xref: /linux/include/net/tcp.h (revision a7ddedc84c59a645ef970b992f7cda5bffc70cc0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 #include <linux/bits.h>
30 
31 #include <net/inet_connection_sock.h>
32 #include <net/inet_timewait_sock.h>
33 #include <net/inet_hashtables.h>
34 #include <net/checksum.h>
35 #include <net/request_sock.h>
36 #include <net/sock_reuseport.h>
37 #include <net/sock.h>
38 #include <net/snmp.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/tcp_ao.h>
42 #include <net/inet_ecn.h>
43 #include <net/dst.h>
44 #include <net/mptcp.h>
45 #include <net/xfrm.h>
46 
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49 #include <linux/bpf-cgroup.h>
50 #include <linux/siphash.h>
51 
52 extern struct inet_hashinfo tcp_hashinfo;
53 
54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
55 int tcp_orphan_count_sum(void);
56 
57 static inline void tcp_orphan_count_inc(void)
58 {
59 	this_cpu_inc(tcp_orphan_count);
60 }
61 
62 static inline void tcp_orphan_count_dec(void)
63 {
64 	this_cpu_dec(tcp_orphan_count);
65 }
66 
67 DECLARE_PER_CPU(u32, tcp_tw_isn);
68 
69 void tcp_time_wait(struct sock *sk, int state, int timeo);
70 
71 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
72 #define MAX_TCP_OPTION_SPACE 40
73 #define TCP_MIN_SND_MSS		48
74 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
75 
76 /*
77  * Never offer a window over 32767 without using window scaling. Some
78  * poor stacks do signed 16bit maths!
79  */
80 #define MAX_TCP_WINDOW		32767U
81 
82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
83 #define TCP_MIN_MSS		88U
84 
85 /* The initial MTU to use for probing */
86 #define TCP_BASE_MSS		1024
87 
88 /* probing interval, default to 10 minutes as per RFC4821 */
89 #define TCP_PROBE_INTERVAL	600
90 
91 /* Specify interval when tcp mtu probing will stop */
92 #define TCP_PROBE_THRESHOLD	8
93 
94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
95 #define TCP_FASTRETRANS_THRESH 3
96 
97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
98 #define TCP_MAX_QUICKACKS	16U
99 
100 /* Maximal number of window scale according to RFC1323 */
101 #define TCP_MAX_WSCALE		14U
102 
103 /* urg_data states */
104 #define TCP_URG_VALID	0x0100
105 #define TCP_URG_NOTYET	0x0200
106 #define TCP_URG_READ	0x0400
107 
108 #define TCP_RETR1	3	/*
109 				 * This is how many retries it does before it
110 				 * tries to figure out if the gateway is
111 				 * down. Minimal RFC value is 3; it corresponds
112 				 * to ~3sec-8min depending on RTO.
113 				 */
114 
115 #define TCP_RETR2	15	/*
116 				 * This should take at least
117 				 * 90 minutes to time out.
118 				 * RFC1122 says that the limit is 100 sec.
119 				 * 15 is ~13-30min depending on RTO.
120 				 */
121 
122 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
123 				 * when active opening a connection.
124 				 * RFC1122 says the minimum retry MUST
125 				 * be at least 180secs.  Nevertheless
126 				 * this value is corresponding to
127 				 * 63secs of retransmission with the
128 				 * current initial RTO.
129 				 */
130 
131 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
132 				 * when passive opening a connection.
133 				 * This is corresponding to 31secs of
134 				 * retransmission with the current
135 				 * initial RTO.
136 				 */
137 
138 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
139 				  * state, about 60 seconds	*/
140 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
141                                  /* BSD style FIN_WAIT2 deadlock breaker.
142 				  * It used to be 3min, new value is 60sec,
143 				  * to combine FIN-WAIT-2 timeout with
144 				  * TIME-WAIT timer.
145 				  */
146 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
147 
148 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
149 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX);
150 
151 #if HZ >= 100
152 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
153 #define TCP_ATO_MIN	((unsigned)(HZ/25))
154 #else
155 #define TCP_DELACK_MIN	4U
156 #define TCP_ATO_MIN	4U
157 #endif
158 #define TCP_RTO_MAX_SEC 120
159 #define TCP_RTO_MAX	((unsigned)(TCP_RTO_MAX_SEC * HZ))
160 #define TCP_RTO_MIN	((unsigned)(HZ / 5))
161 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
162 
163 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
164 
165 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
166 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
167 						 * used as a fallback RTO for the
168 						 * initial data transmission if no
169 						 * valid RTT sample has been acquired,
170 						 * most likely due to retrans in 3WHS.
171 						 */
172 
173 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
174 					                 * for local resources.
175 					                 */
176 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
177 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
178 #define TCP_KEEPALIVE_INTVL	(75*HZ)
179 
180 #define MAX_TCP_KEEPIDLE	32767
181 #define MAX_TCP_KEEPINTVL	32767
182 #define MAX_TCP_KEEPCNT		127
183 #define MAX_TCP_SYNCNT		127
184 
185 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds
186  * to avoid overflows. This assumes a clock smaller than 1 Mhz.
187  * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz.
188  */
189 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC)
190 
191 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
192 					 * after this time. It should be equal
193 					 * (or greater than) TCP_TIMEWAIT_LEN
194 					 * to provide reliability equal to one
195 					 * provided by timewait state.
196 					 */
197 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
198 					 * timestamps. It must be less than
199 					 * minimal timewait lifetime.
200 					 */
201 /*
202  *	TCP option
203  */
204 
205 #define TCPOPT_NOP		1	/* Padding */
206 #define TCPOPT_EOL		0	/* End of options */
207 #define TCPOPT_MSS		2	/* Segment size negotiating */
208 #define TCPOPT_WINDOW		3	/* Window scaling */
209 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
210 #define TCPOPT_SACK             5       /* SACK Block */
211 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
212 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
213 #define TCPOPT_AO		29	/* Authentication Option (RFC5925) */
214 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
215 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
216 #define TCPOPT_EXP		254	/* Experimental */
217 /* Magic number to be after the option value for sharing TCP
218  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
219  */
220 #define TCPOPT_FASTOPEN_MAGIC	0xF989
221 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
222 
223 /*
224  *     TCP option lengths
225  */
226 
227 #define TCPOLEN_MSS            4
228 #define TCPOLEN_WINDOW         3
229 #define TCPOLEN_SACK_PERM      2
230 #define TCPOLEN_TIMESTAMP      10
231 #define TCPOLEN_MD5SIG         18
232 #define TCPOLEN_FASTOPEN_BASE  2
233 #define TCPOLEN_EXP_FASTOPEN_BASE  4
234 #define TCPOLEN_EXP_SMC_BASE   6
235 
236 /* But this is what stacks really send out. */
237 #define TCPOLEN_TSTAMP_ALIGNED		12
238 #define TCPOLEN_WSCALE_ALIGNED		4
239 #define TCPOLEN_SACKPERM_ALIGNED	4
240 #define TCPOLEN_SACK_BASE		2
241 #define TCPOLEN_SACK_BASE_ALIGNED	4
242 #define TCPOLEN_SACK_PERBLOCK		8
243 #define TCPOLEN_MD5SIG_ALIGNED		20
244 #define TCPOLEN_MSS_ALIGNED		4
245 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
246 
247 /* Flags in tp->nonagle */
248 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
249 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
250 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
251 
252 /* TCP thin-stream limits */
253 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
254 
255 /* TCP initial congestion window as per rfc6928 */
256 #define TCP_INIT_CWND		10
257 
258 /* Bit Flags for sysctl_tcp_fastopen */
259 #define	TFO_CLIENT_ENABLE	1
260 #define	TFO_SERVER_ENABLE	2
261 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
262 
263 /* Accept SYN data w/o any cookie option */
264 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
265 
266 /* Force enable TFO on all listeners, i.e., not requiring the
267  * TCP_FASTOPEN socket option.
268  */
269 #define	TFO_SERVER_WO_SOCKOPT1	0x400
270 
271 
272 /* sysctl variables for tcp */
273 extern int sysctl_tcp_max_orphans;
274 extern long sysctl_tcp_mem[3];
275 
276 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
277 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
278 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
279 
280 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
281 
282 extern struct percpu_counter tcp_sockets_allocated;
283 extern unsigned long tcp_memory_pressure;
284 
285 /* optimized version of sk_under_memory_pressure() for TCP sockets */
286 static inline bool tcp_under_memory_pressure(const struct sock *sk)
287 {
288 	if (mem_cgroup_sk_enabled(sk) &&
289 	    mem_cgroup_sk_under_memory_pressure(sk))
290 		return true;
291 
292 	return READ_ONCE(tcp_memory_pressure);
293 }
294 /*
295  * The next routines deal with comparing 32 bit unsigned ints
296  * and worry about wraparound (automatic with unsigned arithmetic).
