xref: /linux/include/net/tcp.h (revision a8d70602b186f3c347e62c59a418be802b71886d)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 #include <linux/net_mm.h>
49 
50 extern struct inet_hashinfo tcp_hashinfo;
51 
52 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
53 int tcp_orphan_count_sum(void);
54 
55 void tcp_time_wait(struct sock *sk, int state, int timeo);
56 
57 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
58 #define MAX_TCP_OPTION_SPACE 40
59 #define TCP_MIN_SND_MSS		48
60 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
61 
62 /*
63  * Never offer a window over 32767 without using window scaling. Some
64  * poor stacks do signed 16bit maths!
65  */
66 #define MAX_TCP_WINDOW		32767U
67 
68 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
69 #define TCP_MIN_MSS		88U
70 
71 /* The initial MTU to use for probing */
72 #define TCP_BASE_MSS		1024
73 
74 /* probing interval, default to 10 minutes as per RFC4821 */
75 #define TCP_PROBE_INTERVAL	600
76 
77 /* Specify interval when tcp mtu probing will stop */
78 #define TCP_PROBE_THRESHOLD	8
79 
80 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
81 #define TCP_FASTRETRANS_THRESH 3
82 
83 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
84 #define TCP_MAX_QUICKACKS	16U
85 
86 /* Maximal number of window scale according to RFC1323 */
87 #define TCP_MAX_WSCALE		14U
88 
89 /* urg_data states */
90 #define TCP_URG_VALID	0x0100
91 #define TCP_URG_NOTYET	0x0200
92 #define TCP_URG_READ	0x0400
93 
94 #define TCP_RETR1	3	/*
95 				 * This is how many retries it does before it
96 				 * tries to figure out if the gateway is
97 				 * down. Minimal RFC value is 3; it corresponds
98 				 * to ~3sec-8min depending on RTO.
99 				 */
100 
101 #define TCP_RETR2	15	/*
102 				 * This should take at least
103 				 * 90 minutes to time out.
104 				 * RFC1122 says that the limit is 100 sec.
105 				 * 15 is ~13-30min depending on RTO.
106 				 */
107 
108 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
109 				 * when active opening a connection.
110 				 * RFC1122 says the minimum retry MUST
111 				 * be at least 180secs.  Nevertheless
112 				 * this value is corresponding to
113 				 * 63secs of retransmission with the
114 				 * current initial RTO.
115 				 */
116 
117 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
118 				 * when passive opening a connection.
119 				 * This is corresponding to 31secs of
120 				 * retransmission with the current
121 				 * initial RTO.
122 				 */
123 
124 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
125 				  * state, about 60 seconds	*/
126 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
127                                  /* BSD style FIN_WAIT2 deadlock breaker.
128 				  * It used to be 3min, new value is 60sec,
129 				  * to combine FIN-WAIT-2 timeout with
130 				  * TIME-WAIT timer.
131 				  */
132 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
133 
134 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135 #if HZ >= 100
136 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
137 #define TCP_ATO_MIN	((unsigned)(HZ/25))
138 #else
139 #define TCP_DELACK_MIN	4U
140 #define TCP_ATO_MIN	4U
141 #endif
142 #define TCP_RTO_MAX	((unsigned)(120*HZ))
143 #define TCP_RTO_MIN	((unsigned)(HZ/5))
144 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
145 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
146 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
147 						 * used as a fallback RTO for the
148 						 * initial data transmission if no
149 						 * valid RTT sample has been acquired,
150 						 * most likely due to retrans in 3WHS.
151 						 */
152 
153 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
154 					                 * for local resources.
155 					                 */
156 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
157 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
158 #define TCP_KEEPALIVE_INTVL	(75*HZ)
159 
160 #define MAX_TCP_KEEPIDLE	32767
161 #define MAX_TCP_KEEPINTVL	32767
162 #define MAX_TCP_KEEPCNT		127
163 #define MAX_TCP_SYNCNT		127
164 
165 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
167 					 * after this time. It should be equal
168 					 * (or greater than) TCP_TIMEWAIT_LEN
169 					 * to provide reliability equal to one
170 					 * provided by timewait state.
171 					 */
172 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
173 					 * timestamps. It must be less than
174 					 * minimal timewait lifetime.
175 					 */
176 /*
177  *	TCP option
178  */
179 
180 #define TCPOPT_NOP		1	/* Padding */
181 #define TCPOPT_EOL		0	/* End of options */
182 #define TCPOPT_MSS		2	/* Segment size negotiating */
183 #define TCPOPT_WINDOW		3	/* Window scaling */
184 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
185 #define TCPOPT_SACK             5       /* SACK Block */
186 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
188 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
189 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
190 #define TCPOPT_EXP		254	/* Experimental */
191 /* Magic number to be after the option value for sharing TCP
192  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
193  */
194 #define TCPOPT_FASTOPEN_MAGIC	0xF989
195 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
196 
197 /*
198  *     TCP option lengths
199  */
200 
201 #define TCPOLEN_MSS            4
202 #define TCPOLEN_WINDOW         3
203 #define TCPOLEN_SACK_PERM      2
204 #define TCPOLEN_TIMESTAMP      10
205 #define TCPOLEN_MD5SIG         18
206 #define TCPOLEN_FASTOPEN_BASE  2
207 #define TCPOLEN_EXP_FASTOPEN_BASE  4
208 #define TCPOLEN_EXP_SMC_BASE   6
209 
210 /* But this is what stacks really send out. */
211 #define TCPOLEN_TSTAMP_ALIGNED		12
212 #define TCPOLEN_WSCALE_ALIGNED		4
213 #define TCPOLEN_SACKPERM_ALIGNED	4
214 #define TCPOLEN_SACK_BASE		2
215 #define TCPOLEN_SACK_BASE_ALIGNED	4
216 #define TCPOLEN_SACK_PERBLOCK		8
217 #define TCPOLEN_MD5SIG_ALIGNED		20
218 #define TCPOLEN_MSS_ALIGNED		4
219 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
220 
221 /* Flags in tp->nonagle */
222 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
223 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
224 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
225 
226 /* TCP thin-stream limits */
227 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
228 
229 /* TCP initial congestion window as per rfc6928 */
230 #define TCP_INIT_CWND		10
231 
232 /* Bit Flags for sysctl_tcp_fastopen */
233 #define	TFO_CLIENT_ENABLE	1
234 #define	TFO_SERVER_ENABLE	2
235 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
236 
237 /* Accept SYN data w/o any cookie option */
238 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
239 
240 /* Force enable TFO on all listeners, i.e., not requiring the
241  * TCP_FASTOPEN socket option.
242  */
243 #define	TFO_SERVER_WO_SOCKOPT1	0x400
244 
245 
246 /* sysctl variables for tcp */
247 extern int sysctl_tcp_max_orphans;
248 extern long sysctl_tcp_mem[3];
249 
250 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
251 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
252 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
253 
254 extern atomic_long_t tcp_memory_allocated;
255 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
256 
257 extern struct percpu_counter tcp_sockets_allocated;
258 extern unsigned long tcp_memory_pressure;
259 
260 /* optimized version of sk_under_memory_pressure() for TCP sockets */
261 static inline bool tcp_under_memory_pressure(const struct sock *sk)
262 {
263 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
264 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
265 		return true;
266 
267 	return READ_ONCE(tcp_memory_pressure);
268 }
269 /*
270  * The next routines deal with comparing 32 bit unsigned ints
271  * and worry about wraparound (automatic with unsigned arithmetic).
