xref: /linux/include/net/tcp.h (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/slab.h>
26 #include <linux/cache.h>
27 #include <linux/percpu.h>
28 #include <linux/skbuff.h>
29 #include <linux/dmaengine.h>
30 #include <linux/crypto.h>
31 #include <linux/cryptohash.h>
32 #include <linux/kref.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 
57 /*
58  * Never offer a window over 32767 without using window scaling. Some
59  * poor stacks do signed 16bit maths!
60  */
61 #define MAX_TCP_WINDOW		32767U
62 
63 /* Offer an initial receive window of 10 mss. */
64 #define TCP_DEFAULT_INIT_RCVWND	10
65 
66 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
67 #define TCP_MIN_MSS		88U
68 
69 /* The least MTU to use for probing */
70 #define TCP_BASE_MSS		512
71 
72 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
73 #define TCP_FASTRETRANS_THRESH 3
74 
75 /* Maximal reordering. */
76 #define TCP_MAX_REORDERING	127
77 
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS	16U
80 
81 /* urg_data states */
82 #define TCP_URG_VALID	0x0100
83 #define TCP_URG_NOTYET	0x0200
84 #define TCP_URG_READ	0x0400
85 
86 #define TCP_RETR1	3	/*
87 				 * This is how many retries it does before it
88 				 * tries to figure out if the gateway is
89 				 * down. Minimal RFC value is 3; it corresponds
90 				 * to ~3sec-8min depending on RTO.
91 				 */
92 
93 #define TCP_RETR2	15	/*
94 				 * This should take at least
95 				 * 90 minutes to time out.
96 				 * RFC1122 says that the limit is 100 sec.
97 				 * 15 is ~13-30min depending on RTO.
98 				 */
99 
100 #define TCP_SYN_RETRIES	 5	/* number of times to retry active opening a
101 				 * connection: ~180sec is RFC minimum	*/
102 
103 #define TCP_SYNACK_RETRIES 5	/* number of times to retry passive opening a
104 				 * connection: ~180sec is RFC minimum	*/
105 
106 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
107 				  * state, about 60 seconds	*/
108 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
109                                  /* BSD style FIN_WAIT2 deadlock breaker.
110 				  * It used to be 3min, new value is 60sec,
111 				  * to combine FIN-WAIT-2 timeout with
112 				  * TIME-WAIT timer.
113 				  */
114 
115 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
116 #if HZ >= 100
117 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
118 #define TCP_ATO_MIN	((unsigned)(HZ/25))
119 #else
120 #define TCP_DELACK_MIN	4U
121 #define TCP_ATO_MIN	4U
122 #endif
123 #define TCP_RTO_MAX	((unsigned)(120*HZ))
124 #define TCP_RTO_MIN	((unsigned)(HZ/5))
125 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC2988bis initial RTO value	*/
126 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
127 						 * used as a fallback RTO for the
128 						 * initial data transmission if no
129 						 * valid RTT sample has been acquired,
130 						 * most likely due to retrans in 3WHS.
131 						 */
132 
133 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
134 					                 * for local resources.
135 					                 */
136 
137 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
138 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
139 #define TCP_KEEPALIVE_INTVL	(75*HZ)
140 
141 #define MAX_TCP_KEEPIDLE	32767
142 #define MAX_TCP_KEEPINTVL	32767
143 #define MAX_TCP_KEEPCNT		127
144 #define MAX_TCP_SYNCNT		127
145 
146 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
147 
148 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
149 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
150 					 * after this time. It should be equal
151 					 * (or greater than) TCP_TIMEWAIT_LEN
152 					 * to provide reliability equal to one
153 					 * provided by timewait state.
154 					 */
155 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
156 					 * timestamps. It must be less than
157 					 * minimal timewait lifetime.
158 					 */
159 /*
160  *	TCP option
161  */
162 
163 #define TCPOPT_NOP		1	/* Padding */
164 #define TCPOPT_EOL		0	/* End of options */
165 #define TCPOPT_MSS		2	/* Segment size negotiating */
166 #define TCPOPT_WINDOW		3	/* Window scaling */
167 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
168 #define TCPOPT_SACK             5       /* SACK Block */
169 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
170 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
171 #define TCPOPT_COOKIE		253	/* Cookie extension (experimental) */
172 
173 /*
174  *     TCP option lengths
175  */
176 
177 #define TCPOLEN_MSS            4
178 #define TCPOLEN_WINDOW         3
179 #define TCPOLEN_SACK_PERM      2
180 #define TCPOLEN_TIMESTAMP      10
181 #define TCPOLEN_MD5SIG         18
182 #define TCPOLEN_COOKIE_BASE    2	/* Cookie-less header extension */
183 #define TCPOLEN_COOKIE_PAIR    3	/* Cookie pair header extension */
184 #define TCPOLEN_COOKIE_MIN     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
185 #define TCPOLEN_COOKIE_MAX     (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
186 
187 /* But this is what stacks really send out. */
188 #define TCPOLEN_TSTAMP_ALIGNED		12
189 #define TCPOLEN_WSCALE_ALIGNED		4
190 #define TCPOLEN_SACKPERM_ALIGNED	4
191 #define TCPOLEN_SACK_BASE		2
192 #define TCPOLEN_SACK_BASE_ALIGNED	4
193 #define TCPOLEN_SACK_PERBLOCK		8
194 #define TCPOLEN_MD5SIG_ALIGNED		20
195 #define TCPOLEN_MSS_ALIGNED		4
196 
197 /* Flags in tp->nonagle */
198 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
199 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
200 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
201 
202 /* TCP thin-stream limits */
203 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
204 
205 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
206 #define TCP_INIT_CWND		10
207 
208 extern struct inet_timewait_death_row tcp_death_row;
209 
210 /* sysctl variables for tcp */
211 extern int sysctl_tcp_timestamps;
212 extern int sysctl_tcp_window_scaling;
213 extern int sysctl_tcp_sack;
214 extern int sysctl_tcp_fin_timeout;
215 extern int sysctl_tcp_keepalive_time;
216 extern int sysctl_tcp_keepalive_probes;
217 extern int sysctl_tcp_keepalive_intvl;
218 extern int sysctl_tcp_syn_retries;
219 extern int sysctl_tcp_synack_retries;
220 extern int sysctl_tcp_retries1;
221 extern int sysctl_tcp_retries2;
222 extern int sysctl_tcp_orphan_retries;
223 extern int sysctl_tcp_syncookies;
224 extern int sysctl_tcp_retrans_collapse;
225 extern int sysctl_tcp_stdurg;
226 extern int sysctl_tcp_rfc1337;
227 extern int sysctl_tcp_abort_on_overflow;
228 extern int sysctl_tcp_max_orphans;
229 extern int sysctl_tcp_fack;
230 extern int sysctl_tcp_reordering;
