1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the TCP module. 8 * 9 * Version: @(#)tcp.h 1.0.5 05/23/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 */ 14 #ifndef _TCP_H 15 #define _TCP_H 16 17 #define FASTRETRANS_DEBUG 1 18 19 #include <linux/list.h> 20 #include <linux/tcp.h> 21 #include <linux/bug.h> 22 #include <linux/slab.h> 23 #include <linux/cache.h> 24 #include <linux/percpu.h> 25 #include <linux/skbuff.h> 26 #include <linux/cryptohash.h> 27 #include <linux/kref.h> 28 #include <linux/ktime.h> 29 30 #include <net/inet_connection_sock.h> 31 #include <net/inet_timewait_sock.h> 32 #include <net/inet_hashtables.h> 33 #include <net/checksum.h> 34 #include <net/request_sock.h> 35 #include <net/sock_reuseport.h> 36 #include <net/sock.h> 37 #include <net/snmp.h> 38 #include <net/ip.h> 39 #include <net/tcp_states.h> 40 #include <net/inet_ecn.h> 41 #include <net/dst.h> 42 #include <net/mptcp.h> 43 44 #include <linux/seq_file.h> 45 #include <linux/memcontrol.h> 46 #include <linux/bpf-cgroup.h> 47 #include <linux/siphash.h> 48 49 extern struct inet_hashinfo tcp_hashinfo; 50 51 extern struct percpu_counter tcp_orphan_count; 52 void tcp_time_wait(struct sock *sk, int state, int timeo); 53 54 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER) 55 #define MAX_TCP_OPTION_SPACE 40 56 #define TCP_MIN_SND_MSS 48 57 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE) 58 59 /* 60 * Never offer a window over 32767 without using window scaling. Some 61 * poor stacks do signed 16bit maths! 62 */ 63 #define MAX_TCP_WINDOW 32767U 64 65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */ 66 #define TCP_MIN_MSS 88U 67 68 /* The initial MTU to use for probing */ 69 #define TCP_BASE_MSS 1024 70 71 /* probing interval, default to 10 minutes as per RFC4821 */ 72 #define TCP_PROBE_INTERVAL 600 73 74 /* Specify interval when tcp mtu probing will stop */ 75 #define TCP_PROBE_THRESHOLD 8 76 77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */ 78 #define TCP_FASTRETRANS_THRESH 3 79 80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */ 81 #define TCP_MAX_QUICKACKS 16U 82 83 /* Maximal number of window scale according to RFC1323 */ 84 #define TCP_MAX_WSCALE 14U 85 86 /* urg_data states */ 87 #define TCP_URG_VALID 0x0100 88 #define TCP_URG_NOTYET 0x0200 89 #define TCP_URG_READ 0x0400 90 91 #define TCP_RETR1 3 /* 92 * This is how many retries it does before it 93 * tries to figure out if the gateway is 94 * down. Minimal RFC value is 3; it corresponds 95 * to ~3sec-8min depending on RTO. 96 */ 97 98 #define TCP_RETR2 15 /* 99 * This should take at least 100 * 90 minutes to time out. 101 * RFC1122 says that the limit is 100 sec. 102 * 15 is ~13-30min depending on RTO. 103 */ 104 105 #define TCP_SYN_RETRIES 6 /* This is how many retries are done 106 * when active opening a connection. 107 * RFC1122 says the minimum retry MUST 108 * be at least 180secs. Nevertheless 109 * this value is corresponding to 110 * 63secs of retransmission with the 111 * current initial RTO. 112 */ 113 114 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done 115 * when passive opening a connection. 116 * This is corresponding to 31secs of 117 * retransmission with the current 118 * initial RTO. 119 */ 120 121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT 122 * state, about 60 seconds */ 123 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN 124 /* BSD style FIN_WAIT2 deadlock breaker. 125 * It used to be 3min, new value is 60sec, 126 * to combine FIN-WAIT-2 timeout with 127 * TIME-WAIT timer. 128 */ 129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */ 130 131 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */ 132 #if HZ >= 100 133 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */ 134 #define TCP_ATO_MIN ((unsigned)(HZ/25)) 135 #else 136 #define TCP_DELACK_MIN 4U 137 #define TCP_ATO_MIN 4U 138 #endif 139 #define TCP_RTO_MAX ((unsigned)(120*HZ)) 140 #define TCP_RTO_MIN ((unsigned)(HZ/5)) 141 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */ 142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */ 143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now 144 * used as a fallback RTO for the 145 * initial data transmission if no 146 * valid RTT sample has been acquired, 147 * most likely due to retrans in 3WHS. 148 */ 149 150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes 151 * for local resources. 152 */ 153 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */ 154 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */ 155 #define TCP_KEEPALIVE_INTVL (75*HZ) 156 157 #define MAX_TCP_KEEPIDLE 32767 158 #define MAX_TCP_KEEPINTVL 32767 159 #define MAX_TCP_KEEPCNT 127 160 #define MAX_TCP_SYNCNT 127 161 162 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */ 163 164 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24) 165 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated 166 * after this time. It should be equal 167 * (or greater than) TCP_TIMEWAIT_LEN 168 * to provide reliability equal to one 169 * provided by timewait state. 170 */ 171 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host 172 * timestamps. It must be less than 173 * minimal timewait lifetime. 174 */ 175 /* 176 * TCP option 177 */ 178 179 #define TCPOPT_NOP 1 /* Padding */ 180 #define TCPOPT_EOL 0 /* End of options */ 181 #define TCPOPT_MSS 2 /* Segment size negotiating */ 182 #define TCPOPT_WINDOW 3 /* Window scaling */ 183 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */ 184 #define TCPOPT_SACK 5 /* SACK Block */ 185 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */ 186 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */ 187 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */ 188 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */ 189 #define TCPOPT_EXP 254 /* Experimental */ 190 /* Magic number to be after the option value for sharing TCP 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt 192 */ 193 #define TCPOPT_FASTOPEN_MAGIC 0xF989 194 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9 195 196 /* 197 * TCP option lengths 198 */ 199 200 #define TCPOLEN_MSS 4 201 #define TCPOLEN_WINDOW 3 202 #define TCPOLEN_SACK_PERM 2 203 #define TCPOLEN_TIMESTAMP 10 204 #define TCPOLEN_MD5SIG 18 205 #define TCPOLEN_FASTOPEN_BASE 2 206 #define TCPOLEN_EXP_FASTOPEN_BASE 4 207 #define TCPOLEN_EXP_SMC_BASE 6 208 209 /* But this is what stacks really send out. */ 210 #define TCPOLEN_TSTAMP_ALIGNED 12 211 #define TCPOLEN_WSCALE_ALIGNED 4 212 #define TCPOLEN_SACKPERM_ALIGNED 4 213 #define TCPOLEN_SACK_BASE 2 214 #define TCPOLEN_SACK_BASE_ALIGNED 4 215 #define TCPOLEN_SACK_PERBLOCK 8 216 #define TCPOLEN_MD5SIG_ALIGNED 20 217 #define TCPOLEN_MSS_ALIGNED 4 218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8 219 220 /* Flags in tp->nonagle */ 221 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */ 222 #define TCP_NAGLE_CORK 2 /* Socket is corked */ 223 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */ 224 225 /* TCP thin-stream limits */ 226 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */ 227 228 /* TCP initial congestion window as per rfc6928 */ 229 #define TCP_INIT_CWND 10 230 231 /* Bit Flags for sysctl_tcp_fastopen */ 232 #define TFO_CLIENT_ENABLE 1 233 #define TFO_SERVER_ENABLE 2 234 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */ 235 236 /* Accept SYN data w/o any cookie option */ 237 #define TFO_SERVER_COOKIE_NOT_REQD 0x200 238 239 /* Force enable TFO on all listeners, i.e., not requiring the 240 * TCP_FASTOPEN socket option. 241 */ 242 #define TFO_SERVER_WO_SOCKOPT1 0x400 243 244 245 /* sysctl variables for tcp */ 246 extern int sysctl_tcp_max_orphans; 247 extern long sysctl_tcp_mem[3]; 248 249 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */ 250 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */ 251 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */ 252 253 extern atomic_long_t tcp_memory_allocated; 254 extern struct percpu_counter tcp_sockets_allocated; 255 extern unsigned long tcp_memory_pressure; 256 257 /* optimized version of sk_under_memory_pressure() for TCP sockets */ 258 static inline bool tcp_under_memory_pressure(const struct sock *sk) 259 { 260 if (mem_cgroup_sockets_enabled && sk->sk_memcg && 261 mem_cgroup_under_socket_pressure(sk->sk_memcg)) 262 return true; 263 264 return READ_ONCE(tcp_memory_pressure); 265 } 266 /* 267 * The next routines deal with comparing 32 bit unsigned ints 268 * and worry about wraparound (automatic with unsigned arithmetic). 