xref: /linux/include/net/tcp.h (revision b3827c91cc9979fe04d99e016fb9c5f6260f29a0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* Default sending frequency of accurate ECN option per RTT */
104 #define TCP_ACCECN_OPTION_BEACON	3
105 
106 /* urg_data states */
107 #define TCP_URG_VALID	0x0100
108 #define TCP_URG_NOTYET	0x0200
109 #define TCP_URG_READ	0x0400
110 
111 #define TCP_RETR1	3	/*
112 				 * This is how many retries it does before it
113 				 * tries to figure out if the gateway is
114 				 * down. Minimal RFC value is 3; it corresponds
115 				 * to ~3sec-8min depending on RTO.
116 				 */
117 
118 #define TCP_RETR2	15	/*
119 				 * This should take at least
120 				 * 90 minutes to time out.
121 				 * RFC1122 says that the limit is 100 sec.
122 				 * 15 is ~13-30min depending on RTO.
123 				 */
124 
125 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
126 				 * when active opening a connection.
127 				 * RFC1122 says the minimum retry MUST
128 				 * be at least 180secs.  Nevertheless
129 				 * this value is corresponding to
130 				 * 63secs of retransmission with the
131 				 * current initial RTO.
132 				 */
133 
134 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
135 				 * when passive opening a connection.
136 				 * This is corresponding to 31secs of
137 				 * retransmission with the current
138 				 * initial RTO.
139 				 */
140 
141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
142 				  * state, about 60 seconds	*/
143 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
144                                  /* BSD style FIN_WAIT2 deadlock breaker.
145 				  * It used to be 3min, new value is 60sec,
146 				  * to combine FIN-WAIT-2 timeout with
147 				  * TIME-WAIT timer.
148 				  */
149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
150 
151 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
153 
154 #if HZ >= 100
155 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
156 #define TCP_ATO_MIN	((unsigned)(HZ/25))
157 #else
158 #define TCP_DELACK_MIN	4U
159 #define TCP_ATO_MIN	4U
160 #endif
161 #define TCP_RTO_MAX_SEC 120
162 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
163 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
164 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
165 
166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
167 
168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
170 						 * used as a fallback RTO for the
171 						 * initial data transmission if no
172 						 * valid RTT sample has been acquired,
173 						 * most likely due to retrans in 3WHS.
174 						 */
175 
176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
177 					                 * for local resources.
178 					                 */
179 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
180 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
181 #define TCP_KEEPALIVE_INTVL	(75*HZ)
182 
183 #define MAX_TCP_KEEPIDLE	32767
184 #define MAX_TCP_KEEPINTVL	32767
185 #define MAX_TCP_KEEPCNT		127
186 #define MAX_TCP_SYNCNT		127
187 
188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
189  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
190  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
191  */
192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
193 
194 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
195 					 * after this time. It should be equal
196 					 * (or greater than) TCP_TIMEWAIT_LEN
197 					 * to provide reliability equal to one
198 					 * provided by timewait state.
199 					 */
200 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
201 					 * timestamps. It must be less than
202 					 * minimal timewait lifetime.
203 					 */
204 /*
205  *	TCP option
206  */
207 
208 #define TCPOPT_NOP		1	/* Padding */
209 #define TCPOPT_EOL		0	/* End of options */
210 #define TCPOPT_MSS		2	/* Segment size negotiating */
211 #define TCPOPT_WINDOW		3	/* Window scaling */
212 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
213 #define TCPOPT_SACK             5       /* SACK Block */
214 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
215 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
216 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
217 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
218 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
219 #define TCPOPT_ACCECN0		172	/* 0xAC: Accurate ECN Order 0 */
220 #define TCPOPT_ACCECN1		174	/* 0xAE: Accurate ECN Order 1 */
221 #define TCPOPT_EXP		254	/* Experimental */
222 /* Magic number to be after the option value for sharing TCP
223  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
224  */
225 #define TCPOPT_FASTOPEN_MAGIC	0xF989
226 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
227 
228 /*
229  *     TCP option lengths
230  */
231 
232 #define TCPOLEN_MSS            4
233 #define TCPOLEN_WINDOW         3
234 #define TCPOLEN_SACK_PERM      2
235 #define TCPOLEN_TIMESTAMP      10
236 #define TCPOLEN_MD5SIG         18
237 #define TCPOLEN_FASTOPEN_BASE  2
238 #define TCPOLEN_ACCECN_BASE    2
239 #define TCPOLEN_EXP_FASTOPEN_BASE  4
240 #define TCPOLEN_EXP_SMC_BASE   6
241 
242 /* But this is what stacks really send out. */
243 #define TCPOLEN_TSTAMP_ALIGNED		12
244 #define TCPOLEN_WSCALE_ALIGNED		4
245 #define TCPOLEN_SACKPERM_ALIGNED	4
246 #define TCPOLEN_SACK_BASE		2
247 #define TCPOLEN_SACK_BASE_ALIGNED	4
248 #define TCPOLEN_SACK_PERBLOCK		8
249 #define TCPOLEN_MD5SIG_ALIGNED		20
250 #define TCPOLEN_MSS_ALIGNED		4
251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
252 #define TCPOLEN_ACCECN_PERFIELD		3
253 
254 /* Maximum number of byte counters in AccECN option + size */
255 #define TCP_ACCECN_NUMFIELDS		3
256 #define TCP_ACCECN_MAXSIZE		(TCPOLEN_ACCECN_BASE + \
257 					 TCPOLEN_ACCECN_PERFIELD * \
258 					 TCP_ACCECN_NUMFIELDS)
259 #define TCP_ACCECN_SAFETY_SHIFT		1 /* SAFETY_FACTOR in accecn draft */
260 
261 /* Flags in tp->nonagle */
262 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
263 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
264 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
265 
266 /* TCP thin-stream limits */
267 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
268 
269 /* TCP initial congestion window as per rfc6928 */
270 #define TCP_INIT_CWND		10
271 
272 /* Bit Flags for sysctl_tcp_fastopen */
273 #define	TFO_CLIENT_ENABLE	1
274 #define	TFO_SERVER_ENABLE	2
275 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
276 
277 /* Accept SYN data w/o any cookie option */
278 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
279 
280 /* Force enable TFO on all listeners, i.e., not requiring the
281  * TCP_FASTOPEN socket option.
282  */
283 #define	TFO_SERVER_WO_SOCKOPT1	0x400
284 
285 
286 /* sysctl variables for tcp */
287 extern int sysctl_tcp_max_orphans;
288 extern long sysctl_tcp_mem[3];
289 
290 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
291 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
292 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
293 
294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
295 
296 extern struct percpu_counter tcp_sockets_allocated;
297 extern unsigned long tcp_memory_pressure;
298 
299 /* optimized version of sk_under_memory_pressure() for TCP sockets */
300 static inline bool tcp_under_memory_pressure(const struct sock *sk)
301 {
302 	if (mem_cgroup_sk_enabled(sk) &&
303 	    mem_cgroup_sk_under_memory_pressure(sk))
304 		return true;
305 
306 	if (sk->sk_bypass_prot_mem)
307 		return false;
308 
309 	return READ_ONCE(tcp_memory_pressure);
310 }
311 /*
312  * The next routines deal with comparing 32 bit unsigned ints
313  * and worry about wraparound (automatic with unsigned arithmetic).
