xref: /linux/include/net/tcp.h (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 extern struct percpu_counter tcp_orphan_count;
53 void tcp_time_wait(struct sock *sk, int state, int timeo);
54 
55 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The least MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 
249 extern atomic_long_t tcp_memory_allocated;
250 extern struct percpu_counter tcp_sockets_allocated;
251 extern unsigned long tcp_memory_pressure;
252 
253 /* optimized version of sk_under_memory_pressure() for TCP sockets */
254 static inline bool tcp_under_memory_pressure(const struct sock *sk)
255 {
256 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
257 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
258 		return true;
259 
260 	return tcp_memory_pressure;
261 }
262 /*
263  * The next routines deal with comparing 32 bit unsigned ints
264  * and worry about wraparound (automatic with unsigned arithmetic).
265  */
266 
267 static inline bool before(__u32 seq1, __u32 seq2)
268 {
269         return (__s32)(seq1-seq2) < 0;
270 }
271 #define after(seq2, seq1) 	before(seq1, seq2)
272 
273 /* is s2<=s1<=s3 ? */
274 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
275 {
276 	return seq3 - seq2 >= seq1 - seq2;
277 }
278 
279 static inline bool tcp_out_of_memory(struct sock *sk)
280 {
281 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
282 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
283 		return true;
284 	return false;
285 }
286 
287 void sk_forced_mem_schedule(struct sock *sk, int size);
288 
289 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
290 {
291 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
292 	int orphans = percpu_counter_read_positive(ocp);
293 
294 	if (orphans << shift > sysctl_tcp_max_orphans) {
295 		orphans = percpu_counter_sum_positive(ocp);
296 		if (orphans << shift > sysctl_tcp_max_orphans)
297 			return true;
298 	}
299 	return false;
300 }
301 
302 bool tcp_check_oom(struct sock *sk, int shift);
303 
304 
305 extern struct proto tcp_prot;
306 
307 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
308 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
311 
312 void tcp_tasklet_init(void);
313 
314 void tcp_v4_err(struct sk_buff *skb, u32);
315 
316 void tcp_shutdown(struct sock *sk, int how);
317 
318 int tcp_v4_early_demux(struct sk_buff *skb);
319 int tcp_v4_rcv(struct sk_buff *skb);
320 
321 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
322 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
323 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
325 		 int flags);
326 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
327 			size_t size, int flags);
328 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
329 		 size_t size, int flags);
330 void tcp_release_cb(struct sock *sk);
331 void tcp_wfree(struct sk_buff *skb);
332 void tcp_write_timer_handler(struct sock *sk);
333 void tcp_delack_timer_handler(struct sock *sk);
334 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
335 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
336 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
337 			 const struct tcphdr *th);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 static inline void tcp_dec_quickack_mode(struct sock *sk,
346 					 const unsigned int pkts)
347 {
348 	struct inet_connection_sock *icsk = inet_csk(sk);
349 
350 	if (icsk->icsk_ack.quick) {
351 		if (pkts >= icsk->icsk_ack.quick) {
352 			icsk->icsk_ack.quick = 0;
353 			/* Leaving quickack mode we deflate ATO. */
354 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
355 		} else
356 			icsk->icsk_ack.quick -= pkts;
357 	}
358 }
359 
360 #define	TCP_ECN_OK		1
361 #define	TCP_ECN_QUEUE_CWR	2
362 #define	TCP_ECN_DEMAND_CWR	4
363 #define	TCP_ECN_SEEN		8
364 
365 enum tcp_tw_status {
366 	TCP_TW_SUCCESS = 0,
367 	TCP_TW_RST = 1,
368 	TCP_TW_ACK = 2,
369 	TCP_TW_SYN = 3
370 };
371 
372 
373 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
374 					      struct sk_buff *skb,
375 					      const struct tcphdr *th);
376 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
377 			   struct request_sock *req, bool fastopen,
378 			   bool *lost_race);
379 int tcp_child_process(struct sock *parent, struct sock *child,
380 		      struct sk_buff *skb);
381 void tcp_enter_loss(struct sock *sk);
382 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
383 void tcp_clear_retrans(struct tcp_sock *tp);
384 void tcp_update_metrics(struct sock *sk);
385 void tcp_init_metrics(struct sock *sk);
386 void tcp_metrics_init(void);
387 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
388 void tcp_close(struct sock *sk, long timeout);
389 void tcp_init_sock(struct sock *sk);
390 void tcp_init_transfer(struct sock *sk, int bpf_op);
391 __poll_t tcp_poll(struct file *file, struct socket *sock,
392 		      struct poll_table_struct *wait);
393 int tcp_getsockopt(struct sock *sk, int level, int optname,
394 		   char __user *optval, int __user *optlen);
395 int tcp_setsockopt(struct sock *sk, int level, int optname,
396 		   char __user *optval, unsigned int optlen);
397 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
398 			  char __user *optval, int __user *optlen);
399 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
400 			  char __user *optval, unsigned int optlen);
401 void tcp_set_keepalive(struct sock *sk, int val);
402 void tcp_syn_ack_timeout(const struct request_sock *req);
403 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404 		int flags, int *addr_len);
405 int tcp_set_rcvlowat(struct sock *sk, int val);
406 void tcp_data_ready(struct sock *sk);
407 int tcp_mmap(struct file *file, struct socket *sock,
408 	     struct vm_area_struct *vma);
409 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
410 		       struct tcp_options_received *opt_rx,
411 		       int estab, struct tcp_fastopen_cookie *foc);
412 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
413 
414 /*
415  *	TCP v4 functions exported for the inet6 API
416  */
417 
418 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
419 void tcp_v4_mtu_reduced(struct sock *sk);
420 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
421 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
422 struct sock *tcp_create_openreq_child(const struct sock *sk,
423 				      struct request_sock *req,
424 				      struct sk_buff *skb);
425 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
426 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
427 				  struct request_sock *req,
428 				  struct dst_entry *dst,
429 				  struct request_sock *req_unhash,
430 				  bool *own_req);
431 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
432 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
433 int tcp_connect(struct sock *sk);
434 enum tcp_synack_type {
435 	TCP_SYNACK_NORMAL,
436 	TCP_SYNACK_FASTOPEN,
437 	TCP_SYNACK_COOKIE,
438 };
439 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
440 				struct request_sock *req,
441 				struct tcp_fastopen_cookie *foc,
442 				enum tcp_synack_type synack_type);
443 int tcp_disconnect(struct sock *sk, int flags);
444 
445 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
446 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
447 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
448 
449 /* From syncookies.c */
450 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
451 				 struct request_sock *req,
452 				 struct dst_entry *dst, u32 tsoff);
453 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
454 		      u32 cookie);
455 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
456 #ifdef CONFIG_SYN_COOKIES
457 
458 /* Syncookies use a monotonic timer which increments every 60 seconds.