269 */ 270 271 static inline bool before(__u32 seq1, __u32 seq2) 272 { 273 return (__s32)(seq1-seq2) < 0; 274 } 275 #define after(seq2, seq1) before(seq1, seq2) 276 277 /* is s2<=s1<=s3 ? */ 278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3) 279 { 280 return seq3 - seq2 >= seq1 - seq2; 281 } 282 283 static inline bool tcp_out_of_memory(struct sock *sk) 284 { 285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF && 286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2)) 287 return true; 288 return false; 289 } 290 291 void sk_forced_mem_schedule(struct sock *sk, int size); 292 293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift) 294 { 295 struct percpu_counter *ocp = sk->sk_prot->orphan_count; 296 int orphans = percpu_counter_read_positive(ocp); 297 298 if (orphans << shift > sysctl_tcp_max_orphans) { 299 orphans = percpu_counter_sum_positive(ocp); 300 if (orphans << shift > sysctl_tcp_max_orphans) 301 return true; 302 } 303 return false; 304 } 305 306 bool tcp_check_oom(struct sock *sk, int shift); 307 308 309 extern struct proto tcp_prot; 310 311 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field) 312 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field) 313 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field) 314 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val) 315 316 void tcp_tasklet_init(void); 317 318 int tcp_v4_err(struct sk_buff *skb, u32); 319 320 void tcp_shutdown(struct sock *sk, int how); 321 322 int tcp_v4_early_demux(struct sk_buff *skb); 323 int tcp_v4_rcv(struct sk_buff *skb); 324 325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw); 326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size); 328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size, 329 int flags); 330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 331 size_t size, int flags); 332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 333 size_t size, int flags); 334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags); 335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle, 336 int size_goal); 337 void tcp_release_cb(struct sock *sk); 338 void tcp_wfree(struct sk_buff *skb); 339 void tcp_write_timer_handler(struct sock *sk); 340 void tcp_delack_timer_handler(struct sock *sk); 341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg); 342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb); 343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb); 344 void tcp_rcv_space_adjust(struct sock *sk); 345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp); 346 void tcp_twsk_destructor(struct sock *sk); 347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos, 348 struct pipe_inode_info *pipe, size_t len, 349 unsigned int flags); 350 351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks); 352 static inline void tcp_dec_quickack_mode(struct sock *sk, 353 const unsigned int pkts) 354 { 355 struct inet_connection_sock *icsk = inet_csk(sk); 356 357 if (icsk->icsk_ack.quick) { 358 if (pkts >= icsk->icsk_ack.quick) { 359 icsk->icsk_ack.quick = 0; 360 /* Leaving quickack mode we deflate ATO. */ 361 icsk->icsk_ack.ato = TCP_ATO_MIN; 362 } else 363 icsk->icsk_ack.quick -= pkts; 364 } 365 } 366 367 #define TCP_ECN_OK 1 368 #define TCP_ECN_QUEUE_CWR 2 369 #define TCP_ECN_DEMAND_CWR 4 370 #define TCP_ECN_SEEN 8 371 372 enum tcp_tw_status { 373 TCP_TW_SUCCESS = 0, 374 TCP_TW_RST = 1, 375 TCP_TW_ACK = 2, 376 TCP_TW_SYN = 3 377 }; 378 379 380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw, 381 struct sk_buff *skb, 382 const struct tcphdr *th); 383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb, 384 struct request_sock *req, bool fastopen, 385 bool *lost_race); 386 int tcp_child_process(struct sock *parent, struct sock *child, 387 struct sk_buff *skb); 388 void tcp_enter_loss(struct sock *sk); 389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag); 390 void tcp_clear_retrans(struct tcp_sock *tp); 391 void tcp_update_metrics(struct sock *sk); 392 void tcp_init_metrics(struct sock *sk); 393 void tcp_metrics_init(void); 394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst); 395 void tcp_close(struct sock *sk, long timeout); 396 void tcp_init_sock(struct sock *sk); 397 void tcp_init_transfer(struct sock *sk, int bpf_op); 398 __poll_t tcp_poll(struct file *file, struct socket *sock, 399 struct poll_table_struct *wait); 400 int tcp_getsockopt(struct sock *sk, int level, int optname, 401 char __user *optval, int __user *optlen); 402 int tcp_setsockopt(struct sock *sk, int level, int optname, 403 char __user *optval, unsigned int optlen); 404 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 405 char __user *optval, int __user *optlen); 406 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 407 char __user *optval, unsigned int optlen); 408 void tcp_set_keepalive(struct sock *sk, int val); 409 void tcp_syn_ack_timeout(const struct request_sock *req); 410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 411 int flags, int *addr_len); 412 int tcp_set_rcvlowat(struct sock *sk, int val); 413 void tcp_data_ready(struct sock *sk); 414 #ifdef CONFIG_MMU 415 int tcp_mmap(struct file *file, struct socket *sock, 416 struct vm_area_struct *vma); 417 #endif 418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb, 419 struct tcp_options_received *opt_rx, 420 int estab, struct tcp_fastopen_cookie *foc); 421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th); 422 423 /* 424 * BPF SKB-less helpers 425 */ 426 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, 427 struct tcphdr *th, u32 *cookie); 428 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph, 429 struct tcphdr *th, u32 *cookie); 430 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 431 const struct tcp_request_sock_ops *af_ops, 432 struct sock *sk, struct tcphdr *th); 433 /* 434 * TCP v4 functions exported for the inet6 API 435 */ 436 437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb); 438 void tcp_v4_mtu_reduced(struct sock *sk); 439 void tcp_req_err(struct sock *sk, u32 seq, bool abort); 440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb); 441 struct sock *tcp_create_openreq_child(const struct sock *sk, 442 struct request_sock *req, 443 struct sk_buff *skb); 444 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst); 445 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 446 struct request_sock *req, 447 struct dst_entry *dst, 448 struct request_sock *req_unhash, 449 bool *own_req); 450 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb); 451 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len); 452 int tcp_connect(struct sock *sk); 453 enum tcp_synack_type { 454 TCP_SYNACK_NORMAL, 455 TCP_SYNACK_FASTOPEN, 456 TCP_SYNACK_COOKIE, 457 }; 458 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, 459 struct request_sock *req, 460 struct tcp_fastopen_cookie *foc, 461 enum tcp_synack_type synack_type); 462 int tcp_disconnect(struct sock *sk, int flags); 463 464 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb); 465 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size); 466 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb); 467 468 /* From syncookies.c */ 469 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb, 470 struct request_sock *req, 471 struct dst_entry *dst, u32 tsoff); 472 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th, 473 u32 cookie); 474 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb); 475 #ifdef CONFIG_SYN_COOKIES 476 477 /* Syncookies use a monotonic timer which increments every 60 seconds. 478 * This counter is used both as a hash input and partially encoded into 479 * the cookie value. A cookie is only validated further if the delta 480 * between the current counter value and the encoded one is less than this, 481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if 482 * the counter advances immediately after a cookie is generated). 483 */ 484 #define MAX_SYNCOOKIE_AGE 2 485 #define TCP_SYNCOOKIE_PERIOD (60 * HZ) 486 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD) 487 488 /* syncookies: remember time of last synqueue overflow 489 * But do not dirty this field too often (once per second is enough) 490 * It is racy as we do not hold a lock, but race is very minor. 491 */ 492 static inline void tcp_synq_overflow(const struct sock *sk) 493 { 494 unsigned int last_overflow; 495 unsigned int now = jiffies; 496 497 if (sk->sk_reuseport) { 498 struct sock_reuseport *reuse; 499 500 reuse = rcu_dereference(sk->sk_reuseport_cb); 501 if (likely(reuse)) { 502 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 503 if (!time_between32(now, last_overflow, 504 last_overflow + HZ)) 505 WRITE_ONCE(reuse->synq_overflow_ts, now); 506 return; 507 } 508 } 509 510 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 511 if (!time_between32(now, last_overflow, last_overflow + HZ)) 512 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now); 513 } 514 515 /* syncookies: no recent synqueue overflow on this listening socket? */ 516 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) 517 { 518 unsigned int last_overflow; 519 unsigned int now = jiffies; 520 521 if (sk->sk_reuseport) { 522 struct sock_reuseport *reuse; 523 524 reuse = rcu_dereference(sk->sk_reuseport_cb); 525 if (likely(reuse)) { 526 last_overflow = READ_ONCE(reuse->synq_overflow_ts); 527 return !time_between32(now, last_overflow - HZ, 528 last_overflow + 529 TCP_SYNCOOKIE_VALID); 530 } 531 } 532 533 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp); 534 535 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, 536 * then we're under synflood. However, we have to use 537 * 'last_overflow - HZ' as lower bound. That's because a concurrent 538 * tcp_synq_overflow() could update .ts_recent_stamp after we read 539 * jiffies but before we store .ts_recent_stamp into last_overflow, 540 * which could lead to rejecting a valid syncookie. 