xref: /linux/include/net/tcp.h (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return tcp_memory_pressure;
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 void tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 					 const unsigned int pkts)
348 {
349 	struct inet_connection_sock *icsk = inet_csk(sk);
350 
351 	if (icsk->icsk_ack.quick) {
352 		if (pkts >= icsk->icsk_ack.quick) {
353 			icsk->icsk_ack.quick = 0;
354 			/* Leaving quickack mode we deflate ATO. */
355 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
356 		} else
357 			icsk->icsk_ack.quick -= pkts;
358 	}
359 }
360 
361 #define	TCP_ECN_OK		1
362 #define	TCP_ECN_QUEUE_CWR	2
363 #define	TCP_ECN_DEMAND_CWR	4
364 #define	TCP_ECN_SEEN		8
365 
366 enum tcp_tw_status {
367 	TCP_TW_SUCCESS = 0,
368 	TCP_TW_RST = 1,
369 	TCP_TW_ACK = 2,
370 	TCP_TW_SYN = 3
371 };
372 
373 
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 					      struct sk_buff *skb,
376 					      const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 			   struct request_sock *req, bool fastopen,
379 			   bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 		      struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 		   char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 int tcp_mmap(struct file *file, struct socket *sock,
409 	     struct vm_area_struct *vma);
410 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
411 		       struct tcp_options_received *opt_rx,
412 		       int estab, struct tcp_fastopen_cookie *foc);
413 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
414 
415 /*
416  *	TCP v4 functions exported for the inet6 API
417  */
418 
419 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
420 void tcp_v4_mtu_reduced(struct sock *sk);
421 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
422 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
423 struct sock *tcp_create_openreq_child(const struct sock *sk,
424 				      struct request_sock *req,
425 				      struct sk_buff *skb);
426 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
427 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
428 				  struct request_sock *req,
429 				  struct dst_entry *dst,
430 				  struct request_sock *req_unhash,
431 				  bool *own_req);
432 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
433 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
434 int tcp_connect(struct sock *sk);
435 enum tcp_synack_type {
436 	TCP_SYNACK_NORMAL,
437 	TCP_SYNACK_FASTOPEN,
438 	TCP_SYNACK_COOKIE,
439 };
440 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
441 				struct request_sock *req,
442 				struct tcp_fastopen_cookie *foc,
443 				enum tcp_synack_type synack_type);
444 int tcp_disconnect(struct sock *sk, int flags);
445 
446 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
447 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
448 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
449 
450 /* From syncookies.c */
451 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
452 				 struct request_sock *req,
453 				 struct dst_entry *dst, u32 tsoff);
454 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
455 		      u32 cookie);
456 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
457 #ifdef CONFIG_SYN_COOKIES
458 
459 /* Syncookies use a monotonic timer which increments every 60 seconds.
460  * This counter is used both as a hash input and partially encoded into
461  * the cookie value.  A cookie is only validated further if the delta
462  * between the current counter value and the encoded one is less than this,
463  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
464  * the counter advances immediately after a cookie is generated).
465  */
466 #define MAX_SYNCOOKIE_AGE	2
467 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
468 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
469 
470 /* syncookies: remember time of last synqueue overflow
471  * But do not dirty this field too often (once per second is enough)
472  * It is racy as we do not hold a lock, but race is very minor.
473  */
474 static inline void tcp_synq_overflow(const struct sock *sk)
475 {
476 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
477 	unsigned long now = jiffies;
478 
479 	if (time_after(now, last_overflow + HZ))
480 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
481 }
482 
483 /* syncookies: no recent synqueue overflow on this listening socket? */
484 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
485 {
486 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
487 
488 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
489 }
490 
491 static inline u32 tcp_cookie_time(void)
492 {
493 	u64 val = get_jiffies_64();
494 
495 	do_div(val, TCP_SYNCOOKIE_PERIOD);
496 	return val;
497 }
498 
499 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
500 			      u16 *mssp);
501 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
502 u64 cookie_init_timestamp(struct request_sock *req);
503 bool cookie_timestamp_decode(const struct net *net,
504 			     struct tcp_options_received *opt);
505 bool cookie_ecn_ok(const struct tcp_options_received *opt,
506 		   const struct net *net, const struct dst_entry *dst);
507 
508 /* From net/ipv6/syncookies.c */
509 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
510 		      u32 cookie);
511 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
512 
513 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
514 			      const struct tcphdr *th, u16 *mssp);
515 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
516 #endif
517 /* tcp_output.c */
518 
519 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
520 			       int nonagle);
521 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
523 void tcp_retransmit_timer(struct sock *sk);
524 void tcp_xmit_retransmit_queue(struct sock *);
525 void tcp_simple_retransmit(struct sock *);
526 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
527 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
528 enum tcp_queue {
529 	TCP_FRAG_IN_WRITE_QUEUE,
530 	TCP_FRAG_IN_RTX_QUEUE,
531 };
532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
533 		 struct sk_buff *skb, u32 len,
534 		 unsigned int mss_now, gfp_t gfp);
535 
536 void tcp_send_probe0(struct sock *);
537 void tcp_send_partial(struct sock *);
538 int tcp_write_wakeup(struct sock *, int mib);
539 void tcp_send_fin(struct sock *sk);
540 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
541 int tcp_send_synack(struct sock *);
542 void tcp_push_one(struct sock *, unsigned int mss_now);
543 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
544 void tcp_send_ack(struct sock *sk);
545 void tcp_send_delayed_ack(struct sock *sk);
546 void tcp_send_loss_probe(struct sock *sk);
547 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
548 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
549 			     const struct sk_buff *next_skb);
550 
551 /* tcp_input.c */
552 void tcp_rearm_rto(struct sock *sk);
553 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
554 void tcp_reset(struct sock *sk);
555 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
556 void tcp_fin(struct sock *sk);
557 
558 /* tcp_timer.c */
559 void tcp_init_xmit_timers(struct sock *);
560 static inline void tcp_clear_xmit_timers(struct sock *sk)
561 {
562 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
563 		__sock_put(sk);
564 
565 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
566 		__sock_put(sk);
567 
568 	inet_csk_clear_xmit_timers(sk);
569 }
570 
571 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
572 unsigned int tcp_current_mss(struct sock *sk);
573 
574 /* Bound MSS / TSO packet size with the half of the window */
575 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
576 {
577 	int cutoff;
578 
579 	/* When peer uses tiny windows, there is no use in packetizing
580 	 * to sub-MSS pieces for the sake of SWS or making sure there
581 	 * are enough packets in the pipe for fast recovery.