459  * This counter is used both as a hash input and partially encoded into
460  * the cookie value.  A cookie is only validated further if the delta
461  * between the current counter value and the encoded one is less than this,
462  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
463  * the counter advances immediately after a cookie is generated).
464  */
465 #define MAX_SYNCOOKIE_AGE	2
466 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
467 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
468 
469 /* syncookies: remember time of last synqueue overflow
470  * But do not dirty this field too often (once per second is enough)
471  * It is racy as we do not hold a lock, but race is very minor.
472  */
473 static inline void tcp_synq_overflow(const struct sock *sk)
474 {
475 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
476 	unsigned long now = jiffies;
477 
478 	if (time_after(now, last_overflow + HZ))
479 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
480 }
481 
482 /* syncookies: no recent synqueue overflow on this listening socket? */
483 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
484 {
485 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
486 
487 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
488 }
489 
490 static inline u32 tcp_cookie_time(void)
491 {
492 	u64 val = get_jiffies_64();
493 
494 	do_div(val, TCP_SYNCOOKIE_PERIOD);
495 	return val;
496 }
497 
498 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
499 			      u16 *mssp);
500 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
501 u64 cookie_init_timestamp(struct request_sock *req);
502 bool cookie_timestamp_decode(const struct net *net,
503 			     struct tcp_options_received *opt);
504 bool cookie_ecn_ok(const struct tcp_options_received *opt,
505 		   const struct net *net, const struct dst_entry *dst);
506 
507 /* From net/ipv6/syncookies.c */
508 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
509 		      u32 cookie);
510 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
511 
512 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
513 			      const struct tcphdr *th, u16 *mssp);
514 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
515 #endif
516 /* tcp_output.c */
517 
518 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
519 			       int nonagle);
520 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
521 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
522 void tcp_retransmit_timer(struct sock *sk);
523 void tcp_xmit_retransmit_queue(struct sock *);
524 void tcp_simple_retransmit(struct sock *);
525 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
526 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
527 enum tcp_queue {
528 	TCP_FRAG_IN_WRITE_QUEUE,
529 	TCP_FRAG_IN_RTX_QUEUE,
530 };
531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
532 		 struct sk_buff *skb, u32 len,
533 		 unsigned int mss_now, gfp_t gfp);
534 
535 void tcp_send_probe0(struct sock *);
536 void tcp_send_partial(struct sock *);
537 int tcp_write_wakeup(struct sock *, int mib);
538 void tcp_send_fin(struct sock *sk);
539 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
540 int tcp_send_synack(struct sock *);
541 void tcp_push_one(struct sock *, unsigned int mss_now);
542 void tcp_send_ack(struct sock *sk);
543 void tcp_send_delayed_ack(struct sock *sk);
544 void tcp_send_loss_probe(struct sock *sk);
545 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
546 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
547 			     const struct sk_buff *next_skb);
548 
549 /* tcp_input.c */
550 void tcp_rearm_rto(struct sock *sk);
551 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
552 void tcp_reset(struct sock *sk);
553 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
554 void tcp_fin(struct sock *sk);
555 
556 /* tcp_timer.c */
557 void tcp_init_xmit_timers(struct sock *);
558 static inline void tcp_clear_xmit_timers(struct sock *sk)
559 {
560 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
561 		sock_put(sk);
562 
563 	inet_csk_clear_xmit_timers(sk);
564 }
565 
566 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
567 unsigned int tcp_current_mss(struct sock *sk);
568 
569 /* Bound MSS / TSO packet size with the half of the window */
570 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
571 {
572 	int cutoff;
573 
574 	/* When peer uses tiny windows, there is no use in packetizing
575 	 * to sub-MSS pieces for the sake of SWS or making sure there
576 	 * are enough packets in the pipe for fast recovery.
577 	 *
578 	 * On the other hand, for extremely large MSS devices, handling
579 	 * smaller than MSS windows in this way does make sense.
580 	 */
581 	if (tp->max_window > TCP_MSS_DEFAULT)
582 		cutoff = (tp->max_window >> 1);
583 	else
584 		cutoff = tp->max_window;
585 
586 	if (cutoff && pktsize > cutoff)
587 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
588 	else
589 		return pktsize;
590 }
591 
592 /* tcp.c */
593 void tcp_get_info(struct sock *, struct tcp_info *);
594 
595 /* Read 'sendfile()'-style from a TCP socket */
596 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
597 		  sk_read_actor_t recv_actor);
598 
599 void tcp_initialize_rcv_mss(struct sock *sk);
600 
601 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
602 int tcp_mss_to_mtu(struct sock *sk, int mss);
603 void tcp_mtup_init(struct sock *sk);
604 void tcp_init_buffer_space(struct sock *sk);
605 
606 static inline void tcp_bound_rto(const struct sock *sk)
607 {
608 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
609 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
610 }
611 
612 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
613 {
614 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
615 }
616 
617 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
618 {
619 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
620 			       ntohl(TCP_FLAG_ACK) |
621 			       snd_wnd);
622 }
623 
624 static inline void tcp_fast_path_on(struct tcp_sock *tp)
625 {
626 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
627 }
628 
629 static inline void tcp_fast_path_check(struct sock *sk)
630 {
631 	struct tcp_sock *tp = tcp_sk(sk);
632 
633 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
634 	    tp->rcv_wnd &&
635 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
636 	    !tp->urg_data)
637 		tcp_fast_path_on(tp);
638 }
639 
640 /* Compute the actual rto_min value */
641 static inline u32 tcp_rto_min(struct sock *sk)
642 {
643 	const struct dst_entry *dst = __sk_dst_get(sk);
644 	u32 rto_min = TCP_RTO_MIN;
645 
646 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
647 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
648 	return rto_min;
649 }
650 
651 static inline u32 tcp_rto_min_us(struct sock *sk)
652 {
653 	return jiffies_to_usecs(tcp_rto_min(sk));
654 }
655 
656 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
657 {
658 	return dst_metric_locked(dst, RTAX_CC_ALGO);
659 }
660 
661 /* Minimum RTT in usec. ~0 means not available. */
662 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
663 {
664 	return minmax_get(&tp->rtt_min);
665 }
666 
667 /* Compute the actual receive window we are currently advertising.
668  * Rcv_nxt can be after the window if our peer push more data
669  * than the offered window.
670  */
671 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
672 {
673 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
674 
675 	if (win < 0)
676 		win = 0;
677 	return (u32) win;
678 }
679 
680 /* Choose a new window, without checks for shrinking, and without
681  * scaling applied to the result.  The caller does these things
682  * if necessary.  This is a "raw" window selection.
683  */
684 u32 __tcp_select_window(struct sock *sk);
685 
686 void tcp_send_window_probe(struct sock *sk);
687 
688 /* TCP uses 32bit jiffies to save some space.