231 extern int sysctl_tcp_ecn;
232 extern int sysctl_tcp_dsack;
233 extern int sysctl_tcp_wmem[3];
234 extern int sysctl_tcp_rmem[3];
235 extern int sysctl_tcp_app_win;
236 extern int sysctl_tcp_adv_win_scale;
237 extern int sysctl_tcp_tw_reuse;
238 extern int sysctl_tcp_frto;
239 extern int sysctl_tcp_frto_response;
240 extern int sysctl_tcp_low_latency;
241 extern int sysctl_tcp_dma_copybreak;
242 extern int sysctl_tcp_nometrics_save;
243 extern int sysctl_tcp_moderate_rcvbuf;
244 extern int sysctl_tcp_tso_win_divisor;
245 extern int sysctl_tcp_abc;
246 extern int sysctl_tcp_mtu_probing;
247 extern int sysctl_tcp_base_mss;
248 extern int sysctl_tcp_workaround_signed_windows;
249 extern int sysctl_tcp_slow_start_after_idle;
250 extern int sysctl_tcp_max_ssthresh;
251 extern int sysctl_tcp_cookie_size;
252 extern int sysctl_tcp_thin_linear_timeouts;
253 extern int sysctl_tcp_thin_dupack;
254 
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern int tcp_memory_pressure;
258 
259 /*
260  * The next routines deal with comparing 32 bit unsigned ints
261  * and worry about wraparound (automatic with unsigned arithmetic).
262  */
263 
264 static inline int before(__u32 seq1, __u32 seq2)
265 {
266         return (__s32)(seq1-seq2) < 0;
267 }
268 #define after(seq2, seq1) 	before(seq1, seq2)
269 
270 /* is s2<=s1<=s3 ? */
271 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
272 {
273 	return seq3 - seq2 >= seq1 - seq2;
274 }
275 
276 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
277 {
278 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
279 	int orphans = percpu_counter_read_positive(ocp);
280 
281 	if (orphans << shift > sysctl_tcp_max_orphans) {
282 		orphans = percpu_counter_sum_positive(ocp);
283 		if (orphans << shift > sysctl_tcp_max_orphans)
284 			return true;
285 	}
286 
287 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 		return true;
290 	return false;
291 }
292 
293 /* syncookies: remember time of last synqueue overflow */
294 static inline void tcp_synq_overflow(struct sock *sk)
295 {
296 	tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
297 }
298 
299 /* syncookies: no recent synqueue overflow on this listening socket? */
300 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
301 {
302 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
303 	return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
304 }
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_INC_STATS_BH(net, field)	SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
312 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
313 
314 extern void tcp_v4_err(struct sk_buff *skb, u32);
315 
316 extern void tcp_shutdown (struct sock *sk, int how);
317 
318 extern int tcp_v4_rcv(struct sk_buff *skb);
319 
320 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
321 extern void *tcp_v4_tw_get_peer(struct sock *sk);
322 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
324 		       size_t size);
325 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
326 			size_t size, int flags);
327 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
328 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
329 				 const struct tcphdr *th, unsigned int len);
330 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
331 			       const struct tcphdr *th, unsigned int len);
332 extern void tcp_rcv_space_adjust(struct sock *sk);
333 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
334 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
335 extern void tcp_twsk_destructor(struct sock *sk);
336 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
337 			       struct pipe_inode_info *pipe, size_t len,
338 			       unsigned int flags);
339 
340 static inline void tcp_dec_quickack_mode(struct sock *sk,
341 					 const unsigned int pkts)
342 {
343 	struct inet_connection_sock *icsk = inet_csk(sk);
344 
345 	if (icsk->icsk_ack.quick) {
346 		if (pkts >= icsk->icsk_ack.quick) {
347 			icsk->icsk_ack.quick = 0;
348 			/* Leaving quickack mode we deflate ATO. */
349 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
350 		} else
351 			icsk->icsk_ack.quick -= pkts;
352 	}
353 }
354 
355 #define	TCP_ECN_OK		1
356 #define	TCP_ECN_QUEUE_CWR	2
357 #define	TCP_ECN_DEMAND_CWR	4
358 #define	TCP_ECN_SEEN		8
359 
360 static __inline__ void
361 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
362 {
363 	if (sysctl_tcp_ecn && th->ece && th->cwr)
364 		inet_rsk(req)->ecn_ok = 1;
365 }
366 
367 enum tcp_tw_status {
368 	TCP_TW_SUCCESS = 0,
369 	TCP_TW_RST = 1,
370 	TCP_TW_ACK = 2,
371 	TCP_TW_SYN = 3
372 };
373 
374 
375 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376 						     struct sk_buff *skb,
377 						     const struct tcphdr *th);
378 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
379 				   struct request_sock *req,
380 				   struct request_sock **prev);
381 extern int tcp_child_process(struct sock *parent, struct sock *child,
382 			     struct sk_buff *skb);
383 extern int tcp_use_frto(struct sock *sk);
384 extern void tcp_enter_frto(struct sock *sk);
385 extern void tcp_enter_loss(struct sock *sk, int how);
386 extern void tcp_clear_retrans(struct tcp_sock *tp);
387 extern void tcp_update_metrics(struct sock *sk);
388 extern void tcp_close(struct sock *sk, long timeout);
389 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
390 			     struct poll_table_struct *wait);
391 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
392 			  char __user *optval, int __user *optlen);
393 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
394 			  char __user *optval, unsigned int optlen);
395 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
396 				 char __user *optval, int __user *optlen);
397 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
398 				 char __user *optval, unsigned int optlen);
399 extern void tcp_set_keepalive(struct sock *sk, int val);
400 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
401 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
402 		       size_t len, int nonblock, int flags, int *addr_len);
403 extern void tcp_parse_options(const struct sk_buff *skb,
404 			      struct tcp_options_received *opt_rx, const u8 **hvpp,
405 			      int estab);
406 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
407 
408 /*
409  *	TCP v4 functions exported for the inet6 API
410  */
411 
412 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
413 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
414 extern struct sock * tcp_create_openreq_child(struct sock *sk,
415 					      struct request_sock *req,