582 	 *
583 	 * On the other hand, for extremely large MSS devices, handling
584 	 * smaller than MSS windows in this way does make sense.
585 	 */
586 	if (tp->max_window > TCP_MSS_DEFAULT)
587 		cutoff = (tp->max_window >> 1);
588 	else
589 		cutoff = tp->max_window;
590 
591 	if (cutoff && pktsize > cutoff)
592 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
593 	else
594 		return pktsize;
595 }
596 
597 /* tcp.c */
598 void tcp_get_info(struct sock *, struct tcp_info *);
599 
600 /* Read 'sendfile()'-style from a TCP socket */
601 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
602 		  sk_read_actor_t recv_actor);
603 
604 void tcp_initialize_rcv_mss(struct sock *sk);
605 
606 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
607 int tcp_mss_to_mtu(struct sock *sk, int mss);
608 void tcp_mtup_init(struct sock *sk);
609 void tcp_init_buffer_space(struct sock *sk);
610 
611 static inline void tcp_bound_rto(const struct sock *sk)
612 {
613 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
614 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
615 }
616 
617 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
618 {
619 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
620 }
621 
622 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
623 {
624 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
625 			       ntohl(TCP_FLAG_ACK) |
626 			       snd_wnd);
627 }
628 
629 static inline void tcp_fast_path_on(struct tcp_sock *tp)
630 {
631 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
632 }
633 
634 static inline void tcp_fast_path_check(struct sock *sk)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 
638 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
639 	    tp->rcv_wnd &&
640 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
641 	    !tp->urg_data)
642 		tcp_fast_path_on(tp);
643 }
644 
645 /* Compute the actual rto_min value */
646 static inline u32 tcp_rto_min(struct sock *sk)
647 {
648 	const struct dst_entry *dst = __sk_dst_get(sk);
649 	u32 rto_min = TCP_RTO_MIN;
650 
651 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
652 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
653 	return rto_min;
654 }
655 
656 static inline u32 tcp_rto_min_us(struct sock *sk)
657 {
658 	return jiffies_to_usecs(tcp_rto_min(sk));
659 }
660 
661 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
662 {
663 	return dst_metric_locked(dst, RTAX_CC_ALGO);
664 }
665 
666 /* Minimum RTT in usec. ~0 means not available. */
667 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
668 {
669 	return minmax_get(&tp->rtt_min);
670 }
671 
672 /* Compute the actual receive window we are currently advertising.
673  * Rcv_nxt can be after the window if our peer push more data
674  * than the offered window.
675  */
676 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
677 {
678 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
679 
680 	if (win < 0)
681 		win = 0;
682 	return (u32) win;
683 }
684 
685 /* Choose a new window, without checks for shrinking, and without
686  * scaling applied to the result.  The caller does these things
687  * if necessary.  This is a "raw" window selection.
688  */
689 u32 __tcp_select_window(struct sock *sk);
690 
691 void tcp_send_window_probe(struct sock *sk);
692 
693 /* TCP uses 32bit jiffies to save some space.
694  * Note that this is different from tcp_time_stamp, which
695  * historically has been the same until linux-4.13.
696  */
697 #define tcp_jiffies32 ((u32)jiffies)
698 
699 /*
700  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
701  * It is no longer tied to jiffies, but to 1 ms clock.
702  * Note: double check if you want to use tcp_jiffies32 instead of this.
703  */
704 #define TCP_TS_HZ	1000
705 
706 static inline u64 tcp_clock_ns(void)
707 {
708 	return local_clock();
709 }
710 
711 static inline u64 tcp_clock_us(void)
712 {
713 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
714 }
715 
716 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
717 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
718 {
719 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
720 }
721 
722 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
723 static inline u32 tcp_time_stamp_raw(void)
724 {
725 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
726 }
727 
728 
729 /* Refresh 1us clock of a TCP socket,
730  * ensuring monotically increasing values.
731  */
732 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
733 {
734 	u64 val = tcp_clock_us();
735 
736 	if (val > tp->tcp_mstamp)
737 		tp->tcp_mstamp = val;
738 }
739 
740 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
741 {
742 	return max_t(s64, t1 - t0, 0);
743 }
744 
745 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
746 {
747 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
748 }
749 
750 
751 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
752 
753 #define TCPHDR_FIN 0x01
754 #define TCPHDR_SYN 0x02
755 #define TCPHDR_RST 0x04
756 #define TCPHDR_PSH 0x08
757 #define TCPHDR_ACK 0x10
758 #define TCPHDR_URG 0x20
759 #define TCPHDR_ECE 0x40
760 #define TCPHDR_CWR 0x80
761 
762 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
763 
764 /* This is what the send packet queuing engine uses to pass
765  * TCP per-packet control information to the transmission code.
766  * We also store the host-order sequence numbers in here too.
767  * This is 44 bytes if IPV6 is enabled.
