xref: /linux/include/net/tcp.h (revision c5ab54e9945b5f3dc8e9c31b93bb334fcea126f4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47 
48 extern struct inet_hashinfo tcp_hashinfo;
49 
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52 
53 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS		48
56 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return READ_ONCE(tcp_memory_pressure);
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 int tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 					 const unsigned int pkts)
348 {
349 	struct inet_connection_sock *icsk = inet_csk(sk);
350 
351 	if (icsk->icsk_ack.quick) {
352 		if (pkts >= icsk->icsk_ack.quick) {
353 			icsk->icsk_ack.quick = 0;
354 			/* Leaving quickack mode we deflate ATO. */
355 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
356 		} else
357 			icsk->icsk_ack.quick -= pkts;
358 	}
359 }
360 
361 #define	TCP_ECN_OK		1
362 #define	TCP_ECN_QUEUE_CWR	2
363 #define	TCP_ECN_DEMAND_CWR	4
364 #define	TCP_ECN_SEEN		8
365 
366 enum tcp_tw_status {
367 	TCP_TW_SUCCESS = 0,
368 	TCP_TW_RST = 1,
369 	TCP_TW_ACK = 2,
370 	TCP_TW_SYN = 3
371 };
372 
373 
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 					      struct sk_buff *skb,
376 					      const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 			   struct request_sock *req, bool fastopen,
379 			   bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 		      struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 		   char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 #ifdef CONFIG_MMU
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 #endif
412 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 		       struct tcp_options_received *opt_rx,
414 		       int estab, struct tcp_fastopen_cookie *foc);
415 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416 
417 /*
418  *	BPF SKB-less helpers
419  */
420 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
421 			 struct tcphdr *th, u32 *cookie);
422 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
423 			 struct tcphdr *th, u32 *cookie);
424 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
425 			  const struct tcp_request_sock_ops *af_ops,
426 			  struct sock *sk, struct tcphdr *th);
427 /*
428  *	TCP v4 functions exported for the inet6 API
429  */
430 
431 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
432 void tcp_v4_mtu_reduced(struct sock *sk);
433 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
434 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435 struct sock *tcp_create_openreq_child(const struct sock *sk,
436 				      struct request_sock *req,
437 				      struct sk_buff *skb);
438 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440 				  struct request_sock *req,
441 				  struct dst_entry *dst,
442 				  struct request_sock *req_unhash,
443 				  bool *own_req);
444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446 int tcp_connect(struct sock *sk);
447 enum tcp_synack_type {
448 	TCP_SYNACK_NORMAL,
449 	TCP_SYNACK_FASTOPEN,
450 	TCP_SYNACK_COOKIE,
451 };
452 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453 				struct request_sock *req,
454 				struct tcp_fastopen_cookie *foc,
455 				enum tcp_synack_type synack_type);
456 int tcp_disconnect(struct sock *sk, int flags);
457 
458 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
459 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
460 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
461 
462 /* From syncookies.c */
463 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
464 				 struct request_sock *req,
465 				 struct dst_entry *dst, u32 tsoff);
466 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
467 		      u32 cookie);
468 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
469 #ifdef CONFIG_SYN_COOKIES
470 
471 /* Syncookies use a monotonic timer which increments every 60 seconds.
472  * This counter is used both as a hash input and partially encoded into
473  * the cookie value.  A cookie is only validated further if the delta
474  * between the current counter value and the encoded one is less than this,
475  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
476  * the counter advances immediately after a cookie is generated).
477  */
478 #define MAX_SYNCOOKIE_AGE	2
479 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
480 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
481 
482 /* syncookies: remember time of last synqueue overflow
483  * But do not dirty this field too often (once per second is enough)
484  * It is racy as we do not hold a lock, but race is very minor.
485  */
486 static inline void tcp_synq_overflow(const struct sock *sk)
487 {
488 	unsigned int last_overflow;
489 	unsigned int now = jiffies;
490 
491 	if (sk->sk_reuseport) {
492 		struct sock_reuseport *reuse;
493 
494 		reuse = rcu_dereference(sk->sk_reuseport_cb);
495 		if (likely(reuse)) {
496 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
497 			if (time_after32(now, last_overflow + HZ))
498 				WRITE_ONCE(reuse->synq_overflow_ts, now);
499 			return;
500 		}
501 	}
502 
503 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
504 	if (time_after32(now, last_overflow + HZ))
505 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
506 }
507 
508 /* syncookies: no recent synqueue overflow on this listening socket? */
509 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
510 {
511 	unsigned int last_overflow;
512 	unsigned int now = jiffies;
513 
514 	if (sk->sk_reuseport) {
515 		struct sock_reuseport *reuse;
516 
517 		reuse = rcu_dereference(sk->sk_reuseport_cb);
518 		if (likely(reuse)) {
519 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 			return time_after32(now, last_overflow +
521 					    TCP_SYNCOOKIE_VALID);
522 		}
523 	}
524 
525 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
526 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
527 }
528 
529 static inline u32 tcp_cookie_time(void)
530 {
531 	u64 val = get_jiffies_64();
532 
533 	do_div(val, TCP_SYNCOOKIE_PERIOD);
534 	return val;
535 }
536 
537 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
538 			      u16 *mssp);
539 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
540 u64 cookie_init_timestamp(struct request_sock *req);
541 bool cookie_timestamp_decode(const struct net *net,
542 			     struct tcp_options_received *opt);
543 bool cookie_ecn_ok(const struct tcp_options_received *opt,
544 		   const struct net *net, const struct dst_entry *dst);
545 
546 /* From net/ipv6/syncookies.c */
547 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
548 		      u32 cookie);
549 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
550 
551 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
552 			      const struct tcphdr *th, u16 *mssp);
553 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
554 #endif
555 /* tcp_output.c */
556 
557 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
558 			       int nonagle);
559 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
560 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
561 void tcp_retransmit_timer(struct sock *sk);
562 void tcp_xmit_retransmit_queue(struct sock *);
563 void tcp_simple_retransmit(struct sock *);
564 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
565 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
566 enum tcp_queue {
567 	TCP_FRAG_IN_WRITE_QUEUE,
568 	TCP_FRAG_IN_RTX_QUEUE,
569 };
570 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
571 		 struct sk_buff *skb, u32 len,
572 		 unsigned int mss_now, gfp_t gfp);
573 
574 void tcp_send_probe0(struct sock *);
575 void tcp_send_partial(struct sock *);
576 int tcp_write_wakeup(struct sock *, int mib);
577 void tcp_send_fin(struct sock *sk);
578 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
579 int tcp_send_synack(struct sock *);
580 void tcp_push_one(struct sock *, unsigned int mss_now);
581 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
582 void tcp_send_ack(struct sock *sk);
583 void tcp_send_delayed_ack(struct sock *sk);
584 void tcp_send_loss_probe(struct sock *sk);
585 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
586 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
587 			     const struct sk_buff *next_skb);
588 
589 /* tcp_input.c */
590 void tcp_rearm_rto(struct sock *sk);
591 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
592 void tcp_reset(struct sock *sk);
593 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
594 void tcp_fin(struct sock *sk);
595 
596 /* tcp_timer.c */
597 void tcp_init_xmit_timers(struct sock *);
598 static inline void tcp_clear_xmit_timers(struct sock *sk)
599 {
600 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
601 		__sock_put(sk);
602 
603 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
604 		__sock_put(sk);
605 
606 	inet_csk_clear_xmit_timers(sk);
607 }
608 
609 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
610 unsigned int tcp_current_mss(struct sock *sk);
611 
612 /* Bound MSS / TSO packet size with the half of the window */
613 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
614 {
615 	int cutoff;
616 
617 	/* When peer uses tiny windows, there is no use in packetizing
618 	 * to sub-MSS pieces for the sake of SWS or making sure there
619 	 * are enough packets in the pipe for fast recovery.