541 */ 542 return !time_between32(now, last_overflow - HZ, 543 last_overflow + TCP_SYNCOOKIE_VALID); 544 } 545 546 static inline u32 tcp_cookie_time(void) 547 { 548 u64 val = get_jiffies_64(); 549 550 do_div(val, TCP_SYNCOOKIE_PERIOD); 551 return val; 552 } 553 554 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th, 555 u16 *mssp); 556 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss); 557 u64 cookie_init_timestamp(struct request_sock *req, u64 now); 558 bool cookie_timestamp_decode(const struct net *net, 559 struct tcp_options_received *opt); 560 bool cookie_ecn_ok(const struct tcp_options_received *opt, 561 const struct net *net, const struct dst_entry *dst); 562 563 /* From net/ipv6/syncookies.c */ 564 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th, 565 u32 cookie); 566 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb); 567 568 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph, 569 const struct tcphdr *th, u16 *mssp); 570 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss); 571 #endif 572 /* tcp_output.c */ 573 574 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, 575 int nonagle); 576 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 577 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs); 578 void tcp_retransmit_timer(struct sock *sk); 579 void tcp_xmit_retransmit_queue(struct sock *); 580 void tcp_simple_retransmit(struct sock *); 581 void tcp_enter_recovery(struct sock *sk, bool ece_ack); 582 int tcp_trim_head(struct sock *, struct sk_buff *, u32); 583 enum tcp_queue { 584 TCP_FRAG_IN_WRITE_QUEUE, 585 TCP_FRAG_IN_RTX_QUEUE, 586 }; 587 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, 588 struct sk_buff *skb, u32 len, 589 unsigned int mss_now, gfp_t gfp); 590 591 void tcp_send_probe0(struct sock *); 592 void tcp_send_partial(struct sock *); 593 int tcp_write_wakeup(struct sock *, int mib); 594 void tcp_send_fin(struct sock *sk); 595 void tcp_send_active_reset(struct sock *sk, gfp_t priority); 596 int tcp_send_synack(struct sock *); 597 void tcp_push_one(struct sock *, unsigned int mss_now); 598 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt); 599 void tcp_send_ack(struct sock *sk); 600 void tcp_send_delayed_ack(struct sock *sk); 601 void tcp_send_loss_probe(struct sock *sk); 602 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto); 603 void tcp_skb_collapse_tstamp(struct sk_buff *skb, 604 const struct sk_buff *next_skb); 605 606 /* tcp_input.c */ 607 void tcp_rearm_rto(struct sock *sk); 608 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req); 609 void tcp_reset(struct sock *sk); 610 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb); 611 void tcp_fin(struct sock *sk); 612 613 /* tcp_timer.c */ 614 void tcp_init_xmit_timers(struct sock *); 615 static inline void tcp_clear_xmit_timers(struct sock *sk) 616 { 617 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1) 618 __sock_put(sk); 619 620 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1) 621 __sock_put(sk); 622 623 inet_csk_clear_xmit_timers(sk); 624 } 625 626 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu); 627 unsigned int tcp_current_mss(struct sock *sk); 628 629 /* Bound MSS / TSO packet size with the half of the window */ 630 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize) 631 { 632 int cutoff; 633 634 /* When peer uses tiny windows, there is no use in packetizing 635 * to sub-MSS pieces for the sake of SWS or making sure there 636 * are enough packets in the pipe for fast recovery. 637 * 638 * On the other hand, for extremely large MSS devices, handling 639 * smaller than MSS windows in this way does make sense. 640 */ 641 if (tp->max_window > TCP_MSS_DEFAULT) 642 cutoff = (tp->max_window >> 1); 643 else 644 cutoff = tp->max_window; 645 646 if (cutoff && pktsize > cutoff) 647 return max_t(int, cutoff, 68U - tp->tcp_header_len); 648 else 649 return pktsize; 650 } 651 652 /* tcp.c */ 653 void tcp_get_info(struct sock *, struct tcp_info *); 654 655 /* Read 'sendfile()'-style from a TCP socket */ 656 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 657 sk_read_actor_t recv_actor); 658 659 void tcp_initialize_rcv_mss(struct sock *sk); 660 661 int tcp_mtu_to_mss(struct sock *sk, int pmtu); 662 int tcp_mss_to_mtu(struct sock *sk, int mss); 663 void tcp_mtup_init(struct sock *sk); 664 void tcp_init_buffer_space(struct sock *sk); 665 666 static inline void tcp_bound_rto(const struct sock *sk) 667 { 668 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 669 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 670 } 671 672 static inline u32 __tcp_set_rto(const struct tcp_sock *tp) 673 { 674 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us); 675 } 676 677 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd) 678 { 679 tp->pred_flags = htonl((tp->tcp_header_len << 26) | 680 ntohl(TCP_FLAG_ACK) | 681 snd_wnd); 682 } 683 684 static inline void tcp_fast_path_on(struct tcp_sock *tp) 685 { 686 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale); 687 } 688 689 static inline void tcp_fast_path_check(struct sock *sk) 690 { 691 struct tcp_sock *tp = tcp_sk(sk); 692 693 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) && 694 tp->rcv_wnd && 695 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf && 696 !tp->urg_data) 697 tcp_fast_path_on(tp); 698 } 699 700 /* Compute the actual rto_min value */ 701 static inline u32 tcp_rto_min(struct sock *sk) 702 { 703 const struct dst_entry *dst = __sk_dst_get(sk); 704 u32 rto_min = TCP_RTO_MIN; 705 706 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 707 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 708 return rto_min; 709 } 710 711 static inline u32 tcp_rto_min_us(struct sock *sk) 712 { 713 return jiffies_to_usecs(tcp_rto_min(sk)); 714 } 715 716 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst) 717 { 718 return dst_metric_locked(dst, RTAX_CC_ALGO); 719 } 720 721 /* Minimum RTT in usec. ~0 means not available. */ 722 static inline u32 tcp_min_rtt(const struct tcp_sock *tp) 723 { 724 return minmax_get(&tp->rtt_min); 725 } 726 727 /* Compute the actual receive window we are currently advertising. 728 * Rcv_nxt can be after the window if our peer push more data 729 * than the offered window. 730 */ 731 static inline u32 tcp_receive_window(const struct tcp_sock *tp) 732 { 733 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt; 734 735 if (win < 0) 736 win = 0; 737 return (u32) win; 738 } 739 740 /* Choose a new window, without checks for shrinking, and without 741 * scaling applied to the result. The caller does these things 742 * if necessary. This is a "raw" window selection. 743 */ 744 u32 __tcp_select_window(struct sock *sk); 745 746 void tcp_send_window_probe(struct sock *sk); 747 748 /* TCP uses 32bit jiffies to save some space. 749 * Note that this is different from tcp_time_stamp, which 750 * historically has been the same until linux-4.13. 751 */ 752 #define tcp_jiffies32 ((u32)jiffies) 753 754 /* 755 * Deliver a 32bit value for TCP timestamp option (RFC 7323) 756 * It is no longer tied to jiffies, but to 1 ms clock. 757 * Note: double check if you want to use tcp_jiffies32 instead of this. 758 */ 759 #define TCP_TS_HZ 1000 760 761 static inline u64 tcp_clock_ns(void) 762 { 763 return ktime_get_ns(); 764 } 765 766 static inline u64 tcp_clock_us(void) 767 { 768 return div_u64(tcp_clock_ns(), NSEC_PER_USEC); 769 } 770 771 /* This should only be used in contexts where tp->tcp_mstamp is up to date */ 772 static inline u32 tcp_time_stamp(const struct tcp_sock *tp) 773 { 774 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ); 775 } 776 777 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */ 778 static inline u32 tcp_ns_to_ts(u64 ns) 779 { 780 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ); 781 } 782 783 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */ 784 static inline u32 tcp_time_stamp_raw(void) 785 { 786 return tcp_ns_to_ts(tcp_clock_ns()); 787 } 788 789 void tcp_mstamp_refresh(struct tcp_sock *tp); 790 791 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0) 792 { 793 return max_t(s64, t1 - t0, 0); 794 } 795 796 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb) 797 { 798 return tcp_ns_to_ts(skb->skb_mstamp_ns); 799 } 800 801 /* provide the departure time in us unit */ 802 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb) 803 { 804 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC); 805 } 806 807 808 #define tcp_flag_byte(th) (((u_int8_t *)th)[13]) 809 810 #define TCPHDR_FIN 0x01 811 #define TCPHDR_SYN 0x02 812 #define TCPHDR_RST 0x04 813 #define TCPHDR_PSH 0x08 814 #define TCPHDR_ACK 0x10 815 #define TCPHDR_URG 0x20 816 #define TCPHDR_ECE 0x40 817 #define TCPHDR_CWR 0x80 818 819 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR) 820 821 /* This is what the send packet queuing engine uses to pass 822 * TCP per-packet control information to the transmission code. 823 * We also store the host-order sequence numbers in here too. 824 * This is 44 bytes if IPV6 is enabled. 825 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately. 