297  */
298 
299 static inline bool before(__u32 seq1, __u32 seq2)
300 {
301         return (__s32)(seq1-seq2) < 0;
302 }
303 #define after(seq2, seq1) 	before(seq1, seq2)
304 
305 /* is s2<=s1<=s3 ? */
306 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
307 {
308 	return seq3 - seq2 >= seq1 - seq2;
309 }
310 
311 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
312 {
313 	sk_wmem_queued_add(sk, -skb->truesize);
314 	if (!skb_zcopy_pure(skb))
315 		sk_mem_uncharge(sk, skb->truesize);
316 	else
317 		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
318 	__kfree_skb(skb);
319 }
320 
321 void sk_forced_mem_schedule(struct sock *sk, int size);
322 
323 bool tcp_check_oom(const struct sock *sk, int shift);
324 
325 
326 extern struct proto tcp_prot;
327 
328 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
329 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
330 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
331 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
332 
333 void tcp_tsq_work_init(void);
334 
335 int tcp_v4_err(struct sk_buff *skb, u32);
336 
337 void tcp_shutdown(struct sock *sk, int how);
338 
339 int tcp_v4_early_demux(struct sk_buff *skb);
340 int tcp_v4_rcv(struct sk_buff *skb);
341 
342 void tcp_remove_empty_skb(struct sock *sk);
343 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
344 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
345 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
346 			 size_t size, struct ubuf_info *uarg);
347 void tcp_splice_eof(struct socket *sock);
348 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
349 int tcp_wmem_schedule(struct sock *sk, int copy);
350 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
351 	      int size_goal);
352 void tcp_release_cb(struct sock *sk);
353 void tcp_wfree(struct sk_buff *skb);
354 void tcp_write_timer_handler(struct sock *sk);
355 void tcp_delack_timer_handler(struct sock *sk);
356 int tcp_ioctl(struct sock *sk, int cmd, int *karg);
357 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
359 void tcp_rcv_space_adjust(struct sock *sk);
360 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
361 void tcp_twsk_destructor(struct sock *sk);
362 void tcp_twsk_purge(struct list_head *net_exit_list);
363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
364 			struct pipe_inode_info *pipe, size_t len,
365 			unsigned int flags);
366 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
367 				     bool force_schedule);
368 
369 static inline void tcp_dec_quickack_mode(struct sock *sk)
370 {
371 	struct inet_connection_sock *icsk = inet_csk(sk);
372 
373 	if (icsk->icsk_ack.quick) {
374 		/* How many ACKs S/ACKing new data have we sent? */
375 		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
376 
377 		if (pkts >= icsk->icsk_ack.quick) {
378 			icsk->icsk_ack.quick = 0;
379 			/* Leaving quickack mode we deflate ATO. */
380 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
381 		} else
382 			icsk->icsk_ack.quick -= pkts;
383 	}
384 }
385 
386 #define	TCP_ECN_MODE_RFC3168	BIT(0)
387 #define	TCP_ECN_QUEUE_CWR	BIT(1)
388 #define	TCP_ECN_DEMAND_CWR	BIT(2)
389 #define	TCP_ECN_SEEN		BIT(3)
390 #define	TCP_ECN_MODE_ACCECN	BIT(4)
391 
392 #define	TCP_ECN_DISABLED	0
393 #define	TCP_ECN_MODE_PENDING	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
394 #define	TCP_ECN_MODE_ANY	(TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN)
395 
396 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp)
397 {
398 	return tp->ecn_flags & TCP_ECN_MODE_ANY;
399 }
400 
401 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp)
402 {
403 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168;
404 }
405 
406 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp)
407 {
408 	return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN;
409 }
410 
411 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp)
412 {
413 	return !tcp_ecn_mode_any(tp);
414 }
415 
416 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp)
417 {
418 	return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING;
419 }
420 
421 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode)
422 {
423 	tp->ecn_flags &= ~TCP_ECN_MODE_ANY;
424 	tp->ecn_flags |= mode;
425 }
426 
427 enum tcp_tw_status {
428 	TCP_TW_SUCCESS = 0,
429 	TCP_TW_RST = 1,
430 	TCP_TW_ACK = 2,
431 	TCP_TW_SYN = 3,
432 	TCP_TW_ACK_OOW = 4
433 };
434 
435 
436 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
437 					      struct sk_buff *skb,
438 					      const struct tcphdr *th,
439 					      u32 *tw_isn,
440 					      enum skb_drop_reason *drop_reason);
441 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
442 			   struct request_sock *req, bool fastopen,
443 			   bool *lost_race, enum skb_drop_reason *drop_reason);
444 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
445 				       struct sk_buff *skb);
446 void tcp_enter_loss(struct sock *sk);
447 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
448 void tcp_clear_retrans(struct tcp_sock *tp);
449 void tcp_update_metrics(struct sock *sk);
450 void tcp_init_metrics(struct sock *sk);
451 void tcp_metrics_init(void);
452 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
453 void __tcp_close(struct sock *sk, long timeout);
454 void tcp_close(struct sock *sk, long timeout);
455 void tcp_init_sock(struct sock *sk);
456 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
457 __poll_t tcp_poll(struct file *file, struct socket *sock,
458 		      struct poll_table_struct *wait);
459 int do_tcp_getsockopt(struct sock *sk, int level,
460 		      int optname, sockptr_t optval, sockptr_t optlen);
461 int tcp_getsockopt(struct sock *sk, int level, int optname,
462 		   char __user *optval, int __user *optlen);
463 bool tcp_bpf_bypass_getsockopt(int level, int optname);
464 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
465 		      sockptr_t optval, unsigned int optlen);
466 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
467 		   unsigned int optlen);
468 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout);
469 void tcp_set_keepalive(struct sock *sk, int val);
470 void tcp_syn_ack_timeout(const struct request_sock *req);
471 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
472 		int flags, int *addr_len);
473 int tcp_set_rcvlowat(struct sock *sk, int val);
474 int tcp_set_window_clamp(struct sock *sk, int val);
475 void tcp_update_recv_tstamps(struct sk_buff *skb,
476 			     struct scm_timestamping_internal *tss);
477 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
478 			struct scm_timestamping_internal *tss);
479 void tcp_data_ready(struct sock *sk);
480 #ifdef CONFIG_MMU
481 int tcp_mmap(struct file *file, struct socket *sock,
482 	     struct vm_area_struct *vma);
483 #endif
484 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
485 		       struct tcp_options_received *opt_rx,
486 		       int estab, struct tcp_fastopen_cookie *foc);
487 
488 /*
489  *	BPF SKB-less helpers
490  */
491 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
492 			 struct tcphdr *th, u32 *cookie);
493 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
494 			 struct tcphdr *th, u32 *cookie);
495 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
496 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
497 			  const struct tcp_request_sock_ops *af_ops,
498 			  struct sock *sk, struct tcphdr *th);
499 /*
500  *	TCP v4 functions exported for the inet6 API
501  */
502 
503 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
504 void tcp_v4_mtu_reduced(struct sock *sk);
505 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
506 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
507 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
508 struct sock *tcp_create_openreq_child(const struct sock *sk,
509 				      struct request_sock *req,
510 				      struct sk_buff *skb);
511 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
512 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
513 				  struct request_sock *req,
514 				  struct dst_entry *dst,
515 				  struct request_sock *req_unhash,
516 				  bool *own_req);
517 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
518 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
519 int tcp_connect(struct sock *sk);
520 enum tcp_synack_type {
521 	TCP_SYNACK_NORMAL,
522 	TCP_SYNACK_FASTOPEN,
523 	TCP_SYNACK_COOKIE,
524 };
525 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
526 				struct request_sock *req,
527 				struct tcp_fastopen_cookie *foc,
528 				enum tcp_synack_type synack_type,
529 				struct sk_buff *syn_skb);
530 int tcp_disconnect(struct sock *sk, int flags);
531 
532 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
533 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
534 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
535 
536 /* From syncookies.c */
537 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
538 				 struct request_sock *req,
539 				 struct dst_entry *dst);
540 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th);
541 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
542 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
543 					    struct sock *sk, struct sk_buff *skb,
544 					    struct tcp_options_received *tcp_opt,
545 					    int mss, u32 tsoff);
546 
547 #if IS_ENABLED(CONFIG_BPF)
548 struct bpf_tcp_req_attrs {
549 	u32 rcv_tsval;
550 	u32 rcv_tsecr;
551 	u16 mss;
552 	u8 rcv_wscale;
553 	u8 snd_wscale;
554 	u8 ecn_ok;
555 	u8 wscale_ok;
556 	u8 sack_ok;
557 	u8 tstamp_ok;
558 	u8 usec_ts_ok;
559 	u8 reserved[3];
560 };
561 #endif
562 
563 #ifdef CONFIG_SYN_COOKIES
564 
565 /* Syncookies use a monotonic timer which increments every 60 seconds.
566  * This counter is used both as a hash input and partially encoded into
567  * the cookie value.  A cookie is only validated further if the delta
568  * between the current counter value and the encoded one is less than this,
569  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
570  * the counter advances immediately after a cookie is generated).
571  */
572 #define MAX_SYNCOOKIE_AGE	2
573 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
574 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
575 
576 /* syncookies: remember time of last synqueue overflow
577  * But do not dirty this field too often (once per second is enough)
578  * It is racy as we do not hold a lock, but race is very minor.
579  */
580 static inline void tcp_synq_overflow(const struct sock *sk)
581 {
582 	unsigned int last_overflow;
583 	unsigned int now = jiffies;
584 
585 	if (sk->sk_reuseport) {
586 		struct sock_reuseport *reuse;
587 
588 		reuse = rcu_dereference(sk->sk_reuseport_cb);
589 		if (likely(reuse)) {
590 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
591 			if (!time_between32(now, last_overflow,
592 					    last_overflow + HZ))
593 				WRITE_ONCE(reuse->synq_overflow_ts, now);
594 			return;
595 		}
596 	}
597 
598 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
599 	if (!time_between32(now, last_overflow, last_overflow + HZ))
600 		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
601 }
602 
603 /* syncookies: no recent synqueue overflow on this listening socket? */
604 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
605 {
606 	unsigned int last_overflow;
607 	unsigned int now = jiffies;
608 
609 	if (sk->sk_reuseport) {
610 		struct sock_reuseport *reuse;
611 
612 		reuse = rcu_dereference(sk->sk_reuseport_cb);
613 		if (likely(reuse)) {
614 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
615 			return !time_between32(now, last_overflow - HZ,
616 					       last_overflow +
617 					       TCP_SYNCOOKIE_VALID);
618 		}
619 	}
620 
621 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
622 
623 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
624 	 * then we're under synflood. However, we have to use
625 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
626 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
627 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
628 	 * which could lead to rejecting a valid syncookie.
629 	 */
630 	return !time_between32(now, last_overflow - HZ,
631 			       last_overflow + TCP_SYNCOOKIE_VALID);
632 }
633 
634 static inline u32 tcp_cookie_time(void)
635 {
636 	u64 val = get_jiffies_64();
637 
638 	do_div(val, TCP_SYNCOOKIE_PERIOD);
639 	return val;
640 }
641 
642 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */
643 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val)
644 {
645 	if (usec_ts)
646 		return div_u64(val, NSEC_PER_USEC);
647 
648 	return div_u64(val, NSEC_PER_MSEC);
649 }
650 
651 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
652 			      u16 *mssp);
653 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
654 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
655 bool cookie_timestamp_decode(const struct net *net,
656 			     struct tcp_options_received *opt);
657 
658 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst)
659 {
660 	return READ_ONCE(net->ipv4.sysctl_tcp_ecn) ||
661 		dst_feature(dst, RTAX_FEATURE_ECN);
662 }
663 
664 #if IS_ENABLED(CONFIG_BPF)
665 static inline bool cookie_bpf_ok(struct sk_buff *skb)
666 {
667 	return skb->sk;
668 }
669 
670 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb);
671 #else
672 static inline bool cookie_bpf_ok(struct sk_buff *skb)
673 {
674 	return false;
675 }
676 
677 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk,
678 						    struct sk_buff *skb)
679 {
680 	return NULL;
681 }
682 #endif
683 
684 /* From net/ipv6/syncookies.c */
685 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th);
686 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
687 
688 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
689 			      const struct tcphdr *th, u16 *mssp);
690 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
691 #endif
692 /* tcp_output.c */
693 
694 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
695 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
696 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
697 			       int nonagle);
698 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
699 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
700 void tcp_retransmit_timer(struct sock *sk);
701 void tcp_xmit_retransmit_queue(struct sock *);
702 void tcp_simple_retransmit(struct sock *);
703 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
704 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
705 enum tcp_queue {
706 	TCP_FRAG_IN_WRITE_QUEUE,
707 	TCP_FRAG_IN_RTX_QUEUE,
708 };
709 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
710 		 struct sk_buff *skb, u32 len,
711 		 unsigned int mss_now, gfp_t gfp);
712 
713 void tcp_send_probe0(struct sock *);
714 int tcp_write_wakeup(struct sock *, int mib);
715 void tcp_send_fin(struct sock *sk);
716 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
717 			   enum sk_rst_reason reason);
718 int tcp_send_synack(struct sock *);
719 void tcp_push_one(struct sock *, unsigned int mss_now);
720 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags);
721 void tcp_send_ack(struct sock *sk);
722 void tcp_send_delayed_ack(struct sock *sk);
723 void tcp_send_loss_probe(struct sock *sk);
724 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
725 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
726 			     const struct sk_buff *next_skb);
727 
728 /* tcp_input.c */
729 void tcp_rearm_rto(struct sock *sk);
730 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
731 void tcp_done_with_error(struct sock *sk, int err);
732 void tcp_reset(struct sock *sk, struct sk_buff *skb);
733 void tcp_fin(struct sock *sk);
734 void tcp_check_space(struct sock *sk);
735 void tcp_sack_compress_send_ack(struct sock *sk);
736 
737 static inline void tcp_cleanup_skb(struct sk_buff *skb)
738 {
739 	skb_dst_drop(skb);
740 	secpath_reset(skb);
741 }
742 
743 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb)
744 {
745 	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
746 	DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb));
747 	__skb_queue_tail(&sk->sk_receive_queue, skb);
748 }
749 
750 /* tcp_timer.c */
751 void tcp_init_xmit_timers(struct sock *);
752 static inline void tcp_clear_xmit_timers(struct sock *sk)
753 {
754 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
755 		__sock_put(sk);
756 
757 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
758 		__sock_put(sk);
759 
760 	inet_csk_clear_xmit_timers(sk);
761 }
762 
763 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
764 unsigned int tcp_current_mss(struct sock *sk);
765 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
766 
767 /* Bound MSS / TSO packet size with the half of the window */
768 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
769 {
770 	int cutoff;
771 
772 	/* When peer uses tiny windows, there is no use in packetizing
773 	 * to sub-MSS pieces for the sake of SWS or making sure there
774 	 * are enough packets in the pipe for fast recovery.