272  */
273 
274 static inline bool before(__u32 seq1, __u32 seq2)
275 {
276         return (__s32)(seq1-seq2) < 0;
277 }
278 #define after(seq2, seq1) 	before(seq1, seq2)
279 
280 /* is s2<=s1<=s3 ? */
281 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
282 {
283 	return seq3 - seq2 >= seq1 - seq2;
284 }
285 
286 static inline bool tcp_out_of_memory(struct sock *sk)
287 {
288 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
289 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
290 		return true;
291 	return false;
292 }
293 
294 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
295 {
296 	sk_wmem_queued_add(sk, -skb->truesize);
297 	if (!skb_zcopy_pure(skb))
298 		sk_mem_uncharge(sk, skb->truesize);
299 	else
300 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
301 	__kfree_skb(skb);
302 }
303 
304 void sk_forced_mem_schedule(struct sock *sk, int size);
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 void tcp_remove_empty_skb(struct sock *sk);
326 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
327 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
329 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
330 			 size_t size, struct ubuf_info *uarg);
331 void tcp_splice_eof(struct socket *sock);
332 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
333 int tcp_wmem_schedule(struct sock *sk, int copy);
334 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
335 	      int size_goal);
336 void tcp_release_cb(struct sock *sk);
337 void tcp_wfree(struct sk_buff *skb);
338 void tcp_write_timer_handler(struct sock *sk);
339 void tcp_delack_timer_handler(struct sock *sk);
340 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
341 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
342 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_space_adjust(struct sock *sk);
344 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345 void tcp_twsk_destructor(struct sock *sk);
346 void tcp_twsk_purge(struct list_head *net_exit_list, int family);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
351 				     bool force_schedule);
352 
353 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
354 static inline void tcp_dec_quickack_mode(struct sock *sk,
355 					 const unsigned int pkts)
356 {
357 	struct inet_connection_sock *icsk = inet_csk(sk);
358 
359 	if (icsk->icsk_ack.quick) {
360 		if (pkts >= icsk->icsk_ack.quick) {
361 			icsk->icsk_ack.quick = 0;
362 			/* Leaving quickack mode we deflate ATO. */
363 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
364 		} else
365 			icsk->icsk_ack.quick -= pkts;
366 	}
367 }
368 
369 #define	TCP_ECN_OK		1
370 #define	TCP_ECN_QUEUE_CWR	2
371 #define	TCP_ECN_DEMAND_CWR	4
372 #define	TCP_ECN_SEEN		8
373 
374 enum tcp_tw_status {
375 	TCP_TW_SUCCESS = 0,
376 	TCP_TW_RST = 1,
377 	TCP_TW_ACK = 2,
378 	TCP_TW_SYN = 3
379 };
380 
381 
382 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
383 					      struct sk_buff *skb,
384 					      const struct tcphdr *th);
385 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
386 			   struct request_sock *req, bool fastopen,
387 			   bool *lost_race);
388 int tcp_child_process(struct sock *parent, struct sock *child,
389 		      struct sk_buff *skb);
390 void tcp_enter_loss(struct sock *sk);
391 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
392 void tcp_clear_retrans(struct tcp_sock *tp);
393 void tcp_update_metrics(struct sock *sk);
394 void tcp_init_metrics(struct sock *sk);
395 void tcp_metrics_init(void);
396 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
397 void __tcp_close(struct sock *sk, long timeout);
398 void tcp_close(struct sock *sk, long timeout);
399 void tcp_init_sock(struct sock *sk);
400 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
401 __poll_t tcp_poll(struct file *file, struct socket *sock,
402 		      struct poll_table_struct *wait);
403 int do_tcp_getsockopt(struct sock *sk, int level,
404 		      int optname, sockptr_t optval, sockptr_t optlen);
405 int tcp_getsockopt(struct sock *sk, int level, int optname,
406 		   char __user *optval, int __user *optlen);
407 bool tcp_bpf_bypass_getsockopt(int level, int optname);
408 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
409 		      sockptr_t optval, unsigned int optlen);
410 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
411 		   unsigned int optlen);
412 void tcp_set_keepalive(struct sock *sk, int val);
413 void tcp_syn_ack_timeout(const struct request_sock *req);
414 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
415 		int flags, int *addr_len);
416 int tcp_set_rcvlowat(struct sock *sk, int val);
417 int tcp_set_window_clamp(struct sock *sk, int val);
418 void tcp_update_recv_tstamps(struct sk_buff *skb,
419 			     struct scm_timestamping_internal *tss);
420 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
421 			struct scm_timestamping_internal *tss);
422 void tcp_data_ready(struct sock *sk);
423 #ifdef CONFIG_MMU
424 int tcp_mmap(struct file *file, struct socket *sock,
425 	     struct vm_area_struct *vma);
426 #endif
427 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
428 		       struct tcp_options_received *opt_rx,
429 		       int estab, struct tcp_fastopen_cookie *foc);
430 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
431 
432 /*
433  *	BPF SKB-less helpers
434  */
435 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
436 			 struct tcphdr *th, u32 *cookie);
437 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
438 			 struct tcphdr *th, u32 *cookie);
439 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
440 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
441 			  const struct tcp_request_sock_ops *af_ops,
442 			  struct sock *sk, struct tcphdr *th);
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 void tcp_v4_mtu_reduced(struct sock *sk);
449 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
450 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
451 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
452 struct sock *tcp_create_openreq_child(const struct sock *sk,
453 				      struct request_sock *req,
454 				      struct sk_buff *skb);
455 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
456 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
457 				  struct request_sock *req,
458 				  struct dst_entry *dst,
459 				  struct request_sock *req_unhash,
460 				  bool *own_req);
461 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
462 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
463 int tcp_connect(struct sock *sk);
464 enum tcp_synack_type {
465 	TCP_SYNACK_NORMAL,
466 	TCP_SYNACK_FASTOPEN,
467 	TCP_SYNACK_COOKIE,
468 };
469 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
470 				struct request_sock *req,
471 				struct tcp_fastopen_cookie *foc,
472 				enum tcp_synack_type synack_type,
473 				struct sk_buff *syn_skb);
474 int tcp_disconnect(struct sock *sk, int flags);
475 
476 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
477 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
478 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
479 
480 /* From syncookies.c */
481 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
482 				 struct request_sock *req,
483 				 struct dst_entry *dst, u32 tsoff);
484 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
485 		      u32 cookie);
486 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
487 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
488 					    const struct tcp_request_sock_ops *af_ops,
489 					    struct sock *sk, struct sk_buff *skb);
490 #ifdef CONFIG_SYN_COOKIES
491 
492 /* Syncookies use a monotonic timer which increments every 60 seconds.
493  * This counter is used both as a hash input and partially encoded into
494  * the cookie value.  A cookie is only validated further if the delta
495  * between the current counter value and the encoded one is less than this,
496  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
497  * the counter advances immediately after a cookie is generated).
498  */
499 #define MAX_SYNCOOKIE_AGE	2
500 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
501 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
502 
503 /* syncookies: remember time of last synqueue overflow
504  * But do not dirty this field too often (once per second is enough)
505  * It is racy as we do not hold a lock, but race is very minor.
506  */
507 static inline void tcp_synq_overflow(const struct sock *sk)
508 {
509 	unsigned int last_overflow;
510 	unsigned int now = jiffies;
511 
512 	if (sk->sk_reuseport) {
513 		struct sock_reuseport *reuse;
514 
515 		reuse = rcu_dereference(sk->sk_reuseport_cb);
516 		if (likely(reuse)) {
517 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
518 			if (!time_between32(now, last_overflow,
519 					    last_overflow + HZ))
520 				WRITE_ONCE(reuse->synq_overflow_ts, now);
521 			return;
522 		}
523 	}
524 
525 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
526 	if (!time_between32(now, last_overflow, last_overflow + HZ))
527 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
528 }
529 
530 /* syncookies: no recent synqueue overflow on this listening socket? */
531 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
532 {
533 	unsigned int last_overflow;
534 	unsigned int now = jiffies;
535 
536 	if (sk->sk_reuseport) {
537 		struct sock_reuseport *reuse;
538 
539 		reuse = rcu_dereference(sk->sk_reuseport_cb);
540 		if (likely(reuse)) {
541 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
542 			return !time_between32(now, last_overflow - HZ,
543 					       last_overflow +
544 					       TCP_SYNCOOKIE_VALID);
545 		}
546 	}
547 
548 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
549 
550 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
551 	 * then we're under synflood. However, we have to use
552 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
553 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
554 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
555 	 * which could lead to rejecting a valid syncookie.
