1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* Default sending frequency of accurate ECN option per RTT */ 104 #define TCP_ACCECN_OPTION_BEACON 3 105 106 /* urg_data states */ 107 #define TCP_URG_VALID 0x0100 108 #define TCP_URG_NOTYET 0x0200 109 #define TCP_URG_READ 0x0400 110 111 #define TCP_RETR1 3 /* 112 * This is how many retries it does before it 113 * tries to figure out if the gateway is 114 * down. Minimal RFC value is 3; it corresponds 115 * to ~3sec-8min depending on RTO. 116 */ 117 118 #define TCP_RETR2 15 /* 119 * This should take at least 120 * 90 minutes to time out. 121 * RFC1122 says that the limit is 100 sec. 122 * 15 is ~13-30min depending on RTO. 123 */ 124 125 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 126 * when active opening a connection. 127 * RFC1122 says the minimum retry MUST 128 * be at least 180secs. Nevertheless 129 * this value is corresponding to 130 * 63secs of retransmission with the 131 * current initial RTO. 132 */ 133 134 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 135 * when passive opening a connection. 136 * This is corresponding to 31secs of 137 * retransmission with the current 138 * initial RTO. 139 */ 140 141 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 142 * state, about 60 seconds */ 143 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 144 /* BSD style FIN_WAIT2 deadlock breaker. 145 * It used to be 3min, new value is 60sec, 146 * to combine FIN-WAIT-2 timeout with 147 * TIME-WAIT timer. 148 */ 149 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 150 151 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 152 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 153 154 #if HZ >= 100 155 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 156 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 157 #else 158 #define TCP_DELACK_MIN 4U 159 #define TCP_ATO_MIN 4U 160 #endif 161 #define TCP_RTO_MAX_SEC 120 162 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 163 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 164 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 165 166 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 167 168 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 169 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 170 * used as a fallback RTO for the 171 * initial data transmission if no 172 * valid RTT sample has been acquired, 173 * most likely due to retrans in 3WHS. 174 */ 175 176 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 177 * for local resources. 178 */ 179 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 180 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 181 #define TCP_KEEPALIVE_INTVL (75*HZ) 182 183 #define MAX_TCP_KEEPIDLE 32767 184 #define MAX_TCP_KEEPINTVL 32767 185 #define MAX_TCP_KEEPCNT 127 186 #define MAX_TCP_SYNCNT 127 187 188 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 189 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 190 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 191 */ 192 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 193 194 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 195 * after this time. It should be equal 196 * (or greater than) TCP_TIMEWAIT_LEN 197 * to provide reliability equal to one 198 * provided by timewait state. 199 */ 200 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 201 * timestamps. It must be less than 202 * minimal timewait lifetime. 203 */ 204 /* 205 * TCP option 206 */ 207 208 #define TCPOPT_NOP 1 /* Padding */ 209 #define TCPOPT_EOL 0 /* End of options */ 210 #define TCPOPT_MSS 2 /* Segment size negotiating */ 211 #define TCPOPT_WINDOW 3 /* Window scaling */ 212 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 213 #define TCPOPT_SACK 5 /* SACK Block */ 214 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 215 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 216 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 217 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 218 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 219 #define TCPOPT_ACCECN0 172 /* 0xAC: Accurate ECN Order 0 */ 220 #define TCPOPT_ACCECN1 174 /* 0xAE: Accurate ECN Order 1 */ 221 #define TCPOPT_EXP 254 /* Experimental */ 222 /* Magic number to be after the option value for sharing TCP 223 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 224 */ 225 #define TCPOPT_FASTOPEN_MAGIC 0xF989 226 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 227 228 /* 229 * TCP option lengths 230 */ 231 232 #define TCPOLEN_MSS 4 233 #define TCPOLEN_WINDOW 3 234 #define TCPOLEN_SACK_PERM 2 235 #define TCPOLEN_TIMESTAMP 10 236 #define TCPOLEN_MD5SIG 18 237 #define TCPOLEN_FASTOPEN_BASE 2 238 #define TCPOLEN_ACCECN_BASE 2 239 #define TCPOLEN_EXP_FASTOPEN_BASE 4 240 #define TCPOLEN_EXP_SMC_BASE 6 241 242 /* But this is what stacks really send out. */ 243 #define TCPOLEN_TSTAMP_ALIGNED 12 244 #define TCPOLEN_WSCALE_ALIGNED 4 245 #define TCPOLEN_SACKPERM_ALIGNED 4 246 #define TCPOLEN_SACK_BASE 2 247 #define TCPOLEN_SACK_BASE_ALIGNED 4 248 #define TCPOLEN_SACK_PERBLOCK 8 249 #define TCPOLEN_MD5SIG_ALIGNED 20 250 #define TCPOLEN_MSS_ALIGNED 4 251 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 252 #define TCPOLEN_ACCECN_PERFIELD 3 253 254 /* Maximum number of byte counters in AccECN option + size */ 255 #define TCP_ACCECN_NUMFIELDS 3 256 #define TCP_ACCECN_MAXSIZE (TCPOLEN_ACCECN_BASE + \ 257 TCPOLEN_ACCECN_PERFIELD * \ 258 TCP_ACCECN_NUMFIELDS) 259 #define TCP_ACCECN_SAFETY_SHIFT 1 /* SAFETY_FACTOR in accecn draft */ 260 261 /* Flags in tp->nonagle */ 262 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 263 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 264 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 265 266 /* TCP thin-stream limits */ 267 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 268 269 /* TCP initial congestion window as per rfc6928 */ 270 #define TCP_INIT_CWND 10 271 272 /* Bit Flags for sysctl_tcp_fastopen */ 273 #define TFO_CLIENT_ENABLE 1 274 #define TFO_SERVER_ENABLE 2 275 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 276 277 /* Accept SYN data w/o any cookie option */ 278 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 279 280 /* Force enable TFO on all listeners, i.e., not requiring the 281 * TCP_FASTOPEN socket option. 282 */ 283 #define TFO_SERVER_WO_SOCKOPT1 0x400 284 285 286 /* sysctl variables for tcp */ 287 extern int sysctl_tcp_max_orphans; 288 extern long sysctl_tcp_mem[3]; 289 290 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 291 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 292 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 293 294 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 295 296 extern struct percpu_counter tcp_sockets_allocated; 297 extern unsigned long tcp_memory_pressure; 298 299 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 300 static inline bool tcp_under_memory_pressure(const struct sock *sk) 301 { 302 if (mem_cgroup_sk_enabled(sk) && 303 mem_cgroup_sk_under_memory_pressure(sk)) 304 return true; 305 306 if (sk->sk_bypass_prot_mem) 307 return false; 308 309 return READ_ONCE(tcp_memory_pressure); 310 } 311 /* 312 * The next routines deal with comparing 32 bit unsigned ints 313 * and worry about wraparound (automatic with unsigned arithmetic). 314 */ 315 316 static inline bool before(__u32 seq1, __u32 seq2) 317 { 318 return (__s32)(seq1-seq2) < 0; 319 } 320 #define after(seq2, seq1) before(seq1, seq2) 321 322 /* is s2<=s1<=s3 ? */ 323 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 324 { 325 return seq3 - seq2 >= seq1 - seq2; 326 } 327 328 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 329 { 330 sk_wmem_queued_add(sk, -skb->truesize); 331 if (!skb_zcopy_pure(skb)) 332 sk_mem_uncharge(sk, skb->truesize); 333 else 334 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 335 __kfree_skb(skb); 336 } 337 338 void sk_forced_mem_schedule(struct sock *sk, int size); 339 340 bool tcp_check_oom(const struct sock *sk, int shift); 341 342 343 extern struct proto tcp_prot; 344 345 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 346 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 347 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 348 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 349 350 void tcp_tsq_work_init(void); 351 352 int tcp_v4_err(struct sk_buff *skb, u32); 353 354 void tcp_shutdown(struct sock *sk, int how); 355 356 int tcp_v4_early_demux(struct sk_buff *skb); 357 int tcp_v4_rcv(struct sk_buff *skb); 358 359 void tcp_remove_empty_skb(struct sock *sk); 360 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 361 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 362 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 363 size_t size, struct ubuf_info *uarg); 364 void tcp_splice_eof(struct socket *sock); 365 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 366 int tcp_wmem_schedule(struct sock *sk, int copy); 367 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 368 int size_goal); 369 void tcp_release_cb(struct sock *sk); 370 void tcp_wfree(struct sk_buff *skb); 371 void tcp_write_timer_handler(struct sock *sk); 372 void tcp_delack_timer_handler(struct sock *sk); 373 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 374 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 375 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 376 void tcp_rcvbuf_grow(struct sock *sk, u32 newval); 377 void tcp_rcv_space_adjust(struct sock *sk); 378 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 379 void tcp_twsk_destructor(struct sock *sk); 380 void tcp_twsk_purge(struct list_head *net_exit_list); 381 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 382 struct pipe_inode_info *pipe, size_t len, 383 unsigned int flags); 384 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 385 bool force_schedule); 386 387 static inline void tcp_dec_quickack_mode(struct sock *sk) 388 { 389 struct inet_connection_sock *icsk = inet_csk(sk); 390 391 if (icsk->icsk_ack.quick) { 392 /* How many ACKs S/ACKing new data have we sent? */ 393 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 394 395 if (pkts >= icsk->icsk_ack.quick) { 396 icsk->icsk_ack.quick = 0; 397 /* Leaving quickack mode we deflate ATO. */ 398 icsk->icsk_ack.ato = TCP_ATO_MIN; 399 } else 400 icsk->icsk_ack.quick -= pkts; 401 } 402 } 403 404 #define TCP_ECN_MODE_RFC3168 BIT(0) 405 #define TCP_ECN_QUEUE_CWR BIT(1) 406 #define TCP_ECN_DEMAND_CWR BIT(2) 407 #define TCP_ECN_SEEN BIT(3) 408 #define TCP_ECN_MODE_ACCECN BIT(4) 409 410 #define TCP_ECN_DISABLED 0 411 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 412 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 413 414 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 415 { 416 return tp->ecn_flags & TCP_ECN_MODE_ANY; 417 } 418 419 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 420 { 421 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 422 } 423 424 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 425 { 426 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 427 } 428 429 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 430 { 431 return !tcp_ecn_mode_any(tp); 432 } 433 434 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 435 { 436 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 437 } 438 439 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 