1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/kref.h> 27 #include <linux/ktime.h> 28 #include <linux/indirect_call_wrapper.h> 29 #include <linux/bits.h> 30 31 #include <net/inet_connection_sock.h> 32 #include <net/inet_timewait_sock.h> 33 #include <net/inet_hashtables.h> 34 #include <net/checksum.h> 35 #include <net/request_sock.h> 36 #include <net/sock_reuseport.h> 37 #include <net/sock.h> 38 #include <net/snmp.h> 39 #include <net/ip.h> 40 #include <net/tcp_states.h> 41 #include <net/tcp_ao.h> 42 #include <net/inet_ecn.h> 43 #include <net/dst.h> 44 #include <net/mptcp.h> 45 #include <net/xfrm.h> 46 47 #include <linux/seq_file.h> 48 #include <linux/memcontrol.h> 49 #include <linux/bpf-cgroup.h> 50 #include <linux/siphash.h> 51 52 extern struct inet_hashinfo tcp_hashinfo; 53 54 DECLARE_PER_CPU(unsigned int, tcp_orphan_count); 55 int tcp_orphan_count_sum(void); 56 57 static inline void tcp_orphan_count_inc(void) 58 { 59 this_cpu_inc(tcp_orphan_count); 60 } 61 62 static inline void tcp_orphan_count_dec(void) 63 { 64 this_cpu_dec(tcp_orphan_count); 65 } 66 67 DECLARE_PER_CPU(u32, tcp_tw_isn); 68 69 void tcp_time_wait(struct sock *sk, int state, int timeo); 70 71 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 72 #define MAX_TCP_OPTION_SPACE 40 73 #define TCP_MIN_SND_MSS 48 74 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 75 76 /* 77 * Never offer a window over 32767 without using window scaling. Some 78 * poor stacks do signed 16bit maths! 79 */ 80 #define MAX_TCP_WINDOW 32767U 81 82 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 83 #define TCP_MIN_MSS 88U 84 85 /* The initial MTU to use for probing */ 86 #define TCP_BASE_MSS 1024 87 88 /* probing interval, default to 10 minutes as per RFC4821 */ 89 #define TCP_PROBE_INTERVAL 600 90 91 /* Specify interval when tcp mtu probing will stop */ 92 #define TCP_PROBE_THRESHOLD 8 93 94 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 95 #define TCP_FASTRETRANS_THRESH 3 96 97 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 98 #define TCP_MAX_QUICKACKS 16U 99 100 /* Maximal number of window scale according to RFC1323 */ 101 #define TCP_MAX_WSCALE 14U 102 103 /* urg_data states */ 104 #define TCP_URG_VALID 0x0100 105 #define TCP_URG_NOTYET 0x0200 106 #define TCP_URG_READ 0x0400 107 108 #define TCP_RETR1 3 /* 109 * This is how many retries it does before it 110 * tries to figure out if the gateway is 111 * down. Minimal RFC value is 3; it corresponds 112 * to ~3sec-8min depending on RTO. 113 */ 114 115 #define TCP_RETR2 15 /* 116 * This should take at least 117 * 90 minutes to time out. 118 * RFC1122 says that the limit is 100 sec. 119 * 15 is ~13-30min depending on RTO. 120 */ 121 122 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 123 * when active opening a connection. 124 * RFC1122 says the minimum retry MUST 125 * be at least 180secs. Nevertheless 126 * this value is corresponding to 127 * 63secs of retransmission with the 128 * current initial RTO. 129 */ 130 131 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 132 * when passive opening a connection. 133 * This is corresponding to 31secs of 134 * retransmission with the current 135 * initial RTO. 136 */ 137 138 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 139 * state, about 60 seconds */ 140 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 141 /* BSD style FIN_WAIT2 deadlock breaker. 142 * It used to be 3min, new value is 60sec, 143 * to combine FIN-WAIT-2 timeout with 144 * TIME-WAIT timer. 145 */ 146 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 147 148 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 149 static_assert((1 << ATO_BITS) > TCP_DELACK_MAX); 150 151 #if HZ >= 100 152 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 153 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 154 #else 155 #define TCP_DELACK_MIN 4U 156 #define TCP_ATO_MIN 4U 157 #endif 158 #define TCP_RTO_MAX_SEC 120 159 #define TCP_RTO_MAX ((unsigned)(TCP_RTO_MAX_SEC * HZ)) 160 #define TCP_RTO_MIN ((unsigned)(HZ / 5)) 161 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 162 163 #define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */ 164 165 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 166 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 167 * used as a fallback RTO for the 168 * initial data transmission if no 169 * valid RTT sample has been acquired, 170 * most likely due to retrans in 3WHS. 171 */ 172 173 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 174 * for local resources. 175 */ 176 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 177 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 178 #define TCP_KEEPALIVE_INTVL (75*HZ) 179 180 #define MAX_TCP_KEEPIDLE 32767 181 #define MAX_TCP_KEEPINTVL 32767 182 #define MAX_TCP_KEEPCNT 127 183 #define MAX_TCP_SYNCNT 127 184 185 /* Ensure that TCP PAWS checks are relaxed after ~2147 seconds 186 * to avoid overflows. This assumes a clock smaller than 1 Mhz. 187 * Default clock is 1 Khz, tcp_usec_ts uses 1 Mhz. 188 */ 189 #define TCP_PAWS_WRAP (INT_MAX / USEC_PER_SEC) 190 191 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 192 * after this time. It should be equal 193 * (or greater than) TCP_TIMEWAIT_LEN 194 * to provide reliability equal to one 195 * provided by timewait state. 196 */ 197 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 198 * timestamps. It must be less than 199 * minimal timewait lifetime. 200 */ 201 /* 202 * TCP option 203 */ 204 205 #define TCPOPT_NOP 1 /* Padding */ 206 #define TCPOPT_EOL 0 /* End of options */ 207 #define TCPOPT_MSS 2 /* Segment size negotiating */ 208 #define TCPOPT_WINDOW 3 /* Window scaling */ 209 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 210 #define TCPOPT_SACK 5 /* SACK Block */ 211 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 212 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 213 #define TCPOPT_AO 29 /* Authentication Option (RFC5925) */ 214 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 215 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 216 #define TCPOPT_EXP 254 /* Experimental */ 217 /* Magic number to be after the option value for sharing TCP 218 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 219 */ 220 #define TCPOPT_FASTOPEN_MAGIC 0xF989 221 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 222 223 /* 224 * TCP option lengths 225 */ 226 227 #define TCPOLEN_MSS 4 228 #define TCPOLEN_WINDOW 3 229 #define TCPOLEN_SACK_PERM 2 230 #define TCPOLEN_TIMESTAMP 10 231 #define TCPOLEN_MD5SIG 18 232 #define TCPOLEN_FASTOPEN_BASE 2 233 #define TCPOLEN_EXP_FASTOPEN_BASE 4 234 #define TCPOLEN_EXP_SMC_BASE 6 235 236 /* But this is what stacks really send out. */ 237 #define TCPOLEN_TSTAMP_ALIGNED 12 238 #define TCPOLEN_WSCALE_ALIGNED 4 239 #define TCPOLEN_SACKPERM_ALIGNED 4 240 #define TCPOLEN_SACK_BASE 2 241 #define TCPOLEN_SACK_BASE_ALIGNED 4 242 #define TCPOLEN_SACK_PERBLOCK 8 243 #define TCPOLEN_MD5SIG_ALIGNED 20 244 #define TCPOLEN_MSS_ALIGNED 4 245 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 246 247 /* Flags in tp->nonagle */ 248 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 249 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 250 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 251 252 /* TCP thin-stream limits */ 253 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 254 255 /* TCP initial congestion window as per rfc6928 */ 256 #define TCP_INIT_CWND 10 257 258 /* Bit Flags for sysctl_tcp_fastopen */ 259 #define TFO_CLIENT_ENABLE 1 260 #define TFO_SERVER_ENABLE 2 261 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 262 263 /* Accept SYN data w/o any cookie option */ 264 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 265 266 /* Force enable TFO on all listeners, i.e., not requiring the 267 * TCP_FASTOPEN socket option. 268 */ 269 #define TFO_SERVER_WO_SOCKOPT1 0x400 270 271 272 /* sysctl variables for tcp */ 273 extern int sysctl_tcp_max_orphans; 274 extern long sysctl_tcp_mem[3]; 275 276 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 277 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 278 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 279 280 DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 281 282 extern struct percpu_counter tcp_sockets_allocated; 283 extern unsigned long tcp_memory_pressure; 284 285 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 286 static inline bool tcp_under_memory_pressure(const struct sock *sk) 287 { 288 if (mem_cgroup_sk_enabled(sk) && 289 mem_cgroup_sk_under_memory_pressure(sk)) 290 return true; 291 292 return READ_ONCE(tcp_memory_pressure); 293 } 294 /* 295 * The next routines deal with comparing 32 bit unsigned ints 296 * and worry about wraparound (automatic with unsigned arithmetic). 297 */ 298 299 static inline bool before(__u32 seq1, __u32 seq2) 300 { 301 return (__s32)(seq1-seq2) < 0; 302 } 303 #define after(seq2, seq1) before(seq1, seq2) 304 305 /* is s2<=s1<=s3 ? */ 306 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 307 { 308 return seq3 - seq2 >= seq1 - seq2; 309 } 310 311 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb) 312 { 313 sk_wmem_queued_add(sk, -skb->truesize); 314 if (!skb_zcopy_pure(skb)) 315 sk_mem_uncharge(sk, skb->truesize); 316 else 317 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb))); 318 __kfree_skb(skb); 319 } 320 321 void sk_forced_mem_schedule(struct sock *sk, int size); 322 323 bool tcp_check_oom(const struct sock *sk, int shift); 324 325 326 extern struct proto tcp_prot; 327 328 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 329 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 330 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 331 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 332 333 void tcp_tsq_work_init(void); 334 335 int tcp_v4_err(struct sk_buff *skb, u32); 336 337 void tcp_shutdown(struct sock *sk, int how); 338 339 int tcp_v4_early_demux(struct sk_buff *skb); 340 int tcp_v4_rcv(struct sk_buff *skb); 341 342 void tcp_remove_empty_skb(struct sock *sk); 343 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 344 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 345 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 346 size_t size, struct ubuf_info *uarg); 347 void tcp_splice_eof(struct socket *sock); 348 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 349 int tcp_wmem_schedule(struct sock *sk, int copy); 350 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 351 int size_goal); 352 void tcp_release_cb(struct sock *sk); 353 void tcp_wfree(struct sk_buff *skb); 354 void tcp_write_timer_handler(struct sock *sk); 355 void tcp_delack_timer_handler(struct sock *sk); 356 int tcp_ioctl(struct sock *sk, int cmd, int *karg); 357 enum skb_drop_reason tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 358 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 359 void tcp_rcv_space_adjust(struct sock *sk); 360 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 361 void tcp_twsk_destructor(struct sock *sk); 362 void tcp_twsk_purge(struct list_head *net_exit_list); 363 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 364 struct pipe_inode_info *pipe, size_t len, 365 unsigned int flags); 366 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 367 bool force_schedule); 368 369 static inline void tcp_dec_quickack_mode(struct sock *sk) 370 { 371 struct inet_connection_sock *icsk = inet_csk(sk); 372 373 if (icsk->icsk_ack.quick) { 374 /* How many ACKs S/ACKing new data have we sent? */ 375 const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0; 376 377 if (pkts >= icsk->icsk_ack.quick) { 378 