556 	 */
557 	return !time_between32(now, last_overflow - HZ,
558 			       last_overflow + TCP_SYNCOOKIE_VALID);
559 }
560 
561 static inline u32 tcp_cookie_time(void)
562 {
563 	u64 val = get_jiffies_64();
564 
565 	do_div(val, TCP_SYNCOOKIE_PERIOD);
566 	return val;
567 }
568 
569 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
570 			      u16 *mssp);
571 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
572 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
573 bool cookie_timestamp_decode(const struct net *net,
574 			     struct tcp_options_received *opt);
575 bool cookie_ecn_ok(const struct tcp_options_received *opt,
576 		   const struct net *net, const struct dst_entry *dst);
577 
578 /* From net/ipv6/syncookies.c */
579 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
580 		      u32 cookie);
581 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
582 
583 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
584 			      const struct tcphdr *th, u16 *mssp);
585 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
586 #endif
587 /* tcp_output.c */
588 
589 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
590 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
591 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
592 			       int nonagle);
593 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
594 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
595 void tcp_retransmit_timer(struct sock *sk);
596 void tcp_xmit_retransmit_queue(struct sock *);
597 void tcp_simple_retransmit(struct sock *);
598 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
599 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
600 enum tcp_queue {
601 	TCP_FRAG_IN_WRITE_QUEUE,
602 	TCP_FRAG_IN_RTX_QUEUE,
603 };
604 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
605 		 struct sk_buff *skb, u32 len,
606 		 unsigned int mss_now, gfp_t gfp);
607 
608 void tcp_send_probe0(struct sock *);
609 void tcp_send_partial(struct sock *);
610 int tcp_write_wakeup(struct sock *, int mib);
611 void tcp_send_fin(struct sock *sk);
612 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
613 int tcp_send_synack(struct sock *);
614 void tcp_push_one(struct sock *, unsigned int mss_now);
615 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
616 void tcp_send_ack(struct sock *sk);
617 void tcp_send_delayed_ack(struct sock *sk);
618 void tcp_send_loss_probe(struct sock *sk);
619 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
620 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
621 			     const struct sk_buff *next_skb);
622 
623 /* tcp_input.c */
624 void tcp_rearm_rto(struct sock *sk);
625 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
626 void tcp_reset(struct sock *sk, struct sk_buff *skb);
627 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
628 void tcp_fin(struct sock *sk);
629 void tcp_check_space(struct sock *sk);
630 void tcp_sack_compress_send_ack(struct sock *sk);
631 
632 /* tcp_timer.c */
633 void tcp_init_xmit_timers(struct sock *);
634 static inline void tcp_clear_xmit_timers(struct sock *sk)
635 {
636 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
637 		__sock_put(sk);
638 
639 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
640 		__sock_put(sk);
641 
642 	inet_csk_clear_xmit_timers(sk);
643 }
644 
645 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
646 unsigned int tcp_current_mss(struct sock *sk);
647 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
648 
649 /* Bound MSS / TSO packet size with the half of the window */
650 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
651 {
652 	int cutoff;
653 
654 	/* When peer uses tiny windows, there is no use in packetizing
655 	 * to sub-MSS pieces for the sake of SWS or making sure there
656 	 * are enough packets in the pipe for fast recovery.
657 	 *
658 	 * On the other hand, for extremely large MSS devices, handling
659 	 * smaller than MSS windows in this way does make sense.
660 	 */
661 	if (tp->max_window > TCP_MSS_DEFAULT)
662 		cutoff = (tp->max_window >> 1);
663 	else
664 		cutoff = tp->max_window;
665 
666 	if (cutoff && pktsize > cutoff)
667 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
668 	else
669 		return pktsize;
670 }
671 
672 /* tcp.c */
673 void tcp_get_info(struct sock *, struct tcp_info *);
674 
675 /* Read 'sendfile()'-style from a TCP socket */
676 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
677 		  sk_read_actor_t recv_actor);
678 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
679 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
680 void tcp_read_done(struct sock *sk, size_t len);
681 
682 void tcp_initialize_rcv_mss(struct sock *sk);
683 
684 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
685 int tcp_mss_to_mtu(struct sock *sk, int mss);
686 void tcp_mtup_init(struct sock *sk);
687 
688 static inline void tcp_bound_rto(const struct sock *sk)
689 {
690 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
691 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
692 }
693 
694 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
695 {
696 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
697 }
698 
699 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
700 {
701 	/* mptcp hooks are only on the slow path */
702 	if (sk_is_mptcp((struct sock *)tp))
703 		return;
704 
705 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
706 			       ntohl(TCP_FLAG_ACK) |
707 			       snd_wnd);
708 }
709 
710 static inline void tcp_fast_path_on(struct tcp_sock *tp)
711 {
712 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
713 }
714 
715 static inline void tcp_fast_path_check(struct sock *sk)
716 {
717 	struct tcp_sock *tp = tcp_sk(sk);
718 
719 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
720 	    tp->rcv_wnd &&
721 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
722 	    !tp->urg_data)
723 		tcp_fast_path_on(tp);
724 }
725 
726 /* Compute the actual rto_min value */
727 static inline u32 tcp_rto_min(struct sock *sk)
728 {
729 	const struct dst_entry *dst = __sk_dst_get(sk);
730 	u32 rto_min = inet_csk(sk)->icsk_rto_min;
731 
732 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
733 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
734 	return rto_min;
735 }
736 
737 static inline u32 tcp_rto_min_us(struct sock *sk)
738 {
739 	return jiffies_to_usecs(tcp_rto_min(sk));
740 }
741 
742 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
743 {
744 	return dst_metric_locked(dst, RTAX_CC_ALGO);
745 }
746 
747 /* Minimum RTT in usec. ~0 means not available. */
748 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
749 {
750 	return minmax_get(&tp->rtt_min);
751 }
752 
753 /* Compute the actual receive window we are currently advertising.
754  * Rcv_nxt can be after the window if our peer push more data
755  * than the offered window.
756  */
757 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
758 {
759 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
760 
761 	if (win < 0)
762 		win = 0;
763 	return (u32) win;
764 }
765 
766 /* Choose a new window, without checks for shrinking, and without
767  * scaling applied to the result.  The caller does these things
768  * if necessary.  This is a "raw" window selection.
769  */
770 u32 __tcp_select_window(struct sock *sk);
771 
772 void tcp_send_window_probe(struct sock *sk);
773 
774 /* TCP uses 32bit jiffies to save some space.
775  * Note that this is different from tcp_time_stamp, which
776  * historically has been the same until linux-4.13.
777  */
778 #define tcp_jiffies32 ((u32)jiffies)
779 
780 /*
781  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
782  * It is no longer tied to jiffies, but to 1 ms clock.
783  * Note: double check if you want to use tcp_jiffies32 instead of this.
784  */
785 #define TCP_TS_HZ	1000
786 
787 static inline u64 tcp_clock_ns(void)
788 {
789 	return ktime_get_ns();
790 }
791 
792 static inline u64 tcp_clock_us(void)
793 {
794 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
795 }
796 
797 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
798 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
799 {
800 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
801 }
802 
803 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
804 static inline u32 tcp_ns_to_ts(u64 ns)
805 {
806 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
807 }
808 
809 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
810 static inline u32 tcp_time_stamp_raw(void)
811 {
812 	return tcp_ns_to_ts(tcp_clock_ns());
813 }
814 
815 void tcp_mstamp_refresh(struct tcp_sock *tp);
816 
817 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
818 {
819 	return max_t(s64, t1 - t0, 0);
820 }
821 
822 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
823 {
824 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
825 }
826 
827 /* provide the departure time in us unit */
828 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
829 {
830 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
831 }
832 
833 
834 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
835 
836 #define TCPHDR_FIN 0x01
837 #define TCPHDR_SYN 0x02
838 #define TCPHDR_RST 0x04
839 #define TCPHDR_PSH 0x08
840 #define TCPHDR_ACK 0x10
841 #define TCPHDR_URG 0x20
842 #define TCPHDR_ECE 0x40
843 #define TCPHDR_CWR 0x80
844 
845 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
846 
847 /* This is what the send packet queuing engine uses to pass
848  * TCP per-packet control information to the transmission code.
849  * We also store the host-order sequence numbers in here too.
850  * This is 44 bytes if IPV6 is enabled.
851  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
852  */
853 struct tcp_skb_cb {
854 	__u32		seq;		/* Starting sequence number	*/
855 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
856 	union {
857 		/* Note : tcp_tw_isn is used in input path only
858 		 *	  (isn chosen by tcp_timewait_state_process())
859 		 *
860 		 * 	  tcp_gso_segs/size are used in write queue only,
861 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
862 		 */
863 		__u32		tcp_tw_isn;
864 		struct {
865 			u16	tcp_gso_segs;
866 			u16	tcp_gso_size;
867 		};
868 	};
869 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
870 
871 	__u8		sacked;		/* State flags for SACK.	*/
872 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
873 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
874 #define TCPCB_LOST		0x04	/* SKB is lost			*/
875 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
876 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
877 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
878 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
879 				TCPCB_REPAIRED)
880 
881 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
882 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
883 			eor:1,		/* Is skb MSG_EOR marked? */
884 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
885 			unused:5;
886 	__u32		ack_seq;	/* Sequence number ACK'd	*/
887 	union {
888 		struct {
889 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
890 			/* There is space for up to 24 bytes */
891 			__u32 is_app_limited:1, /* cwnd not fully used? */
892 			      delivered_ce:20,
893 			      unused:11;
894 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
895 			__u32 delivered;
896 			/* start of send pipeline phase */
897 			u64 first_tx_mstamp;
898 			/* when we reached the "delivered" count */
899 			u64 delivered_mstamp;
900 		} tx;   /* only used for outgoing skbs */
901 		union {
902 			struct inet_skb_parm	h4;
903 #if IS_ENABLED(CONFIG_IPV6)
904 			struct inet6_skb_parm	h6;
905 #endif
906 		} header;	/* For incoming skbs */
907 	};
908 };
909 
910 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
911 
912 extern const struct inet_connection_sock_af_ops ipv4_specific;
913 
914 #if IS_ENABLED(CONFIG_IPV6)
915 /* This is the variant of inet6_iif() that must be used by TCP,
916  * as TCP moves IP6CB into a different location in skb->cb[]
917  */
918 static inline int tcp_v6_iif(const struct sk_buff *skb)
919 {
920 	return TCP_SKB_CB(skb)->header.h6.iif;
921 }
922 
923 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
924 {
925 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
926 
927 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
928 }
929 
930 /* TCP_SKB_CB reference means this can not be used from early demux */
931 static inline int tcp_v6_sdif(const struct sk_buff *skb)
932 {
933 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
934 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
935 		return TCP_SKB_CB(skb)->header.h6.iif;
936 #endif
937 	return 0;
938 }
939 
940 extern const struct inet_connection_sock_af_ops ipv6_specific;
941 
942 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
943 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
944 void tcp_v6_early_demux(struct sk_buff *skb);
945 
946 #endif
947 
948 /* TCP_SKB_CB reference means this can not be used from early demux */
949 static inline int tcp_v4_sdif(struct sk_buff *skb)
950 {
951 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
952 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
953 		return TCP_SKB_CB(skb)->header.h4.iif;
954 #endif
955 	return 0;
956 }
957 
958 /* Due to TSO, an SKB can be composed of multiple actual
959  * packets.  To keep these tracked properly, we use this.