826 */ 827 struct tcp_skb_cb { 828 __u32 seq; /* Starting sequence number */ 829 __u32 end_seq; /* SEQ + FIN + SYN + datalen */ 830 union { 831 /* Note : tcp_tw_isn is used in input path only 832 * (isn chosen by tcp_timewait_state_process()) 833 * 834 * tcp_gso_segs/size are used in write queue only, 835 * cf tcp_skb_pcount()/tcp_skb_mss() 836 */ 837 __u32 tcp_tw_isn; 838 struct { 839 u16 tcp_gso_segs; 840 u16 tcp_gso_size; 841 }; 842 }; 843 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */ 844 845 __u8 sacked; /* State flags for SACK. */ 846 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */ 847 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */ 848 #define TCPCB_LOST 0x04 /* SKB is lost */ 849 #define TCPCB_TAGBITS 0x07 /* All tag bits */ 850 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */ 851 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */ 852 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \ 853 TCPCB_REPAIRED) 854 855 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */ 856 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */ 857 eor:1, /* Is skb MSG_EOR marked? */ 858 has_rxtstamp:1, /* SKB has a RX timestamp */ 859 unused:5; 860 __u32 ack_seq; /* Sequence number ACK'd */ 861 union { 862 struct { 863 /* There is space for up to 24 bytes */ 864 __u32 in_flight:30,/* Bytes in flight at transmit */ 865 is_app_limited:1, /* cwnd not fully used? */ 866 unused:1; 867 /* pkts S/ACKed so far upon tx of skb, incl retrans: */ 868 __u32 delivered; 869 /* start of send pipeline phase */ 870 u64 first_tx_mstamp; 871 /* when we reached the "delivered" count */ 872 u64 delivered_mstamp; 873 } tx; /* only used for outgoing skbs */ 874 union { 875 struct inet_skb_parm h4; 876 #if IS_ENABLED(CONFIG_IPV6) 877 struct inet6_skb_parm h6; 878 #endif 879 } header; /* For incoming skbs */ 880 struct { 881 __u32 flags; 882 struct sock *sk_redir; 883 void *data_end; 884 } bpf; 885 }; 886 }; 887 888 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0])) 889 890 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) 891 { 892 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); 893 } 894 895 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb) 896 { 897 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS; 898 } 899 900 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb) 901 { 902 return TCP_SKB_CB(skb)->bpf.sk_redir; 903 } 904 905 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb) 906 { 907 TCP_SKB_CB(skb)->bpf.sk_redir = NULL; 908 } 909 910 #if IS_ENABLED(CONFIG_IPV6) 911 /* This is the variant of inet6_iif() that must be used by TCP, 912 * as TCP moves IP6CB into a different location in skb->cb[] 913 */ 914 static inline int tcp_v6_iif(const struct sk_buff *skb) 915 { 916 return TCP_SKB_CB(skb)->header.h6.iif; 917 } 918 919 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb) 920 { 921 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags); 922 923 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif; 924 } 925 926 /* TCP_SKB_CB reference means this can not be used from early demux */ 927 static inline int tcp_v6_sdif(const struct sk_buff *skb) 928 { 929 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 930 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags)) 931 return TCP_SKB_CB(skb)->header.h6.iif; 932 #endif 933 return 0; 934 } 935 #endif 936 937 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb) 938 { 939 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 940 if (!net->ipv4.sysctl_tcp_l3mdev_accept && 941 skb && ipv4_l3mdev_skb(IPCB(skb)->flags)) 942 return true; 943 #endif 944 return false; 945 } 946 947 /* TCP_SKB_CB reference means this can not be used from early demux */ 948 static inline int tcp_v4_sdif(struct sk_buff *skb) 949 { 950 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) 951 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags)) 952 return TCP_SKB_CB(skb)->header.h4.iif; 953 #endif 954 return 0; 955 } 956 957 /* Due to TSO, an SKB can be composed of multiple actual 958 * packets. To keep these tracked properly, we use this. 959 */ 960 static inline int tcp_skb_pcount(const struct sk_buff *skb) 961 { 962 return TCP_SKB_CB(skb)->tcp_gso_segs; 963 } 964 965 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs) 966 { 967 TCP_SKB_CB(skb)->tcp_gso_segs = segs; 968 } 969 970 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs) 971 { 972 TCP_SKB_CB(skb)->tcp_gso_segs += segs; 973 } 974 975 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */ 976 static inline int tcp_skb_mss(const struct sk_buff *skb) 977 { 978 return TCP_SKB_CB(skb)->tcp_gso_size; 979 } 980 981 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb) 982 { 983 return likely(!TCP_SKB_CB(skb)->eor); 984 } 985 986 static inline bool tcp_skb_can_collapse(const struct sk_buff *to, 987 const struct sk_buff *from) 988 { 989 return likely(tcp_skb_can_collapse_to(to) && 990 mptcp_skb_can_collapse(to, from)); 991 } 992 993 /* Events passed to congestion control interface */ 994 enum tcp_ca_event { 995 CA_EVENT_TX_START, /* first transmit when no packets in flight */ 996 CA_EVENT_CWND_RESTART, /* congestion window restart */ 997 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */ 998 CA_EVENT_LOSS, /* loss timeout */ 999 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */ 1000 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */ 1001 }; 1002 1003 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */ 1004 enum tcp_ca_ack_event_flags { 1005 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */ 1006 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */ 1007 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */ 1008 }; 1009 1010 /* 1011 * Interface for adding new TCP congestion control handlers 1012 */ 1013 #define TCP_CA_NAME_MAX 16 1014 #define TCP_CA_MAX 128 1015 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX) 1016 1017 #define TCP_CA_UNSPEC 0 1018 1019 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */ 1020 #define TCP_CONG_NON_RESTRICTED 0x1 1021 /* Requires ECN/ECT set on all packets */ 1022 #define TCP_CONG_NEEDS_ECN 0x2 1023 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN) 1024 1025 union tcp_cc_info; 1026 1027 struct ack_sample { 1028 u32 pkts_acked; 1029 s32 rtt_us; 1030 u32 in_flight; 1031 }; 1032 1033 /* A rate sample measures the number of (original/retransmitted) data 1034 * packets delivered "delivered" over an interval of time "interval_us". 1035 * The tcp_rate.c code fills in the rate sample, and congestion 1036 * control modules that define a cong_control function to run at the end 1037 * of ACK processing can optionally chose to consult this sample when 1038 * setting cwnd and pacing rate. 1039 * A sample is invalid if "delivered" or "interval_us" is negative. 1040 */ 1041 struct rate_sample { 1042 u64 prior_mstamp; /* starting timestamp for interval */ 1043 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */ 1044 s32 delivered; /* number of packets delivered over interval */ 1045 long interval_us; /* time for tp->delivered to incr "delivered" */ 1046 u32 snd_interval_us; /* snd interval for delivered packets */ 1047 u32 rcv_interval_us; /* rcv interval for delivered packets */ 1048 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 1049 int losses; /* number of packets marked lost upon ACK */ 1050 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */ 1051 u32 prior_in_flight; /* in flight before this ACK */ 1052 bool is_app_limited; /* is sample from packet with bubble in pipe? */ 1053 bool is_retrans; /* is sample from retransmission? */ 1054 bool is_ack_delayed; /* is this (likely) a delayed ACK? */ 1055 }; 1056 1057 struct tcp_congestion_ops { 1058 struct list_head list; 1059 u32 key; 1060 u32 flags; 1061 1062 /* initialize private data (optional) */ 1063 void (*init)(struct sock *sk); 1064 /* cleanup private data (optional) */ 1065 void (*release)(struct sock *sk); 1066 1067 /* return slow start threshold (required) */ 1068 u32 (*ssthresh)(struct sock *sk); 1069 /* do new cwnd calculation (required) */ 1070 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked); 1071 /* call before changing ca_state (optional) */ 1072 void (*set_state)(struct sock *sk, u8 new_state); 1073 /* call when cwnd event occurs (optional) */ 1074 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev); 1075 /* call when ack arrives (optional) */ 1076 void (*in_ack_event)(struct sock *sk, u32 flags); 1077 /* new value of cwnd after loss (required) */ 1078 u32 (*undo_cwnd)(struct sock *sk); 1079 /* hook for packet ack accounting (optional) */ 1080 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample); 1081 /* override sysctl_tcp_min_tso_segs */ 1082 u32 (*min_tso_segs)(struct sock *sk); 1083 /* returns the multiplier used in tcp_sndbuf_expand (optional) */ 1084 u32 (*sndbuf_expand)(struct sock *sk); 1085 /* call when packets are delivered to update cwnd and pacing rate, 1086 * after all the ca_state processing. (optional) 1087 */ 1088 void (*cong_control)(struct sock *sk, const struct rate_sample *rs); 1089 /* get info for inet_diag (optional) */ 1090 size_t (*get_info)(struct sock *sk, u32 ext, int *attr, 1091 union tcp_cc_info *info); 1092 1093 char name[TCP_CA_NAME_MAX]; 1094 struct module *owner; 1095 }; 1096 1097 int tcp_register_congestion_control(struct tcp_congestion_ops *type); 1098 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type); 1099 1100 void tcp_assign_congestion_control(struct sock *sk); 1101 void tcp_init_congestion_control(struct sock *sk); 1102 void tcp_cleanup_congestion_control(struct sock *sk); 1103 int tcp_set_default_congestion_control(struct net *net, const char *name); 1104 void tcp_get_default_congestion_control(struct net *net, char *name); 1105 void tcp_get_available_congestion_control(char *buf, size_t len); 1106 void tcp_get_allowed_congestion_control(char *buf, size_t len); 1107 int tcp_set_allowed_congestion_control(char *allowed); 1108 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, 1109 bool reinit, bool cap_net_admin); 1110 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked); 1111 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked); 1112 1113 u32 tcp_reno_ssthresh(struct sock *sk); 1114 u32 tcp_reno_undo_cwnd(struct sock *sk); 1115 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked); 1116 