icsk->icsk_ack.quick = 0; 379 /* Leaving quickack mode we deflate ATO. */ 380 icsk->icsk_ack.ato = TCP_ATO_MIN; 381 } else 382 icsk->icsk_ack.quick -= pkts; 383 } 384 } 385 386 #define TCP_ECN_MODE_RFC3168 BIT(0) 387 #define TCP_ECN_QUEUE_CWR BIT(1) 388 #define TCP_ECN_DEMAND_CWR BIT(2) 389 #define TCP_ECN_SEEN BIT(3) 390 #define TCP_ECN_MODE_ACCECN BIT(4) 391 392 #define TCP_ECN_DISABLED 0 393 #define TCP_ECN_MODE_PENDING (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 394 #define TCP_ECN_MODE_ANY (TCP_ECN_MODE_RFC3168 | TCP_ECN_MODE_ACCECN) 395 396 static inline bool tcp_ecn_mode_any(const struct tcp_sock *tp) 397 { 398 return tp->ecn_flags & TCP_ECN_MODE_ANY; 399 } 400 401 static inline bool tcp_ecn_mode_rfc3168(const struct tcp_sock *tp) 402 { 403 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_RFC3168; 404 } 405 406 static inline bool tcp_ecn_mode_accecn(const struct tcp_sock *tp) 407 { 408 return (tp->ecn_flags & TCP_ECN_MODE_ANY) == TCP_ECN_MODE_ACCECN; 409 } 410 411 static inline bool tcp_ecn_disabled(const struct tcp_sock *tp) 412 { 413 return !tcp_ecn_mode_any(tp); 414 } 415 416 static inline bool tcp_ecn_mode_pending(const struct tcp_sock *tp) 417 { 418 return (tp->ecn_flags & TCP_ECN_MODE_PENDING) == TCP_ECN_MODE_PENDING; 419 } 420 421 static inline void tcp_ecn_mode_set(struct tcp_sock *tp, u8 mode) 422 { 423 tp->ecn_flags &= ~TCP_ECN_MODE_ANY; 424 tp->ecn_flags |= mode; 425 } 426 427 enum tcp_tw_status { 428 TCP_TW_SUCCESS = 0, 429 TCP_TW_RST = 1, 430 TCP_TW_ACK = 2, 431 TCP_TW_SYN = 3, 432 TCP_TW_ACK_OOW = 4 433 }; 434 435 436 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 437 struct sk_buff *skb, 438 const struct tcphdr *th, 439 u32 *tw_isn, 440 enum skb_drop_reason *drop_reason); 441 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 442 struct request_sock *req, bool fastopen, 443 bool *lost_race, enum skb_drop_reason *drop_reason); 444 enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child, 445 struct sk_buff *skb); 446 void tcp_enter_loss(struct sock *sk); 447 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag); 448 void tcp_clear_retrans(struct tcp_sock *tp); 449 void tcp_update_metrics(struct sock *sk); 450 void tcp_init_metrics(struct sock *sk); 451 void tcp_metrics_init(void); 452 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 453 void __tcp_close(struct sock *sk, long timeout); 454 void tcp_close(struct sock *sk, long timeout); 455 void tcp_init_sock(struct sock *sk); 456 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb); 457 __poll_t tcp_poll(struct file *file, struct socket *sock, 458 struct poll_table_struct *wait); 459 int do_tcp_getsockopt(struct sock *sk, int level, 460 int optname, sockptr_t optval, sockptr_t optlen); 461 int tcp_getsockopt(struct sock *sk, int level, int optname, 462 char __user *optval, int __user *optlen); 463 bool tcp_bpf_bypass_getsockopt(int level, int optname); 464 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 465 sockptr_t optval, unsigned int optlen); 466 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 467 unsigned int optlen); 468 void tcp_reset_keepalive_timer(struct sock *sk, unsigned long timeout); 469 void tcp_set_keepalive(struct sock *sk, int val); 470 void tcp_syn_ack_timeout(const struct request_sock *req); 471 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 472 int flags, int *addr_len); 473 int tcp_set_rcvlowat(struct sock *sk, int val); 474 int tcp_set_window_clamp(struct sock *sk, int val); 475 void tcp_update_recv_tstamps(struct sk_buff *skb, 476 struct scm_timestamping_internal *tss); 477 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 478 struct scm_timestamping_internal *tss); 479 void tcp_data_ready(struct sock *sk); 480 #ifdef CONFIG_MMU 481 int tcp_mmap(struct file *file, struct socket *sock, 482 struct vm_area_struct *vma); 483 #endif 484 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 485 struct tcp_options_received *opt_rx, 486 int estab, struct tcp_fastopen_cookie *foc); 487 488 /* 489 * BPF SKB-less helpers 490 */ 491 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 492 struct tcphdr *th, u32 *cookie); 493 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 494 struct tcphdr *th, u32 *cookie); 495 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss); 496 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 497 const struct tcp_request_sock_ops *af_ops, 498 struct sock *sk, struct tcphdr *th); 499 /* 500 * TCP v4 functions exported for the inet6 API 501 */ 502 503 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 504 void tcp_v4_mtu_reduced(struct sock *sk); 505 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 506 void tcp_ld_RTO_revert(struct sock *sk, u32 seq); 507 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 508 struct sock *tcp_create_openreq_child(const struct sock *sk, 509 struct request_sock *req, 510 struct sk_buff *skb); 511 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 512 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 513 struct request_sock *req, 514 struct dst_entry *dst, 515 struct request_sock *req_unhash, 516 bool *own_req); 517 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 518 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 519 int tcp_connect(struct sock *sk); 520 enum tcp_synack_type { 521 TCP_SYNACK_NORMAL, 522 TCP_SYNACK_FASTOPEN, 523 TCP_SYNACK_COOKIE, 524 }; 525 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 526 struct request_sock *req, 527 struct tcp_fastopen_cookie *foc, 528 enum tcp_synack_type synack_type, 529 struct sk_buff *syn_skb); 530 int tcp_disconnect(struct sock *sk, int flags); 531 532 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 533 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 534 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 535 536 /* From syncookies.c */ 537 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 538 struct request_sock *req, 539 struct dst_entry *dst); 540 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th); 541 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 542 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops, 543 struct sock *sk, struct sk_buff *skb, 544 struct tcp_options_received *tcp_opt, 545 int mss, u32 tsoff); 546 547 #if IS_ENABLED(CONFIG_BPF) 548 struct bpf_tcp_req_attrs { 549 u32 rcv_tsval; 550 u32 rcv_tsecr; 551 u16 mss; 552 u8 rcv_wscale; 553 u8 snd_wscale; 554 u8 ecn_ok; 555 u8 wscale_ok; 556 u8 sack_ok; 557 u8 tstamp_ok; 558 u8 usec_ts_ok; 559 u8 reserved[3]; 560 }; 561 #endif 562 563 #ifdef CONFIG_SYN_COOKIES 564 565 /* Syncookies use a monotonic timer which increments every 60 seconds. 566 * This counter is used both as a hash input and partially encoded into 567 * the cookie value. A cookie is only validated further if the delta 568 * between the current counter value and the encoded one is less than this, 569 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 570 * the counter advances immediately after a cookie is generated). 571 */ 572 #define MAX_SYNCOOKIE_AGE 2 573 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 574 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 575 576 /* syncookies: remember time of last synqueue overflow 577 * But do not dirty this field too often (once per second is enough) 578 * It is racy as we do not hold a lock, but race is very minor. 579 */ 580 static inline void tcp_synq_overflow(const struct sock *sk) 581 { 582 unsigned int last_overflow; 583 unsigned int now = jiffies; 584 585 if (sk->sk_reuseport) { 586 struct sock_reuseport *reuse; 587 588 reuse = rcu_dereference(sk->sk_reuseport_cb); 589 if (likely(reuse)) { 590 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 591 if (!time_between32(now, last_overflow, 592 last_overflow + HZ)) 593 WRITE_ONCE(reuse->synq_overflow_ts, now); 594 return; 595 } 596 } 597 598 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 599 if (!time_between32(now, last_overflow, last_overflow + HZ)) 600 WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now); 601 } 602 603 /* syncookies: no recent synqueue overflow on this listening socket? */ 604 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 605 { 606 unsigned int last_overflow; 607 unsigned int now = jiffies; 608 609 if (sk->sk_reuseport) { 610 struct sock_reuseport *reuse; 611 612 reuse = rcu_dereference(sk->sk_reuseport_cb); 613 if (likely(reuse)) { 614 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 615 return !time_between32(now, last_overflow - HZ, 616 last_overflow + 617 TCP_SYNCOOKIE_VALID); 618 } 619 } 620 621 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 622 623 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 624 * then we're under synflood. However, we have to use 625 * 'last_overflow - HZ' as lower bound. That's because a concurrent 626 * tcp_synq_overflow() could update .ts_recent_stamp after we read 627 * jiffies but before we store .ts_recent_stamp into last_overflow, 628 * which could lead to rejecting a valid syncookie. 629 */ 630 return !time_between32(now, last_overflow - HZ, 631 last_overflow + TCP_SYNCOOKIE_VALID); 632 } 633 634 static inline u32 tcp_cookie_time(void) 635 { 636 u64 val = get_jiffies_64(); 637 638 do_div(val, TCP_SYNCOOKIE_PERIOD); 639 return val; 640 } 641 642 /* Convert one nsec 64bit timestamp to ts (ms or usec resolution) */ 643 static inline u64 tcp_ns_to_ts(bool usec_ts, u64 val) 644 { 645 if (usec_ts) 646 return div_u64(val, NSEC_PER_USEC); 647 648 return div_u64(val, NSEC_PER_MSEC); 649 } 650 651 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 652 u16 *mssp); 653 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 654 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 655 bool cookie_timestamp_decode(const struct net *net, 656 struct tcp_options_received *opt); 657 658 static inline bool cookie_ecn_ok(const struct net *net, const struct dst_entry *dst) 659 { 660 return READ_ONCE(net->ipv4.sysctl_tcp_ecn) || 661 dst_feature(dst, RTAX_FEATURE_ECN); 662 } 663 664 #if IS_ENABLED(CONFIG_BPF) 665 static inline bool cookie_bpf_ok(struct sk_buff *skb) 666 { 667 return skb->sk; 668 } 669 670 struct request_sock *cookie_bpf_check(struct sock *sk, struct sk_buff *skb); 671 #else 672 static inline bool cookie_bpf_ok(struct sk_buff *skb) 673 { 674 return false; 675 } 676 677 static inline struct request_sock *cookie_bpf_check(struct net *net, struct sock *sk, 678 struct sk_buff *skb) 679 { 680 return NULL; 681 } 682 #endif 683 684 /* From net/ipv6/syncookies.c */ 685 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th); 686 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 687 688 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 689 const struct tcphdr *th, u16 *mssp); 690 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 691 #endif 692 /* tcp_output.c */ 693 694 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb); 695 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb); 696 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 697 int nonagle); 698 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 699 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 700 void tcp_retransmit_timer(struct sock *sk); 701 void tcp_xmit_retransmit_queue(struct sock *); 702 void tcp_simple_retransmit(struct sock *); 703 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 704 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 705 enum tcp_queue { 706 TCP_FRAG_IN_WRITE_QUEUE, 707 TCP_FRAG_IN_RTX_QUEUE, 708 }; 709 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 710 struct sk_buff *skb, u32 len, 711 unsigned int mss_now, gfp_t gfp); 712 713 void tcp_send_probe0(struct sock *); 