xref: /linux/include/net/tcp.h (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/tcp_ao.h>
41 #include <net/inet_ecn.h>
42 #include <net/dst.h>
43 #include <net/mptcp.h>
44 
45 #include <linux/seq_file.h>
46 #include <linux/memcontrol.h>
47 #include <linux/bpf-cgroup.h>
48 #include <linux/siphash.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
56 
57 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS		48
60 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61 
62 /*
63  * Never offer a window over 32767 without using window scaling. Some
64  * poor stacks do signed 16bit maths!
65  */
66 #define MAX_TCP_WINDOW		32767U
67 
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS		88U
70 
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS		1024
73 
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL	600
76 
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD	8
79 
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
82 
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS	16U
85 
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE		14U
88 
89 /* urg_data states */
90 #define TCP_URG_VALID	0x0100
91 #define TCP_URG_NOTYET	0x0200
92 #define TCP_URG_READ	0x0400
93 
94 #define TCP_RETR1	3	/*
95 				 * This is how many retries it does before it
96 				 * tries to figure out if the gateway is
97 				 * down. Minimal RFC value is 3; it corresponds
98 				 * to ~3sec-8min depending on RTO.
99 				 */
100 
101 #define TCP_RETR2	15	/*
102 				 * This should take at least
103 				 * 90 minutes to time out.
104 				 * RFC1122 says that the limit is 100 sec.
105 				 * 15 is ~13-30min depending on RTO.
106 				 */
107 
108 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
109 				 * when active opening a connection.
110 				 * RFC1122 says the minimum retry MUST
111 				 * be at least 180secs.  Nevertheless
112 				 * this value is corresponding to
113 				 * 63secs of retransmission with the
114 				 * current initial RTO.
115 				 */
116 
117 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
118 				 * when passive opening a connection.
119 				 * This is corresponding to 31secs of
120 				 * retransmission with the current
121 				 * initial RTO.
122 				 */
123 
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 				  * state, about 60 seconds	*/
126 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
127                                  /* BSD style FIN_WAIT2 deadlock breaker.
128 				  * It used to be 3min, new value is 60sec,
129 				  * to combine FIN-WAIT-2 timeout with
130 				  * TIME-WAIT timer.
131 				  */
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133 
134 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
136 
137 #if HZ >= 100
138 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
139 #define TCP_ATO_MIN	((unsigned)(HZ/25))
140 #else
141 #define TCP_DELACK_MIN	4U
142 #define TCP_ATO_MIN	4U
143 #endif
144 #define TCP_RTO_MAX	((unsigned)(120*HZ))
145 #define TCP_RTO_MIN	((unsigned)(HZ/5))
146 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
147 
148 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
149 
150 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
151 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
152 						 * used as a fallback RTO for the
153 						 * initial data transmission if no
154 						 * valid RTT sample has been acquired,
155 						 * most likely due to retrans in 3WHS.
156 						 */
157 
158 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
159 					                 * for local resources.
160 					                 */
161 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
162 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
163 #define TCP_KEEPALIVE_INTVL	(75*HZ)
164 
165 #define MAX_TCP_KEEPIDLE	32767
166 #define MAX_TCP_KEEPINTVL	32767
167 #define MAX_TCP_KEEPCNT		127
168 #define MAX_TCP_SYNCNT		127
169 
170 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
171  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
172  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
173  */
174 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
175 
176 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
177 					 * after this time. It should be equal
178 					 * (or greater than) TCP_TIMEWAIT_LEN
179 					 * to provide reliability equal to one
180 					 * provided by timewait state.
181 					 */
182 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
183 					 * timestamps. It must be less than
184 					 * minimal timewait lifetime.
185 					 */
186 /*
187  *	TCP option
188  */
189 
190 #define TCPOPT_NOP		1	/* Padding */
191 #define TCPOPT_EOL		0	/* End of options */
192 #define TCPOPT_MSS		2	/* Segment size negotiating */
193 #define TCPOPT_WINDOW		3	/* Window scaling */
194 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
195 #define TCPOPT_SACK             5       /* SACK Block */
196 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
197 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
198 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
199 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
200 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
201 #define TCPOPT_EXP		254	/* Experimental */
202 /* Magic number to be after the option value for sharing TCP
203  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
204  */
205 #define TCPOPT_FASTOPEN_MAGIC	0xF989
206 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
207 
208 /*
209  *     TCP option lengths
210  */
211 
212 #define TCPOLEN_MSS            4
213 #define TCPOLEN_WINDOW         3
214 #define TCPOLEN_SACK_PERM      2
215 #define TCPOLEN_TIMESTAMP      10
216 #define TCPOLEN_MD5SIG         18
217 #define TCPOLEN_FASTOPEN_BASE  2
218 #define TCPOLEN_EXP_FASTOPEN_BASE  4
219 #define TCPOLEN_EXP_SMC_BASE   6
220 
221 /* But this is what stacks really send out. */
222 #define TCPOLEN_TSTAMP_ALIGNED		12
223 #define TCPOLEN_WSCALE_ALIGNED		4
224 #define TCPOLEN_SACKPERM_ALIGNED	4
225 #define TCPOLEN_SACK_BASE		2
226 #define TCPOLEN_SACK_BASE_ALIGNED	4
227 #define TCPOLEN_SACK_PERBLOCK		8
228 #define TCPOLEN_MD5SIG_ALIGNED		20
229 #define TCPOLEN_MSS_ALIGNED		4
230 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
231 
232 /* Flags in tp->nonagle */
233 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
234 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
235 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
236 
237 /* TCP thin-stream limits */
238 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
239 
240 /* TCP initial congestion window as per rfc6928 */
241 #define TCP_INIT_CWND		10
242 
243 /* Bit Flags for sysctl_tcp_fastopen */
244 #define	TFO_CLIENT_ENABLE	1
245 #define	TFO_SERVER_ENABLE	2
246 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
247 
248 /* Accept SYN data w/o any cookie option */
249 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
250 
251 /* Force enable TFO on all listeners, i.e., not requiring the
252  * TCP_FASTOPEN socket option.
253  */
254 #define	TFO_SERVER_WO_SOCKOPT1	0x400
255 
256 
257 /* sysctl variables for tcp */
258 extern int sysctl_tcp_max_orphans;
259 extern long sysctl_tcp_mem[3];
260 
261 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
262 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
263 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
264 
265 extern atomic_long_t tcp_memory_allocated;
266 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
267 
268 extern struct percpu_counter tcp_sockets_allocated;
269 extern unsigned long tcp_memory_pressure;
270 
271 /* optimized version of sk_under_memory_pressure() for TCP sockets */
272 static inline bool tcp_under_memory_pressure(const struct sock *sk)
273 {
274 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
275 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
276 		return true;
277 
278 	return READ_ONCE(tcp_memory_pressure);
279 }
280 /*
281  * The next routines deal with comparing 32 bit unsigned ints
282  * and worry about wraparound (automatic with unsigned arithmetic).
283  */
284 
285 static inline bool before(__u32 seq1, __u32 seq2)
286 {
287         return (__s32)(seq1-seq2) < 0;
288 }
289 #define after(seq2, seq1) 	before(seq1, seq2)
290 
291 /* is s2<=s1<=s3 ? */
292 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
293 {
294 	return seq3 - seq2 >= seq1 - seq2;
295 }
296 
297 static inline bool tcp_out_of_memory(struct sock *sk)
298 {
299 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
300 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
301 		return true;
302 	return false;
303 }
304 
305 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
306 {
307 	sk_wmem_queued_add(sk, -skb->truesize);
308 	if (!skb_zcopy_pure(skb))
309 		sk_mem_uncharge(sk, skb->truesize);
310 	else
311 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
312 	__kfree_skb(skb);
313 }
314 
315 void sk_forced_mem_schedule(struct sock *sk, int size);
316 
317 bool tcp_check_oom(struct sock *sk, int shift);
318 
319 
320 extern struct proto tcp_prot;
321 
322 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
323 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
324 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
325 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
326 
327 void tcp_tasklet_init(void);
328 
329 int tcp_v4_err(struct sk_buff *skb, u32);
330 
331 void tcp_shutdown(struct sock *sk, int how);
332 
333 int tcp_v4_early_demux(struct sk_buff *skb);
334 int tcp_v4_rcv(struct sk_buff *skb);
335 
336 void tcp_remove_empty_skb(struct sock *sk);
337 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
338 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
339 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
340 			 size_t size, struct ubuf_info *uarg);
341 void tcp_splice_eof(struct socket *sock);
342 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
343 int tcp_wmem_schedule(struct sock *sk, int copy);
344 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
345 	      int size_goal);
346 void tcp_release_cb(struct sock *sk);
347 void tcp_wfree(struct sk_buff *skb);
348 void tcp_write_timer_handler(struct sock *sk);
349 void tcp_delack_timer_handler(struct sock *sk);
350 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
351 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
353 void tcp_rcv_space_adjust(struct sock *sk);
354 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
355 void tcp_twsk_destructor(struct sock *sk);
356 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
357 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
358 			struct pipe_inode_info *pipe, size_t len,
359 			unsigned int flags);
360 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
361 				     bool force_schedule);
362 
363 static inline void tcp_dec_quickack_mode(struct sock *sk)
364 {
365 	struct inet_connection_sock *icsk = inet_csk(sk);
366 
367 	if (icsk->icsk_ack.quick) {
368 		/* How many ACKs S/ACKing new data have we sent? */
369 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
370 
371 		if (pkts >= icsk->icsk_ack.quick) {
372 			icsk->icsk_ack.quick = 0;
373 			/* Leaving quickack mode we deflate ATO. */
374 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
375 		} else
376 			icsk->icsk_ack.quick -= pkts;
377 	}
378 }
379 
380 #define	TCP_ECN_OK		1
381 #define	TCP_ECN_QUEUE_CWR	2