314  */
315 
316 static inline bool before(__u32 seq1, __u32 seq2)
317 {
318         return (__s32)(seq1-seq2) < 0;
319 }
320 #define after(seq2, seq1) 	before(seq1, seq2)
321 
322 /* is s2<=s1<=s3 ? */
323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
324 {
325 	return seq3 - seq2 >= seq1 - seq2;
326 }
327 
328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
329 {
330 	sk_wmem_queued_add(sk, -skb->truesize);
331 	if (!skb_zcopy_pure(skb))
332 		sk_mem_uncharge(sk, skb->truesize);
333 	else
334 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
335 	__kfree_skb(skb);
336 }
337 
338 void sk_forced_mem_schedule(struct sock *sk, int size);
339 
340 bool tcp_check_oom(const struct sock *sk, int shift);
341 
342 
343 extern struct proto tcp_prot;
344 
345 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
346 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
347 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
348 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
349 
350 void tcp_tsq_work_init(void);
351 
352 int tcp_v4_err(struct sk_buff *skb, u32);
353 
354 void tcp_shutdown(struct sock *sk, int how);
355 
356 int tcp_v4_early_demux(struct sk_buff *skb);
357 int tcp_v4_rcv(struct sk_buff *skb);
358 
359 void tcp_remove_empty_skb(struct sock *sk);
360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
363 			 size_t size, struct ubuf_info *uarg);
364 void tcp_splice_eof(struct socket *sock);
365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
366 int tcp_wmem_schedule(struct sock *sk, int copy);
367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
368 	      int size_goal);
369 void tcp_release_cb(struct sock *sk);
370 void tcp_wfree(struct sk_buff *skb);
371 void tcp_write_timer_handler(struct sock *sk);
372 void tcp_delack_timer_handler(struct sock *sk);
373 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval);
377 void tcp_rcv_space_adjust(struct sock *sk);
378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
379 void tcp_twsk_destructor(struct sock *sk);
380 void tcp_twsk_purge(struct list_head *net_exit_list);
381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
382 			struct pipe_inode_info *pipe, size_t len,
383 			unsigned int flags);
384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
385 				     bool force_schedule);
386 
387 static inline void tcp_dec_quickack_mode(struct sock *sk)
388 {
389 	struct inet_connection_sock *icsk = inet_csk(sk);
390 
391 	if (icsk->icsk_ack.quick) {
392 		/* How many ACKs S/ACKing new data have we sent? */
393 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
394 
395 		if (pkts >= icsk->icsk_ack.quick) {
396 			icsk->icsk_ack.quick = 0;
397 			/* Leaving quickack mode we deflate ATO. */
398 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
399 		} else
400 			icsk->icsk_ack.quick -= pkts;
401 	}
402 }
403 
404 #define	TCP_ECN_MODE_RFC3168	BIT(0)
405 #define	TCP_ECN_QUEUE_CWR	BIT(1)
406 #define	TCP_ECN_DEMAND_CWR	BIT(2)
407 #define	TCP_ECN_SEEN		BIT(3)
408 #define	TCP_ECN_MODE_ACCECN	BIT(4)
409 
410 #define	TCP_ECN_DISABLED	0
411 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
412 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
413 
414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
415 {
416 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
417 }
418 
419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
420 {
421 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
422 }
423 
424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
425 {
426 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
427 }
428 
429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
430 {
431 	return !tcp_ecn_mode_any(tp);
432 }
433 
434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
435 {
436 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
437 }
438 
439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
440 {
441 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
442 	tp->ecn_flags |= mode;
443 }
444 
445 enum tcp_tw_status {
446 	TCP_TW_SUCCESS = 0,
447 	TCP_TW_RST = 1,
448 	TCP_TW_ACK = 2,
449 	TCP_TW_SYN = 3,
450 	TCP_TW_ACK_OOW = 4
451 };
452 
453 
454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
455 					      struct sk_buff *skb,
456 					      const struct tcphdr *th,
457 					      u32 *tw_isn,
458 					      enum skb_drop_reason *drop_reason);
459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
460 			   struct request_sock *req, bool fastopen,
461 			   bool *lost_race, enum skb_drop_reason *drop_reason);
462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
463 				       struct sk_buff *skb);
464 void tcp_enter_loss(struct sock *sk);
465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
466 void tcp_clear_retrans(struct tcp_sock *tp);
467 void tcp_update_pacing_rate(struct sock *sk);
468 void tcp_set_rto(struct sock *sk);
469 void tcp_update_metrics(struct sock *sk);
470 void tcp_init_metrics(struct sock *sk);
471 void tcp_metrics_init(void);
472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
473 void __tcp_close(struct sock *sk, long timeout);
474 void tcp_close(struct sock *sk, long timeout);
475 void tcp_init_sock(struct sock *sk);
476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
477 __poll_t tcp_poll(struct file *file, struct socket *sock,
478 		      struct poll_table_struct *wait);
479 int do_tcp_getsockopt(struct sock *sk, int level,
480 		      int optname, sockptr_t optval, sockptr_t optlen);
481 int tcp_getsockopt(struct sock *sk, int level, int optname,
482 		   char __user *optval, int __user *optlen);
483 bool tcp_bpf_bypass_getsockopt(int level, int optname);
484 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
485 		      sockptr_t optval, unsigned int optlen);
486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
487 		   unsigned int optlen);
488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
489 void tcp_set_keepalive(struct sock *sk, int val);
490 void tcp_syn_ack_timeout(const struct request_sock *req);
491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
492 		int flags, int *addr_len);
493 int tcp_set_rcvlowat(struct sock *sk, int val);
494 int tcp_set_window_clamp(struct sock *sk, int val);
495 void tcp_update_recv_tstamps(struct sk_buff *skb,
496 			     struct scm_timestamping_internal *tss);
497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
498 			struct scm_timestamping_internal *tss);
499 void tcp_data_ready(struct sock *sk);
500 #ifdef CONFIG_MMU
501 int tcp_mmap(struct file *file, struct socket *sock,
502 	     struct vm_area_struct *vma);
503 #endif
504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
505 		       struct tcp_options_received *opt_rx,
506 		       int estab, struct tcp_fastopen_cookie *foc);
507 
508 /*
509  *	BPF SKB-less helpers
510  */
511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
512 			 struct tcphdr *th, u32 *cookie);
513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
514 			 struct tcphdr *th, u32 *cookie);
515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
517 			  const struct tcp_request_sock_ops *af_ops,
518 			  struct sock *sk, struct tcphdr *th);
519 /*
520  *	TCP v4 functions exported for the inet6 API
521  */
522 
523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
524 void tcp_v4_mtu_reduced(struct sock *sk);
525 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
528 struct sock *tcp_create_openreq_child(const struct sock *sk,
529 				      struct request_sock *req,
530 				      struct sk_buff *skb);
531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
533 				  struct request_sock *req,
534 				  struct dst_entry *dst,
535 				  struct request_sock *req_unhash,
536 				  bool *own_req);
537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
538 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len);
539 int tcp_connect(struct sock *sk);
540 enum tcp_synack_type {
541 	TCP_SYNACK_NORMAL,
542 	TCP_SYNACK_FASTOPEN,
543 	TCP_SYNACK_COOKIE,
544 };
545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
546 				struct request_sock *req,
547 				struct tcp_fastopen_cookie *foc,
548 				enum tcp_synack_type synack_type,
549 				struct sk_buff *syn_skb);
550 int tcp_disconnect(struct sock *sk, int flags);
551 
552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
555 
556 /* From syncookies.c */
557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
558 				 struct request_sock *req,
559 				 struct dst_entry *dst);
560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
563 					    struct sock *sk, struct sk_buff *skb,
564 					    struct tcp_options_received *tcp_opt,
565 					    int mss, u32 tsoff);
566 
567 #if IS_ENABLED(CONFIG_BPF)
568 struct bpf_tcp_req_attrs {
569 	u32 rcv_tsval;
570 	u32 rcv_tsecr;
571 	u16 mss;
572 	u8 rcv_wscale;
573 	u8 snd_wscale;
574 	u8 ecn_ok;
575 	u8 wscale_ok;
576 	u8 sack_ok;
577 	u8 tstamp_ok;
578 	u8 usec_ts_ok;
579 	u8 reserved[3];
580 };
581 #endif
582 
583 #ifdef CONFIG_SYN_COOKIES
584 
585 /* Syncookies use a monotonic timer which increments every 60 seconds.
586  * This counter is used both as a hash input and partially encoded into
587  * the cookie value.  A cookie is only validated further if the delta
588  * between the current counter value and the encoded one is less than this,
589  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
590  * the counter advances immediately after a cookie is generated).
591  */
592 #define MAX_SYNCOOKIE_AGE	2
593 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
594 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
595 
596 /* syncookies: remember time of last synqueue overflow
597  * But do not dirty this field too often (once per second is enough)
598  * It is racy as we do not hold a lock, but race is very minor.
599  */
600 static inline void tcp_synq_overflow(const struct sock *sk)
601 {
602 	unsigned int last_overflow;
603 	unsigned int now = jiffies;
604 
605 	if (sk->sk_reuseport) {
606 		struct sock_reuseport *reuse;
607 
608 		reuse = rcu_dereference(sk->sk_reuseport_cb);
609 		if (likely(reuse)) {
610 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
611 			if (!time_between32(now, last_overflow,
612 					    last_overflow + HZ))
613 				WRITE_ONCE(reuse->synq_overflow_ts, now);
614 			return;
615 		}
616 	}
617 
618 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
619 	if (!time_between32(now, last_overflow, last_overflow + HZ))
620 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
621 }
622 
623 /* syncookies: no recent synqueue overflow on this listening socket? */
624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
625 {
626 	unsigned int last_overflow;
627 	unsigned int now = jiffies;
628 
629 	if (sk->sk_reuseport) {
630 		struct sock_reuseport *reuse;
631 
632 		reuse = rcu_dereference(sk->sk_reuseport_cb);
633 		if (likely(reuse)) {
634 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
635 			return !time_between32(now, last_overflow - HZ,
636 					       last_overflow +
637 					       TCP_SYNCOOKIE_VALID);
638 		}
639 	}
640 
641 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
642 
643 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
644 	 * then we're under synflood. However, we have to use
645 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
646 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
647 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
648 	 * which could lead to rejecting a valid syncookie.
649 	 */
650 	return !time_between32(now, last_overflow - HZ,
651 			       last_overflow + TCP_SYNCOOKIE_VALID);
652 }
653 
654 static inline u32 tcp_cookie_time(void)
655 {
656 	u64 val = get_jiffies_64();
657 
658 	do_div(val, TCP_SYNCOOKIE_PERIOD);
659 	return val;
660 }
661 
662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
664 {
665 	if (usec_ts)
666 		return div_u64(val, NSEC_PER_USEC);
667 
668 	return div_u64(val, NSEC_PER_MSEC);
669 }
670 
671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
672 			      u16 *mssp);
673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
674 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
675 bool cookie_timestamp_decode(const struct net *net,
676 			     struct tcp_options_received *opt);
677 
678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
679 {
680 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
681 		dst_feature(dst, RTAX_FEATURE_ECN);
682 }
683 
684 #if IS_ENABLED(CONFIG_BPF)
685 static inline bool cookie_bpf_ok(struct sk_buff *skb)
686 {
687 	return skb->sk;
688 }
689 
690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
691 #else
692 static inline bool cookie_bpf_ok(struct sk_buff *skb)
693 {
694 	return false;
695 }
696 
697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
698 						    struct sk_buff *skb)
699 {
700 	return NULL;
701 }
702 #endif
703 
704 /* From net/ipv6/syncookies.c */
705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
707 
708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
709 			      const struct tcphdr *th, u16 *mssp);
710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
711 #endif
712 /* tcp_output.c */
713 
714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
717 			       int nonagle);
718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
720 void tcp_retransmit_timer(struct sock *sk);
721 void tcp_xmit_retransmit_queue(struct sock *);
722 void tcp_simple_retransmit(struct sock *);
723 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
724 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
725 enum tcp_queue {
726 	TCP_FRAG_IN_WRITE_QUEUE,
727 	TCP_FRAG_IN_RTX_QUEUE,
728 };
729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
730 		 struct sk_buff *skb, u32 len,
731 		 unsigned int mss_now, gfp_t gfp);
732 
733 void tcp_send_probe0(struct sock *);
734 int tcp_write_wakeup(struct sock *, int mib);
735 void tcp_send_fin(struct sock *sk);
736 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
737 			   enum sk_rst_reason reason);
738 int tcp_send_synack(struct sock *);
739 void tcp_push_one(struct sock *, unsigned int mss_now);
740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
741 void tcp_send_ack(struct sock *sk);
742 void tcp_send_delayed_ack(struct sock *sk);
743 void tcp_send_loss_probe(struct sock *sk);
744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
745 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
746 			     const struct sk_buff *next_skb);
747 
748 /* tcp_input.c */
749 void tcp_rearm_rto(struct sock *sk);
750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
751 void tcp_done_with_error(struct sock *sk, int err);
752 void tcp_reset(struct sock *sk, struct sk_buff *skb);
753 void tcp_fin(struct sock *sk);
754 void tcp_check_space(struct sock *sk);
755 void tcp_sack_compress_send_ack(struct sock *sk);
756 
757 static inline void tcp_cleanup_skb(struct sk_buff *skb)
758 {
759 	skb_dst_drop(skb);
760 	secpath_reset(skb);
761 }
762 
763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
764 {
765 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
766 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
767 	__skb_queue_tail(&sk->sk_receive_queue, skb);
768 }
769 
770 /* tcp_timer.c */
771 void tcp_init_xmit_timers(struct sock *);
772 static inline void tcp_clear_xmit_timers(struct sock *sk)
773 {
774 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
775 		__sock_put(sk);
776 
777 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
778 		__sock_put(sk);
779 
780 	inet_csk_clear_xmit_timers(sk);
781 }
782 
783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
784 unsigned int tcp_current_mss(struct sock *sk);
785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
786 
787 /* Bound MSS / TSO packet size with the half of the window */
788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
789 {
790 	int cutoff;
791 
792 	/* When peer uses tiny windows, there is no use in packetizing
793 	 * to sub-MSS pieces for the sake of SWS or making sure there
794 	 * are enough packets in the pipe for fast recovery.
