;
1218 	else
1219 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1220 }
1221 
1222 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1223 {
1224 	if (sk->sk_send_head == skb_unlinked)
1225 		sk->sk_send_head = NULL;
1226 }
1227 
1228 static inline void tcp_init_send_head(struct sock *sk)
1229 {
1230 	sk->sk_send_head = NULL;
1231 }
1232 
1233 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1234 {
1235 	__skb_queue_tail(&sk->sk_write_queue, skb);
1236 }
1237 
1238 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1239 {
1240 	__tcp_add_write_queue_tail(sk, skb);
1241 
1242 	/* Queue it, remembering where we must start sending. */
1243 	if (sk->sk_send_head == NULL) {
1244 		sk->sk_send_head = skb;
1245 
1246 		if (tcp_sk(sk)->highest_sack == NULL)
1247 			tcp_sk(sk)->highest_sack = skb;
1248 	}
1249 }
1250 
1251 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1252 {
1253 	__skb_queue_head(&sk->sk_write_queue, skb);
1254 }
1255 
1256 /* Insert buff after skb on the write queue of sk.  */
1257 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1258 						struct sk_buff *buff,
1259 						struct sock *sk)
1260 {
1261 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1262 }
1263 
1264 /* Insert new before skb on the write queue of sk.  */
1265 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1266 						  struct sk_buff *skb,
1267 						  struct sock *sk)
1268 {
1269 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1270 
1271 	if (sk->sk_send_head == skb)
1272 		sk->sk_send_head = new;
1273 }
1274 
1275 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1276 {
1277 	__skb_unlink(skb, &sk->sk_write_queue);
1278 }
1279 
1280 static inline int tcp_write_queue_empty(struct sock *sk)
1281 {
1282 	return skb_queue_empty(&sk->sk_write_queue);
1283 }
1284 
1285 static inline void tcp_push_pending_frames(struct sock *sk)
1286 {
1287 	if (tcp_send_head(sk)) {
1288 		struct tcp_sock *tp = tcp_sk(sk);
1289 
1290 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1291 	}
1292 }
1293 
1294 /* Start sequence of the highest skb with SACKed bit, valid only if
1295  * sacked > 0 or when the caller has ensured validity by itself.
1296  */
1297 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1298 {
1299 	if (!tp->sacked_out)
1300 		return tp->snd_una;
1301 
1302 	if (tp->highest_sack == NULL)
1303 		return tp->snd_nxt;
1304 
1305 	return TCP_SKB_CB(tp->highest_sack)->seq;
1306 }
1307 
1308 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1309 {
1310 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1311 						tcp_write_queue_next(sk, skb);
1312 }
1313 
1314 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1315 {
1316 	return tcp_sk(sk)->highest_sack;
1317 }
1318 
1319 static inline void tcp_highest_sack_reset(struct sock *sk)
1320 {
1321 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1322 }
1323 
1324 /* Called when old skb is about to be deleted (to be combined with new skb) */
1325 static inline void tcp_highest_sack_combine(struct sock *sk,
1326 					    struct sk_buff *old,
1327 					    struct sk_buff *new)
1328 {
1329 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1330 		tcp_sk(sk)->highest_sack = new;
1331 }
1332 
1333 /* Determines whether this is a thin stream (which may suffer from
1334  * increased latency). Used to trigger latency-reducing mechanisms.