714 int tcp_write_wakeup(struct sock *, int mib); 715 void tcp_send_fin(struct sock *sk); 716 void tcp_send_active_reset(struct sock *sk, gfp_t priority, 717 enum sk_rst_reason reason); 718 int tcp_send_synack(struct sock *); 719 void tcp_push_one(struct sock *, unsigned int mss_now); 720 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt, u16 flags); 721 void tcp_send_ack(struct sock *sk); 722 void tcp_send_delayed_ack(struct sock *sk); 723 void tcp_send_loss_probe(struct sock *sk); 724 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 725 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 726 const struct sk_buff *next_skb); 727 728 /* tcp_input.c */ 729 void tcp_rearm_rto(struct sock *sk); 730 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 731 void tcp_done_with_error(struct sock *sk, int err); 732 void tcp_reset(struct sock *sk, struct sk_buff *skb); 733 void tcp_fin(struct sock *sk); 734 void tcp_check_space(struct sock *sk); 735 void tcp_sack_compress_send_ack(struct sock *sk); 736 737 static inline void tcp_cleanup_skb(struct sk_buff *skb) 738 { 739 skb_dst_drop(skb); 740 secpath_reset(skb); 741 } 742 743 static inline void tcp_add_receive_queue(struct sock *sk, struct sk_buff *skb) 744 { 745 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 746 DEBUG_NET_WARN_ON_ONCE(secpath_exists(skb)); 747 __skb_queue_tail(&sk->sk_receive_queue, skb); 748 } 749 750 /* tcp_timer.c */ 751 void tcp_init_xmit_timers(struct sock *); 752 static inline void tcp_clear_xmit_timers(struct sock *sk) 753 { 754 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 755 __sock_put(sk); 756 757 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 758 __sock_put(sk); 759 760 inet_csk_clear_xmit_timers(sk); 761 } 762 763 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 764 unsigned int tcp_current_mss(struct sock *sk); 765 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when); 766 767 /* Bound MSS / TSO packet size with the half of the window */ 768 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 769 { 770 int cutoff; 771 772 /* When peer uses tiny windows, there is no use in packetizing 773 * to sub-MSS pieces for the sake of SWS or making sure there 774 * are enough packets in the pipe for fast recovery. 775 * 776 * On the other hand, for extremely large MSS devices, handling 777 * smaller than MSS windows in this way does make sense. 778 */ 779 if (tp->max_window > TCP_MSS_DEFAULT) 780 cutoff = (tp->max_window >> 1); 781 else 782 cutoff = tp->max_window; 783 784 if (cutoff && pktsize > cutoff) 785 return max_t(int, cutoff, 68U - tp->tcp_header_len); 786 else 787 return pktsize; 788 } 789 790 /* tcp.c */ 791 void tcp_get_info(struct sock *, struct tcp_info *); 792 793 /* Read 'sendfile()'-style from a TCP socket */ 794 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 795 sk_read_actor_t recv_actor); 796 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 797 sk_read_actor_t recv_actor, bool noack, 798 u32 *copied_seq); 799 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor); 800 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off); 801 void tcp_read_done(struct sock *sk, size_t len); 802 803 void tcp_initialize_rcv_mss(struct sock *sk); 804 805 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 806 int tcp_mss_to_mtu(struct sock *sk, int mss); 807 void tcp_mtup_init(struct sock *sk); 808 809 static inline unsigned int tcp_rto_max(const struct sock *sk) 810 { 811 return READ_ONCE(inet_csk(sk)->icsk_rto_max); 812 } 813 814 static inline void tcp_bound_rto(struct sock *sk) 815 { 816 inet_csk(sk)->icsk_rto = min(inet_csk(sk)->icsk_rto, tcp_rto_max(sk)); 817 } 818 819 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 820 { 821 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 822 } 823 824 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 825 { 826 /* mptcp hooks are only on the slow path */ 827 if (sk_is_mptcp((struct sock *)tp)) 828 return; 829 830 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 831 ntohl(TCP_FLAG_ACK) | 832 snd_wnd); 833 } 834 835 static inline void tcp_fast_path_on(struct tcp_sock *tp) 836 { 837 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 838 } 839 840 static inline void tcp_fast_path_check(struct sock *sk) 841 { 842 struct tcp_sock *tp = tcp_sk(sk); 843 844 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 845 tp->rcv_wnd && 846 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 847 !tp->urg_data) 848 tcp_fast_path_on(tp); 849 } 850 851 u32 tcp_delack_max(const struct sock *sk); 852 853 /* Compute the actual rto_min value */ 854 static inline u32 tcp_rto_min(const struct sock *sk) 855 { 856 const struct dst_entry *dst = __sk_dst_get(sk); 857 u32 rto_min = READ_ONCE(inet_csk(sk)->icsk_rto_min); 858 859 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 860 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 861 return rto_min; 862 } 863 864 static inline u32 tcp_rto_min_us(const struct sock *sk) 865 { 866 return jiffies_to_usecs(tcp_rto_min(sk)); 867 } 868 869 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 870 { 871 return dst_metric_locked(dst, RTAX_CC_ALGO); 872 } 873 874 /* Minimum RTT in usec. ~0 means not available. */ 875 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 876 { 877 return minmax_get(&tp->rtt_min); 878 } 879 880 /* Compute the actual receive window we are currently advertising. 881 * Rcv_nxt can be after the window if our peer push more data 882 * than the offered window. 883 */ 884 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 885 { 886 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 887 888 if (win < 0) 889 win = 0; 890 return (u32) win; 891 } 892 893 /* Choose a new window, without checks for shrinking, and without 894 * scaling applied to the result. The caller does these things 895 * if necessary. This is a "raw" window selection. 896 */ 897 u32 __tcp_select_window(struct sock *sk); 898 899 void tcp_send_window_probe(struct sock *sk); 900 901 /* TCP uses 32bit jiffies to save some space. 902 * Note that this is different from tcp_time_stamp, which 903 * historically has been the same until linux-4.13. 904 */ 905 #define tcp_jiffies32 ((u32)jiffies) 906 907 /* 908 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 909 * It is no longer tied to jiffies, but to 1 ms clock. 910 * Note: double check if you want to use tcp_jiffies32 instead of this. 911 */ 912 #define TCP_TS_HZ 1000 913 914 static inline u64 tcp_clock_ns(void) 915 { 916 return ktime_get_ns(); 917 } 918 919 static inline u64 tcp_clock_us(void) 920 { 921 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 922 } 923 924 static inline u64 tcp_clock_ms(void) 925 { 926 return div_u64(tcp_clock_ns(), NSEC_PER_MSEC); 927 } 928 929 /* TCP Timestamp included in TS option (RFC 1323) can either use ms 930 * or usec resolution. Each socket carries a flag to select one or other 931 * resolution, as the route attribute could change anytime. 932 * Each flow must stick to initial resolution. 933 */ 934 static inline u32 tcp_clock_ts(bool usec_ts) 935 { 936 return usec_ts ? tcp_clock_us() : tcp_clock_ms(); 937 } 938 939 static inline u32 tcp_time_stamp_ms(const struct tcp_sock *tp) 940 { 941 return div_u64(tp->tcp_mstamp, USEC_PER_MSEC); 942 } 943 944 static inline u32 tcp_time_stamp_ts(const struct tcp_sock *tp) 945 { 946 if (tp->tcp_usec_ts) 947 return tp->tcp_mstamp; 948 return tcp_time_stamp_ms(tp); 949 } 950 951 void tcp_mstamp_refresh(struct tcp_sock *tp); 952 953 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 954 { 955 return max_t(s64, t1 - t0, 0); 956 } 957 958 /* provide the departure time in us unit */ 959 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 960 { 961 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 962 } 963 964 /* Provide skb TSval in usec or ms unit */ 965 static inline u32 tcp_skb_timestamp_ts(bool usec_ts, const struct sk_buff *skb) 966 { 967 if (usec_ts) 968 return tcp_skb_timestamp_us(skb); 969 970 return div_u64(skb->skb_mstamp_ns, NSEC_PER_MSEC); 971 } 972 973 static inline u32 tcp_tw_tsval(const struct tcp_timewait_sock *tcptw) 974 { 975 return tcp_clock_ts(tcptw->tw_sk.tw_usec_ts) + tcptw->tw_ts_offset; 976 } 977 978 static inline u32 tcp_rsk_tsval(const struct tcp_request_sock *treq) 979 { 980 return tcp_clock_ts(treq->req_usec_ts) + treq->ts_off; 981 } 982 983 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 984 985 #define TCPHDR_FIN BIT(0) 986 #define TCPHDR_SYN BIT(1) 987 #define TCPHDR_RST BIT(2) 988 #define TCPHDR_PSH BIT(3) 989 #define TCPHDR_ACK BIT(4) 990 #define TCPHDR_URG BIT(5) 991 #define TCPHDR_ECE BIT(6) 992 #define TCPHDR_CWR BIT(7) 993 #define TCPHDR_AE BIT(8) 994 #define TCPHDR_FLAGS_MASK (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ 995 TCPHDR_PSH | TCPHDR_ACK | TCPHDR_URG | \ 996 TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 997 #define tcp_flags_ntohs(th) (ntohs(*(__be16 *)&tcp_flag_word(th)) & \ 998 TCPHDR_FLAGS_MASK) 999 1000 #define TCPHDR_ACE (TCPHDR_ECE | TCPHDR_CWR | TCPHDR_AE) 1001 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 1002 1003 /* State flags for sacked in struct tcp_skb_cb */ 1004 enum tcp_skb_cb_sacked_flags { 1005 TCPCB_SACKED_ACKED = (1 << 0), /* SKB ACK'd by a SACK block */ 1006 TCPCB_SACKED_RETRANS = (1 << 1), /* SKB retransmitted */ 1007 TCPCB_LOST = (1 << 2), /* SKB is lost */ 1008 TCPCB_TAGBITS = (TCPCB_SACKED_ACKED | TCPCB_SACKED_RETRANS | 1009 TCPCB_LOST), /* All tag bits */ 1010 TCPCB_REPAIRED = (1 << 4), /* SKB repaired (no skb_mstamp_ns) */ 1011 TCPCB_EVER_RETRANS = (1 << 7), /* Ever retransmitted frame */ 1012 TCPCB_RETRANS = (TCPCB_SACKED_RETRANS | TCPCB_EVER_RETRANS | 1013 TCPCB_REPAIRED), 1014 }; 1015 1016 /* This is what the send packet queuing engine uses to pass 1017 * TCP per-packet control information to the transmission code. 1018 * We also store the host-order sequence numbers in here too. 1019 * This is 44 bytes if IPV6 is enabled. 