689  * Note that this is different from tcp_time_stamp, which
690  * historically has been the same until linux-4.13.
691  */
692 #define tcp_jiffies32 ((u32)jiffies)
693 
694 /*
695  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
696  * It is no longer tied to jiffies, but to 1 ms clock.
697  * Note: double check if you want to use tcp_jiffies32 instead of this.
698  */
699 #define TCP_TS_HZ	1000
700 
701 static inline u64 tcp_clock_ns(void)
702 {
703 	return local_clock();
704 }
705 
706 static inline u64 tcp_clock_us(void)
707 {
708 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
709 }
710 
711 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
712 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
713 {
714 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
715 }
716 
717 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
718 static inline u32 tcp_time_stamp_raw(void)
719 {
720 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
721 }
722 
723 
724 /* Refresh 1us clock of a TCP socket,
725  * ensuring monotically increasing values.
726  */
727 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
728 {
729 	u64 val = tcp_clock_us();
730 
731 	if (val > tp->tcp_mstamp)
732 		tp->tcp_mstamp = val;
733 }
734 
735 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
736 {
737 	return max_t(s64, t1 - t0, 0);
738 }
739 
740 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
741 {
742 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
743 }
744 
745 
746 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
747 
748 #define TCPHDR_FIN 0x01
749 #define TCPHDR_SYN 0x02
750 #define TCPHDR_RST 0x04
751 #define TCPHDR_PSH 0x08
752 #define TCPHDR_ACK 0x10
753 #define TCPHDR_URG 0x20
754 #define TCPHDR_ECE 0x40
755 #define TCPHDR_CWR 0x80
756 
757 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
758 
759 /* This is what the send packet queuing engine uses to pass
760  * TCP per-packet control information to the transmission code.
761  * We also store the host-order sequence numbers in here too.
762  * This is 44 bytes if IPV6 is enabled.
763  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
764  */
765 struct tcp_skb_cb {
766 	__u32		seq;		/* Starting sequence number	*/
767 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
768 	union {
769 		/* Note : tcp_tw_isn is used in input path only
770 		 *	  (isn chosen by tcp_timewait_state_process())
771 		 *
772 		 * 	  tcp_gso_segs/size are used in write queue only,
773 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
774 		 */
775 		__u32		tcp_tw_isn;
776 		struct {
777 			u16	tcp_gso_segs;
778 			u16	tcp_gso_size;
779 		};
780 	};
781 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
782 
783 	__u8		sacked;		/* State flags for SACK.	*/
784 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
785 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
786 #define TCPCB_LOST		0x04	/* SKB is lost			*/
787 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
788 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
789 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
790 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
791 				TCPCB_REPAIRED)
792 
793 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
794 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
795 			eor:1,		/* Is skb MSG_EOR marked? */
796 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
797 			unused:5;
798 	__u32		ack_seq;	/* Sequence number ACK'd	*/
799 	union {
800 		struct {
801 			/* There is space for up to 24 bytes */
802 			__u32 in_flight:30,/* Bytes in flight at transmit */
803 			      is_app_limited:1, /* cwnd not fully used? */
804 			      unused:1;
805 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
806 			__u32 delivered;
807 			/* start of send pipeline phase */
808 			u64 first_tx_mstamp;
809 			/* when we reached the "delivered" count */
810 			u64 delivered_mstamp;
811 		} tx;   /* only used for outgoing skbs */
812 		union {
813 			struct inet_skb_parm	h4;
814 #if IS_ENABLED(CONFIG_IPV6)
815 			struct inet6_skb_parm	h6;
816 #endif
817 		} header;	/* For incoming skbs */
818 		struct {
819 			__u32 flags;
820 			struct sock *sk_redir;
821 			void *data_end;
822 		} bpf;
823 	};
824 };
825 
826 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
827 
828 
829 #if IS_ENABLED(CONFIG_IPV6)
830 /* This is the variant of inet6_iif() that must be used by TCP,
831  * as TCP moves IP6CB into a different location in skb->cb[]
832  */
833 static inline int tcp_v6_iif(const struct sk_buff *skb)
834 {
835 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
836 
837 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
838 }
839 
840 /* TCP_SKB_CB reference means this can not be used from early demux */
841 static inline int tcp_v6_sdif(const struct sk_buff *skb)
842 {
843 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
844 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
845 		return TCP_SKB_CB(skb)->header.h6.iif;
846 #endif
847 	return 0;
848 }
849 #endif
850 
851 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
852 {
853 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
854 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
855 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
856 		return true;
857 #endif
858 	return false;
859 }
860 
861 /* TCP_SKB_CB reference means this can not be used from early demux */
862 static inline int tcp_v4_sdif(struct sk_buff *skb)
863 {
864 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
865 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
866 		return TCP_SKB_CB(skb)->header.h4.iif;
867 #endif
868 	return 0;
869 }
870 
871 /* Due to TSO, an SKB can be composed of multiple actual
872  * packets.  To keep these tracked properly, we use this.
873  */
874 static inline int tcp_skb_pcount(const struct sk_buff *skb)
875 {
876 	return TCP_SKB_CB(skb)->tcp_gso_segs;
877 }
878 
879 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
880 {
881 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
882 }
883 
884 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
885 {
886 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
887 }
888 
889 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
890 static inline int tcp_skb_mss(const struct sk_buff *skb)
891 {
892 	return TCP_SKB_CB(skb)->tcp_gso_size;
893 }
894 
895 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
896 {
897 	return likely(!TCP_SKB_CB(skb)->eor);
898 }
899 
900 /* Events passed to congestion control interface */
901 enum tcp_ca_event {
902 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
903 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
904 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
905 	CA_EVENT_LOSS,		/* loss timeout */
906 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
907 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
908 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
909 	CA_EVENT_NON_DELAYED_ACK,
910 };
911 
912 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
913 enum tcp_ca_ack_event_flags {
914 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
915 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
916 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
917 };
918 
919 /*
920  * Interface for adding new TCP congestion control handlers
921  */
922 #define TCP_CA_NAME_MAX	16
923 #define TCP_CA_MAX	128
924 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
925 
926 #define TCP_CA_UNSPEC	0
927 
928 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
929 #define TCP_CONG_NON_RESTRICTED 0x1
930 /* Requires ECN/ECT set on all packets */
931 #define TCP_CONG_NEEDS_ECN	0x2
932 
933 union tcp_cc_info;
934 
935 struct ack_sample {
936 	u32 pkts_acked;
937 	s32 rtt_us;
938 	u32 in_flight;
939 };
940 
941 /* A rate sample measures the number of (original/retransmitted) data
942  * packets delivered "delivered" over an interval of time "interval_us".
943  * The tcp_rate.c code fills in the rate sample, and congestion
944  * control modules that define a cong_control function to run at the end
945  * of ACK processing can optionally chose to consult this sample when
946  * setting cwnd and pacing rate.