775 	 *
776 	 * On the other hand, for extremely large MSS devices, handling
777 	 * smaller than MSS windows in this way does make sense.
778 	 */
779 	if (tp->max_window > TCP_MSS_DEFAULT)
780 		cutoff = (tp->max_window >> 1);
781 	else
782 		cutoff = tp->max_window;
783 
784 	if (cutoff && pktsize > cutoff)
785 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
786 	else
787 		return pktsize;
788 }
789 
790 /* tcp.c */
791 void tcp_get_info(struct sock *, struct tcp_info *);
792 
793 /* Read 'sendfile()'-style from a TCP socket */
794 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
795 		  sk_read_actor_t recv_actor);
796 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
797 			sk_read_actor_t recv_actor, bool noack,
798 			u32 *copied_seq);
799 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
800 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
801 void tcp_read_done(struct sock *sk, size_t len);
802 
803 void tcp_initialize_rcv_mss(struct sock *sk);
804 
805 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
806 int tcp_mss_to_mtu(struct sock *sk, int mss);
807 void tcp_mtup_init(struct sock *sk);
808 
809 static inline unsigned int tcp_rto_max(const struct sock *sk)
810 {
811 	return READ_ONCE(inet_csk(sk)->icsk_rto_max);
812 }
813 
814 static inline void tcp_bound_rto(struct sock *sk)
815 {
816 	inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk));
817 }
818 
819 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
820 {
821 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
822 }
823 
824 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
825 {
826 	/* mptcp hooks are only on the slow path */
827 	if (sk_is_mptcp((struct sock *)tp))
828 		return;
829 
830 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
831 			       ntohl(TCP_FLAG_ACK) |
832 			       snd_wnd);
833 }
834 
835 static inline void tcp_fast_path_on(struct tcp_sock *tp)
836 {
837 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
838 }
839 
840 static inline void tcp_fast_path_check(struct sock *sk)
841 {
842 	struct tcp_sock *tp = tcp_sk(sk);
843 
844 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
845 	    tp->rcv_wnd &&
846 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
847 	    !tp->urg_data)
848 		tcp_fast_path_on(tp);
849 }
850 
851 u32 tcp_delack_max(const struct sock *sk);
852 
853 /* Compute the actual rto_min value */
854 static inline u32 tcp_rto_min(const struct sock *sk)
855 {
856 	const struct dst_entry *dst = __sk_dst_get(sk);
857 	u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min);
858 
859 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
860 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
861 	return rto_min;
862 }
863 
864 static inline u32 tcp_rto_min_us(const struct sock *sk)
865 {
866 	return jiffies_to_usecs(tcp_rto_min(sk));
867 }
868 
869 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
870 {
871 	return dst_metric_locked(dst, RTAX_CC_ALGO);
872 }
873 
874 /* Minimum RTT in usec. ~0 means not available. */
875 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
876 {
877 	return minmax_get(&tp->rtt_min);
878 }
879 
880 /* Compute the actual receive window we are currently advertising.
881  * Rcv_nxt can be after the window if our peer push more data
882  * than the offered window.
883  */
884 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
885 {
886 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
887 
888 	if (win < 0)
889 		win = 0;
890 	return (u32) win;
891 }
892 
893 /* Choose a new window, without checks for shrinking, and without
894  * scaling applied to the result.  The caller does these things
895  * if necessary.  This is a "raw" window selection.
896  */
897 u32 __tcp_select_window(struct sock *sk);
898 
899 void tcp_send_window_probe(struct sock *sk);
900 
901 /* TCP uses 32bit jiffies to save some space.
902  * Note that this is different from tcp_time_stamp, which
903  * historically has been the same until linux-4.13.
904  */
905 #define tcp_jiffies32 ((u32)jiffies)
906 
907 /*
908  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
909  * It is no longer tied to jiffies, but to 1 ms clock.
910  * Note: double check if you want to use tcp_jiffies32 instead of this.
911  */
912 #define TCP_TS_HZ	1000
913 
914 static inline u64 tcp_clock_ns(void)
915 {
916 	return ktime_get_ns();
917 }
918 
919 static inline u64 tcp_clock_us(void)
920 {
921 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
922 }
923 
924 static inline u64 tcp_clock_ms(void)
925 {
926 	return div_u64(tcp_clock_ns(), NSEC_PER_MSEC);
927 }
928 
929 /* TCP Timestamp included in TS option (RFC 1323) can either use ms
930  * or usec resolution. Each socket carries a flag to select one or other
931  * resolution, as the route attribute could change anytime.
932  * Each flow must stick to initial resolution.
933  */
934 static inline u32 tcp_clock_ts(bool usec_ts)
935 {
936 	return usec_ts ? tcp_clock_us() : tcp_clock_ms();
937 }
938 
939 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp)
940 {
941 	return div_u64(tp->tcp_mstamp, USEC_PER_MSEC);
942 }
943 
944 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp)
945 {
946 	if (tp->tcp_usec_ts)
947 		return tp->tcp_mstamp;
948 	return tcp_time_stamp_ms(tp);
949 }
950 
951 void tcp_mstamp_refresh(struct tcp_sock *tp);
952 
953 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
954 {
955 	return max_t(s64, t1 - t0, 0);
956 }
957 
958 /* provide the departure time in us unit */
959 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
960 {
961 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
962 }
963 
964 /* Provide skb TSval in usec or ms unit */
965 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb)
966 {
967 	if (usec_ts)
968 		return tcp_skb_timestamp_us(skb);
969 
970 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC);
971 }
972 
973 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw)
974 {
975 	return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset;
976 }
977 
978 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq)
979 {
980 	return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off;
981 }
982 
983 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
984 
985 #define TCPHDR_FIN	BIT(0)
986 #define TCPHDR_SYN	BIT(1)
987 #define TCPHDR_RST	BIT(2)
988 #define TCPHDR_PSH	BIT(3)
989 #define TCPHDR_ACK	BIT(4)
990 #define TCPHDR_URG	BIT(5)
991 #define TCPHDR_ECE	BIT(6)
992 #define TCPHDR_CWR	BIT(7)
993 #define TCPHDR_AE	BIT(8)
994 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
995 			   TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \
996 			   TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
997 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \
998 			    TCPHDR_FLAGS_MASK)
999 
1000 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE)
1001 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
1002 
1003 /* State flags for sacked in struct tcp_skb_cb */
1004 enum tcp_skb_cb_sacked_flags {
1005 	TCPCB_SACKED_ACKED	= (1 << 0),	/* SKB ACK'd by a SACK block	*/
1006 	TCPCB_SACKED_RETRANS	= (1 << 1),	/* SKB retransmitted		*/
1007 	TCPCB_LOST		= (1 << 2),	/* SKB is lost			*/
1008 	TCPCB_TAGBITS		= (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS |
1009 				   TCPCB_LOST),	/* All tag bits			*/
1010 	TCPCB_REPAIRED		= (1 << 4),	/* SKB repaired (no skb_mstamp_ns)	*/
1011 	TCPCB_EVER_RETRANS	= (1 << 7),	/* Ever retransmitted frame	*/
1012 	TCPCB_RETRANS		= (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS |
1013 				   TCPCB_REPAIRED),
1014 };
1015 
1016 /* This is what the send packet queuing engine uses to pass
1017  * TCP per-packet control information to the transmission code.
1018  * We also store the host-order sequence numbers in here too.
1019  * This is 44 bytes if IPV6 is enabled.