1020 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 1021 */ 1022 struct tcp_skb_cb { 1023 __u32 seq; /* Starting sequence number */ 1024 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 1025 union { 1026 /* Note : 1027 * tcp_gso_segs/size are used in write queue only, 1028 * cf tcp_skb_pcount()/tcp_skb_mss() 1029 */ 1030 struct { 1031 u16 tcp_gso_segs; 1032 u16 tcp_gso_size; 1033 }; 1034 }; 1035 __u16 tcp_flags; /* TCP header flags (tcp[12-13])*/ 1036 1037 __u8 sacked; /* State flags for SACK. */ 1038 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 1039 #define TSTAMP_ACK_SK 0x1 1040 #define TSTAMP_ACK_BPF 0x2 1041 __u8 txstamp_ack:2, /* Record TX timestamp for ack? */ 1042 eor:1, /* Is skb MSG_EOR marked? */ 1043 has_rxtstamp:1, /* SKB has a RX timestamp */ 1044 unused:4; 1045 __u32 ack_seq; /* Sequence number ACK'd */ 1046 union { 1047 struct { 1048 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1) 1049 /* There is space for up to 24 bytes */ 1050 __u32 is_app_limited:1, /* cwnd not fully used? */ 1051 delivered_ce:20, 1052 unused:11; 1053 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 1054 __u32 delivered; 1055 /* start of send pipeline phase */ 1056 u64 first_tx_mstamp; 1057 /* when we reached the "delivered" count */ 1058 u64 delivered_mstamp; 1059 } tx; /* only used for outgoing skbs */ 1060 union { 1061 struct inet_skb_parm h4; 1062 #if IS_ENABLED(CONFIG_IPV6) 1063 struct inet6_skb_parm h6; 1064 #endif 1065 } header; /* For incoming skbs */ 1066 }; 1067 }; 1068 1069 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 1070 1071 extern const struct inet_connection_sock_af_ops ipv4_specific; 1072 1073 #if IS_ENABLED(CONFIG_IPV6) 1074 /* This is the variant of inet6_iif() that must be used by TCP, 1075 * as TCP moves IP6CB into a different location in skb->cb[] 1076 */ 1077 static inline int tcp_v6_iif(const struct sk_buff *skb) 1078 { 1079 return TCP_SKB_CB(skb)->header.h6.iif; 1080 } 1081 1082 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 1083 { 1084 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 1085 1086 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 1087 } 1088 1089 /* TCP_SKB_CB reference means this can not be used from early demux */ 1090 static inline int tcp_v6_sdif(const struct sk_buff *skb) 1091 { 1092 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1093 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 1094 return TCP_SKB_CB(skb)->header.h6.iif; 1095 #endif 1096 return 0; 1097 } 1098 1099 extern const struct inet_connection_sock_af_ops ipv6_specific; 1100 1101 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb)); 1102 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb)); 1103 void tcp_v6_early_demux(struct sk_buff *skb); 1104 1105 #endif 1106 1107 /* TCP_SKB_CB reference means this can not be used from early demux */ 1108 static inline int tcp_v4_sdif(struct sk_buff *skb) 1109 { 1110 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 1111 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 1112 return TCP_SKB_CB(skb)->header.h4.iif; 1113 #endif 1114 return 0; 1115 } 1116 1117 /* Due to TSO, an SKB can be composed of multiple actual 1118 * packets. To keep these tracked properly, we use this. 1119 */ 1120 static inline int tcp_skb_pcount(const struct sk_buff *skb) 1121 { 1122 return TCP_SKB_CB(skb)->tcp_gso_segs; 1123 } 1124 1125 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 1126 { 1127 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 1128 } 1129 1130 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 1131 { 1132 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 1133 } 1134 1135 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 1136 static inline int tcp_skb_mss(const struct sk_buff *skb) 1137 { 1138 return TCP_SKB_CB(skb)->tcp_gso_size; 1139 } 1140 1141 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 1142 { 1143 return likely(!TCP_SKB_CB(skb)->eor); 1144 } 1145 1146 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 1147 const struct sk_buff *from) 1148 { 1149 /* skb_cmp_decrypted() not needed, use tcp_write_collapse_fence() */ 1150 return likely(tcp_skb_can_collapse_to(to) && 1151 mptcp_skb_can_collapse(to, from) && 1152 skb_pure_zcopy_same(to, from) && 1153 skb_frags_readable(to) == skb_frags_readable(from)); 1154 } 1155 1156 static inline bool tcp_skb_can_collapse_rx(const struct sk_buff *to, 1157 const struct sk_buff *from) 1158 { 1159 return likely(mptcp_skb_can_collapse(to, from) && 1160 !skb_cmp_decrypted(to, from)); 1161 } 1162 1163 /* Events passed to congestion control interface */ 1164 enum tcp_ca_event { 1165 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 1166 CA_EVENT_CWND_RESTART, /* congestion window restart */ 1167 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 1168 CA_EVENT_LOSS, /* loss timeout */ 1169 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1170 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1171 }; 1172 1173 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1174 enum tcp_ca_ack_event_flags { 1175 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1176 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1177 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1178 }; 1179 1180 /* 1181 * Interface for adding new TCP congestion control handlers 1182 */ 1183 #define TCP_CA_NAME_MAX 16 1184 #define TCP_CA_MAX 128 1185 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1186 1187 #define TCP_CA_UNSPEC 0 1188 1189 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1190 #define TCP_CONG_NON_RESTRICTED BIT(0) 1191 /* Requires ECN/ECT set on all packets */ 1192 #define TCP_CONG_NEEDS_ECN BIT(1) 1193 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1194 1195 union tcp_cc_info; 1196 1197 struct ack_sample { 1198 u32 pkts_acked; 1199 s32 rtt_us; 1200 u32 in_flight; 1201 }; 1202 1203 /* A rate sample measures the number of (original/retransmitted) data 1204 * packets delivered "delivered" over an interval of time "interval_us". 1205 * The tcp_rate.c code fills in the rate sample, and congestion 1206 * control modules that define a cong_control function to run at the end 1207 * of ACK processing can optionally chose to consult this sample when 1208 * setting cwnd and pacing rate. 1209 * A sample is invalid if "delivered" or "interval_us" is negative. 1210 */ 1211 struct rate_sample { 1212 u64 prior_mstamp; /* starting timestamp for interval */ 1213 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1214 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */ 1215 s32 delivered; /* number of packets delivered over interval */ 1216 s32 delivered_ce; /* number of packets delivered w/ CE marks*/ 1217 long interval_us; /* time for tp->delivered to incr "delivered" */ 1218 u32 snd_interval_us; /* snd interval for delivered packets */ 1219 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1220 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1221 int losses; /* number of packets marked lost upon ACK */ 1222 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1223 u32 prior_in_flight; /* in flight before this ACK */ 1224 u32 last_end_seq; /* end_seq of most recently ACKed packet */ 1225 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1226 bool is_retrans; /* is sample from retransmission? */ 1227 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1228 }; 1229 1230 struct tcp_congestion_ops { 1231 /* fast path fields are put first to fill one cache line */ 1232 1233 /* return slow start threshold (required) */ 1234 u32 (*ssthresh)(struct sock *sk); 1235 1236 /* do new cwnd calculation (required) */ 1237 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1238 1239 /* call before changing ca_state (optional) */ 1240 void (*set_state)(struct sock *sk, u8 new_state); 1241 1242 /* call when cwnd event occurs (optional) */ 1243 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1244 1245 /* call when ack arrives (optional) */ 1246 void (*in_ack_event)(struct sock *sk, u32 flags); 1247 1248 /* hook for packet ack accounting (optional) */ 1249 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1250 1251 /* override sysctl_tcp_min_tso_segs */ 1252 u32 (*min_tso_segs)(struct sock *sk); 1253 1254 /* call when packets are delivered to update cwnd and pacing rate, 1255 * after all the ca_state processing. (optional) 1256 */ 1257 void (*cong_control)(struct sock *sk, u32 ack, int flag, const struct rate_sample *rs); 1258 1259 1260 /* new value of cwnd after loss (required) */ 1261 u32 (*undo_cwnd)(struct sock *sk); 1262 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1263 u32 (*sndbuf_expand)(struct sock *sk); 1264 1265 /* control/slow paths put last */ 1266 /* get info for inet_diag (optional) */ 1267 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1268 union tcp_cc_info *info); 1269 1270 char name[TCP_CA_NAME_MAX]; 1271 struct module *owner; 1272 struct list_head list; 1273 u32 key; 1274 u32 flags; 1275 1276 /* initialize private data (optional) */ 1277 void (*init)(struct sock *sk); 1278 /* cleanup private data (optional) */ 1279 void (*release)(struct sock *sk); 1280 } ____cacheline_aligned_in_smp; 1281 1282 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1283 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1284 int tcp_update_congestion_control(struct tcp_congestion_ops *type, 1285 struct tcp_congestion_ops *old_type); 1286 int tcp_validate_congestion_control(struct tcp_congestion_ops *ca); 1287 1288 void tcp_assign_congestion_control(struct sock *sk); 1289 void tcp_init_congestion_control(struct sock *sk); 1290 void tcp_cleanup_congestion_control(struct sock *sk); 1291 int tcp_set_default_congestion_control(struct net *net, const char *name); 1292 void tcp_get_default_congestion_control(struct net *net, char *name); 1293 void tcp_get_available_congestion_control(char *buf, size_t len); 1294 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1295 int tcp_set_allowed_congestion_control(char *allowed); 1296 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1297 bool cap_net_admin); 1298 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1299 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1300 1301 u32 tcp_reno_ssthresh(struct sock *sk); 1302 u32 tcp_reno_undo_cwnd(struct sock *sk); 1303 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1304 extern struct tcp_congestion_ops tcp_reno; 1305 1306 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1307 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1308 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca); 1309 #ifdef CONFIG_INET 1310 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1311 #else 1312 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1313 { 1314 return NULL; 1315 } 1316 #endif 1317 1318 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1319 { 1320 const struct inet_connection_sock *icsk = inet_csk(sk); 1321 1322 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1323 } 1324 1325 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1326 { 1327 const struct inet_connection_sock *icsk = inet_csk(sk); 1328 1329 if (icsk->icsk_ca_ops->cwnd_event) 1330 icsk->icsk_ca_ops->cwnd_event(sk, event); 1331 } 1332 1333 /* From tcp_cong.c */ 1334 void tcp_set_ca_state(struct sock *sk, const u8 ca_state); 1335 1336 /* From tcp_rate.c */ 1337 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1338 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1339 struct rate_sample *rs); 1340 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1341 bool is_sack_reneg, struct rate_sample *rs); 1342 void tcp_rate_check_app_limited(struct sock *sk); 1343 1344 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2) 1345 { 1346 return t1 > t2 || (t1 == t2 && after(seq1, seq2)); 1347 } 1348 1349 /* These functions determine how the current flow behaves in respect of SACK 1350 * handling. SACK is negotiated with the peer, and therefore it can vary 1351 * between different flows. 1352 * 1353 * tcp_is_sack - SACK enabled 1354 * tcp_is_reno - No SACK 1355 */ 1356 static inline int tcp_is_sack(const struct tcp_sock *tp) 1357 { 1358 return likely(tp->rx_opt.sack_ok); 1359 } 1360 1361 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1362 { 1363 return !tcp_is_sack(tp); 1364 } 1365 1366 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1367 { 1368 return tp->sacked_out + tp->lost_out; 1369 } 1370 1371 /* This determines how many packets are "in the network" to the best 1372 * of our knowledge. In many cases it is conservative, but where 1373 * detailed information is available from the receiver (via SACK 1374 * blocks etc.) we can make more aggressive calculations. 1375 * 1376 * Use this for decisions involving congestion control, use just 1377 * tp->packets_out to determine if the send queue is empty or not. 1378 * 1379 * Read this equation as: 1380 * 1381 * "Packets sent once on transmission queue" MINUS 1382 * "Packets left network, but not honestly ACKed yet" PLUS 1383 * "Packets fast retransmitted" 1384 */ 1385 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1386 { 1387 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1388 } 1389 1390 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1391 1392 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp) 1393 { 1394 return tp->snd_cwnd; 1395 } 1396 1397 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val) 1398 { 1399 WARN_ON_ONCE((int)val <= 0); 1400 tp->snd_cwnd = val; 1401 } 1402 1403 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1404 { 1405 return tcp_snd_cwnd(tp) < tp->snd_ssthresh; 1406 } 1407 1408 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1409 { 1410 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1411 } 1412 1413 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1414 { 1415 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1416 (1 << inet_csk(sk)->icsk_ca_state); 1417 } 1418 1419 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1420 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1421 * ssthresh. 