416 					      struct sk_buff *skb);
417 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
418 					  struct request_sock *req,
419 					  struct dst_entry *dst);
420 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
421 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
422 			  int addr_len);
423 extern int tcp_connect(struct sock *sk);
424 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
425 					struct request_sock *req,
426 					struct request_values *rvp);
427 extern int tcp_disconnect(struct sock *sk, int flags);
428 
429 
430 /* From syncookies.c */
431 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
432 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
433 				    struct ip_options *opt);
434 #ifdef CONFIG_SYN_COOKIES
435 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
436 				     __u16 *mss);
437 #else
438 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
439 					    struct sk_buff *skb,
440 					    __u16 *mss)
441 {
442 	return 0;
443 }
444 #endif
445 
446 extern __u32 cookie_init_timestamp(struct request_sock *req);
447 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
448 
449 /* From net/ipv6/syncookies.c */
450 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
451 #ifdef CONFIG_SYN_COOKIES
452 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
453 				     __u16 *mss);
454 #else
455 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
456 					    struct sk_buff *skb,
457 					    __u16 *mss)
458 {
459 	return 0;
460 }
461 #endif
462 /* tcp_output.c */
463 
464 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
465 				      int nonagle);
466 extern int tcp_may_send_now(struct sock *sk);
467 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
468 extern void tcp_retransmit_timer(struct sock *sk);
469 extern void tcp_xmit_retransmit_queue(struct sock *);
470 extern void tcp_simple_retransmit(struct sock *);
471 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
472 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
473 
474 extern void tcp_send_probe0(struct sock *);
475 extern void tcp_send_partial(struct sock *);
476 extern int tcp_write_wakeup(struct sock *);
477 extern void tcp_send_fin(struct sock *sk);
478 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
479 extern int tcp_send_synack(struct sock *);
480 extern int tcp_syn_flood_action(struct sock *sk,
481 				const struct sk_buff *skb,
482 				const char *proto);
483 extern void tcp_push_one(struct sock *, unsigned int mss_now);
484 extern void tcp_send_ack(struct sock *sk);
485 extern void tcp_send_delayed_ack(struct sock *sk);
486 
487 /* tcp_input.c */
488 extern void tcp_cwnd_application_limited(struct sock *sk);
489 
490 /* tcp_timer.c */
491 extern void tcp_init_xmit_timers(struct sock *);
492 static inline void tcp_clear_xmit_timers(struct sock *sk)
493 {
494 	inet_csk_clear_xmit_timers(sk);
495 }
496 
497 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
498 extern unsigned int tcp_current_mss(struct sock *sk);
499 
500 /* Bound MSS / TSO packet size with the half of the window */
501 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
502 {
503 	int cutoff;
504 
505 	/* When peer uses tiny windows, there is no use in packetizing
506 	 * to sub-MSS pieces for the sake of SWS or making sure there
507 	 * are enough packets in the pipe for fast recovery.
508 	 *
509 	 * On the other hand, for extremely large MSS devices, handling
510 	 * smaller than MSS windows in this way does make sense.
511 	 */
512 	if (tp->max_window >= 512)
513 		cutoff = (tp->max_window >> 1);
514 	else
515 		cutoff = tp->max_window;
516 
517 	if (cutoff && pktsize > cutoff)
518 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
519 	else
520 		return pktsize;
521 }
522 
523 /* tcp.c */
524 extern void tcp_get_info(const struct sock *, struct tcp_info *);
525 
526 /* Read 'sendfile()'-style from a TCP socket */
527 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
528 				unsigned int, size_t);
529 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
530 			 sk_read_actor_t recv_actor);
531 
532 extern void tcp_initialize_rcv_mss(struct sock *sk);
533 
534 extern int tcp_mtu_to_mss(const struct sock *sk, int pmtu);
535 extern int tcp_mss_to_mtu(const struct sock *sk, int mss);
536 extern void tcp_mtup_init(struct sock *sk);
537 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
538 
539 static inline void tcp_bound_rto(const struct sock *sk)
540 {
541 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
542 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
543 }
544 
545 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
546 {
547 	return (tp->srtt >> 3) + tp->rttvar;
548 }
549 
550 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
551 {
552 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
553 			       ntohl(TCP_FLAG_ACK) |
554 			       snd_wnd);
555 }
556 
557 static inline void tcp_fast_path_on(struct tcp_sock *tp)
558 {
559 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
560 }
561 
562 static inline void tcp_fast_path_check(struct sock *sk)
563 {
564 	struct tcp_sock *tp = tcp_sk(sk);
565 
566 	if (skb_queue_empty(&tp->out_of_order_queue) &&
567 	    tp->rcv_wnd &&
568 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
569 	    !tp->urg_data)
570 		tcp_fast_path_on(tp);
571 }
572 
573 /* Compute the actual rto_min value */
574 static inline u32 tcp_rto_min(struct sock *sk)
575 {
576 	const struct dst_entry *dst = __sk_dst_get(sk);
577 	u32 rto_min = TCP_RTO_MIN;
578 
579 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
580 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
581 	return rto_min;
582 }
583 
584 /* Compute the actual receive window we are currently advertising.
585  * Rcv_nxt can be after the window if our peer push more data
586  * than the offered window.
587  */
588 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
589 {
590 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
591 
592 	if (win < 0)
593 		win = 0;
594 	return (u32) win;
595 }
596 
597 /* Choose a new window, without checks for shrinking, and without
598  * scaling applied to the result.  The caller does these things
599  * if necessary.  This is a "raw" window selection.
600  */
601 extern u32 __tcp_select_window(struct sock *sk);
602 
603 /* TCP timestamps are only 32-bits, this causes a slight
604  * complication on 64-bit systems since we store a snapshot
605  * of jiffies in the buffer control blocks below.  We decided
606  * to use only the low 32-bits of jiffies and hide the ugly
607  * casts with the following macro.