947  * A sample is invalid if "delivered" or "interval_us" is negative.
948  */
949 struct rate_sample {
950 	u64  prior_mstamp; /* starting timestamp for interval */
951 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
952 	s32  delivered;		/* number of packets delivered over interval */
953 	long interval_us;	/* time for tp->delivered to incr "delivered" */
954 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
955 	int  losses;		/* number of packets marked lost upon ACK */
956 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
957 	u32  prior_in_flight;	/* in flight before this ACK */
958 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
959 	bool is_retrans;	/* is sample from retransmission? */
960 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
961 };
962 
963 struct tcp_congestion_ops {
964 	struct list_head	list;
965 	u32 key;
966 	u32 flags;
967 
968 	/* initialize private data (optional) */
969 	void (*init)(struct sock *sk);
970 	/* cleanup private data  (optional) */
971 	void (*release)(struct sock *sk);
972 
973 	/* return slow start threshold (required) */
974 	u32 (*ssthresh)(struct sock *sk);
975 	/* do new cwnd calculation (required) */
976 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
977 	/* call before changing ca_state (optional) */
978 	void (*set_state)(struct sock *sk, u8 new_state);
979 	/* call when cwnd event occurs (optional) */
980 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
981 	/* call when ack arrives (optional) */
982 	void (*in_ack_event)(struct sock *sk, u32 flags);
983 	/* new value of cwnd after loss (required) */
984 	u32  (*undo_cwnd)(struct sock *sk);
985 	/* hook for packet ack accounting (optional) */
986 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
987 	/* override sysctl_tcp_min_tso_segs */
988 	u32 (*min_tso_segs)(struct sock *sk);
989 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
990 	u32 (*sndbuf_expand)(struct sock *sk);
991 	/* call when packets are delivered to update cwnd and pacing rate,
992 	 * after all the ca_state processing. (optional)
993 	 */
994 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
995 	/* get info for inet_diag (optional) */
996 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
997 			   union tcp_cc_info *info);
998 
999 	char 		name[TCP_CA_NAME_MAX];
1000 	struct module 	*owner;
1001 };
1002 
1003 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1004 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1005 
1006 void tcp_assign_congestion_control(struct sock *sk);
1007 void tcp_init_congestion_control(struct sock *sk);
1008 void tcp_cleanup_congestion_control(struct sock *sk);
1009 int tcp_set_default_congestion_control(struct net *net, const char *name);
1010 void tcp_get_default_congestion_control(struct net *net, char *name);
1011 void tcp_get_available_congestion_control(char *buf, size_t len);
1012 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1013 int tcp_set_allowed_congestion_control(char *allowed);
1014 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1015 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1016 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1017 
1018 u32 tcp_reno_ssthresh(struct sock *sk);
1019 u32 tcp_reno_undo_cwnd(struct sock *sk);
1020 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1021 extern struct tcp_congestion_ops tcp_reno;
1022 
1023 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1024 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1025 #ifdef CONFIG_INET
1026 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1027 #else
1028 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1029 {
1030 	return NULL;
1031 }
1032 #endif
1033 
1034 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1035 {
1036 	const struct inet_connection_sock *icsk = inet_csk(sk);
1037 
1038 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1039 }
1040 
1041 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1042 {
1043 	struct inet_connection_sock *icsk = inet_csk(sk);
1044 
1045 	if (icsk->icsk_ca_ops->set_state)
1046 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1047 	icsk->icsk_ca_state = ca_state;
1048 }
1049 
1050 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1051 {
1052 	const struct inet_connection_sock *icsk = inet_csk(sk);
1053 
1054 	if (icsk->icsk_ca_ops->cwnd_event)
1055 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1056 }
1057 
1058 /* From tcp_rate.c */
1059 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1060 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1061 			    struct rate_sample *rs);
1062 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1063 		  bool is_sack_reneg, struct rate_sample *rs);
1064 void tcp_rate_check_app_limited(struct sock *sk);
1065 
1066 /* These functions determine how the current flow behaves in respect of SACK
1067  * handling. SACK is negotiated with the peer, and therefore it can vary
1068  * between different flows.
1069  *
1070  * tcp_is_sack - SACK enabled
1071  * tcp_is_reno - No SACK
1072  */
1073 static inline int tcp_is_sack(const struct tcp_sock *tp)
1074 {
1075 	return tp->rx_opt.sack_ok;
1076 }
1077 
1078 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1079 {
1080 	return !tcp_is_sack(tp);
1081 }
1082 
1083 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1084 {
1085 	return tp->sacked_out + tp->lost_out;
1086 }
1087 
1088 /* This determines how many packets are "in the network" to the best
1089  * of our knowledge.  In many cases it is conservative, but where
1090  * detailed information is available from the receiver (via SACK
1091  * blocks etc.) we can make more aggressive calculations.
1092  *
1093  * Use this for decisions involving congestion control, use just
1094  * tp->packets_out to determine if the send queue is empty or not.
1095  *
1096  * Read this equation as:
1097  *
1098  *	"Packets sent once on transmission queue" MINUS
1099  *	"Packets left network, but not honestly ACKed yet" PLUS
1100  *	"Packets fast retransmitted"
1101  */
1102 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1103 {
1104 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1105 }
1106 
1107 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1108 
1109 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1110 {
1111 	return tp->snd_cwnd < tp->snd_ssthresh;
1112 }
1113 
1114 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1115 {
1116 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1117 }
1118 
1119 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1120 {
1121 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1122 	       (1 << inet_csk(sk)->icsk_ca_state);
1123 }
1124 
1125 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1126  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1127  * ssthresh.
1128  */
1129 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1130 {
1131 	const struct tcp_sock *tp = tcp_sk(sk);
1132 
1133 	if (tcp_in_cwnd_reduction(sk))
1134 		return tp->snd_ssthresh;
1135 	else
1136 		return max(tp->snd_ssthresh,
1137 			   ((tp->snd_cwnd >> 1) +
1138 			    (tp->snd_cwnd >> 2)));
1139 }
1140 
1141 /* Use define here intentionally to get WARN_ON location shown at the caller */
1142 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1143 
1144 void tcp_enter_cwr(struct sock *sk);
1145 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1146 
1147 /* The maximum number of MSS of available cwnd for which TSO defers
1148  * sending if not using sysctl_tcp_tso_win_divisor.
1149  */
1150 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1151 {
1152 	return 3;
1153 }
1154 
1155 /* Returns end sequence number of the receiver's advertised window */
1156 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1157 {
1158 	return tp->snd_una + tp->snd_wnd;
1159 }
1160 
1161 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1162  * flexible approach. The RFC suggests cwnd should not be raised unless
1163  * it was fully used previously. And that's exactly what we do in
1164  * congestion avoidance mode. But in slow start we allow cwnd to grow
1165  * as long as the application has used half the cwnd.