440 { 441 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 442 tp->ecn_flags |= mode; 443 } 444 445 enum tcp_tw_status { 446 TCP_TW_SUCCESS = 0, 447 TCP_TW_RST = 1, 448 TCP_TW_ACK = 2, 449 TCP_TW_SYN = 3, 450 TCP_TW_ACK_OOW = 4 451 }; 452 453 454 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 455 struct sk_buff *skb, 456 const struct tcphdr *th, 457 u32 *tw_isn, 458 enum skb_drop_reason *drop_reason); 459 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 460 struct request_sock *req, bool fastopen, 461 bool *lost_race, enum skb_drop_reason *drop_reason); 462 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 463 struct sk_buff *skb); 464 void tcp_enter_loss(struct sock *sk); 465 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 466 void tcp_clear_retrans(struct tcp_sock *tp); 467 void tcp_update_pacing_rate(struct sock *sk); 468 void tcp_set_rto(struct sock *sk); 469 void tcp_update_metrics(struct sock *sk); 470 void tcp_init_metrics(struct sock *sk); 471 void tcp_metrics_init(void); 472 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 473 void __tcp_close(struct sock *sk, long timeout); 474 void tcp_close(struct sock *sk, long timeout); 475 void tcp_init_sock(struct sock *sk); 476 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 477 __poll_t tcp_poll(struct file *file, struct socket *sock, 478 struct poll_table_struct *wait); 479 int do_tcp_getsockopt(struct sock *sk, int level, 480 int optname, sockptr_t optval, sockptr_t optlen); 481 int tcp_getsockopt(struct sock *sk, int level, int optname, 482 char __user *optval, int __user *optlen); 483 bool tcp_bpf_bypass_getsockopt(int level, int optname); 484 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 485 sockptr_t optval, unsigned int optlen); 486 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 487 unsigned int optlen); 488 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 489 void tcp_set_keepalive(struct sock *sk, int val); 490 void tcp_syn_ack_timeout(const struct request_sock *req); 491 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 492 int flags, int *addr_len); 493 int tcp_set_rcvlowat(struct sock *sk, int val); 494 int tcp_set_window_clamp(struct sock *sk, int val); 495 void tcp_update_recv_tstamps(struct sk_buff *skb, 496 struct scm_timestamping_internal *tss); 497 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 498 struct scm_timestamping_internal *tss); 499 void tcp_data_ready(struct sock *sk); 500 #ifdef CONFIG_MMU 501 int tcp_mmap(struct file *file, struct socket *sock, 502 struct vm_area_struct *vma); 503 #endif 504 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 505 struct tcp_options_received *opt_rx, 506 int estab, struct tcp_fastopen_cookie *foc); 507 508 /* 509 * BPF SKB-less helpers 510 */ 511 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 512 struct tcphdr *th, u32 *cookie); 513 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 514 struct tcphdr *th, u32 *cookie); 515 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 516 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 517 const struct tcp_request_sock_ops *af_ops, 518 struct sock *sk, struct tcphdr *th); 519 /* 520 * TCP v4 functions exported for the inet6 API 521 */ 522 523 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 524 void tcp_v4_mtu_reduced(struct sock *sk); 525 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 526 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 527 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 528 struct sock *tcp_create_openreq_child(const struct sock *sk, 529 struct request_sock *req, 530 struct sk_buff *skb); 531 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 532 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 533 struct request_sock *req, 534 struct dst_entry *dst, 535 struct request_sock *req_unhash, 536 bool *own_req); 537 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 538 int tcp_v4_connect(struct sock *sk, struct sockaddr_unsized *uaddr, int addr_len); 539 int tcp_connect(struct sock *sk); 540 enum tcp_synack_type { 541 TCP_SYNACK_NORMAL, 542 TCP_SYNACK_FASTOPEN, 543 TCP_SYNACK_COOKIE, 544 }; 545 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 546 struct request_sock *req, 547 struct tcp_fastopen_cookie *foc, 548 enum tcp_synack_type synack_type, 549 struct sk_buff *syn_skb); 550 int tcp_disconnect(struct sock *sk, int flags); 551 552 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 554 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 555 556 /* From syncookies.c */ 557 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 558 struct request_sock *req, 559 struct dst_entry *dst); 560 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 561 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 562 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 563 struct sock *sk, struct sk_buff *skb, 564 struct tcp_options_received *tcp_opt, 565 int mss, u32 tsoff); 566 567 #if IS_ENABLED(CONFIG_BPF) 568 struct bpf_tcp_req_attrs { 569 u32 rcv_tsval; 570 u32 rcv_tsecr; 571 u16 mss; 572 u8 rcv_wscale; 573 u8 snd_wscale; 574 u8 ecn_ok; 575 u8 wscale_ok; 576 u8 sack_ok; 577 u8 tstamp_ok; 578 u8 usec_ts_ok; 579 u8 reserved[3]; 580 }; 581 #endif 582 583 #ifdef CONFIG_SYN_COOKIES 584 585 /* Syncookies use a monotonic timer which increments every 60 seconds. 586 * This counter is used both as a hash input and partially encoded into 587 * the cookie value. A cookie is only validated further if the delta 588 * between the current counter value and the encoded one is less than this, 589 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 590 * the counter advances immediately after a cookie is generated). 591 */ 592 #define MAX_SYNCOOKIE_AGE 2 593 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 594 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 595 596 /* syncookies: remember time of last synqueue overflow 597 * But do not dirty this field too often (once per second is enough) 598 * It is racy as we do not hold a lock, but race is very minor. 599 */ 600 static inline void tcp_synq_overflow(const struct sock *sk) 601 { 602 unsigned int last_overflow; 603 unsigned int now = jiffies; 604 605 if (sk->sk_reuseport) { 606 struct sock_reuseport *reuse; 607 608 reuse = rcu_dereference(sk->sk_reuseport_cb); 609 if (likely(reuse)) { 610 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 611 if (!time_between32(now, last_overflow, 612 last_overflow + HZ)) 613 WRITE_ONCE(reuse->synq_overflow_ts, now); 614 return; 615 } 616 } 617 618 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 619 if (!time_between32(now, last_overflow, last_overflow + HZ)) 620 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 621 } 622 623 /* syncookies: no recent synqueue overflow on this listening socket? */ 624 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 625 { 626 unsigned int last_overflow; 627 unsigned int now = jiffies; 628 629 if (sk->sk_reuseport) { 630 struct sock_reuseport *reuse; 631 632 reuse = rcu_dereference(sk->sk_reuseport_cb); 633 if (likely(reuse)) { 634 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 635 return !time_between32(now, last_overflow - HZ, 636 last_overflow + 637 TCP_SYNCOOKIE_VALID); 638 } 639 } 640 641 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 642 643 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 644 * then we're under synflood. However, we have to use 645 * 'last_overflow - HZ' as lower bound. That's because a concurrent 646 * tcp_synq_overflow() could update .ts_recent_stamp after we read 647 * jiffies but before we store .ts_recent_stamp into last_overflow, 648 * which could lead to rejecting a valid syncookie. 649 */ 650 return !time_between32(now, last_overflow - HZ, 651 last_overflow + TCP_SYNCOOKIE_VALID); 652 } 653 654 static inline u32 tcp_cookie_time(void) 655 { 656 u64 val = get_jiffies_64(); 657 658 do_div(val, TCP_SYNCOOKIE_PERIOD); 659 return val; 660 } 661 662 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 663 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 664 { 665 if (usec_ts) 666 return div_u64(val, NSEC_PER_USEC); 667 668 return div_u64(val, NSEC_PER_MSEC); 669 } 670 671 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 672 u16 *mssp); 673 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 674 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 675 bool cookie_timestamp_decode(const struct net *net, 676 struct tcp_options_received *opt); 677 678 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 679 { 680 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 681 dst_feature(dst, RTAX_FEATURE_ECN); 682 } 683 684 #if IS_ENABLED(CONFIG_BPF) 685 static inline bool cookie_bpf_ok(struct sk_buff *skb) 686 { 687 return skb->sk; 688 } 689 690 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 691 #else 692 static inline bool cookie_bpf_ok(struct sk_buff *skb) 693 { 694 return false; 695 } 696 697 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 698 struct sk_buff *skb) 699 { 700 return NULL; 701 } 702 #endif 703 704 /* From net/ipv6/syncookies.c */ 705 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 706 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 707 708 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 709 const struct tcphdr *th, u16 *mssp); 710 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 711 #endif 712 /* tcp_output.c */ 713 714 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 715 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 716 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 717 int nonagle); 718 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 719 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 720 void tcp_retransmit_timer(struct sock *sk); 721 void tcp_xmit_retransmit_queue(struct sock *); 722 void tcp_simple_retransmit(struct sock *); 723 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 724 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 725 enum tcp_queue { 726 TCP_FRAG_IN_WRITE_QUEUE, 727 TCP_FRAG_IN_RTX_QUEUE, 728 }; 729 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 730 struct sk_buff *skb, u32 len, 731 unsigned int mss_now, gfp_t gfp); 732 733 void tcp_send_probe0(struct sock *); 734 int tcp_write_wakeup(struct sock *, int mib); 735 void tcp_send_fin(struct sock *sk); 736 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 737 enum sk_rst_reason reason); 738 int tcp_send_synack(struct sock *); 739 void tcp_push_one(struct sock *, unsigned int mss_now); 740 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 741 void tcp_send_ack(struct sock *sk); 742 void tcp_send_delayed_ack(struct sock *sk); 743 void tcp_send_loss_probe(struct sock *sk); 744 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 745 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 746 const struct sk_buff *next_skb); 747 748 /* tcp_input.c */ 749 void tcp_rearm_rto(struct sock *sk); 750 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 751 void tcp_done_with_error(struct sock *sk, int err); 752 void tcp_reset(struct sock *sk, struct sk_buff *skb); 753 void tcp_fin(struct sock *sk); 754 void tcp_check_space(struct sock *sk); 755 void tcp_sack_compress_send_ack(struct sock *sk); 756 757 static inline void tcp_cleanup_skb(struct sk_buff *skb) 758 { 759 skb_dst_drop(skb); 760 secpath_reset(skb); 761 } 762 763 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 764 { 765 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 766 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 767 __skb_queue_tail(&sk->sk_receive_queue, skb); 768 } 769 770 /* tcp_timer.c */ 771 void tcp_init_xmit_timers(struct sock *); 772 static inline void tcp_clear_xmit_timers(struct sock *sk) 773 { 774 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 775 __sock_put(sk); 776 777 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 778 __sock_put(sk); 779 780 inet_csk_clear_xmit_timers(sk); 781 } 782 783 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 784 unsigned int tcp_current_mss(struct sock *sk); 785 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 786 787 /* Bound MSS / TSO packet size with the half of the window */ 788 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 789 { 790 int cutoff; 791 792 /* When peer uses tiny windows, there is no use in packetizing 793 * to sub-MSS pieces for the sake of SWS or making sure there 794 * are enough packets in the pipe for fast recovery. 