795 	 *
796 	 * On the other hand, for extremely large MSS devices, handling
797 	 * smaller than MSS windows in this way does make sense.
798 	 */
799 	if (tp->max_window > TCP_MSS_DEFAULT)
800 		cutoff = (tp->max_window >> 1);
801 	else
802 		cutoff = tp->max_window;
803 
804 	if (cutoff && pktsize > cutoff)
805 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
806 	else
807 		return pktsize;
808 }
809 
810 /* tcp.c */
811 void tcp_get_info(struct sock *, struct tcp_info *);
812 void tcp_rate_check_app_limited(struct sock *sk);
813 
814 /* Read 'sendfile()'-style from a TCP socket */
815 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
816 		  sk_read_actor_t recv_actor);
817 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
818 			sk_read_actor_t recv_actor, bool noack,
819 			u32 *copied_seq);
820 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
821 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
822 void tcp_read_done(struct sock *sk, size_t len);
823 
824 void tcp_initialize_rcv_mss(struct sock *sk);
825 
826 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
827 int tcp_mss_to_mtu(struct sock *sk, int mss);
828 void tcp_mtup_init(struct sock *sk);
829 
830 static inline unsigned int tcp_rto_max(const struct sock *sk)
831 {
832 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
833 }
834 
835 static inline void tcp_bound_rto(struct sock *sk)
836 {
837 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
838 }
839 
840 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
841 {
842 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
843 }
844 
845 static inline unsigned long tcp_reqsk_timeout(struct request_sock *req)
846 {
847 	u64 timeout = (u64)req->timeout << req->num_timeout;
848 
849 	return (unsigned long)min_t(u64, timeout,
850 				    tcp_rto_max(req->rsk_listener));
851 }
852 
853 u32 tcp_delack_max(const struct sock *sk);
854 
855 /* Compute the actual rto_min value */
856 static inline u32 tcp_rto_min(const struct sock *sk)
857 {
858 	const struct dst_entry *dst = __sk_dst_get(sk);
859 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
860 
861 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
862 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
863 	return rto_min;
864 }
865 
866 static inline u32 tcp_rto_min_us(const struct sock *sk)
867 {
868 	return jiffies_to_usecs(tcp_rto_min(sk));
869 }
870 
871 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
872 {
873 	return dst_metric_locked(dst, RTAX_CC_ALGO);
874 }
875 
876 /* Minimum RTT in usec. ~0 means not available. */
877 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
878 {
879 	return minmax_get(&tp->rtt_min);
880 }
881 
882 /* Compute the actual receive window we are currently advertising.
883  * Rcv_nxt can be after the window if our peer push more data
884  * than the offered window.
885  */
886 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
887 {
888 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
889 
890 	if (win < 0)
891 		win = 0;
892 	return (u32) win;
893 }
894 
895 /* Choose a new window, without checks for shrinking, and without
896  * scaling applied to the result.  The caller does these things
897  * if necessary.  This is a "raw" window selection.
898  */
899 u32 __tcp_select_window(struct sock *sk);
900 
901 void tcp_send_window_probe(struct sock *sk);
902 
903 /* TCP uses 32bit jiffies to save some space.
904  * Note that this is different from tcp_time_stamp, which
905  * historically has been the same until linux-4.13.
906  */
907 #define tcp_jiffies32 ((u32)jiffies)
908 
909 /*
910  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
911  * It is no longer tied to jiffies, but to 1 ms clock.
912  * Note: double check if you want to use tcp_jiffies32 instead of this.
913  */
914 #define TCP_TS_HZ	1000
915 
916 static inline u64 tcp_clock_ns(void)
917 {
918 	return ktime_get_ns();
919 }
920 
921 static inline u64 tcp_clock_us(void)
922 {
923 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
924 }
925 
926 static inline u64 tcp_clock_ms(void)
927 {
928 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
929 }
930 
931 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
932  * or usec resolution. Each socket carries a flag to select one or other
933  * resolution, as the route attribute could change anytime.
934  * Each flow must stick to initial resolution.
935  */
936 static inline u32 tcp_clock_ts(bool usec_ts)
937 {
938 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
939 }
940 
941 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
942 {
943 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
944 }
945 
946 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
947 {
948 	if (tp->tcp_usec_ts)
949 		return tp->tcp_mstamp;
950 	return tcp_time_stamp_ms(tp);
951 }
952 
953 void tcp_mstamp_refresh(struct tcp_sock *tp);
954 
955 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
956 {
957 	return max_t(s64, t1 - t0, 0);
958 }
959 
960 /* provide the departure time in us unit */
961 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
962 {
963 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
964 }
965 
966 /* Provide skb TSval in usec or ms unit */
967 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
968 {
969 	if (usec_ts)
970 		return tcp_skb_timestamp_us(skb);
971 
972 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
973 }
974 
975 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
976 {
977 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
978 }
979 
980 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
981 {
982 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
983 }
984 
985 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
986 
987 #define TCPHDR_FIN	BIT(0)
988 #define TCPHDR_SYN	BIT(1)
989 #define TCPHDR_RST	BIT(2)
990 #define TCPHDR_PSH	BIT(3)
991 #define TCPHDR_ACK	BIT(4)
992 #define TCPHDR_URG	BIT(5)
993 #define TCPHDR_ECE	BIT(6)
994 #define TCPHDR_CWR	BIT(7)
995 #define TCPHDR_AE	BIT(8)
996 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
997 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
998 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
999 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
1000 			    TCPHDR_FLAGS_MASK)
1001 
1002 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
1003 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
1004 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR)
1005 
1006 #define TCP_ACCECN_CEP_ACE_MASK 0x7
1007 #define TCP_ACCECN_ACE_MAX_DELTA 6
1008 
1009 /* To avoid/detect middlebox interference, not all counters start at 0.
1010  * See draft-ietf-tcpm-accurate-ecn for the latest values.
1011  */
1012 #define TCP_ACCECN_CEP_INIT_OFFSET 5
1013 #define TCP_ACCECN_E1B_INIT_OFFSET 1
1014 #define TCP_ACCECN_E0B_INIT_OFFSET 1
1015 #define TCP_ACCECN_CEB_INIT_OFFSET 0
1016 
1017 /* State flags for sacked in struct tcp_skb_cb */
1018 enum tcp_skb_cb_sacked_flags {
1019 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1020 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1021 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1022 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1023 				   TCPCB_LOST),	/* All tag bits			*/
1024 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1025 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1026 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1027 				   TCPCB_REPAIRED),
1028 };
1029 
1030 /* This is what the send packet queuing engine uses to pass
1031  * TCP per-packet control information to the transmission code.
1032  * We also store the host-order sequence numbers in here too.
1033  * This is 44 bytes if IPV6 is enabled.
1034  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1035  */
1036 struct tcp_skb_cb {
1037 	__u32		seq;		/* Starting sequence number	*/
1038 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1039 	union {
1040 		/* Note :
1041 		 * 	  tcp_gso_segs/size are used in write queue only,
1042 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1043 		 */
1044 		struct {
1045 			u16	tcp_gso_segs;
1046 			u16	tcp_gso_size;
1047 		};
1048 	};
1049 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1050 
1051 	__u8		sacked;		/* State flags for SACK.	*/
1052 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1053 #define TSTAMP_ACK_SK	0x1
1054 #define TSTAMP_ACK_BPF	0x2
1055 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1056 			eor:1,		/* Is skb MSG_EOR marked? */
1057 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1058 			unused:4;
1059 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1060 	union {
1061 		struct {
1062 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1063 			/* There is space for up to 24 bytes */
1064 			__u32 is_app_limited:1, /* cwnd not fully used? */
1065 			      delivered_ce:20,
1066 			      unused:11;
1067 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1068 			__u32 delivered;
1069 			/* start of send pipeline phase */
1070 			u64 first_tx_mstamp;
1071 			/* when we reached the "delivered" count */
1072 			u64 delivered_mstamp;
1073 		} tx;   /* only used for outgoing skbs */
1074 		union {
1075 			struct inet_skb_parm	h4;
1076 #if IS_ENABLED(CONFIG_IPV6)
1077 			struct inet6_skb_parm	h6;
1078 #endif
1079 		} header;	/* For incoming skbs */
1080 	};
1081 };
1082 
1083 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1084 
1085 extern const struct inet_connection_sock_af_ops ipv4_specific;
1086 
1087 #if IS_ENABLED(CONFIG_IPV6)
1088 /* This is the variant of inet6_iif() that must be used by TCP,
1089  * as TCP moves IP6CB into a different location in skb->cb[]
1090  */
1091 static inline int tcp_v6_iif(const struct sk_buff *skb)
1092 {
1093 	return TCP_SKB_CB(skb)->header.h6.iif;
1094 }
1095 
1096 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1097 {
1098 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1099 
1100 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1101 }
1102 
1103 /* TCP_SKB_CB reference means this can not be used from early demux */
1104 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1105 {
1106 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1107 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1108 		return TCP_SKB_CB(skb)->header.h6.iif;
1109 #endif
1110 	return 0;
1111 }
1112 
1113 extern const struct inet_connection_sock_af_ops ipv6_specific;
1114 
1115 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1116 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1117 void tcp_v6_early_demux(struct sk_buff *skb);
1118 
1119 #endif
1120 
1121 /* TCP_SKB_CB reference means this can not be used from early demux */
1122 static inline int tcp_v4_sdif(struct sk_buff *skb)
1123 {
1124 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1125 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1126 		return TCP_SKB_CB(skb)->header.h4.iif;
1127 #endif
1128 	return 0;
1129 }
1130 
1131 /* Due to TSO, an SKB can be composed of multiple actual
1132  * packets.  To keep these tracked properly, we use this.