960  */
961 static inline int tcp_skb_pcount(const struct sk_buff *skb)
962 {
963 	return TCP_SKB_CB(skb)->tcp_gso_segs;
964 }
965 
966 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
967 {
968 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
969 }
970 
971 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
972 {
973 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
974 }
975 
976 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
977 static inline int tcp_skb_mss(const struct sk_buff *skb)
978 {
979 	return TCP_SKB_CB(skb)->tcp_gso_size;
980 }
981 
982 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
983 {
984 	return likely(!TCP_SKB_CB(skb)->eor);
985 }
986 
987 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
988 					const struct sk_buff *from)
989 {
990 	return likely(tcp_skb_can_collapse_to(to) &&
991 		      mptcp_skb_can_collapse(to, from) &&
992 		      skb_pure_zcopy_same(to, from));
993 }
994 
995 /* Events passed to congestion control interface */
996 enum tcp_ca_event {
997 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
998 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
999 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1000 	CA_EVENT_LOSS,		/* loss timeout */
1001 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1002 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1003 };
1004 
1005 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1006 enum tcp_ca_ack_event_flags {
1007 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1008 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1009 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1010 };
1011 
1012 /*
1013  * Interface for adding new TCP congestion control handlers
1014  */
1015 #define TCP_CA_NAME_MAX	16
1016 #define TCP_CA_MAX	128
1017 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1018 
1019 #define TCP_CA_UNSPEC	0
1020 
1021 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1022 #define TCP_CONG_NON_RESTRICTED 0x1
1023 /* Requires ECN/ECT set on all packets */
1024 #define TCP_CONG_NEEDS_ECN	0x2
1025 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1026 
1027 union tcp_cc_info;
1028 
1029 struct ack_sample {
1030 	u32 pkts_acked;
1031 	s32 rtt_us;
1032 	u32 in_flight;
1033 };
1034 
1035 /* A rate sample measures the number of (original/retransmitted) data
1036  * packets delivered "delivered" over an interval of time "interval_us".
1037  * The tcp_rate.c code fills in the rate sample, and congestion
1038  * control modules that define a cong_control function to run at the end
1039  * of ACK processing can optionally chose to consult this sample when
1040  * setting cwnd and pacing rate.
1041  * A sample is invalid if "delivered" or "interval_us" is negative.
1042  */
1043 struct rate_sample {
1044 	u64  prior_mstamp; /* starting timestamp for interval */
1045 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1046 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1047 	s32  delivered;		/* number of packets delivered over interval */
1048 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1049 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1050 	u32 snd_interval_us;	/* snd interval for delivered packets */
1051 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1052 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1053 	int  losses;		/* number of packets marked lost upon ACK */
1054 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1055 	u32  prior_in_flight;	/* in flight before this ACK */
1056 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1057 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1058 	bool is_retrans;	/* is sample from retransmission? */
1059 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1060 };
1061 
1062 struct tcp_congestion_ops {
1063 /* fast path fields are put first to fill one cache line */
1064 
1065 	/* return slow start threshold (required) */
1066 	u32 (*ssthresh)(struct sock *sk);
1067 
1068 	/* do new cwnd calculation (required) */
1069 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1070 
1071 	/* call before changing ca_state (optional) */
1072 	void (*set_state)(struct sock *sk, u8 new_state);
1073 
1074 	/* call when cwnd event occurs (optional) */
1075 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1076 
1077 	/* call when ack arrives (optional) */
1078 	void (*in_ack_event)(struct sock *sk, u32 flags);
1079 
1080 	/* hook for packet ack accounting (optional) */
1081 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1082 
1083 	/* override sysctl_tcp_min_tso_segs */
1084 	u32 (*min_tso_segs)(struct sock *sk);
1085 
1086 	/* call when packets are delivered to update cwnd and pacing rate,
1087 	 * after all the ca_state processing. (optional)
1088 	 */
1089 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1090 
1091 
1092 	/* new value of cwnd after loss (required) */
1093 	u32  (*undo_cwnd)(struct sock *sk);
1094 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1095 	u32 (*sndbuf_expand)(struct sock *sk);
1096 
1097 /* control/slow paths put last */
1098 	/* get info for inet_diag (optional) */
1099 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1100 			   union tcp_cc_info *info);
1101 
1102 	char 			name[TCP_CA_NAME_MAX];
1103 	struct module		*owner;
1104 	struct list_head	list;
1105 	u32			key;
1106 	u32			flags;
1107 
1108 	/* initialize private data (optional) */
1109 	void (*init)(struct sock *sk);
1110 	/* cleanup private data  (optional) */
1111 	void (*release)(struct sock *sk);
1112 } ____cacheline_aligned_in_smp;
1113 
1114 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1115 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1116 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1117 				  struct tcp_congestion_ops *old_type);
1118 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1119 
1120 void tcp_assign_congestion_control(struct sock *sk);
1121 void tcp_init_congestion_control(struct sock *sk);
1122 void tcp_cleanup_congestion_control(struct sock *sk);
1123 int tcp_set_default_congestion_control(struct net *net, const char *name);
1124 void tcp_get_default_congestion_control(struct net *net, char *name);
1125 void tcp_get_available_congestion_control(char *buf, size_t len);
1126 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1127 int tcp_set_allowed_congestion_control(char *allowed);
1128 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1129 			       bool cap_net_admin);
1130 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1131 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1132 
1133 u32 tcp_reno_ssthresh(struct sock *sk);
1134 u32 tcp_reno_undo_cwnd(struct sock *sk);
1135 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1136 extern struct tcp_congestion_ops tcp_reno;
1137 
1138 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1139 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1140 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1141 #ifdef CONFIG_INET
1142 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1143 #else
1144 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1145 {
1146 	return NULL;
1147 }
1148 #endif
1149 
1150 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1151 {
1152 	const struct inet_connection_sock *icsk = inet_csk(sk);
1153 
1154 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1155 }
1156 
1157 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1158 {
1159 	const struct inet_connection_sock *icsk = inet_csk(sk);
1160 
1161 	if (icsk->icsk_ca_ops->cwnd_event)
1162 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1163 }
1164 
1165 /* From tcp_cong.c */
1166 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1167 
1168 /* From tcp_rate.c */
1169 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1170 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1171 			    struct rate_sample *rs);
1172 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1173 		  bool is_sack_reneg, struct rate_sample *rs);
1174 void tcp_rate_check_app_limited(struct sock *sk);
1175 
1176 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1177 {
1178 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1179 }
1180 
1181 /* These functions determine how the current flow behaves in respect of SACK
1182  * handling. SACK is negotiated with the peer, and therefore it can vary
1183  * between different flows.
1184  *
1185  * tcp_is_sack - SACK enabled
1186  * tcp_is_reno - No SACK
1187  */
1188 static inline int tcp_is_sack(const struct tcp_sock *tp)
1189 {
1190 	return likely(tp->rx_opt.sack_ok);
1191 }
1192 
1193 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1194 {
1195 	return !tcp_is_sack(tp);
1196 }
1197 
1198 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1199 {
1200 	return tp->sacked_out + tp->lost_out;
1201 }
1202 
1203 /* This determines how many packets are "in the network" to the best
1204  * of our knowledge.  In many cases it is conservative, but where
1205  * detailed information is available from the receiver (via SACK
1206  * blocks etc.) we can make more aggressive calculations.
1207  *
1208  * Use this for decisions involving congestion control, use just
1209  * tp->packets_out to determine if the send queue is empty or not.