382 #define	TCP_ECN_DEMAND_CWR	4
383 #define	TCP_ECN_SEEN		8
384 
385 enum tcp_tw_status {
386 	TCP_TW_SUCCESS = 0,
387 	TCP_TW_RST = 1,
388 	TCP_TW_ACK = 2,
389 	TCP_TW_SYN = 3
390 };
391 
392 
393 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
394 					      struct sk_buff *skb,
395 					      const struct tcphdr *th);
396 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
397 			   struct request_sock *req, bool fastopen,
398 			   bool *lost_race);
399 int tcp_child_process(struct sock *parent, struct sock *child,
400 		      struct sk_buff *skb);
401 void tcp_enter_loss(struct sock *sk);
402 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
403 void tcp_clear_retrans(struct tcp_sock *tp);
404 void tcp_update_metrics(struct sock *sk);
405 void tcp_init_metrics(struct sock *sk);
406 void tcp_metrics_init(void);
407 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
408 void __tcp_close(struct sock *sk, long timeout);
409 void tcp_close(struct sock *sk, long timeout);
410 void tcp_init_sock(struct sock *sk);
411 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
412 __poll_t tcp_poll(struct file *file, struct socket *sock,
413 		      struct poll_table_struct *wait);
414 int do_tcp_getsockopt(struct sock *sk, int level,
415 		      int optname, sockptr_t optval, sockptr_t optlen);
416 int tcp_getsockopt(struct sock *sk, int level, int optname,
417 		   char __user *optval, int __user *optlen);
418 bool tcp_bpf_bypass_getsockopt(int level, int optname);
419 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
420 		      sockptr_t optval, unsigned int optlen);
421 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
422 		   unsigned int optlen);
423 void tcp_set_keepalive(struct sock *sk, int val);
424 void tcp_syn_ack_timeout(const struct request_sock *req);
425 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
426 		int flags, int *addr_len);
427 int tcp_set_rcvlowat(struct sock *sk, int val);
428 int tcp_set_window_clamp(struct sock *sk, int val);
429 void tcp_update_recv_tstamps(struct sk_buff *skb,
430 			     struct scm_timestamping_internal *tss);
431 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
432 			struct scm_timestamping_internal *tss);
433 void tcp_data_ready(struct sock *sk);
434 #ifdef CONFIG_MMU
435 int tcp_mmap(struct file *file, struct socket *sock,
436 	     struct vm_area_struct *vma);
437 #endif
438 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
439 		       struct tcp_options_received *opt_rx,
440 		       int estab, struct tcp_fastopen_cookie *foc);
441 
442 /*
443  *	BPF SKB-less helpers
444  */
445 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
446 			 struct tcphdr *th, u32 *cookie);
447 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
448 			 struct tcphdr *th, u32 *cookie);
449 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
450 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
451 			  const struct tcp_request_sock_ops *af_ops,
452 			  struct sock *sk, struct tcphdr *th);
453 /*
454  *	TCP v4 functions exported for the inet6 API
455  */
456 
457 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
458 void tcp_v4_mtu_reduced(struct sock *sk);
459 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
460 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
461 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
462 struct sock *tcp_create_openreq_child(const struct sock *sk,
463 				      struct request_sock *req,
464 				      struct sk_buff *skb);
465 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
466 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
467 				  struct request_sock *req,
468 				  struct dst_entry *dst,
469 				  struct request_sock *req_unhash,
470 				  bool *own_req);
471 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
472 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
473 int tcp_connect(struct sock *sk);
474 enum tcp_synack_type {
475 	TCP_SYNACK_NORMAL,
476 	TCP_SYNACK_FASTOPEN,
477 	TCP_SYNACK_COOKIE,
478 };
479 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
480 				struct request_sock *req,
481 				struct tcp_fastopen_cookie *foc,
482 				enum tcp_synack_type synack_type,
483 				struct sk_buff *syn_skb);
484 int tcp_disconnect(struct sock *sk, int flags);
485 
486 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
487 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
488 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
489 
490 /* From syncookies.c */
491 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
492 				 struct request_sock *req,
493 				 struct dst_entry *dst);
494 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
495 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
496 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
497 					    struct sock *sk, struct sk_buff *skb,
498 					    struct tcp_options_received *tcp_opt,
499 					    int mss, u32 tsoff);
500 
501 #ifdef CONFIG_SYN_COOKIES
502 
503 /* Syncookies use a monotonic timer which increments every 60 seconds.
504  * This counter is used both as a hash input and partially encoded into
505  * the cookie value.  A cookie is only validated further if the delta
506  * between the current counter value and the encoded one is less than this,
507  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
508  * the counter advances immediately after a cookie is generated).
509  */
510 #define MAX_SYNCOOKIE_AGE	2
511 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
512 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
513 
514 /* syncookies: remember time of last synqueue overflow
515  * But do not dirty this field too often (once per second is enough)
516  * It is racy as we do not hold a lock, but race is very minor.
517  */
518 static inline void tcp_synq_overflow(const struct sock *sk)
519 {
520 	unsigned int last_overflow;
521 	unsigned int now = jiffies;
522 
523 	if (sk->sk_reuseport) {
524 		struct sock_reuseport *reuse;
525 
526 		reuse = rcu_dereference(sk->sk_reuseport_cb);
527 		if (likely(reuse)) {
528 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
529 			if (!time_between32(now, last_overflow,
530 					    last_overflow + HZ))
531 				WRITE_ONCE(reuse->synq_overflow_ts, now);
532 			return;
533 		}
534 	}
535 
536 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
537 	if (!time_between32(now, last_overflow, last_overflow + HZ))
538 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
539 }
540 
541 /* syncookies: no recent synqueue overflow on this listening socket? */
542 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
543 {
544 	unsigned int last_overflow;
545 	unsigned int now = jiffies;
546 
547 	if (sk->sk_reuseport) {
548 		struct sock_reuseport *reuse;
549 
550 		reuse = rcu_dereference(sk->sk_reuseport_cb);
551 		if (likely(reuse)) {
552 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
553 			return !time_between32(now, last_overflow - HZ,
554 					       last_overflow +
555 					       TCP_SYNCOOKIE_VALID);
556 		}
557 	}
558 
559 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
560 
561 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
562 	 * then we're under synflood. However, we have to use
563 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
564 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
565 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
566 	 * which could lead to rejecting a valid syncookie.
567 	 */
568 	return !time_between32(now, last_overflow - HZ,
569 			       last_overflow + TCP_SYNCOOKIE_VALID);
570 }
571 
572 static inline u32 tcp_cookie_time(void)
573 {
574 	u64 val = get_jiffies_64();
575 
576 	do_div(val, TCP_SYNCOOKIE_PERIOD);
577 	return val;
578 }
579 
580 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
581 			      u16 *mssp);
582 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
583 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
584 bool cookie_timestamp_decode(const struct net *net,
585 			     struct tcp_options_received *opt);
586 
587 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
588 {
589 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
590 		dst_feature(dst, RTAX_FEATURE_ECN);
591 }
592 
593 /* From net/ipv6/syncookies.c */
594 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
595 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
596 
597 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
598 			      const struct tcphdr *th, u16 *mssp);
599 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
600 #endif
601 /* tcp_output.c */
602 
603 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
604 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
605 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
606 			       int nonagle);
607 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
608 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
609 void tcp_retransmit_timer(struct sock *sk);
610 void tcp_xmit_retransmit_queue(struct sock *);
611 void tcp_simple_retransmit(struct sock *);
612 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
613 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
614 enum tcp_queue {
615 	TCP_FRAG_IN_WRITE_QUEUE,
616 	TCP_FRAG_IN_RTX_QUEUE,
617 };
618 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
619 		 struct sk_buff *skb, u32 len,
620 		 unsigned int mss_now, gfp_t gfp);
621 
622 void tcp_send_probe0(struct sock *);
623 int tcp_write_wakeup(struct sock *, int mib);
624 void tcp_send_fin(struct sock *sk);
625 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
626 int tcp_send_synack(struct sock *);
627 void tcp_push_one(struct sock *, unsigned int mss_now);
628 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
629 void tcp_send_ack(struct sock *sk);
630 void tcp_send_delayed_ack(struct sock *sk);
631 void tcp_send_loss_probe(struct sock *sk);
632 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
633 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
634 			     const struct sk_buff *next_skb);
635 
636 /* tcp_input.c */
637 void tcp_rearm_rto(struct sock *sk);
638 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
639 void tcp_reset(struct sock *sk, struct sk_buff *skb);
640 void tcp_fin(struct sock *sk);
641 void tcp_check_space(struct sock *sk);
642 void tcp_sack_compress_send_ack(struct sock *sk);
643 
644 /* tcp_timer.c */
645 void tcp_init_xmit_timers(struct sock *);
646 static inline void tcp_clear_xmit_timers(struct sock *sk)
647 {
648 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
649 		__sock_put(sk);
650 
651 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
652 		__sock_put(sk);
653 
654 	inet_csk_clear_xmit_timers(sk);
655 }
656 
657 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
658 unsigned int tcp_current_mss(struct sock *sk);
659 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
660 
661 /* Bound MSS / TSO packet size with the half of the window */
662 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
663 {
664 	int cutoff;
665 
666 	/* When peer uses tiny windows, there is no use in packetizing
667 	 * to sub-MSS pieces for the sake of SWS or making sure there
668 	 * are enough packets in the pipe for fast recovery.
669 	 *
670 	 * On the other hand, for extremely large MSS devices, handling
671 	 * smaller than MSS windows in this way does make sense.