1166  * Example :
1167  *    cwnd is 10 (IW10), but application sends 9 frames.
1168  *    We allow cwnd to reach 18 when all frames are ACKed.
1169  * This check is safe because it's as aggressive as slow start which already
1170  * risks 100% overshoot. The advantage is that we discourage application to
1171  * either send more filler packets or data to artificially blow up the cwnd
1172  * usage, and allow application-limited process to probe bw more aggressively.
1173  */
1174 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1175 {
1176 	const struct tcp_sock *tp = tcp_sk(sk);
1177 
1178 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1179 	if (tcp_in_slow_start(tp))
1180 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1181 
1182 	return tp->is_cwnd_limited;
1183 }
1184 
1185 /* Something is really bad, we could not queue an additional packet,
1186  * because qdisc is full or receiver sent a 0 window.
1187  * We do not want to add fuel to the fire, or abort too early,
1188  * so make sure the timer we arm now is at least 200ms in the future,
1189  * regardless of current icsk_rto value (as it could be ~2ms)
1190  */
1191 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1192 {
1193 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1194 }
1195 
1196 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1197 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1198 					    unsigned long max_when)
1199 {
1200 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1201 
1202 	return (unsigned long)min_t(u64, when, max_when);
1203 }
1204 
1205 static inline void tcp_check_probe_timer(struct sock *sk)
1206 {
1207 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1208 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1209 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1210 }
1211 
1212 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1213 {
1214 	tp->snd_wl1 = seq;
1215 }
1216 
1217 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1218 {
1219 	tp->snd_wl1 = seq;
1220 }
1221 
1222 /*
1223  * Calculate(/check) TCP checksum
1224  */
1225 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1226 				   __be32 daddr, __wsum base)
1227 {
1228 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1229 }
1230 
1231 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1232 {
1233 	return __skb_checksum_complete(skb);
1234 }
1235 
1236 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1237 {
1238 	return !skb_csum_unnecessary(skb) &&
1239 		__tcp_checksum_complete(skb);
1240 }
1241 
1242 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1243 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1244 
1245 #undef STATE_TRACE
1246 
1247 #ifdef STATE_TRACE
1248 static const char *statename[]={
1249 	"Unused","Established","Syn Sent","Syn Recv",
1250 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1251 	"Close Wait","Last ACK","Listen","Closing"
1252 };
1253 #endif
1254 void tcp_set_state(struct sock *sk, int state);
1255 
1256 void tcp_done(struct sock *sk);
1257 
1258 int tcp_abort(struct sock *sk, int err);
1259 
1260 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1261 {
1262 	rx_opt->dsack = 0;
1263 	rx_opt->num_sacks = 0;
1264 }
1265 
1266 u32 tcp_default_init_rwnd(u32 mss);
1267 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1268 
1269 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1270 {
1271 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1272 	struct tcp_sock *tp = tcp_sk(sk);
1273 	s32 delta;
1274 
1275 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1276 	    ca_ops->cong_control)
1277 		return;
1278 	delta = tcp_jiffies32 - tp->lsndtime;
1279 	if (delta > inet_csk(sk)->icsk_rto)
1280 		tcp_cwnd_restart(sk, delta);
1281 }
1282 
1283 /* Determine a window scaling and initial window to offer. */
1284 void tcp_select_initial_window(const struct sock *sk, int __space,
1285 			       __u32 mss, __u32 *rcv_wnd,
1286 			       __u32 *window_clamp, int wscale_ok,
1287 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1288 
1289 static inline int tcp_win_from_space(const struct sock *sk, int space)
1290 {
1291 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1292 
1293 	return tcp_adv_win_scale <= 0 ?
1294 		(space>>(-tcp_adv_win_scale)) :
1295 		space - (space>>tcp_adv_win_scale);
1296 }
1297 
1298 /* Note: caller must be prepared to deal with negative returns */
1299 static inline int tcp_space(const struct sock *sk)
1300 {
1301 	return tcp_win_from_space(sk, sk->sk_rcvbuf -
1302 				  atomic_read(&sk->sk_rmem_alloc));
1303 }
1304 
1305 static inline int tcp_full_space(const struct sock *sk)
1306 {
1307 	return tcp_win_from_space(sk, sk->sk_rcvbuf);
1308 }
1309 
1310 extern void tcp_openreq_init_rwin(struct request_sock *req,
1311 				  const struct sock *sk_listener,
1312 				  const struct dst_entry *dst);
1313 
1314 void tcp_enter_memory_pressure(struct sock *sk);
1315 void tcp_leave_memory_pressure(struct sock *sk);
1316 
1317 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1318 {
1319 	struct net *net = sock_net((struct sock *)tp);
1320 
1321 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1322 }
1323 
1324 static inline int keepalive_time_when(const struct tcp_sock *tp)
1325 {
1326 	struct net *net = sock_net((struct sock *)tp);
1327 
1328 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1329 }
1330 
1331 static inline int keepalive_probes(const struct tcp_sock *tp)
1332 {
1333 	struct net *net = sock_net((struct sock *)tp);
1334 
1335 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1336 }
1337 
1338 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1339 {
1340 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1341 
1342 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1343 			  tcp_jiffies32 - tp->rcv_tstamp);
1344 }
1345 
1346 static inline int tcp_fin_time(const struct sock *sk)
1347 {
1348 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1349 	const int rto = inet_csk(sk)->icsk_rto;
1350 
1351 	if (fin_timeout < (rto << 2) - (rto >> 1))
1352 		fin_timeout = (rto << 2) - (rto >> 1);
1353 
1354 	return fin_timeout;
1355 }
1356 
1357 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1358 				  int paws_win)
1359 {
1360 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1361 		return true;
1362 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1363 		return true;
1364 	/*
1365 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1366 	 * then following tcp messages have valid values. Ignore 0 value,
1367 	 * or else 'negative' tsval might forbid us to accept their packets.
1368 	 */
1369 	if (!rx_opt->ts_recent)
1370 		return true;
1371 	return false;
1372 }
1373 
1374 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1375 				   int rst)
1376 {
1377 	if (tcp_paws_check(rx_opt, 0))
1378 		return false;
1379 
1380 	/* RST segments are not recommended to carry timestamp,
1381 	   and, if they do, it is recommended to ignore PAWS because
1382 	   "their cleanup function should take precedence over timestamps."
1383 	   Certainly, it is mistake. It is necessary to understand the reasons
1384 	   of this constraint to relax it: if peer reboots, clock may go
1385 	   out-of-sync and half-open connections will not be reset.
1386 	   Actually, the problem would be not existing if all
1387 	   the implementations followed draft about maintaining clock
1388 	   via reboots. Linux-2.2 DOES NOT!