1020  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
1021  */
1022 struct tcp_skb_cb {
1023 	__u32		seq;		/* Starting sequence number	*/
1024 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
1025 	union {
1026 		/* Note :
1027 		 * 	  tcp_gso_segs/size are used in write queue only,
1028 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
1029 		 */
1030 		struct {
1031 			u16	tcp_gso_segs;
1032 			u16	tcp_gso_size;
1033 		};
1034 	};
1035 	__u16		tcp_flags;	/* TCP header flags (tcp[12-13])*/
1036 
1037 	__u8		sacked;		/* State flags for SACK.	*/
1038 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
1039 #define TSTAMP_ACK_SK	0x1
1040 #define TSTAMP_ACK_BPF	0x2
1041 	__u8		txstamp_ack:2,	/* Record TX timestamp for ack? */
1042 			eor:1,		/* Is skb MSG_EOR marked? */
1043 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
1044 			unused:4;
1045 	__u32		ack_seq;	/* Sequence number ACK'd	*/
1046 	union {
1047 		struct {
1048 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
1049 			/* There is space for up to 24 bytes */
1050 			__u32 is_app_limited:1, /* cwnd not fully used? */
1051 			      delivered_ce:20,
1052 			      unused:11;
1053 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
1054 			__u32 delivered;
1055 			/* start of send pipeline phase */
1056 			u64 first_tx_mstamp;
1057 			/* when we reached the "delivered" count */
1058 			u64 delivered_mstamp;
1059 		} tx;   /* only used for outgoing skbs */
1060 		union {
1061 			struct inet_skb_parm	h4;
1062 #if IS_ENABLED(CONFIG_IPV6)
1063 			struct inet6_skb_parm	h6;
1064 #endif
1065 		} header;	/* For incoming skbs */
1066 	};
1067 };
1068 
1069 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
1070 
1071 extern const struct inet_connection_sock_af_ops ipv4_specific;
1072 
1073 #if IS_ENABLED(CONFIG_IPV6)
1074 /* This is the variant of inet6_iif() that must be used by TCP,
1075  * as TCP moves IP6CB into a different location in skb->cb[]
1076  */
1077 static inline int tcp_v6_iif(const struct sk_buff *skb)
1078 {
1079 	return TCP_SKB_CB(skb)->header.h6.iif;
1080 }
1081 
1082 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
1083 {
1084 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
1085 
1086 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
1087 }
1088 
1089 /* TCP_SKB_CB reference means this can not be used from early demux */
1090 static inline int tcp_v6_sdif(const struct sk_buff *skb)
1091 {
1092 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1093 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
1094 		return TCP_SKB_CB(skb)->header.h6.iif;
1095 #endif
1096 	return 0;
1097 }
1098 
1099 extern const struct inet_connection_sock_af_ops ipv6_specific;
1100 
1101 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
1102 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
1103 void tcp_v6_early_demux(struct sk_buff *skb);
1104 
1105 #endif
1106 
1107 /* TCP_SKB_CB reference means this can not be used from early demux */
1108 static inline int tcp_v4_sdif(struct sk_buff *skb)
1109 {
1110 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
1111 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
1112 		return TCP_SKB_CB(skb)->header.h4.iif;
1113 #endif
1114 	return 0;
1115 }
1116 
1117 /* Due to TSO, an SKB can be composed of multiple actual
1118  * packets.  To keep these tracked properly, we use this.
1119  */
1120 static inline int tcp_skb_pcount(const struct sk_buff *skb)
1121 {
1122 	return TCP_SKB_CB(skb)->tcp_gso_segs;
1123 }
1124 
1125 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
1126 {
1127 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
1128 }
1129 
1130 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
1131 {
1132 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
1133 }
1134 
1135 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
1136 static inline int tcp_skb_mss(const struct sk_buff *skb)
1137 {
1138 	return TCP_SKB_CB(skb)->tcp_gso_size;
1139 }
1140 
1141 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
1142 {
1143 	return likely(!TCP_SKB_CB(skb)->eor);
1144 }
1145 
1146 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
1147 					const struct sk_buff *from)
1148 {
1149 	/* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */
1150 	return likely(tcp_skb_can_collapse_to(to) &&
1151 		      mptcp_skb_can_collapse(to, from) &&
1152 		      skb_pure_zcopy_same(to, from) &&
1153 		      skb_frags_readable(to) == skb_frags_readable(from));
1154 }
1155 
1156 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to,
1157 					   const struct sk_buff *from)
1158 {
1159 	return likely(mptcp_skb_can_collapse(to, from) &&
1160 		      !skb_cmp_decrypted(to, from));
1161 }
1162 
1163 /* Events passed to congestion control interface */
1164 enum tcp_ca_event {
1165 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1166 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1167 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1168 	CA_EVENT_LOSS,		/* loss timeout */
1169 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1170 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1171 };
1172 
1173 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1174 enum tcp_ca_ack_event_flags {
1175 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1176 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1177 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1178 };
1179 
1180 /*
1181  * Interface for adding new TCP congestion control handlers
1182  */
1183 #define TCP_CA_NAME_MAX	16
1184 #define TCP_CA_MAX	128
1185 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1186 
1187 #define TCP_CA_UNSPEC	0
1188 
1189 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1190 #define TCP_CONG_NON_RESTRICTED		BIT(0)
1191 /* Requires ECN/ECT set on all packets */
1192 #define TCP_CONG_NEEDS_ECN		BIT(1)
1193 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1194 
1195 union tcp_cc_info;
1196 
1197 struct ack_sample {
1198 	u32 pkts_acked;
1199 	s32 rtt_us;
1200 	u32 in_flight;
1201 };
1202 
1203 /* A rate sample measures the number of (original/retransmitted) data
1204  * packets delivered "delivered" over an interval of time "interval_us".
1205  * The tcp_rate.c code fills in the rate sample, and congestion
1206  * control modules that define a cong_control function to run at the end
1207  * of ACK processing can optionally chose to consult this sample when
1208  * setting cwnd and pacing rate.
1209  * A sample is invalid if "delivered" or "interval_us" is negative.
1210  */
1211 struct rate_sample {
1212 	u64  prior_mstamp; /* starting timestamp for interval */
1213 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1214 	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1215 	s32  delivered;		/* number of packets delivered over interval */
1216 	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1217 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1218 	u32 snd_interval_us;	/* snd interval for delivered packets */
1219 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1220 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1221 	int  losses;		/* number of packets marked lost upon ACK */
1222 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1223 	u32  prior_in_flight;	/* in flight before this ACK */
1224 	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1225 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1226 	bool is_retrans;	/* is sample from retransmission? */
1227 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1228 };
1229 
1230 struct tcp_congestion_ops {
1231 /* fast path fields are put first to fill one cache line */
1232 
1233 	/* return slow start threshold (required) */
1234 	u32 (*ssthresh)(struct sock *sk);
1235 
1236 	/* do new cwnd calculation (required) */
1237 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1238 
1239 	/* call before changing ca_state (optional) */
1240 	void (*set_state)(struct sock *sk, u8 new_state);
1241 
1242 	/* call when cwnd event occurs (optional) */
1243 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1244 
1245 	/* call when ack arrives (optional) */
1246 	void (*in_ack_event)(struct sock *sk, u32 flags);
1247 
1248 	/* hook for packet ack accounting (optional) */
1249 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1250 
1251 	/* override sysctl_tcp_min_tso_segs */
1252 	u32 (*min_tso_segs)(struct sock *sk);
1253 
1254 	/* call when packets are delivered to update cwnd and pacing rate,
1255 	 * after all the ca_state processing. (optional)
1256 	 */
1257 	void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs);
1258 
1259 
1260 	/* new value of cwnd after loss (required) */
1261 	u32  (*undo_cwnd)(struct sock *sk);
1262 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1263 	u32 (*sndbuf_expand)(struct sock *sk);
1264 
1265 /* control/slow paths put last */
1266 	/* get info for inet_diag (optional) */
1267 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1268 			   union tcp_cc_info *info);
1269 
1270 	char 			name[TCP_CA_NAME_MAX];
1271 	struct module		*owner;
1272 	struct list_head	list;
1273 	u32			key;
1274 	u32			flags;
1275 
1276 	/* initialize private data (optional) */
1277 	void (*init)(struct sock *sk);
1278 	/* cleanup private data  (optional) */
1279 	void (*release)(struct sock *sk);
1280 } ____cacheline_aligned_in_smp;
1281 
1282 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1283 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1284 int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1285 				  struct tcp_congestion_ops *old_type);
1286 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1287 
1288 void tcp_assign_congestion_control(struct sock *sk);
1289 void tcp_init_congestion_control(struct sock *sk);
1290 void tcp_cleanup_congestion_control(struct sock *sk);
1291 int tcp_set_default_congestion_control(struct net *net, const char *name);
1292 void tcp_get_default_congestion_control(struct net *net, char *name);
1293 void tcp_get_available_congestion_control(char *buf, size_t len);
1294 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1295 int tcp_set_allowed_congestion_control(char *allowed);
1296 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1297 			       bool cap_net_admin);
1298 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1299 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1300 
1301 u32 tcp_reno_ssthresh(struct sock *sk);
1302 u32 tcp_reno_undo_cwnd(struct sock *sk);
1303 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1304 extern struct tcp_congestion_ops tcp_reno;
1305 
1306 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1307 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1308 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1309 #ifdef CONFIG_INET
1310 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1311 #else
1312 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1313 {
1314 	return NULL;
1315 }
1316 #endif
1317 
1318 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1319 {
1320 	const struct inet_connection_sock *icsk = inet_csk(sk);
1321 
1322 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1323 }
1324 
1325 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1326 {
1327 	const struct inet_connection_sock *icsk = inet_csk(sk);
1328 
1329 	if (icsk->icsk_ca_ops->cwnd_event)
1330 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1331 }
1332 
1333 /* From tcp_cong.c */
1334 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1335 
1336 /* From tcp_rate.c */
1337 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1338 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1339 			    struct rate_sample *rs);
1340 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1341 		  bool is_sack_reneg, struct rate_sample *rs);
1342 void tcp_rate_check_app_limited(struct sock *sk);
1343 
1344 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1345 {
1346 	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1347 }
1348 
1349 /* These functions determine how the current flow behaves in respect of SACK
1350  * handling. SACK is negotiated with the peer, and therefore it can vary
1351  * between different flows.
1352  *
1353  * tcp_is_sack - SACK enabled
1354  * tcp_is_reno - No SACK
1355  */
1356 static inline int tcp_is_sack(const struct tcp_sock *tp)
1357 {
1358 	return likely(tp->rx_opt.sack_ok);
1359 }
1360 
1361 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1362 {
1363 	return !tcp_is_sack(tp);
1364 }
1365 
1366 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1367 {
1368 	return tp->sacked_out + tp->lost_out;
1369 }
1370 
1371 /* This determines how many packets are "in the network" to the best
1372  * of our knowledge.  In many cases it is conservative, but where
1373  * detailed information is available from the receiver (via SACK
1374  * blocks etc.) we can make more aggressive calculations.
1375  *
1376  * Use this for decisions involving congestion control, use just
1377  * tp->packets_out to determine if the send queue is empty or not.
1378  *
1379  * Read this equation as:
1380  *
1381  *	"Packets sent once on transmission queue" MINUS
1382  *	"Packets left network, but not honestly ACKed yet" PLUS
1383  *	"Packets fast retransmitted"
1384  */
1385 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1386 {
1387 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1388 }
1389 
1390 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1391 
1392 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1393 {
1394 	return tp->snd_cwnd;
1395 }
1396 
1397 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1398 {
1399 	WARN_ON_ONCE((int)val <= 0);
1400 	tp->snd_cwnd = val;
1401 }
1402 
1403 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1404 {
1405 	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1406 }
1407 
1408 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1409 {
1410 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1411 }
1412 
1413 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1414 {
1415 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1416 	       (1 << inet_csk(sk)->icsk_ca_state);
1417 }
1418 
1419 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1420  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1421  * ssthresh.