1335  */
1336 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1337 {
1338 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1339 }
1340 
1341 /* /proc */
1342 enum tcp_seq_states {
1343 	TCP_SEQ_STATE_LISTENING,
1344 	TCP_SEQ_STATE_OPENREQ,
1345 	TCP_SEQ_STATE_ESTABLISHED,
1346 	TCP_SEQ_STATE_TIME_WAIT,
1347 };
1348 
1349 struct tcp_seq_afinfo {
1350 	char			*name;
1351 	sa_family_t		family;
1352 	struct file_operations	seq_fops;
1353 	struct seq_operations	seq_ops;
1354 };
1355 
1356 struct tcp_iter_state {
1357 	struct seq_net_private	p;
1358 	sa_family_t		family;
1359 	enum tcp_seq_states	state;
1360 	struct sock		*syn_wait_sk;
1361 	int			bucket, offset, sbucket, num, uid;
1362 	loff_t			last_pos;
1363 };
1364 
1365 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1366 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1367 
1368 extern struct request_sock_ops tcp_request_sock_ops;
1369 extern struct request_sock_ops tcp6_request_sock_ops;
1370 
1371 extern void tcp_v4_destroy_sock(struct sock *sk);
1372 
1373 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1374 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb, int features);
1375 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1376 					struct sk_buff *skb);
1377 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1378 					 struct sk_buff *skb);
1379 extern int tcp_gro_complete(struct sk_buff *skb);
1380 extern int tcp4_gro_complete(struct sk_buff *skb);
1381 
1382 #ifdef CONFIG_PROC_FS
1383 extern int tcp4_proc_init(void);
1384 extern void tcp4_proc_exit(void);
1385 #endif
1386 
1387 /* TCP af-specific functions */
1388 struct tcp_sock_af_ops {
1389 #ifdef CONFIG_TCP_MD5SIG
1390 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1391 						struct sock *addr_sk);
1392 	int			(*calc_md5_hash) (char *location,
1393 						  struct tcp_md5sig_key *md5,
1394 						  struct sock *sk,
1395 						  struct request_sock *req,
1396 						  struct sk_buff *skb);
1397 	int			(*md5_add) (struct sock *sk,
1398 					    struct sock *addr_sk,
1399 					    u8 *newkey,
1400 					    u8 len);
1401 	int			(*md5_parse) (struct sock *sk,
1402 					      char __user *optval,
1403 					      int optlen);
1404 #endif
1405 };
1406 
1407 struct tcp_request_sock_ops {
1408 #ifdef CONFIG_TCP_MD5SIG
1409 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1410 						struct request_sock *req);
1411 	int			(*calc_md5_hash) (char *location,
1412 						  struct tcp_md5sig_key *md5,
1413 						  struct sock *sk,
1414 						  struct request_sock *req,
1415 						  struct sk_buff *skb);
1416 #endif
1417 };
1418 
1419 /* Using SHA1 for now, define some constants.
1420  */
1421 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1422 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1423 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1424 
1425 extern int tcp_cookie_generator(u32 *bakery);
1426 
1427 /**
1428  *	struct tcp_cookie_values - each socket needs extra space for the
1429  *	cookies, together with (optional) space for any SYN data.
1430  *
1431  *	A tcp_sock contains a pointer to the current value, and this is
1432  *	cloned to the tcp_timewait_sock.
1433  *
1434  * @cookie_pair:	variable data from the option exchange.
1435  *
1436  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1437  *			indicates default (sysctl_tcp_cookie_size).
1438  *			After cookie sent, remembers size of cookie.
1439  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1440  *
1441  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1442  *			constant payload is specified (@s_data_constant),
1443  *			holds its length instead.
1444  *			Range 0 to TCP_MSS_DESIRED.
1445  *
1446  * @s_data_payload:	constant data that is to be included in the
1447  *			payload of SYN or SYNACK segments when the
1448  *			cookie option is present.
1449  */
1450 struct tcp_cookie_values {
1451 	struct kref	kref;
1452 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1453 	u8		cookie_pair_size;
1454 	u8		cookie_desired;
1455 	u16		s_data_desired:11,
1456 			s_data_constant:1,
1457 			s_data_in:1,
1458 			s_data_out:1,
1459 			s_data_unused:2;
1460 	u8		s_data_payload[0];
1461 };
1462 
1463 static inline void tcp_cookie_values_release(struct kref *kref)
1464 {
1465 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1466 }
1467 
1468 /* The length of constant payload data.  Note that s_data_desired is
1469  * overloaded, depending on s_data_constant: either the length of constant
1470  * data (returned here) or the limit on variable data.
1471  */
1472 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1473 {
1474 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1475 		? tp->cookie_values->s_data_desired
1476 		: 0;
1477 }
1478 
1479 /**
1480  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1481  *
1482  *	As tcp_request_sock has already been extended in other places, the
1483  *	only remaining method is to pass stack values along as function
1484  *	parameters.  These parameters are not needed after sending SYNACK.
1485  *
1486  * @cookie_bakery:	cryptographic secret and message workspace.
1487  *
1488  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1489  *			struct tcp_options_received (above).
1490  */
1491 struct tcp_extend_values {
1492 	struct request_values		rv;
1493 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1494 	u8				cookie_plus:6,
1495 					cookie_out_never:1,
1496 					cookie_in_always:1;
1497 };
1498 
1499 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1500 {
1501 	return (struct tcp_extend_values *)rvp;
1502 }
1503 
1504 extern void tcp_v4_init(void);
1505 extern void tcp_init(void);
1506 
1507 #endif	/* _TCP_H */
1508