608  */
609 #define tcp_time_stamp		((__u32)(jiffies))
610 
611 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
612 
613 #define TCPHDR_FIN 0x01
614 #define TCPHDR_SYN 0x02
615 #define TCPHDR_RST 0x04
616 #define TCPHDR_PSH 0x08
617 #define TCPHDR_ACK 0x10
618 #define TCPHDR_URG 0x20
619 #define TCPHDR_ECE 0x40
620 #define TCPHDR_CWR 0x80
621 
622 /* This is what the send packet queuing engine uses to pass
623  * TCP per-packet control information to the transmission code.
624  * We also store the host-order sequence numbers in here too.
625  * This is 44 bytes if IPV6 is enabled.
626  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
627  */
628 struct tcp_skb_cb {
629 	union {
630 		struct inet_skb_parm	h4;
631 #if IS_ENABLED(CONFIG_IPV6)
632 		struct inet6_skb_parm	h6;
633 #endif
634 	} header;	/* For incoming frames		*/
635 	__u32		seq;		/* Starting sequence number	*/
636 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
637 	__u32		when;		/* used to compute rtt's	*/
638 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
639 	__u8		sacked;		/* State flags for SACK/FACK.	*/
640 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
641 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
642 #define TCPCB_LOST		0x04	/* SKB is lost			*/
643 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
644 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
645 	/* 1 byte hole */
646 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
647 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
648 
649 	__u32		ack_seq;	/* Sequence number ACK'd	*/
650 };
651 
652 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
653 
654 /* Due to TSO, an SKB can be composed of multiple actual
655  * packets.  To keep these tracked properly, we use this.
656  */
657 static inline int tcp_skb_pcount(const struct sk_buff *skb)
658 {
659 	return skb_shinfo(skb)->gso_segs;
660 }
661 
662 /* This is valid iff tcp_skb_pcount() > 1. */
663 static inline int tcp_skb_mss(const struct sk_buff *skb)
664 {
665 	return skb_shinfo(skb)->gso_size;
666 }
667 
668 /* Events passed to congestion control interface */
669 enum tcp_ca_event {
670 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
671 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
672 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
673 	CA_EVENT_FRTO,		/* fast recovery timeout */
674 	CA_EVENT_LOSS,		/* loss timeout */
675 	CA_EVENT_FAST_ACK,	/* in sequence ack */
676 	CA_EVENT_SLOW_ACK,	/* other ack */
677 };
678 
679 /*
680  * Interface for adding new TCP congestion control handlers
681  */
682 #define TCP_CA_NAME_MAX	16
683 #define TCP_CA_MAX	128
684 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
685 
686 #define TCP_CONG_NON_RESTRICTED 0x1
687 #define TCP_CONG_RTT_STAMP	0x2
688 
689 struct tcp_congestion_ops {
690 	struct list_head	list;
691 	unsigned long flags;
692 
693 	/* initialize private data (optional) */
694 	void (*init)(struct sock *sk);
695 	/* cleanup private data  (optional) */
696 	void (*release)(struct sock *sk);
697 
698 	/* return slow start threshold (required) */
699 	u32 (*ssthresh)(struct sock *sk);
700 	/* lower bound for congestion window (optional) */
701 	u32 (*min_cwnd)(const struct sock *sk);
702 	/* do new cwnd calculation (required) */
703 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
704 	/* call before changing ca_state (optional) */
705 	void (*set_state)(struct sock *sk, u8 new_state);
706 	/* call when cwnd event occurs (optional) */
707 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
708 	/* new value of cwnd after loss (optional) */
709 	u32  (*undo_cwnd)(struct sock *sk);
710 	/* hook for packet ack accounting (optional) */
711 	void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
712 	/* get info for inet_diag (optional) */
713 	void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
714 
715 	char 		name[TCP_CA_NAME_MAX];
716 	struct module 	*owner;
717 };
718 
719 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
720 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
721 
722 extern void tcp_init_congestion_control(struct sock *sk);
723 extern void tcp_cleanup_congestion_control(struct sock *sk);
724 extern int tcp_set_default_congestion_control(const char *name);
725 extern void tcp_get_default_congestion_control(char *name);
726 extern void tcp_get_available_congestion_control(char *buf, size_t len);
727 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
728 extern int tcp_set_allowed_congestion_control(char *allowed);
729 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
730 extern void tcp_slow_start(struct tcp_sock *tp);
731 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
732 
733 extern struct tcp_congestion_ops tcp_init_congestion_ops;
734 extern u32 tcp_reno_ssthresh(struct sock *sk);
735 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
736 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
737 extern struct tcp_congestion_ops tcp_reno;
738 
739 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
740 {
741 	struct inet_connection_sock *icsk = inet_csk(sk);
742 
743 	if (icsk->icsk_ca_ops->set_state)
744 		icsk->icsk_ca_ops->set_state(sk, ca_state);
745 	icsk->icsk_ca_state = ca_state;
746 }
747 
748 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
749 {
750 	const struct inet_connection_sock *icsk = inet_csk(sk);
751 
752 	if (icsk->icsk_ca_ops->cwnd_event)
753 		icsk->icsk_ca_ops->cwnd_event(sk, event);
754 }
755 
756 /* These functions determine how the current flow behaves in respect of SACK
757  * handling. SACK is negotiated with the peer, and therefore it can vary
758  * between different flows.
759  *
760  * tcp_is_sack - SACK enabled
761  * tcp_is_reno - No SACK
762  * tcp_is_fack - FACK enabled, implies SACK enabled
763  */
764 static inline int tcp_is_sack(const struct tcp_sock *tp)
765 {
766 	return tp->rx_opt.sack_ok;
767 }
768 
769 static inline int tcp_is_reno(const struct tcp_sock *tp)
770 {
771 	return !tcp_is_sack(tp);
772 }
773 
774 static inline int tcp_is_fack(const struct tcp_sock *tp)
775 {
776 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
777 }
778 
779 static inline void tcp_enable_fack(struct tcp_sock *tp)
780 {
781 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
782 }
783 
784 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
785 {
786 	return tp->sacked_out + tp->lost_out;
787 }
788 
789 /* This determines how many packets are "in the network" to the best
790  * of our knowledge.  In many cases it is conservative, but where
791  * detailed information is available from the receiver (via SACK
792  * blocks etc.) we can make more aggressive calculations.