620 	 *
621 	 * On the other hand, for extremely large MSS devices, handling
622 	 * smaller than MSS windows in this way does make sense.
623 	 */
624 	if (tp->max_window > TCP_MSS_DEFAULT)
625 		cutoff = (tp->max_window >> 1);
626 	else
627 		cutoff = tp->max_window;
628 
629 	if (cutoff && pktsize > cutoff)
630 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
631 	else
632 		return pktsize;
633 }
634 
635 /* tcp.c */
636 void tcp_get_info(struct sock *, struct tcp_info *);
637 
638 /* Read 'sendfile()'-style from a TCP socket */
639 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
640 		  sk_read_actor_t recv_actor);
641 
642 void tcp_initialize_rcv_mss(struct sock *sk);
643 
644 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
645 int tcp_mss_to_mtu(struct sock *sk, int mss);
646 void tcp_mtup_init(struct sock *sk);
647 void tcp_init_buffer_space(struct sock *sk);
648 
649 static inline void tcp_bound_rto(const struct sock *sk)
650 {
651 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
652 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
653 }
654 
655 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
656 {
657 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
658 }
659 
660 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
661 {
662 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
663 			       ntohl(TCP_FLAG_ACK) |
664 			       snd_wnd);
665 }
666 
667 static inline void tcp_fast_path_on(struct tcp_sock *tp)
668 {
669 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
670 }
671 
672 static inline void tcp_fast_path_check(struct sock *sk)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 
676 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
677 	    tp->rcv_wnd &&
678 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
679 	    !tp->urg_data)
680 		tcp_fast_path_on(tp);
681 }
682 
683 /* Compute the actual rto_min value */
684 static inline u32 tcp_rto_min(struct sock *sk)
685 {
686 	const struct dst_entry *dst = __sk_dst_get(sk);
687 	u32 rto_min = TCP_RTO_MIN;
688 
689 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
690 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
691 	return rto_min;
692 }
693 
694 static inline u32 tcp_rto_min_us(struct sock *sk)
695 {
696 	return jiffies_to_usecs(tcp_rto_min(sk));
697 }
698 
699 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
700 {
701 	return dst_metric_locked(dst, RTAX_CC_ALGO);
702 }
703 
704 /* Minimum RTT in usec. ~0 means not available. */
705 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
706 {
707 	return minmax_get(&tp->rtt_min);
708 }
709 
710 /* Compute the actual receive window we are currently advertising.
711  * Rcv_nxt can be after the window if our peer push more data
712  * than the offered window.
713  */
714 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
715 {
716 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
717 
718 	if (win < 0)
719 		win = 0;
720 	return (u32) win;
721 }
722 
723 /* Choose a new window, without checks for shrinking, and without
724  * scaling applied to the result.  The caller does these things
725  * if necessary.  This is a "raw" window selection.
726  */
727 u32 __tcp_select_window(struct sock *sk);
728 
729 void tcp_send_window_probe(struct sock *sk);
730 
731 /* TCP uses 32bit jiffies to save some space.
732  * Note that this is different from tcp_time_stamp, which
733  * historically has been the same until linux-4.13.
734  */
735 #define tcp_jiffies32 ((u32)jiffies)
736 
737 /*
738  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
739  * It is no longer tied to jiffies, but to 1 ms clock.
740  * Note: double check if you want to use tcp_jiffies32 instead of this.
741  */
742 #define TCP_TS_HZ	1000
743 
744 static inline u64 tcp_clock_ns(void)
745 {
746 	return ktime_get_ns();
747 }
748 
749 static inline u64 tcp_clock_us(void)
750 {
751 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
752 }
753 
754 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
755 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
756 {
757 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
758 }
759 
760 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
761 static inline u32 tcp_time_stamp_raw(void)
762 {
763 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
764 }
765 
766 void tcp_mstamp_refresh(struct tcp_sock *tp);
767 
768 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
769 {
770 	return max_t(s64, t1 - t0, 0);
771 }
772 
773 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
774 {
775 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_SEC / TCP_TS_HZ);
776 }
777 
778 /* provide the departure time in us unit */
779 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
780 {
781 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
782 }
783 
784 
785 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
786 
787 #define TCPHDR_FIN 0x01
788 #define TCPHDR_SYN 0x02
789 #define TCPHDR_RST 0x04
790 #define TCPHDR_PSH 0x08
791 #define TCPHDR_ACK 0x10
792 #define TCPHDR_URG 0x20
793 #define TCPHDR_ECE 0x40
794 #define TCPHDR_CWR 0x80
795 
796 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
797 
798 /* This is what the send packet queuing engine uses to pass
799  * TCP per-packet control information to the transmission code.
800  * We also store the host-order sequence numbers in here too.
801  * This is 44 bytes if IPV6 is enabled.