795 * 796 * On the other hand, for extremely large MSS devices, handling 797 * smaller than MSS windows in this way does make sense. 798 */ 799 if (tp->max_window > TCP_MSS_DEFAULT) 800 cutoff = (tp->max_window >> 1); 801 else 802 cutoff = tp->max_window; 803 804 if (cutoff && pktsize > cutoff) 805 return max_t(int, cutoff, 68U - tp->tcp_header_len); 806 else 807 return pktsize; 808 } 809 810 /* tcp.c */ 811 void tcp_get_info(struct sock *, struct tcp_info *); 812 void tcp_rate_check_app_limited(struct sock *sk); 813 814 /* Read 'sendfile()'-style from a TCP socket */ 815 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 816 sk_read_actor_t recv_actor); 817 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 818 sk_read_actor_t recv_actor, bool noack, 819 u32 *copied_seq); 820 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 821 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 822 void tcp_read_done(struct sock *sk, size_t len); 823 824 void tcp_initialize_rcv_mss(struct sock *sk); 825 826 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 827 int tcp_mss_to_mtu(struct sock *sk, int mss); 828 void tcp_mtup_init(struct sock *sk); 829 830 static inline unsigned int tcp_rto_max(const struct sock *sk) 831 { 832 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 833 } 834 835 static inline void tcp_bound_rto(struct sock *sk) 836 { 837 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 838 } 839 840 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 841 { 842 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 843 } 844 845 static inline unsigned long tcp_reqsk_timeout(struct request_sock *req) 846 { 847 u64 timeout = (u64)req->timeout << req->num_timeout; 848 849 return (unsigned long)min_t(u64, timeout, 850 tcp_rto_max(req->rsk_listener)); 851 } 852 853 u32 tcp_delack_max(const struct sock *sk); 854 855 /* Compute the actual rto_min value */ 856 static inline u32 tcp_rto_min(const struct sock *sk) 857 { 858 const struct dst_entry *dst = __sk_dst_get(sk); 859 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 860 861 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 862 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 863 return rto_min; 864 } 865 866 static inline u32 tcp_rto_min_us(const struct sock *sk) 867 { 868 return jiffies_to_usecs(tcp_rto_min(sk)); 869 } 870 871 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 872 { 873 return dst_metric_locked(dst, RTAX_CC_ALGO); 874 } 875 876 /* Minimum RTT in usec. ~0 means not available. */ 877 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 878 { 879 return minmax_get(&tp->rtt_min); 880 } 881 882 /* Compute the actual receive window we are currently advertising. 883 * Rcv_nxt can be after the window if our peer push more data 884 * than the offered window. 885 */ 886 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 887 { 888 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 889 890 if (win < 0) 891 win = 0; 892 return (u32) win; 893 } 894 895 /* Choose a new window, without checks for shrinking, and without 896 * scaling applied to the result. The caller does these things 897 * if necessary. This is a "raw" window selection. 898 */ 899 u32 __tcp_select_window(struct sock *sk); 900 901 void tcp_send_window_probe(struct sock *sk); 902 903 /* TCP uses 32bit jiffies to save some space. 904 * Note that this is different from tcp_time_stamp, which 905 * historically has been the same until linux-4.13. 906 */ 907 #define tcp_jiffies32 ((u32)jiffies) 908 909 /* 910 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 911 * It is no longer tied to jiffies, but to 1 ms clock. 912 * Note: double check if you want to use tcp_jiffies32 instead of this. 913 */ 914 #define TCP_TS_HZ 1000 915 916 static inline u64 tcp_clock_ns(void) 917 { 918 return ktime_get_ns(); 919 } 920 921 static inline u64 tcp_clock_us(void) 922 { 923 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 924 } 925 926 static inline u64 tcp_clock_ms(void) 927 { 928 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 929 } 930 931 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 932 * or usec resolution. Each socket carries a flag to select one or other 933 * resolution, as the route attribute could change anytime. 934 * Each flow must stick to initial resolution. 935 */ 936 static inline u32 tcp_clock_ts(bool usec_ts) 937 { 938 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 939 } 940 941 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 942 { 943 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 944 } 945 946 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 947 { 948 if (tp->tcp_usec_ts) 949 return tp->tcp_mstamp; 950 return tcp_time_stamp_ms(tp); 951 } 952 953 void tcp_mstamp_refresh(struct tcp_sock *tp); 954 955 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 956 { 957 return max_t(s64, t1 - t0, 0); 958 } 959 960 /* provide the departure time in us unit */ 961 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 962 { 963 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 964 } 965 966 /* Provide skb TSval in usec or ms unit */ 967 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 968 { 969 if (usec_ts) 970 return tcp_skb_timestamp_us(skb); 971 972 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 973 } 974 975 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 976 { 977 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 978 } 979 980 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 981 { 982 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 983 } 984 985 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 986 987 #define TCPHDR_FIN BIT(0) 988 #define TCPHDR_SYN BIT(1) 989 #define TCPHDR_RST BIT(2) 990 #define TCPHDR_PSH BIT(3) 991 #define TCPHDR_ACK BIT(4) 992 #define TCPHDR_URG BIT(5) 993 #define TCPHDR_ECE BIT(6) 994 #define TCPHDR_CWR BIT(7) 995 #define TCPHDR_AE BIT(8) 996 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 997 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 998 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 999 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 1000 TCPHDR_FLAGS_MASK) 1001 1002 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 1003 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 1004 #define TCPHDR_SYNACK_ACCECN (TCPHDR_SYN | TCPHDR_ACK | TCPHDR_CWR) 1005 1006 #define TCP_ACCECN_CEP_ACE_MASK 0x7 1007 #define TCP_ACCECN_ACE_MAX_DELTA 6 1008 1009 /* To avoid/detect middlebox interference, not all counters start at 0. 1010 * See draft-ietf-tcpm-accurate-ecn for the latest values. 1011 */ 1012 #define TCP_ACCECN_CEP_INIT_OFFSET 5 1013 #define TCP_ACCECN_E1B_INIT_OFFSET 1 1014 #define TCP_ACCECN_E0B_INIT_OFFSET 1 1015 #define TCP_ACCECN_CEB_INIT_OFFSET 0 1016 1017 /* State flags for sacked in struct tcp_skb_cb */ 1018 enum tcp_skb_cb_sacked_flags { 1019 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1020 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1021 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1022 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1023 TCPCB_LOST), /* All tag bits */ 1024 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1025 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1026 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1027 TCPCB_REPAIRED), 1028 }; 1029 1030 /* This is what the send packet queuing engine uses to pass 1031 * TCP per-packet control information to the transmission code. 1032 * We also store the host-order sequence numbers in here too. 1033 * This is 44 bytes if IPV6 is enabled. 1034 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1035 */ 1036 struct tcp_skb_cb { 1037 __u32 seq; /* Starting sequence number */ 1038 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1039 union { 1040 /* Note : 1041 * tcp_gso_segs/size are used in write queue only, 1042 * cf tcp_skb_pcount()/tcp_skb_mss() 1043 */ 1044 struct { 1045 u16 tcp_gso_segs; 1046 u16 tcp_gso_size; 1047 }; 1048 }; 1049 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1050 1051 __u8 sacked; /* State flags for SACK. */ 1052 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1053 #define TSTAMP_ACK_SK 0x1 1054 #define TSTAMP_ACK_BPF 0x2 1055 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1056 eor:1, /* Is skb MSG_EOR marked? */ 1057 has_rxtstamp:1, /* SKB has a RX timestamp */ 1058 unused:4; 1059 __u32 ack_seq; /* Sequence number ACK'd */ 1060 union { 1061 struct { 1062 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1063 /* There is space for up to 24 bytes */ 1064 __u32 is_app_limited:1, /* cwnd not fully used? */ 1065 delivered_ce:20, 1066 unused:11; 1067 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1068 __u32 delivered; 1069 /* start of send pipeline phase */ 1070 u64 first_tx_mstamp; 1071 /* when we reached the "delivered" count */ 1072 u64 delivered_mstamp; 1073 } tx; /* only used for outgoing skbs */ 1074 union { 1075 struct inet_skb_parm h4; 1076 #if IS_ENABLED(CONFIG_IPV6) 1077 struct inet6_skb_parm h6; 1078 #endif 1079 } header; /* For incoming skbs */ 1080 }; 1081 }; 1082 1083 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1084 1085 extern const struct inet_connection_sock_af_ops ipv4_specific; 1086 1087 #if IS_ENABLED(CONFIG_IPV6) 1088 /* This is the variant of inet6_iif() that must be used by TCP, 1089 * as TCP moves IP6CB into a different location in skb->cb[] 1090 */ 1091 static inline int tcp_v6_iif(const struct sk_buff *skb) 1092 { 1093 return TCP_SKB_CB(skb)->header.h6.iif; 1094 } 1095 1096 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1097 { 1098 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1099 1100 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1101 } 1102 1103 /* TCP_SKB_CB reference means this can not be used from early demux */ 1104 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1105 { 1106 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1107 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1108 return TCP_SKB_CB(skb)->header.h6.iif; 1109 #endif 1110 return 0; 1111 } 1112 1113 extern const struct inet_connection_sock_af_ops ipv6_specific; 1114 1115 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1116 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1117 void tcp_v6_early_demux(struct