768  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
769  */
770 struct tcp_skb_cb {
771 	__u32		seq;		/* Starting sequence number	*/
772 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
773 	union {
774 		/* Note : tcp_tw_isn is used in input path only
775 		 *	  (isn chosen by tcp_timewait_state_process())
776 		 *
777 		 * 	  tcp_gso_segs/size are used in write queue only,
778 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
779 		 */
780 		__u32		tcp_tw_isn;
781 		struct {
782 			u16	tcp_gso_segs;
783 			u16	tcp_gso_size;
784 		};
785 	};
786 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
787 
788 	__u8		sacked;		/* State flags for SACK.	*/
789 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
790 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
791 #define TCPCB_LOST		0x04	/* SKB is lost			*/
792 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
793 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
794 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
795 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
796 				TCPCB_REPAIRED)
797 
798 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
799 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
800 			eor:1,		/* Is skb MSG_EOR marked? */
801 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
802 			unused:5;
803 	__u32		ack_seq;	/* Sequence number ACK'd	*/
804 	union {
805 		struct {
806 			/* There is space for up to 24 bytes */
807 			__u32 in_flight:30,/* Bytes in flight at transmit */
808 			      is_app_limited:1, /* cwnd not fully used? */
809 			      unused:1;
810 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
811 			__u32 delivered;
812 			/* start of send pipeline phase */
813 			u64 first_tx_mstamp;
814 			/* when we reached the "delivered" count */
815 			u64 delivered_mstamp;
816 		} tx;   /* only used for outgoing skbs */
817 		union {
818 			struct inet_skb_parm	h4;
819 #if IS_ENABLED(CONFIG_IPV6)
820 			struct inet6_skb_parm	h6;
821 #endif
822 		} header;	/* For incoming skbs */
823 		struct {
824 			__u32 flags;
825 			struct sock *sk_redir;
826 			void *data_end;
827 		} bpf;
828 	};
829 };
830 
831 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
832 
833 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
834 {
835 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
836 }
837 
838 #if IS_ENABLED(CONFIG_IPV6)
839 /* This is the variant of inet6_iif() that must be used by TCP,
840  * as TCP moves IP6CB into a different location in skb->cb[]
841  */
842 static inline int tcp_v6_iif(const struct sk_buff *skb)
843 {
844 	return TCP_SKB_CB(skb)->header.h6.iif;
845 }
846 
847 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
848 {
849 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
850 
851 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
852 }
853 
854 /* TCP_SKB_CB reference means this can not be used from early demux */
855 static inline int tcp_v6_sdif(const struct sk_buff *skb)
856 {
857 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
858 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
859 		return TCP_SKB_CB(skb)->header.h6.iif;
860 #endif
861 	return 0;
862 }
863 #endif
864 
865 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
866 {
867 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
868 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
869 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
870 		return true;
871 #endif
872 	return false;
873 }
874 
875 /* TCP_SKB_CB reference means this can not be used from early demux */
876 static inline int tcp_v4_sdif(struct sk_buff *skb)
877 {
878 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
879 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
880 		return TCP_SKB_CB(skb)->header.h4.iif;
881 #endif
882 	return 0;
883 }
884 
885 /* Due to TSO, an SKB can be composed of multiple actual
886  * packets.  To keep these tracked properly, we use this.
887  */
888 static inline int tcp_skb_pcount(const struct sk_buff *skb)
889 {
890 	return TCP_SKB_CB(skb)->tcp_gso_segs;
891 }
892 
893 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
894 {
895 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
896 }
897 
898 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
899 {
900 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
901 }
902 
903 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
904 static inline int tcp_skb_mss(const struct sk_buff *skb)
905 {
906 	return TCP_SKB_CB(skb)->tcp_gso_size;
907 }
908 
909 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
910 {
911 	return likely(!TCP_SKB_CB(skb)->eor);
912 }
913 
914 /* Events passed to congestion control interface */
915 enum tcp_ca_event {
916 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
917 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
918 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
919 	CA_EVENT_LOSS,		/* loss timeout */
920 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
921 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
922 };
923 
924 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
925 enum tcp_ca_ack_event_flags {
926 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
927 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
928 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
929 };
930 
931 /*
932  * Interface for adding new TCP congestion control handlers
933  */
934 #define TCP_CA_NAME_MAX	16
935 #define TCP_CA_MAX	128
936 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
937 
938 #define TCP_CA_UNSPEC	0
939 
940 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
941 #define TCP_CONG_NON_RESTRICTED 0x1
942 /* Requires ECN/ECT set on all packets */
943 #define TCP_CONG_NEEDS_ECN	0x2
944 
945 union tcp_cc_info;
946 
947 struct ack_sample {
948 	u32 pkts_acked;
949 	s32 rtt_us;
950 	u32 in_flight;
951 };
952 
953 /* A rate sample measures the number of (original/retransmitted) data
954  * packets delivered "delivered" over an interval of time "interval_us".
955  * The tcp_rate.c code fills in the rate sample, and congestion
956  * control modules that define a cong_control function to run at the end
957  * of ACK processing can optionally chose to consult this sample when
958  * setting cwnd and pacing rate.
959  * A sample is invalid if "delivered" or "interval_us" is negative.
960  */
961 struct rate_sample {
962 	u64  prior_mstamp; /* starting timestamp for interval */
963 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
964 	s32  delivered;		/* number of packets delivered over interval */
965 	long interval_us;	/* time for tp->delivered to incr "delivered" */
966 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
967 	int  losses;		/* number of packets marked lost upon ACK */
968 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
969 	u32  prior_in_flight;	/* in flight before this ACK */
970 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
971 	bool is_retrans;	/* is sample from retransmission? */
972 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
973 };
974 
975 struct tcp_congestion_ops {
976 	struct list_head	list;
977 	u32 key;
978 	u32 flags;
979 
980 	/* initialize private data (optional) */
981 	void (*init)(struct sock *sk);
982 	/* cleanup private data  (optional) */
983 	void (*release)(struct sock *sk);
984 
985 	/* return slow start threshold (required) */
986 	u32 (*ssthresh)(struct sock *sk);
987 	/* do new cwnd calculation (required) */
988 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
989 	/* call before changing ca_state (optional) */
990 	void (*set_state)(struct sock *sk, u8 new_state);
991 	/* call when cwnd event occurs (optional) */
992 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
993 	/* call when ack arrives (optional) */
994 	void (*in_ack_event)(struct sock *sk, u32 flags);
995 	/* new value of cwnd after loss (required) */
996 	u32  (*undo_cwnd)(struct sock *sk);
997 	/* hook for packet ack accounting (optional) */
998 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
999 	/* override sysctl_tcp_min_tso_segs */
1000 	u32 (*min_tso_segs)(struct sock *sk);
1001 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1002 	u32 (*sndbuf_expand)(struct sock *sk);
1003 	/* call when packets are delivered to update cwnd and pacing rate,
1004 	 * after all the ca_state processing. (optional)
1005 	 */
1006 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1007 	/* get info for inet_diag (optional) */
1008 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1009 			   union tcp_cc_info *info);
1010 
1011 	char 		name[TCP_CA_NAME_MAX];
1012 	struct module 	*owner;
1013 };
1014 
1015 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1016 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1017 
1018 void tcp_assign_congestion_control(struct sock *sk);
1019 void tcp_init_congestion_control(struct sock *sk);
1020 void tcp_cleanup_congestion_control(struct sock *sk);
1021 int tcp_set_default_congestion_control(struct net *net, const char *name);
1022 void tcp_get_default_congestion_control(struct net *net, char *name);
1023 void tcp_get_available_congestion_control(char *buf, size_t len);
1024 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1025 int tcp_set_allowed_congestion_control(char *allowed);
1026 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1027 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1028 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1029 
1030 u32 tcp_reno_ssthresh(struct sock *sk);
1031 u32 tcp_reno_undo_cwnd(struct sock *sk);
1032 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1033 extern struct tcp_congestion_ops tcp_reno;
1034 
1035 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1036 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1037 #ifdef CONFIG_INET
1038 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1039 #else
1040 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1041 {
1042 	return NULL;
1043 }
1044 #endif
1045 
1046 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1047 {
1048 	const struct inet_connection_sock *icsk = inet_csk(sk);
1049 
1050 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1051 }
1052 
1053 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1054 {
1055 	struct inet_connection_sock *icsk = inet_csk(sk);
1056 
1057 	if (icsk->icsk_ca_ops->set_state)
1058 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1059 	icsk->icsk_ca_state = ca_state;
1060 }
1061 
1062 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1063 {
1064 	const struct inet_connection_sock *icsk = inet_csk(sk);
1065 
1066 	if (icsk->icsk_ca_ops->cwnd_event)
1067 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1068 }
1069 
1070 /* From tcp_rate.c */
1071 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1072 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1073 			    struct rate_sample *rs);
1074 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1075 		  bool is_sack_reneg, struct rate_sample *rs);
1076 void tcp_rate_check_app_limited(struct sock *sk);
1077 
1078 /* These functions determine how the current flow behaves in respect of SACK
1079  * handling. SACK is negotiated with the peer, and therefore it can vary
1080  * between different flows.