802  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
803  */
804 struct tcp_skb_cb {
805 	__u32		seq;		/* Starting sequence number	*/
806 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
807 	union {
808 		/* Note : tcp_tw_isn is used in input path only
809 		 *	  (isn chosen by tcp_timewait_state_process())
810 		 *
811 		 * 	  tcp_gso_segs/size are used in write queue only,
812 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
813 		 */
814 		__u32		tcp_tw_isn;
815 		struct {
816 			u16	tcp_gso_segs;
817 			u16	tcp_gso_size;
818 		};
819 	};
820 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
821 
822 	__u8		sacked;		/* State flags for SACK.	*/
823 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
824 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
825 #define TCPCB_LOST		0x04	/* SKB is lost			*/
826 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
827 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
828 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
829 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
830 				TCPCB_REPAIRED)
831 
832 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
833 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
834 			eor:1,		/* Is skb MSG_EOR marked? */
835 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
836 			unused:5;
837 	__u32		ack_seq;	/* Sequence number ACK'd	*/
838 	union {
839 		struct {
840 			/* There is space for up to 24 bytes */
841 			__u32 in_flight:30,/* Bytes in flight at transmit */
842 			      is_app_limited:1, /* cwnd not fully used? */
843 			      unused:1;
844 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
845 			__u32 delivered;
846 			/* start of send pipeline phase */
847 			u64 first_tx_mstamp;
848 			/* when we reached the "delivered" count */
849 			u64 delivered_mstamp;
850 		} tx;   /* only used for outgoing skbs */
851 		union {
852 			struct inet_skb_parm	h4;
853 #if IS_ENABLED(CONFIG_IPV6)
854 			struct inet6_skb_parm	h6;
855 #endif
856 		} header;	/* For incoming skbs */
857 		struct {
858 			__u32 flags;
859 			struct sock *sk_redir;
860 			void *data_end;
861 		} bpf;
862 	};
863 };
864 
865 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
866 
867 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
868 {
869 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
870 }
871 
872 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
873 {
874 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
875 }
876 
877 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
878 {
879 	return TCP_SKB_CB(skb)->bpf.sk_redir;
880 }
881 
882 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
883 {
884 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
885 }
886 
887 #if IS_ENABLED(CONFIG_IPV6)
888 /* This is the variant of inet6_iif() that must be used by TCP,
889  * as TCP moves IP6CB into a different location in skb->cb[]
890  */
891 static inline int tcp_v6_iif(const struct sk_buff *skb)
892 {
893 	return TCP_SKB_CB(skb)->header.h6.iif;
894 }
895 
896 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
897 {
898 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
899 
900 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
901 }
902 
903 /* TCP_SKB_CB reference means this can not be used from early demux */
904 static inline int tcp_v6_sdif(const struct sk_buff *skb)
905 {
906 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
907 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
908 		return TCP_SKB_CB(skb)->header.h6.iif;
909 #endif
910 	return 0;
911 }
912 #endif
913 
914 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
915 {
916 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
917 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
918 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
919 		return true;
920 #endif
921 	return false;
922 }
923 
924 /* TCP_SKB_CB reference means this can not be used from early demux */
925 static inline int tcp_v4_sdif(struct sk_buff *skb)
926 {
927 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
928 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
929 		return TCP_SKB_CB(skb)->header.h4.iif;
930 #endif
931 	return 0;
932 }
933 
934 /* Due to TSO, an SKB can be composed of multiple actual
935  * packets.  To keep these tracked properly, we use this.
936  */
937 static inline int tcp_skb_pcount(const struct sk_buff *skb)
938 {
939 	return TCP_SKB_CB(skb)->tcp_gso_segs;
940 }
941 
942 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
943 {
944 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
945 }
946 
947 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
948 {
949 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
950 }
951 
952 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
953 static inline int tcp_skb_mss(const struct sk_buff *skb)
954 {
955 	return TCP_SKB_CB(skb)->tcp_gso_size;
956 }
957 
958 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
959 {
960 	return likely(!TCP_SKB_CB(skb)->eor);
961 }
962 
963 /* Events passed to congestion control interface */
964 enum tcp_ca_event {
965 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
966 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
967 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
968 	CA_EVENT_LOSS,		/* loss timeout */
969 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
970 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
971 };
972 
973 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
974 enum tcp_ca_ack_event_flags {
975 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
976 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
977 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
978 };
979 
980 /*
981  * Interface for adding new TCP congestion control handlers
982  */
983 #define TCP_CA_NAME_MAX	16
984 #define TCP_CA_MAX	128
985 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
986 
987 #define TCP_CA_UNSPEC	0
988 
989 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
990 #define TCP_CONG_NON_RESTRICTED 0x1
991 /* Requires ECN/ECT set on all packets */
992 #define TCP_CONG_NEEDS_ECN	0x2
993 
994 union tcp_cc_info;
995 
996 struct ack_sample {
997 	u32 pkts_acked;
998 	s32 rtt_us;
999 	u32 in_flight;
1000 };
1001 
1002 /* A rate sample measures the number of (original/retransmitted) data
1003  * packets delivered "delivered" over an interval of time "interval_us".
1004  * The tcp_rate.c code fills in the rate sample, and congestion
1005  * control modules that define a cong_control function to run at the end
1006  * of ACK processing can optionally chose to consult this sample when
1007  * setting cwnd and pacing rate.
1008  * A sample is invalid if "delivered" or "interval_us" is negative.
1009  */
1010 struct rate_sample {
1011 	u64  prior_mstamp; /* starting timestamp for interval */
1012 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1013 	s32  delivered;		/* number of packets delivered over interval */
1014 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1015 	u32 snd_interval_us;	/* snd interval for delivered packets */
1016 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1017 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1018 	int  losses;		/* number of packets marked lost upon ACK */
1019 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1020 	u32  prior_in_flight;	/* in flight before this ACK */
1021 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1022 	bool is_retrans;	/* is sample from retransmission? */
1023 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1024 };
1025 
1026 struct tcp_congestion_ops {
1027 	struct list_head	list;
1028 	u32 key;
1029 	u32 flags;
1030 
1031 	/* initialize private data (optional) */
1032 	void (*init)(struct sock *sk);
1033 	/* cleanup private data  (optional) */
1034 	void (*release)(struct sock *sk);
1035 
1036 	/* return slow start threshold (required) */
1037 	u32 (*ssthresh)(struct sock *sk);
1038 	/* do new cwnd calculation (required) */
1039 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1040 	/* call before changing ca_state (optional) */
1041 	void (*set_state)(struct sock *sk, u8 new_state);
1042 	/* call when cwnd event occurs (optional) */
1043 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1044 	/* call when ack arrives (optional) */
1045 	void (*in_ack_event)(struct sock *sk, u32 flags);
1046 	/* new value of cwnd after loss (required) */
1047 	u32  (*undo_cwnd)(struct sock *sk);
1048 	/* hook for packet ack accounting (optional) */
1049 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1050 	/* override sysctl_tcp_min_tso_segs */
1051 	u32 (*min_tso_segs)(struct sock *sk);
1052 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1053 	u32 (*sndbuf_expand)(struct sock *sk);
1054 	/* call when packets are delivered to update cwnd and pacing rate,
1055 	 * after all the ca_state processing. (optional)
1056 	 */
1057 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1058 	/* get info for inet_diag (optional) */
1059 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1060 			   union tcp_cc_info *info);
1061 
1062 	char 		name[TCP_CA_NAME_MAX];
1063 	struct module 	*owner;
1064 };
1065 
1066 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1067 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1068 
1069 void tcp_assign_congestion_control(struct sock *sk);
1070 void tcp_init_congestion_control(struct sock *sk);
1071 void tcp_cleanup_congestion_control(struct sock *sk);
1072 int tcp_set_default_congestion_control(struct net *net, const char *name);
1073 void tcp_get_default_congestion_control(struct net *net, char *name);
1074 void tcp_get_available_congestion_control(char *buf, size_t len);
1075 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1076 int tcp_set_allowed_congestion_control(char *allowed);
1077 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1078 			       bool reinit, bool cap_net_admin);
1079 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1080 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1081 
1082 u32 tcp_reno_ssthresh(struct sock *sk);
1083 u32 tcp_reno_undo_cwnd(struct sock *sk);
1084 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1085 extern struct tcp_congestion_ops tcp_reno;
1086 
1087 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1088 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1089 #ifdef CONFIG_INET
1090 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1091 #else
1092 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1093 {
1094 	return NULL;
1095 }
1096 #endif
1097 
1098 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1099 {
1100 	const struct inet_connection_sock *icsk = inet_csk(sk);
1101 
1102 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1103 }
1104 
1105 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1106 {
1107 	struct inet_connection_sock *icsk = inet_csk(sk);
1108 
1109 	if (icsk->icsk_ca_ops->set_state)
1110 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1111 	icsk->icsk_ca_state = ca_state;
1112 }
1113 
1114 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1115 {
1116 	const struct inet_connection_sock *icsk = inet_csk(sk);
1117 
1118 	if (icsk->icsk_ca_ops->cwnd_event)
1119 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1120 }
1121 
1122 /* From tcp_rate.c */
1123 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1124 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1125 			    struct rate_sample *rs);
1126 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1127 		  bool is_sack_reneg, struct rate_sample *rs);
1128 void tcp_rate_check_app_limited(struct sock *sk);
1129 
1130 /* These functions determine how the current flow behaves in respect of SACK
1131  * handling. SACK is negotiated with the peer, and therefore it can vary
1132  * between different flows.