sk_buff *skb); 1118 1119 #endif 1120 1121 /* TCP_SKB_CB reference means this can not be used from early demux */ 1122 static inline int tcp_v4_sdif(struct sk_buff *skb) 1123 { 1124 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1125 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1126 return TCP_SKB_CB(skb)->header.h4.iif; 1127 #endif 1128 return 0; 1129 } 1130 1131 /* Due to TSO, an SKB can be composed of multiple actual 1132 * packets. To keep these tracked properly, we use this. 1133 */ 1134 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1135 { 1136 return TCP_SKB_CB(skb)->tcp_gso_segs; 1137 } 1138 1139 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1140 { 1141 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1142 } 1143 1144 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1145 { 1146 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1147 } 1148 1149 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1150 static inline int tcp_skb_mss(const struct sk_buff *skb) 1151 { 1152 return TCP_SKB_CB(skb)->tcp_gso_size; 1153 } 1154 1155 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1156 { 1157 return likely(!TCP_SKB_CB(skb)->eor); 1158 } 1159 1160 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1161 const struct sk_buff *from) 1162 { 1163 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1164 return likely(tcp_skb_can_collapse_to(to) && 1165 mptcp_skb_can_collapse(to, from) && 1166 skb_pure_zcopy_same(to, from) && 1167 skb_frags_readable(to) == skb_frags_readable(from)); 1168 } 1169 1170 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1171 const struct sk_buff *from) 1172 { 1173 return likely(mptcp_skb_can_collapse(to, from) && 1174 !skb_cmp_decrypted(to, from)); 1175 } 1176 1177 /* Events passed to congestion control interface */ 1178 enum tcp_ca_event { 1179 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1180 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1181 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1182 CA_EVENT_LOSS, /* loss timeout */ 1183 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1184 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1185 }; 1186 1187 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1188 enum tcp_ca_ack_event_flags { 1189 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1190 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1191 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1192 }; 1193 1194 /* 1195 * Interface for adding new TCP congestion control handlers 1196 */ 1197 #define TCP_CA_NAME_MAX 16 1198 #define TCP_CA_MAX 128 1199 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1200 1201 #define TCP_CA_UNSPEC 0 1202 1203 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1204 #define TCP_CONG_NON_RESTRICTED BIT(0) 1205 /* Requires ECN/ECT set on all packets */ 1206 #define TCP_CONG_NEEDS_ECN BIT(1) 1207 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1208 1209 union tcp_cc_info; 1210 1211 struct ack_sample { 1212 u32 pkts_acked; 1213 s32 rtt_us; 1214 u32 in_flight; 1215 }; 1216 1217 /* A rate sample measures the number of (original/retransmitted) data 1218 * packets delivered "delivered" over an interval of time "interval_us". 1219 * The tcp_rate.c code fills in the rate sample, and congestion 1220 * control modules that define a cong_control function to run at the end 1221 * of ACK processing can optionally chose to consult this sample when 1222 * setting cwnd and pacing rate. 1223 * A sample is invalid if "delivered" or "interval_us" is negative. 1224 */ 1225 struct rate_sample { 1226 u64 prior_mstamp; /* starting timestamp for interval */ 1227 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1228 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1229 s32 delivered; /* number of packets delivered over interval */ 1230 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1231 long interval_us; /* time for tp->delivered to incr "delivered" */ 1232 u32 snd_interval_us; /* snd interval for delivered packets */ 1233 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1234 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1235 int losses; /* number of packets marked lost upon ACK */ 1236 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1237 u32 prior_in_flight; /* in flight before this ACK */ 1238 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1239 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1240 bool is_retrans; /* is sample from retransmission? */ 1241 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1242 }; 1243 1244 struct tcp_congestion_ops { 1245 /* fast path fields are put first to fill one cache line */ 1246 1247 /* A congestion control (CC) must provide one of either: 1248 * 1249 * (a) a cong_avoid function, if the CC wants to use the core TCP 1250 * stack's default functionality to implement a "classic" 1251 * (Reno/CUBIC-style) response to packet loss, RFC3168 ECN, 1252 * idle periods, pacing rate computations, etc. 1253 * 1254 * (b) a cong_control function, if the CC wants custom behavior and 1255 * complete control of all congestion control behaviors. 1256 */ 1257 /* (a) "classic" response: calculate new cwnd. 1258 */ 1259 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1260 /* (b) "custom" response: call when packets are delivered to update 1261 * cwnd and pacing rate, after all the ca_state processing. 1262 */ 1263 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1264 1265 /* return slow start threshold (required) */ 1266 u32 (*ssthresh)(struct sock *sk); 1267 1268 /* call before changing ca_state (optional) */ 1269 void (*set_state)(struct sock *sk, u8 new_state); 1270 1271 /* call when cwnd event occurs (optional) */ 1272 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1273 1274 /* call when ack arrives (optional) */ 1275 void (*in_ack_event)(struct sock *sk, u32 flags); 1276 1277 /* hook for packet ack accounting (optional) */ 1278 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1279 1280 /* override sysctl_tcp_min_tso_segs (optional) */ 1281 u32 (*min_tso_segs)(struct sock *sk); 1282 1283 /* new value of cwnd after loss (required) */ 1284 u32 (*undo_cwnd)(struct sock *sk); 1285 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1286 u32 (*sndbuf_expand)(struct sock *sk); 1287 1288 /* control/slow paths put last */ 1289 /* get info for inet_diag (optional) */ 1290 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1291 union tcp_cc_info *info); 1292 1293 char name[TCP_CA_NAME_MAX]; 1294 struct module *owner; 1295 struct list_head list; 1296 u32 key; 1297 u32 flags; 1298 1299 /* initialize private data (optional) */ 1300 void (*init)(struct sock *sk); 1301 /* cleanup private data (optional) */ 1302 void (*release)(struct sock *sk); 1303 } ____cacheline_aligned_in_smp; 1304 1305 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1306 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1307 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1308 struct tcp_congestion_ops *old_type); 1309 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1310 1311 void tcp_assign_congestion_control(struct sock *sk); 1312 void tcp_init_congestion_control(struct sock *sk); 1313 void tcp_cleanup_congestion_control(struct sock *sk); 1314 int tcp_set_default_congestion_control(struct net *net, const char *name); 1315 void tcp_get_default_congestion_control(struct net *net, char *name); 1316 void tcp_get_available_congestion_control(char *buf, size_t len); 1317 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1318 int tcp_set_allowed_congestion_control(char *allowed); 1319 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1320 bool cap_net_admin); 1321 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1322 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1323 1324 u32 tcp_reno_ssthresh(struct sock *sk); 1325 u32 tcp_reno_undo_cwnd(struct sock *sk); 1326 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1327 extern struct tcp_congestion_ops tcp_reno; 1328 1329 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1330 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1331 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1332 #ifdef CONFIG_INET 1333 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1334 #else 1335 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1336 { 1337 return NULL; 1338 } 1339 #endif 1340 1341 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1342 { 1343 const struct inet_connection_sock *icsk = inet_csk(sk); 1344 1345 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1346 } 1347 1348 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1349 { 1350 const struct inet_connection_sock *icsk = inet_csk(sk); 1351 1352 if (icsk->icsk_ca_ops->cwnd_event) 1353 icsk->icsk_ca_ops->cwnd_event(sk, event); 1354 } 1355 1356 /* From tcp_cong.c */ 1357 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1358 1359 1360 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1361 { 1362 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1363 } 1364 1365 /* These functions determine how the current flow behaves in respect of SACK 1366 * handling. SACK is negotiated with the peer, and therefore it can vary 1367 * between different flows. 1368 * 1369 * tcp_is_sack - SACK enabled 1370 * tcp_is_reno - No SACK 1371 */ 1372 static inline int tcp_is_sack(const struct tcp_sock *tp) 1373 { 1374 return likely(tp->rx_opt.sack_ok); 1375 } 1376 1377 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1378 { 1379 return !tcp_is_sack(tp); 1380 } 1381 1382 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1383 { 1384 return tp->sacked_out + tp->lost_out; 1385 } 1386 1387 /* This determines how many packets are "in the network" to the best 1388 * of our knowledge. In many cases it is conservative, but where 1389 * detailed information is available from the receiver (via SACK 1390 * blocks etc.) we can make more aggressive calculations. 1391 * 1392 * Use this for decisions involving congestion control, use just 1393 * tp->packets_out to determine if the send queue is empty or not. 1394 * 1395 * Read this equation as: 1396 * 1397 * "Packets sent once on transmission queue" MINUS 1398 * "Packets left network, but not honestly ACKed yet" PLUS 1399 * "Packets fast retransmitted" 1400 */ 1401 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1402 { 1403 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1404 } 1405 1406 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1407 1408 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1409 { 1410 return tp->snd_cwnd; 1411 } 1412 1413 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1414 { 1415 WARN_ON_ONCE((int)val <= 0); 1416 tp->snd_cwnd = val; 1417 } 1418 1419 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1420 { 1421 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1422 } 1423 1424 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1425 { 1426 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1427 } 1428 1429 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1430 { 1431 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1432 (1 << inet_csk(sk)->icsk_ca_state); 1433 } 1434 1435 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1436 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1437 * ssthresh. 