1422  */
1423 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1424 {
1425 	const struct tcp_sock *tp = tcp_sk(sk);
1426 
1427 	if (tcp_in_cwnd_reduction(sk))
1428 		return tp->snd_ssthresh;
1429 	else
1430 		return max(tp->snd_ssthresh,
1431 			   ((tcp_snd_cwnd(tp) >> 1) +
1432 			    (tcp_snd_cwnd(tp) >> 2)));
1433 }
1434 
1435 /* Use define here intentionally to get WARN_ON location shown at the caller */
1436 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1437 
1438 void tcp_enter_cwr(struct sock *sk);
1439 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1440 
1441 /* The maximum number of MSS of available cwnd for which TSO defers
1442  * sending if not using sysctl_tcp_tso_win_divisor.
1443  */
1444 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1445 {
1446 	return 3;
1447 }
1448 
1449 /* Returns end sequence number of the receiver's advertised window */
1450 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1451 {
1452 	return tp->snd_una + tp->snd_wnd;
1453 }
1454 
1455 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1456  * flexible approach. The RFC suggests cwnd should not be raised unless
1457  * it was fully used previously. And that's exactly what we do in
1458  * congestion avoidance mode. But in slow start we allow cwnd to grow
1459  * as long as the application has used half the cwnd.
1460  * Example :
1461  *    cwnd is 10 (IW10), but application sends 9 frames.
1462  *    We allow cwnd to reach 18 when all frames are ACKed.
1463  * This check is safe because it's as aggressive as slow start which already
1464  * risks 100% overshoot. The advantage is that we discourage application to
1465  * either send more filler packets or data to artificially blow up the cwnd
1466  * usage, and allow application-limited process to probe bw more aggressively.
1467  */
1468 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1469 {
1470 	const struct tcp_sock *tp = tcp_sk(sk);
1471 
1472 	if (tp->is_cwnd_limited)
1473 		return true;
1474 
1475 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1476 	if (tcp_in_slow_start(tp))
1477 		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1478 
1479 	return false;
1480 }
1481 
1482 /* BBR congestion control needs pacing.
1483  * Same remark for SO_MAX_PACING_RATE.
1484  * sch_fq packet scheduler is efficiently handling pacing,
1485  * but is not always installed/used.
1486  * Return true if TCP stack should pace packets itself.
1487  */
1488 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1489 {
1490 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1491 }
1492 
1493 /* Estimates in how many jiffies next packet for this flow can be sent.
1494  * Scheduling a retransmit timer too early would be silly.
1495  */
1496 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1497 {
1498 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1499 
1500 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1501 }
1502 
1503 static inline void tcp_reset_xmit_timer(struct sock *sk,
1504 					const int what,
1505 					unsigned long when,
1506 					bool pace_delay)
1507 {
1508 	if (pace_delay)
1509 		when += tcp_pacing_delay(sk);
1510 	inet_csk_reset_xmit_timer(sk, what, when,
1511 				  tcp_rto_max(sk));
1512 }
1513 
1514 /* Something is really bad, we could not queue an additional packet,
1515  * because qdisc is full or receiver sent a 0 window, or we are paced.
1516  * We do not want to add fuel to the fire, or abort too early,
1517  * so make sure the timer we arm now is at least 200ms in the future,
1518  * regardless of current icsk_rto value (as it could be ~2ms)
1519  */
1520 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1521 {
1522 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1523 }
1524 
1525 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1526 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1527 					    unsigned long max_when)
1528 {
1529 	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1530 			   inet_csk(sk)->icsk_backoff);
1531 	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1532 
1533 	return (unsigned long)min_t(u64, when, max_when);
1534 }
1535 
1536 static inline void tcp_check_probe_timer(struct sock *sk)
1537 {
1538 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1539 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1540 				     tcp_probe0_base(sk), true);
1541 }
1542 
1543 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1544 {
1545 	tp->snd_wl1 = seq;
1546 }
1547 
1548 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1549 {
1550 	tp->snd_wl1 = seq;
1551 }
1552 
1553 /*
1554  * Calculate(/check) TCP checksum
1555  */
1556 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1557 				   __be32 daddr, __wsum base)
1558 {
1559 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1560 }
1561 
1562 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1563 {
1564 	return !skb_csum_unnecessary(skb) &&
1565 		__skb_checksum_complete(skb);
1566 }
1567 
1568 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1569 		     enum skb_drop_reason *reason);
1570 
1571 
1572 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason);
1573 void tcp_set_state(struct sock *sk, int state);
1574 void tcp_done(struct sock *sk);
1575 int tcp_abort(struct sock *sk, int err);
1576 
1577 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1578 {
1579 	rx_opt->dsack = 0;
1580 	rx_opt->num_sacks = 0;
1581 }
1582 
1583 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1584 
1585 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1586 {
1587 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1588 	struct tcp_sock *tp = tcp_sk(sk);
1589 	s32 delta;
1590 
1591 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1592 	    tp->packets_out || ca_ops->cong_control)
1593 		return;
1594 	delta = tcp_jiffies32 - tp->lsndtime;
1595 	if (delta > inet_csk(sk)->icsk_rto)
1596 		tcp_cwnd_restart(sk, delta);
1597 }
1598 
1599 /* Determine a window scaling and initial window to offer. */
1600 void tcp_select_initial_window(const struct sock *sk, int __space,
1601 			       __u32 mss, __u32 *rcv_wnd,
1602 			       __u32 *window_clamp, int wscale_ok,
1603 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1604 
1605 static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1606 {
1607 	s64 scaled_space = (s64)space * scaling_ratio;
1608 
1609 	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1610 }
1611 
1612 static inline int tcp_win_from_space(const struct sock *sk, int space)
1613 {
1614 	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1615 }
1616 
1617 /* inverse of __tcp_win_from_space() */
1618 static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1619 {
1620 	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1621 
1622 	do_div(val, scaling_ratio);
1623 	return val;
1624 }
1625 
1626 static inline int tcp_space_from_win(const struct sock *sk, int win)
1627 {
1628 	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1629 }
1630 
1631 /* Assume a 50% default for skb->len/skb->truesize ratio.
1632  * This may be adjusted later in tcp_measure_rcv_mss().
1633  */
1634 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1))
1635 
1636 static inline void tcp_scaling_ratio_init(struct sock *sk)
1637 {
1638 	tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
1639 }
1640 
1641 /* Note: caller must be prepared to deal with negative returns */
1642 static inline int tcp_space(const struct sock *sk)
1643 {
1644 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1645 				  READ_ONCE(sk->sk_backlog.len) -
1646 				  atomic_read(&sk->sk_rmem_alloc));
1647 }
1648 
1649 static inline int tcp_full_space(const struct sock *sk)
1650 {
1651 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1652 }
1653 
1654 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1655 {
1656 	int unused_mem = sk_unused_reserved_mem(sk);
1657 	struct tcp_sock *tp = tcp_sk(sk);
1658 
1659 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1660 	if (unused_mem)
1661 		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1662 					 tcp_win_from_space(sk, unused_mem));
1663 }
1664 
1665 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1666 {
1667 	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1668 }
1669 
1670 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1671 void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1672 
1673 
1674 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1675  * If 87.5 % (7/8) of the space has been consumed, we want to override
1676  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1677  * len/truesize ratio.
1678  */
1679 static inline bool tcp_rmem_pressure(const struct sock *sk)
1680 {
1681 	int rcvbuf, threshold;
1682 
1683 	if (tcp_under_memory_pressure(sk))
1684 		return true;
1685 
1686 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1687 	threshold = rcvbuf - (rcvbuf >> 3);
1688 
1689 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1690 }
1691 
1692 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1693 {
1694 	const struct tcp_sock *tp = tcp_sk(sk);
1695 	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1696 
1697 	if (avail <= 0)
1698 		return false;
1699 
1700 	return (avail >= target) || tcp_rmem_pressure(sk) ||
1701 	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1702 }
1703 
1704 extern void tcp_openreq_init_rwin(struct request_sock *req,
1705 				  const struct sock *sk_listener,
1706 				  const struct dst_entry *dst);
1707 
1708 void tcp_enter_memory_pressure(struct sock *sk);
1709 void tcp_leave_memory_pressure(struct sock *sk);
1710 
1711 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1712 {
1713 	struct net *net = sock_net((struct sock *)tp);
1714 	int val;
1715 
1716 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1717 	 * and do_tcp_setsockopt().
1718 	 */
1719 	val = READ_ONCE(tp->keepalive_intvl);
1720 
1721 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1722 }
1723 
1724 static inline int keepalive_time_when(const struct tcp_sock *tp)
1725 {
1726 	struct net *net = sock_net((struct sock *)tp);
1727 	int val;
1728 
1729 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1730 	val = READ_ONCE(tp->keepalive_time);
1731 
1732 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1733 }
1734 
1735 static inline int keepalive_probes(const struct tcp_sock *tp)
1736 {
1737 	struct net *net = sock_net((struct sock *)tp);
1738 	int val;
1739 
1740 	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1741 	 * and do_tcp_setsockopt().
1742 	 */
1743 	val = READ_ONCE(tp->keepalive_probes);
1744 
1745 	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1746 }
1747 
1748 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1749 {
1750 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1751 
1752 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1753 			  tcp_jiffies32 - tp->rcv_tstamp);
1754 }
1755 
1756 static inline int tcp_fin_time(const struct sock *sk)
1757 {
1758 	int fin_timeout = tcp_sk(sk)->linger2 ? :
1759 		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1760 	const int rto = inet_csk(sk)->icsk_rto;
1761 
1762 	if (fin_timeout < (rto << 2) - (rto >> 1))
1763 		fin_timeout = (rto << 2) - (rto >> 1);
1764 
1765 	return fin_timeout;
1766 }
1767 
1768 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1769 				  int paws_win)
1770 {
1771 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1772 		return true;
1773 	if (unlikely(!time_before32(ktime_get_seconds(),
1774 				    rx_opt->ts_recent_stamp + TCP_PAWS_WRAP)))
1775 		return true;
1776 	/*
1777 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1778 	 * then following tcp messages have valid values. Ignore 0 value,
1779 	 * or else 'negative' tsval might forbid us to accept their packets.
1780 	 */
1781 	if (!rx_opt->ts_recent)
1782 		return true;
1783 	return false;
1784 }
1785 
1786 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1787 				   int rst)
1788 {
1789 	if (tcp_paws_check(rx_opt, 0))
1790 		return false;
1791 
1792 	/* RST segments are not recommended to carry timestamp,
1793 	   and, if they do, it is recommended to ignore PAWS because
1794 	   "their cleanup function should take precedence over timestamps."
1795 	   Certainly, it is mistake. It is necessary to understand the reasons
1796 	   of this constraint to relax it: if peer reboots, clock may go
1797 	   out-of-sync and half-open connections will not be reset.
1798 	   Actually, the problem would be not existing if all
1799 	   the implementations followed draft about maintaining clock
1800 	   via reboots. Linux-2.2 DOES NOT!