672 	 */
673 	if (tp->max_window > TCP_MSS_DEFAULT)
674 		cutoff = (tp->max_window >> 1);
675 	else
676 		cutoff = tp->max_window;
677 
678 	if (cutoff && pktsize > cutoff)
679 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
680 	else
681 		return pktsize;
682 }
683 
684 /* tcp.c */
685 void tcp_get_info(struct sock *, struct tcp_info *);
686 
687 /* Read 'sendfile()'-style from a TCP socket */
688 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
689 		  sk_read_actor_t recv_actor);
690 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
691 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
692 void tcp_read_done(struct sock *sk, size_t len);
693 
694 void tcp_initialize_rcv_mss(struct sock *sk);
695 
696 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
697 int tcp_mss_to_mtu(struct sock *sk, int mss);
698 void tcp_mtup_init(struct sock *sk);
699 
700 static inline void tcp_bound_rto(const struct sock *sk)
701 {
702 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
703 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
704 }
705 
706 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
707 {
708 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
709 }
710 
711 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
712 {
713 	/* mptcp hooks are only on the slow path */
714 	if (sk_is_mptcp((struct sock *)tp))
715 		return;
716 
717 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
718 			       ntohl(TCP_FLAG_ACK) |
719 			       snd_wnd);
720 }
721 
722 static inline void tcp_fast_path_on(struct tcp_sock *tp)
723 {
724 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
725 }
726 
727 static inline void tcp_fast_path_check(struct sock *sk)
728 {
729 	struct tcp_sock *tp = tcp_sk(sk);
730 
731 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
732 	    tp->rcv_wnd &&
733 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
734 	    !tp->urg_data)
735 		tcp_fast_path_on(tp);
736 }
737 
738 u32 tcp_delack_max(const struct sock *sk);
739 
740 /* Compute the actual rto_min value */
741 static inline u32 tcp_rto_min(const struct sock *sk)
742 {
743 	const struct dst_entry *dst = __sk_dst_get(sk);
744 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
745 
746 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
747 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
748 	return rto_min;
749 }
750 
751 static inline u32 tcp_rto_min_us(const struct sock *sk)
752 {
753 	return jiffies_to_usecs(tcp_rto_min(sk));
754 }
755 
756 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
757 {
758 	return dst_metric_locked(dst, RTAX_CC_ALGO);
759 }
760 
761 /* Minimum RTT in usec. ~0 means not available. */
762 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
763 {
764 	return minmax_get(&tp->rtt_min);
765 }
766 
767 /* Compute the actual receive window we are currently advertising.
768  * Rcv_nxt can be after the window if our peer push more data
769  * than the offered window.
770  */
771 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
772 {
773 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
774 
775 	if (win < 0)
776 		win = 0;
777 	return (u32) win;
778 }
779 
780 /* Choose a new window, without checks for shrinking, and without
781  * scaling applied to the result.  The caller does these things
782  * if necessary.  This is a "raw" window selection.
783  */
784 u32 __tcp_select_window(struct sock *sk);
785 
786 void tcp_send_window_probe(struct sock *sk);
787 
788 /* TCP uses 32bit jiffies to save some space.
789  * Note that this is different from tcp_time_stamp, which
790  * historically has been the same until linux-4.13.
791  */
792 #define tcp_jiffies32 ((u32)jiffies)
793 
794 /*
795  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
796  * It is no longer tied to jiffies, but to 1 ms clock.
797  * Note: double check if you want to use tcp_jiffies32 instead of this.
798  */
799 #define TCP_TS_HZ	1000
800 
801 static inline u64 tcp_clock_ns(void)
802 {
803 	return ktime_get_ns();
804 }
805 
806 static inline u64 tcp_clock_us(void)
807 {
808 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
809 }
810 
811 static inline u64 tcp_clock_ms(void)
812 {
813 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
814 }
815 
816 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
817  * or usec resolution. Each socket carries a flag to select one or other
818  * resolution, as the route attribute could change anytime.
819  * Each flow must stick to initial resolution.
820  */
821 static inline u32 tcp_clock_ts(bool usec_ts)
822 {
823 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
824 }
825 
826 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
827 {
828 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
829 }
830 
831 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
832 {
833 	if (tp->tcp_usec_ts)
834 		return tp->tcp_mstamp;
835 	return tcp_time_stamp_ms(tp);
836 }
837 
838 void tcp_mstamp_refresh(struct tcp_sock *tp);
839 
840 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
841 {
842 	return max_t(s64, t1 - t0, 0);
843 }
844 
845 /* provide the departure time in us unit */
846 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
847 {
848 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
849 }
850 
851 /* Provide skb TSval in usec or ms unit */
852 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
853 {
854 	if (usec_ts)
855 		return tcp_skb_timestamp_us(skb);
856 
857 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
858 }
859 
860 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
861 {
862 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
863 }
864 
865 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
866 {
867 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
868 }
869 
870 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
871 
872 #define TCPHDR_FIN 0x01
873 #define TCPHDR_SYN 0x02
874 #define TCPHDR_RST 0x04
875 #define TCPHDR_PSH 0x08
876 #define TCPHDR_ACK 0x10
877 #define TCPHDR_URG 0x20
878 #define TCPHDR_ECE 0x40
879 #define TCPHDR_CWR 0x80
880 
881 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
882 
883 /* This is what the send packet queuing engine uses to pass
884  * TCP per-packet control information to the transmission code.
885  * We also store the host-order sequence numbers in here too.
886  * This is 44 bytes if IPV6 is enabled.
887  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
888  */
889 struct tcp_skb_cb {
890 	__u32		seq;		/* Starting sequence number	*/
891 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
892 	union {
893 		/* Note : tcp_tw_isn is used in input path only
894 		 *	  (isn chosen by tcp_timewait_state_process())
895 		 *
896 		 * 	  tcp_gso_segs/size are used in write queue only,
897 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
898 		 */
899 		__u32		tcp_tw_isn;
900 		struct {
901 			u16	tcp_gso_segs;
902 			u16	tcp_gso_size;
903 		};
904 	};
905 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
906 
907 	__u8		sacked;		/* State flags for SACK.	*/
908 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
909 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
910 #define TCPCB_LOST		0x04	/* SKB is lost			*/
911 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
912 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
913 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
914 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
915 				TCPCB_REPAIRED)
916 
917 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
918 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
919 			eor:1,		/* Is skb MSG_EOR marked? */
920 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
921 			unused:5;
922 	__u32		ack_seq;	/* Sequence number ACK'd	*/
923 	union {
924 		struct {
925 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
926 			/* There is space for up to 24 bytes */
927 			__u32 is_app_limited:1, /* cwnd not fully used? */
928 			      delivered_ce:20,
929 			      unused:11;
930 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
931 			__u32 delivered;
932 			/* start of send pipeline phase */
933 			u64 first_tx_mstamp;
934 			/* when we reached the "delivered" count */
935 			u64 delivered_mstamp;
936 		} tx;   /* only used for outgoing skbs */
937 		union {
938 			struct inet_skb_parm	h4;
939 #if IS_ENABLED(CONFIG_IPV6)
940 			struct inet6_skb_parm	h6;
941 #endif
942 		} header;	/* For incoming skbs */
943 	};
944 };
945 
946 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
947 
948 extern const struct inet_connection_sock_af_ops ipv4_specific;
949 
950 #if IS_ENABLED(CONFIG_IPV6)
951 /* This is the variant of inet6_iif() that must be used by TCP,
952  * as TCP moves IP6CB into a different location in skb->cb[]
953  */
954 static inline int tcp_v6_iif(const struct sk_buff *skb)
955 {
956 	return TCP_SKB_CB(skb)->header.h6.iif;
957 }
958 
959 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
960 {
961 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
962 
963 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
964 }
965 
966 /* TCP_SKB_CB reference means this can not be used from early demux */
967 static inline int tcp_v6_sdif(const struct sk_buff *skb)
968 {
969 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
970 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
971 		return TCP_SKB_CB(skb)->header.h6.iif;
972 #endif
973 	return 0;
974 }
975 
976 extern const struct inet_connection_sock_af_ops ipv6_specific;
977 
978 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
979 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
980 void tcp_v6_early_demux(struct sk_buff *skb);
981 
982 #endif
983 
984 /* TCP_SKB_CB reference means this can not be used from early demux */
985 static inline int tcp_v4_sdif(struct sk_buff *skb)
986 {
987 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
988 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
989 		return TCP_SKB_CB(skb)->header.h4.iif;
990 #endif
991 	return 0;
992 }
993 
994 /* Due to TSO, an SKB can be composed of multiple actual
995  * packets.  To keep these tracked properly, we use this.
996  */
997 static inline int tcp_skb_pcount(const struct sk_buff *skb)
998 {
999 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1000 }
1001 
1002 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1003 {
1004 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1005 }
1006 
1007 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1008 {
1009 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1010 }
1011 
1012 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1013 static inline int tcp_skb_mss(const struct sk_buff *skb)
1014 {
1015 	return TCP_SKB_CB(skb)->tcp_gso_size;
1016 }
1017 
1018 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1019 {
1020 	return likely(!TCP_SKB_CB(skb)->eor);
1021 }
1022 
1023 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1024 					const struct sk_buff *from)
1025 {
1026 	return likely(tcp_skb_can_collapse_to(to) &&
1027 		      mptcp_skb_can_collapse(to, from) &&
1028 		      skb_pure_zcopy_same(to, from));
1029 }
1030 
1031 /* Events passed to congestion control interface */
1032 enum tcp_ca_event {
1033 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1034 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1035 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1036 	CA_EVENT_LOSS,		/* loss timeout */
1037 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1038 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1039 };
1040 
1041 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1042 enum tcp_ca_ack_event_flags {
1043 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1044 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1045 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1046 };
1047 
1048 /*
1049  * Interface for adding new TCP congestion control handlers
1050  */
1051 #define TCP_CA_NAME_MAX	16
1052 #define TCP_CA_MAX	128
1053 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1054 
1055 #define TCP_CA_UNSPEC	0
1056 
1057 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1058 #define TCP_CONG_NON_RESTRICTED 0x1
1059 /* Requires ECN/ECT set on all packets */
1060 #define TCP_CONG_NEEDS_ECN	0x2
1061 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1062 
1063 union tcp_cc_info;
1064 
1065 struct ack_sample {
1066 	u32 pkts_acked;
1067 	s32 rtt_us;
1068 	u32 in_flight;
1069 };
1070 
1071 /* A rate sample measures the number of (original/retransmitted) data
1072  * packets delivered "delivered" over an interval of time "interval_us".