1438 */ 1439 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1440 { 1441 const struct tcp_sock *tp = tcp_sk(sk); 1442 1443 if (tcp_in_cwnd_reduction(sk)) 1444 return tp->snd_ssthresh; 1445 else 1446 return max(tp->snd_ssthresh, 1447 ((tcp_snd_cwnd(tp) >> 1) + 1448 (tcp_snd_cwnd(tp) >> 2))); 1449 } 1450 1451 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1452 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1453 1454 void tcp_enter_cwr(struct sock *sk); 1455 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1456 1457 /* The maximum number of MSS of available cwnd for which TSO defers 1458 * sending if not using sysctl_tcp_tso_win_divisor. 1459 */ 1460 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1461 { 1462 return 3; 1463 } 1464 1465 /* Returns end sequence number of the receiver's advertised window */ 1466 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1467 { 1468 return tp->snd_una + tp->snd_wnd; 1469 } 1470 1471 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1472 * flexible approach. The RFC suggests cwnd should not be raised unless 1473 * it was fully used previously. And that's exactly what we do in 1474 * congestion avoidance mode. But in slow start we allow cwnd to grow 1475 * as long as the application has used half the cwnd. 1476 * Example : 1477 * cwnd is 10 (IW10), but application sends 9 frames. 1478 * We allow cwnd to reach 18 when all frames are ACKed. 1479 * This check is safe because it's as aggressive as slow start which already 1480 * risks 100% overshoot. The advantage is that we discourage application to 1481 * either send more filler packets or data to artificially blow up the cwnd 1482 * usage, and allow application-limited process to probe bw more aggressively. 1483 */ 1484 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1485 { 1486 const struct tcp_sock *tp = tcp_sk(sk); 1487 1488 if (tp->is_cwnd_limited) 1489 return true; 1490 1491 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1492 if (tcp_in_slow_start(tp)) 1493 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1494 1495 return false; 1496 } 1497 1498 /* BBR congestion control needs pacing. 1499 * Same remark for SO_MAX_PACING_RATE. 1500 * sch_fq packet scheduler is efficiently handling pacing, 1501 * but is not always installed/used. 1502 * Return true if TCP stack should pace packets itself. 1503 */ 1504 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1505 { 1506 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1507 } 1508 1509 /* Estimates in how many jiffies next packet for this flow can be sent. 1510 * Scheduling a retransmit timer too early would be silly. 1511 */ 1512 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1513 { 1514 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1515 1516 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1517 } 1518 1519 static inline void tcp_reset_xmit_timer(struct sock *sk, 1520 const int what, 1521 unsigned long when, 1522 bool pace_delay) 1523 { 1524 if (pace_delay) 1525 when += tcp_pacing_delay(sk); 1526 inet_csk_reset_xmit_timer(sk, what, when, 1527 tcp_rto_max(sk)); 1528 } 1529 1530 /* Something is really bad, we could not queue an additional packet, 1531 * because qdisc is full or receiver sent a 0 window, or we are paced. 1532 * We do not want to add fuel to the fire, or abort too early, 1533 * so make sure the timer we arm now is at least 200ms in the future, 1534 * regardless of current icsk_rto value (as it could be ~2ms) 1535 */ 1536 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1537 { 1538 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1539 } 1540 1541 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1542 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1543 unsigned long max_when) 1544 { 1545 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1546 inet_csk(sk)->icsk_backoff); 1547 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1548 1549 return (unsigned long)min_t(u64, when, max_when); 1550 } 1551 1552 static inline void tcp_check_probe_timer(struct sock *sk) 1553 { 1554 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1555 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1556 tcp_probe0_base(sk), true); 1557 } 1558 1559 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1560 { 1561 tp->snd_wl1 = seq; 1562 } 1563 1564 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1565 { 1566 tp->snd_wl1 = seq; 1567 } 1568 1569 /* 1570 * Calculate(/check) TCP checksum 1571 */ 1572 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1573 __be32 daddr, __wsum base) 1574 { 1575 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1576 } 1577 1578 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1579 { 1580 return !skb_csum_unnecessary(skb) && 1581 __skb_checksum_complete(skb); 1582 } 1583 1584 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1585 enum skb_drop_reason *reason); 1586 1587 1588 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1589 void tcp_set_state(struct sock *sk, int state); 1590 void tcp_done(struct sock *sk); 1591 int tcp_abort(struct sock *sk, int err); 1592 1593 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1594 { 1595 rx_opt->dsack = 0; 1596 rx_opt->num_sacks = 0; 1597 } 1598 1599 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1600 1601 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1602 { 1603 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1604 struct tcp_sock *tp = tcp_sk(sk); 1605 s32 delta; 1606 1607 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1608 tp->packets_out || ca_ops->cong_control) 1609 return; 1610 delta = tcp_jiffies32 - tp->lsndtime; 1611 if (delta > inet_csk(sk)->icsk_rto) 1612 tcp_cwnd_restart(sk, delta); 1613 } 1614 1615 /* Determine a window scaling and initial window to offer. */ 1616 void tcp_select_initial_window(const struct sock *sk, int __space, 1617 __u32 mss, __u32 *rcv_wnd, 1618 __u32 *window_clamp, int wscale_ok, 1619 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1620 1621 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1622 { 1623 s64 scaled_space = (s64)space * scaling_ratio; 1624 1625 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1626 } 1627 1628 static inline int tcp_win_from_space(const struct sock *sk, int space) 1629 { 1630 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1631 } 1632 1633 /* inverse of __tcp_win_from_space() */ 1634 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1635 { 1636 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1637 1638 do_div(val, scaling_ratio); 1639 return val; 1640 } 1641 1642 static inline int tcp_space_from_win(const struct sock *sk, int win) 1643 { 1644 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1645 } 1646 1647 /* Assume a 50% default for skb->len/skb->truesize ratio. 1648 * This may be adjusted later in tcp_measure_rcv_mss(). 1649 */ 1650 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1651 1652 static inline void tcp_scaling_ratio_init(struct sock *sk) 1653 { 1654 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1655 } 1656 1657 /* Note: caller must be prepared to deal with negative returns */ 1658 static inline int tcp_space(const struct sock *sk) 1659 { 1660 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1661 READ_ONCE(sk->sk_backlog.len) - 1662 atomic_read(&sk->sk_rmem_alloc)); 1663 } 1664 1665 static inline int tcp_full_space(const struct sock *sk) 1666 { 1667 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1668 } 1669 1670 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1671 { 1672 int unused_mem = sk_unused_reserved_mem(sk); 1673 struct tcp_sock *tp = tcp_sk(sk); 1674 1675 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1676 if (unused_mem) 1677 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1678 tcp_win_from_space(sk, unused_mem)); 1679 } 1680 1681 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1682 { 1683 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1684 } 1685 1686 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1687 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1688 1689 1690 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1691 * If 87.5 % (7/8) of the space has been consumed, we want to override 1692 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1693 * len/truesize ratio. 1694 */ 1695 static inline bool tcp_rmem_pressure(const struct sock *sk) 1696 { 1697 int rcvbuf, threshold; 1698 1699 if (tcp_under_memory_pressure(sk)) 1700 return true; 1701 1702 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1703 threshold = rcvbuf - (rcvbuf >> 3); 1704 1705 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1706 } 1707 1708 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1709 { 1710 const struct tcp_sock *tp = tcp_sk(sk); 1711 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1712 1713 if (avail <= 0) 1714 return false; 1715 1716 return (avail >= target) || tcp_rmem_pressure(sk) || 1717 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1718 } 1719 1720 extern void tcp_openreq_init_rwin(struct request_sock *req, 1721 const struct sock *sk_listener, 1722 const struct dst_entry *dst); 1723 1724 void tcp_enter_memory_pressure(struct sock *sk); 1725 void tcp_leave_memory_pressure(struct sock *sk); 1726 1727 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1728 { 1729 struct net *net = sock_net((struct sock *)tp); 1730 int val; 1731 1732 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1733 * and do_tcp_setsockopt(). 1734 */ 1735 val = READ_ONCE(tp->keepalive_intvl); 1736 1737 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1738 } 1739 1740 static inline int keepalive_time_when(const struct tcp_sock *tp) 1741 { 1742 struct net *net = sock_net((struct sock *)tp); 1743 int val; 1744 1745 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1746 val = READ_ONCE(tp->keepalive_time); 1747 1748 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1749 } 1750 1751 static inline int keepalive_probes(const struct tcp_sock *tp) 1752 { 1753 struct net *net = sock_net((struct sock *)tp); 1754 int val; 1755 1756 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1757 * and do_tcp_setsockopt(). 1758 */ 1759 val = READ_ONCE(tp->keepalive_probes); 1760 1761 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1762 } 1763 1764 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1765 { 1766 const struct inet_connection_sock *icsk = &tp->inet_conn; 1767 1768 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1769 tcp_jiffies32 - tp->rcv_tstamp); 1770 } 1771 1772 static inline int tcp_fin_time(const struct sock *sk) 1773 { 1774 int fin_timeout = tcp_sk(sk)->linger2 ? : 1775 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1776 const int rto = inet_csk(sk)->icsk_rto; 1777 1778 if (fin_timeout < (rto << 2) - (rto >> 1)) 1779 fin_timeout = (rto << 2) - (rto >> 1); 1780 1781 return fin_timeout; 1782 } 1783 1784 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1785 int paws_win) 1786 { 1787 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1788 return true; 1789 if (unlikely(!time_before32(ktime_get_seconds(), 1790 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1791 return true; 1792 /* 1793 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1794 * then following tcp messages have valid values. Ignore 0 value, 1795 * or else 'negative' tsval might forbid us to accept their packets. 