1133  *
1134  * tcp_is_sack - SACK enabled
1135  * tcp_is_reno - No SACK
1136  */
1137 static inline int tcp_is_sack(const struct tcp_sock *tp)
1138 {
1139 	return likely(tp->rx_opt.sack_ok);
1140 }
1141 
1142 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1143 {
1144 	return !tcp_is_sack(tp);
1145 }
1146 
1147 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1148 {
1149 	return tp->sacked_out + tp->lost_out;
1150 }
1151 
1152 /* This determines how many packets are "in the network" to the best
1153  * of our knowledge.  In many cases it is conservative, but where
1154  * detailed information is available from the receiver (via SACK
1155  * blocks etc.) we can make more aggressive calculations.
1156  *
1157  * Use this for decisions involving congestion control, use just
1158  * tp->packets_out to determine if the send queue is empty or not.
1159  *
1160  * Read this equation as:
1161  *
1162  *	"Packets sent once on transmission queue" MINUS
1163  *	"Packets left network, but not honestly ACKed yet" PLUS
1164  *	"Packets fast retransmitted"
1165  */
1166 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1167 {
1168 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1169 }
1170 
1171 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1172 
1173 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1174 {
1175 	return tp->snd_cwnd < tp->snd_ssthresh;
1176 }
1177 
1178 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1179 {
1180 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1181 }
1182 
1183 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1184 {
1185 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1186 	       (1 << inet_csk(sk)->icsk_ca_state);
1187 }
1188 
1189 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1190  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1191  * ssthresh.
1192  */
1193 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1194 {
1195 	const struct tcp_sock *tp = tcp_sk(sk);
1196 
1197 	if (tcp_in_cwnd_reduction(sk))
1198 		return tp->snd_ssthresh;
1199 	else
1200 		return max(tp->snd_ssthresh,
1201 			   ((tp->snd_cwnd >> 1) +
1202 			    (tp->snd_cwnd >> 2)));
1203 }
1204 
1205 /* Use define here intentionally to get WARN_ON location shown at the caller */
1206 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1207 
1208 void tcp_enter_cwr(struct sock *sk);
1209 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1210 
1211 /* The maximum number of MSS of available cwnd for which TSO defers
1212  * sending if not using sysctl_tcp_tso_win_divisor.
1213  */
1214 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1215 {
1216 	return 3;
1217 }
1218 
1219 /* Returns end sequence number of the receiver's advertised window */
1220 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1221 {
1222 	return tp->snd_una + tp->snd_wnd;
1223 }
1224 
1225 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1226  * flexible approach. The RFC suggests cwnd should not be raised unless
1227  * it was fully used previously. And that's exactly what we do in
1228  * congestion avoidance mode. But in slow start we allow cwnd to grow
1229  * as long as the application has used half the cwnd.
1230  * Example :
1231  *    cwnd is 10 (IW10), but application sends 9 frames.
1232  *    We allow cwnd to reach 18 when all frames are ACKed.
1233  * This check is safe because it's as aggressive as slow start which already
1234  * risks 100% overshoot. The advantage is that we discourage application to
1235  * either send more filler packets or data to artificially blow up the cwnd
1236  * usage, and allow application-limited process to probe bw more aggressively.
1237  */
1238 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1239 {
1240 	const struct tcp_sock *tp = tcp_sk(sk);
1241 
1242 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1243 	if (tcp_in_slow_start(tp))
1244 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1245 
1246 	return tp->is_cwnd_limited;
1247 }
1248 
1249 /* BBR congestion control needs pacing.
1250  * Same remark for SO_MAX_PACING_RATE.
1251  * sch_fq packet scheduler is efficiently handling pacing,
1252  * but is not always installed/used.
1253  * Return true if TCP stack should pace packets itself.
1254  */
1255 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1256 {
1257 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1258 }
1259 
1260 /* Return in jiffies the delay before one skb is sent.
1261  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1262  */
1263 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1264 					     const struct sk_buff *skb)
1265 {
1266 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1267 
1268 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1269 
1270 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1271 }
1272 
1273 static inline void tcp_reset_xmit_timer(struct sock *sk,
1274 					const int what,
1275 					unsigned long when,
1276 					const unsigned long max_when,
1277 					const struct sk_buff *skb)
1278 {
1279 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1280 				  max_when);
1281 }
1282 
1283 /* Something is really bad, we could not queue an additional packet,
1284  * because qdisc is full or receiver sent a 0 window, or we are paced.