1073  * The tcp_rate.c code fills in the rate sample, and congestion
1074  * control modules that define a cong_control function to run at the end
1075  * of ACK processing can optionally chose to consult this sample when
1076  * setting cwnd and pacing rate.
1077  * A sample is invalid if "delivered" or "interval_us" is negative.
1078  */
1079 struct rate_sample {
1080 	u64  prior_mstamp; /* starting timestamp for interval */
1081 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1082 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1083 	s32  delivered;		/* number of packets delivered over interval */
1084 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1085 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1086 	u32 snd_interval_us;	/* snd interval for delivered packets */
1087 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1088 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1089 	int  losses;		/* number of packets marked lost upon ACK */
1090 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1091 	u32  prior_in_flight;	/* in flight before this ACK */
1092 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1093 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1094 	bool is_retrans;	/* is sample from retransmission? */
1095 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1096 };
1097 
1098 struct tcp_congestion_ops {
1099 /* fast path fields are put first to fill one cache line */
1100 
1101 	/* return slow start threshold (required) */
1102 	u32 (*ssthresh)(struct sock *sk);
1103 
1104 	/* do new cwnd calculation (required) */
1105 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1106 
1107 	/* call before changing ca_state (optional) */
1108 	void (*set_state)(struct sock *sk, u8 new_state);
1109 
1110 	/* call when cwnd event occurs (optional) */
1111 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1112 
1113 	/* call when ack arrives (optional) */
1114 	void (*in_ack_event)(struct sock *sk, u32 flags);
1115 
1116 	/* hook for packet ack accounting (optional) */
1117 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1118 
1119 	/* override sysctl_tcp_min_tso_segs */
1120 	u32 (*min_tso_segs)(struct sock *sk);
1121 
1122 	/* call when packets are delivered to update cwnd and pacing rate,
1123 	 * after all the ca_state processing. (optional)
1124 	 */
1125 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1126 
1127 
1128 	/* new value of cwnd after loss (required) */
1129 	u32  (*undo_cwnd)(struct sock *sk);
1130 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1131 	u32 (*sndbuf_expand)(struct sock *sk);
1132 
1133 /* control/slow paths put last */
1134 	/* get info for inet_diag (optional) */
1135 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1136 			   union tcp_cc_info *info);
1137 
1138 	char 			name[TCP_CA_NAME_MAX];
1139 	struct module		*owner;
1140 	struct list_head	list;
1141 	u32			key;
1142 	u32			flags;
1143 
1144 	/* initialize private data (optional) */
1145 	void (*init)(struct sock *sk);
1146 	/* cleanup private data  (optional) */
1147 	void (*release)(struct sock *sk);
1148 } ____cacheline_aligned_in_smp;
1149 
1150 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1151 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1152 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1153 				  struct tcp_congestion_ops *old_type);
1154 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1155 
1156 void tcp_assign_congestion_control(struct sock *sk);
1157 void tcp_init_congestion_control(struct sock *sk);
1158 void tcp_cleanup_congestion_control(struct sock *sk);
1159 int tcp_set_default_congestion_control(struct net *net, const char *name);
1160 void tcp_get_default_congestion_control(struct net *net, char *name);
1161 void tcp_get_available_congestion_control(char *buf, size_t len);
1162 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1163 int tcp_set_allowed_congestion_control(char *allowed);
1164 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1165 			       bool cap_net_admin);
1166 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1167 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1168 
1169 u32 tcp_reno_ssthresh(struct sock *sk);
1170 u32 tcp_reno_undo_cwnd(struct sock *sk);
1171 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1172 extern struct tcp_congestion_ops tcp_reno;
1173 
1174 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1175 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1176 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1177 #ifdef CONFIG_INET
1178 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1179 #else
1180 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1181 {
1182 	return NULL;
1183 }
1184 #endif
1185 
1186 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1187 {
1188 	const struct inet_connection_sock *icsk = inet_csk(sk);
1189 
1190 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1191 }
1192 
1193 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1194 {
1195 	const struct inet_connection_sock *icsk = inet_csk(sk);
1196 
1197 	if (icsk->icsk_ca_ops->cwnd_event)
1198 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1199 }
1200 
1201 /* From tcp_cong.c */
1202 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1203 
1204 /* From tcp_rate.c */
1205 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1206 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1207 			    struct rate_sample *rs);
1208 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1209 		  bool is_sack_reneg, struct rate_sample *rs);
1210 void tcp_rate_check_app_limited(struct sock *sk);
1211 
1212 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1213 {
1214 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1215 }
1216 
1217 /* These functions determine how the current flow behaves in respect of SACK
1218  * handling. SACK is negotiated with the peer, and therefore it can vary
1219  * between different flows.
1220  *
1221  * tcp_is_sack - SACK enabled
1222  * tcp_is_reno - No SACK
1223  */
1224 static inline int tcp_is_sack(const struct tcp_sock *tp)
1225 {
1226 	return likely(tp->rx_opt.sack_ok);
1227 }
1228 
1229 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1230 {
1231 	return !tcp_is_sack(tp);
1232 }
1233 
1234 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1235 {
1236 	return tp->sacked_out + tp->lost_out;
1237 }
1238 
1239 /* This determines how many packets are "in the network" to the best
1240  * of our knowledge.  In many cases it is conservative, but where
1241  * detailed information is available from the receiver (via SACK
1242  * blocks etc.) we can make more aggressive calculations.
1243  *
1244  * Use this for decisions involving congestion control, use just
1245  * tp->packets_out to determine if the send queue is empty or not.
1246  *
1247  * Read this equation as:
1248  *
1249  *	"Packets sent once on transmission queue" MINUS
1250  *	"Packets left network, but not honestly ACKed yet" PLUS
1251  *	"Packets fast retransmitted"
1252  */
1253 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1254 {
1255 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1256 }
1257 
1258 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1259 
1260 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1261 {
1262 	return tp->snd_cwnd;
1263 }
1264 
1265 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1266 {
1267 	WARN_ON_ONCE((int)val <= 0);
1268 	tp->snd_cwnd = val;
1269 }
1270 
1271 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1272 {
1273 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1274 }
1275 
1276 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1277 {
1278 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1279 }
1280 
1281 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1282 {
1283 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1284 	       (1 << inet_csk(sk)->icsk_ca_state);
1285 }
1286 
1287 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1288  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1289  * ssthresh.
1290  */
1291 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1292 {
1293 	const struct tcp_sock *tp = tcp_sk(sk);
1294 
1295 	if (tcp_in_cwnd_reduction(sk))
1296 		return tp->snd_ssthresh;
1297 	else
1298 		return max(tp->snd_ssthresh,
1299 			   ((tcp_snd_cwnd(tp) >> 1) +
1300 			    (tcp_snd_cwnd(tp) >> 2)));
1301 }
1302 
1303 /* Use define here intentionally to get WARN_ON location shown at the caller */
1304 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1305 
1306 void tcp_enter_cwr(struct sock *sk);
1307 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1308 
1309 /* The maximum number of MSS of available cwnd for which TSO defers
1310  * sending if not using sysctl_tcp_tso_win_divisor.
1311  */
1312 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1313 {
1314 	return 3;
1315 }
1316 
1317 /* Returns end sequence number of the receiver's advertised window */
1318 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1319 {
1320 	return tp->snd_una + tp->snd_wnd;
1321 }
1322 
1323 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1324  * flexible approach. The RFC suggests cwnd should not be raised unless
1325  * it was fully used previously. And that's exactly what we do in
1326  * congestion avoidance mode. But in slow start we allow cwnd to grow
1327  * as long as the application has used half the cwnd.
1328  * Example :
1329  *    cwnd is 10 (IW10), but application sends 9 frames.
1330  *    We allow cwnd to reach 18 when all frames are ACKed.
1331  * This check is safe because it's as aggressive as slow start which already
1332  * risks 100% overshoot. The advantage is that we discourage application to
1333  * either send more filler packets or data to artificially blow up the cwnd
1334  * usage, and allow application-limited process to probe bw more aggressively.
1335  */
1336 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1337 {
1338 	const struct tcp_sock *tp = tcp_sk(sk);
1339 
1340 	if (tp->is_cwnd_limited)
1341 		return true;
1342 
1343 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1344 	if (tcp_in_slow_start(tp))
1345 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1346 
1347 	return false;
1348 }
1349 
1350 /* BBR congestion control needs pacing.
1351  * Same remark for SO_MAX_PACING_RATE.
1352  * sch_fq packet scheduler is efficiently handling pacing,
1353  * but is not always installed/used.
1354  * Return true if TCP stack should pace packets itself.
1355  */
1356 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1357 {
1358 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1359 }
1360 
1361 /* Estimates in how many jiffies next packet for this flow can be sent.
1362  * Scheduling a retransmit timer too early would be silly.
1363  */
1364 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1365 {
1366 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1367 
1368 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1369 }
1370 
1371 static inline void tcp_reset_xmit_timer(struct sock *sk,
1372 					const int what,
1373 					unsigned long when,
1374 					const unsigned long max_when)
1375 {
1376 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1377 				  max_when);
1378 }
1379 
1380 /* Something is really bad, we could not queue an additional packet,
1381  * because qdisc is full or receiver sent a 0 window, or we are paced.