1210  *
1211  * Read this equation as:
1212  *
1213  *	"Packets sent once on transmission queue" MINUS
1214  *	"Packets left network, but not honestly ACKed yet" PLUS
1215  *	"Packets fast retransmitted"
1216  */
1217 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1218 {
1219 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1220 }
1221 
1222 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1223 
1224 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1225 {
1226 	return tp->snd_cwnd;
1227 }
1228 
1229 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1230 {
1231 	WARN_ON_ONCE((int)val <= 0);
1232 	tp->snd_cwnd = val;
1233 }
1234 
1235 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1236 {
1237 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1238 }
1239 
1240 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1241 {
1242 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1243 }
1244 
1245 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1246 {
1247 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1248 	       (1 << inet_csk(sk)->icsk_ca_state);
1249 }
1250 
1251 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1252  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1253  * ssthresh.
1254  */
1255 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1256 {
1257 	const struct tcp_sock *tp = tcp_sk(sk);
1258 
1259 	if (tcp_in_cwnd_reduction(sk))
1260 		return tp->snd_ssthresh;
1261 	else
1262 		return max(tp->snd_ssthresh,
1263 			   ((tcp_snd_cwnd(tp) >> 1) +
1264 			    (tcp_snd_cwnd(tp) >> 2)));
1265 }
1266 
1267 /* Use define here intentionally to get WARN_ON location shown at the caller */
1268 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1269 
1270 void tcp_enter_cwr(struct sock *sk);
1271 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1272 
1273 /* The maximum number of MSS of available cwnd for which TSO defers
1274  * sending if not using sysctl_tcp_tso_win_divisor.
1275  */
1276 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1277 {
1278 	return 3;
1279 }
1280 
1281 /* Returns end sequence number of the receiver's advertised window */
1282 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1283 {
1284 	return tp->snd_una + tp->snd_wnd;
1285 }
1286 
1287 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1288  * flexible approach. The RFC suggests cwnd should not be raised unless
1289  * it was fully used previously. And that's exactly what we do in
1290  * congestion avoidance mode. But in slow start we allow cwnd to grow
1291  * as long as the application has used half the cwnd.
1292  * Example :
1293  *    cwnd is 10 (IW10), but application sends 9 frames.
1294  *    We allow cwnd to reach 18 when all frames are ACKed.
1295  * This check is safe because it's as aggressive as slow start which already
1296  * risks 100% overshoot. The advantage is that we discourage application to
1297  * either send more filler packets or data to artificially blow up the cwnd
1298  * usage, and allow application-limited process to probe bw more aggressively.
1299  */
1300 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1301 {
1302 	const struct tcp_sock *tp = tcp_sk(sk);
1303 
1304 	if (tp->is_cwnd_limited)
1305 		return true;
1306 
1307 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1308 	if (tcp_in_slow_start(tp))
1309 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1310 
1311 	return false;
1312 }
1313 
1314 /* BBR congestion control needs pacing.
1315  * Same remark for SO_MAX_PACING_RATE.
1316  * sch_fq packet scheduler is efficiently handling pacing,
1317  * but is not always installed/used.
1318  * Return true if TCP stack should pace packets itself.
1319  */
1320 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1321 {
1322 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1323 }
1324 
1325 /* Estimates in how many jiffies next packet for this flow can be sent.
1326  * Scheduling a retransmit timer too early would be silly.
1327  */
1328 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1329 {
1330 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1331 
1332 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1333 }
1334 
1335 static inline void tcp_reset_xmit_timer(struct sock *sk,
1336 					const int what,
1337 					unsigned long when,
1338 					const unsigned long max_when)
1339 {
1340 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1341 				  max_when);
1342 }
1343 
1344 /* Something is really bad, we could not queue an additional packet,
1345  * because qdisc is full or receiver sent a 0 window, or we are paced.
1346  * We do not want to add fuel to the fire, or abort too early,
1347  * so make sure the timer we arm now is at least 200ms in the future,
1348  * regardless of current icsk_rto value (as it could be ~2ms)
1349  */
1350 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1351 {
1352 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1353 }
1354 
1355 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1356 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1357 					    unsigned long max_when)
1358 {
1359 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1360 			   inet_csk(sk)->icsk_backoff);
1361 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1362 
1363 	return (unsigned long)min_t(u64, when, max_when);
1364 }
1365 
1366 static inline void tcp_check_probe_timer(struct sock *sk)
1367 {
1368 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1369 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1370 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1371 }
1372 
1373 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1374 {
1375 	tp->snd_wl1 = seq;
1376 }
1377 
1378 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1379 {
1380 	tp->snd_wl1 = seq;
1381 }
1382 
1383 /*
1384  * Calculate(/check) TCP checksum
1385  */
1386 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1387 				   __be32 daddr, __wsum base)
1388 {
1389 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1390 }
1391 
1392 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1393 {
1394 	return !skb_csum_unnecessary(skb) &&
1395 		__skb_checksum_complete(skb);
1396 }
1397 
1398 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1399 		     enum skb_drop_reason *reason);
1400 
1401 
1402 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1403 void tcp_set_state(struct sock *sk, int state);
1404 void tcp_done(struct sock *sk);
1405 int tcp_abort(struct sock *sk, int err);
1406 
1407 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1408 {
1409 	rx_opt->dsack = 0;
1410 	rx_opt->num_sacks = 0;
1411 }
1412 
1413 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1414 
1415 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1416 {
1417 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1418 	struct tcp_sock *tp = tcp_sk(sk);
1419 	s32 delta;
1420 
1421 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1422 	    tp->packets_out || ca_ops->cong_control)
1423 		return;
1424 	delta = tcp_jiffies32 - tp->lsndtime;
1425 	if (delta > inet_csk(sk)->icsk_rto)
1426 		tcp_cwnd_restart(sk, delta);
1427 }
1428 
1429 /* Determine a window scaling and initial window to offer. */
1430 void tcp_select_initial_window(const struct sock *sk, int __space,
1431 			       __u32 mss, __u32 *rcv_wnd,
1432 			       __u32 *window_clamp, int wscale_ok,
1433 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1434 
1435 static inline int tcp_win_from_space(const struct sock *sk, int space)
1436 {
1437 	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1438 
1439 	return tcp_adv_win_scale <= 0 ?
1440 		(space>>(-tcp_adv_win_scale)) :
1441 		space - (space>>tcp_adv_win_scale);
1442 }
1443 
1444 /* Note: caller must be prepared to deal with negative returns */
1445 static inline int tcp_space(const struct sock *sk)
1446 {
1447 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1448 				  READ_ONCE(sk->sk_backlog.len) -
1449 				  atomic_read(&sk->sk_rmem_alloc));
1450 }
1451 
1452 static inline int tcp_full_space(const struct sock *sk)
1453 {
1454 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1455 }
1456 
1457 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1458 {
1459 	int unused_mem = sk_unused_reserved_mem(sk);
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 
1462 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1463 	if (unused_mem)
1464 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1465 					 tcp_win_from_space(sk, unused_mem));
1466 }
1467 
1468 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1469 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1470 
1471 
1472 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1473  * If 87.5 % (7/8) of the space has been consumed, we want to override
1474  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1475  * len/truesize ratio.
1476  */
1477 static inline bool tcp_rmem_pressure(const struct sock *sk)
1478 {
1479 	int rcvbuf, threshold;
1480 
1481 	if (tcp_under_memory_pressure(sk))
1482 		return true;
1483 
1484 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1485 	threshold = rcvbuf - (rcvbuf >> 3);
1486 
1487 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1488 }
1489 
1490 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1491 {
1492 	const struct tcp_sock *tp = tcp_sk(sk);
1493 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1494 
1495 	if (avail <= 0)
1496 		return false;
1497 
1498 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1499 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1500 }
1501 
1502 extern void tcp_openreq_init_rwin(struct request_sock *req,
1503 				  const struct sock *sk_listener,
1504 				  const struct dst_entry *dst);
1505 
1506 void tcp_enter_memory_pressure(struct sock *sk);
1507 void tcp_leave_memory_pressure(struct sock *sk);
1508 
1509 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1510 {
1511 	struct net *net = sock_net((struct sock *)tp);
1512 
1513 	return tp->keepalive_intvl ? :
1514 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1515 }
1516 
1517 static inline int keepalive_time_when(const struct tcp_sock *tp)
1518 {
1519 	struct net *net = sock_net((struct sock *)tp);
1520 
1521 	return tp->keepalive_time ? :
1522 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1523 }
1524 
1525 static inline int keepalive_probes(const struct tcp_sock *tp)
1526 {
1527 	struct net *net = sock_net((struct sock *)tp);
1528 
1529 	return tp->keepalive_probes ? :
1530 		READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1531 }
1532 
1533 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1534 {
1535 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1536 
1537 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1538 			  tcp_jiffies32 - tp->rcv_tstamp);
1539 }
1540 
1541 static inline int tcp_fin_time(const struct sock *sk)
1542 {
1543 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1544 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1545 	const int rto = inet_csk(sk)->icsk_rto;
1546 
1547 	if (fin_timeout < (rto << 2) - (rto >> 1))
1548 		fin_timeout = (rto << 2) - (rto >> 1);
1549 
1550 	return fin_timeout;
1551 }
1552 
1553 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1554 				  int paws_win)
1555 {
1556 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1557 		return true;
1558 	if (unlikely(!time_before32(ktime_get_seconds(),
1559 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1560 		return true;
1561 	/*
1562 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1563 	 * then following tcp messages have valid values. Ignore 0 value,
1564 	 * or else 'negative' tsval might forbid us to accept their packets.