1796 */ 1797 if (!rx_opt->ts_recent) 1798 return true; 1799 return false; 1800 } 1801 1802 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1803 int rst) 1804 { 1805 if (tcp_paws_check(rx_opt, 0)) 1806 return false; 1807 1808 /* RST segments are not recommended to carry timestamp, 1809 and, if they do, it is recommended to ignore PAWS because 1810 "their cleanup function should take precedence over timestamps." 1811 Certainly, it is mistake. It is necessary to understand the reasons 1812 of this constraint to relax it: if peer reboots, clock may go 1813 out-of-sync and half-open connections will not be reset. 1814 Actually, the problem would be not existing if all 1815 the implementations followed draft about maintaining clock 1816 via reboots. Linux-2.2 DOES NOT! 1817 1818 However, we can relax time bounds for RST segments to MSL. 1819 */ 1820 if (rst && !time_before32(ktime_get_seconds(), 1821 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1822 return false; 1823 return true; 1824 } 1825 1826 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 1827 { 1828 u32 ace; 1829 1830 /* mptcp hooks are only on the slow path */ 1831 if (sk_is_mptcp((struct sock *)tp)) 1832 return; 1833 1834 ace = tcp_ecn_mode_accecn(tp) ? 1835 ((tp->delivered_ce + TCP_ACCECN_CEP_INIT_OFFSET) & 1836 TCP_ACCECN_CEP_ACE_MASK) : 0; 1837 1838 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 1839 (ace << 22) | 1840 ntohl(TCP_FLAG_ACK) | 1841 snd_wnd); 1842 } 1843 1844 static inline void tcp_fast_path_on(struct tcp_sock *tp) 1845 { 1846 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 1847 } 1848 1849 static inline void tcp_fast_path_check(struct sock *sk) 1850 { 1851 struct tcp_sock *tp = tcp_sk(sk); 1852 1853 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 1854 tp->rcv_wnd && 1855 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 1856 !tp->urg_data) 1857 tcp_fast_path_on(tp); 1858 } 1859 1860 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1861 int mib_idx, u32 *last_oow_ack_time); 1862 1863 static inline void tcp_mib_init(struct net *net) 1864 { 1865 /* See RFC 2012 */ 1866 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1867 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1868 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1869 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1870 } 1871 1872 /* from STCP */ 1873 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1874 { 1875 tp->retransmit_skb_hint = NULL; 1876 } 1877 1878 #define tcp_md5_addr tcp_ao_addr 1879 1880 /* - key database */ 1881 struct tcp_md5sig_key { 1882 struct hlist_node node; 1883 u8 keylen; 1884 u8 family; /* AF_INET or AF_INET6 */ 1885 u8 prefixlen; 1886 u8 flags; 1887 union tcp_md5_addr addr; 1888 int l3index; /* set if key added with L3 scope */ 1889 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1890 struct rcu_head rcu; 1891 }; 1892 1893 /* - sock block */ 1894 struct tcp_md5sig_info { 1895 struct hlist_head head; 1896 struct rcu_head rcu; 1897 }; 1898 1899 /* - pseudo header */ 1900 struct tcp4_pseudohdr { 1901 __be32 saddr; 1902 __be32 daddr; 1903 __u8 pad; 1904 __u8 protocol; 1905 __be16 len; 1906 }; 1907 1908 struct tcp6_pseudohdr { 1909 struct in6_addr saddr; 1910 struct in6_addr daddr; 1911 __be32 len; 1912 __be32 protocol; /* including padding */ 1913 }; 1914 1915 /* 1916 * struct tcp_sigpool - per-CPU pool of ahash_requests 1917 * @scratch: per-CPU temporary area, that can be used between 1918 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1919 * crypto request 1920 * @req: pre-allocated ahash request 1921 */ 1922 struct tcp_sigpool { 1923 void *scratch; 1924 struct ahash_request *req; 1925 }; 1926 1927 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1928 void tcp_sigpool_get(unsigned int id); 1929 void tcp_sigpool_release(unsigned int id); 1930 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1931 const struct sk_buff *skb, 1932 unsigned int header_len); 1933 1934 /** 1935 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1936 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1937 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1938 * 1939 * Returns: 0 on success, error otherwise. 1940 */ 1941 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1942 /** 1943 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1944 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1945 */ 1946 void tcp_sigpool_end(struct tcp_sigpool *c); 1947 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1948 /* - functions */ 1949 void tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1950 const struct sock *sk, const struct sk_buff *skb); 1951 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1952 int family, u8 prefixlen, int l3index, u8 flags, 1953 const u8 *newkey, u8 newkeylen); 1954 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1955 int family, u8 prefixlen, int l3index, 1956 struct tcp_md5sig_key *key); 1957 1958 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1959 int family, u8 prefixlen, int l3index, u8 flags); 1960 void tcp_clear_md5_list(struct sock *sk); 1961 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1962 const struct sock *addr_sk); 1963 1964 #ifdef CONFIG_TCP_MD5SIG 1965 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1966 const union tcp_md5_addr *addr, 1967 int family, bool any_l3index); 1968 static inline struct tcp_md5sig_key * 1969 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1970 const union tcp_md5_addr *addr, int family) 1971 { 1972 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1973 return NULL; 1974 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1975 } 1976 1977 static inline struct tcp_md5sig_key * 1978 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1979 const union tcp_md5_addr *addr, int family) 1980 { 1981 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1982 return NULL; 1983 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1984 } 1985 1986 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1987 void tcp_md5_destruct_sock(struct sock *sk); 1988 #else 1989 static inline struct tcp_md5sig_key * 1990 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1991 const union tcp_md5_addr *addr, int family) 1992 { 1993 return NULL; 1994 } 1995 1996 static inline struct tcp_md5sig_key * 1997 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1998 const union tcp_md5_addr *addr, int family) 1999 { 2000 return NULL; 2001 } 2002 2003 #define tcp_twsk_md5_key(twsk) NULL 2004 static inline void tcp_md5_destruct_sock(struct sock *sk) 2005 { 2006 } 2007 #endif 2008 2009 struct md5_ctx; 2010 void tcp_md5_hash_skb_data(struct md5_ctx *ctx, const struct sk_buff *skb, 2011 unsigned int header_len); 2012 void tcp_md5_hash_key(struct md5_ctx *ctx, const struct tcp_md5sig_key *key); 2013 2014 /* From tcp_fastopen.c */ 2015 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 2016 struct tcp_fastopen_cookie *cookie); 2017 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 2018 struct tcp_fastopen_cookie *cookie, bool syn_lost, 2019 u16 try_exp); 2020 struct tcp_fastopen_request { 2021 /* Fast Open cookie. Size 0 means a cookie request */ 2022 struct tcp_fastopen_cookie cookie; 2023 struct msghdr *data; /* data in MSG_FASTOPEN */ 2024 size_t size; 2025 int copied; /* queued in tcp_connect() */ 2026 struct ubuf_info *uarg; 2027 }; 2028 void tcp_free_fastopen_req(struct tcp_sock *tp); 2029 void tcp_fastopen_destroy_cipher(struct sock *sk); 2030 void tcp_fastopen_ctx_destroy(struct net *net); 2031 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 2032 void *primary_key, void *backup_key); 2033 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 2034 u64 *key); 2035 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 2036 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 2037 struct request_sock *req, 2038 struct tcp_fastopen_cookie *foc, 2039 const struct dst_entry *dst); 2040 void tcp_fastopen_init_key_once(struct net *net); 2041 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 2042 struct tcp_fastopen_cookie *cookie); 2043 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2044 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2045 #define TCP_FASTOPEN_KEY_MAX 2 2046 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2047 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2048 2049 /* Fastopen key context */ 2050 struct tcp_fastopen_context { 2051 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2052 int num; 2053 struct rcu_head rcu; 2054 }; 2055 2056 void tcp_fastopen_active_disable(struct sock *sk); 2057 bool tcp_fastopen_active_should_disable(struct sock *sk); 2058 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2059 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2060 2061 /* Caller needs to wrap with rcu_read_(un)lock() */ 2062 static inline 2063 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2064 { 2065 struct tcp_fastopen_context *ctx; 2066 2067 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2068 if (!ctx) 2069 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2070 return ctx; 2071 } 2072 2073 static inline 2074 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2075 const struct tcp_fastopen_cookie *orig) 2076 { 2077 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2078 orig->len == foc->len && 2079 !memcmp(orig->val, foc->val, foc->len)) 2080 return true; 2081 return false; 2082 } 2083 2084 static inline 2085 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2086 { 2087 return ctx->num; 2088 } 2089 2090 /* Latencies incurred by various limits for a sender. They are 2091 * chronograph-like stats that are mutually exclusive. 2092 */ 2093 enum tcp_chrono { 2094 TCP_CHRONO_UNSPEC, 2095 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2096 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2097 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2098 __TCP_CHRONO_MAX, 2099 }; 2100 2101 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2102 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2103 2104 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2105 * the same memory storage than skb->destructor/_skb_refdst 2106 */ 2107 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2108 { 2109 skb->destructor = NULL; 2110 skb->_skb_refdst = 0UL; 2111 } 2112 2113 #define tcp_skb_tsorted_save(skb) { \ 2114 unsigned long _save = skb->_skb_refdst; \ 2115 skb->_skb_refdst = 0UL; 2116 2117 #define tcp_skb_tsorted_restore(skb) \ 2118 skb->_skb_refdst = _save; \ 2119 } 2120 2121 void tcp_write_queue_purge(struct sock *sk); 2122 2123 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2124 { 2125 return skb_rb_first(&sk->tcp_rtx_queue); 2126 } 2127 2128 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2129 { 2130 return skb_rb_last(&sk->tcp_rtx_queue); 2131 } 2132 2133 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2134 { 2135 return skb_peek_tail(&sk->sk_write_queue); 2136 } 2137 2138 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2139 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2140 2141 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2142 { 2143 return skb_peek(&sk->sk_write_queue); 2144 } 2145 2146 static inline bool tcp_skb_is_last(const struct sock *sk, 2147 const struct sk_buff *skb) 2148 { 2149 return skb_queue_is_last(&sk->sk_write_queue, skb); 2150 } 2151 2152 /** 2153 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2154 * @sk: socket 