extern struct tcp_congestion_ops tcp_reno; 1117 1118 struct tcp_congestion_ops *tcp_ca_find(const char *name); 1119 struct tcp_congestion_ops *tcp_ca_find_key(u32 key); 1120 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca); 1121 #ifdef CONFIG_INET 1122 char *tcp_ca_get_name_by_key(u32 key, char *buffer); 1123 #else 1124 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer) 1125 { 1126 return NULL; 1127 } 1128 #endif 1129 1130 static inline bool tcp_ca_needs_ecn(const struct sock *sk) 1131 { 1132 const struct inet_connection_sock *icsk = inet_csk(sk); 1133 1134 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN; 1135 } 1136 1137 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state) 1138 { 1139 struct inet_connection_sock *icsk = inet_csk(sk); 1140 1141 if (icsk->icsk_ca_ops->set_state) 1142 icsk->icsk_ca_ops->set_state(sk, ca_state); 1143 icsk->icsk_ca_state = ca_state; 1144 } 1145 1146 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event) 1147 { 1148 const struct inet_connection_sock *icsk = inet_csk(sk); 1149 1150 if (icsk->icsk_ca_ops->cwnd_event) 1151 icsk->icsk_ca_ops->cwnd_event(sk, event); 1152 } 1153 1154 /* From tcp_rate.c */ 1155 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb); 1156 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb, 1157 struct rate_sample *rs); 1158 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost, 1159 bool is_sack_reneg, struct rate_sample *rs); 1160 void tcp_rate_check_app_limited(struct sock *sk); 1161 1162 /* These functions determine how the current flow behaves in respect of SACK 1163 * handling. SACK is negotiated with the peer, and therefore it can vary 1164 * between different flows. 1165 * 1166 * tcp_is_sack - SACK enabled 1167 * tcp_is_reno - No SACK 1168 */ 1169 static inline int tcp_is_sack(const struct tcp_sock *tp) 1170 { 1171 return likely(tp->rx_opt.sack_ok); 1172 } 1173 1174 static inline bool tcp_is_reno(const struct tcp_sock *tp) 1175 { 1176 return !tcp_is_sack(tp); 1177 } 1178 1179 static inline unsigned int tcp_left_out(const struct tcp_sock *tp) 1180 { 1181 return tp->sacked_out + tp->lost_out; 1182 } 1183 1184 /* This determines how many packets are "in the network" to the best 1185 * of our knowledge. In many cases it is conservative, but where 1186 * detailed information is available from the receiver (via SACK 1187 * blocks etc.) we can make more aggressive calculations. 1188 * 1189 * Use this for decisions involving congestion control, use just 1190 * tp->packets_out to determine if the send queue is empty or not. 1191 * 1192 * Read this equation as: 1193 * 1194 * "Packets sent once on transmission queue" MINUS 1195 * "Packets left network, but not honestly ACKed yet" PLUS 1196 * "Packets fast retransmitted" 1197 */ 1198 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp) 1199 { 1200 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out; 1201 } 1202 1203 #define TCP_INFINITE_SSTHRESH 0x7fffffff 1204 1205 static inline bool tcp_in_slow_start(const struct tcp_sock *tp) 1206 { 1207 return tp->snd_cwnd < tp->snd_ssthresh; 1208 } 1209 1210 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp) 1211 { 1212 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH; 1213 } 1214 1215 static inline bool tcp_in_cwnd_reduction(const struct sock *sk) 1216 { 1217 return (TCPF_CA_CWR | TCPF_CA_Recovery) & 1218 (1 << inet_csk(sk)->icsk_ca_state); 1219 } 1220 1221 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd. 1222 * The exception is cwnd reduction phase, when cwnd is decreasing towards 1223 * ssthresh. 1224 */ 1225 static inline __u32 tcp_current_ssthresh(const struct sock *sk) 1226 { 1227 const struct tcp_sock *tp = tcp_sk(sk); 1228 1229 if (tcp_in_cwnd_reduction(sk)) 1230 return tp->snd_ssthresh; 1231 else 1232 return max(tp->snd_ssthresh, 1233 ((tp->snd_cwnd >> 1) + 1234 (tp->snd_cwnd >> 2))); 1235 } 1236 1237 /* Use define here intentionally to get WARN_ON location shown at the caller */ 1238 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out) 1239 1240 void tcp_enter_cwr(struct sock *sk); 1241 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst); 1242 1243 /* The maximum number of MSS of available cwnd for which TSO defers 1244 * sending if not using sysctl_tcp_tso_win_divisor. 1245 */ 1246 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp) 1247 { 1248 return 3; 1249 } 1250 1251 /* Returns end sequence number of the receiver's advertised window */ 1252 static inline u32 tcp_wnd_end(const struct tcp_sock *tp) 1253 { 1254 return tp->snd_una + tp->snd_wnd; 1255 } 1256 1257 /* We follow the spirit of RFC2861 to validate cwnd but implement a more 1258 * flexible approach. The RFC suggests cwnd should not be raised unless 1259 * it was fully used previously. And that's exactly what we do in 1260 * congestion avoidance mode. But in slow start we allow cwnd to grow 1261 * as long as the application has used half the cwnd. 1262 * Example : 1263 * cwnd is 10 (IW10), but application sends 9 frames. 1264 * We allow cwnd to reach 18 when all frames are ACKed. 1265 * This check is safe because it's as aggressive as slow start which already 1266 * risks 100% overshoot. The advantage is that we discourage application to 1267 * either send more filler packets or data to artificially blow up the cwnd 1268 * usage, and allow application-limited process to probe bw more aggressively. 1269 */ 1270 static inline bool tcp_is_cwnd_limited(const struct sock *sk) 1271 { 1272 const struct tcp_sock *tp = tcp_sk(sk); 1273 1274 /* If in slow start, ensure cwnd grows to twice what was ACKed. */ 1275 if (tcp_in_slow_start(tp)) 1276 return tp->snd_cwnd < 2 * tp->max_packets_out; 1277 1278 return tp->is_cwnd_limited; 1279 } 1280 1281 /* BBR congestion control needs pacing. 1282 * Same remark for SO_MAX_PACING_RATE. 1283 * sch_fq packet scheduler is efficiently handling pacing, 1284 * but is not always installed/used. 1285 * Return true if TCP stack should pace packets itself. 1286 */ 1287 static inline bool tcp_needs_internal_pacing(const struct sock *sk) 1288 { 1289 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED; 1290 } 1291 1292 /* Return in jiffies the delay before one skb is sent. 1293 * If @skb is NULL, we look at EDT for next packet being sent on the socket. 1294 */ 1295 static inline unsigned long tcp_pacing_delay(const struct sock *sk, 1296 const struct sk_buff *skb) 1297 { 1298 s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns; 1299 1300 pacing_delay -= tcp_sk(sk)->tcp_clock_cache; 1301 1302 return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0; 1303 } 1304 1305 static inline void tcp_reset_xmit_timer(struct sock *sk, 1306 const int what, 1307 unsigned long when, 1308 const unsigned long max_when, 1309 const struct sk_buff *skb) 1310 { 1311 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb), 1312 max_when); 1313 } 1314 1315 /* Something is really bad, we could not queue an additional packet, 1316 * because qdisc is full or receiver sent a 0 window, or we are paced. 1317 * We do not want to add fuel to the fire, or abort too early, 1318 * so make sure the timer we arm now is at least 200ms in the future, 1319 * regardless of current icsk_rto value (as it could be ~2ms) 1320 */ 1321 static inline unsigned long tcp_probe0_base(const struct sock *sk) 1322 { 1323 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN); 1324 } 1325 1326 /* Variant of inet_csk_rto_backoff() used for zero window probes */ 1327 static inline unsigned long tcp_probe0_when(const struct sock *sk, 1328 unsigned long max_when) 1329 { 1330 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff; 1331 1332 return (unsigned long)min_t(u64, when, max_when); 1333 } 1334 1335 static inline void tcp_check_probe_timer(struct sock *sk) 1336 { 1337 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending) 1338 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 1339 tcp_probe0_base(sk), TCP_RTO_MAX, 1340 NULL); 1341 } 1342 1343 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq) 1344 { 1345 tp->snd_wl1 = seq; 1346 } 1347 1348 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq) 1349 { 1350 tp->snd_wl1 = seq; 1351 } 1352 1353 /* 1354 * Calculate(/check) TCP checksum 1355 */ 1356 static inline __sum16 tcp_v4_check(int len, __be32 saddr, 1357 __be32 daddr, __wsum base) 1358 { 1359 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base); 1360 } 1361 1362 static inline bool tcp_checksum_complete(struct sk_buff *skb) 1363 { 1364 return !skb_csum_unnecessary(skb) && 1365 __skb_checksum_complete(skb); 1366 } 1367 1368 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb); 1369 int tcp_filter(struct sock *sk, struct sk_buff *skb); 1370 void tcp_set_state(struct sock *sk, int state); 1371 void tcp_done(struct sock *sk); 1372 int tcp_abort(struct sock *sk, int err); 1373 1374 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt) 1375 { 1376 rx_opt->dsack = 0; 1377 rx_opt->num_sacks = 0; 1378 } 1379 1380 u32 tcp_default_init_rwnd(u32 mss); 1381 void tcp_cwnd_restart(struct sock *sk, s32 delta); 1382 1383 static inline void tcp_slow_start_after_idle_check(struct sock *sk) 1384 { 1385 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 s32 delta; 1388 1389 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out || 1390 ca_ops->cong_control) 1391 return; 1392 delta = tcp_jiffies32 - tp->lsndtime; 1393 if (delta > inet_csk(sk)->icsk_rto) 1394 tcp_cwnd_restart(sk, delta); 1395 } 1396 1397 /* Determine a window scaling and initial window to offer. */ 1398 void tcp_select_initial_window(const struct sock *sk, int __space, 1399 __u32 mss, __u32 *rcv_wnd, 1400 __u32 *window_clamp, int wscale_ok, 1401 __u8 *rcv_wscale, __u32 init_rcv_wnd); 1402 1403 static inline int tcp_win_from_space(const struct sock *sk, int space) 1404 { 1405 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale; 1406 1407 return tcp_adv_win_scale <= 0 ? 