1133  */
1134 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1135 {
1136 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1137 }
1138 
1139 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1140 {
1141 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1142 }
1143 
1144 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1145 {
1146 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1147 }
1148 
1149 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1150 static inline int tcp_skb_mss(const struct sk_buff *skb)
1151 {
1152 	return TCP_SKB_CB(skb)->tcp_gso_size;
1153 }
1154 
1155 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1156 {
1157 	return likely(!TCP_SKB_CB(skb)->eor);
1158 }
1159 
1160 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1161 					const struct sk_buff *from)
1162 {
1163 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1164 	return likely(tcp_skb_can_collapse_to(to) &&
1165 		      mptcp_skb_can_collapse(to, from) &&
1166 		      skb_pure_zcopy_same(to, from) &&
1167 		      skb_frags_readable(to) == skb_frags_readable(from));
1168 }
1169 
1170 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1171 					   const struct sk_buff *from)
1172 {
1173 	return likely(mptcp_skb_can_collapse(to, from) &&
1174 		      !skb_cmp_decrypted(to, from));
1175 }
1176 
1177 /* Events passed to congestion control interface */
1178 enum tcp_ca_event {
1179 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1180 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1181 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1182 	CA_EVENT_LOSS,		/* loss timeout */
1183 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1184 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1185 };
1186 
1187 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1188 enum tcp_ca_ack_event_flags {
1189 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1190 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1191 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1192 };
1193 
1194 /*
1195  * Interface for adding new TCP congestion control handlers
1196  */
1197 #define TCP_CA_NAME_MAX	16
1198 #define TCP_CA_MAX	128
1199 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1200 
1201 #define TCP_CA_UNSPEC	0
1202 
1203 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1204 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1205 /* Requires ECN/ECT set on all packets */
1206 #define TCP_CONG_NEEDS_ECN		BIT(1)
1207 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1208 
1209 union tcp_cc_info;
1210 
1211 struct ack_sample {
1212 	u32 pkts_acked;
1213 	s32 rtt_us;
1214 	u32 in_flight;
1215 };
1216 
1217 /* A rate sample measures the number of (original/retransmitted) data
1218  * packets delivered "delivered" over an interval of time "interval_us".
1219  * The tcp_rate.c code fills in the rate sample, and congestion
1220  * control modules that define a cong_control function to run at the end
1221  * of ACK processing can optionally chose to consult this sample when
1222  * setting cwnd and pacing rate.
1223  * A sample is invalid if "delivered" or "interval_us" is negative.
1224  */
1225 struct rate_sample {
1226 	u64  prior_mstamp; /* starting timestamp for interval */
1227 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1228 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1229 	s32  delivered;		/* number of packets delivered over interval */
1230 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1231 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1232 	u32 snd_interval_us;	/* snd interval for delivered packets */
1233 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1234 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1235 	int  losses;		/* number of packets marked lost upon ACK */
1236 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1237 	u32  prior_in_flight;	/* in flight before this ACK */
1238 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1239 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1240 	bool is_retrans;	/* is sample from retransmission? */
1241 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1242 };
1243 
1244 struct tcp_congestion_ops {
1245 /* fast path fields are put first to fill one cache line */
1246 
1247 	/* A congestion control (CC) must provide one of either:
1248 	 *
1249 	 * (a) a cong_avoid function, if the CC wants to use the core TCP
1250 	 *     stack's default functionality to implement a "classic"
1251 	 *     (Reno/CUBIC-style) response to packet loss, RFC3168 ECN,
1252 	 *     idle periods, pacing rate computations, etc.
1253 	 *
1254 	 * (b) a cong_control function, if the CC wants custom behavior and
1255 	 *      complete control of all congestion control behaviors.
1256 	 */
1257 	/* (a) "classic" response: calculate new cwnd.
1258 	 */
1259 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1260 	/* (b) "custom" response: call when packets are delivered to update
1261 	 * cwnd and pacing rate, after all the ca_state processing.
1262 	 */
1263 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1264 
1265 	/* return slow start threshold (required) */
1266 	u32 (*ssthresh)(struct sock *sk);
1267 
1268 	/* call before changing ca_state (optional) */
1269 	void (*set_state)(struct sock *sk, u8 new_state);
1270 
1271 	/* call when cwnd event occurs (optional) */
1272 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1273 
1274 	/* call when ack arrives (optional) */
1275 	void (*in_ack_event)(struct sock *sk, u32 flags);
1276 
1277 	/* hook for packet ack accounting (optional) */
1278 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1279 
1280 	/* override sysctl_tcp_min_tso_segs (optional) */
1281 	u32 (*min_tso_segs)(struct sock *sk);
1282 
1283 	/* new value of cwnd after loss (required) */
1284 	u32  (*undo_cwnd)(struct sock *sk);
1285 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1286 	u32 (*sndbuf_expand)(struct sock *sk);
1287 
1288 /* control/slow paths put last */
1289 	/* get info for inet_diag (optional) */
1290 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1291 			   union tcp_cc_info *info);
1292 
1293 	char 			name[TCP_CA_NAME_MAX];
1294 	struct module		*owner;
1295 	struct list_head	list;
1296 	u32			key;
1297 	u32			flags;
1298 
1299 	/* initialize private data (optional) */
1300 	void (*init)(struct sock *sk);
1301 	/* cleanup private data  (optional) */
1302 	void (*release)(struct sock *sk);
1303 } ____cacheline_aligned_in_smp;
1304 
1305 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1306 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1307 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1308 				  struct tcp_congestion_ops *old_type);
1309 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1310 
1311 void tcp_assign_congestion_control(struct sock *sk);
1312 void tcp_init_congestion_control(struct sock *sk);
1313 void tcp_cleanup_congestion_control(struct sock *sk);
1314 int tcp_set_default_congestion_control(struct net *net, const char *name);
1315 void tcp_get_default_congestion_control(struct net *net, char *name);
1316 void tcp_get_available_congestion_control(char *buf, size_t len);
1317 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1318 int tcp_set_allowed_congestion_control(char *allowed);
1319 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1320 			       bool cap_net_admin);
1321 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1322 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1323 
1324 u32 tcp_reno_ssthresh(struct sock *sk);
1325 u32 tcp_reno_undo_cwnd(struct sock *sk);
1326 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1327 extern struct tcp_congestion_ops tcp_reno;
1328 
1329 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1330 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1331 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1332 #ifdef CONFIG_INET
1333 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1334 #else
1335 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1336 {
1337 	return NULL;
1338 }
1339 #endif
1340 
1341 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1342 {
1343 	const struct inet_connection_sock *icsk = inet_csk(sk);
1344 
1345 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1346 }
1347 
1348 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1349 {
1350 	const struct inet_connection_sock *icsk = inet_csk(sk);
1351 
1352 	if (icsk->icsk_ca_ops->cwnd_event)
1353 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1354 }
1355 
1356 /* From tcp_cong.c */
1357 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1358 
1359 
1360 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1361 {
1362 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1363 }
1364 
1365 /* These functions determine how the current flow behaves in respect of SACK
1366  * handling. SACK is negotiated with the peer, and therefore it can vary
1367  * between different flows.
1368  *
1369  * tcp_is_sack - SACK enabled
1370  * tcp_is_reno - No SACK
1371  */
1372 static inline int tcp_is_sack(const struct tcp_sock *tp)
1373 {
1374 	return likely(tp->rx_opt.sack_ok);
1375 }
1376 
1377 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1378 {
1379 	return !tcp_is_sack(tp);
1380 }
1381 
1382 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1383 {
1384 	return tp->sacked_out + tp->lost_out;
1385 }
1386 
1387 /* This determines how many packets are "in the network" to the best
1388  * of our knowledge.  In many cases it is conservative, but where
1389  * detailed information is available from the receiver (via SACK
1390  * blocks etc.) we can make more aggressive calculations.
1391  *
1392  * Use this for decisions involving congestion control, use just
1393  * tp->packets_out to determine if the send queue is empty or not.
1394  *
1395  * Read this equation as:
1396  *
1397  *	"Packets sent once on transmission queue" MINUS
1398  *	"Packets left network, but not honestly ACKed yet" PLUS
1399  *	"Packets fast retransmitted"
1400  */
1401 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1402 {
1403 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1404 }
1405 
1406 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1407 
1408 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1409 {
1410 	return tp->snd_cwnd;
1411 }
1412 
1413 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1414 {
1415 	WARN_ON_ONCE((int)val <= 0);
1416 	tp->snd_cwnd = val;
1417 }
1418 
1419 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1420 {
1421 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1422 }
1423 
1424 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1425 {
1426 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1427 }
1428 
1429 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1430 {
1431 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1432 	       (1 << inet_csk(sk)->icsk_ca_state);
1433 }
1434 
1435 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1436  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1437  * ssthresh.
1438  */
1439 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1440 {
1441 	const struct tcp_sock *tp = tcp_sk(sk);
1442 
1443 	if (tcp_in_cwnd_reduction(sk))
1444 		return tp->snd_ssthresh;
1445 	else
1446 		return max(tp->snd_ssthresh,
1447 			   ((tcp_snd_cwnd(tp) >> 1) +
1448 			    (tcp_snd_cwnd(tp) >> 2)));
1449 }
1450 
1451 /* Use define here intentionally to get WARN_ON location shown at the caller */
1452 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1453 
1454 void tcp_enter_cwr(struct sock *sk);
1455 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1456 
1457 /* The maximum number of MSS of available cwnd for which TSO defers
1458  * sending if not using sysctl_tcp_tso_win_divisor.