1565 	 */
1566 	if (!rx_opt->ts_recent)
1567 		return true;
1568 	return false;
1569 }
1570 
1571 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1572 				   int rst)
1573 {
1574 	if (tcp_paws_check(rx_opt, 0))
1575 		return false;
1576 
1577 	/* RST segments are not recommended to carry timestamp,
1578 	   and, if they do, it is recommended to ignore PAWS because
1579 	   "their cleanup function should take precedence over timestamps."
1580 	   Certainly, it is mistake. It is necessary to understand the reasons
1581 	   of this constraint to relax it: if peer reboots, clock may go
1582 	   out-of-sync and half-open connections will not be reset.
1583 	   Actually, the problem would be not existing if all
1584 	   the implementations followed draft about maintaining clock
1585 	   via reboots. Linux-2.2 DOES NOT!
1586 
1587 	   However, we can relax time bounds for RST segments to MSL.
1588 	 */
1589 	if (rst && !time_before32(ktime_get_seconds(),
1590 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1591 		return false;
1592 	return true;
1593 }
1594 
1595 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1596 			  int mib_idx, u32 *last_oow_ack_time);
1597 
1598 static inline void tcp_mib_init(struct net *net)
1599 {
1600 	/* See RFC 2012 */
1601 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1602 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1603 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1604 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1605 }
1606 
1607 /* from STCP */
1608 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1609 {
1610 	tp->lost_skb_hint = NULL;
1611 }
1612 
1613 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1614 {
1615 	tcp_clear_retrans_hints_partial(tp);
1616 	tp->retransmit_skb_hint = NULL;
1617 }
1618 
1619 union tcp_md5_addr {
1620 	struct in_addr  a4;
1621 #if IS_ENABLED(CONFIG_IPV6)
1622 	struct in6_addr	a6;
1623 #endif
1624 };
1625 
1626 /* - key database */
1627 struct tcp_md5sig_key {
1628 	struct hlist_node	node;
1629 	u8			keylen;
1630 	u8			family; /* AF_INET or AF_INET6 */
1631 	u8			prefixlen;
1632 	u8			flags;
1633 	union tcp_md5_addr	addr;
1634 	int			l3index; /* set if key added with L3 scope */
1635 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1636 	struct rcu_head		rcu;
1637 };
1638 
1639 /* - sock block */
1640 struct tcp_md5sig_info {
1641 	struct hlist_head	head;
1642 	struct rcu_head		rcu;
1643 };
1644 
1645 /* - pseudo header */
1646 struct tcp4_pseudohdr {
1647 	__be32		saddr;
1648 	__be32		daddr;
1649 	__u8		pad;
1650 	__u8		protocol;
1651 	__be16		len;
1652 };
1653 
1654 struct tcp6_pseudohdr {
1655 	struct in6_addr	saddr;
1656 	struct in6_addr daddr;
1657 	__be32		len;
1658 	__be32		protocol;	/* including padding */
1659 };
1660 
1661 union tcp_md5sum_block {
1662 	struct tcp4_pseudohdr ip4;
1663 #if IS_ENABLED(CONFIG_IPV6)
1664 	struct tcp6_pseudohdr ip6;
1665 #endif
1666 };
1667 
1668 /* - pool: digest algorithm, hash description and scratch buffer */
1669 struct tcp_md5sig_pool {
1670 	struct ahash_request	*md5_req;
1671 	void			*scratch;
1672 };
1673 
1674 /* - functions */
1675 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1676 			const struct sock *sk, const struct sk_buff *skb);
1677 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1678 		   int family, u8 prefixlen, int l3index, u8 flags,
1679 		   const u8 *newkey, u8 newkeylen);
1680 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1681 		     int family, u8 prefixlen, int l3index,
1682 		     struct tcp_md5sig_key *key);
1683 
1684 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1685 		   int family, u8 prefixlen, int l3index, u8 flags);
1686 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1687 					 const struct sock *addr_sk);
1688 
1689 #ifdef CONFIG_TCP_MD5SIG
1690 #include <linux/jump_label.h>
1691 extern struct static_key_false_deferred tcp_md5_needed;
1692 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1693 					   const union tcp_md5_addr *addr,
1694 					   int family);
1695 static inline struct tcp_md5sig_key *
1696 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1697 		  const union tcp_md5_addr *addr, int family)
1698 {
1699 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1700 		return NULL;
1701 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1702 }
1703 
1704 enum skb_drop_reason
1705 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1706 		     const void *saddr, const void *daddr,
1707 		     int family, int dif, int sdif);
1708 
1709 
1710 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1711 #else
1712 static inline struct tcp_md5sig_key *
1713 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1714 		  const union tcp_md5_addr *addr, int family)
1715 {
1716 	return NULL;
1717 }
1718 
1719 static inline enum skb_drop_reason
1720 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1721 		     const void *saddr, const void *daddr,
1722 		     int family, int dif, int sdif)
1723 {
1724 	return SKB_NOT_DROPPED_YET;
1725 }
1726 #define tcp_twsk_md5_key(twsk)	NULL
1727 #endif
1728 
1729 bool tcp_alloc_md5sig_pool(void);
1730 
1731 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1732 static inline void tcp_put_md5sig_pool(void)
1733 {
1734 	local_bh_enable();
1735 }
1736 
1737 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1738 			  unsigned int header_len);
1739 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1740 		     const struct tcp_md5sig_key *key);
1741 
1742 /* From tcp_fastopen.c */
1743 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1744 			    struct tcp_fastopen_cookie *cookie);
1745 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1746 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1747 			    u16 try_exp);
1748 struct tcp_fastopen_request {
1749 	/* Fast Open cookie. Size 0 means a cookie request */
1750 	struct tcp_fastopen_cookie	cookie;
1751 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1752 	size_t				size;
1753 	int				copied;	/* queued in tcp_connect() */
1754 	struct ubuf_info		*uarg;
1755 };
1756 void tcp_free_fastopen_req(struct tcp_sock *tp);
1757 void tcp_fastopen_destroy_cipher(struct sock *sk);
1758 void tcp_fastopen_ctx_destroy(struct net *net);
1759 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1760 			      void *primary_key, void *backup_key);
1761 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1762 			    u64 *key);
1763 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1764 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1765 			      struct request_sock *req,
1766 			      struct tcp_fastopen_cookie *foc,
1767 			      const struct dst_entry *dst);
1768 void tcp_fastopen_init_key_once(struct net *net);
1769 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1770 			     struct tcp_fastopen_cookie *cookie);
1771 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1772 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1773 #define TCP_FASTOPEN_KEY_MAX 2
1774 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1775 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1776 
1777 /* Fastopen key context */
1778 struct tcp_fastopen_context {
1779 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1780 	int		num;
1781 	struct rcu_head	rcu;
1782 };
1783 
1784 void tcp_fastopen_active_disable(struct sock *sk);
1785 bool tcp_fastopen_active_should_disable(struct sock *sk);
1786 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1787 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1788 
1789 /* Caller needs to wrap with rcu_read_(un)lock() */
1790 static inline
1791 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1792 {
1793 	struct tcp_fastopen_context *ctx;
1794 
1795 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1796 	if (!ctx)
1797 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1798 	return ctx;
1799 }
1800 
1801 static inline
1802 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1803 			       const struct tcp_fastopen_cookie *orig)
1804 {
1805 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1806 	    orig->len == foc->len &&
1807 	    !memcmp(orig->val, foc->val, foc->len))
1808 		return true;
1809 	return false;
1810 }
1811 
1812 static inline
1813 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1814 {
1815 	return ctx->num;
1816 }
1817 
1818 /* Latencies incurred by various limits for a sender. They are
1819  * chronograph-like stats that are mutually exclusive.