1408 (space>>(-tcp_adv_win_scale)) : 1409 space - (space>>tcp_adv_win_scale); 1410 } 1411 1412 /* Note: caller must be prepared to deal with negative returns */ 1413 static inline int tcp_space(const struct sock *sk) 1414 { 1415 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) - 1416 READ_ONCE(sk->sk_backlog.len) - 1417 atomic_read(&sk->sk_rmem_alloc)); 1418 } 1419 1420 static inline int tcp_full_space(const struct sock *sk) 1421 { 1422 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf)); 1423 } 1424 1425 extern void tcp_openreq_init_rwin(struct request_sock *req, 1426 const struct sock *sk_listener, 1427 const struct dst_entry *dst); 1428 1429 void tcp_enter_memory_pressure(struct sock *sk); 1430 void tcp_leave_memory_pressure(struct sock *sk); 1431 1432 static inline int keepalive_intvl_when(const struct tcp_sock *tp) 1433 { 1434 struct net *net = sock_net((struct sock *)tp); 1435 1436 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl; 1437 } 1438 1439 static inline int keepalive_time_when(const struct tcp_sock *tp) 1440 { 1441 struct net *net = sock_net((struct sock *)tp); 1442 1443 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time; 1444 } 1445 1446 static inline int keepalive_probes(const struct tcp_sock *tp) 1447 { 1448 struct net *net = sock_net((struct sock *)tp); 1449 1450 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes; 1451 } 1452 1453 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp) 1454 { 1455 const struct inet_connection_sock *icsk = &tp->inet_conn; 1456 1457 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime, 1458 tcp_jiffies32 - tp->rcv_tstamp); 1459 } 1460 1461 static inline int tcp_fin_time(const struct sock *sk) 1462 { 1463 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout; 1464 const int rto = inet_csk(sk)->icsk_rto; 1465 1466 if (fin_timeout < (rto << 2) - (rto >> 1)) 1467 fin_timeout = (rto << 2) - (rto >> 1); 1468 1469 return fin_timeout; 1470 } 1471 1472 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt, 1473 int paws_win) 1474 { 1475 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win) 1476 return true; 1477 if (unlikely(!time_before32(ktime_get_seconds(), 1478 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))) 1479 return true; 1480 /* 1481 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0, 1482 * then following tcp messages have valid values. Ignore 0 value, 1483 * or else 'negative' tsval might forbid us to accept their packets. 1484 */ 1485 if (!rx_opt->ts_recent) 1486 return true; 1487 return false; 1488 } 1489 1490 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt, 1491 int rst) 1492 { 1493 if (tcp_paws_check(rx_opt, 0)) 1494 return false; 1495 1496 /* RST segments are not recommended to carry timestamp, 1497 and, if they do, it is recommended to ignore PAWS because 1498 "their cleanup function should take precedence over timestamps." 1499 Certainly, it is mistake. It is necessary to understand the reasons 1500 of this constraint to relax it: if peer reboots, clock may go 1501 out-of-sync and half-open connections will not be reset. 1502 Actually, the problem would be not existing if all 1503 the implementations followed draft about maintaining clock 1504 via reboots. Linux-2.2 DOES NOT! 1505 1506 However, we can relax time bounds for RST segments to MSL. 1507 */ 1508 if (rst && !time_before32(ktime_get_seconds(), 1509 rx_opt->ts_recent_stamp + TCP_PAWS_MSL)) 1510 return false; 1511 return true; 1512 } 1513 1514 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 1515 int mib_idx, u32 *last_oow_ack_time); 1516 1517 static inline void tcp_mib_init(struct net *net) 1518 { 1519 /* See RFC 2012 */ 1520 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1); 1521 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ); 1522 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ); 1523 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1); 1524 } 1525 1526 /* from STCP */ 1527 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp) 1528 { 1529 tp->lost_skb_hint = NULL; 1530 } 1531 1532 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp) 1533 { 1534 tcp_clear_retrans_hints_partial(tp); 1535 tp->retransmit_skb_hint = NULL; 1536 } 1537 1538 union tcp_md5_addr { 1539 struct in_addr a4; 1540 #if IS_ENABLED(CONFIG_IPV6) 1541 struct in6_addr a6; 1542 #endif 1543 }; 1544 1545 /* - key database */ 1546 struct tcp_md5sig_key { 1547 struct hlist_node node; 1548 u8 keylen; 1549 u8 family; /* AF_INET or AF_INET6 */ 1550 u8 prefixlen; 1551 union tcp_md5_addr addr; 1552 int l3index; /* set if key added with L3 scope */ 1553 u8 key[TCP_MD5SIG_MAXKEYLEN]; 1554 struct rcu_head rcu; 1555 }; 1556 1557 /* - sock block */ 1558 struct tcp_md5sig_info { 1559 struct hlist_head head; 1560 struct rcu_head rcu; 1561 }; 1562 1563 /* - pseudo header */ 1564 struct tcp4_pseudohdr { 1565 __be32 saddr; 1566 __be32 daddr; 1567 __u8 pad; 1568 __u8 protocol; 1569 __be16 len; 1570 }; 1571 1572 struct tcp6_pseudohdr { 1573 struct in6_addr saddr; 1574 struct in6_addr daddr; 1575 __be32 len; 1576 __be32 protocol; /* including padding */ 1577 }; 1578 1579 union tcp_md5sum_block { 1580 struct tcp4_pseudohdr ip4; 1581 #if IS_ENABLED(CONFIG_IPV6) 1582 struct tcp6_pseudohdr ip6; 1583 #endif 1584 }; 1585 1586 /* - pool: digest algorithm, hash description and scratch buffer */ 1587 struct tcp_md5sig_pool { 1588 struct ahash_request *md5_req; 1589 void *scratch; 1590 }; 1591 1592 /* - functions */ 1593 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1594 const struct sock *sk, const struct sk_buff *skb); 1595 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1596 int family, u8 prefixlen, int l3index, 1597 const u8 *newkey, u8 newkeylen, gfp_t gfp); 1598 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, 1599 int family, u8 prefixlen, int l3index); 1600 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1601 const struct sock *addr_sk); 1602 1603 #ifdef CONFIG_TCP_MD5SIG 1604 #include <linux/jump_label.h> 1605 extern struct static_key_false tcp_md5_needed; 1606 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, 1607 const union tcp_md5_addr *addr, 1608 int family); 1609 static inline struct tcp_md5sig_key * 1610 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1611 const union tcp_md5_addr *addr, int family) 1612 { 1613 if (!static_branch_unlikely(&tcp_md5_needed)) 1614 return NULL; 1615 return __tcp_md5_do_lookup(sk, l3index, addr, family); 1616 } 1617 1618 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key) 1619 #else 1620 static inline struct tcp_md5sig_key * 1621 tcp_md5_do_lookup(const struct sock *sk, int l3index, 1622 const union tcp_md5_addr *addr, int family) 1623 { 1624 return NULL; 1625 } 1626 #define tcp_twsk_md5_key(twsk) NULL 1627 #endif 1628 1629 bool tcp_alloc_md5sig_pool(void); 1630 1631 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void); 1632 static inline void tcp_put_md5sig_pool(void) 1633 { 1634 local_bh_enable(); 1635 } 1636 1637 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *, 1638 unsigned int header_len); 1639 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, 1640 const struct tcp_md5sig_key *key); 1641 1642 /* From tcp_fastopen.c */ 1643 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss, 1644 struct tcp_fastopen_cookie *cookie); 1645 void tcp_fastopen_cache_set(struct sock *sk, u16 mss, 1646 struct tcp_fastopen_cookie *cookie, bool syn_lost, 1647 u16 try_exp); 1648 struct tcp_fastopen_request { 1649 /* Fast Open cookie. Size 0 means a cookie request */ 1650 struct tcp_fastopen_cookie cookie; 1651 struct msghdr *data; /* data in MSG_FASTOPEN */ 1652 size_t size; 1653 int copied; /* queued in tcp_connect() */ 1654 struct ubuf_info *uarg; 1655 }; 1656 void tcp_free_fastopen_req(struct tcp_sock *tp); 1657 void tcp_fastopen_destroy_cipher(struct sock *sk); 1658 void tcp_fastopen_ctx_destroy(struct net *net); 1659 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, 1660 void *primary_key, void *backup_key); 1661 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb); 1662 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, 1663 struct request_sock *req, 1664 struct tcp_fastopen_cookie *foc, 1665 const struct dst_entry *dst); 1666 void tcp_fastopen_init_key_once(struct net *net); 1667 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, 1668 struct tcp_fastopen_cookie *cookie); 1669 bool tcp_fastopen_defer_connect(struct sock *sk, int *err); 1670 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t) 1671 #define TCP_FASTOPEN_KEY_MAX 2 1672 #define TCP_FASTOPEN_KEY_BUF_LENGTH \ 1673 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX) 1674 1675 /* Fastopen key context */ 1676 struct tcp_fastopen_context { 1677 siphash_key_t key[TCP_FASTOPEN_KEY_MAX]; 1678 int num; 1679 struct rcu_head rcu; 1680 }; 1681 1682 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout; 1683 void tcp_fastopen_active_disable(struct sock *sk); 1684 bool tcp_fastopen_active_should_disable(struct sock *sk); 1685 void tcp_fastopen_active_disable_ofo_check(struct sock *sk); 1686 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired); 1687 1688 /* Caller needs to wrap with rcu_read_(un)lock() */ 1689 static inline 1690 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk) 1691 { 1692 struct tcp_fastopen_context *ctx; 1693 1694 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); 1695 if (!ctx) 1696 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); 1697 return ctx; 1698 } 1699 1700 static inline 1701 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc, 1702 const struct tcp_fastopen_cookie *orig) 1703 { 1704 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE && 1705 orig->len == foc->len && 1706 !memcmp(orig->val, foc->val, foc->len)) 1707 return true; 1708 return false; 1709 } 1710 1711 static inline 1712 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx) 1713 { 1714 return ctx->num; 1715 } 1716 1717 /* Latencies incurred by various limits for a sender. They are 1718 * chronograph-like stats that are mutually exclusive. 