1459  */
1460 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1461 {
1462 	return 3;
1463 }
1464 
1465 /* Returns end sequence number of the receiver's advertised window */
1466 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1467 {
1468 	return tp->snd_una + tp->snd_wnd;
1469 }
1470 
1471 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1472  * flexible approach. The RFC suggests cwnd should not be raised unless
1473  * it was fully used previously. And that's exactly what we do in
1474  * congestion avoidance mode. But in slow start we allow cwnd to grow
1475  * as long as the application has used half the cwnd.
1476  * Example :
1477  *    cwnd is 10 (IW10), but application sends 9 frames.
1478  *    We allow cwnd to reach 18 when all frames are ACKed.
1479  * This check is safe because it's as aggressive as slow start which already
1480  * risks 100% overshoot. The advantage is that we discourage application to
1481  * either send more filler packets or data to artificially blow up the cwnd
1482  * usage, and allow application-limited process to probe bw more aggressively.
1483  */
1484 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1485 {
1486 	const struct tcp_sock *tp = tcp_sk(sk);
1487 
1488 	if (tp->is_cwnd_limited)
1489 		return true;
1490 
1491 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1492 	if (tcp_in_slow_start(tp))
1493 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1494 
1495 	return false;
1496 }
1497 
1498 /* BBR congestion control needs pacing.
1499  * Same remark for SO_MAX_PACING_RATE.
1500  * sch_fq packet scheduler is efficiently handling pacing,
1501  * but is not always installed/used.
1502  * Return true if TCP stack should pace packets itself.
1503  */
1504 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1505 {
1506 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1507 }
1508 
1509 /* Estimates in how many jiffies next packet for this flow can be sent.
1510  * Scheduling a retransmit timer too early would be silly.
1511  */
1512 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1513 {
1514 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1515 
1516 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1517 }
1518 
1519 static inline void tcp_reset_xmit_timer(struct sock *sk,
1520 					const int what,
1521 					unsigned long when,
1522 					bool pace_delay)
1523 {
1524 	if (pace_delay)
1525 		when += tcp_pacing_delay(sk);
1526 	inet_csk_reset_xmit_timer(sk, what, when,
1527 				  tcp_rto_max(sk));
1528 }
1529 
1530 /* Something is really bad, we could not queue an additional packet,
1531  * because qdisc is full or receiver sent a 0 window, or we are paced.
1532  * We do not want to add fuel to the fire, or abort too early,
1533  * so make sure the timer we arm now is at least 200ms in the future,
1534  * regardless of current icsk_rto value (as it could be ~2ms)
1535  */
1536 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1537 {
1538 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1539 }
1540 
1541 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1542 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1543 					    unsigned long max_when)
1544 {
1545 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1546 			   inet_csk(sk)->icsk_backoff);
1547 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1548 
1549 	return (unsigned long)min_t(u64, when, max_when);
1550 }
1551 
1552 static inline void tcp_check_probe_timer(struct sock *sk)
1553 {
1554 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1555 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1556 				     tcp_probe0_base(sk), true);
1557 }
1558 
1559 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1560 {
1561 	tp->snd_wl1 = seq;
1562 }
1563 
1564 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1565 {
1566 	tp->snd_wl1 = seq;
1567 }
1568 
1569 /*
1570  * Calculate(/check) TCP checksum
1571  */
1572 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1573 				   __be32 daddr, __wsum base)
1574 {
1575 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1576 }
1577 
1578 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1579 {
1580 	return !skb_csum_unnecessary(skb) &&
1581 		__skb_checksum_complete(skb);
1582 }
1583 
1584 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1585 		     enum skb_drop_reason *reason);
1586 
1587 
1588 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1589 void tcp_set_state(struct sock *sk, int state);
1590 void tcp_done(struct sock *sk);
1591 int tcp_abort(struct sock *sk, int err);
1592 
1593 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1594 {
1595 	rx_opt->dsack = 0;
1596 	rx_opt->num_sacks = 0;
1597 }
1598 
1599 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1600 
1601 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1602 {
1603 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1604 	struct tcp_sock *tp = tcp_sk(sk);
1605 	s32 delta;
1606 
1607 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1608 	    tp->packets_out || ca_ops->cong_control)
1609 		return;
1610 	delta = tcp_jiffies32 - tp->lsndtime;
1611 	if (delta > inet_csk(sk)->icsk_rto)
1612 		tcp_cwnd_restart(sk, delta);
1613 }
1614 
1615 /* Determine a window scaling and initial window to offer. */
1616 void tcp_select_initial_window(const struct sock *sk, int __space,
1617 			       __u32 mss, __u32 *rcv_wnd,
1618 			       __u32 *window_clamp, int wscale_ok,
1619 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1620 
1621 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1622 {
1623 	s64 scaled_space = (s64)space * scaling_ratio;
1624 
1625 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1626 }
1627 
1628 static inline int tcp_win_from_space(const struct sock *sk, int space)
1629 {
1630 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1631 }
1632 
1633 /* inverse of __tcp_win_from_space() */
1634 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1635 {
1636 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1637 
1638 	do_div(val, scaling_ratio);
1639 	return val;
1640 }
1641 
1642 static inline int tcp_space_from_win(const struct sock *sk, int win)
1643 {
1644 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1645 }
1646 
1647 /* Assume a 50% default for skb->len/skb->truesize ratio.
1648  * This may be adjusted later in tcp_measure_rcv_mss().
1649  */
1650 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1651 
1652 static inline void tcp_scaling_ratio_init(struct sock *sk)
1653 {
1654 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1655 }
1656 
1657 /* Note: caller must be prepared to deal with negative returns */
1658 static inline int tcp_space(const struct sock *sk)
1659 {
1660 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1661 				  READ_ONCE(sk->sk_backlog.len) -
1662 				  atomic_read(&sk->sk_rmem_alloc));
1663 }
1664 
1665 static inline int tcp_full_space(const struct sock *sk)
1666 {
1667 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1668 }
1669 
1670 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1671 {
1672 	int unused_mem = sk_unused_reserved_mem(sk);
1673 	struct tcp_sock *tp = tcp_sk(sk);
1674 
1675 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1676 	if (unused_mem)
1677 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1678 					 tcp_win_from_space(sk, unused_mem));
1679 }
1680 
1681 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1682 {
1683 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1684 }
1685 
1686 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1687 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1688 
1689 
1690 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1691  * If 87.5 % (7/8) of the space has been consumed, we want to override
1692  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1693  * len/truesize ratio.
1694  */
1695 static inline bool tcp_rmem_pressure(const struct sock *sk)
1696 {
1697 	int rcvbuf, threshold;
1698 
1699 	if (tcp_under_memory_pressure(sk))
1700 		return true;
1701 
1702 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1703 	threshold = rcvbuf - (rcvbuf >> 3);
1704 
1705 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1706 }
1707 
1708 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1709 {
1710 	const struct tcp_sock *tp = tcp_sk(sk);
1711 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1712 
1713 	if (avail <= 0)
1714 		return false;
1715 
1716 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1717 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1718 }
1719 
1720 extern void tcp_openreq_init_rwin(struct request_sock *req,
1721 				  const struct sock *sk_listener,
1722 				  const struct dst_entry *dst);
1723 
1724 void tcp_enter_memory_pressure(struct sock *sk);
1725 void tcp_leave_memory_pressure(struct sock *sk);
1726 
1727 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1728 {
1729 	struct net *net = sock_net((struct sock *)tp);
1730 	int val;
1731 
1732 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1733 	 * and do_tcp_setsockopt().
1734 	 */
1735 	val = READ_ONCE(tp->keepalive_intvl);
1736 
1737 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1738 }
1739 
1740 static inline int keepalive_time_when(const struct tcp_sock *tp)
1741 {
1742 	struct net *net = sock_net((struct sock *)tp);
1743 	int val;
1744 
1745 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1746 	val = READ_ONCE(tp->keepalive_time);
1747 
1748 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1749 }
1750 
1751 static inline int keepalive_probes(const struct tcp_sock *tp)
1752 {
1753 	struct net *net = sock_net((struct sock *)tp);
1754 	int val;
1755 
1756 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1757 	 * and do_tcp_setsockopt().
1758 	 */
1759 	val = READ_ONCE(tp->keepalive_probes);
1760 
1761 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1762 }
1763 
1764 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1765 {
1766 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1767 
1768 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1769 			  tcp_jiffies32 - tp->rcv_tstamp);
1770 }
1771 
1772 static inline int tcp_fin_time(const struct sock *sk)
1773 {
1774 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1775 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1776 	const int rto = inet_csk(sk)->icsk_rto;
1777 
1778 	if (fin_timeout < (rto << 2) - (rto >> 1))
1779 		fin_timeout = (rto << 2) - (rto >> 1);
1780 
1781 	return fin_timeout;
1782 }
1783 
1784 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1785 				  int paws_win)
1786 {
1787 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1788 		return true;
1789 	if (unlikely(!time_before32(ktime_get_seconds(),
1790 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1791 		return true;
1792 	/*
1793 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1794 	 * then following tcp messages have valid values. Ignore 0 value,
1795 	 * or else 'negative' tsval might forbid us to accept their packets.
1796 	 */
1797 	if (!rx_opt->ts_recent)
1798 		return true;
1799 	return false;
1800 }
1801 
1802 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1803 				   int rst)
1804 {
1805 	if (tcp_paws_check(rx_opt, 0))
1806 		return false;
1807 
1808 	/* RST segments are not recommended to carry timestamp,
1809 	   and, if they do, it is recommended to ignore PAWS because
1810 	   "their cleanup function should take precedence over timestamps."
1811 	   Certainly, it is mistake. It is necessary to understand the reasons
1812 	   of this constraint to relax it: if peer reboots, clock may go
1813 	   out-of-sync and half-open connections will not be reset.
1814 	   Actually, the problem would be not existing if all
1815 	   the implementations followed draft about maintaining clock
1816 	   via reboots. Linux-2.2 DOES NOT!
1817 
1818 	   However, we can relax time bounds for RST segments to MSL.
1819 	 */
1820 	if (rst && !time_before32(ktime_get_seconds(),
1821 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1822 		return false;
1823 	return true;
1824 }
1825 
1826 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
1827 {
1828 	u32 ace;
1829 
1830 	/* mptcp hooks are only on the slow path */
1831 	if (sk_is_mptcp((struct sock *)tp))
1832 		return;
1833 
1834 	ace = tcp_ecn_mode_accecn(tp) ?