793  *
794  * Use this for decisions involving congestion control, use just
795  * tp->packets_out to determine if the send queue is empty or not.
796  *
797  * Read this equation as:
798  *
799  *	"Packets sent once on transmission queue" MINUS
800  *	"Packets left network, but not honestly ACKed yet" PLUS
801  *	"Packets fast retransmitted"
802  */
803 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
804 {
805 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
806 }
807 
808 #define TCP_INFINITE_SSTHRESH	0x7fffffff
809 
810 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
811 {
812 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
813 }
814 
815 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
816  * The exception is rate halving phase, when cwnd is decreasing towards
817  * ssthresh.
818  */
819 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
820 {
821 	const struct tcp_sock *tp = tcp_sk(sk);
822 
823 	if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
824 		return tp->snd_ssthresh;
825 	else
826 		return max(tp->snd_ssthresh,
827 			   ((tp->snd_cwnd >> 1) +
828 			    (tp->snd_cwnd >> 2)));
829 }
830 
831 /* Use define here intentionally to get WARN_ON location shown at the caller */
832 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
833 
834 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
835 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
836 
837 /* The maximum number of MSS of available cwnd for which TSO defers
838  * sending if not using sysctl_tcp_tso_win_divisor.
839  */
840 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
841 {
842 	return 3;
843 }
844 
845 /* Slow start with delack produces 3 packets of burst, so that
846  * it is safe "de facto".  This will be the default - same as
847  * the default reordering threshold - but if reordering increases,
848  * we must be able to allow cwnd to burst at least this much in order
849  * to not pull it back when holes are filled.
850  */
851 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
852 {
853 	return tp->reordering;
854 }
855 
856 /* Returns end sequence number of the receiver's advertised window */
857 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
858 {
859 	return tp->snd_una + tp->snd_wnd;
860 }
861 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
862 
863 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
864 				       const struct sk_buff *skb)
865 {
866 	if (skb->len < mss)
867 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
868 }
869 
870 static inline void tcp_check_probe_timer(struct sock *sk)
871 {
872 	const struct tcp_sock *tp = tcp_sk(sk);
873 	const struct inet_connection_sock *icsk = inet_csk(sk);
874 
875 	if (!tp->packets_out && !icsk->icsk_pending)
876 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
877 					  icsk->icsk_rto, TCP_RTO_MAX);
878 }
879 
880 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
881 {
882 	tp->snd_wl1 = seq;
883 }
884 
885 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
886 {
887 	tp->snd_wl1 = seq;
888 }
889 
890 /*
891  * Calculate(/check) TCP checksum
892  */
893 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
894 				   __be32 daddr, __wsum base)
895 {
896 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
897 }
898 
899 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
900 {
901 	return __skb_checksum_complete(skb);
902 }
903 
904 static inline int tcp_checksum_complete(struct sk_buff *skb)
905 {
906 	return !skb_csum_unnecessary(skb) &&
907 		__tcp_checksum_complete(skb);
908 }
909 
910 /* Prequeue for VJ style copy to user, combined with checksumming. */
911 
912 static inline void tcp_prequeue_init(struct tcp_sock *tp)
913 {
914 	tp->ucopy.task = NULL;
915 	tp->ucopy.len = 0;
916 	tp->ucopy.memory = 0;
917 	skb_queue_head_init(&tp->ucopy.prequeue);
918 #ifdef CONFIG_NET_DMA
919 	tp->ucopy.dma_chan = NULL;
920 	tp->ucopy.wakeup = 0;
921 	tp->ucopy.pinned_list = NULL;
922 	tp->ucopy.dma_cookie = 0;
923 #endif
924 }
925 
926 /* Packet is added to VJ-style prequeue for processing in process
927  * context, if a reader task is waiting. Apparently, this exciting
928  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
929  * failed somewhere. Latency? Burstiness? Well, at least now we will
930  * see, why it failed. 8)8)				  --ANK
931  *
932  * NOTE: is this not too big to inline?
933  */
934 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
935 {
936 	struct tcp_sock *tp = tcp_sk(sk);
937 
938 	if (sysctl_tcp_low_latency || !tp->ucopy.task)
939 		return 0;
940 
941 	__skb_queue_tail(&tp->ucopy.prequeue, skb);
942 	tp->ucopy.memory += skb->truesize;
943 	if (tp->ucopy.memory > sk->sk_rcvbuf) {
944 		struct sk_buff *skb1;
945 
946 		BUG_ON(sock_owned_by_user(sk));
947 
948 		while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
949 			sk_backlog_rcv(sk, skb1);
950 			NET_INC_STATS_BH(sock_net(sk),
951 					 LINUX_MIB_TCPPREQUEUEDROPPED);
952 		}
953 
954 		tp->ucopy.memory = 0;
955 	} else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
956 		wake_up_interruptible_sync_poll(sk_sleep(sk),
957 					   POLLIN | POLLRDNORM | POLLRDBAND);
958 		if (!inet_csk_ack_scheduled(sk))
959 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
960 						  (3 * tcp_rto_min(sk)) / 4,
961 						  TCP_RTO_MAX);
962 	}
963 	return 1;
964 }
965 
966 
967 #undef STATE_TRACE
968 
969 #ifdef STATE_TRACE
970 static const char *statename[]={
971 	"Unused","Established","Syn Sent","Syn Recv",
972 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
973 	"Close Wait","Last ACK","Listen","Closing"
974 };
975 #endif
976 extern void tcp_set_state(struct sock *sk, int state);
977 
978 extern void tcp_done(struct sock *sk);
979 
980 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
981 {
982 	rx_opt->dsack = 0;
983 	rx_opt->num_sacks = 0;
984 }
985 
986 /* Determine a window scaling and initial window to offer. */
987 extern void tcp_select_initial_window(int __space, __u32 mss,
988 				      __u32 *rcv_wnd, __u32 *window_clamp,
989 				      int wscale_ok, __u8 *rcv_wscale,
990 				      __u32 init_rcv_wnd);
991 
992 static inline int tcp_win_from_space(int space)
993 {
994 	return sysctl_tcp_adv_win_scale<=0 ?