1820  */
1821 enum tcp_chrono {
1822 	TCP_CHRONO_UNSPEC,
1823 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1824 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1825 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1826 	__TCP_CHRONO_MAX,
1827 };
1828 
1829 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1830 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1831 
1832 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1833  * the same memory storage than skb->destructor/_skb_refdst
1834  */
1835 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1836 {
1837 	skb->destructor = NULL;
1838 	skb->_skb_refdst = 0UL;
1839 }
1840 
1841 #define tcp_skb_tsorted_save(skb) {		\
1842 	unsigned long _save = skb->_skb_refdst;	\
1843 	skb->_skb_refdst = 0UL;
1844 
1845 #define tcp_skb_tsorted_restore(skb)		\
1846 	skb->_skb_refdst = _save;		\
1847 }
1848 
1849 void tcp_write_queue_purge(struct sock *sk);
1850 
1851 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1852 {
1853 	return skb_rb_first(&sk->tcp_rtx_queue);
1854 }
1855 
1856 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1857 {
1858 	return skb_rb_last(&sk->tcp_rtx_queue);
1859 }
1860 
1861 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1862 {
1863 	return skb_peek_tail(&sk->sk_write_queue);
1864 }
1865 
1866 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1867 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1868 
1869 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1870 {
1871 	return skb_peek(&sk->sk_write_queue);
1872 }
1873 
1874 static inline bool tcp_skb_is_last(const struct sock *sk,
1875 				   const struct sk_buff *skb)
1876 {
1877 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1878 }
1879 
1880 /**
1881  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1882  * @sk: socket
1883  *
1884  * Since the write queue can have a temporary empty skb in it,
1885  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1886  */
1887 static inline bool tcp_write_queue_empty(const struct sock *sk)
1888 {
1889 	const struct tcp_sock *tp = tcp_sk(sk);
1890 
1891 	return tp->write_seq == tp->snd_nxt;
1892 }
1893 
1894 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1895 {
1896 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1897 }
1898 
1899 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1900 {
1901 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1902 }
1903 
1904 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1905 {
1906 	__skb_queue_tail(&sk->sk_write_queue, skb);
1907 
1908 	/* Queue it, remembering where we must start sending. */
1909 	if (sk->sk_write_queue.next == skb)
1910 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1911 }
1912 
1913 /* Insert new before skb on the write queue of sk.  */
1914 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1915 						  struct sk_buff *skb,
1916 						  struct sock *sk)
1917 {
1918 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1919 }
1920 
1921 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1922 {
1923 	tcp_skb_tsorted_anchor_cleanup(skb);
1924 	__skb_unlink(skb, &sk->sk_write_queue);
1925 }
1926 
1927 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1928 
1929 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1930 {
1931 	tcp_skb_tsorted_anchor_cleanup(skb);
1932 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1933 }
1934 
1935 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1936 {
1937 	list_del(&skb->tcp_tsorted_anchor);
1938 	tcp_rtx_queue_unlink(skb, sk);
1939 	tcp_wmem_free_skb(sk, skb);
1940 }
1941 
1942 static inline void tcp_push_pending_frames(struct sock *sk)
1943 {
1944 	if (tcp_send_head(sk)) {
1945 		struct tcp_sock *tp = tcp_sk(sk);
1946 
1947 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1948 	}
1949 }
1950 
1951 /* Start sequence of the skb just after the highest skb with SACKed
1952  * bit, valid only if sacked_out > 0 or when the caller has ensured
1953  * validity by itself.
1954  */
1955 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1956 {
1957 	if (!tp->sacked_out)
1958 		return tp->snd_una;
1959 
1960 	if (tp->highest_sack == NULL)
1961 		return tp->snd_nxt;
1962 
1963 	return TCP_SKB_CB(tp->highest_sack)->seq;
1964 }
1965 
1966 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1967 {
1968 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1969 }
1970 
1971 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1972 {
1973 	return tcp_sk(sk)->highest_sack;
1974 }
1975 
1976 static inline void tcp_highest_sack_reset(struct sock *sk)
1977 {
1978 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1979 }
1980 
1981 /* Called when old skb is about to be deleted and replaced by new skb */
1982 static inline void tcp_highest_sack_replace(struct sock *sk,
1983 					    struct sk_buff *old,
1984 					    struct sk_buff *new)
1985 {
1986 	if (old == tcp_highest_sack(sk))
1987 		tcp_sk(sk)->highest_sack = new;
1988 }
1989 
1990 /* This helper checks if socket has IP_TRANSPARENT set */
1991 static inline bool inet_sk_transparent(const struct sock *sk)
1992 {
1993 	switch (sk->sk_state) {
1994 	case TCP_TIME_WAIT:
1995 		return inet_twsk(sk)->tw_transparent;
1996 	case TCP_NEW_SYN_RECV:
1997 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1998 	}
1999 	return inet_sk(sk)->transparent;
2000 }
2001 
2002 /* Determines whether this is a thin stream (which may suffer from
2003  * increased latency). Used to trigger latency-reducing mechanisms.
2004  */
2005 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2006 {
2007 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2008 }
2009 
2010 /* /proc */
2011 enum tcp_seq_states {
2012 	TCP_SEQ_STATE_LISTENING,
2013 	TCP_SEQ_STATE_ESTABLISHED,
2014 };
2015 
2016 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2017 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2018 void tcp_seq_stop(struct seq_file *seq, void *v);
2019 
2020 struct tcp_seq_afinfo {
2021 	sa_family_t			family;
2022 };
2023 
2024 struct tcp_iter_state {
2025 	struct seq_net_private	p;
2026 	enum tcp_seq_states	state;
2027 	struct sock		*syn_wait_sk;
2028 	int			bucket, offset, sbucket, num;
2029 	loff_t			last_pos;
2030 };
2031 
2032 extern struct request_sock_ops tcp_request_sock_ops;
2033 extern struct request_sock_ops tcp6_request_sock_ops;
2034 
2035 void tcp_v4_destroy_sock(struct sock *sk);
2036 
2037 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2038 				netdev_features_t features);
2039 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2040 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2041 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2042 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2043 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2044 void tcp_gro_complete(struct sk_buff *skb);
2045 
2046 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2047 
2048 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2049 {
2050 	struct net *net = sock_net((struct sock *)tp);
2051 	return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2052 }
2053 
2054 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2055 
2056 #ifdef CONFIG_PROC_FS
2057 int tcp4_proc_init(void);
2058 void tcp4_proc_exit(void);
2059 #endif
2060 
2061 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2062 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2063 		     const struct tcp_request_sock_ops *af_ops,
2064 		     struct sock *sk, struct sk_buff *skb);
2065 
2066 /* TCP af-specific functions */
2067 struct tcp_sock_af_ops {
2068 #ifdef CONFIG_TCP_MD5SIG
2069 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2070 						const struct sock *addr_sk);
2071 	int		(*calc_md5_hash)(char *location,
2072 					 const struct tcp_md5sig_key *md5,
2073 					 const struct sock *sk,
2074 					 const struct sk_buff *skb);
2075 	int		(*md5_parse)(struct sock *sk,
2076 				     int optname,
2077 				     sockptr_t optval,
2078 				     int optlen);
2079 #endif
2080 };
2081 
2082 struct tcp_request_sock_ops {
2083 	u16 mss_clamp;
2084 #ifdef CONFIG_TCP_MD5SIG
2085 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2086 						 const struct sock *addr_sk);
2087 	int		(*calc_md5_hash) (char *location,
2088 					  const struct tcp_md5sig_key *md5,
2089 					  const struct sock *sk,
2090 					  const struct sk_buff *skb);
2091 #endif
2092 #ifdef CONFIG_SYN_COOKIES
2093 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2094 				 __u16 *mss);
2095 #endif
2096 	struct dst_entry *(*route_req)(const struct sock *sk,
2097 				       struct sk_buff *skb,
2098 				       struct flowi *fl,
2099 				       struct request_sock *req);
2100 	u32 (*init_seq)(const struct sk_buff *skb);
2101 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2102 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2103 			   struct flowi *fl, struct request_sock *req,
2104 			   struct tcp_fastopen_cookie *foc,
2105 			   enum tcp_synack_type synack_type,
2106 			   struct sk_buff *syn_skb);
2107 };
2108 
2109 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2110 #if IS_ENABLED(CONFIG_IPV6)
2111 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2112 #endif
2113 
2114 #ifdef CONFIG_SYN_COOKIES
2115 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2116 					 const struct sock *sk, struct sk_buff *skb,
2117 					 __u16 *mss)
2118 {
2119 	tcp_synq_overflow(sk);
2120 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2121 	return ops->cookie_init_seq(skb, mss);
2122 }
2123 #else
2124 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2125 					 const struct sock *sk, struct sk_buff *skb,
2126 					 __u16 *mss)
2127 {
2128 	return 0;
2129 }
2130 #endif
2131 
2132 int tcpv4_offload_init(void);
2133 
2134 void tcp_v4_init(void);
2135 void tcp_init(void);
2136 
2137 /* tcp_recovery.c */
2138 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2139 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2140 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2141 				u32 reo_wnd);
2142 extern bool tcp_rack_mark_lost(struct sock *sk);
2143 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2144 			     u64 xmit_time);
2145 extern void tcp_rack_reo_timeout(struct sock *sk);
2146 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2147 
2148 /* tcp_plb.c */
2149 
2150 /*
2151  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2152  * expects cong_ratio which represents fraction of traffic that experienced
2153  * congestion over a single RTT. In order to avoid floating point operations,
2154  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2155  */
2156 #define TCP_PLB_SCALE 8
2157 
2158 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2159 struct tcp_plb_state {
2160 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2161 		unused:3;
2162 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2163 };
2164 
2165 static inline void tcp_plb_init(const struct sock *sk,
2166 				struct tcp_plb_state *plb)
2167 {
2168 	plb->consec_cong_rounds = 0;
2169 	plb->pause_until = 0;
2170 }
2171 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2172 			  const int cong_ratio);
2173 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2174 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2175 
2176 /* At how many usecs into the future should the RTO fire? */
2177 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2178 {
2179 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2180 	u32 rto = inet_csk(sk)->icsk_rto;
2181 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2182 
2183 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2184 }
2185 
2186 /*
2187  * Save and compile IPv4 options, return a pointer to it
2188  */
2189 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2190 							 struct sk_buff *skb)
2191 {
2192 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2193 	struct ip_options_rcu *dopt = NULL;
2194 
2195 	if (opt->optlen) {
2196 		int opt_size = sizeof(*dopt) + opt->optlen;
2197 
2198 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2199 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2200 			kfree(dopt);
2201 			dopt = NULL;
2202 		}
2203 	}
2204 	return dopt;
2205 }
2206 
2207 /* locally generated TCP pure ACKs have skb->truesize == 2
2208  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2209  * This is much faster than dissecting the packet to find out.