1835 	      ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) &
1836 	       TCP_ACCECN_CEP_ACE_MASK) : 0;
1837 
1838 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1839 			       (ace << 22) |
1840 			       ntohl(TCP_FLAG_ACK) |
1841 			       snd_wnd);
1842 }
1843 
1844 static inline void tcp_fast_path_on(struct tcp_sock *tp)
1845 {
1846 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1847 }
1848 
1849 static inline void tcp_fast_path_check(struct sock *sk)
1850 {
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 
1853 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
1854 	    tp->rcv_wnd &&
1855 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1856 	    !tp->urg_data)
1857 		tcp_fast_path_on(tp);
1858 }
1859 
1860 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1861 			  int mib_idx, u32 *last_oow_ack_time);
1862 
1863 static inline void tcp_mib_init(struct net *net)
1864 {
1865 	/* See RFC 2012 */
1866 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1867 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1868 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1869 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1870 }
1871 
1872 /* from STCP */
1873 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1874 {
1875 	tp->retransmit_skb_hint = NULL;
1876 }
1877 
1878 #define tcp_md5_addr tcp_ao_addr
1879 
1880 /* - key database */
1881 struct tcp_md5sig_key {
1882 	struct hlist_node	node;
1883 	u8			keylen;
1884 	u8			family; /* AF_INET or AF_INET6 */
1885 	u8			prefixlen;
1886 	u8			flags;
1887 	union tcp_md5_addr	addr;
1888 	int			l3index; /* set if key added with L3 scope */
1889 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1890 	struct rcu_head		rcu;
1891 };
1892 
1893 /* - sock block */
1894 struct tcp_md5sig_info {
1895 	struct hlist_head	head;
1896 	struct rcu_head		rcu;
1897 };
1898 
1899 /* - pseudo header */
1900 struct tcp4_pseudohdr {
1901 	__be32		saddr;
1902 	__be32		daddr;
1903 	__u8		pad;
1904 	__u8		protocol;
1905 	__be16		len;
1906 };
1907 
1908 struct tcp6_pseudohdr {
1909 	struct in6_addr	saddr;
1910 	struct in6_addr daddr;
1911 	__be32		len;
1912 	__be32		protocol;	/* including padding */
1913 };
1914 
1915 /*
1916  * struct tcp_sigpool - per-CPU pool of ahash_requests
1917  * @scratch: per-CPU temporary area, that can be used between
1918  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1919  *	     crypto request
1920  * @req: pre-allocated ahash request
1921  */
1922 struct tcp_sigpool {
1923 	void *scratch;
1924 	struct ahash_request *req;
1925 };
1926 
1927 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1928 void tcp_sigpool_get(unsigned int id);
1929 void tcp_sigpool_release(unsigned int id);
1930 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1931 			      const struct sk_buff *skb,
1932 			      unsigned int header_len);
1933 
1934 /**
1935  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1936  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1937  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1938  *
1939  * Returns: 0 on success, error otherwise.
1940  */
1941 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1942 /**
1943  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1944  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1945  */
1946 void tcp_sigpool_end(struct tcp_sigpool *c);
1947 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1948 /* - functions */
1949 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1950 			 const struct sock *sk, const struct sk_buff *skb);
1951 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1952 		   int family, u8 prefixlen, int l3index, u8 flags,
1953 		   const u8 *newkey, u8 newkeylen);
1954 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1955 		     int family, u8 prefixlen, int l3index,
1956 		     struct tcp_md5sig_key *key);
1957 
1958 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1959 		   int family, u8 prefixlen, int l3index, u8 flags);
1960 void tcp_clear_md5_list(struct sock *sk);
1961 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1962 					 const struct sock *addr_sk);
1963 
1964 #ifdef CONFIG_TCP_MD5SIG
1965 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1966 					   const union tcp_md5_addr *addr,
1967 					   int family, bool any_l3index);
1968 static inline struct tcp_md5sig_key *
1969 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1970 		  const union tcp_md5_addr *addr, int family)
1971 {
1972 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1973 		return NULL;
1974 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1975 }
1976 
1977 static inline struct tcp_md5sig_key *
1978 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1979 			      const union tcp_md5_addr *addr, int family)
1980 {
1981 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1982 		return NULL;
1983 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1984 }
1985 
1986 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1987 void tcp_md5_destruct_sock(struct sock *sk);
1988 #else
1989 static inline struct tcp_md5sig_key *
1990 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1991 		  const union tcp_md5_addr *addr, int family)
1992 {
1993 	return NULL;
1994 }
1995 
1996 static inline struct tcp_md5sig_key *
1997 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1998 			      const union tcp_md5_addr *addr, int family)
1999 {
2000 	return NULL;
2001 }
2002 
2003 #define tcp_twsk_md5_key(twsk)	NULL
2004 static inline void tcp_md5_destruct_sock(struct sock *sk)
2005 {
2006 }
2007 #endif
2008 
2009 struct md5_ctx;
2010 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb,
2011 			   unsigned int header_len);
2012 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key);
2013 
2014 /* From tcp_fastopen.c */
2015 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
2016 			    struct tcp_fastopen_cookie *cookie);
2017 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
2018 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
2019 			    u16 try_exp);
2020 struct tcp_fastopen_request {
2021 	/* Fast Open cookie. Size 0 means a cookie request */
2022 	struct tcp_fastopen_cookie	cookie;
2023 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
2024 	size_t				size;
2025 	int				copied;	/* queued in tcp_connect() */
2026 	struct ubuf_info		*uarg;
2027 };
2028 void tcp_free_fastopen_req(struct tcp_sock *tp);
2029 void tcp_fastopen_destroy_cipher(struct sock *sk);
2030 void tcp_fastopen_ctx_destroy(struct net *net);
2031 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
2032 			      void *primary_key, void *backup_key);
2033 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
2034 			    u64 *key);
2035 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
2036 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
2037 			      struct request_sock *req,
2038 			      struct tcp_fastopen_cookie *foc,
2039 			      const struct dst_entry *dst);
2040 void tcp_fastopen_init_key_once(struct net *net);
2041 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
2042 			     struct tcp_fastopen_cookie *cookie);
2043 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2044 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2045 #define TCP_FASTOPEN_KEY_MAX 2
2046 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2047 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2048 
2049 /* Fastopen key context */
2050 struct tcp_fastopen_context {
2051 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2052 	int		num;
2053 	struct rcu_head	rcu;
2054 };
2055 
2056 void tcp_fastopen_active_disable(struct sock *sk);
2057 bool tcp_fastopen_active_should_disable(struct sock *sk);
2058 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2059 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2060 
2061 /* Caller needs to wrap with rcu_read_(un)lock() */
2062 static inline
2063 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2064 {
2065 	struct tcp_fastopen_context *ctx;
2066 
2067 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2068 	if (!ctx)
2069 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2070 	return ctx;
2071 }
2072 
2073 static inline
2074 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2075 			       const struct tcp_fastopen_cookie *orig)
2076 {
2077 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2078 	    orig->len == foc->len &&
2079 	    !memcmp(orig->val, foc->val, foc->len))
2080 		return true;
2081 	return false;
2082 }
2083 
2084 static inline
2085 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2086 {
2087 	return ctx->num;
2088 }
2089 
2090 /* Latencies incurred by various limits for a sender. They are
2091  * chronograph-like stats that are mutually exclusive.
2092  */
2093 enum tcp_chrono {
2094 	TCP_CHRONO_UNSPEC,
2095 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2096 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2097 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2098 	__TCP_CHRONO_MAX,
2099 };
2100 
2101 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2102 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2103 
2104 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2105  * the same memory storage than skb->destructor/_skb_refdst
2106  */
2107 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2108 {
2109 	skb->destructor = NULL;
2110 	skb->_skb_refdst = 0UL;
2111 }
2112 
2113 #define tcp_skb_tsorted_save(skb) {		\
2114 	unsigned long _save = skb->_skb_refdst;	\
2115 	skb->_skb_refdst = 0UL;
2116 
2117 #define tcp_skb_tsorted_restore(skb)		\
2118 	skb->_skb_refdst = _save;		\
2119 }
2120 
2121 void tcp_write_queue_purge(struct sock *sk);
2122 
2123 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2124 {
2125 	return skb_rb_first(&sk->tcp_rtx_queue);
2126 }
2127 
2128 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2129 {
2130 	return skb_rb_last(&sk->tcp_rtx_queue);
2131 }
2132 
2133 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2134 {
2135 	return skb_peek_tail(&sk->sk_write_queue);
2136 }
2137 
2138 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2139 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2140 
2141 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2142 {
2143 	return skb_peek(&sk->sk_write_queue);
2144 }
2145 
2146 static inline bool tcp_skb_is_last(const struct sock *sk,
2147 				   const struct sk_buff *skb)
2148 {
2149 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2150 }
2151 
2152 /**
2153  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2154  * @sk: socket
2155  *
2156  * Since the write queue can have a temporary empty skb in it,
2157  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2158  */
2159 static inline bool tcp_write_queue_empty(const struct sock *sk)
2160 {
2161 	const struct tcp_sock *tp = tcp_sk(sk);
2162 
2163 	return tp->write_seq == tp->snd_nxt;
2164 }
2165 
2166 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2167 {
2168 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2169 }
2170 
2171 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2172 {
2173 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2174 }
2175 
2176 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2177 {
2178 	__skb_queue_tail(&sk->sk_write_queue, skb);
2179 
2180 	/* Queue it, remembering where we must start sending. */
2181 	if (sk->sk_write_queue.next == skb)
2182 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2183 }
2184 
2185 /* Insert new before skb on the write queue of sk.  */
2186 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2187 						  struct sk_buff *skb,
2188 						  struct sock *sk)
2189 {
2190 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2191 }
2192 
2193 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2194 {
2195 	tcp_skb_tsorted_anchor_cleanup(skb);
2196 	__skb_unlink(skb, &sk->sk_write_queue);
2197 }
2198 
2199 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2200 
2201 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2202 {
2203 	tcp_skb_tsorted_anchor_cleanup(skb);
2204 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2205 }
2206 
2207 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2208 {
2209 	list_del(&skb->tcp_tsorted_anchor);
2210 	tcp_rtx_queue_unlink(skb, sk);
2211 	tcp_wmem_free_skb(sk, skb);
2212 }
2213 
2214 static inline void tcp_write_collapse_fence(struct sock *sk)
2215 {
2216 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2217 
2218 	if (skb)
2219 		TCP_SKB_CB(skb)->eor = 1;
2220 }
2221 
2222 static inline void tcp_push_pending_frames(struct sock *sk)
2223 {
2224 	if (tcp_send_head(sk)) {
2225 		struct tcp_sock *tp = tcp_sk(sk);
2226 
2227 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2228 	}
2229 }
2230 
2231 /* Start sequence of the skb just after the highest skb with SACKed
2232  * bit, valid only if sacked_out > 0 or when the caller has ensured
2233  * validity by itself.