2155 * 2156 * Since the write queue can have a temporary empty skb in it, 2157 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2158 */ 2159 static inline bool tcp_write_queue_empty(const struct sock *sk) 2160 { 2161 const struct tcp_sock *tp = tcp_sk(sk); 2162 2163 return tp->write_seq == tp->snd_nxt; 2164 } 2165 2166 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2167 { 2168 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2169 } 2170 2171 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2172 { 2173 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2174 } 2175 2176 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2177 { 2178 __skb_queue_tail(&sk->sk_write_queue, skb); 2179 2180 /* Queue it, remembering where we must start sending. */ 2181 if (sk->sk_write_queue.next == skb) 2182 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2183 } 2184 2185 /* Insert new before skb on the write queue of sk. */ 2186 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2187 struct sk_buff *skb, 2188 struct sock *sk) 2189 { 2190 __skb_queue_before(&sk->sk_write_queue, skb, new); 2191 } 2192 2193 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2194 { 2195 tcp_skb_tsorted_anchor_cleanup(skb); 2196 __skb_unlink(skb, &sk->sk_write_queue); 2197 } 2198 2199 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2200 2201 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2202 { 2203 tcp_skb_tsorted_anchor_cleanup(skb); 2204 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2205 } 2206 2207 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2208 { 2209 list_del(&skb->tcp_tsorted_anchor); 2210 tcp_rtx_queue_unlink(skb, sk); 2211 tcp_wmem_free_skb(sk, skb); 2212 } 2213 2214 static inline void tcp_write_collapse_fence(struct sock *sk) 2215 { 2216 struct sk_buff *skb = tcp_write_queue_tail(sk); 2217 2218 if (skb) 2219 TCP_SKB_CB(skb)->eor = 1; 2220 } 2221 2222 static inline void tcp_push_pending_frames(struct sock *sk) 2223 { 2224 if (tcp_send_head(sk)) { 2225 struct tcp_sock *tp = tcp_sk(sk); 2226 2227 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2228 } 2229 } 2230 2231 /* Start sequence of the skb just after the highest skb with SACKed 2232 * bit, valid only if sacked_out > 0 or when the caller has ensured 2233 * validity by itself. 2234 */ 2235 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2236 { 2237 if (!tp->sacked_out) 2238 return tp->snd_una; 2239 2240 if (tp->highest_sack == NULL) 2241 return tp->snd_nxt; 2242 2243 return TCP_SKB_CB(tp->highest_sack)->seq; 2244 } 2245 2246 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2247 { 2248 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2249 } 2250 2251 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2252 { 2253 return tcp_sk(sk)->highest_sack; 2254 } 2255 2256 static inline void tcp_highest_sack_reset(struct sock *sk) 2257 { 2258 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2259 } 2260 2261 /* Called when old skb is about to be deleted and replaced by new skb */ 2262 static inline void tcp_highest_sack_replace(struct sock *sk, 2263 struct sk_buff *old, 2264 struct sk_buff *new) 2265 { 2266 if (old == tcp_highest_sack(sk)) 2267 tcp_sk(sk)->highest_sack = new; 2268 } 2269 2270 /* This helper checks if socket has IP_TRANSPARENT set */ 2271 static inline bool inet_sk_transparent(const struct sock *sk) 2272 { 2273 switch (sk->sk_state) { 2274 case TCP_TIME_WAIT: 2275 return inet_twsk(sk)->tw_transparent; 2276 case TCP_NEW_SYN_RECV: 2277 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2278 } 2279 return inet_test_bit(TRANSPARENT, sk); 2280 } 2281 2282 /* Determines whether this is a thin stream (which may suffer from 2283 * increased latency). Used to trigger latency-reducing mechanisms. 2284 */ 2285 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2286 { 2287 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2288 } 2289 2290 /* /proc */ 2291 enum tcp_seq_states { 2292 TCP_SEQ_STATE_LISTENING, 2293 TCP_SEQ_STATE_ESTABLISHED, 2294 }; 2295 2296 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2297 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2298 void tcp_seq_stop(struct seq_file *seq, void *v); 2299 2300 struct tcp_seq_afinfo { 2301 sa_family_t family; 2302 }; 2303 2304 struct tcp_iter_state { 2305 struct seq_net_private p; 2306 enum tcp_seq_states state; 2307 struct sock *syn_wait_sk; 2308 int bucket, offset, sbucket, num; 2309 loff_t last_pos; 2310 }; 2311 2312 extern struct request_sock_ops tcp_request_sock_ops; 2313 extern struct request_sock_ops tcp6_request_sock_ops; 2314 2315 void tcp_v4_destroy_sock(struct sock *sk); 2316 2317 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2318 netdev_features_t features); 2319 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2320 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2321 struct tcphdr *th); 2322 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2323 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2324 #ifdef CONFIG_INET 2325 void tcp_gro_complete(struct sk_buff *skb); 2326 #else 2327 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2328 #endif 2329 2330 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2331 2332 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2333 { 2334 struct net *net = sock_net((struct sock *)tp); 2335 u32 val; 2336 2337 val = READ_ONCE(tp->notsent_lowat); 2338 2339 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2340 } 2341 2342 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2343 2344 #ifdef CONFIG_PROC_FS 2345 int tcp4_proc_init(void); 2346 void tcp4_proc_exit(void); 2347 #endif 2348 2349 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2350 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2351 const struct tcp_request_sock_ops *af_ops, 2352 struct sock *sk, struct sk_buff *skb); 2353 2354 /* TCP af-specific functions */ 2355 struct tcp_sock_af_ops { 2356 #ifdef CONFIG_TCP_MD5SIG 2357 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2358 const struct sock *addr_sk); 2359 void (*calc_md5_hash)(char *location, 2360 const struct tcp_md5sig_key *md5, 2361 const struct sock *sk, 2362 const struct sk_buff *skb); 2363 int (*md5_parse)(struct sock *sk, 2364 int optname, 2365 sockptr_t optval, 2366 int optlen); 2367 #endif 2368 #ifdef CONFIG_TCP_AO 2369 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2370 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2371 struct sock *addr_sk, 2372 int sndid, int rcvid); 2373 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2374 const struct sock *sk, 2375 __be32 sisn, __be32 disn, bool send); 2376 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2377 const struct sock *sk, const struct sk_buff *skb, 2378 const u8 *tkey, int hash_offset, u32 sne); 2379 #endif 2380 }; 2381 2382 struct tcp_request_sock_ops { 2383 u16 mss_clamp; 2384 #ifdef CONFIG_TCP_MD5SIG 2385 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2386 const struct sock *addr_sk); 2387 void (*calc_md5_hash) (char *location, 2388 const struct tcp_md5sig_key *md5, 2389 const struct sock *sk, 2390 const struct sk_buff *skb); 2391 #endif 2392 #ifdef CONFIG_TCP_AO 2393 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2394 struct request_sock *req, 2395 int sndid, int rcvid); 2396 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2397 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2398 struct request_sock *req, const struct sk_buff *skb, 2399 int hash_offset, u32 sne); 2400 #endif 2401 #ifdef CONFIG_SYN_COOKIES 2402 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2403 __u16 *mss); 2404 #endif 2405 struct dst_entry *(*route_req)(const struct sock *sk, 2406 struct sk_buff *skb, 2407 struct flowi *fl, 2408 struct request_sock *req, 2409 u32 tw_isn); 2410 u32 (*init_seq)(const struct sk_buff *skb); 2411 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2412 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2413 struct flowi *fl, struct request_sock *req, 2414 struct tcp_fastopen_cookie *foc, 2415 enum tcp_synack_type synack_type, 2416 struct sk_buff *syn_skb); 2417 }; 2418 2419 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2420 #if IS_ENABLED(CONFIG_IPV6) 2421 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2422 #endif 2423 2424 #ifdef CONFIG_SYN_COOKIES 2425 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2426 const struct sock *sk, struct sk_buff *skb, 2427 __u16 *mss) 2428 { 2429 tcp_synq_overflow(sk); 2430 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2431 return ops->cookie_init_seq(skb, mss); 2432 } 2433 #else 2434 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2435 const struct sock *sk, struct sk_buff *skb, 2436 __u16 *mss) 2437 { 2438 return 0; 2439 } 2440 #endif 2441 2442 struct tcp_key { 2443 union { 2444 struct { 2445 struct tcp_ao_key *ao_key; 2446 char *traffic_key; 2447 u32 sne; 2448 u8 rcv_next; 2449 }; 2450 struct tcp_md5sig_key *md5_key; 2451 }; 2452 enum { 2453 TCP_KEY_NONE = 0, 2454 TCP_KEY_MD5, 2455 TCP_KEY_AO, 2456 } type; 2457 }; 2458 2459 static inline void tcp_get_current_key(const struct sock *sk, 2460 struct tcp_key *out) 2461 { 2462 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2463 const struct tcp_sock *tp = tcp_sk(sk); 2464 #endif 2465 2466 #ifdef CONFIG_TCP_AO 2467 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2468 struct tcp_ao_info *ao; 2469 2470 ao = rcu_dereference_protected(tp->ao_info, 2471 lockdep_sock_is_held(sk)); 2472 if (ao) { 2473 out->ao_key = READ_ONCE(ao->current_key); 2474 out->type = TCP_KEY_AO; 2475 return; 2476 } 2477 } 2478 #endif 2479 #ifdef CONFIG_TCP_MD5SIG 2480 if (static_branch_unlikely(&tcp_md5_needed.key) && 2481 rcu_access_pointer(tp->md5sig_info)) { 2482 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2483 if (out->md5_key) { 2484 out->type = TCP_KEY_MD5; 2485 return; 2486 } 2487 } 2488 #endif 2489 out->type = TCP_KEY_NONE; 2490 } 2491 2492 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2493 { 2494 if (static_branch_tcp_md5()) 2495 return key->type == TCP_KEY_MD5; 2496 return false; 2497 } 2498 2499 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2500 { 2501 if (static_branch_tcp_ao()) 2502 return key->type == TCP_KEY_AO; 2503 return false; 2504 } 2505 2506 int tcpv4_offload_init(void); 2507 2508 void tcp_v4_init(void); 2509 void tcp_init(void); 2510 2511 /* tcp_recovery.c */ 2512 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2513 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2514 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2515 u32 reo_wnd); 2516 extern bool tcp_rack_mark_lost(struct sock *sk); 2517 extern void tcp_rack_reo_timeout(struct sock *sk); 2518 2519 /* tcp_plb.c */ 2520 2521 /* 2522 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2523 * expects cong_ratio which represents fraction of traffic that experienced 2524 * congestion over a single RTT. In order to avoid floating point operations, 2525 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2526 */ 2527 #define TCP_PLB_SCALE 8 2528 2529 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2530 struct tcp_plb_state { 2531 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2532 unused:3; 2533 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2534 }; 2535 2536 static inline void tcp_plb_init(const struct sock *sk, 2537 struct tcp_plb_state *plb) 2538 { 2539 plb->consec_cong_rounds = 