1081  *
1082  * tcp_is_sack - SACK enabled
1083  * tcp_is_reno - No SACK
1084  */
1085 static inline int tcp_is_sack(const struct tcp_sock *tp)
1086 {
1087 	return tp->rx_opt.sack_ok;
1088 }
1089 
1090 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1091 {
1092 	return !tcp_is_sack(tp);
1093 }
1094 
1095 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1096 {
1097 	return tp->sacked_out + tp->lost_out;
1098 }
1099 
1100 /* This determines how many packets are "in the network" to the best
1101  * of our knowledge.  In many cases it is conservative, but where
1102  * detailed information is available from the receiver (via SACK
1103  * blocks etc.) we can make more aggressive calculations.
1104  *
1105  * Use this for decisions involving congestion control, use just
1106  * tp->packets_out to determine if the send queue is empty or not.
1107  *
1108  * Read this equation as:
1109  *
1110  *	"Packets sent once on transmission queue" MINUS
1111  *	"Packets left network, but not honestly ACKed yet" PLUS
1112  *	"Packets fast retransmitted"
1113  */
1114 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1115 {
1116 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1117 }
1118 
1119 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1120 
1121 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1122 {
1123 	return tp->snd_cwnd < tp->snd_ssthresh;
1124 }
1125 
1126 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1127 {
1128 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1129 }
1130 
1131 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1132 {
1133 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1134 	       (1 << inet_csk(sk)->icsk_ca_state);
1135 }
1136 
1137 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1138  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1139  * ssthresh.
1140  */
1141 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1142 {
1143 	const struct tcp_sock *tp = tcp_sk(sk);
1144 
1145 	if (tcp_in_cwnd_reduction(sk))
1146 		return tp->snd_ssthresh;
1147 	else
1148 		return max(tp->snd_ssthresh,
1149 			   ((tp->snd_cwnd >> 1) +
1150 			    (tp->snd_cwnd >> 2)));
1151 }
1152 
1153 /* Use define here intentionally to get WARN_ON location shown at the caller */
1154 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1155 
1156 void tcp_enter_cwr(struct sock *sk);
1157 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1158 
1159 /* The maximum number of MSS of available cwnd for which TSO defers
1160  * sending if not using sysctl_tcp_tso_win_divisor.
1161  */
1162 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1163 {
1164 	return 3;
1165 }
1166 
1167 /* Returns end sequence number of the receiver's advertised window */
1168 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1169 {
1170 	return tp->snd_una + tp->snd_wnd;
1171 }
1172 
1173 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1174  * flexible approach. The RFC suggests cwnd should not be raised unless
1175  * it was fully used previously. And that's exactly what we do in
1176  * congestion avoidance mode. But in slow start we allow cwnd to grow
1177  * as long as the application has used half the cwnd.
1178  * Example :
1179  *    cwnd is 10 (IW10), but application sends 9 frames.
1180  *    We allow cwnd to reach 18 when all frames are ACKed.
1181  * This check is safe because it's as aggressive as slow start which already
1182  * risks 100% overshoot. The advantage is that we discourage application to
1183  * either send more filler packets or data to artificially blow up the cwnd
1184  * usage, and allow application-limited process to probe bw more aggressively.
1185  */
1186 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1187 {
1188 	const struct tcp_sock *tp = tcp_sk(sk);
1189 
1190 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1191 	if (tcp_in_slow_start(tp))
1192 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1193 
1194 	return tp->is_cwnd_limited;
1195 }
1196 
1197 /* Something is really bad, we could not queue an additional packet,
1198  * because qdisc is full or receiver sent a 0 window.