1801 
1802 	   However, we can relax time bounds for RST segments to MSL.
1803 	 */
1804 	if (rst && !time_before32(ktime_get_seconds(),
1805 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1806 		return false;
1807 	return true;
1808 }
1809 
1810 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1811 			  int mib_idx, u32 *last_oow_ack_time);
1812 
1813 static inline void tcp_mib_init(struct net *net)
1814 {
1815 	/* See RFC 2012 */
1816 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1817 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1818 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1819 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1820 }
1821 
1822 /* from STCP */
1823 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1824 {
1825 	tp->retransmit_skb_hint = NULL;
1826 }
1827 
1828 #define tcp_md5_addr tcp_ao_addr
1829 
1830 /* - key database */
1831 struct tcp_md5sig_key {
1832 	struct hlist_node	node;
1833 	u8			keylen;
1834 	u8			family; /* AF_INET or AF_INET6 */
1835 	u8			prefixlen;
1836 	u8			flags;
1837 	union tcp_md5_addr	addr;
1838 	int			l3index; /* set if key added with L3 scope */
1839 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1840 	struct rcu_head		rcu;
1841 };
1842 
1843 /* - sock block */
1844 struct tcp_md5sig_info {
1845 	struct hlist_head	head;
1846 	struct rcu_head		rcu;
1847 };
1848 
1849 /* - pseudo header */
1850 struct tcp4_pseudohdr {
1851 	__be32		saddr;
1852 	__be32		daddr;
1853 	__u8		pad;
1854 	__u8		protocol;
1855 	__be16		len;
1856 };
1857 
1858 struct tcp6_pseudohdr {
1859 	struct in6_addr	saddr;
1860 	struct in6_addr daddr;
1861 	__be32		len;
1862 	__be32		protocol;	/* including padding */
1863 };
1864 
1865 union tcp_md5sum_block {
1866 	struct tcp4_pseudohdr ip4;
1867 #if IS_ENABLED(CONFIG_IPV6)
1868 	struct tcp6_pseudohdr ip6;
1869 #endif
1870 };
1871 
1872 /*
1873  * struct tcp_sigpool - per-CPU pool of ahash_requests
1874  * @scratch: per-CPU temporary area, that can be used between
1875  *	     tcp_sigpool_start() and tcp_sigpool_end() to perform
1876  *	     crypto request
1877  * @req: pre-allocated ahash request
1878  */
1879 struct tcp_sigpool {
1880 	void *scratch;
1881 	struct ahash_request *req;
1882 };
1883 
1884 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size);
1885 void tcp_sigpool_get(unsigned int id);
1886 void tcp_sigpool_release(unsigned int id);
1887 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp,
1888 			      const struct sk_buff *skb,
1889 			      unsigned int header_len);
1890 
1891 /**
1892  * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash
1893  * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash()
1894  * @c: returned tcp_sigpool for usage (uninitialized on failure)
1895  *
1896  * Returns: 0 on success, error otherwise.
1897  */
1898 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c);
1899 /**
1900  * tcp_sigpool_end - enable bh and stop using tcp_sigpool
1901  * @c: tcp_sigpool context that was returned by tcp_sigpool_start()
1902  */
1903 void tcp_sigpool_end(struct tcp_sigpool *c);
1904 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len);
1905 /* - functions */
1906 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1907 			const struct sock *sk, const struct sk_buff *skb);
1908 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1909 		   int family, u8 prefixlen, int l3index, u8 flags,
1910 		   const u8 *newkey, u8 newkeylen);
1911 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1912 		     int family, u8 prefixlen, int l3index,
1913 		     struct tcp_md5sig_key *key);
1914 
1915 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1916 		   int family, u8 prefixlen, int l3index, u8 flags);
1917 void tcp_clear_md5_list(struct sock *sk);
1918 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1919 					 const struct sock *addr_sk);
1920 
1921 #ifdef CONFIG_TCP_MD5SIG
1922 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1923 					   const union tcp_md5_addr *addr,
1924 					   int family, bool any_l3index);
1925 static inline struct tcp_md5sig_key *
1926 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1927 		  const union tcp_md5_addr *addr, int family)
1928 {
1929 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1930 		return NULL;
1931 	return __tcp_md5_do_lookup(sk, l3index, addr, family, false);
1932 }
1933 
1934 static inline struct tcp_md5sig_key *
1935 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1936 			      const union tcp_md5_addr *addr, int family)
1937 {
1938 	if (!static_branch_unlikely(&tcp_md5_needed.key))
1939 		return NULL;
1940 	return __tcp_md5_do_lookup(sk, 0, addr, family, true);
1941 }
1942 
1943 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1944 #else
1945 static inline struct tcp_md5sig_key *
1946 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1947 		  const union tcp_md5_addr *addr, int family)
1948 {
1949 	return NULL;
1950 }
1951 
1952 static inline struct tcp_md5sig_key *
1953 tcp_md5_do_lookup_any_l3index(const struct sock *sk,
1954 			      const union tcp_md5_addr *addr, int family)
1955 {
1956 	return NULL;
1957 }
1958 
1959 #define tcp_twsk_md5_key(twsk)	NULL
1960 #endif
1961 
1962 int tcp_md5_alloc_sigpool(void);
1963 void tcp_md5_release_sigpool(void);
1964 void tcp_md5_add_sigpool(void);
1965 extern int tcp_md5_sigpool_id;
1966 
1967 int tcp_md5_hash_key(struct tcp_sigpool *hp,
1968 		     const struct tcp_md5sig_key *key);
1969 
1970 /* From tcp_fastopen.c */
1971 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1972 			    struct tcp_fastopen_cookie *cookie);
1973 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1974 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1975 			    u16 try_exp);
1976 struct tcp_fastopen_request {
1977 	/* Fast Open cookie. Size 0 means a cookie request */
1978 	struct tcp_fastopen_cookie	cookie;
1979 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1980 	size_t				size;
1981 	int				copied;	/* queued in tcp_connect() */
1982 	struct ubuf_info		*uarg;
1983 };
1984 void tcp_free_fastopen_req(struct tcp_sock *tp);
1985 void tcp_fastopen_destroy_cipher(struct sock *sk);
1986 void tcp_fastopen_ctx_destroy(struct net *net);
1987 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1988 			      void *primary_key, void *backup_key);
1989 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1990 			    u64 *key);
1991 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1992 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1993 			      struct request_sock *req,
1994 			      struct tcp_fastopen_cookie *foc,
1995 			      const struct dst_entry *dst);
1996 void tcp_fastopen_init_key_once(struct net *net);
1997 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1998 			     struct tcp_fastopen_cookie *cookie);
1999 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
2000 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
2001 #define TCP_FASTOPEN_KEY_MAX 2
2002 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
2003 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
2004 
2005 /* Fastopen key context */
2006 struct tcp_fastopen_context {
2007 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
2008 	int		num;
2009 	struct rcu_head	rcu;
2010 };
2011 
2012 void tcp_fastopen_active_disable(struct sock *sk);
2013 bool tcp_fastopen_active_should_disable(struct sock *sk);
2014 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
2015 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
2016 
2017 /* Caller needs to wrap with rcu_read_(un)lock() */
2018 static inline
2019 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
2020 {
2021 	struct tcp_fastopen_context *ctx;
2022 
2023 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
2024 	if (!ctx)
2025 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
2026 	return ctx;
2027 }
2028 
2029 static inline
2030 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
2031 			       const struct tcp_fastopen_cookie *orig)
2032 {
2033 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
2034 	    orig->len == foc->len &&
2035 	    !memcmp(orig->val, foc->val, foc->len))
2036 		return true;
2037 	return false;
2038 }
2039 
2040 static inline
2041 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
2042 {
2043 	return ctx->num;
2044 }
2045 
2046 /* Latencies incurred by various limits for a sender. They are
2047  * chronograph-like stats that are mutually exclusive.
2048  */
2049 enum tcp_chrono {
2050 	TCP_CHRONO_UNSPEC,
2051 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
2052 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
2053 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
2054 	__TCP_CHRONO_MAX,
2055 };
2056 
2057 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
2058 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
2059 
2060 /* This helper is needed, because skb->tcp_tsorted_anchor uses
2061  * the same memory storage than skb->destructor/_skb_refdst
2062  */
2063 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
2064 {
2065 	skb->destructor = NULL;
2066 	skb->_skb_refdst = 0UL;
2067 }
2068 
2069 #define tcp_skb_tsorted_save(skb) {		\
2070 	unsigned long _save = skb->_skb_refdst;	\
2071 	skb->_skb_refdst = 0UL;
2072 
2073 #define tcp_skb_tsorted_restore(skb)		\
2074 	skb->_skb_refdst = _save;		\
2075 }
2076 
2077 void tcp_write_queue_purge(struct sock *sk);
2078 
2079 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
2080 {
2081 	return skb_rb_first(&sk->tcp_rtx_queue);
2082 }
2083 
2084 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
2085 {
2086 	return skb_rb_last(&sk->tcp_rtx_queue);
2087 }
2088 
2089 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
2090 {
2091 	return skb_peek_tail(&sk->sk_write_queue);
2092 }
2093 
2094 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
2095 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
2096 
2097 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
2098 {
2099 	return skb_peek(&sk->sk_write_queue);
2100 }
2101 
2102 static inline bool tcp_skb_is_last(const struct sock *sk,
2103 				   const struct sk_buff *skb)
2104 {
2105 	return skb_queue_is_last(&sk->sk_write_queue, skb);
2106 }
2107 
2108 /**
2109  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
2110  * @sk: socket
2111  *
2112  * Since the write queue can have a temporary empty skb in it,
2113  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
2114  */
2115 static inline bool tcp_write_queue_empty(const struct sock *sk)
2116 {
2117 	const struct tcp_sock *tp = tcp_sk(sk);
2118 
2119 	return tp->write_seq == tp->snd_nxt;
2120 }
2121 
2122 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
2123 {
2124 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
2125 }
2126 
2127 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
2128 {
2129 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
2130 }
2131 
2132 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
2133 {
2134 	__skb_queue_tail(&sk->sk_write_queue, skb);
2135 
2136 	/* Queue it, remembering where we must start sending. */
2137 	if (sk->sk_write_queue.next == skb)
2138 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
2139 }
2140 
2141 /* Insert new before skb on the write queue of sk.  */
2142 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
2143 						  struct sk_buff *skb,
2144 						  struct sock *sk)
2145 {
2146 	__skb_queue_before(&sk->sk_write_queue, skb, new);
2147 }
2148 
2149 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
2150 {
2151 	tcp_skb_tsorted_anchor_cleanup(skb);
2152 	__skb_unlink(skb, &sk->sk_write_queue);
2153 }
2154 
2155 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
2156 
2157 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
2158 {
2159 	tcp_skb_tsorted_anchor_cleanup(skb);
2160 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
2161 }
2162 
2163 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
2164 {
2165 	list_del(&skb->tcp_tsorted_anchor);
2166 	tcp_rtx_queue_unlink(skb, sk);
2167 	tcp_wmem_free_skb(sk, skb);
2168 }
2169 
2170 static inline void tcp_write_collapse_fence(struct sock *sk)
2171 {
2172 	struct sk_buff *skb = tcp_write_queue_tail(sk);
2173 
2174 	if (skb)
2175 		TCP_SKB_CB(skb)->eor = 1;
2176 }
2177 
2178 static inline void tcp_push_pending_frames(struct sock *sk)
2179 {
2180 	if (tcp_send_head(sk)) {
2181 		struct tcp_sock *tp = tcp_sk(sk);
2182 
2183 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
2184 	}
2185 }
2186 
2187 /* Start sequence of the skb just after the highest skb with SACKed
2188  * bit, valid only if sacked_out > 0 or when the caller has ensured
2189  * validity by itself.