1382  * We do not want to add fuel to the fire, or abort too early,
1383  * so make sure the timer we arm now is at least 200ms in the future,
1384  * regardless of current icsk_rto value (as it could be ~2ms)
1385  */
1386 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1387 {
1388 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1389 }
1390 
1391 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1392 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1393 					    unsigned long max_when)
1394 {
1395 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1396 			   inet_csk(sk)->icsk_backoff);
1397 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1398 
1399 	return (unsigned long)min_t(u64, when, max_when);
1400 }
1401 
1402 static inline void tcp_check_probe_timer(struct sock *sk)
1403 {
1404 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1405 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1406 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1407 }
1408 
1409 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1410 {
1411 	tp->snd_wl1 = seq;
1412 }
1413 
1414 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1415 {
1416 	tp->snd_wl1 = seq;
1417 }
1418 
1419 /*
1420  * Calculate(/check) TCP checksum
1421  */
1422 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1423 				   __be32 daddr, __wsum base)
1424 {
1425 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1426 }
1427 
1428 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1429 {
1430 	return !skb_csum_unnecessary(skb) &&
1431 		__skb_checksum_complete(skb);
1432 }
1433 
1434 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1435 		     enum skb_drop_reason *reason);
1436 
1437 
1438 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1439 void tcp_set_state(struct sock *sk, int state);
1440 void tcp_done(struct sock *sk);
1441 int tcp_abort(struct sock *sk, int err);
1442 
1443 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1444 {
1445 	rx_opt->dsack = 0;
1446 	rx_opt->num_sacks = 0;
1447 }
1448 
1449 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1450 
1451 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1452 {
1453 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1454 	struct tcp_sock *tp = tcp_sk(sk);
1455 	s32 delta;
1456 
1457 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1458 	    tp->packets_out || ca_ops->cong_control)
1459 		return;
1460 	delta = tcp_jiffies32 - tp->lsndtime;
1461 	if (delta > inet_csk(sk)->icsk_rto)
1462 		tcp_cwnd_restart(sk, delta);
1463 }
1464 
1465 /* Determine a window scaling and initial window to offer. */
1466 void tcp_select_initial_window(const struct sock *sk, int __space,
1467 			       __u32 mss, __u32 *rcv_wnd,
1468 			       __u32 *window_clamp, int wscale_ok,
1469 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1470 
1471 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1472 {
1473 	s64 scaled_space = (s64)space * scaling_ratio;
1474 
1475 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1476 }
1477 
1478 static inline int tcp_win_from_space(const struct sock *sk, int space)
1479 {
1480 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1481 }
1482 
1483 /* inverse of __tcp_win_from_space() */
1484 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1485 {
1486 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1487 
1488 	do_div(val, scaling_ratio);
1489 	return val;
1490 }
1491 
1492 static inline int tcp_space_from_win(const struct sock *sk, int win)
1493 {
1494 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1495 }
1496 
1497 /* Assume a conservative default of 1200 bytes of payload per 4K page.
1498  * This may be adjusted later in tcp_measure_rcv_mss().
1499  */
1500 #define TCP_DEFAULT_SCALING_RATIO ((1200 << TCP_RMEM_TO_WIN_SCALE) / \
1501 				   SKB_TRUESIZE(4096))
1502 
1503 static inline void tcp_scaling_ratio_init(struct sock *sk)
1504 {
1505 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1506 }
1507 
1508 /* Note: caller must be prepared to deal with negative returns */
1509 static inline int tcp_space(const struct sock *sk)
1510 {
1511 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1512 				  READ_ONCE(sk->sk_backlog.len) -
1513 				  atomic_read(&sk->sk_rmem_alloc));
1514 }
1515 
1516 static inline int tcp_full_space(const struct sock *sk)
1517 {
1518 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1519 }
1520 
1521 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1522 {
1523 	int unused_mem = sk_unused_reserved_mem(sk);
1524 	struct tcp_sock *tp = tcp_sk(sk);
1525 
1526 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1527 	if (unused_mem)
1528 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1529 					 tcp_win_from_space(sk, unused_mem));
1530 }
1531 
1532 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1533 {
1534 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1535 }
1536 
1537 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1538 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1539 
1540 
1541 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1542  * If 87.5 % (7/8) of the space has been consumed, we want to override
1543  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1544  * len/truesize ratio.
1545  */
1546 static inline bool tcp_rmem_pressure(const struct sock *sk)
1547 {
1548 	int rcvbuf, threshold;
1549 
1550 	if (tcp_under_memory_pressure(sk))
1551 		return true;
1552 
1553 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1554 	threshold = rcvbuf - (rcvbuf >> 3);
1555 
1556 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1557 }
1558 
1559 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1560 {
1561 	const struct tcp_sock *tp = tcp_sk(sk);
1562 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1563 
1564 	if (avail <= 0)
1565 		return false;
1566 
1567 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1568 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1569 }
1570 
1571 extern void tcp_openreq_init_rwin(struct request_sock *req,
1572 				  const struct sock *sk_listener,
1573 				  const struct dst_entry *dst);
1574 
1575 void tcp_enter_memory_pressure(struct sock *sk);
1576 void tcp_leave_memory_pressure(struct sock *sk);
1577 
1578 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1579 {
1580 	struct net *net = sock_net((struct sock *)tp);
1581 	int val;
1582 
1583 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1584 	 * and do_tcp_setsockopt().
1585 	 */
1586 	val = READ_ONCE(tp->keepalive_intvl);
1587 
1588 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1589 }
1590 
1591 static inline int keepalive_time_when(const struct tcp_sock *tp)
1592 {
1593 	struct net *net = sock_net((struct sock *)tp);
1594 	int val;
1595 
1596 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1597 	val = READ_ONCE(tp->keepalive_time);
1598 
1599 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1600 }
1601 
1602 static inline int keepalive_probes(const struct tcp_sock *tp)
1603 {
1604 	struct net *net = sock_net((struct sock *)tp);
1605 	int val;
1606 
1607 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1608 	 * and do_tcp_setsockopt().
1609 	 */
1610 	val = READ_ONCE(tp->keepalive_probes);
1611 
1612 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1613 }
1614 
1615 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1616 {
1617 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1618 
1619 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1620 			  tcp_jiffies32 - tp->rcv_tstamp);
1621 }
1622 
1623 static inline int tcp_fin_time(const struct sock *sk)
1624 {
1625 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1626 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1627 	const int rto = inet_csk(sk)->icsk_rto;
1628 
1629 	if (fin_timeout < (rto << 2) - (rto >> 1))
1630 		fin_timeout = (rto << 2) - (rto >> 1);
1631 
1632 	return fin_timeout;
1633 }
1634 
1635 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1636 				  int paws_win)
1637 {
1638 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1639 		return true;
1640 	if (unlikely(!time_before32(ktime_get_seconds(),
1641 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1642 		return true;
1643 	/*
1644 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1645 	 * then following tcp messages have valid values. Ignore 0 value,
1646 	 * or else 'negative' tsval might forbid us to accept their packets.
1647 	 */
1648 	if (!rx_opt->ts_recent)
1649 		return true;
1650 	return false;
1651 }
1652 
1653 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1654 				   int rst)
1655 {
1656 	if (tcp_paws_check(rx_opt, 0))
1657 		return false;
1658 
1659 	/* RST segments are not recommended to carry timestamp,
1660 	   and, if they do, it is recommended to ignore PAWS because
1661 	   "their cleanup function should take precedence over timestamps."
1662 	   Certainly, it is mistake. It is necessary to understand the reasons
1663 	   of this constraint to relax it: if peer reboots, clock may go
1664 	   out-of-sync and half-open connections will not be reset.
1665 	   Actually, the problem would be not existing if all
1666 	   the implementations followed draft about maintaining clock
1667 	   via reboots. Linux-2.2 DOES NOT!
1668 
1669 	   However, we can relax time bounds for RST segments to MSL.
1670 	 */
1671 	if (rst && !time_before32(ktime_get_seconds(),
1672 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1673 		return false;
1674 	return true;
1675 }
1676 
1677 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1678 			  int mib_idx, u32 *last_oow_ack_time);
1679 
1680 static inline void tcp_mib_init(struct net *net)
1681 {
1682 	/* See RFC 2012 */
1683 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1684 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1685 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1686 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1687 }
1688 
1689 /* from STCP */
1690 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1691 {
1692 	tp->lost_skb_hint = NULL;
1693 }
1694 
1695 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1696 {
1697 	tcp_clear_retrans_hints_partial(tp);
1698 	tp->retransmit_skb_hint = NULL;
1699 }
1700 
1701 #define tcp_md5_addr tcp_ao_addr
1702 
1703 /* - key database */
1704 struct tcp_md5sig_key {
1705 	struct hlist_node	node;
1706 	u8			keylen;
1707 	u8			family; /* AF_INET or AF_INET6 */
1708 	u8			prefixlen;
1709 	u8			flags;
1710 	union tcp_md5_addr	addr;
1711 	int			l3index; /* set if key added with L3 scope */
1712 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1713 	struct rcu_head		rcu;
1714 };
1715 
1716 /* - sock block */
1717 struct tcp_md5sig_info {
1718 	struct hlist_head	head;
1719 	struct rcu_head		rcu;
1720 };
1721 
1722 /* - pseudo header */
1723 struct tcp4_pseudohdr {
1724 	__be32		saddr;
1725 	__be32		daddr;
1726 	__u8		pad;
1727 	__u8		protocol;
1728 	__be16		len;
1729 };
1730 
1731 struct tcp6_pseudohdr {
1732 	struct in6_addr	saddr;
1733 	struct in6_addr daddr;
1734 	__be32		len;
1735 	__be32		protocol;	/* including padding */
1736 };
1737 
1738 union tcp_md5sum_block {
1739 	struct tcp4_pseudohdr ip4;
1740 #if IS_ENABLED(CONFIG_IPV6)
1741 	struct tcp6_pseudohdr ip6;
1742 #endif
1743 };
1744 
1745 /*
1746  * struct tcp_sigpool - per-CPU pool of ahash_requests
1747  * @scratch: per-CPU temporary area, that can be used between
1748  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1749  *	     crypto request
1750  * @req: pre-allocated ahash request
1751  */
1752 struct tcp_sigpool {
1753 	void *scratch;
1754 	struct ahash_request *req;
1755 };
1756 
1757 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1758 void tcp_sigpool_get(unsigned int id);
1759 void tcp_sigpool_release(unsigned int id);
1760 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1761 			      const struct sk_buff *skb,
1762 			      unsigned int header_len);
1763 
1764 /**
1765  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1766  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1767  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1768  *
1769  * Returns 0 on success, error otherwise.