1285  * We do not want to add fuel to the fire, or abort too early,
1286  * so make sure the timer we arm now is at least 200ms in the future,
1287  * regardless of current icsk_rto value (as it could be ~2ms)
1288  */
1289 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1290 {
1291 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1292 }
1293 
1294 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1295 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1296 					    unsigned long max_when)
1297 {
1298 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1299 
1300 	return (unsigned long)min_t(u64, when, max_when);
1301 }
1302 
1303 static inline void tcp_check_probe_timer(struct sock *sk)
1304 {
1305 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1306 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1307 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1308 				     NULL);
1309 }
1310 
1311 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1312 {
1313 	tp->snd_wl1 = seq;
1314 }
1315 
1316 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1317 {
1318 	tp->snd_wl1 = seq;
1319 }
1320 
1321 /*
1322  * Calculate(/check) TCP checksum
1323  */
1324 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1325 				   __be32 daddr, __wsum base)
1326 {
1327 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1328 }
1329 
1330 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1331 {
1332 	return !skb_csum_unnecessary(skb) &&
1333 		__skb_checksum_complete(skb);
1334 }
1335 
1336 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1337 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1338 void tcp_set_state(struct sock *sk, int state);
1339 void tcp_done(struct sock *sk);
1340 int tcp_abort(struct sock *sk, int err);
1341 
1342 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1343 {
1344 	rx_opt->dsack = 0;
1345 	rx_opt->num_sacks = 0;
1346 }
1347 
1348 u32 tcp_default_init_rwnd(u32 mss);
1349 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1350 
1351 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1352 {
1353 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 	s32 delta;
1356 
1357 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1358 	    ca_ops->cong_control)
1359 		return;
1360 	delta = tcp_jiffies32 - tp->lsndtime;
1361 	if (delta > inet_csk(sk)->icsk_rto)
1362 		tcp_cwnd_restart(sk, delta);
1363 }
1364 
1365 /* Determine a window scaling and initial window to offer. */
1366 void tcp_select_initial_window(const struct sock *sk, int __space,
1367 			       __u32 mss, __u32 *rcv_wnd,
1368 			       __u32 *window_clamp, int wscale_ok,
1369 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1370 
1371 static inline int tcp_win_from_space(const struct sock *sk, int space)
1372 {
1373 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1374 
1375 	return tcp_adv_win_scale <= 0 ?
1376 		(space>>(-tcp_adv_win_scale)) :
1377 		space - (space>>tcp_adv_win_scale);
1378 }
1379 
1380 /* Note: caller must be prepared to deal with negative returns */
1381 static inline int tcp_space(const struct sock *sk)
1382 {
1383 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1384 				  READ_ONCE(sk->sk_backlog.len) -
1385 				  atomic_read(&sk->sk_rmem_alloc));
1386 }
1387 
1388 static inline int tcp_full_space(const struct sock *sk)
1389 {
1390 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1391 }
1392 
1393 extern void tcp_openreq_init_rwin(struct request_sock *req,
1394 				  const struct sock *sk_listener,
1395 				  const struct dst_entry *dst);
1396 
1397 void tcp_enter_memory_pressure(struct sock *sk);
1398 void tcp_leave_memory_pressure(struct sock *sk);
1399 
1400 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1401 {
1402 	struct net *net = sock_net((struct sock *)tp);
1403 
1404 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1405 }
1406 
1407 static inline int keepalive_time_when(const struct tcp_sock *tp)
1408 {
1409 	struct net *net = sock_net((struct sock *)tp);
1410 
1411 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1412 }
1413 
1414 static inline int keepalive_probes(const struct tcp_sock *tp)
1415 {
1416 	struct net *net = sock_net((struct sock *)tp);
1417 
1418 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1419 }
1420 
1421 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1422 {
1423 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1424 
1425 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1426 			  tcp_jiffies32 - tp->rcv_tstamp);
1427 }
1428 
1429 static inline int tcp_fin_time(const struct sock *sk)
1430 {
1431 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1432 	const int rto = inet_csk(sk)->icsk_rto;
1433 
1434 	if (fin_timeout < (rto << 2) - (rto >> 1))
1435 		fin_timeout = (rto << 2) - (rto >> 1);
1436 
1437 	return fin_timeout;
1438 }
1439 
1440 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1441 				  int paws_win)
1442 {
1443 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1444 		return true;
1445 	if (unlikely(!time_before32(ktime_get_seconds(),
1446 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1447 		return true;
1448 	/*
1449 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1450 	 * then following tcp messages have valid values. Ignore 0 value,
1451 	 * or else 'negative' tsval might forbid us to accept their packets.
1452 	 */
1453 	if (!rx_opt->ts_recent)
1454 		return true;
1455 	return false;
1456 }
1457 
1458 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1459 				   int rst)
1460 {
1461 	if (tcp_paws_check(rx_opt, 0))
1462 		return false;
1463 
1464 	/* RST segments are not recommended to carry timestamp,
1465 	   and, if they do, it is recommended to ignore PAWS because
1466 	   "their cleanup function should take precedence over timestamps."
1467 	   Certainly, it is mistake. It is necessary to understand the reasons
1468 	   of this constraint to relax it: if peer reboots, clock may go
1469 	   out-of-sync and half-open connections will not be reset.
1470 	   Actually, the problem would be not existing if all
1471 	   the implementations followed draft about maintaining clock
1472 	   via reboots. Linux-2.2 DOES NOT!
1473 
1474 	   However, we can relax time bounds for RST segments to MSL.
1475 	 */
1476 	if (rst && !time_before32(ktime_get_seconds(),
1477 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1478 		return false;
1479 	return true;
1480 }
1481 
1482 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1483 			  int mib_idx, u32 *last_oow_ack_time);
1484 
1485 static inline void tcp_mib_init(struct net *net)
1486 {
1487 	/* See RFC 2012 */
1488 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1489 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1490 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1491 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1492 }
1493 
1494 /* from STCP */
1495 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1496 {
1497 	tp->lost_skb_hint = NULL;
1498 }
1499 
1500 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1501 {
1502 	tcp_clear_retrans_hints_partial(tp);
1503 	tp->retransmit_skb_hint = NULL;
1504 }
1505 
1506 union tcp_md5_addr {
1507 	struct in_addr  a4;
1508 #if IS_ENABLED(CONFIG_IPV6)
1509 	struct in6_addr	a6;
1510 #endif
1511 };
1512 
1513 /* - key database */
1514 struct tcp_md5sig_key {
1515 	struct hlist_node	node;
1516 	u8			keylen;
1517 	u8			family; /* AF_INET or AF_INET6 */
1518 	union tcp_md5_addr	addr;
1519 	u8			prefixlen;
1520 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1521 	struct rcu_head		rcu;
1522 };
1523 
1524 /* - sock block */
1525 struct tcp_md5sig_info {
1526 	struct hlist_head	head;
1527 	struct rcu_head		rcu;
1528 };
1529 
1530 /* - pseudo header */
1531 struct tcp4_pseudohdr {
1532 	__be32		saddr;
1533 	__be32		daddr;
1534 	__u8		pad;
1535 	__u8		protocol;
1536 	__be16		len;
1537 };
1538 
1539 struct tcp6_pseudohdr {
1540 	struct in6_addr	saddr;
1541 	struct in6_addr daddr;
1542 	__be32		len;
1543 	__be32		protocol;	/* including padding */
1544 };
1545 
1546 union tcp_md5sum_block {
1547 	struct tcp4_pseudohdr ip4;
1548 #if IS_ENABLED(CONFIG_IPV6)
1549 	struct tcp6_pseudohdr ip6;
1550 #endif
1551 };
1552 
1553 /* - pool: digest algorithm, hash description and scratch buffer */
1554 struct tcp_md5sig_pool {
1555 	struct ahash_request	*md5_req;
1556 	void			*scratch;
1557 };
1558 
1559 /* - functions */