1389 
1390 	   However, we can relax time bounds for RST segments to MSL.
1391 	 */
1392 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1393 		return false;
1394 	return true;
1395 }
1396 
1397 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1398 			  int mib_idx, u32 *last_oow_ack_time);
1399 
1400 static inline void tcp_mib_init(struct net *net)
1401 {
1402 	/* See RFC 2012 */
1403 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1404 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1405 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1406 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1407 }
1408 
1409 /* from STCP */
1410 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1411 {
1412 	tp->lost_skb_hint = NULL;
1413 }
1414 
1415 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1416 {
1417 	tcp_clear_retrans_hints_partial(tp);
1418 	tp->retransmit_skb_hint = NULL;
1419 }
1420 
1421 union tcp_md5_addr {
1422 	struct in_addr  a4;
1423 #if IS_ENABLED(CONFIG_IPV6)
1424 	struct in6_addr	a6;
1425 #endif
1426 };
1427 
1428 /* - key database */
1429 struct tcp_md5sig_key {
1430 	struct hlist_node	node;
1431 	u8			keylen;
1432 	u8			family; /* AF_INET or AF_INET6 */
1433 	union tcp_md5_addr	addr;
1434 	u8			prefixlen;
1435 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1436 	struct rcu_head		rcu;
1437 };
1438 
1439 /* - sock block */
1440 struct tcp_md5sig_info {
1441 	struct hlist_head	head;
1442 	struct rcu_head		rcu;
1443 };
1444 
1445 /* - pseudo header */
1446 struct tcp4_pseudohdr {
1447 	__be32		saddr;
1448 	__be32		daddr;
1449 	__u8		pad;
1450 	__u8		protocol;
1451 	__be16		len;
1452 };
1453 
1454 struct tcp6_pseudohdr {
1455 	struct in6_addr	saddr;
1456 	struct in6_addr daddr;
1457 	__be32		len;
1458 	__be32		protocol;	/* including padding */
1459 };
1460 
1461 union tcp_md5sum_block {
1462 	struct tcp4_pseudohdr ip4;
1463 #if IS_ENABLED(CONFIG_IPV6)
1464 	struct tcp6_pseudohdr ip6;
1465 #endif
1466 };
1467 
1468 /* - pool: digest algorithm, hash description and scratch buffer */
1469 struct tcp_md5sig_pool {
1470 	struct ahash_request	*md5_req;
1471 	void			*scratch;
1472 };
1473 
1474 /* - functions */
1475 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1476 			const struct sock *sk, const struct sk_buff *skb);
1477 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1478 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1479 		   gfp_t gfp);
1480 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1481 		   int family, u8 prefixlen);
1482 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1483 					 const struct sock *addr_sk);
1484 
1485 #ifdef CONFIG_TCP_MD5SIG
1486 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1487 					 const union tcp_md5_addr *addr,
1488 					 int family);
1489 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1490 #else
1491 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1492 					 const union tcp_md5_addr *addr,
1493 					 int family)
1494 {
1495 	return NULL;
1496 }
1497 #define tcp_twsk_md5_key(twsk)	NULL
1498 #endif
1499 
1500 bool tcp_alloc_md5sig_pool(void);
1501 
1502 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1503 static inline void tcp_put_md5sig_pool(void)
1504 {
1505 	local_bh_enable();
1506 }
1507 
1508 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1509 			  unsigned int header_len);
1510 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1511 		     const struct tcp_md5sig_key *key);
1512 
1513 /* From tcp_fastopen.c */
1514 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1515 			    struct tcp_fastopen_cookie *cookie);
1516 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1517 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1518 			    u16 try_exp);
1519 struct tcp_fastopen_request {
1520 	/* Fast Open cookie. Size 0 means a cookie request */
1521 	struct tcp_fastopen_cookie	cookie;
1522 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1523 	size_t				size;
1524 	int				copied;	/* queued in tcp_connect() */
1525 };
1526 void tcp_free_fastopen_req(struct tcp_sock *tp);
1527 void tcp_fastopen_destroy_cipher(struct sock *sk);
1528 void tcp_fastopen_ctx_destroy(struct net *net);
1529 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1530 			      void *key, unsigned int len);
1531 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1532 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1533 			      struct request_sock *req,
1534 			      struct tcp_fastopen_cookie *foc,
1535 			      const struct dst_entry *dst);
1536 void tcp_fastopen_init_key_once(struct net *net);
1537 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1538 			     struct tcp_fastopen_cookie *cookie);
1539 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1540 #define TCP_FASTOPEN_KEY_LENGTH 16
1541 
1542 /* Fastopen key context */
1543 struct tcp_fastopen_context {
1544 	struct crypto_cipher	*tfm;
1545 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1546 	struct rcu_head		rcu;
1547 };
1548 
1549 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1550 void tcp_fastopen_active_disable(struct sock *sk);
1551 bool tcp_fastopen_active_should_disable(struct sock *sk);
1552 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1553 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1554 
1555 /* Latencies incurred by various limits for a sender. They are
1556  * chronograph-like stats that are mutually exclusive.
1557  */
1558 enum tcp_chrono {
1559 	TCP_CHRONO_UNSPEC,
1560 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1561 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1562 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1563 	__TCP_CHRONO_MAX,
1564 };
1565 
1566 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1568 
1569 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1570  * the same memory storage than skb->destructor/_skb_refdst
1571  */
1572 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1573 {
1574 	skb->destructor = NULL;
1575 	skb->_skb_refdst = 0UL;
1576 }
1577 
1578 #define tcp_skb_tsorted_save(skb) {		\
1579 	unsigned long _save = skb->_skb_refdst;	\
1580 	skb->_skb_refdst = 0UL;
1581 
1582 #define tcp_skb_tsorted_restore(skb)		\
1583 	skb->_skb_refdst = _save;		\
1584 }
1585 
1586 void tcp_write_queue_purge(struct sock *sk);
1587 
1588 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1589 {
1590 	return skb_rb_first(&sk->tcp_rtx_queue);
1591 }
1592 
1593 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1594 {
1595 	return skb_peek(&sk->sk_write_queue);
1596 }
1597 
1598 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1599 {
1600 	return skb_peek_tail(&sk->sk_write_queue);
1601 }
1602 
1603 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1604 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1605 
1606 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1607 {
1608 	return skb_peek(&sk->sk_write_queue);
1609 }
1610 
1611 static inline bool tcp_skb_is_last(const struct sock *sk,
1612 				   const struct sk_buff *skb)
1613 {
1614 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1615 }
1616 
1617 static inline bool tcp_write_queue_empty(const struct sock *sk)
1618 {
1619 	return skb_queue_empty(&sk->sk_write_queue);
1620 }
1621 
1622 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1623 {
1624 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1625 }
1626 
1627 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1628 {
1629 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1630 }
1631 
1632 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1633 {
1634 	if (tcp_write_queue_empty(sk))
1635 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1636 }
1637 
1638 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1639 {
1640 	__skb_queue_tail(&sk->sk_write_queue, skb);
1641 }
1642 
1643 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1644 {
1645 	__tcp_add_write_queue_tail(sk, skb);
1646 
1647 	/* Queue it, remembering where we must start sending. */
1648 	if (sk->sk_write_queue.next == skb)
1649 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1650 }
1651 
1652 /* Insert new before skb on the write queue of sk.  */
1653 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1654 						  struct sk_buff *skb,
1655 						  struct sock *sk)
1656 {
1657 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1658 }
1659 
1660 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1661 {
1662 	tcp_skb_tsorted_anchor_cleanup(skb);
1663 	__skb_unlink(skb, &sk->sk_write_queue);
1664 }
1665 
1666 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1667 
1668 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1669 {
1670 	tcp_skb_tsorted_anchor_cleanup(skb);
1671 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1672 }
1673 
1674 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1675 {
1676 	list_del(&skb->tcp_tsorted_anchor);
1677 	tcp_rtx_queue_unlink(skb, sk);
1678 	sk_wmem_free_skb(sk, skb);
1679 }
1680 
1681 static inline void tcp_push_pending_frames(struct sock *sk)
1682 {
1683 	if (tcp_send_head(sk)) {
1684 		struct tcp_sock *tp = tcp_sk(sk);
1685 
1686 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1687 	}
1688 }
1689 
1690 /* Start sequence of the skb just after the highest skb with SACKed
1691  * bit, valid only if sacked_out > 0 or when the caller has ensured
1692  * validity by itself.