1770  */
1771 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1772 /**
1773  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1774  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1775  */
1776 void tcp_sigpool_end(struct tcp_sigpool *c);
1777 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1778 /* - functions */
1779 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1780 			const struct sock *sk, const struct sk_buff *skb);
1781 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1782 		   int family, u8 prefixlen, int l3index, u8 flags,
1783 		   const u8 *newkey, u8 newkeylen);
1784 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1785 		     int family, u8 prefixlen, int l3index,
1786 		     struct tcp_md5sig_key *key);
1787 
1788 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1789 		   int family, u8 prefixlen, int l3index, u8 flags);
1790 void tcp_clear_md5_list(struct sock *sk);
1791 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1792 					 const struct sock *addr_sk);
1793 
1794 #ifdef CONFIG_TCP_MD5SIG
1795 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1796 					   const union tcp_md5_addr *addr,
1797 					   int family, bool any_l3index);
1798 static inline struct tcp_md5sig_key *
1799 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1800 		  const union tcp_md5_addr *addr, int family)
1801 {
1802 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1803 		return NULL;
1804 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1805 }
1806 
1807 static inline struct tcp_md5sig_key *
1808 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1809 			      const union tcp_md5_addr *addr, int family)
1810 {
1811 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1812 		return NULL;
1813 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1814 }
1815 
1816 enum skb_drop_reason
1817 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1818 		     const void *saddr, const void *daddr,
1819 		     int family, int l3index, const __u8 *hash_location);
1820 
1821 
1822 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1823 #else
1824 static inline struct tcp_md5sig_key *
1825 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1826 		  const union tcp_md5_addr *addr, int family)
1827 {
1828 	return NULL;
1829 }
1830 
1831 static inline struct tcp_md5sig_key *
1832 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1833 			      const union tcp_md5_addr *addr, int family)
1834 {
1835 	return NULL;
1836 }
1837 
1838 static inline enum skb_drop_reason
1839 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1840 		     const void *saddr, const void *daddr,
1841 		     int family, int l3index, const __u8 *hash_location)
1842 {
1843 	return SKB_NOT_DROPPED_YET;
1844 }
1845 #define tcp_twsk_md5_key(twsk)	NULL
1846 #endif
1847 
1848 int tcp_md5_alloc_sigpool(void);
1849 void tcp_md5_release_sigpool(void);
1850 void tcp_md5_add_sigpool(void);
1851 extern int tcp_md5_sigpool_id;
1852 
1853 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1854 		     const struct tcp_md5sig_key *key);
1855 
1856 /* From tcp_fastopen.c */
1857 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1858 			    struct tcp_fastopen_cookie *cookie);
1859 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1860 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1861 			    u16 try_exp);
1862 struct tcp_fastopen_request {
1863 	/* Fast Open cookie. Size 0 means a cookie request */
1864 	struct tcp_fastopen_cookie	cookie;
1865 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1866 	size_t				size;
1867 	int				copied;	/* queued in tcp_connect() */
1868 	struct ubuf_info		*uarg;
1869 };
1870 void tcp_free_fastopen_req(struct tcp_sock *tp);
1871 void tcp_fastopen_destroy_cipher(struct sock *sk);
1872 void tcp_fastopen_ctx_destroy(struct net *net);
1873 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1874 			      void *primary_key, void *backup_key);
1875 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1876 			    u64 *key);
1877 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1878 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1879 			      struct request_sock *req,
1880 			      struct tcp_fastopen_cookie *foc,
1881 			      const struct dst_entry *dst);
1882 void tcp_fastopen_init_key_once(struct net *net);
1883 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1884 			     struct tcp_fastopen_cookie *cookie);
1885 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1886 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1887 #define TCP_FASTOPEN_KEY_MAX 2
1888 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1889 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1890 
1891 /* Fastopen key context */
1892 struct tcp_fastopen_context {
1893 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1894 	int		num;
1895 	struct rcu_head	rcu;
1896 };
1897 
1898 void tcp_fastopen_active_disable(struct sock *sk);
1899 bool tcp_fastopen_active_should_disable(struct sock *sk);
1900 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1901 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1902 
1903 /* Caller needs to wrap with rcu_read_(un)lock() */
1904 static inline
1905 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1906 {
1907 	struct tcp_fastopen_context *ctx;
1908 
1909 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1910 	if (!ctx)
1911 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1912 	return ctx;
1913 }
1914 
1915 static inline
1916 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1917 			       const struct tcp_fastopen_cookie *orig)
1918 {
1919 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1920 	    orig->len == foc->len &&
1921 	    !memcmp(orig->val, foc->val, foc->len))
1922 		return true;
1923 	return false;
1924 }
1925 
1926 static inline
1927 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1928 {
1929 	return ctx->num;
1930 }
1931 
1932 /* Latencies incurred by various limits for a sender. They are
1933  * chronograph-like stats that are mutually exclusive.
1934  */
1935 enum tcp_chrono {
1936 	TCP_CHRONO_UNSPEC,
1937 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1938 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1939 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1940 	__TCP_CHRONO_MAX,
1941 };
1942 
1943 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1944 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1945 
1946 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1947  * the same memory storage than skb->destructor/_skb_refdst
1948  */
1949 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1950 {
1951 	skb->destructor = NULL;
1952 	skb->_skb_refdst = 0UL;
1953 }
1954 
1955 #define tcp_skb_tsorted_save(skb) {		\
1956 	unsigned long _save = skb->_skb_refdst;	\
1957 	skb->_skb_refdst = 0UL;
1958 
1959 #define tcp_skb_tsorted_restore(skb)		\
1960 	skb->_skb_refdst = _save;		\
1961 }
1962 
1963 void tcp_write_queue_purge(struct sock *sk);
1964 
1965 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1966 {
1967 	return skb_rb_first(&sk->tcp_rtx_queue);
1968 }
1969 
1970 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1971 {
1972 	return skb_rb_last(&sk->tcp_rtx_queue);
1973 }
1974 
1975 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1976 {
1977 	return skb_peek_tail(&sk->sk_write_queue);
1978 }
1979 
1980 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1981 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1982 
1983 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1984 {
1985 	return skb_peek(&sk->sk_write_queue);
1986 }
1987 
1988 static inline bool tcp_skb_is_last(const struct sock *sk,
1989 				   const struct sk_buff *skb)
1990 {
1991 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1992 }
1993 
1994 /**
1995  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1996  * @sk: socket
1997  *
1998  * Since the write queue can have a temporary empty skb in it,
1999  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2000  */
2001 static inline bool tcp_write_queue_empty(const struct sock *sk)
2002 {
2003 	const struct tcp_sock *tp = tcp_sk(sk);
2004 
2005 	return tp->write_seq == tp->snd_nxt;
2006 }
2007 
2008 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2009 {
2010 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2011 }
2012 
2013 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2014 {
2015 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2016 }
2017 
2018 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2019 {
2020 	__skb_queue_tail(&sk->sk_write_queue, skb);
2021 
2022 	/* Queue it, remembering where we must start sending. */
2023 	if (sk->sk_write_queue.next == skb)
2024 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2025 }
2026 
2027 /* Insert new before skb on the write queue of sk.  */
2028 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2029 						  struct sk_buff *skb,
2030 						  struct sock *sk)
2031 {
2032 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2033 }
2034 
2035 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2036 {
2037 	tcp_skb_tsorted_anchor_cleanup(skb);
2038 	__skb_unlink(skb, &sk->sk_write_queue);
2039 }
2040 
2041 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2042 
2043 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2044 {
2045 	tcp_skb_tsorted_anchor_cleanup(skb);
2046 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2047 }
2048 
2049 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2050 {
2051 	list_del(&skb->tcp_tsorted_anchor);
2052 	tcp_rtx_queue_unlink(skb, sk);
2053 	tcp_wmem_free_skb(sk, skb);
2054 }
2055 
2056 static inline void tcp_push_pending_frames(struct sock *sk)
2057 {
2058 	if (tcp_send_head(sk)) {
2059 		struct tcp_sock *tp = tcp_sk(sk);
2060 
2061 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2062 	}
2063 }
2064 
2065 /* Start sequence of the skb just after the highest skb with SACKed
2066  * bit, valid only if sacked_out > 0 or when the caller has ensured
2067  * validity by itself.
2068  */
2069 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2070 {
2071 	if (!tp->sacked_out)
2072 		return tp->snd_una;
2073 
2074 	if (tp->highest_sack == NULL)
2075 		return tp->snd_nxt;
2076 
2077 	return TCP_SKB_CB(tp->highest_sack)->seq;
2078 }
2079 
2080 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2081 {
2082 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2083 }
2084 
2085 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2086 {
2087 	return tcp_sk(sk)->highest_sack;
2088 }
2089 
2090 static inline void tcp_highest_sack_reset(struct sock *sk)
2091 {
2092 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2093 }
2094 
2095 /* Called when old skb is about to be deleted and replaced by new skb */
2096 static inline void tcp_highest_sack_replace(struct sock *sk,
2097 					    struct sk_buff *old,
2098 					    struct sk_buff *new)
2099 {
2100 	if (old == tcp_highest_sack(sk))
2101 		tcp_sk(sk)->highest_sack = new;
2102 }
2103 
2104 /* This helper checks if socket has IP_TRANSPARENT set */
2105 static inline bool inet_sk_transparent(const struct sock *sk)
2106 {
2107 	switch (sk->sk_state) {
2108 	case TCP_TIME_WAIT:
2109 		return inet_twsk(sk)->tw_transparent;
2110 	case TCP_NEW_SYN_RECV:
2111 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2112 	}
2113 	return inet_test_bit(TRANSPARENT, sk);
2114 }
2115 
2116 /* Determines whether this is a thin stream (which may suffer from
2117  * increased latency). Used to trigger latency-reducing mechanisms.