1560 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1561 			const struct sock *sk, const struct sk_buff *skb);
1562 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1563 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1564 		   gfp_t gfp);
1565 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1566 		   int family, u8 prefixlen);
1567 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1568 					 const struct sock *addr_sk);
1569 
1570 #ifdef CONFIG_TCP_MD5SIG
1571 #include <linux/jump_label.h>
1572 extern struct static_key_false tcp_md5_needed;
1573 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1574 					   const union tcp_md5_addr *addr,
1575 					   int family);
1576 static inline struct tcp_md5sig_key *
1577 tcp_md5_do_lookup(const struct sock *sk,
1578 		  const union tcp_md5_addr *addr,
1579 		  int family)
1580 {
1581 	if (!static_branch_unlikely(&tcp_md5_needed))
1582 		return NULL;
1583 	return __tcp_md5_do_lookup(sk, addr, family);
1584 }
1585 
1586 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1587 #else
1588 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1589 					 const union tcp_md5_addr *addr,
1590 					 int family)
1591 {
1592 	return NULL;
1593 }
1594 #define tcp_twsk_md5_key(twsk)	NULL
1595 #endif
1596 
1597 bool tcp_alloc_md5sig_pool(void);
1598 
1599 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1600 static inline void tcp_put_md5sig_pool(void)
1601 {
1602 	local_bh_enable();
1603 }
1604 
1605 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1606 			  unsigned int header_len);
1607 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1608 		     const struct tcp_md5sig_key *key);
1609 
1610 /* From tcp_fastopen.c */
1611 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1612 			    struct tcp_fastopen_cookie *cookie);
1613 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1614 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1615 			    u16 try_exp);
1616 struct tcp_fastopen_request {
1617 	/* Fast Open cookie. Size 0 means a cookie request */
1618 	struct tcp_fastopen_cookie	cookie;
1619 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1620 	size_t				size;
1621 	int				copied;	/* queued in tcp_connect() */
1622 	struct ubuf_info		*uarg;
1623 };
1624 void tcp_free_fastopen_req(struct tcp_sock *tp);
1625 void tcp_fastopen_destroy_cipher(struct sock *sk);
1626 void tcp_fastopen_ctx_destroy(struct net *net);
1627 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1628 			      void *primary_key, void *backup_key);
1629 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1630 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1631 			      struct request_sock *req,
1632 			      struct tcp_fastopen_cookie *foc,
1633 			      const struct dst_entry *dst);
1634 void tcp_fastopen_init_key_once(struct net *net);
1635 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1636 			     struct tcp_fastopen_cookie *cookie);
1637 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1638 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1639 #define TCP_FASTOPEN_KEY_MAX 2
1640 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1641 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1642 
1643 /* Fastopen key context */
1644 struct tcp_fastopen_context {
1645 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1646 	int		num;
1647 	struct rcu_head	rcu;
1648 };
1649 
1650 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1651 void tcp_fastopen_active_disable(struct sock *sk);
1652 bool tcp_fastopen_active_should_disable(struct sock *sk);
1653 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1654 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1655 
1656 /* Caller needs to wrap with rcu_read_(un)lock() */
1657 static inline
1658 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1659 {
1660 	struct tcp_fastopen_context *ctx;
1661 
1662 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1663 	if (!ctx)
1664 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1665 	return ctx;
1666 }
1667 
1668 static inline
1669 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1670 			       const struct tcp_fastopen_cookie *orig)
1671 {
1672 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1673 	    orig->len == foc->len &&
1674 	    !memcmp(orig->val, foc->val, foc->len))
1675 		return true;
1676 	return false;
1677 }
1678 
1679 static inline
1680 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1681 {
1682 	return ctx->num;
1683 }
1684 
1685 /* Latencies incurred by various limits for a sender. They are
1686  * chronograph-like stats that are mutually exclusive.
1687  */
1688 enum tcp_chrono {
1689 	TCP_CHRONO_UNSPEC,
1690 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1691 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1692 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1693 	__TCP_CHRONO_MAX,
1694 };
1695 
1696 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1697 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1698 
1699 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1700  * the same memory storage than skb->destructor/_skb_refdst
1701  */
1702 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1703 {
1704 	skb->destructor = NULL;
1705 	skb->_skb_refdst = 0UL;
1706 }
1707 
1708 #define tcp_skb_tsorted_save(skb) {		\
1709 	unsigned long _save = skb->_skb_refdst;	\
1710 	skb->_skb_refdst = 0UL;
1711 
1712 #define tcp_skb_tsorted_restore(skb)		\
1713 	skb->_skb_refdst = _save;		\
1714 }
1715 
1716 void tcp_write_queue_purge(struct sock *sk);
1717 
1718 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1719 {
1720 	return skb_rb_first(&sk->tcp_rtx_queue);
1721 }
1722 
1723 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1724 {
1725 	return skb_rb_last(&sk->tcp_rtx_queue);
1726 }
1727 
1728 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1729 {
1730 	return skb_peek(&sk->sk_write_queue);
1731 }
1732 
1733 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1734 {
1735 	return skb_peek_tail(&sk->sk_write_queue);
1736 }
1737 
1738 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1739 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1740 
1741 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1742 {
1743 	return skb_peek(&sk->sk_write_queue);
1744 }
1745 
1746 static inline bool tcp_skb_is_last(const struct sock *sk,
1747 				   const struct sk_buff *skb)
1748 {
1749 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1750 }
1751 
1752 static inline bool tcp_write_queue_empty(const struct sock *sk)
1753 {
1754 	return skb_queue_empty(&sk->sk_write_queue);
1755 }
1756 
1757 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1758 {
1759 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1760 }
1761 
1762 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1763 {
1764 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1765 }
1766 
1767 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1768 {
1769 	__skb_queue_tail(&sk->sk_write_queue, skb);
1770 
1771 	/* Queue it, remembering where we must start sending. */
1772 	if (sk->sk_write_queue.next == skb)
1773 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1774 }
1775 
1776 /* Insert new before skb on the write queue of sk.  */
1777 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1778 						  struct sk_buff *skb,
1779 						  struct sock *sk)
1780 {
1781 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1782 }
1783 
1784 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1785 {
1786 	tcp_skb_tsorted_anchor_cleanup(skb);
1787 	__skb_unlink(skb, &sk->sk_write_queue);
1788 }
1789 
1790 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1791 
1792 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1793 {
1794 	tcp_skb_tsorted_anchor_cleanup(skb);
1795 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1796 }
1797 
1798 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1799 {
1800 	list_del(&skb->tcp_tsorted_anchor);
1801 	tcp_rtx_queue_unlink(skb, sk);
1802 	sk_wmem_free_skb(sk, skb);
1803 }
1804 
1805 static inline void tcp_push_pending_frames(struct sock *sk)
1806 {
1807 	if (tcp_send_head(sk)) {
1808 		struct tcp_sock *tp = tcp_sk(sk);
1809 
1810 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1811 	}
1812 }
1813 
1814 /* Start sequence of the skb just after the highest skb with SACKed
1815  * bit, valid only if sacked_out > 0 or when the caller has ensured
1816  * validity by itself.