1199  * We do not want to add fuel to the fire, or abort too early,
1200  * so make sure the timer we arm now is at least 200ms in the future,
1201  * regardless of current icsk_rto value (as it could be ~2ms)
1202  */
1203 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1204 {
1205 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1206 }
1207 
1208 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1209 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1210 					    unsigned long max_when)
1211 {
1212 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1213 
1214 	return (unsigned long)min_t(u64, when, max_when);
1215 }
1216 
1217 static inline void tcp_check_probe_timer(struct sock *sk)
1218 {
1219 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1220 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1221 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1222 }
1223 
1224 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1225 {
1226 	tp->snd_wl1 = seq;
1227 }
1228 
1229 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1230 {
1231 	tp->snd_wl1 = seq;
1232 }
1233 
1234 /*
1235  * Calculate(/check) TCP checksum
1236  */
1237 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1238 				   __be32 daddr, __wsum base)
1239 {
1240 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1241 }
1242 
1243 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1244 {
1245 	return __skb_checksum_complete(skb);
1246 }
1247 
1248 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1249 {
1250 	return !skb_csum_unnecessary(skb) &&
1251 		__tcp_checksum_complete(skb);
1252 }
1253 
1254 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1255 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1256 
1257 #undef STATE_TRACE
1258 
1259 #ifdef STATE_TRACE
1260 static const char *statename[]={
1261 	"Unused","Established","Syn Sent","Syn Recv",
1262 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1263 	"Close Wait","Last ACK","Listen","Closing"
1264 };
1265 #endif
1266 void tcp_set_state(struct sock *sk, int state);
1267 
1268 void tcp_done(struct sock *sk);
1269 
1270 int tcp_abort(struct sock *sk, int err);
1271 
1272 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1273 {
1274 	rx_opt->dsack = 0;
1275 	rx_opt->num_sacks = 0;
1276 }
1277 
1278 u32 tcp_default_init_rwnd(u32 mss);
1279 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1280 
1281 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1282 {
1283 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1284 	struct tcp_sock *tp = tcp_sk(sk);
1285 	s32 delta;
1286 
1287 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1288 	    ca_ops->cong_control)
1289 		return;
1290 	delta = tcp_jiffies32 - tp->lsndtime;
1291 	if (delta > inet_csk(sk)->icsk_rto)
1292 		tcp_cwnd_restart(sk, delta);
1293 }
1294 
1295 /* Determine a window scaling and initial window to offer. */
1296 void tcp_select_initial_window(const struct sock *sk, int __space,
1297 			       __u32 mss, __u32 *rcv_wnd,
1298 			       __u32 *window_clamp, int wscale_ok,
1299 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1300 
1301 static inline int tcp_win_from_space(const struct sock *sk, int space)
1302 {
1303 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1304 
1305 	return tcp_adv_win_scale <= 0 ?
1306 		(space>>(-tcp_adv_win_scale)) :
1307 		space - (space>>tcp_adv_win_scale);
1308 }
1309 
1310 /* Note: caller must be prepared to deal with negative returns */
1311 static inline int tcp_space(const struct sock *sk)
1312 {
1313 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1314 				  atomic_read(&sk->sk_rmem_alloc));
1315 }
1316 
1317 static inline int tcp_full_space(const struct sock *sk)
1318 {
1319 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1320 }
1321 
1322 extern void tcp_openreq_init_rwin(struct request_sock *req,
1323 				  const struct sock *sk_listener,
1324 				  const struct dst_entry *dst);
1325 
1326 void tcp_enter_memory_pressure(struct sock *sk);
1327 void tcp_leave_memory_pressure(struct sock *sk);
1328 
1329 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1330 {
1331 	struct net *net = sock_net((struct sock *)tp);
1332 
1333 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1334 }
1335 
1336 static inline int keepalive_time_when(const struct tcp_sock *tp)
1337 {
1338 	struct net *net = sock_net((struct sock *)tp);
1339 
1340 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1341 }
1342 
1343 static inline int keepalive_probes(const struct tcp_sock *tp)
1344 {
1345 	struct net *net = sock_net((struct sock *)tp);
1346 
1347 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1348 }
1349 
1350 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1351 {
1352 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1353 
1354 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1355 			  tcp_jiffies32 - tp->rcv_tstamp);
1356 }
1357 
1358 static inline int tcp_fin_time(const struct sock *sk)
1359 {
1360 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1361 	const int rto = inet_csk(sk)->icsk_rto;
1362 
1363 	if (fin_timeout < (rto << 2) - (rto >> 1))
1364 		fin_timeout = (rto << 2) - (rto >> 1);
1365 
1366 	return fin_timeout;
1367 }
1368 
1369 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1370 				  int paws_win)
1371 {
1372 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1373 		return true;
1374 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1375 		return true;
1376 	/*
1377 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1378 	 * then following tcp messages have valid values. Ignore 0 value,
1379 	 * or else 'negative' tsval might forbid us to accept their packets.
1380 	 */
1381 	if (!rx_opt->ts_recent)
1382 		return true;
1383 	return false;
1384 }
1385 
1386 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1387 				   int rst)
1388 {
1389 	if (tcp_paws_check(rx_opt, 0))
1390 		return false;
1391 
1392 	/* RST segments are not recommended to carry timestamp,
1393 	   and, if they do, it is recommended to ignore PAWS because
1394 	   "their cleanup function should take precedence over timestamps."
1395 	   Certainly, it is mistake. It is necessary to understand the reasons
1396 	   of this constraint to relax it: if peer reboots, clock may go
1397 	   out-of-sync and half-open connections will not be reset.
1398 	   Actually, the problem would be not existing if all
1399 	   the implementations followed draft about maintaining clock
1400 	   via reboots. Linux-2.2 DOES NOT!