2118  */
2119 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2120 {
2121 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2122 }
2123 
2124 /* /proc */
2125 enum tcp_seq_states {
2126 	TCP_SEQ_STATE_LISTENING,
2127 	TCP_SEQ_STATE_ESTABLISHED,
2128 };
2129 
2130 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2131 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2132 void tcp_seq_stop(struct seq_file *seq, void *v);
2133 
2134 struct tcp_seq_afinfo {
2135 	sa_family_t			family;
2136 };
2137 
2138 struct tcp_iter_state {
2139 	struct seq_net_private	p;
2140 	enum tcp_seq_states	state;
2141 	struct sock		*syn_wait_sk;
2142 	int			bucket, offset, sbucket, num;
2143 	loff_t			last_pos;
2144 };
2145 
2146 extern struct request_sock_ops tcp_request_sock_ops;
2147 extern struct request_sock_ops tcp6_request_sock_ops;
2148 
2149 void tcp_v4_destroy_sock(struct sock *sk);
2150 
2151 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2152 				netdev_features_t features);
2153 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2154 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2155 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2156 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2157 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2158 #ifdef CONFIG_INET
2159 void tcp_gro_complete(struct sk_buff *skb);
2160 #else
2161 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2162 #endif
2163 
2164 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2165 
2166 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2167 {
2168 	struct net *net = sock_net((struct sock *)tp);
2169 	u32 val;
2170 
2171 	val = READ_ONCE(tp->notsent_lowat);
2172 
2173 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2174 }
2175 
2176 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2177 
2178 #ifdef CONFIG_PROC_FS
2179 int tcp4_proc_init(void);
2180 void tcp4_proc_exit(void);
2181 #endif
2182 
2183 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2184 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2185 		     const struct tcp_request_sock_ops *af_ops,
2186 		     struct sock *sk, struct sk_buff *skb);
2187 
2188 /* TCP af-specific functions */
2189 struct tcp_sock_af_ops {
2190 #ifdef CONFIG_TCP_MD5SIG
2191 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2192 						const struct sock *addr_sk);
2193 	int		(*calc_md5_hash)(char *location,
2194 					 const struct tcp_md5sig_key *md5,
2195 					 const struct sock *sk,
2196 					 const struct sk_buff *skb);
2197 	int		(*md5_parse)(struct sock *sk,
2198 				     int optname,
2199 				     sockptr_t optval,
2200 				     int optlen);
2201 #endif
2202 #ifdef CONFIG_TCP_AO
2203 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2204 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2205 					struct sock *addr_sk,
2206 					int sndid, int rcvid);
2207 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2208 			      const struct sock *sk,
2209 			      __be32 sisn, __be32 disn, bool send);
2210 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2211 			    const struct sock *sk, const struct sk_buff *skb,
2212 			    const u8 *tkey, int hash_offset, u32 sne);
2213 #endif
2214 };
2215 
2216 struct tcp_request_sock_ops {
2217 	u16 mss_clamp;
2218 #ifdef CONFIG_TCP_MD5SIG
2219 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2220 						 const struct sock *addr_sk);
2221 	int		(*calc_md5_hash) (char *location,
2222 					  const struct tcp_md5sig_key *md5,
2223 					  const struct sock *sk,
2224 					  const struct sk_buff *skb);
2225 #endif
2226 #ifdef CONFIG_TCP_AO
2227 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2228 					struct request_sock *req,
2229 					int sndid, int rcvid);
2230 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2231 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2232 			      struct request_sock *req, const struct sk_buff *skb,
2233 			      int hash_offset, u32 sne);
2234 #endif
2235 #ifdef CONFIG_SYN_COOKIES
2236 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2237 				 __u16 *mss);
2238 #endif
2239 	struct dst_entry *(*route_req)(const struct sock *sk,
2240 				       struct sk_buff *skb,
2241 				       struct flowi *fl,
2242 				       struct request_sock *req);
2243 	u32 (*init_seq)(const struct sk_buff *skb);
2244 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2245 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2246 			   struct flowi *fl, struct request_sock *req,
2247 			   struct tcp_fastopen_cookie *foc,
2248 			   enum tcp_synack_type synack_type,
2249 			   struct sk_buff *syn_skb);
2250 };
2251 
2252 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2253 #if IS_ENABLED(CONFIG_IPV6)
2254 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2255 #endif
2256 
2257 #ifdef CONFIG_SYN_COOKIES
2258 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2259 					 const struct sock *sk, struct sk_buff *skb,
2260 					 __u16 *mss)
2261 {
2262 	tcp_synq_overflow(sk);
2263 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2264 	return ops->cookie_init_seq(skb, mss);
2265 }
2266 #else
2267 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2268 					 const struct sock *sk, struct sk_buff *skb,
2269 					 __u16 *mss)
2270 {
2271 	return 0;
2272 }
2273 #endif
2274 
2275 struct tcp_key {
2276 	union {
2277 		struct {
2278 			struct tcp_ao_key *ao_key;
2279 			char *traffic_key;
2280 			u32 sne;
2281 			u8 rcv_next;
2282 		};
2283 		struct tcp_md5sig_key *md5_key;
2284 	};
2285 	enum {
2286 		TCP_KEY_NONE = 0,
2287 		TCP_KEY_MD5,
2288 		TCP_KEY_AO,
2289 	} type;
2290 };
2291 
2292 static inline void tcp_get_current_key(const struct sock *sk,
2293 				       struct tcp_key *out)
2294 {
2295 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2296 	const struct tcp_sock *tp = tcp_sk(sk);
2297 #endif
2298 
2299 #ifdef CONFIG_TCP_AO
2300 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2301 		struct tcp_ao_info *ao;
2302 
2303 		ao = rcu_dereference_protected(tp->ao_info,
2304 					       lockdep_sock_is_held(sk));
2305 		if (ao) {
2306 			out->ao_key = READ_ONCE(ao->current_key);
2307 			out->type = TCP_KEY_AO;
2308 			return;
2309 		}
2310 	}
2311 #endif
2312 #ifdef CONFIG_TCP_MD5SIG
2313 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2314 	    rcu_access_pointer(tp->md5sig_info)) {
2315 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2316 		if (out->md5_key) {
2317 			out->type = TCP_KEY_MD5;
2318 			return;
2319 		}
2320 	}
2321 #endif
2322 	out->type = TCP_KEY_NONE;
2323 }
2324 
2325 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2326 {
2327 #ifdef CONFIG_TCP_MD5SIG
2328 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2329 	    key->type == TCP_KEY_MD5)
2330 		return true;
2331 #endif
2332 	return false;
2333 }
2334 
2335 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2336 {
2337 #ifdef CONFIG_TCP_AO
2338 	if (static_branch_unlikely(&tcp_ao_needed.key) &&
2339 	    key->type == TCP_KEY_AO)
2340 		return true;
2341 #endif
2342 	return false;
2343 }
2344 
2345 int tcpv4_offload_init(void);
2346 
2347 void tcp_v4_init(void);
2348 void tcp_init(void);
2349 
2350 /* tcp_recovery.c */
2351 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2352 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2353 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2354 				u32 reo_wnd);
2355 extern bool tcp_rack_mark_lost(struct sock *sk);
2356 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2357 			     u64 xmit_time);
2358 extern void tcp_rack_reo_timeout(struct sock *sk);
2359 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2360 
2361 /* tcp_plb.c */
2362 
2363 /*
2364  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2365  * expects cong_ratio which represents fraction of traffic that experienced
2366  * congestion over a single RTT. In order to avoid floating point operations,
2367  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2368  */
2369 #define TCP_PLB_SCALE 8
2370 
2371 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2372 struct tcp_plb_state {
2373 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2374 		unused:3;
2375 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2376 };
2377 
2378 static inline void tcp_plb_init(const struct sock *sk,
2379 				struct tcp_plb_state *plb)
2380 {
2381 	plb->consec_cong_rounds = 0;
2382 	plb->pause_until = 0;
2383 }
2384 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2385 			  const int cong_ratio);
2386 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2387 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2388 
2389 /* At how many usecs into the future should the RTO fire? */
2390 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2391 {
2392 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2393 	u32 rto = inet_csk(sk)->icsk_rto;
2394 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2395 
2396 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2397 }
2398 
2399 /*
2400  * Save and compile IPv4 options, return a pointer to it
2401  */
2402 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2403 							 struct sk_buff *skb)
2404 {
2405 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2406 	struct ip_options_rcu *dopt = NULL;
2407 
2408 	if (opt->optlen) {
2409 		int opt_size = sizeof(*dopt) + opt->optlen;
2410 
2411 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2412 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2413 			kfree(dopt);
2414 			dopt = NULL;
2415 		}
2416 	}
2417 	return dopt;
2418 }
2419 
2420 /* locally generated TCP pure ACKs have skb->truesize == 2
2421  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2422  * This is much faster than dissecting the packet to find out.
2423  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2424  */
2425 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2426 {
2427 	return skb->truesize == 2;
2428 }
2429 
2430 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2431 {
2432 	skb->truesize = 2;
2433 }
2434 
2435 static inline int tcp_inq(struct sock *sk)
2436 {
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 	int answ;
2439 
2440 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2441 		answ = 0;
2442 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2443 		   !tp->urg_data ||
2444 		   before(tp->urg_seq, tp->copied_seq) ||
2445 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2446 
2447 		answ = tp->rcv_nxt - tp->copied_seq;
2448 
2449 		/* Subtract 1, if FIN was received */
2450 		if (answ && sock_flag(sk, SOCK_DONE))
2451 			answ--;
2452 	} else {
2453 		answ = tp->urg_seq - tp->copied_seq;
2454 	}
2455 
2456 	return answ;
2457 }
2458 
2459 int tcp_peek_len(struct socket *sock);
2460 
2461 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2462 {
2463 	u16 segs_in;
2464 
2465 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2466 
2467 	/* We update these fields while other threads might
2468 	 * read them from tcp_get_info()
2469 	 */
2470 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2471 	if (skb->len > tcp_hdrlen(skb))
2472 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2473 }
2474 
2475 /*
2476  * TCP listen path runs lockless.