1817  */
1818 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1819 {
1820 	if (!tp->sacked_out)
1821 		return tp->snd_una;
1822 
1823 	if (tp->highest_sack == NULL)
1824 		return tp->snd_nxt;
1825 
1826 	return TCP_SKB_CB(tp->highest_sack)->seq;
1827 }
1828 
1829 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1830 {
1831 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1832 }
1833 
1834 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1835 {
1836 	return tcp_sk(sk)->highest_sack;
1837 }
1838 
1839 static inline void tcp_highest_sack_reset(struct sock *sk)
1840 {
1841 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1842 }
1843 
1844 /* Called when old skb is about to be deleted and replaced by new skb */
1845 static inline void tcp_highest_sack_replace(struct sock *sk,
1846 					    struct sk_buff *old,
1847 					    struct sk_buff *new)
1848 {
1849 	if (old == tcp_highest_sack(sk))
1850 		tcp_sk(sk)->highest_sack = new;
1851 }
1852 
1853 /* This helper checks if socket has IP_TRANSPARENT set */
1854 static inline bool inet_sk_transparent(const struct sock *sk)
1855 {
1856 	switch (sk->sk_state) {
1857 	case TCP_TIME_WAIT:
1858 		return inet_twsk(sk)->tw_transparent;
1859 	case TCP_NEW_SYN_RECV:
1860 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1861 	}
1862 	return inet_sk(sk)->transparent;
1863 }
1864 
1865 /* Determines whether this is a thin stream (which may suffer from
1866  * increased latency). Used to trigger latency-reducing mechanisms.
1867  */
1868 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1869 {
1870 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1871 }
1872 
1873 /* /proc */
1874 enum tcp_seq_states {
1875 	TCP_SEQ_STATE_LISTENING,
1876 	TCP_SEQ_STATE_ESTABLISHED,
1877 };
1878 
1879 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1880 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1881 void tcp_seq_stop(struct seq_file *seq, void *v);
1882 
1883 struct tcp_seq_afinfo {
1884 	sa_family_t			family;
1885 };
1886 
1887 struct tcp_iter_state {
1888 	struct seq_net_private	p;
1889 	enum tcp_seq_states	state;
1890 	struct sock		*syn_wait_sk;
1891 	int			bucket, offset, sbucket, num;
1892 	loff_t			last_pos;
1893 };
1894 
1895 extern struct request_sock_ops tcp_request_sock_ops;
1896 extern struct request_sock_ops tcp6_request_sock_ops;
1897 
1898 void tcp_v4_destroy_sock(struct sock *sk);
1899 
1900 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1901 				netdev_features_t features);
1902 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1903 int tcp_gro_complete(struct sk_buff *skb);
1904 
1905 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1906 
1907 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1908 {
1909 	struct net *net = sock_net((struct sock *)tp);
1910 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1911 }
1912 
1913 /* @wake is one when sk_stream_write_space() calls us.
1914  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1915  * This mimics the strategy used in sock_def_write_space().
1916  */
1917 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1918 {
1919 	const struct tcp_sock *tp = tcp_sk(sk);
1920 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1921 			    READ_ONCE(tp->snd_nxt);
1922 
1923 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1924 }
1925 
1926 #ifdef CONFIG_PROC_FS
1927 int tcp4_proc_init(void);
1928 void tcp4_proc_exit(void);
1929 #endif
1930 
1931 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1932 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1933 		     const struct tcp_request_sock_ops *af_ops,
1934 		     struct sock *sk, struct sk_buff *skb);
1935 
1936 /* TCP af-specific functions */
1937 struct tcp_sock_af_ops {
1938 #ifdef CONFIG_TCP_MD5SIG
1939 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1940 						const struct sock *addr_sk);
1941 	int		(*calc_md5_hash)(char *location,
1942 					 const struct tcp_md5sig_key *md5,
1943 					 const struct sock *sk,
1944 					 const struct sk_buff *skb);
1945 	int		(*md5_parse)(struct sock *sk,
1946 				     int optname,
1947 				     char __user *optval,
1948 				     int optlen);
1949 #endif
1950 };
1951 
1952 struct tcp_request_sock_ops {
1953 	u16 mss_clamp;
1954 #ifdef CONFIG_TCP_MD5SIG
1955 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1956 						 const struct sock *addr_sk);
1957 	int		(*calc_md5_hash) (char *location,
1958 					  const struct tcp_md5sig_key *md5,
1959 					  const struct sock *sk,
1960 					  const struct sk_buff *skb);
1961 #endif
1962 	void (*init_req)(struct request_sock *req,
1963 			 const struct sock *sk_listener,
1964 			 struct sk_buff *skb);
1965 #ifdef CONFIG_SYN_COOKIES
1966 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1967 				 __u16 *mss);
1968 #endif
1969 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1970 				       const struct request_sock *req);
1971 	u32 (*init_seq)(const struct sk_buff *skb);
1972 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1973 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1974 			   struct flowi *fl, struct request_sock *req,
1975 			   struct tcp_fastopen_cookie *foc,
1976 			   enum tcp_synack_type synack_type);
1977 };
1978 
1979 #ifdef CONFIG_SYN_COOKIES
1980 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1981 					 const struct sock *sk, struct sk_buff *skb,
1982 					 __u16 *mss)
1983 {
1984 	tcp_synq_overflow(sk);
1985 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1986 	return ops->cookie_init_seq(skb, mss);
1987 }
1988 #else
1989 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1990 					 const struct sock *sk, struct sk_buff *skb,
1991 					 __u16 *mss)
1992 {
1993 	return 0;
1994 }
1995 #endif
1996 
1997 int tcpv4_offload_init(void);
1998 
1999 void tcp_v4_init(void);
2000 void tcp_init(void);
2001 
2002 /* tcp_recovery.c */
2003 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2004 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2005 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2006 				u32 reo_wnd);
2007 extern void tcp_rack_mark_lost(struct sock *sk);
2008 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2009 			     u64 xmit_time);
2010 extern void tcp_rack_reo_timeout(struct sock *sk);
2011 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2012 
2013 /* At how many usecs into the future should the RTO fire? */
2014 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2015 {
2016 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2017 	u32 rto = inet_csk(sk)->icsk_rto;
2018 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2019 
2020 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2021 }
2022 
2023 /*
2024  * Save and compile IPv4 options, return a pointer to it
2025  */
2026 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2027 							 struct sk_buff *skb)
2028 {
2029 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2030 	struct ip_options_rcu *dopt = NULL;
2031 
2032 	if (opt->optlen) {
2033 		int opt_size = sizeof(*dopt) + opt->optlen;
2034 
2035 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2036 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2037 			kfree(dopt);
2038 			dopt = NULL;
2039 		}
2040 	}
2041 	return dopt;
2042 }
2043 
2044 /* locally generated TCP pure ACKs have skb->truesize == 2
2045  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2046  * This is much faster than dissecting the packet to find out.