2234  */
2235 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2236 {
2237 	if (!tp->sacked_out)
2238 		return tp->snd_una;
2239 
2240 	if (tp->highest_sack == NULL)
2241 		return tp->snd_nxt;
2242 
2243 	return TCP_SKB_CB(tp->highest_sack)->seq;
2244 }
2245 
2246 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2247 {
2248 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2249 }
2250 
2251 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2252 {
2253 	return tcp_sk(sk)->highest_sack;
2254 }
2255 
2256 static inline void tcp_highest_sack_reset(struct sock *sk)
2257 {
2258 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2259 }
2260 
2261 /* Called when old skb is about to be deleted and replaced by new skb */
2262 static inline void tcp_highest_sack_replace(struct sock *sk,
2263 					    struct sk_buff *old,
2264 					    struct sk_buff *new)
2265 {
2266 	if (old == tcp_highest_sack(sk))
2267 		tcp_sk(sk)->highest_sack = new;
2268 }
2269 
2270 /* This helper checks if socket has IP_TRANSPARENT set */
2271 static inline bool inet_sk_transparent(const struct sock *sk)
2272 {
2273 	switch (sk->sk_state) {
2274 	case TCP_TIME_WAIT:
2275 		return inet_twsk(sk)->tw_transparent;
2276 	case TCP_NEW_SYN_RECV:
2277 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2278 	}
2279 	return inet_test_bit(TRANSPARENT, sk);
2280 }
2281 
2282 /* Determines whether this is a thin stream (which may suffer from
2283  * increased latency). Used to trigger latency-reducing mechanisms.
2284  */
2285 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2286 {
2287 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2288 }
2289 
2290 /* /proc */
2291 enum tcp_seq_states {
2292 	TCP_SEQ_STATE_LISTENING,
2293 	TCP_SEQ_STATE_ESTABLISHED,
2294 };
2295 
2296 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2297 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2298 void tcp_seq_stop(struct seq_file *seq, void *v);
2299 
2300 struct tcp_seq_afinfo {
2301 	sa_family_t			family;
2302 };
2303 
2304 struct tcp_iter_state {
2305 	struct seq_net_private	p;
2306 	enum tcp_seq_states	state;
2307 	struct sock		*syn_wait_sk;
2308 	int			bucket, offset, sbucket, num;
2309 	loff_t			last_pos;
2310 };
2311 
2312 extern struct request_sock_ops tcp_request_sock_ops;
2313 extern struct request_sock_ops tcp6_request_sock_ops;
2314 
2315 void tcp_v4_destroy_sock(struct sock *sk);
2316 
2317 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2318 				netdev_features_t features);
2319 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2320 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2321 				struct tcphdr *th);
2322 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2323 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2324 #ifdef CONFIG_INET
2325 void tcp_gro_complete(struct sk_buff *skb);
2326 #else
2327 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2328 #endif
2329 
2330 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2331 
2332 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2333 {
2334 	struct net *net = sock_net((struct sock *)tp);
2335 	u32 val;
2336 
2337 	val = READ_ONCE(tp->notsent_lowat);
2338 
2339 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2340 }
2341 
2342 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2343 
2344 #ifdef CONFIG_PROC_FS
2345 int tcp4_proc_init(void);
2346 void tcp4_proc_exit(void);
2347 #endif
2348 
2349 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2350 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2351 		     const struct tcp_request_sock_ops *af_ops,
2352 		     struct sock *sk, struct sk_buff *skb);
2353 
2354 /* TCP af-specific functions */
2355 struct tcp_sock_af_ops {
2356 #ifdef CONFIG_TCP_MD5SIG
2357 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2358 						const struct sock *addr_sk);
2359 	void		(*calc_md5_hash)(char *location,
2360 					 const struct tcp_md5sig_key *md5,
2361 					 const struct sock *sk,
2362 					 const struct sk_buff *skb);
2363 	int		(*md5_parse)(struct sock *sk,
2364 				     int optname,
2365 				     sockptr_t optval,
2366 				     int optlen);
2367 #endif
2368 #ifdef CONFIG_TCP_AO
2369 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2370 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2371 					struct sock *addr_sk,
2372 					int sndid, int rcvid);
2373 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2374 			      const struct sock *sk,
2375 			      __be32 sisn, __be32 disn, bool send);
2376 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2377 			    const struct sock *sk, const struct sk_buff *skb,
2378 			    const u8 *tkey, int hash_offset, u32 sne);
2379 #endif
2380 };
2381 
2382 struct tcp_request_sock_ops {
2383 	u16 mss_clamp;
2384 #ifdef CONFIG_TCP_MD5SIG
2385 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2386 						 const struct sock *addr_sk);
2387 	void		(*calc_md5_hash) (char *location,
2388 					  const struct tcp_md5sig_key *md5,
2389 					  const struct sock *sk,
2390 					  const struct sk_buff *skb);
2391 #endif
2392 #ifdef CONFIG_TCP_AO
2393 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2394 					struct request_sock *req,
2395 					int sndid, int rcvid);
2396 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2397 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2398 			      struct request_sock *req, const struct sk_buff *skb,
2399 			      int hash_offset, u32 sne);
2400 #endif
2401 #ifdef CONFIG_SYN_COOKIES
2402 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2403 				 __u16 *mss);
2404 #endif
2405 	struct dst_entry *(*route_req)(const struct sock *sk,
2406 				       struct sk_buff *skb,
2407 				       struct flowi *fl,
2408 				       struct request_sock *req,
2409 				       u32 tw_isn);
2410 	u32 (*init_seq)(const struct sk_buff *skb);
2411 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2412 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2413 			   struct flowi *fl, struct request_sock *req,
2414 			   struct tcp_fastopen_cookie *foc,
2415 			   enum tcp_synack_type synack_type,
2416 			   struct sk_buff *syn_skb);
2417 };
2418 
2419 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2420 #if IS_ENABLED(CONFIG_IPV6)
2421 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2422 #endif
2423 
2424 #ifdef CONFIG_SYN_COOKIES
2425 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2426 					 const struct sock *sk, struct sk_buff *skb,
2427 					 __u16 *mss)
2428 {
2429 	tcp_synq_overflow(sk);
2430 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2431 	return ops->cookie_init_seq(skb, mss);
2432 }
2433 #else
2434 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2435 					 const struct sock *sk, struct sk_buff *skb,
2436 					 __u16 *mss)
2437 {
2438 	return 0;
2439 }
2440 #endif
2441 
2442 struct tcp_key {
2443 	union {
2444 		struct {
2445 			struct tcp_ao_key *ao_key;
2446 			char *traffic_key;
2447 			u32 sne;
2448 			u8 rcv_next;
2449 		};
2450 		struct tcp_md5sig_key *md5_key;
2451 	};
2452 	enum {
2453 		TCP_KEY_NONE = 0,
2454 		TCP_KEY_MD5,
2455 		TCP_KEY_AO,
2456 	} type;
2457 };
2458 
2459 static inline void tcp_get_current_key(const struct sock *sk,
2460 				       struct tcp_key *out)
2461 {
2462 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2463 	const struct tcp_sock *tp = tcp_sk(sk);
2464 #endif
2465 
2466 #ifdef CONFIG_TCP_AO
2467 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2468 		struct tcp_ao_info *ao;
2469 
2470 		ao = rcu_dereference_protected(tp->ao_info,
2471 					       lockdep_sock_is_held(sk));
2472 		if (ao) {
2473 			out->ao_key = READ_ONCE(ao->current_key);
2474 			out->type = TCP_KEY_AO;
2475 			return;
2476 		}
2477 	}
2478 #endif
2479 #ifdef CONFIG_TCP_MD5SIG
2480 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2481 	    rcu_access_pointer(tp->md5sig_info)) {
2482 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2483 		if (out->md5_key) {
2484 			out->type = TCP_KEY_MD5;
2485 			return;
2486 		}
2487 	}
2488 #endif
2489 	out->type = TCP_KEY_NONE;
2490 }
2491 
2492 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2493 {
2494 	if (static_branch_tcp_md5())
2495 		return key->type == TCP_KEY_MD5;
2496 	return false;
2497 }
2498 
2499 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2500 {
2501 	if (static_branch_tcp_ao())
2502 		return key->type == TCP_KEY_AO;
2503 	return false;
2504 }
2505 
2506 int tcpv4_offload_init(void);
2507 
2508 void tcp_v4_init(void);
2509 void tcp_init(void);
2510 
2511 /* tcp_recovery.c */
2512 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2513 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2514 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2515 				u32 reo_wnd);
2516 extern bool tcp_rack_mark_lost(struct sock *sk);
2517 extern void tcp_rack_reo_timeout(struct sock *sk);
2518 
2519 /* tcp_plb.c */
2520 
2521 /*
2522  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2523  * expects cong_ratio which represents fraction of traffic that experienced
2524  * congestion over a single RTT. In order to avoid floating point operations,
2525  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2526  */
2527 #define TCP_PLB_SCALE 8
2528 
2529 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2530 struct tcp_plb_state {
2531 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2532 		unused:3;
2533 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2534 };
2535 
2536 static inline void tcp_plb_init(const struct sock *sk,
2537 				struct tcp_plb_state *plb)
2538 {
2539 	plb->consec_cong_rounds = 0;
2540 	plb->pause_until = 0;
2541 }
2542 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2543 			  const int cong_ratio);
2544 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2545 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2546 
2547 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2548 {
2549 	WARN_ONCE(cond,
2550 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2551 		  str,
2552 		  tcp_snd_cwnd(tcp_sk(sk)),
2553 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2554 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2555 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2556 		  inet_csk(sk)->icsk_ca_state,
2557 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2558 		  inet_csk(sk)->icsk_pmtu_cookie);
2559 }
2560 
2561 /* At how many usecs into the future should the RTO fire? */
2562 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2563 {
2564 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2565 	u32 rto = inet_csk(sk)->icsk_rto;
2566 
2567 	if (likely(skb)) {
2568 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2569 
2570 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2571 	} else {
2572 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2573 		return jiffies_to_usecs(rto);
2574 	}
2575 
2576 }
2577 
2578 /*
2579  * Save and compile IPv4 options, return a pointer to it
2580  */
2581 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2582 							 struct sk_buff *skb)
2583 {
2584 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2585 	struct ip_options_rcu *dopt = NULL;
2586 
2587 	if (opt->optlen) {
2588 		int opt_size = sizeof(*dopt) + opt->optlen;
2589 
2590 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2591 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2592 			kfree(dopt);
2593 			dopt = NULL;
2594 		}
2595 	}
2596 	return dopt;
2597 }
2598 
2599 /* locally generated TCP pure ACKs have skb->truesize == 2
2600  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2601  * This is much faster than dissecting the packet to find out.