2210  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2211  */
2212 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2213 {
2214 	return skb->truesize == 2;
2215 }
2216 
2217 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2218 {
2219 	skb->truesize = 2;
2220 }
2221 
2222 static inline int tcp_inq(struct sock *sk)
2223 {
2224 	struct tcp_sock *tp = tcp_sk(sk);
2225 	int answ;
2226 
2227 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2228 		answ = 0;
2229 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2230 		   !tp->urg_data ||
2231 		   before(tp->urg_seq, tp->copied_seq) ||
2232 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2233 
2234 		answ = tp->rcv_nxt - tp->copied_seq;
2235 
2236 		/* Subtract 1, if FIN was received */
2237 		if (answ && sock_flag(sk, SOCK_DONE))
2238 			answ--;
2239 	} else {
2240 		answ = tp->urg_seq - tp->copied_seq;
2241 	}
2242 
2243 	return answ;
2244 }
2245 
2246 int tcp_peek_len(struct socket *sock);
2247 
2248 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2249 {
2250 	u16 segs_in;
2251 
2252 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2253 
2254 	/* We update these fields while other threads might
2255 	 * read them from tcp_get_info()
2256 	 */
2257 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2258 	if (skb->len > tcp_hdrlen(skb))
2259 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2260 }
2261 
2262 /*
2263  * TCP listen path runs lockless.
2264  * We forced "struct sock" to be const qualified to make sure
2265  * we don't modify one of its field by mistake.
2266  * Here, we increment sk_drops which is an atomic_t, so we can safely
2267  * make sock writable again.
2268  */
2269 static inline void tcp_listendrop(const struct sock *sk)
2270 {
2271 	atomic_inc(&((struct sock *)sk)->sk_drops);
2272 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2273 }
2274 
2275 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2276 
2277 /*
2278  * Interface for adding Upper Level Protocols over TCP
2279  */
2280 
2281 #define TCP_ULP_NAME_MAX	16
2282 #define TCP_ULP_MAX		128
2283 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2284 
2285 struct tcp_ulp_ops {
2286 	struct list_head	list;
2287 
2288 	/* initialize ulp */
2289 	int (*init)(struct sock *sk);
2290 	/* update ulp */
2291 	void (*update)(struct sock *sk, struct proto *p,
2292 		       void (*write_space)(struct sock *sk));
2293 	/* cleanup ulp */
2294 	void (*release)(struct sock *sk);
2295 	/* diagnostic */
2296 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2297 	size_t (*get_info_size)(const struct sock *sk);
2298 	/* clone ulp */
2299 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2300 		      const gfp_t priority);
2301 
2302 	char		name[TCP_ULP_NAME_MAX];
2303 	struct module	*owner;
2304 };
2305 int tcp_register_ulp(struct tcp_ulp_ops *type);
2306 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2307 int tcp_set_ulp(struct sock *sk, const char *name);
2308 void tcp_get_available_ulp(char *buf, size_t len);
2309 void tcp_cleanup_ulp(struct sock *sk);
2310 void tcp_update_ulp(struct sock *sk, struct proto *p,
2311 		    void (*write_space)(struct sock *sk));
2312 
2313 #define MODULE_ALIAS_TCP_ULP(name)				\
2314 	__MODULE_INFO(alias, alias_userspace, name);		\
2315 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2316 
2317 #ifdef CONFIG_NET_SOCK_MSG
2318 struct sk_msg;
2319 struct sk_psock;
2320 
2321 #ifdef CONFIG_BPF_SYSCALL
2322 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2323 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2324 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2325 #endif /* CONFIG_BPF_SYSCALL */
2326 
2327 #ifdef CONFIG_INET
2328 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2329 #else
2330 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2331 {
2332 }
2333 #endif
2334 
2335 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2336 			  struct sk_msg *msg, u32 bytes, int flags);
2337 #endif /* CONFIG_NET_SOCK_MSG */
2338 
2339 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2340 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2341 {
2342 }
2343 #endif
2344 
2345 #ifdef CONFIG_CGROUP_BPF
2346 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2347 				      struct sk_buff *skb,
2348 				      unsigned int end_offset)
2349 {
2350 	skops->skb = skb;
2351 	skops->skb_data_end = skb->data + end_offset;
2352 }
2353 #else
2354 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2355 				      struct sk_buff *skb,
2356 				      unsigned int end_offset)
2357 {
2358 }
2359 #endif
2360 
2361 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2362  * is < 0, then the BPF op failed (for example if the loaded BPF
2363  * program does not support the chosen operation or there is no BPF
2364  * program loaded).
2365  */
2366 #ifdef CONFIG_BPF
2367 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2368 {
2369 	struct bpf_sock_ops_kern sock_ops;
2370 	int ret;
2371 
2372 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2373 	if (sk_fullsock(sk)) {
2374 		sock_ops.is_fullsock = 1;
2375 		sock_owned_by_me(sk);
2376 	}
2377 
2378 	sock_ops.sk = sk;
2379 	sock_ops.op = op;
2380 	if (nargs > 0)
2381 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2382 
2383 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2384 	if (ret == 0)
2385 		ret = sock_ops.reply;
2386 	else
2387 		ret = -1;
2388 	return ret;
2389 }
2390 
2391 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2392 {
2393 	u32 args[2] = {arg1, arg2};
2394 
2395 	return tcp_call_bpf(sk, op, 2, args);
2396 }
2397 
2398 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2399 				    u32 arg3)
2400 {
2401 	u32 args[3] = {arg1, arg2, arg3};
2402 
2403 	return tcp_call_bpf(sk, op, 3, args);
2404 }
2405 
2406 #else
2407 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2408 {
2409 	return -EPERM;
2410 }
2411 
2412 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2413 {
2414 	return -EPERM;
2415 }
2416 
2417 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2418 				    u32 arg3)
2419 {
2420 	return -EPERM;
2421 }
2422 
2423 #endif
2424 
2425 static inline u32 tcp_timeout_init(struct sock *sk)
2426 {
2427 	int timeout;
2428 
2429 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2430 
2431 	if (timeout <= 0)
2432 		timeout = TCP_TIMEOUT_INIT;
2433 	return min_t(int, timeout, TCP_RTO_MAX);
2434 }
2435 
2436 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2437 {
2438 	int rwnd;
2439 
2440 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2441 
2442 	if (rwnd < 0)
2443 		rwnd = 0;
2444 	return rwnd;
2445 }
2446 
2447 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2448 {
2449 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2450 }
2451 
2452 static inline void tcp_bpf_rtt(struct sock *sk)
2453 {
2454 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2455 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2456 }
2457 
2458 #if IS_ENABLED(CONFIG_SMC)
2459 extern struct static_key_false tcp_have_smc;
2460 #endif
2461 
2462 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2463 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2464 			     void (*cad)(struct sock *sk, u32 ack_seq));
2465 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2466 void clean_acked_data_flush(void);
2467 #endif
2468 
2469 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2470 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2471 				    const struct tcp_sock *tp)
2472 {
2473 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2474 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2475 }
2476 
2477 /* Compute Earliest Departure Time for some control packets
2478  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2479  */
2480 static inline u64 tcp_transmit_time(const struct sock *sk)
2481 {
2482 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2483 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2484 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2485 
2486 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2487 	}
2488 	return 0;
2489 }
2490 
2491 #endif	/* _TCP_H */
2492