1401 
1402 	   However, we can relax time bounds for RST segments to MSL.
1403 	 */
1404 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1405 		return false;
1406 	return true;
1407 }
1408 
1409 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1410 			  int mib_idx, u32 *last_oow_ack_time);
1411 
1412 static inline void tcp_mib_init(struct net *net)
1413 {
1414 	/* See RFC 2012 */
1415 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1416 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1417 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1418 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1419 }
1420 
1421 /* from STCP */
1422 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1423 {
1424 	tp->lost_skb_hint = NULL;
1425 }
1426 
1427 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1428 {
1429 	tcp_clear_retrans_hints_partial(tp);
1430 	tp->retransmit_skb_hint = NULL;
1431 }
1432 
1433 union tcp_md5_addr {
1434 	struct in_addr  a4;
1435 #if IS_ENABLED(CONFIG_IPV6)
1436 	struct in6_addr	a6;
1437 #endif
1438 };
1439 
1440 /* - key database */
1441 struct tcp_md5sig_key {
1442 	struct hlist_node	node;
1443 	u8			keylen;
1444 	u8			family; /* AF_INET or AF_INET6 */
1445 	union tcp_md5_addr	addr;
1446 	u8			prefixlen;
1447 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1448 	struct rcu_head		rcu;
1449 };
1450 
1451 /* - sock block */
1452 struct tcp_md5sig_info {
1453 	struct hlist_head	head;
1454 	struct rcu_head		rcu;
1455 };
1456 
1457 /* - pseudo header */
1458 struct tcp4_pseudohdr {
1459 	__be32		saddr;
1460 	__be32		daddr;
1461 	__u8		pad;
1462 	__u8		protocol;
1463 	__be16		len;
1464 };
1465 
1466 struct tcp6_pseudohdr {
1467 	struct in6_addr	saddr;
1468 	struct in6_addr daddr;
1469 	__be32		len;
1470 	__be32		protocol;	/* including padding */
1471 };
1472 
1473 union tcp_md5sum_block {
1474 	struct tcp4_pseudohdr ip4;
1475 #if IS_ENABLED(CONFIG_IPV6)
1476 	struct tcp6_pseudohdr ip6;
1477 #endif
1478 };
1479 
1480 /* - pool: digest algorithm, hash description and scratch buffer */
1481 struct tcp_md5sig_pool {
1482 	struct ahash_request	*md5_req;
1483 	void			*scratch;
1484 };
1485 
1486 /* - functions */
1487 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1488 			const struct sock *sk, const struct sk_buff *skb);
1489 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1490 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1491 		   gfp_t gfp);
1492 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1493 		   int family, u8 prefixlen);
1494 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1495 					 const struct sock *addr_sk);
1496 
1497 #ifdef CONFIG_TCP_MD5SIG
1498 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1499 					 const union tcp_md5_addr *addr,
1500 					 int family);
1501 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1502 #else
1503 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1504 					 const union tcp_md5_addr *addr,
1505 					 int family)
1506 {
1507 	return NULL;
1508 }
1509 #define tcp_twsk_md5_key(twsk)	NULL
1510 #endif
1511 
1512 bool tcp_alloc_md5sig_pool(void);
1513 
1514 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1515 static inline void tcp_put_md5sig_pool(void)
1516 {
1517 	local_bh_enable();
1518 }
1519 
1520 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1521 			  unsigned int header_len);
1522 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1523 		     const struct tcp_md5sig_key *key);
1524 
1525 /* From tcp_fastopen.c */
1526 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1527 			    struct tcp_fastopen_cookie *cookie);
1528 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1529 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1530 			    u16 try_exp);
1531 struct tcp_fastopen_request {
1532 	/* Fast Open cookie. Size 0 means a cookie request */
1533 	struct tcp_fastopen_cookie	cookie;
1534 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1535 	size_t				size;
1536 	int				copied;	/* queued in tcp_connect() */
1537 };
1538 void tcp_free_fastopen_req(struct tcp_sock *tp);
1539 void tcp_fastopen_destroy_cipher(struct sock *sk);
1540 void tcp_fastopen_ctx_destroy(struct net *net);
1541 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1542 			      void *key, unsigned int len);
1543 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1544 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1545 			      struct request_sock *req,
1546 			      struct tcp_fastopen_cookie *foc,
1547 			      const struct dst_entry *dst);
1548 void tcp_fastopen_init_key_once(struct net *net);
1549 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1550 			     struct tcp_fastopen_cookie *cookie);
1551 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1552 #define TCP_FASTOPEN_KEY_LENGTH 16
1553 
1554 /* Fastopen key context */
1555 struct tcp_fastopen_context {
1556 	struct crypto_cipher	*tfm;
1557 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1558 	struct rcu_head		rcu;
1559 };
1560 
1561 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1562 void tcp_fastopen_active_disable(struct sock *sk);
1563 bool tcp_fastopen_active_should_disable(struct sock *sk);
1564 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1565 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1566 
1567 /* Latencies incurred by various limits for a sender. They are
1568  * chronograph-like stats that are mutually exclusive.
1569  */
1570 enum tcp_chrono {
1571 	TCP_CHRONO_UNSPEC,
1572 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1573 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1574 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1575 	__TCP_CHRONO_MAX,
1576 };
1577 
1578 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1579 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1580 
1581 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1582  * the same memory storage than skb->destructor/_skb_refdst
1583  */
1584 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1585 {
1586 	skb->destructor = NULL;
1587 	skb->_skb_refdst = 0UL;
1588 }
1589 
1590 #define tcp_skb_tsorted_save(skb) {		\
1591 	unsigned long _save = skb->_skb_refdst;	\
1592 	skb->_skb_refdst = 0UL;
1593 
1594 #define tcp_skb_tsorted_restore(skb)		\
1595 	skb->_skb_refdst = _save;		\
1596 }
1597 
1598 void tcp_write_queue_purge(struct sock *sk);
1599 
1600 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1601 {
1602 	return skb_rb_first(&sk->tcp_rtx_queue);
1603 }
1604 
1605 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1606 {
1607 	return skb_peek(&sk->sk_write_queue);
1608 }
1609 
1610 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1611 {
1612 	return skb_peek_tail(&sk->sk_write_queue);
1613 }
1614 
1615 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1616 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1617 
1618 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1619 {
1620 	return skb_peek(&sk->sk_write_queue);
1621 }
1622 
1623 static inline bool tcp_skb_is_last(const struct sock *sk,
1624 				   const struct sk_buff *skb)
1625 {
1626 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1627 }
1628 
1629 static inline bool tcp_write_queue_empty(const struct sock *sk)
1630 {
1631 	return skb_queue_empty(&sk->sk_write_queue);
1632 }
1633 
1634 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1635 {
1636 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1637 }
1638 
1639 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1640 {
1641 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1642 }
1643 
1644 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1645 {
1646 	if (tcp_write_queue_empty(sk))
1647 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1648 }
1649 
1650 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1651 {
1652 	__skb_queue_tail(&sk->sk_write_queue, skb);
1653 }
1654 
1655 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1656 {
1657 	__tcp_add_write_queue_tail(sk, skb);
1658 
1659 	/* Queue it, remembering where we must start sending. */
1660 	if (sk->sk_write_queue.next == skb)
1661 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1662 }
1663 
1664 /* Insert new before skb on the write queue of sk.  */
1665 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1666 						  struct sk_buff *skb,
1667 						  struct sock *sk)
1668 {
1669 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1670 }
1671 
1672 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1673 {
1674 	tcp_skb_tsorted_anchor_cleanup(skb);
1675 	__skb_unlink(skb, &sk->sk_write_queue);
1676 }
1677 
1678 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1679 
1680 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1681 {
1682 	tcp_skb_tsorted_anchor_cleanup(skb);
1683 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1684 }
1685 
1686 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1687 {
1688 	list_del(&skb->tcp_tsorted_anchor);
1689 	tcp_rtx_queue_unlink(skb, sk);
1690 	sk_wmem_free_skb(sk, skb);
1691 }
1692 
1693 static inline void tcp_push_pending_frames(struct sock *sk)
1694 {
1695 	if (tcp_send_head(sk)) {
1696 		struct tcp_sock *tp = tcp_sk(sk);
1697 
1698 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1699 	}
1700 }
1701 
1702 /* Start sequence of the skb just after the highest skb with SACKed
1703  * bit, valid only if sacked_out > 0 or when the caller has ensured
1704  * validity by itself.