2602  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2603  */
2604 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2605 {
2606 	return skb->truesize == 2;
2607 }
2608 
2609 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2610 {
2611 	skb->truesize = 2;
2612 }
2613 
2614 static inline int tcp_inq(struct sock *sk)
2615 {
2616 	struct tcp_sock *tp = tcp_sk(sk);
2617 	int answ;
2618 
2619 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2620 		answ = 0;
2621 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2622 		   !tp->urg_data ||
2623 		   before(tp->urg_seq, tp->copied_seq) ||
2624 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2625 
2626 		answ = tp->rcv_nxt - tp->copied_seq;
2627 
2628 		/* Subtract 1, if FIN was received */
2629 		if (answ && sock_flag(sk, SOCK_DONE))
2630 			answ--;
2631 	} else {
2632 		answ = tp->urg_seq - tp->copied_seq;
2633 	}
2634 
2635 	return answ;
2636 }
2637 
2638 int tcp_peek_len(struct socket *sock);
2639 
2640 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2641 {
2642 	u16 segs_in;
2643 
2644 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2645 
2646 	/* We update these fields while other threads might
2647 	 * read them from tcp_get_info()
2648 	 */
2649 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2650 	if (skb->len > tcp_hdrlen(skb))
2651 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2652 }
2653 
2654 /*
2655  * TCP listen path runs lockless.
2656  * We forced "struct sock" to be const qualified to make sure
2657  * we don't modify one of its field by mistake.
2658  * Here, we increment sk_drops which is an atomic_t, so we can safely
2659  * make sock writable again.
2660  */
2661 static inline void tcp_listendrop(const struct sock *sk)
2662 {
2663 	sk_drops_inc((struct sock *)sk);
2664 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2665 }
2666 
2667 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2668 
2669 /*
2670  * Interface for adding Upper Level Protocols over TCP
2671  */
2672 
2673 #define TCP_ULP_NAME_MAX	16
2674 #define TCP_ULP_MAX		128
2675 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2676 
2677 struct tcp_ulp_ops {
2678 	struct list_head	list;
2679 
2680 	/* initialize ulp */
2681 	int (*init)(struct sock *sk);
2682 	/* update ulp */
2683 	void (*update)(struct sock *sk, struct proto *p,
2684 		       void (*write_space)(struct sock *sk));
2685 	/* cleanup ulp */
2686 	void (*release)(struct sock *sk);
2687 	/* diagnostic */
2688 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2689 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2690 	/* clone ulp */
2691 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2692 		      const gfp_t priority);
2693 
2694 	char		name[TCP_ULP_NAME_MAX];
2695 	struct module	*owner;
2696 };
2697 int tcp_register_ulp(struct tcp_ulp_ops *type);
2698 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2699 int tcp_set_ulp(struct sock *sk, const char *name);
2700 void tcp_get_available_ulp(char *buf, size_t len);
2701 void tcp_cleanup_ulp(struct sock *sk);
2702 void tcp_update_ulp(struct sock *sk, struct proto *p,
2703 		    void (*write_space)(struct sock *sk));
2704 
2705 #define MODULE_ALIAS_TCP_ULP(name)				\
2706 	MODULE_INFO(alias, name);		\
2707 	MODULE_INFO(alias, "tcp-ulp-" name)
2708 
2709 #ifdef CONFIG_NET_SOCK_MSG
2710 struct sk_msg;
2711 struct sk_psock;
2712 
2713 #ifdef CONFIG_BPF_SYSCALL
2714 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2715 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2716 #ifdef CONFIG_BPF_STREAM_PARSER
2717 struct strparser;
2718 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2719 			   sk_read_actor_t recv_actor);
2720 #endif /* CONFIG_BPF_STREAM_PARSER */
2721 #endif /* CONFIG_BPF_SYSCALL */
2722 
2723 #ifdef CONFIG_INET
2724 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2725 #else
2726 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2727 {
2728 }
2729 #endif
2730 
2731 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2732 			  struct sk_msg *msg, u32 bytes, int flags);
2733 #endif /* CONFIG_NET_SOCK_MSG */
2734 
2735 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2736 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2737 {
2738 }
2739 #endif
2740 
2741 #ifdef CONFIG_CGROUP_BPF
2742 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2743 				      struct sk_buff *skb,
2744 				      unsigned int end_offset)
2745 {
2746 	skops->skb = skb;
2747 	skops->skb_data_end = skb->data + end_offset;
2748 }
2749 #else
2750 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2751 				      struct sk_buff *skb,
2752 				      unsigned int end_offset)
2753 {
2754 }
2755 #endif
2756 
2757 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2758  * is < 0, then the BPF op failed (for example if the loaded BPF
2759  * program does not support the chosen operation or there is no BPF
2760  * program loaded).
2761  */
2762 #ifdef CONFIG_BPF
2763 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2764 {
2765 	struct bpf_sock_ops_kern sock_ops;
2766 	int ret;
2767 
2768 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2769 	if (sk_fullsock(sk)) {
2770 		sock_ops.is_fullsock = 1;
2771 		sock_ops.is_locked_tcp_sock = 1;
2772 		sock_owned_by_me(sk);
2773 	}
2774 
2775 	sock_ops.sk = sk;
2776 	sock_ops.op = op;
2777 	if (nargs > 0)
2778 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2779 
2780 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2781 	if (ret == 0)
2782 		ret = sock_ops.reply;
2783 	else
2784 		ret = -1;
2785 	return ret;
2786 }
2787 
2788 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2789 {
2790 	u32 args[2] = {arg1, arg2};
2791 
2792 	return tcp_call_bpf(sk, op, 2, args);
2793 }
2794 
2795 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2796 				    u32 arg3)
2797 {
2798 	u32 args[3] = {arg1, arg2, arg3};
2799 
2800 	return tcp_call_bpf(sk, op, 3, args);
2801 }
2802 
2803 #else
2804 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2805 {
2806 	return -EPERM;
2807 }
2808 
2809 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2810 {
2811 	return -EPERM;
2812 }
2813 
2814 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2815 				    u32 arg3)
2816 {
2817 	return -EPERM;
2818 }
2819 
2820 #endif
2821 
2822 static inline u32 tcp_timeout_init(struct sock *sk)
2823 {
2824 	int timeout;
2825 
2826 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2827 
2828 	if (timeout <= 0)
2829 		timeout = TCP_TIMEOUT_INIT;
2830 	return min_t(int, timeout, TCP_RTO_MAX);
2831 }
2832 
2833 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2834 {
2835 	int rwnd;
2836 
2837 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2838 
2839 	if (rwnd < 0)
2840 		rwnd = 0;
2841 	return rwnd;
2842 }
2843 
2844 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2845 {
2846 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2847 }
2848 
2849 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2850 {
2851 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2852 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2853 }
2854 
2855 #if IS_ENABLED(CONFIG_SMC)
2856 extern struct static_key_false tcp_have_smc;
2857 #endif
2858 
2859 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2860 void clean_acked_data_enable(struct tcp_sock *tp,
2861 			     void (*cad)(struct sock *sk, u32 ack_seq));
2862 void clean_acked_data_disable(struct tcp_sock *tp);
2863 void clean_acked_data_flush(void);
2864 #endif
2865 
2866 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2867 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2868 				    const struct tcp_sock *tp)
2869 {
2870 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2871 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2872 }
2873 
2874 /* Compute Earliest Departure Time for some control packets
2875  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2876  */
2877 static inline u64 tcp_transmit_time(const struct sock *sk)
2878 {
2879 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2880 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2881 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2882 
2883 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2884 	}
2885 	return 0;
2886 }
2887 
2888 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2889 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2890 {
2891 	const u8 *md5_tmp, *ao_tmp;
2892 	int ret;
2893 
2894 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2895 	if (ret)
2896 		return ret;
2897 
2898 	if (md5_hash)
2899 		*md5_hash = md5_tmp;
2900 
2901 	if (aoh) {
2902 		if (!ao_tmp)
2903 			*aoh = NULL;
2904 		else
2905 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2906 	}
2907 
2908 	return 0;
2909 }
2910 
2911 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2912 				   int family, int l3index, bool stat_inc)
2913 {
2914 #ifdef CONFIG_TCP_AO
2915 	struct tcp_ao_info *ao_info;
2916 	struct tcp_ao_key *ao_key;
2917 
2918 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2919 		return false;
2920 
2921 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2922 					lockdep_sock_is_held(sk));
2923 	if (!ao_info)
2924 		return false;
2925 
2926 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2927 	if (ao_info->ao_required || ao_key) {
2928 		if (stat_inc) {
2929 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2930 			atomic64_inc(&ao_info->counters.ao_required);
2931 		}
2932 		return true;
2933 	}
2934 #endif
2935 	return false;
2936 }
2937 
2938 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2939 		const struct request_sock *req, const struct sk_buff *skb,
2940 		const void *saddr, const void *daddr,
2941 		int family, int dif, int sdif);
2942 
2943 #endif	/* _TCP_H */
2944