2190  */
2191 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2192 {
2193 	if (!tp->sacked_out)
2194 		return tp->snd_una;
2195 
2196 	if (tp->highest_sack == NULL)
2197 		return tp->snd_nxt;
2198 
2199 	return TCP_SKB_CB(tp->highest_sack)->seq;
2200 }
2201 
2202 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2203 {
2204 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2205 }
2206 
2207 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2208 {
2209 	return tcp_sk(sk)->highest_sack;
2210 }
2211 
2212 static inline void tcp_highest_sack_reset(struct sock *sk)
2213 {
2214 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2215 }
2216 
2217 /* Called when old skb is about to be deleted and replaced by new skb */
2218 static inline void tcp_highest_sack_replace(struct sock *sk,
2219 					    struct sk_buff *old,
2220 					    struct sk_buff *new)
2221 {
2222 	if (old == tcp_highest_sack(sk))
2223 		tcp_sk(sk)->highest_sack = new;
2224 }
2225 
2226 /* This helper checks if socket has IP_TRANSPARENT set */
2227 static inline bool inet_sk_transparent(const struct sock *sk)
2228 {
2229 	switch (sk->sk_state) {
2230 	case TCP_TIME_WAIT:
2231 		return inet_twsk(sk)->tw_transparent;
2232 	case TCP_NEW_SYN_RECV:
2233 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2234 	}
2235 	return inet_test_bit(TRANSPARENT, sk);
2236 }
2237 
2238 /* Determines whether this is a thin stream (which may suffer from
2239  * increased latency). Used to trigger latency-reducing mechanisms.
2240  */
2241 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2242 {
2243 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2244 }
2245 
2246 /* /proc */
2247 enum tcp_seq_states {
2248 	TCP_SEQ_STATE_LISTENING,
2249 	TCP_SEQ_STATE_ESTABLISHED,
2250 };
2251 
2252 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2253 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2254 void tcp_seq_stop(struct seq_file *seq, void *v);
2255 
2256 struct tcp_seq_afinfo {
2257 	sa_family_t			family;
2258 };
2259 
2260 struct tcp_iter_state {
2261 	struct seq_net_private	p;
2262 	enum tcp_seq_states	state;
2263 	struct sock		*syn_wait_sk;
2264 	int			bucket, offset, sbucket, num;
2265 	loff_t			last_pos;
2266 };
2267 
2268 extern struct request_sock_ops tcp_request_sock_ops;
2269 extern struct request_sock_ops tcp6_request_sock_ops;
2270 
2271 void tcp_v4_destroy_sock(struct sock *sk);
2272 
2273 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2274 				netdev_features_t features);
2275 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb);
2276 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th);
2277 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb,
2278 				struct tcphdr *th);
2279 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2280 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2281 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2282 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2283 #ifdef CONFIG_INET
2284 void tcp_gro_complete(struct sk_buff *skb);
2285 #else
2286 static inline void tcp_gro_complete(struct sk_buff *skb) { }
2287 #endif
2288 
2289 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2290 
2291 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2292 {
2293 	struct net *net = sock_net((struct sock *)tp);
2294 	u32 val;
2295 
2296 	val = READ_ONCE(tp->notsent_lowat);
2297 
2298 	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2299 }
2300 
2301 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2302 
2303 #ifdef CONFIG_PROC_FS
2304 int tcp4_proc_init(void);
2305 void tcp4_proc_exit(void);
2306 #endif
2307 
2308 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2309 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2310 		     const struct tcp_request_sock_ops *af_ops,
2311 		     struct sock *sk, struct sk_buff *skb);
2312 
2313 /* TCP af-specific functions */
2314 struct tcp_sock_af_ops {
2315 #ifdef CONFIG_TCP_MD5SIG
2316 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2317 						const struct sock *addr_sk);
2318 	int		(*calc_md5_hash)(char *location,
2319 					 const struct tcp_md5sig_key *md5,
2320 					 const struct sock *sk,
2321 					 const struct sk_buff *skb);
2322 	int		(*md5_parse)(struct sock *sk,
2323 				     int optname,
2324 				     sockptr_t optval,
2325 				     int optlen);
2326 #endif
2327 #ifdef CONFIG_TCP_AO
2328 	int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen);
2329 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2330 					struct sock *addr_sk,
2331 					int sndid, int rcvid);
2332 	int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key,
2333 			      const struct sock *sk,
2334 			      __be32 sisn, __be32 disn, bool send);
2335 	int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao,
2336 			    const struct sock *sk, const struct sk_buff *skb,
2337 			    const u8 *tkey, int hash_offset, u32 sne);
2338 #endif
2339 };
2340 
2341 struct tcp_request_sock_ops {
2342 	u16 mss_clamp;
2343 #ifdef CONFIG_TCP_MD5SIG
2344 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2345 						 const struct sock *addr_sk);
2346 	int		(*calc_md5_hash) (char *location,
2347 					  const struct tcp_md5sig_key *md5,
2348 					  const struct sock *sk,
2349 					  const struct sk_buff *skb);
2350 #endif
2351 #ifdef CONFIG_TCP_AO
2352 	struct tcp_ao_key *(*ao_lookup)(const struct sock *sk,
2353 					struct request_sock *req,
2354 					int sndid, int rcvid);
2355 	int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk);
2356 	int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt,
2357 			      struct request_sock *req, const struct sk_buff *skb,
2358 			      int hash_offset, u32 sne);
2359 #endif
2360 #ifdef CONFIG_SYN_COOKIES
2361 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2362 				 __u16 *mss);
2363 #endif
2364 	struct dst_entry *(*route_req)(const struct sock *sk,
2365 				       struct sk_buff *skb,
2366 				       struct flowi *fl,
2367 				       struct request_sock *req,
2368 				       u32 tw_isn);
2369 	u32 (*init_seq)(const struct sk_buff *skb);
2370 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2371 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2372 			   struct flowi *fl, struct request_sock *req,
2373 			   struct tcp_fastopen_cookie *foc,
2374 			   enum tcp_synack_type synack_type,
2375 			   struct sk_buff *syn_skb);
2376 };
2377 
2378 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2379 #if IS_ENABLED(CONFIG_IPV6)
2380 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2381 #endif
2382 
2383 #ifdef CONFIG_SYN_COOKIES
2384 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2385 					 const struct sock *sk, struct sk_buff *skb,
2386 					 __u16 *mss)
2387 {
2388 	tcp_synq_overflow(sk);
2389 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2390 	return ops->cookie_init_seq(skb, mss);
2391 }
2392 #else
2393 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2394 					 const struct sock *sk, struct sk_buff *skb,
2395 					 __u16 *mss)
2396 {
2397 	return 0;
2398 }
2399 #endif
2400 
2401 struct tcp_key {
2402 	union {
2403 		struct {
2404 			struct tcp_ao_key *ao_key;
2405 			char *traffic_key;
2406 			u32 sne;
2407 			u8 rcv_next;
2408 		};
2409 		struct tcp_md5sig_key *md5_key;
2410 	};
2411 	enum {
2412 		TCP_KEY_NONE = 0,
2413 		TCP_KEY_MD5,
2414 		TCP_KEY_AO,
2415 	} type;
2416 };
2417 
2418 static inline void tcp_get_current_key(const struct sock *sk,
2419 				       struct tcp_key *out)
2420 {
2421 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG)
2422 	const struct tcp_sock *tp = tcp_sk(sk);
2423 #endif
2424 
2425 #ifdef CONFIG_TCP_AO
2426 	if (static_branch_unlikely(&tcp_ao_needed.key)) {
2427 		struct tcp_ao_info *ao;
2428 
2429 		ao = rcu_dereference_protected(tp->ao_info,
2430 					       lockdep_sock_is_held(sk));
2431 		if (ao) {
2432 			out->ao_key = READ_ONCE(ao->current_key);
2433 			out->type = TCP_KEY_AO;
2434 			return;
2435 		}
2436 	}
2437 #endif
2438 #ifdef CONFIG_TCP_MD5SIG
2439 	if (static_branch_unlikely(&tcp_md5_needed.key) &&
2440 	    rcu_access_pointer(tp->md5sig_info)) {
2441 		out->md5_key = tp->af_specific->md5_lookup(sk, sk);
2442 		if (out->md5_key) {
2443 			out->type = TCP_KEY_MD5;
2444 			return;
2445 		}
2446 	}
2447 #endif
2448 	out->type = TCP_KEY_NONE;
2449 }
2450 
2451 static inline bool tcp_key_is_md5(const struct tcp_key *key)
2452 {
2453 	if (static_branch_tcp_md5())
2454 		return key->type == TCP_KEY_MD5;
2455 	return false;
2456 }
2457 
2458 static inline bool tcp_key_is_ao(const struct tcp_key *key)
2459 {
2460 	if (static_branch_tcp_ao())
2461 		return key->type == TCP_KEY_AO;
2462 	return false;
2463 }
2464 
2465 int tcpv4_offload_init(void);
2466 
2467 void tcp_v4_init(void);
2468 void tcp_init(void);
2469 
2470 /* tcp_recovery.c */
2471 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2472 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2473 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2474 				u32 reo_wnd);
2475 extern bool tcp_rack_mark_lost(struct sock *sk);
2476 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2477 			     u64 xmit_time);
2478 extern void tcp_rack_reo_timeout(struct sock *sk);
2479 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2480 
2481 /* tcp_plb.c */
2482 
2483 /*
2484  * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2485  * expects cong_ratio which represents fraction of traffic that experienced
2486  * congestion over a single RTT. In order to avoid floating point operations,
2487  * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2488  */
2489 #define TCP_PLB_SCALE 8
2490 
2491 /* State for PLB (Protective Load Balancing) for a single TCP connection. */
2492 struct tcp_plb_state {
2493 	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2494 		unused:3;
2495 	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2496 };
2497 
2498 static inline void tcp_plb_init(const struct sock *sk,
2499 				struct tcp_plb_state *plb)
2500 {
2501 	plb->consec_cong_rounds = 0;
2502 	plb->pause_until = 0;
2503 }
2504 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2505 			  const int cong_ratio);
2506 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2507 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2508 
2509 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str)
2510 {
2511 	WARN_ONCE(cond,
2512 		  "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n",
2513 		  str,
2514 		  tcp_snd_cwnd(tcp_sk(sk)),
2515 		  tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out,
2516 		  tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out,
2517 		  tcp_sk(sk)->tlp_high_seq, sk->sk_state,
2518 		  inet_csk(sk)->icsk_ca_state,
2519 		  tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache,
2520 		  inet_csk(sk)->icsk_pmtu_cookie);
2521 }
2522 
2523 /* At how many usecs into the future should the RTO fire? */
2524 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2525 {
2526 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2527 	u32 rto = inet_csk(sk)->icsk_rto;
2528 
2529 	if (likely(skb)) {
2530 		u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2531 
2532 		return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2533 	} else {
2534 		tcp_warn_once(sk, 1, "rtx queue empty: ");
2535 		return jiffies_to_usecs(rto);
2536 	}
2537 
2538 }
2539 
2540 /*
2541  * Save and compile IPv4 options, return a pointer to it
2542  */
2543 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2544 							 struct sk_buff *skb)
2545 {
2546 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2547 	struct ip_options_rcu *dopt = NULL;
2548 
2549 	if (opt->optlen) {
2550 		int opt_size = sizeof(*dopt) + opt->optlen;
2551 
2552 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2553 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2554 			kfree(dopt);
2555 			dopt = NULL;
2556 		}
2557 	}
2558 	return dopt;
2559 }
2560 
2561 /* locally generated TCP pure ACKs have skb->truesize == 2
2562  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2563  * This is much faster than dissecting the packet to find out.