995 		(space>>(-sysctl_tcp_adv_win_scale)) :
996 		space - (space>>sysctl_tcp_adv_win_scale);
997 }
998 
999 /* Note: caller must be prepared to deal with negative returns */
1000 static inline int tcp_space(const struct sock *sk)
1001 {
1002 	return tcp_win_from_space(sk->sk_rcvbuf -
1003 				  atomic_read(&sk->sk_rmem_alloc));
1004 }
1005 
1006 static inline int tcp_full_space(const struct sock *sk)
1007 {
1008 	return tcp_win_from_space(sk->sk_rcvbuf);
1009 }
1010 
1011 static inline void tcp_openreq_init(struct request_sock *req,
1012 				    struct tcp_options_received *rx_opt,
1013 				    struct sk_buff *skb)
1014 {
1015 	struct inet_request_sock *ireq = inet_rsk(req);
1016 
1017 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
1018 	req->cookie_ts = 0;
1019 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1020 	req->mss = rx_opt->mss_clamp;
1021 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1022 	ireq->tstamp_ok = rx_opt->tstamp_ok;
1023 	ireq->sack_ok = rx_opt->sack_ok;
1024 	ireq->snd_wscale = rx_opt->snd_wscale;
1025 	ireq->wscale_ok = rx_opt->wscale_ok;
1026 	ireq->acked = 0;
1027 	ireq->ecn_ok = 0;
1028 	ireq->rmt_port = tcp_hdr(skb)->source;
1029 	ireq->loc_port = tcp_hdr(skb)->dest;
1030 }
1031 
1032 extern void tcp_enter_memory_pressure(struct sock *sk);
1033 
1034 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1035 {
1036 	return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1037 }
1038 
1039 static inline int keepalive_time_when(const struct tcp_sock *tp)
1040 {
1041 	return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1042 }
1043 
1044 static inline int keepalive_probes(const struct tcp_sock *tp)
1045 {
1046 	return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1047 }
1048 
1049 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1050 {
1051 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1052 
1053 	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1054 			  tcp_time_stamp - tp->rcv_tstamp);
1055 }
1056 
1057 static inline int tcp_fin_time(const struct sock *sk)
1058 {
1059 	int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1060 	const int rto = inet_csk(sk)->icsk_rto;
1061 
1062 	if (fin_timeout < (rto << 2) - (rto >> 1))
1063 		fin_timeout = (rto << 2) - (rto >> 1);
1064 
1065 	return fin_timeout;
1066 }
1067 
1068 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1069 				 int paws_win)
1070 {
1071 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1072 		return 1;
1073 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1074 		return 1;
1075 	/*
1076 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1077 	 * then following tcp messages have valid values. Ignore 0 value,
1078 	 * or else 'negative' tsval might forbid us to accept their packets.
1079 	 */
1080 	if (!rx_opt->ts_recent)
1081 		return 1;
1082 	return 0;
1083 }
1084 
1085 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1086 				  int rst)
1087 {
1088 	if (tcp_paws_check(rx_opt, 0))
1089 		return 0;
1090 
1091 	/* RST segments are not recommended to carry timestamp,
1092 	   and, if they do, it is recommended to ignore PAWS because
1093 	   "their cleanup function should take precedence over timestamps."
1094 	   Certainly, it is mistake. It is necessary to understand the reasons
1095 	   of this constraint to relax it: if peer reboots, clock may go
1096 	   out-of-sync and half-open connections will not be reset.
1097 	   Actually, the problem would be not existing if all
1098 	   the implementations followed draft about maintaining clock
1099 	   via reboots. Linux-2.2 DOES NOT!
1100 
1101 	   However, we can relax time bounds for RST segments to MSL.
1102 	 */
1103 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1104 		return 0;
1105 	return 1;
1106 }
1107 
1108 static inline void tcp_mib_init(struct net *net)
1109 {
1110 	/* See RFC 2012 */
1111 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1112 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1113 	TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1114 	TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1115 }
1116 
1117 /* from STCP */
1118 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1119 {
1120 	tp->lost_skb_hint = NULL;
1121 	tp->scoreboard_skb_hint = NULL;
1122 }
1123 
1124 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1125 {
1126 	tcp_clear_retrans_hints_partial(tp);
1127 	tp->retransmit_skb_hint = NULL;
1128 }
1129 
1130 /* MD5 Signature */
1131 struct crypto_hash;
1132 
1133 /* - key database */
1134 struct tcp_md5sig_key {
1135 	u8			*key;
1136 	u8			keylen;
1137 };
1138 
1139 struct tcp4_md5sig_key {
1140 	struct tcp_md5sig_key	base;
1141 	__be32			addr;
1142 };
1143 
1144 struct tcp6_md5sig_key {
1145 	struct tcp_md5sig_key	base;
1146 #if 0
1147 	u32			scope_id;	/* XXX */
1148 #endif
1149 	struct in6_addr		addr;
1150 };
1151 
1152 /* - sock block */
1153 struct tcp_md5sig_info {
1154 	struct tcp4_md5sig_key	*keys4;
1155 #if IS_ENABLED(CONFIG_IPV6)
1156 	struct tcp6_md5sig_key	*keys6;
1157 	u32			entries6;
1158 	u32			alloced6;
1159 #endif
1160 	u32			entries4;
1161 	u32			alloced4;
1162 };
1163 
1164 /* - pseudo header */
1165 struct tcp4_pseudohdr {
1166 	__be32		saddr;
1167 	__be32		daddr;
1168 	__u8		pad;
1169 	__u8		protocol;
1170 	__be16		len;
1171 };
1172 
1173 struct tcp6_pseudohdr {
1174 	struct in6_addr	saddr;
1175 	struct in6_addr daddr;
1176 	__be32		len;
1177 	__be32		protocol;	/* including padding */
1178 };
1179 
1180 union tcp_md5sum_block {
1181 	struct tcp4_pseudohdr ip4;
1182 #if IS_ENABLED(CONFIG_IPV6)
1183 	struct tcp6_pseudohdr ip6;
1184 #endif
1185 };
1186 
1187 /* - pool: digest algorithm, hash description and scratch buffer */
1188 struct tcp_md5sig_pool {
1189 	struct hash_desc	md5_desc;
1190 	union tcp_md5sum_block	md5_blk;
1191 };
1192 
1193 /* - functions */
1194 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1195 			       const struct sock *sk,
1196 			       const struct request_sock *req,
1197 			       const struct sk_buff *skb);
1198 extern struct tcp_md5sig_key * tcp_v4_md5_lookup(struct sock *sk,