1719 */ 1720 enum tcp_chrono { 1721 TCP_CHRONO_UNSPEC, 1722 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */ 1723 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */ 1724 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */ 1725 __TCP_CHRONO_MAX, 1726 }; 1727 1728 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type); 1729 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type); 1730 1731 /* This helper is needed, because skb->tcp_tsorted_anchor uses 1732 * the same memory storage than skb->destructor/_skb_refdst 1733 */ 1734 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb) 1735 { 1736 skb->destructor = NULL; 1737 skb->_skb_refdst = 0UL; 1738 } 1739 1740 #define tcp_skb_tsorted_save(skb) { \ 1741 unsigned long _save = skb->_skb_refdst; \ 1742 skb->_skb_refdst = 0UL; 1743 1744 #define tcp_skb_tsorted_restore(skb) \ 1745 skb->_skb_refdst = _save; \ 1746 } 1747 1748 void tcp_write_queue_purge(struct sock *sk); 1749 1750 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk) 1751 { 1752 return skb_rb_first(&sk->tcp_rtx_queue); 1753 } 1754 1755 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk) 1756 { 1757 return skb_rb_last(&sk->tcp_rtx_queue); 1758 } 1759 1760 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk) 1761 { 1762 return skb_peek(&sk->sk_write_queue); 1763 } 1764 1765 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk) 1766 { 1767 return skb_peek_tail(&sk->sk_write_queue); 1768 } 1769 1770 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \ 1771 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp) 1772 1773 static inline struct sk_buff *tcp_send_head(const struct sock *sk) 1774 { 1775 return skb_peek(&sk->sk_write_queue); 1776 } 1777 1778 static inline bool tcp_skb_is_last(const struct sock *sk, 1779 const struct sk_buff *skb) 1780 { 1781 return skb_queue_is_last(&sk->sk_write_queue, skb); 1782 } 1783 1784 /** 1785 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue 1786 * @sk: socket 1787 * 1788 * Since the write queue can have a temporary empty skb in it, 1789 * we must not use "return skb_queue_empty(&sk->sk_write_queue)" 1790 */ 1791 static inline bool tcp_write_queue_empty(const struct sock *sk) 1792 { 1793 const struct tcp_sock *tp = tcp_sk(sk); 1794 1795 return tp->write_seq == tp->snd_nxt; 1796 } 1797 1798 static inline bool tcp_rtx_queue_empty(const struct sock *sk) 1799 { 1800 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue); 1801 } 1802 1803 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk) 1804 { 1805 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk); 1806 } 1807 1808 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb) 1809 { 1810 __skb_queue_tail(&sk->sk_write_queue, skb); 1811 1812 /* Queue it, remembering where we must start sending. */ 1813 if (sk->sk_write_queue.next == skb) 1814 tcp_chrono_start(sk, TCP_CHRONO_BUSY); 1815 } 1816 1817 /* Insert new before skb on the write queue of sk. */ 1818 static inline void tcp_insert_write_queue_before(struct sk_buff *new, 1819 struct sk_buff *skb, 1820 struct sock *sk) 1821 { 1822 __skb_queue_before(&sk->sk_write_queue, skb, new); 1823 } 1824 1825 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk) 1826 { 1827 tcp_skb_tsorted_anchor_cleanup(skb); 1828 __skb_unlink(skb, &sk->sk_write_queue); 1829 } 1830 1831 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb); 1832 1833 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk) 1834 { 1835 tcp_skb_tsorted_anchor_cleanup(skb); 1836 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue); 1837 } 1838 1839 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk) 1840 { 1841 list_del(&skb->tcp_tsorted_anchor); 1842 tcp_rtx_queue_unlink(skb, sk); 1843 sk_wmem_free_skb(sk, skb); 1844 } 1845 1846 static inline void tcp_push_pending_frames(struct sock *sk) 1847 { 1848 if (tcp_send_head(sk)) { 1849 struct tcp_sock *tp = tcp_sk(sk); 1850 1851 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle); 1852 } 1853 } 1854 1855 /* Start sequence of the skb just after the highest skb with SACKed 1856 * bit, valid only if sacked_out > 0 or when the caller has ensured 1857 * validity by itself. 1858 */ 1859 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp) 1860 { 1861 if (!tp->sacked_out) 1862 return tp->snd_una; 1863 1864 if (tp->highest_sack == NULL) 1865 return tp->snd_nxt; 1866 1867 return TCP_SKB_CB(tp->highest_sack)->seq; 1868 } 1869 1870 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb) 1871 { 1872 tcp_sk(sk)->highest_sack = skb_rb_next(skb); 1873 } 1874 1875 static inline struct sk_buff *tcp_highest_sack(struct sock *sk) 1876 { 1877 return tcp_sk(sk)->highest_sack; 1878 } 1879 1880 static inline void tcp_highest_sack_reset(struct sock *sk) 1881 { 1882 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk); 1883 } 1884 1885 /* Called when old skb is about to be deleted and replaced by new skb */ 1886 static inline void tcp_highest_sack_replace(struct sock *sk, 1887 struct sk_buff *old, 1888 struct sk_buff *new) 1889 { 1890 if (old == tcp_highest_sack(sk)) 1891 tcp_sk(sk)->highest_sack = new; 1892 } 1893 1894 /* This helper checks if socket has IP_TRANSPARENT set */ 1895 static inline bool inet_sk_transparent(const struct sock *sk) 1896 { 1897 switch (sk->sk_state) { 1898 case TCP_TIME_WAIT: 1899 return inet_twsk(sk)->tw_transparent; 1900 case TCP_NEW_SYN_RECV: 1901 return inet_rsk(inet_reqsk(sk))->no_srccheck; 1902 } 1903 return inet_sk(sk)->transparent; 1904 } 1905 1906 /* Determines whether this is a thin stream (which may suffer from 1907 * increased latency). Used to trigger latency-reducing mechanisms. 1908 */ 1909 static inline bool tcp_stream_is_thin(struct tcp_sock *tp) 1910 { 1911 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp); 1912 } 1913 1914 /* /proc */ 1915 enum tcp_seq_states { 1916 TCP_SEQ_STATE_LISTENING, 1917 TCP_SEQ_STATE_ESTABLISHED, 1918 }; 1919 1920 void *tcp_seq_start(struct seq_file *seq, loff_t *pos); 1921 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos); 1922 void tcp_seq_stop(struct seq_file *seq, void *v); 1923 1924 struct tcp_seq_afinfo { 1925 sa_family_t family; 1926 }; 1927 1928 struct tcp_iter_state { 1929 struct seq_net_private p; 1930 enum tcp_seq_states state; 1931 struct sock *syn_wait_sk; 1932 int bucket, offset, sbucket, num; 1933 loff_t last_pos; 1934 }; 1935 1936 extern struct request_sock_ops tcp_request_sock_ops; 1937 extern struct request_sock_ops tcp6_request_sock_ops; 1938 1939 void tcp_v4_destroy_sock(struct sock *sk); 1940 1941 struct sk_buff *tcp_gso_segment(struct sk_buff *skb, 1942 netdev_features_t features); 1943 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb); 1944 int tcp_gro_complete(struct sk_buff *skb); 1945 1946 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr); 1947 1948 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp) 1949 { 1950 struct net *net = sock_net((struct sock *)tp); 1951 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat; 1952 } 1953 1954 /* @wake is one when sk_stream_write_space() calls us. 1955 * This sends EPOLLOUT only if notsent_bytes is half the limit. 1956 * This mimics the strategy used in sock_def_write_space(). 