1422 */ 1423 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1424 { 1425 const struct tcp_sock *tp = tcp_sk(sk); 1426 1427 if (tcp_in_cwnd_reduction(sk)) 1428 return tp->snd_ssthresh; 1429 else 1430 return max(tp->snd_ssthresh, 1431 ((tcp_snd_cwnd(tp) >> 1) + 1432 (tcp_snd_cwnd(tp) >> 2))); 1433 } 1434 1435 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1436 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1437 1438 void tcp_enter_cwr(struct sock *sk); 1439 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1440 1441 /* The maximum number of MSS of available cwnd for which TSO defers 1442 * sending if not using sysctl_tcp_tso_win_divisor. 1443 */ 1444 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1445 { 1446 return 3; 1447 } 1448 1449 /* Returns end sequence number of the receiver's advertised window */ 1450 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1451 { 1452 return tp->snd_una + tp->snd_wnd; 1453 } 1454 1455 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1456 * flexible approach. The RFC suggests cwnd should not be raised unless 1457 * it was fully used previously. And that's exactly what we do in 1458 * congestion avoidance mode. But in slow start we allow cwnd to grow 1459 * as long as the application has used half the cwnd. 1460 * Example : 1461 * cwnd is 10 (IW10), but application sends 9 frames. 1462 * We allow cwnd to reach 18 when all frames are ACKed. 1463 * This check is safe because it's as aggressive as slow start which already 1464 * risks 100% overshoot. The advantage is that we discourage application to 1465 * either send more filler packets or data to artificially blow up the cwnd 1466 * usage, and allow application-limited process to probe bw more aggressively. 1467 */ 1468 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1469 { 1470 const struct tcp_sock *tp = tcp_sk(sk); 1471 1472 if (tp->is_cwnd_limited) 1473 return true; 1474 1475 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1476 if (tcp_in_slow_start(tp)) 1477 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out; 1478 1479 return false; 1480 } 1481 1482 /* BBR congestion control needs pacing. 1483 * Same remark for SO_MAX_PACING_RATE. 1484 * sch_fq packet scheduler is efficiently handling pacing, 1485 * but is not always installed/used. 1486 * Return true if TCP stack should pace packets itself. 1487 */ 1488 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1489 { 1490 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1491 } 1492 1493 /* Estimates in how many jiffies next packet for this flow can be sent. 1494 * Scheduling a retransmit timer too early would be silly. 1495 */ 1496 static inline unsigned long tcp_pacing_delay(const struct sock *sk) 1497 { 1498 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache; 1499 1500 return delay > 0 ? nsecs_to_jiffies(delay) : 0; 1501 } 1502 1503 static inline void tcp_reset_xmit_timer(struct sock *sk, 1504 const int what, 1505 unsigned long when, 1506 bool pace_delay) 1507 { 1508 if (pace_delay) 1509 when += tcp_pacing_delay(sk); 1510 inet_csk_reset_xmit_timer(sk, what, when, 1511 tcp_rto_max(sk)); 1512 } 1513 1514 /* Something is really bad, we could not queue an additional packet, 1515 * because qdisc is full or receiver sent a 0 window, or we are paced. 1516 * We do not want to add fuel to the fire, or abort too early, 1517 * so make sure the timer we arm now is at least 200ms in the future, 1518 * regardless of current icsk_rto value (as it could be ~2ms) 1519 */ 1520 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1521 { 1522 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1523 } 1524 1525 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1526 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1527 unsigned long max_when) 1528 { 1529 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1, 1530 inet_csk(sk)->icsk_backoff); 1531 u64 when = (u64)tcp_probe0_base(sk) << backoff; 1532 1533 return (unsigned long)min_t(u64, when, max_when); 1534 } 1535 1536 static inline void tcp_check_probe_timer(struct sock *sk) 1537 { 1538 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1539 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1540 tcp_probe0_base(sk), true); 1541 } 1542 1543 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1544 { 1545 tp->snd_wl1 = seq; 1546 } 1547 1548 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1549 { 1550 tp->snd_wl1 = seq; 1551 } 1552 1553 /* 1554 * Calculate(/check) TCP checksum 1555 */ 1556 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1557 __be32 daddr, __wsum base) 1558 { 1559 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1560 } 1561 1562 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1563 { 1564 return !skb_csum_unnecessary(skb) && 1565 __skb_checksum_complete(skb); 1566 } 1567 1568 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb, 1569 enum skb_drop_reason *reason); 1570 1571 1572 int tcp_filter(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason *reason); 1573 void tcp_set_state(struct sock *sk, int state); 1574 void tcp_done(struct sock *sk); 1575 int tcp_abort(struct sock *sk, int err); 1576 1577 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1578 { 1579 rx_opt->dsack = 0; 1580 rx_opt->num_sacks = 0; 1581 } 1582 1583 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1584 1585 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1586 { 1587 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1588 struct tcp_sock *tp = tcp_sk(sk); 1589 s32 delta; 1590 1591 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) || 1592 tp->packets_out || ca_ops->cong_control) 1593 return; 1594 delta = tcp_jiffies32 - tp->lsndtime; 1595 if (delta > inet_csk(sk)->icsk_rto) 1596 tcp_cwnd_restart(sk, delta); 1597 } 1598 1599 /* Determine a window scaling and initial window to offer. */ 1600 void tcp_select_initial_window(const struct sock *sk, int __space, 1601 __u32 mss, __u32 *rcv_wnd, 1602 __u32 *window_clamp, int wscale_ok, 1603 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1604 1605 static inline int __tcp_win_from_space(u8 scaling_ratio, int space) 1606 { 1607 s64 scaled_space = (s64)space * scaling_ratio; 1608 1609 return scaled_space >> TCP_RMEM_TO_WIN_SCALE; 1610 } 1611 1612 static inline int tcp_win_from_space(const struct sock *sk, int space) 1613 { 1614 return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space); 1615 } 1616 1617 /* inverse of __tcp_win_from_space() */ 1618 static inline int __tcp_space_from_win(u8 scaling_ratio, int win) 1619 { 1620 u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE; 1621 1622 do_div(val, scaling_ratio); 1623 return val; 1624 } 1625 1626 static inline int tcp_space_from_win(const struct sock *sk, int win) 1627 { 1628 return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win); 1629 } 1630 1631 /* Assume a 50% default for skb->len/skb->truesize ratio. 1632 * This may be adjusted later in tcp_measure_rcv_mss(). 1633 */ 1634 #define TCP_DEFAULT_SCALING_RATIO (1 << (TCP_RMEM_TO_WIN_SCALE - 1)) 1635 1636 static inline void tcp_scaling_ratio_init(struct sock *sk) 1637 { 1638 tcp_sk(sk)->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 1639 } 1640 1641 /* Note: caller must be prepared to deal with negative returns */ 1642 static inline int tcp_space(const struct sock *sk) 1643 { 1644 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1645 READ_ONCE(sk->sk_backlog.len) - 1646 atomic_read(&sk->sk_rmem_alloc)); 1647 } 1648 1649 static inline int tcp_full_space(const struct sock *sk) 1650 { 1651 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1652 } 1653 1654 static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh) 1655 { 1656 int unused_mem = sk_unused_reserved_mem(sk); 1657 struct tcp_sock *tp = tcp_sk(sk); 1658 1659 tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh); 1660 if (unused_mem) 1661 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh, 1662 tcp_win_from_space(sk, unused_mem)); 1663 } 1664 1665 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk) 1666 { 1667 __tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss); 1668 } 1669 1670 void tcp_cleanup_rbuf(struct sock *sk, int copied); 1671 void __tcp_cleanup_rbuf(struct sock *sk, int copied); 1672 1673 1674 /* We provision sk_rcvbuf around 200% of sk_rcvlowat. 1675 * If 87.5 % (7/8) of the space has been consumed, we want to override 1676 * SO_RCVLOWAT constraint, since we are receiving skbs with too small 1677 * len/truesize ratio. 1678 */ 1679 static inline bool tcp_rmem_pressure(const struct sock *sk) 1680 { 1681 int rcvbuf, threshold; 1682 1683 if (tcp_under_memory_pressure(sk)) 1684 return true; 1685 1686 rcvbuf = READ_ONCE(sk->sk_rcvbuf); 1687 threshold = rcvbuf - (rcvbuf >> 3); 1688 1689 return atomic_read(&sk->sk_rmem_alloc) > threshold; 1690 } 1691 1692 static inline bool tcp_epollin_ready(const struct sock *sk, int target) 1693 { 1694 const struct tcp_sock *tp = tcp_sk(sk); 1695 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq); 1696 1697 if (avail <= 0) 1698 return false; 1699 1700 return (avail >= target) || tcp_rmem_pressure(sk) || 1701 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss); 1702 } 1703 1704 extern void tcp_openreq_init_rwin(struct request_sock *req, 1705 const struct sock *sk_listener, 1706 const struct dst_entry *dst); 1707 1708 void tcp_enter_memory_pressure(struct sock *sk); 1709 void tcp_leave_memory_pressure(struct sock *sk); 1710 1711 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1712 { 1713 struct net *net = sock_net((struct sock *)tp); 1714 int val; 1715 1716 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl() 1717 * and do_tcp_setsockopt(). 1718 */ 1719 val = READ_ONCE(tp->keepalive_intvl); 1720 1721 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl); 1722 } 1723 1724 static inline int keepalive_time_when(const struct tcp_sock *tp) 1725 { 1726 struct net *net = sock_net((struct sock *)tp); 1727 int val; 1728 1729 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */ 1730 val = READ_ONCE(tp->keepalive_time); 1731 1732 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time); 1733 } 1734 1735 static inline int keepalive_probes(const struct tcp_sock *tp) 1736 { 1737 struct net *net = sock_net((struct sock *)tp); 1738 int val; 1739 1740 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt() 1741 * and do_tcp_setsockopt(). 