1705  */
1706 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1707 {
1708 	if (!tp->sacked_out)
1709 		return tp->snd_una;
1710 
1711 	if (tp->highest_sack == NULL)
1712 		return tp->snd_nxt;
1713 
1714 	return TCP_SKB_CB(tp->highest_sack)->seq;
1715 }
1716 
1717 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1718 {
1719 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1720 }
1721 
1722 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1723 {
1724 	return tcp_sk(sk)->highest_sack;
1725 }
1726 
1727 static inline void tcp_highest_sack_reset(struct sock *sk)
1728 {
1729 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1730 }
1731 
1732 /* Called when old skb is about to be deleted and replaced by new skb */
1733 static inline void tcp_highest_sack_replace(struct sock *sk,
1734 					    struct sk_buff *old,
1735 					    struct sk_buff *new)
1736 {
1737 	if (old == tcp_highest_sack(sk))
1738 		tcp_sk(sk)->highest_sack = new;
1739 }
1740 
1741 /* This helper checks if socket has IP_TRANSPARENT set */
1742 static inline bool inet_sk_transparent(const struct sock *sk)
1743 {
1744 	switch (sk->sk_state) {
1745 	case TCP_TIME_WAIT:
1746 		return inet_twsk(sk)->tw_transparent;
1747 	case TCP_NEW_SYN_RECV:
1748 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1749 	}
1750 	return inet_sk(sk)->transparent;
1751 }
1752 
1753 /* Determines whether this is a thin stream (which may suffer from
1754  * increased latency). Used to trigger latency-reducing mechanisms.
1755  */
1756 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1757 {
1758 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1759 }
1760 
1761 /* /proc */
1762 enum tcp_seq_states {
1763 	TCP_SEQ_STATE_LISTENING,
1764 	TCP_SEQ_STATE_ESTABLISHED,
1765 };
1766 
1767 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1768 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1769 void tcp_seq_stop(struct seq_file *seq, void *v);
1770 
1771 struct tcp_seq_afinfo {
1772 	sa_family_t			family;
1773 };
1774 
1775 struct tcp_iter_state {
1776 	struct seq_net_private	p;
1777 	enum tcp_seq_states	state;
1778 	struct sock		*syn_wait_sk;
1779 	int			bucket, offset, sbucket, num;
1780 	loff_t			last_pos;
1781 };
1782 
1783 extern struct request_sock_ops tcp_request_sock_ops;
1784 extern struct request_sock_ops tcp6_request_sock_ops;
1785 
1786 void tcp_v4_destroy_sock(struct sock *sk);
1787 
1788 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1789 				netdev_features_t features);
1790 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1791 int tcp_gro_complete(struct sk_buff *skb);
1792 
1793 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1794 
1795 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1796 {
1797 	struct net *net = sock_net((struct sock *)tp);
1798 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1799 }
1800 
1801 static inline bool tcp_stream_memory_free(const struct sock *sk)
1802 {
1803 	const struct tcp_sock *tp = tcp_sk(sk);
1804 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1805 
1806 	return notsent_bytes < tcp_notsent_lowat(tp);
1807 }
1808 
1809 #ifdef CONFIG_PROC_FS
1810 int tcp4_proc_init(void);
1811 void tcp4_proc_exit(void);
1812 #endif
1813 
1814 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1815 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1816 		     const struct tcp_request_sock_ops *af_ops,
1817 		     struct sock *sk, struct sk_buff *skb);
1818 
1819 /* TCP af-specific functions */
1820 struct tcp_sock_af_ops {
1821 #ifdef CONFIG_TCP_MD5SIG
1822 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1823 						const struct sock *addr_sk);
1824 	int		(*calc_md5_hash)(char *location,
1825 					 const struct tcp_md5sig_key *md5,
1826 					 const struct sock *sk,
1827 					 const struct sk_buff *skb);
1828 	int		(*md5_parse)(struct sock *sk,
1829 				     int optname,
1830 				     char __user *optval,
1831 				     int optlen);
1832 #endif
1833 };
1834 
1835 struct tcp_request_sock_ops {
1836 	u16 mss_clamp;
1837 #ifdef CONFIG_TCP_MD5SIG
1838 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1839 						 const struct sock *addr_sk);
1840 	int		(*calc_md5_hash) (char *location,
1841 					  const struct tcp_md5sig_key *md5,
1842 					  const struct sock *sk,
1843 					  const struct sk_buff *skb);
1844 #endif
1845 	void (*init_req)(struct request_sock *req,
1846 			 const struct sock *sk_listener,
1847 			 struct sk_buff *skb);
1848 #ifdef CONFIG_SYN_COOKIES
1849 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1850 				 __u16 *mss);
1851 #endif
1852 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1853 				       const struct request_sock *req);
1854 	u32 (*init_seq)(const struct sk_buff *skb);
1855 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1856 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1857 			   struct flowi *fl, struct request_sock *req,
1858 			   struct tcp_fastopen_cookie *foc,
1859 			   enum tcp_synack_type synack_type);
1860 };
1861 
1862 #ifdef CONFIG_SYN_COOKIES
1863 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1864 					 const struct sock *sk, struct sk_buff *skb,
1865 					 __u16 *mss)
1866 {
1867 	tcp_synq_overflow(sk);
1868 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1869 	return ops->cookie_init_seq(skb, mss);
1870 }
1871 #else
1872 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1873 					 const struct sock *sk, struct sk_buff *skb,
1874 					 __u16 *mss)
1875 {
1876 	return 0;
1877 }
1878 #endif
1879 
1880 int tcpv4_offload_init(void);
1881 
1882 void tcp_v4_init(void);
1883 void tcp_init(void);
1884 
1885 /* tcp_recovery.c */
1886 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1887 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1888 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1889 				u32 reo_wnd);
1890 extern void tcp_rack_mark_lost(struct sock *sk);
1891 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1892 			     u64 xmit_time);
1893 extern void tcp_rack_reo_timeout(struct sock *sk);
1894 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1895 
1896 /* At how many usecs into the future should the RTO fire? */
1897 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1898 {
1899 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1900 	u32 rto = inet_csk(sk)->icsk_rto;
1901 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1902 
1903 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1904 }
1905 
1906 /*
1907  * Save and compile IPv4 options, return a pointer to it
1908  */
1909 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1910 							 struct sk_buff *skb)
1911 {
1912 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1913 	struct ip_options_rcu *dopt = NULL;
1914 
1915 	if (opt->optlen) {
1916 		int opt_size = sizeof(*dopt) + opt->optlen;
1917 
1918 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1919 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1920 			kfree(dopt);
1921 			dopt = NULL;
1922 		}
1923 	}
1924 	return dopt;
1925 }
1926 
1927 /* locally generated TCP pure ACKs have skb->truesize == 2
1928  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1929  * This is much faster than dissecting the packet to find out.