1693  */
1694 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1695 {
1696 	if (!tp->sacked_out)
1697 		return tp->snd_una;
1698 
1699 	if (tp->highest_sack == NULL)
1700 		return tp->snd_nxt;
1701 
1702 	return TCP_SKB_CB(tp->highest_sack)->seq;
1703 }
1704 
1705 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1706 {
1707 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1708 }
1709 
1710 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1711 {
1712 	return tcp_sk(sk)->highest_sack;
1713 }
1714 
1715 static inline void tcp_highest_sack_reset(struct sock *sk)
1716 {
1717 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1718 }
1719 
1720 /* Called when old skb is about to be deleted and replaced by new skb */
1721 static inline void tcp_highest_sack_replace(struct sock *sk,
1722 					    struct sk_buff *old,
1723 					    struct sk_buff *new)
1724 {
1725 	if (old == tcp_highest_sack(sk))
1726 		tcp_sk(sk)->highest_sack = new;
1727 }
1728 
1729 /* This helper checks if socket has IP_TRANSPARENT set */
1730 static inline bool inet_sk_transparent(const struct sock *sk)
1731 {
1732 	switch (sk->sk_state) {
1733 	case TCP_TIME_WAIT:
1734 		return inet_twsk(sk)->tw_transparent;
1735 	case TCP_NEW_SYN_RECV:
1736 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1737 	}
1738 	return inet_sk(sk)->transparent;
1739 }
1740 
1741 /* Determines whether this is a thin stream (which may suffer from
1742  * increased latency). Used to trigger latency-reducing mechanisms.
1743  */
1744 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1745 {
1746 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1747 }
1748 
1749 /* /proc */
1750 enum tcp_seq_states {
1751 	TCP_SEQ_STATE_LISTENING,
1752 	TCP_SEQ_STATE_ESTABLISHED,
1753 };
1754 
1755 int tcp_seq_open(struct inode *inode, struct file *file);
1756 
1757 struct tcp_seq_afinfo {
1758 	char				*name;
1759 	sa_family_t			family;
1760 	const struct file_operations	*seq_fops;
1761 	struct seq_operations		seq_ops;
1762 };
1763 
1764 struct tcp_iter_state {
1765 	struct seq_net_private	p;
1766 	sa_family_t		family;
1767 	enum tcp_seq_states	state;
1768 	struct sock		*syn_wait_sk;
1769 	int			bucket, offset, sbucket, num;
1770 	loff_t			last_pos;
1771 };
1772 
1773 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1774 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1775 
1776 extern struct request_sock_ops tcp_request_sock_ops;
1777 extern struct request_sock_ops tcp6_request_sock_ops;
1778 
1779 void tcp_v4_destroy_sock(struct sock *sk);
1780 
1781 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1782 				netdev_features_t features);
1783 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1784 int tcp_gro_complete(struct sk_buff *skb);
1785 
1786 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1787 
1788 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1789 {
1790 	struct net *net = sock_net((struct sock *)tp);
1791 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1792 }
1793 
1794 static inline bool tcp_stream_memory_free(const struct sock *sk)
1795 {
1796 	const struct tcp_sock *tp = tcp_sk(sk);
1797 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1798 
1799 	return notsent_bytes < tcp_notsent_lowat(tp);
1800 }
1801 
1802 #ifdef CONFIG_PROC_FS
1803 int tcp4_proc_init(void);
1804 void tcp4_proc_exit(void);
1805 #endif
1806 
1807 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1808 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1809 		     const struct tcp_request_sock_ops *af_ops,
1810 		     struct sock *sk, struct sk_buff *skb);
1811 
1812 /* TCP af-specific functions */
1813 struct tcp_sock_af_ops {
1814 #ifdef CONFIG_TCP_MD5SIG
1815 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1816 						const struct sock *addr_sk);
1817 	int		(*calc_md5_hash)(char *location,
1818 					 const struct tcp_md5sig_key *md5,
1819 					 const struct sock *sk,
1820 					 const struct sk_buff *skb);
1821 	int		(*md5_parse)(struct sock *sk,
1822 				     int optname,
1823 				     char __user *optval,
1824 				     int optlen);
1825 #endif
1826 };
1827 
1828 struct tcp_request_sock_ops {
1829 	u16 mss_clamp;
1830 #ifdef CONFIG_TCP_MD5SIG
1831 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1832 						 const struct sock *addr_sk);
1833 	int		(*calc_md5_hash) (char *location,
1834 					  const struct tcp_md5sig_key *md5,
1835 					  const struct sock *sk,
1836 					  const struct sk_buff *skb);
1837 #endif
1838 	void (*init_req)(struct request_sock *req,
1839 			 const struct sock *sk_listener,
1840 			 struct sk_buff *skb);
1841 #ifdef CONFIG_SYN_COOKIES
1842 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1843 				 __u16 *mss);
1844 #endif
1845 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1846 				       const struct request_sock *req);
1847 	u32 (*init_seq)(const struct sk_buff *skb);
1848 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1849 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1850 			   struct flowi *fl, struct request_sock *req,
1851 			   struct tcp_fastopen_cookie *foc,
1852 			   enum tcp_synack_type synack_type);
1853 };
1854 
1855 #ifdef CONFIG_SYN_COOKIES
1856 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1857 					 const struct sock *sk, struct sk_buff *skb,
1858 					 __u16 *mss)
1859 {
1860 	tcp_synq_overflow(sk);
1861 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1862 	return ops->cookie_init_seq(skb, mss);
1863 }
1864 #else
1865 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1866 					 const struct sock *sk, struct sk_buff *skb,
1867 					 __u16 *mss)
1868 {
1869 	return 0;
1870 }
1871 #endif
1872 
1873 int tcpv4_offload_init(void);
1874 
1875 void tcp_v4_init(void);
1876 void tcp_init(void);
1877 
1878 /* tcp_recovery.c */
1879 extern void tcp_rack_mark_lost(struct sock *sk);
1880 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1881 			     u64 xmit_time);
1882 extern void tcp_rack_reo_timeout(struct sock *sk);
1883 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1884 
1885 /* At how many usecs into the future should the RTO fire? */
1886 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1887 {
1888 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1889 	u32 rto = inet_csk(sk)->icsk_rto;
1890 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1891 
1892 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1893 }
1894 
1895 /*
1896  * Save and compile IPv4 options, return a pointer to it
1897  */
1898 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1899 							 struct sk_buff *skb)
1900 {
1901 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1902 	struct ip_options_rcu *dopt = NULL;
1903 
1904 	if (opt->optlen) {
1905 		int opt_size = sizeof(*dopt) + opt->optlen;
1906 
1907 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1908 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1909 			kfree(dopt);
1910 			dopt = NULL;
1911 		}
1912 	}
1913 	return dopt;
1914 }
1915 
1916 /* locally generated TCP pure ACKs have skb->truesize == 2
1917  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1918  * This is much faster than dissecting the packet to find out.