2047  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2048  */
2049 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2050 {
2051 	return skb->truesize == 2;
2052 }
2053 
2054 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2055 {
2056 	skb->truesize = 2;
2057 }
2058 
2059 static inline int tcp_inq(struct sock *sk)
2060 {
2061 	struct tcp_sock *tp = tcp_sk(sk);
2062 	int answ;
2063 
2064 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2065 		answ = 0;
2066 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2067 		   !tp->urg_data ||
2068 		   before(tp->urg_seq, tp->copied_seq) ||
2069 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2070 
2071 		answ = tp->rcv_nxt - tp->copied_seq;
2072 
2073 		/* Subtract 1, if FIN was received */
2074 		if (answ && sock_flag(sk, SOCK_DONE))
2075 			answ--;
2076 	} else {
2077 		answ = tp->urg_seq - tp->copied_seq;
2078 	}
2079 
2080 	return answ;
2081 }
2082 
2083 int tcp_peek_len(struct socket *sock);
2084 
2085 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2086 {
2087 	u16 segs_in;
2088 
2089 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2090 	tp->segs_in += segs_in;
2091 	if (skb->len > tcp_hdrlen(skb))
2092 		tp->data_segs_in += segs_in;
2093 }
2094 
2095 /*
2096  * TCP listen path runs lockless.
2097  * We forced "struct sock" to be const qualified to make sure
2098  * we don't modify one of its field by mistake.
2099  * Here, we increment sk_drops which is an atomic_t, so we can safely
2100  * make sock writable again.
2101  */
2102 static inline void tcp_listendrop(const struct sock *sk)
2103 {
2104 	atomic_inc(&((struct sock *)sk)->sk_drops);
2105 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2106 }
2107 
2108 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2109 
2110 /*
2111  * Interface for adding Upper Level Protocols over TCP
2112  */
2113 
2114 #define TCP_ULP_NAME_MAX	16
2115 #define TCP_ULP_MAX		128
2116 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2117 
2118 struct tcp_ulp_ops {
2119 	struct list_head	list;
2120 
2121 	/* initialize ulp */
2122 	int (*init)(struct sock *sk);
2123 	/* update ulp */
2124 	void (*update)(struct sock *sk, struct proto *p);
2125 	/* cleanup ulp */
2126 	void (*release)(struct sock *sk);
2127 	/* diagnostic */
2128 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2129 	size_t (*get_info_size)(const struct sock *sk);
2130 
2131 	char		name[TCP_ULP_NAME_MAX];
2132 	struct module	*owner;
2133 };
2134 int tcp_register_ulp(struct tcp_ulp_ops *type);
2135 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2136 int tcp_set_ulp(struct sock *sk, const char *name);
2137 void tcp_get_available_ulp(char *buf, size_t len);
2138 void tcp_cleanup_ulp(struct sock *sk);
2139 void tcp_update_ulp(struct sock *sk, struct proto *p);
2140 
2141 #define MODULE_ALIAS_TCP_ULP(name)				\
2142 	__MODULE_INFO(alias, alias_userspace, name);		\
2143 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2144 
2145 struct sk_msg;
2146 struct sk_psock;
2147 
2148 int tcp_bpf_init(struct sock *sk);
2149 void tcp_bpf_reinit(struct sock *sk);
2150 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2151 			  int flags);
2152 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2153 		    int nonblock, int flags, int *addr_len);
2154 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2155 		      struct msghdr *msg, int len, int flags);
2156 
2157 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2158  * is < 0, then the BPF op failed (for example if the loaded BPF
2159  * program does not support the chosen operation or there is no BPF
2160  * program loaded).
2161  */
2162 #ifdef CONFIG_BPF
2163 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2164 {
2165 	struct bpf_sock_ops_kern sock_ops;
2166 	int ret;
2167 
2168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2169 	if (sk_fullsock(sk)) {
2170 		sock_ops.is_fullsock = 1;
2171 		sock_owned_by_me(sk);
2172 	}
2173 
2174 	sock_ops.sk = sk;
2175 	sock_ops.op = op;
2176 	if (nargs > 0)
2177 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2178 
2179 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2180 	if (ret == 0)
2181 		ret = sock_ops.reply;
2182 	else
2183 		ret = -1;
2184 	return ret;
2185 }
2186 
2187 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2188 {
2189 	u32 args[2] = {arg1, arg2};
2190 
2191 	return tcp_call_bpf(sk, op, 2, args);
2192 }
2193 
2194 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2195 				    u32 arg3)
2196 {
2197 	u32 args[3] = {arg1, arg2, arg3};
2198 
2199 	return tcp_call_bpf(sk, op, 3, args);
2200 }
2201 
2202 #else
2203 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2204 {
2205 	return -EPERM;
2206 }
2207 
2208 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2209 {
2210 	return -EPERM;
2211 }
2212 
2213 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2214 				    u32 arg3)
2215 {
2216 	return -EPERM;
2217 }
2218 
2219 #endif
2220 
2221 static inline u32 tcp_timeout_init(struct sock *sk)
2222 {
2223 	int timeout;
2224 
2225 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2226 
2227 	if (timeout <= 0)
2228 		timeout = TCP_TIMEOUT_INIT;
2229 	return timeout;
2230 }
2231 
2232 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2233 {
2234 	int rwnd;
2235 
2236 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2237 
2238 	if (rwnd < 0)
2239 		rwnd = 0;
2240 	return rwnd;
2241 }
2242 
2243 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2244 {
2245 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2246 }
2247 
2248 static inline void tcp_bpf_rtt(struct sock *sk)
2249 {
2250 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2251 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2252 }
2253 
2254 #if IS_ENABLED(CONFIG_SMC)
2255 extern struct static_key_false tcp_have_smc;
2256 #endif
2257 
2258 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2259 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2260 			     void (*cad)(struct sock *sk, u32 ack_seq));
2261 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2262 void clean_acked_data_flush(void);
2263 #endif
2264 
2265 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2266 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2267 				    const struct tcp_sock *tp)
2268 {
2269 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2270 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2271 }
2272 
2273 /* Compute Earliest Departure Time for some control packets
2274  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2275  */
2276 static inline u64 tcp_transmit_time(const struct sock *sk)
2277 {
2278 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2279 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2280 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2281 
2282 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2283 	}
2284 	return 0;
2285 }
2286 
2287 #endif	/* _TCP_H */
2288