2477  * We forced "struct sock" to be const qualified to make sure
2478  * we don't modify one of its field by mistake.
2479  * Here, we increment sk_drops which is an atomic_t, so we can safely
2480  * make sock writable again.
2481  */
2482 static inline void tcp_listendrop(const struct sock *sk)
2483 {
2484 	atomic_inc(&((struct sock *)sk)->sk_drops);
2485 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2486 }
2487 
2488 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2489 
2490 /*
2491  * Interface for adding Upper Level Protocols over TCP
2492  */
2493 
2494 #define TCP_ULP_NAME_MAX	16
2495 #define TCP_ULP_MAX		128
2496 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2497 
2498 struct tcp_ulp_ops {
2499 	struct list_head	list;
2500 
2501 	/* initialize ulp */
2502 	int (*init)(struct sock *sk);
2503 	/* update ulp */
2504 	void (*update)(struct sock *sk, struct proto *p,
2505 		       void (*write_space)(struct sock *sk));
2506 	/* cleanup ulp */
2507 	void (*release)(struct sock *sk);
2508 	/* diagnostic */
2509 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2510 	size_t (*get_info_size)(const struct sock *sk);
2511 	/* clone ulp */
2512 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2513 		      const gfp_t priority);
2514 
2515 	char		name[TCP_ULP_NAME_MAX];
2516 	struct module	*owner;
2517 };
2518 int tcp_register_ulp(struct tcp_ulp_ops *type);
2519 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2520 int tcp_set_ulp(struct sock *sk, const char *name);
2521 void tcp_get_available_ulp(char *buf, size_t len);
2522 void tcp_cleanup_ulp(struct sock *sk);
2523 void tcp_update_ulp(struct sock *sk, struct proto *p,
2524 		    void (*write_space)(struct sock *sk));
2525 
2526 #define MODULE_ALIAS_TCP_ULP(name)				\
2527 	__MODULE_INFO(alias, alias_userspace, name);		\
2528 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2529 
2530 #ifdef CONFIG_NET_SOCK_MSG
2531 struct sk_msg;
2532 struct sk_psock;
2533 
2534 #ifdef CONFIG_BPF_SYSCALL
2535 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2536 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2537 #endif /* CONFIG_BPF_SYSCALL */
2538 
2539 #ifdef CONFIG_INET
2540 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2541 #else
2542 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2543 {
2544 }
2545 #endif
2546 
2547 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2548 			  struct sk_msg *msg, u32 bytes, int flags);
2549 #endif /* CONFIG_NET_SOCK_MSG */
2550 
2551 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2552 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2553 {
2554 }
2555 #endif
2556 
2557 #ifdef CONFIG_CGROUP_BPF
2558 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2559 				      struct sk_buff *skb,
2560 				      unsigned int end_offset)
2561 {
2562 	skops->skb = skb;
2563 	skops->skb_data_end = skb->data + end_offset;
2564 }
2565 #else
2566 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2567 				      struct sk_buff *skb,
2568 				      unsigned int end_offset)
2569 {
2570 }
2571 #endif
2572 
2573 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2574  * is < 0, then the BPF op failed (for example if the loaded BPF
2575  * program does not support the chosen operation or there is no BPF
2576  * program loaded).
2577  */
2578 #ifdef CONFIG_BPF
2579 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2580 {
2581 	struct bpf_sock_ops_kern sock_ops;
2582 	int ret;
2583 
2584 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2585 	if (sk_fullsock(sk)) {
2586 		sock_ops.is_fullsock = 1;
2587 		sock_owned_by_me(sk);
2588 	}
2589 
2590 	sock_ops.sk = sk;
2591 	sock_ops.op = op;
2592 	if (nargs > 0)
2593 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2594 
2595 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2596 	if (ret == 0)
2597 		ret = sock_ops.reply;
2598 	else
2599 		ret = -1;
2600 	return ret;
2601 }
2602 
2603 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2604 {
2605 	u32 args[2] = {arg1, arg2};
2606 
2607 	return tcp_call_bpf(sk, op, 2, args);
2608 }
2609 
2610 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2611 				    u32 arg3)
2612 {
2613 	u32 args[3] = {arg1, arg2, arg3};
2614 
2615 	return tcp_call_bpf(sk, op, 3, args);
2616 }
2617 
2618 #else
2619 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2620 {
2621 	return -EPERM;
2622 }
2623 
2624 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2625 {
2626 	return -EPERM;
2627 }
2628 
2629 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2630 				    u32 arg3)
2631 {
2632 	return -EPERM;
2633 }
2634 
2635 #endif
2636 
2637 static inline u32 tcp_timeout_init(struct sock *sk)
2638 {
2639 	int timeout;
2640 
2641 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2642 
2643 	if (timeout <= 0)
2644 		timeout = TCP_TIMEOUT_INIT;
2645 	return min_t(int, timeout, TCP_RTO_MAX);
2646 }
2647 
2648 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2649 {
2650 	int rwnd;
2651 
2652 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2653 
2654 	if (rwnd < 0)
2655 		rwnd = 0;
2656 	return rwnd;
2657 }
2658 
2659 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2660 {
2661 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2662 }
2663 
2664 static inline void tcp_bpf_rtt(struct sock *sk)
2665 {
2666 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2667 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2668 }
2669 
2670 #if IS_ENABLED(CONFIG_SMC)
2671 extern struct static_key_false tcp_have_smc;
2672 #endif
2673 
2674 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2675 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2676 			     void (*cad)(struct sock *sk, u32 ack_seq));
2677 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2678 void clean_acked_data_flush(void);
2679 #endif
2680 
2681 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2682 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2683 				    const struct tcp_sock *tp)
2684 {
2685 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2686 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2687 }
2688 
2689 /* Compute Earliest Departure Time for some control packets
2690  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2691  */
2692 static inline u64 tcp_transmit_time(const struct sock *sk)
2693 {
2694 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2695 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2696 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2697 
2698 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2699 	}
2700 	return 0;
2701 }
2702 
2703 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2704 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2705 {
2706 	const u8 *md5_tmp, *ao_tmp;
2707 	int ret;
2708 
2709 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2710 	if (ret)
2711 		return ret;
2712 
2713 	if (md5_hash)
2714 		*md5_hash = md5_tmp;
2715 
2716 	if (aoh) {
2717 		if (!ao_tmp)
2718 			*aoh = NULL;
2719 		else
2720 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2721 	}
2722 
2723 	return 0;
2724 }
2725 
2726 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2727 				   int family, int l3index, bool stat_inc)
2728 {
2729 #ifdef CONFIG_TCP_AO
2730 	struct tcp_ao_info *ao_info;
2731 	struct tcp_ao_key *ao_key;
2732 
2733 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2734 		return false;
2735 
2736 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2737 					lockdep_sock_is_held(sk));
2738 	if (!ao_info)
2739 		return false;
2740 
2741 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2742 	if (ao_info->ao_required || ao_key) {
2743 		if (stat_inc) {
2744 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2745 			atomic64_inc(&ao_info->counters.ao_required);
2746 		}
2747 		return true;
2748 	}
2749 #endif
2750 	return false;
2751 }
2752 
2753 /* Called with rcu_read_lock() */
2754 static inline enum skb_drop_reason
2755 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
2756 		 const struct sk_buff *skb,
2757 		 const void *saddr, const void *daddr,
2758 		 int family, int dif, int sdif)
2759 {
2760 	const struct tcphdr *th = tcp_hdr(skb);
2761 	const struct tcp_ao_hdr *aoh;
2762 	const __u8 *md5_location;
2763 	int l3index;
2764 
2765 	/* Invalid option or two times meet any of auth options */
2766 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
2767 		tcp_hash_fail("TCP segment has incorrect auth options set",
2768 			      family, skb, "");
2769 		return SKB_DROP_REASON_TCP_AUTH_HDR;
2770 	}
2771 
2772 	if (req) {
2773 		if (tcp_rsk_used_ao(req) != !!aoh) {
2774 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
2775 			tcp_hash_fail("TCP connection can't start/end using TCP-AO",
2776 				      family, skb, "%s",
2777 				      !aoh ? "missing AO" : "AO signed");
2778 			return SKB_DROP_REASON_TCP_AOFAILURE;
2779 		}
2780 	}
2781 
2782 	/* sdif set, means packet ingressed via a device
2783 	 * in an L3 domain and dif is set to the l3mdev
2784 	 */
2785 	l3index = sdif ? dif : 0;
2786 
2787 	/* Fast path: unsigned segments */
2788 	if (likely(!md5_location && !aoh)) {
2789 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
2790 		 * for the remote peer. On TCP-AO established connection
2791 		 * the last key is impossible to remove, so there's
2792 		 * always at least one current_key.
2793 		 */
2794 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
2795 			tcp_hash_fail("AO hash is required, but not found",
2796 					family, skb, "L3 index %d", l3index);
2797 			return SKB_DROP_REASON_TCP_AONOTFOUND;
2798 		}
2799 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
2800 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
2801 			tcp_hash_fail("MD5 Hash not found",
2802 				      family, skb, "L3 index %d", l3index);
2803 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
2804 		}
2805 		return SKB_NOT_DROPPED_YET;
2806 	}
2807 
2808 	if (aoh)
2809 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
2810 
2811 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
2812 				    l3index, md5_location);
2813 }
2814 
2815 #endif	/* _TCP_H */
2816