1919  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1920  */
1921 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1922 {
1923 	return skb->truesize == 2;
1924 }
1925 
1926 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1927 {
1928 	skb->truesize = 2;
1929 }
1930 
1931 static inline int tcp_inq(struct sock *sk)
1932 {
1933 	struct tcp_sock *tp = tcp_sk(sk);
1934 	int answ;
1935 
1936 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1937 		answ = 0;
1938 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1939 		   !tp->urg_data ||
1940 		   before(tp->urg_seq, tp->copied_seq) ||
1941 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1942 
1943 		answ = tp->rcv_nxt - tp->copied_seq;
1944 
1945 		/* Subtract 1, if FIN was received */
1946 		if (answ && sock_flag(sk, SOCK_DONE))
1947 			answ--;
1948 	} else {
1949 		answ = tp->urg_seq - tp->copied_seq;
1950 	}
1951 
1952 	return answ;
1953 }
1954 
1955 int tcp_peek_len(struct socket *sock);
1956 
1957 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1958 {
1959 	u16 segs_in;
1960 
1961 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1962 	tp->segs_in += segs_in;
1963 	if (skb->len > tcp_hdrlen(skb))
1964 		tp->data_segs_in += segs_in;
1965 }
1966 
1967 /*
1968  * TCP listen path runs lockless.
1969  * We forced "struct sock" to be const qualified to make sure
1970  * we don't modify one of its field by mistake.
1971  * Here, we increment sk_drops which is an atomic_t, so we can safely
1972  * make sock writable again.
1973  */
1974 static inline void tcp_listendrop(const struct sock *sk)
1975 {
1976 	atomic_inc(&((struct sock *)sk)->sk_drops);
1977 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1978 }
1979 
1980 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
1981 
1982 /*
1983  * Interface for adding Upper Level Protocols over TCP
1984  */
1985 
1986 #define TCP_ULP_NAME_MAX	16
1987 #define TCP_ULP_MAX		128
1988 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
1989 
1990 enum {
1991 	TCP_ULP_TLS,
1992 	TCP_ULP_BPF,
1993 };
1994 
1995 struct tcp_ulp_ops {
1996 	struct list_head	list;
1997 
1998 	/* initialize ulp */
1999 	int (*init)(struct sock *sk);
2000 	/* cleanup ulp */
2001 	void (*release)(struct sock *sk);
2002 
2003 	int		uid;
2004 	char		name[TCP_ULP_NAME_MAX];
2005 	bool		user_visible;
2006 	struct module	*owner;
2007 };
2008 int tcp_register_ulp(struct tcp_ulp_ops *type);
2009 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2010 int tcp_set_ulp(struct sock *sk, const char *name);
2011 int tcp_set_ulp_id(struct sock *sk, const int ulp);
2012 void tcp_get_available_ulp(char *buf, size_t len);
2013 void tcp_cleanup_ulp(struct sock *sk);
2014 
2015 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2016  * is < 0, then the BPF op failed (for example if the loaded BPF
2017  * program does not support the chosen operation or there is no BPF
2018  * program loaded).
2019  */
2020 #ifdef CONFIG_BPF
2021 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2022 {
2023 	struct bpf_sock_ops_kern sock_ops;
2024 	int ret;
2025 
2026 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2027 	if (sk_fullsock(sk)) {
2028 		sock_ops.is_fullsock = 1;
2029 		sock_owned_by_me(sk);
2030 	}
2031 
2032 	sock_ops.sk = sk;
2033 	sock_ops.op = op;
2034 	if (nargs > 0)
2035 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2036 
2037 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2038 	if (ret == 0)
2039 		ret = sock_ops.reply;
2040 	else
2041 		ret = -1;
2042 	return ret;
2043 }
2044 
2045 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2046 {
2047 	u32 args[2] = {arg1, arg2};
2048 
2049 	return tcp_call_bpf(sk, op, 2, args);
2050 }
2051 
2052 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2053 				    u32 arg3)
2054 {
2055 	u32 args[3] = {arg1, arg2, arg3};
2056 
2057 	return tcp_call_bpf(sk, op, 3, args);
2058 }
2059 
2060 #else
2061 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2062 {
2063 	return -EPERM;
2064 }
2065 
2066 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2067 {
2068 	return -EPERM;
2069 }
2070 
2071 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2072 				    u32 arg3)
2073 {
2074 	return -EPERM;
2075 }
2076 
2077 #endif
2078 
2079 static inline u32 tcp_timeout_init(struct sock *sk)
2080 {
2081 	int timeout;
2082 
2083 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2084 
2085 	if (timeout <= 0)
2086 		timeout = TCP_TIMEOUT_INIT;
2087 	return timeout;
2088 }
2089 
2090 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2091 {
2092 	int rwnd;
2093 
2094 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2095 
2096 	if (rwnd < 0)
2097 		rwnd = 0;
2098 	return rwnd;
2099 }
2100 
2101 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2102 {
2103 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2104 }
2105 
2106 #if IS_ENABLED(CONFIG_SMC)
2107 extern struct static_key_false tcp_have_smc;
2108 #endif
2109 
2110 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2111 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2112 			     void (*cad)(struct sock *sk, u32 ack_seq));
2113 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2114 
2115 #endif
2116 
2117 #endif	/* _TCP_H */
2118