2564  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2565  */
2566 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2567 {
2568 	return skb->truesize == 2;
2569 }
2570 
2571 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2572 {
2573 	skb->truesize = 2;
2574 }
2575 
2576 static inline int tcp_inq(struct sock *sk)
2577 {
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 	int answ;
2580 
2581 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2582 		answ = 0;
2583 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2584 		   !tp->urg_data ||
2585 		   before(tp->urg_seq, tp->copied_seq) ||
2586 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2587 
2588 		answ = tp->rcv_nxt - tp->copied_seq;
2589 
2590 		/* Subtract 1, if FIN was received */
2591 		if (answ && sock_flag(sk, SOCK_DONE))
2592 			answ--;
2593 	} else {
2594 		answ = tp->urg_seq - tp->copied_seq;
2595 	}
2596 
2597 	return answ;
2598 }
2599 
2600 int tcp_peek_len(struct socket *sock);
2601 
2602 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2603 {
2604 	u16 segs_in;
2605 
2606 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2607 
2608 	/* We update these fields while other threads might
2609 	 * read them from tcp_get_info()
2610 	 */
2611 	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2612 	if (skb->len > tcp_hdrlen(skb))
2613 		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2614 }
2615 
2616 /*
2617  * TCP listen path runs lockless.
2618  * We forced "struct sock" to be const qualified to make sure
2619  * we don't modify one of its field by mistake.
2620  * Here, we increment sk_drops which is an atomic_t, so we can safely
2621  * make sock writable again.
2622  */
2623 static inline void tcp_listendrop(const struct sock *sk)
2624 {
2625 	sk_drops_inc((struct sock *)sk);
2626 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2627 }
2628 
2629 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2630 
2631 /*
2632  * Interface for adding Upper Level Protocols over TCP
2633  */
2634 
2635 #define TCP_ULP_NAME_MAX	16
2636 #define TCP_ULP_MAX		128
2637 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2638 
2639 struct tcp_ulp_ops {
2640 	struct list_head	list;
2641 
2642 	/* initialize ulp */
2643 	int (*init)(struct sock *sk);
2644 	/* update ulp */
2645 	void (*update)(struct sock *sk, struct proto *p,
2646 		       void (*write_space)(struct sock *sk));
2647 	/* cleanup ulp */
2648 	void (*release)(struct sock *sk);
2649 	/* diagnostic */
2650 	int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin);
2651 	size_t (*get_info_size)(const struct sock *sk, bool net_admin);
2652 	/* clone ulp */
2653 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2654 		      const gfp_t priority);
2655 
2656 	char		name[TCP_ULP_NAME_MAX];
2657 	struct module	*owner;
2658 };
2659 int tcp_register_ulp(struct tcp_ulp_ops *type);
2660 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2661 int tcp_set_ulp(struct sock *sk, const char *name);
2662 void tcp_get_available_ulp(char *buf, size_t len);
2663 void tcp_cleanup_ulp(struct sock *sk);
2664 void tcp_update_ulp(struct sock *sk, struct proto *p,
2665 		    void (*write_space)(struct sock *sk));
2666 
2667 #define MODULE_ALIAS_TCP_ULP(name)				\
2668 	MODULE_INFO(alias, name);		\
2669 	MODULE_INFO(alias, "tcp-ulp-" name)
2670 
2671 #ifdef CONFIG_NET_SOCK_MSG
2672 struct sk_msg;
2673 struct sk_psock;
2674 
2675 #ifdef CONFIG_BPF_SYSCALL
2676 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2677 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2678 #ifdef CONFIG_BPF_STREAM_PARSER
2679 struct strparser;
2680 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc,
2681 			   sk_read_actor_t recv_actor);
2682 #endif /* CONFIG_BPF_STREAM_PARSER */
2683 #endif /* CONFIG_BPF_SYSCALL */
2684 
2685 #ifdef CONFIG_INET
2686 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2687 #else
2688 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2689 {
2690 }
2691 #endif
2692 
2693 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2694 			  struct sk_msg *msg, u32 bytes, int flags);
2695 #endif /* CONFIG_NET_SOCK_MSG */
2696 
2697 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2698 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2699 {
2700 }
2701 #endif
2702 
2703 #ifdef CONFIG_CGROUP_BPF
2704 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2705 				      struct sk_buff *skb,
2706 				      unsigned int end_offset)
2707 {
2708 	skops->skb = skb;
2709 	skops->skb_data_end = skb->data + end_offset;
2710 }
2711 #else
2712 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2713 				      struct sk_buff *skb,
2714 				      unsigned int end_offset)
2715 {
2716 }
2717 #endif
2718 
2719 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2720  * is < 0, then the BPF op failed (for example if the loaded BPF
2721  * program does not support the chosen operation or there is no BPF
2722  * program loaded).
2723  */
2724 #ifdef CONFIG_BPF
2725 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2726 {
2727 	struct bpf_sock_ops_kern sock_ops;
2728 	int ret;
2729 
2730 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2731 	if (sk_fullsock(sk)) {
2732 		sock_ops.is_fullsock = 1;
2733 		sock_ops.is_locked_tcp_sock = 1;
2734 		sock_owned_by_me(sk);
2735 	}
2736 
2737 	sock_ops.sk = sk;
2738 	sock_ops.op = op;
2739 	if (nargs > 0)
2740 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2741 
2742 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2743 	if (ret == 0)
2744 		ret = sock_ops.reply;
2745 	else
2746 		ret = -1;
2747 	return ret;
2748 }
2749 
2750 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2751 {
2752 	u32 args[2] = {arg1, arg2};
2753 
2754 	return tcp_call_bpf(sk, op, 2, args);
2755 }
2756 
2757 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2758 				    u32 arg3)
2759 {
2760 	u32 args[3] = {arg1, arg2, arg3};
2761 
2762 	return tcp_call_bpf(sk, op, 3, args);
2763 }
2764 
2765 #else
2766 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2767 {
2768 	return -EPERM;
2769 }
2770 
2771 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2772 {
2773 	return -EPERM;
2774 }
2775 
2776 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2777 				    u32 arg3)
2778 {
2779 	return -EPERM;
2780 }
2781 
2782 #endif
2783 
2784 static inline u32 tcp_timeout_init(struct sock *sk)
2785 {
2786 	int timeout;
2787 
2788 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2789 
2790 	if (timeout <= 0)
2791 		timeout = TCP_TIMEOUT_INIT;
2792 	return min_t(int, timeout, TCP_RTO_MAX);
2793 }
2794 
2795 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2796 {
2797 	int rwnd;
2798 
2799 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2800 
2801 	if (rwnd < 0)
2802 		rwnd = 0;
2803 	return rwnd;
2804 }
2805 
2806 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2807 {
2808 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2809 }
2810 
2811 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt)
2812 {
2813 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2814 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt);
2815 }
2816 
2817 #if IS_ENABLED(CONFIG_SMC)
2818 extern struct static_key_false tcp_have_smc;
2819 #endif
2820 
2821 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2822 void clean_acked_data_enable(struct tcp_sock *tp,
2823 			     void (*cad)(struct sock *sk, u32 ack_seq));
2824 void clean_acked_data_disable(struct tcp_sock *tp);
2825 void clean_acked_data_flush(void);
2826 #endif
2827 
2828 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2829 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2830 				    const struct tcp_sock *tp)
2831 {
2832 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2833 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2834 }
2835 
2836 /* Compute Earliest Departure Time for some control packets
2837  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2838  */
2839 static inline u64 tcp_transmit_time(const struct sock *sk)
2840 {
2841 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2842 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2843 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2844 
2845 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2846 	}
2847 	return 0;
2848 }
2849 
2850 static inline int tcp_parse_auth_options(const struct tcphdr *th,
2851 		const u8 **md5_hash, const struct tcp_ao_hdr **aoh)
2852 {
2853 	const u8 *md5_tmp, *ao_tmp;
2854 	int ret;
2855 
2856 	ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp);
2857 	if (ret)
2858 		return ret;
2859 
2860 	if (md5_hash)
2861 		*md5_hash = md5_tmp;
2862 
2863 	if (aoh) {
2864 		if (!ao_tmp)
2865 			*aoh = NULL;
2866 		else
2867 			*aoh = (struct tcp_ao_hdr *)(ao_tmp - 2);
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 static inline bool tcp_ao_required(struct sock *sk, const void *saddr,
2874 				   int family, int l3index, bool stat_inc)
2875 {
2876 #ifdef CONFIG_TCP_AO
2877 	struct tcp_ao_info *ao_info;
2878 	struct tcp_ao_key *ao_key;
2879 
2880 	if (!static_branch_unlikely(&tcp_ao_needed.key))
2881 		return false;
2882 
2883 	ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info,
2884 					lockdep_sock_is_held(sk));
2885 	if (!ao_info)
2886 		return false;
2887 
2888 	ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1);
2889 	if (ao_info->ao_required || ao_key) {
2890 		if (stat_inc) {
2891 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED);
2892 			atomic64_inc(&ao_info->counters.ao_required);
2893 		}
2894 		return true;
2895 	}
2896 #endif
2897 	return false;
2898 }
2899 
2900 enum skb_drop_reason tcp_inbound_hash(struct sock *sk,
2901 		const struct request_sock *req, const struct sk_buff *skb,
2902 		const void *saddr, const void *daddr,
2903 		int family, int dif, int sdif);
2904 
2905 #endif	/* _TCP_H */
2906