1199 						 struct sock *addr_sk);
1200 extern int tcp_v4_md5_do_add(struct sock *sk, __be32 addr, u8 *newkey,
1201 			     u8 newkeylen);
1202 extern int tcp_v4_md5_do_del(struct sock *sk, __be32 addr);
1203 
1204 #ifdef CONFIG_TCP_MD5SIG
1205 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_keylen ? 		 \
1206 				 &(struct tcp_md5sig_key) {		 \
1207 					.key = (twsk)->tw_md5_key,	 \
1208 					.keylen = (twsk)->tw_md5_keylen, \
1209 				} : NULL)
1210 #else
1211 #define tcp_twsk_md5_key(twsk)	NULL
1212 #endif
1213 
1214 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1215 extern void tcp_free_md5sig_pool(void);
1216 
1217 extern struct tcp_md5sig_pool	*tcp_get_md5sig_pool(void);
1218 extern void tcp_put_md5sig_pool(void);
1219 
1220 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1221 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1222 				 unsigned header_len);
1223 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1224 			    const struct tcp_md5sig_key *key);
1225 
1226 /* write queue abstraction */
1227 static inline void tcp_write_queue_purge(struct sock *sk)
1228 {
1229 	struct sk_buff *skb;
1230 
1231 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1232 		sk_wmem_free_skb(sk, skb);
1233 	sk_mem_reclaim(sk);
1234 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1235 }
1236 
1237 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1238 {
1239 	return skb_peek(&sk->sk_write_queue);
1240 }
1241 
1242 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1243 {
1244 	return skb_peek_tail(&sk->sk_write_queue);
1245 }
1246 
1247 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1248 						   const struct sk_buff *skb)
1249 {
1250 	return skb_queue_next(&sk->sk_write_queue, skb);
1251 }
1252 
1253 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1254 						   const struct sk_buff *skb)
1255 {
1256 	return skb_queue_prev(&sk->sk_write_queue, skb);
1257 }
1258 
1259 #define tcp_for_write_queue(skb, sk)					\
1260 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1261 
1262 #define tcp_for_write_queue_from(skb, sk)				\
1263 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1264 
1265 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1266 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1267 
1268 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1269 {
1270 	return sk->sk_send_head;
1271 }
1272 
1273 static inline bool tcp_skb_is_last(const struct sock *sk,
1274 				   const struct sk_buff *skb)
1275 {
1276 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1277 }
1278 
1279 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1280 {
1281 	if (tcp_skb_is_last(sk, skb))
1282 		sk->sk_send_head = NULL;
1283 	else
1284 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1285 }
1286 
1287 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1288 {
1289 	if (sk->sk_send_head == skb_unlinked)
1290 		sk->sk_send_head = NULL;
1291 }
1292 
1293 static inline void tcp_init_send_head(struct sock *sk)
1294 {
1295 	sk->sk_send_head = NULL;
1296 }
1297 
1298 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1299 {
1300 	__skb_queue_tail(&sk->sk_write_queue, skb);
1301 }
1302 
1303 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1304 {
1305 	__tcp_add_write_queue_tail(sk, skb);
1306 
1307 	/* Queue it, remembering where we must start sending. */
1308 	if (sk->sk_send_head == NULL) {
1309 		sk->sk_send_head = skb;
1310 
1311 		if (tcp_sk(sk)->highest_sack == NULL)
1312 			tcp_sk(sk)->highest_sack = skb;
1313 	}
1314 }
1315 
1316 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1317 {
1318 	__skb_queue_head(&sk->sk_write_queue, skb);
1319 }
1320 
1321 /* Insert buff after skb on the write queue of sk.  */
1322 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1323 						struct sk_buff *buff,
1324 						struct sock *sk)
1325 {
1326 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1327 }
1328 
1329 /* Insert new before skb on the write queue of sk.  */
1330 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1331 						  struct sk_buff *skb,
1332 						  struct sock *sk)
1333 {
1334 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1335 
1336 	if (sk->sk_send_head == skb)
1337 		sk->sk_send_head = new;
1338 }
1339 
1340 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1341 {
1342 	__skb_unlink(skb, &sk->sk_write_queue);
1343 }
1344 
1345 static inline int tcp_write_queue_empty(struct sock *sk)
1346 {
1347 	return skb_queue_empty(&sk->sk_write_queue);
1348 }
1349 
1350 static inline void tcp_push_pending_frames(struct sock *sk)
1351 {
1352 	if (tcp_send_head(sk)) {
1353 		struct tcp_sock *tp = tcp_sk(sk);
1354 
1355 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1356 	}
1357 }
1358 
1359 /* Start sequence of the highest skb with SACKed bit, valid only if
1360  * sacked > 0 or when the caller has ensured validity by itself.
1361  */
1362 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1363 {
1364 	if (!tp->sacked_out)
1365 		return tp->snd_una;
1366 
1367 	if (tp->highest_sack == NULL)
1368 		return tp->snd_nxt;
1369 
1370 	return TCP_SKB_CB(tp->highest_sack)->seq;
1371 }
1372 
1373 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1374 {
1375 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1376 						tcp_write_queue_next(sk, skb);
1377 }
1378 
1379 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1380 {
1381 	return tcp_sk(sk)->highest_sack;
1382 }
1383 
1384 static inline void tcp_highest_sack_reset(struct sock *sk)
1385 {
1386 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1387 }
1388 
1389 /* Called when old skb is about to be deleted (to be combined with new skb) */
1390 static inline void tcp_highest_sack_combine(struct sock *sk,
1391 					    struct sk_buff *old,
1392 					    struct sk_buff *new)
1393 {
1394 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1395 		tcp_sk(sk)->highest_sack = new;
1396 }
1397 
1398 /* Determines whether this is a thin stream (which may suffer from
1399  * increased latency). Used to trigger latency-reducing mechanisms.