1930  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1931  */
1932 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1933 {
1934 	return skb->truesize == 2;
1935 }
1936 
1937 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1938 {
1939 	skb->truesize = 2;
1940 }
1941 
1942 static inline int tcp_inq(struct sock *sk)
1943 {
1944 	struct tcp_sock *tp = tcp_sk(sk);
1945 	int answ;
1946 
1947 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1948 		answ = 0;
1949 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1950 		   !tp->urg_data ||
1951 		   before(tp->urg_seq, tp->copied_seq) ||
1952 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1953 
1954 		answ = tp->rcv_nxt - tp->copied_seq;
1955 
1956 		/* Subtract 1, if FIN was received */
1957 		if (answ && sock_flag(sk, SOCK_DONE))
1958 			answ--;
1959 	} else {
1960 		answ = tp->urg_seq - tp->copied_seq;
1961 	}
1962 
1963 	return answ;
1964 }
1965 
1966 int tcp_peek_len(struct socket *sock);
1967 
1968 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1969 {
1970 	u16 segs_in;
1971 
1972 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1973 	tp->segs_in += segs_in;
1974 	if (skb->len > tcp_hdrlen(skb))
1975 		tp->data_segs_in += segs_in;
1976 }
1977 
1978 /*
1979  * TCP listen path runs lockless.
1980  * We forced "struct sock" to be const qualified to make sure
1981  * we don't modify one of its field by mistake.
1982  * Here, we increment sk_drops which is an atomic_t, so we can safely
1983  * make sock writable again.
1984  */
1985 static inline void tcp_listendrop(const struct sock *sk)
1986 {
1987 	atomic_inc(&((struct sock *)sk)->sk_drops);
1988 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1989 }
1990 
1991 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1992 
1993 /*
1994  * Interface for adding Upper Level Protocols over TCP
1995  */
1996 
1997 #define TCP_ULP_NAME_MAX	16
1998 #define TCP_ULP_MAX		128
1999 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2000 
2001 enum {
2002 	TCP_ULP_TLS,
2003 	TCP_ULP_BPF,
2004 };
2005 
2006 struct tcp_ulp_ops {
2007 	struct list_head	list;
2008 
2009 	/* initialize ulp */
2010 	int (*init)(struct sock *sk);
2011 	/* cleanup ulp */
2012 	void (*release)(struct sock *sk);
2013 
2014 	int		uid;
2015 	char		name[TCP_ULP_NAME_MAX];
2016 	bool		user_visible;
2017 	struct module	*owner;
2018 };
2019 int tcp_register_ulp(struct tcp_ulp_ops *type);
2020 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2021 int tcp_set_ulp(struct sock *sk, const char *name);
2022 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2023 void tcp_get_available_ulp(char *buf, size_t len);
2024 void tcp_cleanup_ulp(struct sock *sk);
2025 
2026 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2027  * is < 0, then the BPF op failed (for example if the loaded BPF
2028  * program does not support the chosen operation or there is no BPF
2029  * program loaded).
2030  */
2031 #ifdef CONFIG_BPF
2032 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2033 {
2034 	struct bpf_sock_ops_kern sock_ops;
2035 	int ret;
2036 
2037 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2038 	if (sk_fullsock(sk)) {
2039 		sock_ops.is_fullsock = 1;
2040 		sock_owned_by_me(sk);
2041 	}
2042 
2043 	sock_ops.sk = sk;
2044 	sock_ops.op = op;
2045 	if (nargs > 0)
2046 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2047 
2048 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2049 	if (ret == 0)
2050 		ret = sock_ops.reply;
2051 	else
2052 		ret = -1;
2053 	return ret;
2054 }
2055 
2056 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2057 {
2058 	u32 args[2] = {arg1, arg2};
2059 
2060 	return tcp_call_bpf(sk, op, 2, args);
2061 }
2062 
2063 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2064 				    u32 arg3)
2065 {
2066 	u32 args[3] = {arg1, arg2, arg3};
2067 
2068 	return tcp_call_bpf(sk, op, 3, args);
2069 }
2070 
2071 #else
2072 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2073 {
2074 	return -EPERM;
2075 }
2076 
2077 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2078 {
2079 	return -EPERM;
2080 }
2081 
2082 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2083 				    u32 arg3)
2084 {
2085 	return -EPERM;
2086 }
2087 
2088 #endif
2089 
2090 static inline u32 tcp_timeout_init(struct sock *sk)
2091 {
2092 	int timeout;
2093 
2094 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2095 
2096 	if (timeout <= 0)
2097 		timeout = TCP_TIMEOUT_INIT;
2098 	return timeout;
2099 }
2100 
2101 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2102 {
2103 	int rwnd;
2104 
2105 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2106 
2107 	if (rwnd < 0)
2108 		rwnd = 0;
2109 	return rwnd;
2110 }
2111 
2112 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2113 {
2114 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2115 }
2116 
2117 #if IS_ENABLED(CONFIG_SMC)
2118 extern struct static_key_false tcp_have_smc;
2119 #endif
2120 
2121 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2122 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2123 			     void (*cad)(struct sock *sk, u32 ack_seq));
2124 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2125 
2126 #endif
2127 
2128 #endif	/* _TCP_H */
2129