1742 */ 1743 val = READ_ONCE(tp->keepalive_probes); 1744 1745 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes); 1746 } 1747 1748 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1749 { 1750 const struct inet_connection_sock *icsk = &tp->inet_conn; 1751 1752 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1753 tcp_jiffies32 - tp->rcv_tstamp); 1754 } 1755 1756 static inline int tcp_fin_time(const struct sock *sk) 1757 { 1758 int fin_timeout = tcp_sk(sk)->linger2 ? : 1759 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout); 1760 const int rto = inet_csk(sk)->icsk_rto; 1761 1762 if (fin_timeout < (rto << 2) - (rto >> 1)) 1763 fin_timeout = (rto << 2) - (rto >> 1); 1764 1765 return fin_timeout; 1766 } 1767 1768 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1769 int paws_win) 1770 { 1771 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1772 return true; 1773 if (unlikely(!time_before32(ktime_get_seconds(), 1774 rx_opt->ts_recent_stamp + TCP_PAWS_WRAP))) 1775 return true; 1776 /* 1777 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1778 * then following tcp messages have valid values. Ignore 0 value, 1779 * or else 'negative' tsval might forbid us to accept their packets. 1780 */ 1781 if (!rx_opt->ts_recent) 1782 return true; 1783 return false; 1784 } 1785 1786 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1787 int rst) 1788 { 1789 if (tcp_paws_check(rx_opt, 0)) 1790 return false; 1791 1792 /* RST segments are not recommended to carry timestamp, 1793 and, if they do, it is recommended to ignore PAWS because 1794 "their cleanup function should take precedence over timestamps." 1795 Certainly, it is mistake. It is necessary to understand the reasons 1796 of this constraint to relax it: if peer reboots, clock may go 1797 out-of-sync and half-open connections will not be reset. 1798 Actually, the problem would be not existing if all 1799 the implementations followed draft about maintaining clock 1800 via reboots. Linux-2.2 DOES NOT! 1801 1802 However, we can relax time bounds for RST segments to MSL. 1803 */ 1804 if (rst && !time_before32(ktime_get_seconds(), 1805 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1806 return false; 1807 return true; 1808 } 1809 1810 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1811 int mib_idx, u32 *last_oow_ack_time); 1812 1813 static inline void tcp_mib_init(struct net *net) 1814 { 1815 /* See RFC 2012 */ 1816 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1817 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1818 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1819 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1820 } 1821 1822 /* from STCP */ 1823 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1824 { 1825 tp->retransmit_skb_hint = NULL; 1826 } 1827 1828 #define tcp_md5_addr tcp_ao_addr 1829 1830 /* - key database */ 1831 struct tcp_md5sig_key { 1832 struct hlist_node node; 1833 u8 keylen; 1834 u8 family; /* AF_INET or AF_INET6 */ 1835 u8 prefixlen; 1836 u8 flags; 1837 union tcp_md5_addr addr; 1838 int l3index; /* set if key added with L3 scope */ 1839 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1840 struct rcu_head rcu; 1841 }; 1842 1843 /* - sock block */ 1844 struct tcp_md5sig_info { 1845 struct hlist_head head; 1846 struct rcu_head rcu; 1847 }; 1848 1849 /* - pseudo header */ 1850 struct tcp4_pseudohdr { 1851 __be32 saddr; 1852 __be32 daddr; 1853 __u8 pad; 1854 __u8 protocol; 1855 __be16 len; 1856 }; 1857 1858 struct tcp6_pseudohdr { 1859 struct in6_addr saddr; 1860 struct in6_addr daddr; 1861 __be32 len; 1862 __be32 protocol; /* including padding */ 1863 }; 1864 1865 union tcp_md5sum_block { 1866 struct tcp4_pseudohdr ip4; 1867 #if IS_ENABLED(CONFIG_IPV6) 1868 struct tcp6_pseudohdr ip6; 1869 #endif 1870 }; 1871 1872 /* 1873 * struct tcp_sigpool - per-CPU pool of ahash_requests 1874 * @scratch: per-CPU temporary area, that can be used between 1875 * tcp_sigpool_start() and tcp_sigpool_end() to perform 1876 * crypto request 1877 * @req: pre-allocated ahash request 1878 */ 1879 struct tcp_sigpool { 1880 void *scratch; 1881 struct ahash_request *req; 1882 }; 1883 1884 int tcp_sigpool_alloc_ahash(const char *alg, size_t scratch_size); 1885 void tcp_sigpool_get(unsigned int id); 1886 void tcp_sigpool_release(unsigned int id); 1887 int tcp_sigpool_hash_skb_data(struct tcp_sigpool *hp, 1888 const struct sk_buff *skb, 1889 unsigned int header_len); 1890 1891 /** 1892 * tcp_sigpool_start - disable bh and start using tcp_sigpool_ahash 1893 * @id: tcp_sigpool that was previously allocated by tcp_sigpool_alloc_ahash() 1894 * @c: returned tcp_sigpool for usage (uninitialized on failure) 1895 * 1896 * Returns: 0 on success, error otherwise. 1897 */ 1898 int tcp_sigpool_start(unsigned int id, struct tcp_sigpool *c); 1899 /** 1900 * tcp_sigpool_end - enable bh and stop using tcp_sigpool 1901 * @c: tcp_sigpool context that was returned by tcp_sigpool_start() 1902 */ 1903 void tcp_sigpool_end(struct tcp_sigpool *c); 1904 size_t tcp_sigpool_algo(unsigned int id, char *buf, size_t buf_len); 1905 /* - functions */ 1906 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1907 const struct sock *sk, const struct sk_buff *skb); 1908 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1909 int family, u8 prefixlen, int l3index, u8 flags, 1910 const u8 *newkey, u8 newkeylen); 1911 int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr, 1912 int family, u8 prefixlen, int l3index, 1913 struct tcp_md5sig_key *key); 1914 1915 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1916 int family, u8 prefixlen, int l3index, u8 flags); 1917 void tcp_clear_md5_list(struct sock *sk); 1918 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1919 const struct sock *addr_sk); 1920 1921 #ifdef CONFIG_TCP_MD5SIG 1922 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1923 const union tcp_md5_addr *addr, 1924 int family, bool any_l3index); 1925 static inline struct tcp_md5sig_key * 1926 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1927 const union tcp_md5_addr *addr, int family) 1928 { 1929 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1930 return NULL; 1931 return __tcp_md5_do_lookup(sk, l3index, addr, family, false); 1932 } 1933 1934 static inline struct tcp_md5sig_key * 1935 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1936 const union tcp_md5_addr *addr, int family) 1937 { 1938 if (!static_branch_unlikely(&tcp_md5_needed.key)) 1939 return NULL; 1940 return __tcp_md5_do_lookup(sk, 0, addr, family, true); 1941 } 1942 1943 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1944 #else 1945 static inline struct tcp_md5sig_key * 1946 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1947 const union tcp_md5_addr *addr, int family) 1948 { 1949 return NULL; 1950 } 1951 1952 static inline struct tcp_md5sig_key * 1953 tcp_md5_do_lookup_any_l3index(const struct sock *sk, 1954 const union tcp_md5_addr *addr, int family) 1955 { 1956 return NULL; 1957 } 1958 1959 #define tcp_twsk_md5_key(twsk) NULL 1960 #endif 1961 1962 int tcp_md5_alloc_sigpool(void); 1963 void tcp_md5_release_sigpool(void); 1964 void tcp_md5_add_sigpool(void); 1965 extern int tcp_md5_sigpool_id; 1966 1967 int tcp_md5_hash_key(struct tcp_sigpool *hp, 1968 const struct tcp_md5sig_key *key); 1969 1970 /* From tcp_fastopen.c */ 1971 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1972 struct tcp_fastopen_cookie *cookie); 1973 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1974 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1975 u16 try_exp); 1976 struct tcp_fastopen_request { 1977 /* Fast Open cookie. Size 0 means a cookie request */ 1978 struct tcp_fastopen_cookie cookie; 1979 struct msghdr *data; /* data in MSG_FASTOPEN */ 1980 size_t size; 1981 int copied; /* queued in tcp_connect() */ 1982 struct ubuf_info *uarg; 1983 }; 1984 void tcp_free_fastopen_req(struct tcp_sock *tp); 1985 void tcp_fastopen_destroy_cipher(struct sock *sk); 1986 void tcp_fastopen_ctx_destroy(struct net *net); 1987 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1988 void *primary_key, void *backup_key); 1989 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, 1990 u64 *key); 1991 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1992 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1993 struct request_sock *req, 1994 struct tcp_fastopen_cookie *foc, 1995 const struct dst_entry *dst); 1996 void tcp_fastopen_init_key_once(struct net *net); 1997 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1998 struct tcp_fastopen_cookie *cookie); 1999 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 2000 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 2001 #define TCP_FASTOPEN_KEY_MAX 2 2002 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 2003 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 2004 2005 /* Fastopen key context */ 2006 struct tcp_fastopen_context { 2007 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 2008 int num; 2009 struct rcu_head rcu; 2010 }; 2011 2012 void tcp_fastopen_active_disable(struct sock *sk); 2013 bool tcp_fastopen_active_should_disable(struct sock *sk); 2014 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 2015 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 2016 2017 /* Caller needs to wrap with rcu_read_(un)lock() */ 2018 static inline 2019 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 2020 { 2021 struct tcp_fastopen_context *ctx; 2022 2023 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 2024 if (!ctx) 2025 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 2026 return ctx; 2027 } 2028 2029 static inline 2030 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 2031 const struct tcp_fastopen_cookie *orig) 2032 { 2033 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 2034 orig->len == foc->len && 2035 !memcmp(orig->val, foc->val, foc->len)) 2036 return true; 2037 return false; 2038 } 2039 2040 static inline 2041 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 2042 { 2043 return ctx->num; 2044 } 2045 2046 /* Latencies incurred by various limits for a sender. They are 2047 * chronograph-like stats that are mutually exclusive. 2048 */ 2049 enum tcp_chrono { 2050 TCP_CHRONO_UNSPEC, 2051 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 2052 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 2053 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 2054 __TCP_CHRONO_MAX, 2055 }; 2056 2057 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 2058 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 2059 2060 /* This helper is needed, because skb->tcp_tsorted_anchor uses 2061 * the same memory storage than skb->destructor/_skb_refdst 2062 */ 2063 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 2064 { 2065 skb->destructor = NULL; 2066 skb->_skb_refdst = 0UL; 2067 } 2068 2069 #define tcp_skb_tsorted_save(skb) { \ 2070 unsigned long _save = skb->_skb_refdst; \ 2071 skb->_skb_refdst = 0UL; 2072 2073 #define tcp_skb_tsorted_restore(skb) \ 2074 skb->_skb_refdst = _save; \ 2075 } 2076 2077 void tcp_write_queue_purge(struct sock *sk); 2078 2079 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 2080 { 2081 return skb_rb_first(&sk->tcp_rtx_queue); 2082 } 2083 2084 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 2085 { 2086 return skb_rb_last(&sk->tcp_rtx_queue); 2087 } 2088 2089 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 2090 { 2091 return skb_peek_tail(&sk->sk_write_queue); 2092 } 2093 2094 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 2095 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 2096 2097 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 2098 { 2099 return skb_peek(&sk->sk_write_queue); 2100 } 2101 2102 static inline bool tcp_skb_is_last(const struct sock *sk, 2103 const struct sk_buff *skb) 2104 { 2105 return skb_queue_is_last(&sk->sk_write_queue, skb); 2106 } 2107 2108 /** 2109 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 2110 * @sk: socket 2111 * 2112 * Since the write queue can have a temporary empty skb in it, 2113 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 2114 */ 2115 static inline bool tcp_write_queue_empty(const struct sock *sk) 2116 { 2117 const struct tcp_sock *tp = tcp_sk(sk); 