0; 2540 plb->pause_until = 0; 2541 } 2542 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2543 const int cong_ratio); 2544 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2545 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2546 2547 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2548 { 2549 WARN_ONCE(cond, 2550 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2551 str, 2552 tcp_snd_cwnd(tcp_sk(sk)), 2553 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2554 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2555 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2556 inet_csk(sk)->icsk_ca_state, 2557 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2558 inet_csk(sk)->icsk_pmtu_cookie); 2559 } 2560 2561 /* At how many usecs into the future should the RTO fire? */ 2562 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2563 { 2564 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2565 u32 rto = inet_csk(sk)->icsk_rto; 2566 2567 if (likely(skb)) { 2568 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2569 2570 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2571 } else { 2572 tcp_warn_once(sk, 1, "rtx queue empty: "); 2573 return jiffies_to_usecs(rto); 2574 } 2575 2576 } 2577 2578 /* 2579 * Save and compile IPv4 options, return a pointer to it 2580 */ 2581 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2582 struct sk_buff *skb) 2583 { 2584 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2585 struct ip_options_rcu *dopt = NULL; 2586 2587 if (opt->optlen) { 2588 int opt_size = sizeof(*dopt) + opt->optlen; 2589 2590 dopt = kmalloc(opt_size, GFP_ATOMIC); 2591 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2592 kfree(dopt); 2593 dopt = NULL; 2594 } 2595 } 2596 return dopt; 2597 } 2598 2599 /* locally generated TCP pure ACKs have skb->truesize == 2 2600 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2601 * This is much faster than dissecting the packet to find out. 2602 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2603 */ 2604 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2605 { 2606 return skb->truesize == 2; 2607 } 2608 2609 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2610 { 2611 skb->truesize = 2; 2612 } 2613 2614 static inline int tcp_inq(struct sock *sk) 2615 { 2616 struct tcp_sock *tp = tcp_sk(sk); 2617 int answ; 2618 2619 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2620 answ = 0; 2621 } else if (sock_flag(sk, SOCK_URGINLINE) || 2622 !tp->urg_data || 2623 before(tp->urg_seq, tp->copied_seq) || 2624 !before(tp->urg_seq, tp->rcv_nxt)) { 2625 2626 answ = tp->rcv_nxt - tp->copied_seq; 2627 2628 /* Subtract 1, if FIN was received */ 2629 if (answ && sock_flag(sk, SOCK_DONE)) 2630 answ--; 2631 } else { 2632 answ = tp->urg_seq - tp->copied_seq; 2633 } 2634 2635 return answ; 2636 } 2637 2638 int tcp_peek_len(struct socket *sock); 2639 2640 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2641 { 2642 u16 segs_in; 2643 2644 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2645 2646 /* We update these fields while other threads might 2647 * read them from tcp_get_info() 2648 */ 2649 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2650 if (skb->len > tcp_hdrlen(skb)) 2651 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2652 } 2653 2654 /* 2655 * TCP listen path runs lockless. 2656 * We forced "struct sock" to be const qualified to make sure 2657 * we don't modify one of its field by mistake. 2658 * Here, we increment sk_drops which is an atomic_t, so we can safely 2659 * make sock writable again. 2660 */ 2661 static inline void tcp_listendrop(const struct sock *sk) 2662 { 2663 sk_drops_inc((struct sock *)sk); 2664 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2665 } 2666 2667 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2668 2669 /* 2670 * Interface for adding Upper Level Protocols over TCP 2671 */ 2672 2673 #define TCP_ULP_NAME_MAX 16 2674 #define TCP_ULP_MAX 128 2675 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2676 2677 struct tcp_ulp_ops { 2678 struct list_head list; 2679 2680 /* initialize ulp */ 2681 int (*init)(struct sock *sk); 2682 /* update ulp */ 2683 void (*update)(struct sock *sk, struct proto *p, 2684 void (*write_space)(struct sock *sk)); 2685 /* cleanup ulp */ 2686 void (*release)(struct sock *sk); 2687 /* diagnostic */ 2688 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2689 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2690 /* clone ulp */ 2691 void (*clone)(const struct request_sock *req, struct sock *newsk, 2692 const gfp_t priority); 2693 2694 char name[TCP_ULP_NAME_MAX]; 2695 struct module *owner; 2696 }; 2697 int tcp_register_ulp(struct tcp_ulp_ops *type); 2698 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2699 int tcp_set_ulp(struct sock *sk, const char *name); 2700 void tcp_get_available_ulp(char *buf, size_t len); 2701 void tcp_cleanup_ulp(struct sock *sk); 2702 void tcp_update_ulp(struct sock *sk, struct proto *p, 2703 void (*write_space)(struct sock *sk)); 2704 2705 #define MODULE_ALIAS_TCP_ULP(name) \ 2706 MODULE_INFO(alias, name); \ 2707 MODULE_INFO(alias, "tcp-ulp-" name) 2708 2709 #ifdef CONFIG_NET_SOCK_MSG 2710 struct sk_msg; 2711 struct sk_psock; 2712 2713 #ifdef CONFIG_BPF_SYSCALL 2714 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2715 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2716 #ifdef CONFIG_BPF_STREAM_PARSER 2717 struct strparser; 2718 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2719 sk_read_actor_t recv_actor); 2720 #endif /* CONFIG_BPF_STREAM_PARSER */ 2721 #endif /* CONFIG_BPF_SYSCALL */ 2722 2723 #ifdef CONFIG_INET 2724 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2725 #else 2726 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2727 { 2728 } 2729 #endif 2730 2731 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2732 struct sk_msg *msg, u32 bytes, int flags); 2733 #endif /* CONFIG_NET_SOCK_MSG */ 2734 2735 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2736 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2737 { 2738 } 2739 #endif 2740 2741 #ifdef CONFIG_CGROUP_BPF 2742 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2743 struct sk_buff *skb, 2744 unsigned int end_offset) 2745 { 2746 skops->skb = skb; 2747 skops->skb_data_end = skb->data + end_offset; 2748 } 2749 #else 2750 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2751 struct sk_buff *skb, 2752 unsigned int end_offset) 2753 { 2754 } 2755 #endif 2756 2757 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2758 * is < 0, then the BPF op failed (for example if the loaded BPF 2759 * program does not support the chosen operation or there is no BPF 2760 * program loaded). 2761 */ 2762 #ifdef CONFIG_BPF 2763 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2764 { 2765 struct bpf_sock_ops_kern sock_ops; 2766 int ret; 2767 2768 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2769 if (sk_fullsock(sk)) { 2770 sock_ops.is_fullsock = 1; 2771 sock_ops.is_locked_tcp_sock = 1; 2772 sock_owned_by_me(sk); 2773 } 2774 2775 sock_ops.sk = sk; 2776 sock_ops.op = op; 2777 if (nargs > 0) 2778 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2779 2780 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2781 if (ret == 0) 2782 ret = sock_ops.reply; 2783 else 2784 ret = -1; 2785 return ret; 2786 } 2787 2788 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2789 { 2790 u32 args[2] = {arg1, arg2}; 2791 2792 return tcp_call_bpf(sk, op, 2, args); 2793 } 2794 2795 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2796 u32 arg3) 2797 { 2798 u32 args[3] = {arg1, arg2, arg3}; 2799 2800 return tcp_call_bpf(sk, op, 3, args); 2801 } 2802 2803 #else 2804 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2805 { 2806 return -EPERM; 2807 } 2808 2809 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2810 { 2811 return -EPERM; 2812 } 2813 2814 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2815 u32 arg3) 2816 { 2817 return -EPERM; 2818 } 2819 2820 #endif 2821 2822 static inline u32 tcp_timeout_init(struct sock *sk) 2823 { 2824 int timeout; 2825 2826 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2827 2828 if (timeout <= 0) 2829 timeout = TCP_TIMEOUT_INIT; 2830 return min_t(int, timeout, TCP_RTO_MAX); 2831 } 2832 2833 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2834 { 2835 int rwnd; 2836 2837 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2838 2839 if (rwnd < 0) 2840 rwnd = 0; 2841 return rwnd; 2842 } 2843 2844 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2845 { 2846 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2847 } 2848 2849 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2850 { 2851 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2852 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2853 } 2854 2855 #if IS_ENABLED(CONFIG_SMC) 2856 extern struct static_key_false tcp_have_smc; 2857 #endif 2858 2859 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2860 void clean_acked_data_enable(struct tcp_sock *tp, 2861 void (*cad)(struct sock *sk, u32 ack_seq)); 2862 void clean_acked_data_disable(struct tcp_sock *tp); 2863 void clean_acked_data_flush(void); 2864 #endif 2865 2866 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2867 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2868 const struct tcp_sock *tp) 2869 { 2870 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2871 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2872 } 2873 2874 /* Compute Earliest Departure Time for some control packets 2875 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2876 */ 2877 static inline u64 tcp_transmit_time(const struct sock *sk) 2878 { 2879 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2880 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2881 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2882 2883 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2884 } 2885 return 0; 2886 } 2887 2888 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2889 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2890 { 2891 const u8 *md5_tmp, *ao_tmp; 2892 int ret; 2893 2894 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2895 if (ret) 2896 return ret; 2897 2898 if (md5_hash) 2899 *md5_hash = md5_tmp; 2900 2901 if (aoh) { 2902 if (!ao_tmp) 2903 *aoh = NULL; 2904 else 2905 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2906 } 2907 2908 return 0; 2909 } 2910 2911 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2912 int family, int l3index, bool stat_inc) 2913 { 2914 #ifdef CONFIG_TCP_AO 2915 struct tcp_ao_info *ao_info; 2916 struct tcp_ao_key *ao_key; 2917 2918 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2919 return false; 2920 2921 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2922 lockdep_sock_is_held(sk)); 2923 if (!ao_info) 2924 return false; 2925 2926 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2927 if (ao_info->ao_required || ao_key) { 2928 if (stat_inc) { 2929 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2930 atomic64_inc(&ao_info->counters.ao_required); 2931 } 2932 return true; 2933 } 2934 #endif 2935 return false; 2936 } 2937 2938 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2939 const struct request_sock *req, const struct sk_buff *skb, 2940 const void *saddr, const void *daddr, 2941 int family, int dif, int sdif); 2942 2943 #endif /* _TCP_H */ 2944