1400  */
1401 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1402 {
1403 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1404 }
1405 
1406 /* /proc */
1407 enum tcp_seq_states {
1408 	TCP_SEQ_STATE_LISTENING,
1409 	TCP_SEQ_STATE_OPENREQ,
1410 	TCP_SEQ_STATE_ESTABLISHED,
1411 	TCP_SEQ_STATE_TIME_WAIT,
1412 };
1413 
1414 int tcp_seq_open(struct inode *inode, struct file *file);
1415 
1416 struct tcp_seq_afinfo {
1417 	char				*name;
1418 	sa_family_t			family;
1419 	const struct file_operations	*seq_fops;
1420 	struct seq_operations		seq_ops;
1421 };
1422 
1423 struct tcp_iter_state {
1424 	struct seq_net_private	p;
1425 	sa_family_t		family;
1426 	enum tcp_seq_states	state;
1427 	struct sock		*syn_wait_sk;
1428 	int			bucket, offset, sbucket, num, uid;
1429 	loff_t			last_pos;
1430 };
1431 
1432 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1433 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1434 
1435 extern struct request_sock_ops tcp_request_sock_ops;
1436 extern struct request_sock_ops tcp6_request_sock_ops;
1437 
1438 extern void tcp_v4_destroy_sock(struct sock *sk);
1439 
1440 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1441 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1442 				       netdev_features_t features);
1443 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1444 					struct sk_buff *skb);
1445 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1446 					 struct sk_buff *skb);
1447 extern int tcp_gro_complete(struct sk_buff *skb);
1448 extern int tcp4_gro_complete(struct sk_buff *skb);
1449 
1450 #ifdef CONFIG_PROC_FS
1451 extern int tcp4_proc_init(void);
1452 extern void tcp4_proc_exit(void);
1453 #endif
1454 
1455 /* TCP af-specific functions */
1456 struct tcp_sock_af_ops {
1457 #ifdef CONFIG_TCP_MD5SIG
1458 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1459 						struct sock *addr_sk);
1460 	int			(*calc_md5_hash) (char *location,
1461 						  struct tcp_md5sig_key *md5,
1462 						  const struct sock *sk,
1463 						  const struct request_sock *req,
1464 						  const struct sk_buff *skb);
1465 	int			(*md5_add) (struct sock *sk,
1466 					    struct sock *addr_sk,
1467 					    u8 *newkey,
1468 					    u8 len);
1469 	int			(*md5_parse) (struct sock *sk,
1470 					      char __user *optval,
1471 					      int optlen);
1472 #endif
1473 };
1474 
1475 struct tcp_request_sock_ops {
1476 #ifdef CONFIG_TCP_MD5SIG
1477 	struct tcp_md5sig_key	*(*md5_lookup) (struct sock *sk,
1478 						struct request_sock *req);
1479 	int			(*calc_md5_hash) (char *location,
1480 						  struct tcp_md5sig_key *md5,
1481 						  const struct sock *sk,
1482 						  const struct request_sock *req,
1483 						  const struct sk_buff *skb);
1484 #endif
1485 };
1486 
1487 /* Using SHA1 for now, define some constants.
1488  */
1489 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1490 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1491 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1492 
1493 extern int tcp_cookie_generator(u32 *bakery);
1494 
1495 /**
1496  *	struct tcp_cookie_values - each socket needs extra space for the
1497  *	cookies, together with (optional) space for any SYN data.
1498  *
1499  *	A tcp_sock contains a pointer to the current value, and this is
1500  *	cloned to the tcp_timewait_sock.
1501  *
1502  * @cookie_pair:	variable data from the option exchange.
1503  *
1504  * @cookie_desired:	user specified tcpct_cookie_desired.  Zero
1505  *			indicates default (sysctl_tcp_cookie_size).
1506  *			After cookie sent, remembers size of cookie.
1507  *			Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1508  *
1509  * @s_data_desired:	user specified tcpct_s_data_desired.  When the
1510  *			constant payload is specified (@s_data_constant),
1511  *			holds its length instead.
1512  *			Range 0 to TCP_MSS_DESIRED.
1513  *
1514  * @s_data_payload:	constant data that is to be included in the
1515  *			payload of SYN or SYNACK segments when the
1516  *			cookie option is present.
1517  */
1518 struct tcp_cookie_values {
1519 	struct kref	kref;
1520 	u8		cookie_pair[TCP_COOKIE_PAIR_SIZE];
1521 	u8		cookie_pair_size;
1522 	u8		cookie_desired;
1523 	u16		s_data_desired:11,
1524 			s_data_constant:1,
1525 			s_data_in:1,
1526 			s_data_out:1,
1527 			s_data_unused:2;
1528 	u8		s_data_payload[0];
1529 };
1530 
1531 static inline void tcp_cookie_values_release(struct kref *kref)
1532 {
1533 	kfree(container_of(kref, struct tcp_cookie_values, kref));
1534 }
1535 
1536 /* The length of constant payload data.  Note that s_data_desired is
1537  * overloaded, depending on s_data_constant: either the length of constant
1538  * data (returned here) or the limit on variable data.
1539  */
1540 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1541 {
1542 	return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1543 		? tp->cookie_values->s_data_desired
1544 		: 0;
1545 }
1546 
1547 /**
1548  *	struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1549  *
1550  *	As tcp_request_sock has already been extended in other places, the
1551  *	only remaining method is to pass stack values along as function
1552  *	parameters.  These parameters are not needed after sending SYNACK.
1553  *
1554  * @cookie_bakery:	cryptographic secret and message workspace.
1555  *
1556  * @cookie_plus:	bytes in authenticator/cookie option, copied from
1557  *			struct tcp_options_received (above).
1558  */
1559 struct tcp_extend_values {
1560 	struct request_values		rv;
1561 	u32				cookie_bakery[COOKIE_WORKSPACE_WORDS];
1562 	u8				cookie_plus:6,
1563 					cookie_out_never:1,
1564 					cookie_in_always:1;
1565 };
1566 
1567 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1568 {
1569 	return (struct tcp_extend_values *)rvp;
1570 }
1571 
1572 extern void tcp_v4_init(void);
1573 extern void tcp_init(void);
1574 
1575 #endif	/* _TCP_H */
1576