2118 2119 return tp->write_seq == tp->snd_nxt; 2120 } 2121 2122 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 2123 { 2124 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 2125 } 2126 2127 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 2128 { 2129 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 2130 } 2131 2132 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 2133 { 2134 __skb_queue_tail(&sk->sk_write_queue, skb); 2135 2136 /* Queue it, remembering where we must start sending. */ 2137 if (sk->sk_write_queue.next == skb) 2138 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 2139 } 2140 2141 /* Insert new before skb on the write queue of sk. */ 2142 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 2143 struct sk_buff *skb, 2144 struct sock *sk) 2145 { 2146 __skb_queue_before(&sk->sk_write_queue, skb, new); 2147 } 2148 2149 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 2150 { 2151 tcp_skb_tsorted_anchor_cleanup(skb); 2152 __skb_unlink(skb, &sk->sk_write_queue); 2153 } 2154 2155 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 2156 2157 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 2158 { 2159 tcp_skb_tsorted_anchor_cleanup(skb); 2160 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 2161 } 2162 2163 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 2164 { 2165 list_del(&skb->tcp_tsorted_anchor); 2166 tcp_rtx_queue_unlink(skb, sk); 2167 tcp_wmem_free_skb(sk, skb); 2168 } 2169 2170 static inline void tcp_write_collapse_fence(struct sock *sk) 2171 { 2172 struct sk_buff *skb = tcp_write_queue_tail(sk); 2173 2174 if (skb) 2175 TCP_SKB_CB(skb)->eor = 1; 2176 } 2177 2178 static inline void tcp_push_pending_frames(struct sock *sk) 2179 { 2180 if (tcp_send_head(sk)) { 2181 struct tcp_sock *tp = tcp_sk(sk); 2182 2183 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 2184 } 2185 } 2186 2187 /* Start sequence of the skb just after the highest skb with SACKed 2188 * bit, valid only if sacked_out > 0 or when the caller has ensured 2189 * validity by itself. 2190 */ 2191 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 2192 { 2193 if (!tp->sacked_out) 2194 return tp->snd_una; 2195 2196 if (tp->highest_sack == NULL) 2197 return tp->snd_nxt; 2198 2199 return TCP_SKB_CB(tp->highest_sack)->seq; 2200 } 2201 2202 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 2203 { 2204 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 2205 } 2206 2207 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 2208 { 2209 return tcp_sk(sk)->highest_sack; 2210 } 2211 2212 static inline void tcp_highest_sack_reset(struct sock *sk) 2213 { 2214 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 2215 } 2216 2217 /* Called when old skb is about to be deleted and replaced by new skb */ 2218 static inline void tcp_highest_sack_replace(struct sock *sk, 2219 struct sk_buff *old, 2220 struct sk_buff *new) 2221 { 2222 if (old == tcp_highest_sack(sk)) 2223 tcp_sk(sk)->highest_sack = new; 2224 } 2225 2226 /* This helper checks if socket has IP_TRANSPARENT set */ 2227 static inline bool inet_sk_transparent(const struct sock *sk) 2228 { 2229 switch (sk->sk_state) { 2230 case TCP_TIME_WAIT: 2231 return inet_twsk(sk)->tw_transparent; 2232 case TCP_NEW_SYN_RECV: 2233 return inet_rsk(inet_reqsk(sk))->no_srccheck; 2234 } 2235 return inet_test_bit(TRANSPARENT, sk); 2236 } 2237 2238 /* Determines whether this is a thin stream (which may suffer from 2239 * increased latency). Used to trigger latency-reducing mechanisms. 2240 */ 2241 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 2242 { 2243 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 2244 } 2245 2246 /* /proc */ 2247 enum tcp_seq_states { 2248 TCP_SEQ_STATE_LISTENING, 2249 TCP_SEQ_STATE_ESTABLISHED, 2250 }; 2251 2252 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 2253 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 2254 void tcp_seq_stop(struct seq_file *seq, void *v); 2255 2256 struct tcp_seq_afinfo { 2257 sa_family_t family; 2258 }; 2259 2260 struct tcp_iter_state { 2261 struct seq_net_private p; 2262 enum tcp_seq_states state; 2263 struct sock *syn_wait_sk; 2264 int bucket, offset, sbucket, num; 2265 loff_t last_pos; 2266 }; 2267 2268 extern struct request_sock_ops tcp_request_sock_ops; 2269 extern struct request_sock_ops tcp6_request_sock_ops; 2270 2271 void tcp_v4_destroy_sock(struct sock *sk); 2272 2273 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 2274 netdev_features_t features); 2275 struct tcphdr *tcp_gro_pull_header(struct sk_buff *skb); 2276 struct sk_buff *tcp_gro_lookup(struct list_head *head, struct tcphdr *th); 2277 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb, 2278 struct tcphdr *th); 2279 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff)); 2280 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb)); 2281 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff)); 2282 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb)); 2283 #ifdef CONFIG_INET 2284 void tcp_gro_complete(struct sk_buff *skb); 2285 #else 2286 static inline void tcp_gro_complete(struct sk_buff *skb) { } 2287 #endif 2288 2289 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 2290 2291 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 2292 { 2293 struct net *net = sock_net((struct sock *)tp); 2294 u32 val; 2295 2296 val = READ_ONCE(tp->notsent_lowat); 2297 2298 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat); 2299 } 2300 2301 bool tcp_stream_memory_free(const struct sock *sk, int wake); 2302 2303 #ifdef CONFIG_PROC_FS 2304 int tcp4_proc_init(void); 2305 void tcp4_proc_exit(void); 2306 #endif 2307 2308 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 2309 int tcp_conn_request(struct request_sock_ops *rsk_ops, 2310 const struct tcp_request_sock_ops *af_ops, 2311 struct sock *sk, struct sk_buff *skb); 2312 2313 /* TCP af-specific functions */ 2314 struct tcp_sock_af_ops { 2315 #ifdef CONFIG_TCP_MD5SIG 2316 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 2317 const struct sock *addr_sk); 2318 int (*calc_md5_hash)(char *location, 2319 const struct tcp_md5sig_key *md5, 2320 const struct sock *sk, 2321 const struct sk_buff *skb); 2322 int (*md5_parse)(struct sock *sk, 2323 int optname, 2324 sockptr_t optval, 2325 int optlen); 2326 #endif 2327 #ifdef CONFIG_TCP_AO 2328 int (*ao_parse)(struct sock *sk, int optname, sockptr_t optval, int optlen); 2329 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2330 struct sock *addr_sk, 2331 int sndid, int rcvid); 2332 int (*ao_calc_key_sk)(struct tcp_ao_key *mkt, u8 *key, 2333 const struct sock *sk, 2334 __be32 sisn, __be32 disn, bool send); 2335 int (*calc_ao_hash)(char *location, struct tcp_ao_key *ao, 2336 const struct sock *sk, const struct sk_buff *skb, 2337 const u8 *tkey, int hash_offset, u32 sne); 2338 #endif 2339 }; 2340 2341 struct tcp_request_sock_ops { 2342 u16 mss_clamp; 2343 #ifdef CONFIG_TCP_MD5SIG 2344 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 2345 const struct sock *addr_sk); 2346 int (*calc_md5_hash) (char *location, 2347 const struct tcp_md5sig_key *md5, 2348 const struct sock *sk, 2349 const struct sk_buff *skb); 2350 #endif 2351 #ifdef CONFIG_TCP_AO 2352 struct tcp_ao_key *(*ao_lookup)(const struct sock *sk, 2353 struct request_sock *req, 2354 int sndid, int rcvid); 2355 int (*ao_calc_key)(struct tcp_ao_key *mkt, u8 *key, struct request_sock *sk); 2356 int (*ao_synack_hash)(char *ao_hash, struct tcp_ao_key *mkt, 2357 struct request_sock *req, const struct sk_buff *skb, 2358 int hash_offset, u32 sne); 2359 #endif 2360 #ifdef CONFIG_SYN_COOKIES 2361 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2362 __u16 *mss); 2363 #endif 2364 struct dst_entry *(*route_req)(const struct sock *sk, 2365 struct sk_buff *skb, 2366 struct flowi *fl, 2367 struct request_sock *req, 2368 u32 tw_isn); 2369 u32 (*init_seq)(const struct sk_buff *skb); 2370 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2371 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2372 struct flowi *fl, struct request_sock *req, 2373 struct tcp_fastopen_cookie *foc, 2374 enum tcp_synack_type synack_type, 2375 struct sk_buff *syn_skb); 2376 }; 2377 2378 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2379 #if IS_ENABLED(CONFIG_IPV6) 2380 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2381 #endif 2382 2383 #ifdef CONFIG_SYN_COOKIES 2384 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2385 const struct sock *sk, struct sk_buff *skb, 2386 __u16 *mss) 2387 { 2388 tcp_synq_overflow(sk); 2389 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2390 return ops->cookie_init_seq(skb, mss); 2391 } 2392 #else 2393 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2394 const struct sock *sk, struct sk_buff *skb, 2395 __u16 *mss) 2396 { 2397 return 0; 2398 } 2399 #endif 2400 2401 struct tcp_key { 2402 union { 2403 struct { 2404 struct tcp_ao_key *ao_key; 2405 char *traffic_key; 2406 u32 sne; 2407 u8 rcv_next; 2408 }; 2409 struct tcp_md5sig_key *md5_key; 2410 }; 2411 enum { 2412 TCP_KEY_NONE = 0, 2413 TCP_KEY_MD5, 2414 TCP_KEY_AO, 2415 } type; 2416 }; 2417 2418 static inline void tcp_get_current_key(const struct sock *sk, 2419 struct tcp_key *out) 2420 { 2421 #if defined(CONFIG_TCP_AO) || defined(CONFIG_TCP_MD5SIG) 2422 const struct tcp_sock *tp = tcp_sk(sk); 2423 #endif 2424 2425 #ifdef CONFIG_TCP_AO 2426 if (static_branch_unlikely(&tcp_ao_needed.key)) { 2427 struct tcp_ao_info *ao; 2428 2429 ao = rcu_dereference_protected(tp->ao_info, 2430 lockdep_sock_is_held(sk)); 2431 if (ao) { 2432 out->ao_key = READ_ONCE(ao->current_key); 2433 out->type = TCP_KEY_AO; 2434 return; 2435 } 2436 } 2437 #endif 2438 #ifdef CONFIG_TCP_MD5SIG 2439 if (static_branch_unlikely(&tcp_md5_needed.key) && 2440 rcu_access_pointer(tp->md5sig_info)) { 2441 out->md5_key = tp->af_specific->md5_lookup(sk, sk); 2442 if (out->md5_key) { 2443 out->type = TCP_KEY_MD5; 2444 return; 2445 } 2446 } 2447 #endif 2448 out->type = TCP_KEY_NONE; 2449 } 2450 2451 static inline bool tcp_key_is_md5(const struct tcp_key *key) 2452 { 2453 if (static_branch_tcp_md5()) 2454 return key->type == TCP_KEY_MD5; 2455 return false; 2456 } 2457 2458 static inline bool tcp_key_is_ao(const struct tcp_key *key) 2459 { 2460 if (static_branch_tcp_ao()) 2461 return key->type == TCP_KEY_AO; 2462 return false; 2463 } 2464 2465 int tcpv4_offload_init(void); 2466 2467 void tcp_v4_init(void); 2468 void tcp_init(void); 2469 2470 /* tcp_recovery.c */ 2471 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2472 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2473 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2474 u32 reo_wnd); 2475 extern bool tcp_rack_mark_lost(struct sock *sk); 2476 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2477 u64 xmit_time); 2478 extern void tcp_rack_reo_timeout(struct sock *sk); 2479 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2480 2481 /* tcp_plb.c */ 2482 2483 /* 2484 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state 2485 * expects cong_ratio which represents fraction of traffic that experienced 2486 * congestion over a single RTT. In order to avoid floating point operations, 2487 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in. 2488 */ 2489 #define TCP_PLB_SCALE 8 2490 2491 /* State for PLB (Protective Load Balancing) for a single TCP connection. */ 2492 struct tcp_plb_state { 2493 u8 consec_cong_rounds:5, /* consecutive congested rounds */ 2494 unused:3; 2495 u32 pause_until; /* jiffies32 when PLB can resume rerouting */ 2496 }; 2497 2498 static inline void tcp_plb_init(const struct sock *sk, 2499 struct tcp_plb_state *plb) 2500 { 2501 plb->consec_cong_rounds = 0; 2502 plb->pause_until = 0; 2503 } 2504 void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb, 2505 const int cong_ratio); 2506 void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb); 2507 void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb); 2508 2509 static inline void tcp_warn_once(const struct sock *sk, bool cond, const char *str) 2510 { 2511 WARN_ONCE(cond, 2512 "%scwn:%u out:%u sacked:%u lost:%u retrans:%u tlp_high_seq:%u sk_state:%u ca_state:%u advmss:%u mss_cache:%u pmtu:%u\n", 2513 str, 2514 tcp_snd_cwnd(tcp_sk(sk)), 2515 tcp_sk(sk)->packets_out, tcp_sk(sk)->sacked_out, 2516 tcp_sk(sk)->lost_out, tcp_sk(sk)->retrans_out, 2517 tcp_sk(sk)->tlp_high_seq, sk->sk_state, 2518 inet_csk(sk)->icsk_ca_state, 2519 tcp_sk(sk)->advmss, tcp_sk(sk)->mss_cache, 2520 inet_csk(sk)->icsk_pmtu_cookie); 2521 } 2522 2523 /* At how many usecs into the future should the RTO fire? */ 2524 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2525 { 2526 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2527 u32 rto = inet_csk(sk)->icsk_rto; 2528 2529 if (likely(skb)) { 2530 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2531 2532 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2533 } else { 2534 tcp_warn_once(sk, 1, "rtx queue empty: "); 2535 return jiffies_to_usecs(rto); 2536 } 2537 2538 } 2539 2540 /* 2541 * Save and compile IPv4 options, return a pointer to it 2542 */ 2543 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2544 struct sk_buff *skb) 2545 { 2546 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2547 struct ip_options_rcu *dopt = NULL; 2548 2549 if (opt->optlen) { 2550 int opt_size = sizeof(*dopt) + opt->optlen; 2551 2552 dopt = kmalloc(opt_size, GFP_ATOMIC); 2553 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2554 kfree(dopt); 2555 dopt = NULL; 2556 } 2557 } 2558 return dopt; 2559 } 2560 2561 /* locally generated TCP pure ACKs have skb->truesize == 2 2562 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2563 * This is much faster than dissecting the packet to find out. 2564 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2565 */ 2566 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2567 { 2568 return skb->truesize == 2; 2569 } 2570 2571 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2572 { 2573 skb->truesize = 2; 2574 } 2575 2576 static inline int tcp_inq(struct sock *sk) 2577 { 2578 struct tcp_sock *tp = tcp_sk(sk); 2579 int answ; 2580 2581 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2582 answ = 0; 2583 } else if (sock_flag(sk, SOCK_URGINLINE) || 2584 !tp->urg_data || 2585 before(tp->urg_seq, tp->copied_seq) || 2586 !before(tp->urg_seq, tp->rcv_nxt)) { 2587 2588 answ = tp->rcv_nxt - tp->copied_seq; 2589 2590 /* Subtract 1, if FIN was received */ 2591 if (answ && sock_flag(sk, SOCK_DONE)) 2592 answ--; 2593 } else { 2594 answ = tp->urg_seq - tp->copied_seq; 2595 } 2596 2597 return answ; 2598 } 2599 2600 int tcp_peek_len(struct socket *sock); 2601 2602 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2603 { 2604 u16 segs_in; 2605 2606 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2607 2608 /* We update these fields while other threads might 2609 * read them from tcp_get_info() 2610 */ 2611 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in); 2612 if (skb->len > tcp_hdrlen(skb)) 2613 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in); 2614 } 2615 2616 /* 2617 * TCP listen path runs lockless. 2618 * We forced "struct sock" to be const qualified to make sure 2619 * we don't modify one of its field by mistake. 2620 * Here, we increment sk_drops which is an atomic_t, so we can safely 2621 * make sock writable again. 2622 */ 2623 static inline void tcp_listendrop(const struct sock *sk) 2624 { 2625 sk_drops_inc((struct sock *)sk); 2626 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2627 } 2628 2629 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2630 2631 /* 2632 * Interface for adding Upper Level Protocols over TCP 2633 */ 2634 2635 #define TCP_ULP_NAME_MAX 16 2636 #define TCP_ULP_MAX 128 2637 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2638 2639 struct tcp_ulp_ops { 2640 struct list_head list; 2641 2642 /* initialize ulp */ 2643 int (*init)(struct sock *sk); 2644 /* update ulp */ 2645 void (*update)(struct sock *sk, struct proto *p, 2646 void (*write_space)(struct sock *sk)); 2647 /* cleanup ulp */ 2648 void (*release)(struct sock *sk); 2649 /* diagnostic */ 2650 int (*get_info)(struct sock *sk, struct sk_buff *skb, bool net_admin); 2651 size_t (*get_info_size)(const struct sock *sk, bool net_admin); 2652 /* clone ulp */ 2653 void (*clone)(const struct request_sock *req, struct sock *newsk, 2654 const gfp_t priority); 2655 2656 char name[TCP_ULP_NAME_MAX]; 2657 struct module *owner; 2658 }; 2659 int tcp_register_ulp(struct tcp_ulp_ops *type); 2660 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2661 int tcp_set_ulp(struct sock *sk, const char *name); 2662 void tcp_get_available_ulp(char *buf, size_t len); 2663 void tcp_cleanup_ulp(struct sock *sk); 2664 void tcp_update_ulp(struct sock *sk, struct proto *p, 2665 void (*write_space)(struct sock *sk)); 2666 2667 #define MODULE_ALIAS_TCP_ULP(name) \ 2668 MODULE_INFO(alias, name); \ 2669 MODULE_INFO(alias, "tcp-ulp-" name) 2670 2671 #ifdef CONFIG_NET_SOCK_MSG 2672 struct sk_msg; 2673 struct sk_psock; 2674 2675 #ifdef CONFIG_BPF_SYSCALL 2676 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore); 2677 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2678 #ifdef CONFIG_BPF_STREAM_PARSER 2679 struct strparser; 2680 int tcp_bpf_strp_read_sock(struct strparser *strp, read_descriptor_t *desc, 2681 sk_read_actor_t recv_actor); 2682 #endif /* CONFIG_BPF_STREAM_PARSER */ 2683 #endif /* CONFIG_BPF_SYSCALL */ 2684 2685 #ifdef CONFIG_INET 2686 void tcp_eat_skb(struct sock *sk, struct sk_buff *skb); 2687 #else 2688 static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb) 2689 { 2690 } 2691 #endif 2692 2693 int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress, 2694 struct sk_msg *msg, u32 bytes, int flags); 2695 #endif /* CONFIG_NET_SOCK_MSG */ 2696 2697 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG) 2698 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2699 { 2700 } 2701 #endif 2702 2703 #ifdef CONFIG_CGROUP_BPF 2704 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2705 struct sk_buff *skb, 2706 unsigned int end_offset) 2707 { 2708 skops->skb = skb; 2709 skops->skb_data_end = skb->data + end_offset; 2710 } 2711 #else 2712 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops, 2713 struct sk_buff *skb, 2714 unsigned int end_offset) 2715 { 2716 } 2717 #endif 2718 2719 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2720 * is < 0, then the BPF op failed (for example if the loaded BPF 2721 * program does not support the chosen operation or there is no BPF 2722 * program loaded). 2723 */ 2724 #ifdef CONFIG_BPF 2725 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2726 { 2727 struct bpf_sock_ops_kern sock_ops; 2728 int ret; 2729 2730 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2731 if (sk_fullsock(sk)) { 2732 sock_ops.is_fullsock = 1; 2733 sock_ops.is_locked_tcp_sock = 1; 2734 sock_owned_by_me(sk); 2735 } 2736 2737 sock_ops.sk = sk; 2738 sock_ops.op = op; 2739 if (nargs > 0) 2740 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2741 2742 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2743 if (ret == 0) 2744 ret = sock_ops.reply; 2745 else 2746 ret = -1; 2747 return ret; 2748 } 2749 2750 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2751 { 2752 u32 args[2] = {arg1, arg2}; 2753 2754 return tcp_call_bpf(sk, op, 2, args); 2755 } 2756 2757 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2758 u32 arg3) 2759 { 2760 u32 args[3] = {arg1, arg2, arg3}; 2761 2762 return tcp_call_bpf(sk, op, 3, args); 2763 } 2764 2765 #else 2766 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2767 { 2768 return -EPERM; 2769 } 2770 2771 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2772 { 2773 return -EPERM; 2774 } 2775 2776 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2777 u32 arg3) 2778 { 2779 return -EPERM; 2780 } 2781 2782 #endif 2783 2784 static inline u32 tcp_timeout_init(struct sock *sk) 2785 { 2786 int timeout; 2787 2788 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2789 2790 if (timeout <= 0) 2791 timeout = TCP_TIMEOUT_INIT; 2792 return min_t(int, timeout, TCP_RTO_MAX); 2793 } 2794 2795 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2796 { 2797 int rwnd; 2798 2799 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2800 2801 if (rwnd < 0) 2802 rwnd = 0; 2803 return rwnd; 2804 } 2805 2806 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2807 { 2808 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2809 } 2810 2811 static inline void tcp_bpf_rtt(struct sock *sk, long mrtt, u32 srtt) 2812 { 2813 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2814 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_RTT_CB, mrtt, srtt); 2815 } 2816 2817 #if IS_ENABLED(CONFIG_SMC) 2818 extern struct static_key_false tcp_have_smc; 2819 #endif 2820 2821 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2822 void clean_acked_data_enable(struct tcp_sock *tp, 2823 void (*cad)(struct sock *sk, u32 ack_seq)); 2824 void clean_acked_data_disable(struct tcp_sock *tp); 2825 void clean_acked_data_flush(void); 2826 #endif 2827 2828 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2829 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2830 const struct tcp_sock *tp) 2831 { 2832 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2833 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2834 } 2835 2836 /* Compute Earliest Departure Time for some control packets 2837 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2838 */ 2839 static inline u64 tcp_transmit_time(const struct sock *sk) 2840 { 2841 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2842 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2843 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2844 2845 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2846 } 2847 return 0; 2848 } 2849 2850 static inline int tcp_parse_auth_options(const struct tcphdr *th, 2851 const u8 **md5_hash, const struct tcp_ao_hdr **aoh) 2852 { 2853 const u8 *md5_tmp, *ao_tmp; 2854 int ret; 2855 2856 ret = tcp_do_parse_auth_options(th, &md5_tmp, &ao_tmp); 2857 if (ret) 2858 return ret; 2859 2860 if (md5_hash) 2861 *md5_hash = md5_tmp; 2862 2863 if (aoh) { 2864 if (!ao_tmp) 2865 *aoh = NULL; 2866 else 2867 *aoh = (struct tcp_ao_hdr *)(ao_tmp - 2); 2868 } 2869 2870 return 0; 2871 } 2872 2873 static inline bool tcp_ao_required(struct sock *sk, const void *saddr, 2874 int family, int l3index, bool stat_inc) 2875 { 2876 #ifdef CONFIG_TCP_AO 2877 struct tcp_ao_info *ao_info; 2878 struct tcp_ao_key *ao_key; 2879 2880 if (!static_branch_unlikely(&tcp_ao_needed.key)) 2881 return false; 2882 2883 ao_info = rcu_dereference_check(tcp_sk(sk)->ao_info, 2884 lockdep_sock_is_held(sk)); 2885 if (!ao_info) 2886 return false; 2887 2888 ao_key = tcp_ao_do_lookup(sk, l3index, saddr, family, -1, -1); 2889 if (ao_info->ao_required || ao_key) { 2890 if (stat_inc) { 2891 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOREQUIRED); 2892 atomic64_inc(&ao_info->counters.ao_required); 2893 } 2894 return true; 2895 } 2896 #endif 2897 return false; 2898 } 2899 2900 enum skb_drop_reason tcp_inbound_hash(struct sock *sk, 2901 const struct request_sock *req, const struct sk_buff *skb, 2902 const void *saddr, const void *daddr, 2903 int family, int dif, int sdif); 2904 2905 #endif /* _TCP_H */ 2906