1957 */ 1958 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake) 1959 { 1960 const struct tcp_sock *tp = tcp_sk(sk); 1961 u32 notsent_bytes = READ_ONCE(tp->write_seq) - 1962 READ_ONCE(tp->snd_nxt); 1963 1964 return (notsent_bytes << wake) < tcp_notsent_lowat(tp); 1965 } 1966 1967 #ifdef CONFIG_PROC_FS 1968 int tcp4_proc_init(void); 1969 void tcp4_proc_exit(void); 1970 #endif 1971 1972 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req); 1973 int tcp_conn_request(struct request_sock_ops *rsk_ops, 1974 const struct tcp_request_sock_ops *af_ops, 1975 struct sock *sk, struct sk_buff *skb); 1976 1977 /* TCP af-specific functions */ 1978 struct tcp_sock_af_ops { 1979 #ifdef CONFIG_TCP_MD5SIG 1980 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk, 1981 const struct sock *addr_sk); 1982 int (*calc_md5_hash)(char *location, 1983 const struct tcp_md5sig_key *md5, 1984 const struct sock *sk, 1985 const struct sk_buff *skb); 1986 int (*md5_parse)(struct sock *sk, 1987 int optname, 1988 char __user *optval, 1989 int optlen); 1990 #endif 1991 }; 1992 1993 struct tcp_request_sock_ops { 1994 u16 mss_clamp; 1995 #ifdef CONFIG_TCP_MD5SIG 1996 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk, 1997 const struct sock *addr_sk); 1998 int (*calc_md5_hash) (char *location, 1999 const struct tcp_md5sig_key *md5, 2000 const struct sock *sk, 2001 const struct sk_buff *skb); 2002 #endif 2003 void (*init_req)(struct request_sock *req, 2004 const struct sock *sk_listener, 2005 struct sk_buff *skb); 2006 #ifdef CONFIG_SYN_COOKIES 2007 __u32 (*cookie_init_seq)(const struct sk_buff *skb, 2008 __u16 *mss); 2009 #endif 2010 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl, 2011 const struct request_sock *req); 2012 u32 (*init_seq)(const struct sk_buff *skb); 2013 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb); 2014 int (*send_synack)(const struct sock *sk, struct dst_entry *dst, 2015 struct flowi *fl, struct request_sock *req, 2016 struct tcp_fastopen_cookie *foc, 2017 enum tcp_synack_type synack_type); 2018 }; 2019 2020 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops; 2021 #if IS_ENABLED(CONFIG_IPV6) 2022 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops; 2023 #endif 2024 2025 #ifdef CONFIG_SYN_COOKIES 2026 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2027 const struct sock *sk, struct sk_buff *skb, 2028 __u16 *mss) 2029 { 2030 tcp_synq_overflow(sk); 2031 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT); 2032 return ops->cookie_init_seq(skb, mss); 2033 } 2034 #else 2035 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops, 2036 const struct sock *sk, struct sk_buff *skb, 2037 __u16 *mss) 2038 { 2039 return 0; 2040 } 2041 #endif 2042 2043 int tcpv4_offload_init(void); 2044 2045 void tcp_v4_init(void); 2046 void tcp_init(void); 2047 2048 /* tcp_recovery.c */ 2049 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb); 2050 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced); 2051 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, 2052 u32 reo_wnd); 2053 extern void tcp_rack_mark_lost(struct sock *sk); 2054 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq, 2055 u64 xmit_time); 2056 extern void tcp_rack_reo_timeout(struct sock *sk); 2057 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs); 2058 2059 /* At how many usecs into the future should the RTO fire? */ 2060 static inline s64 tcp_rto_delta_us(const struct sock *sk) 2061 { 2062 const struct sk_buff *skb = tcp_rtx_queue_head(sk); 2063 u32 rto = inet_csk(sk)->icsk_rto; 2064 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto); 2065 2066 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp; 2067 } 2068 2069 /* 2070 * Save and compile IPv4 options, return a pointer to it 2071 */ 2072 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net, 2073 struct sk_buff *skb) 2074 { 2075 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt; 2076 struct ip_options_rcu *dopt = NULL; 2077 2078 if (opt->optlen) { 2079 int opt_size = sizeof(*dopt) + opt->optlen; 2080 2081 dopt = kmalloc(opt_size, GFP_ATOMIC); 2082 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) { 2083 kfree(dopt); 2084 dopt = NULL; 2085 } 2086 } 2087 return dopt; 2088 } 2089 2090 /* locally generated TCP pure ACKs have skb->truesize == 2 2091 * (check tcp_send_ack() in net/ipv4/tcp_output.c ) 2092 * This is much faster than dissecting the packet to find out. 2093 * (Think of GRE encapsulations, IPv4, IPv6, ...) 2094 */ 2095 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb) 2096 { 2097 return skb->truesize == 2; 2098 } 2099 2100 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb) 2101 { 2102 skb->truesize = 2; 2103 } 2104 2105 static inline int tcp_inq(struct sock *sk) 2106 { 2107 struct tcp_sock *tp = tcp_sk(sk); 2108 int answ; 2109 2110 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { 2111 answ = 0; 2112 } else if (sock_flag(sk, SOCK_URGINLINE) || 2113 !tp->urg_data || 2114 before(tp->urg_seq, tp->copied_seq) || 2115 !before(tp->urg_seq, tp->rcv_nxt)) { 2116 2117 answ = tp->rcv_nxt - tp->copied_seq; 2118 2119 /* Subtract 1, if FIN was received */ 2120 if (answ && sock_flag(sk, SOCK_DONE)) 2121 answ--; 2122 } else { 2123 answ = tp->urg_seq - tp->copied_seq; 2124 } 2125 2126 return answ; 2127 } 2128 2129 int tcp_peek_len(struct socket *sock); 2130 2131 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb) 2132 { 2133 u16 segs_in; 2134 2135 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 2136 tp->segs_in += segs_in; 2137 if (skb->len > tcp_hdrlen(skb)) 2138 tp->data_segs_in += segs_in; 2139 } 2140 2141 /* 2142 * TCP listen path runs lockless. 2143 * We forced "struct sock" to be const qualified to make sure 2144 * we don't modify one of its field by mistake. 2145 * Here, we increment sk_drops which is an atomic_t, so we can safely 2146 * make sock writable again. 2147 */ 2148 static inline void tcp_listendrop(const struct sock *sk) 2149 { 2150 atomic_inc(&((struct sock *)sk)->sk_drops); 2151 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS); 2152 } 2153 2154 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer); 2155 2156 /* 2157 * Interface for adding Upper Level Protocols over TCP 2158 */ 2159 2160 #define TCP_ULP_NAME_MAX 16 2161 #define TCP_ULP_MAX 128 2162 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX) 2163 2164 struct tcp_ulp_ops { 2165 struct list_head list; 2166 2167 /* initialize ulp */ 2168 int (*init)(struct sock *sk); 2169 /* update ulp */ 2170 void (*update)(struct sock *sk, struct proto *p, 2171 void (*write_space)(struct sock *sk)); 2172 /* cleanup ulp */ 2173 void (*release)(struct sock *sk); 2174 /* diagnostic */ 2175 int (*get_info)(const struct sock *sk, struct sk_buff *skb); 2176 size_t (*get_info_size)(const struct sock *sk); 2177 /* clone ulp */ 2178 void (*clone)(const struct request_sock *req, struct sock *newsk, 2179 const gfp_t priority); 2180 2181 char name[TCP_ULP_NAME_MAX]; 2182 struct module *owner; 2183 }; 2184 int tcp_register_ulp(struct tcp_ulp_ops *type); 2185 void tcp_unregister_ulp(struct tcp_ulp_ops *type); 2186 int tcp_set_ulp(struct sock *sk, const char *name); 2187 void tcp_get_available_ulp(char *buf, size_t len); 2188 void tcp_cleanup_ulp(struct sock *sk); 2189 void tcp_update_ulp(struct sock *sk, struct proto *p, 2190 void (*write_space)(struct sock *sk)); 2191 2192 #define MODULE_ALIAS_TCP_ULP(name) \ 2193 __MODULE_INFO(alias, alias_userspace, name); \ 2194 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name) 2195 2196 struct sk_msg; 2197 struct sk_psock; 2198 2199 #ifdef CONFIG_BPF_STREAM_PARSER 2200 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock); 2201 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk); 2202 #else 2203 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk) 2204 { 2205 } 2206 #endif /* CONFIG_BPF_STREAM_PARSER */ 2207 2208 #ifdef CONFIG_NET_SOCK_MSG 2209 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes, 2210 int flags); 2211 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock, 2212 struct msghdr *msg, int len, int flags); 2213 #endif /* CONFIG_NET_SOCK_MSG */ 2214 2215 /* Call BPF_SOCK_OPS program that returns an int. If the return value 2216 * is < 0, then the BPF op failed (for example if the loaded BPF 2217 * program does not support the chosen operation or there is no BPF 2218 * program loaded). 2219 */ 2220 #ifdef CONFIG_BPF 2221 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2222 { 2223 struct bpf_sock_ops_kern sock_ops; 2224 int ret; 2225 2226 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 2227 if (sk_fullsock(sk)) { 2228 sock_ops.is_fullsock = 1; 2229 sock_owned_by_me(sk); 2230 } 2231 2232 sock_ops.sk = sk; 2233 sock_ops.op = op; 2234 if (nargs > 0) 2235 memcpy(sock_ops.args, args, nargs * sizeof(*args)); 2236 2237 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 2238 if (ret == 0) 2239 ret = sock_ops.reply; 2240 else 2241 ret = -1; 2242 return ret; 2243 } 2244 2245 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2246 { 2247 u32 args[2] = {arg1, arg2}; 2248 2249 return tcp_call_bpf(sk, op, 2, args); 2250 } 2251 2252 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2253 u32 arg3) 2254 { 2255 u32 args[3] = {arg1, arg2, arg3}; 2256 2257 return tcp_call_bpf(sk, op, 3, args); 2258 } 2259 2260 #else 2261 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args) 2262 { 2263 return -EPERM; 2264 } 2265 2266 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2) 2267 { 2268 return -EPERM; 2269 } 2270 2271 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2, 2272 u32 arg3) 2273 { 2274 return -EPERM; 2275 } 2276 2277 #endif 2278 2279 static inline u32 tcp_timeout_init(struct sock *sk) 2280 { 2281 int timeout; 2282 2283 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL); 2284 2285 if (timeout <= 0) 2286 timeout = TCP_TIMEOUT_INIT; 2287 return timeout; 2288 } 2289 2290 static inline u32 tcp_rwnd_init_bpf(struct sock *sk) 2291 { 2292 int rwnd; 2293 2294 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL); 2295 2296 if (rwnd < 0) 2297 rwnd = 0; 2298 return rwnd; 2299 } 2300 2301 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk) 2302 { 2303 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1); 2304 } 2305 2306 static inline void tcp_bpf_rtt(struct sock *sk) 2307 { 2308 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG)) 2309 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL); 2310 } 2311 2312 #if IS_ENABLED(CONFIG_SMC) 2313 extern struct static_key_false tcp_have_smc; 2314 #endif 2315 2316 #if IS_ENABLED(CONFIG_TLS_DEVICE) 2317 void clean_acked_data_enable(struct inet_connection_sock *icsk, 2318 void (*cad)(struct sock *sk, u32 ack_seq)); 2319 void clean_acked_data_disable(struct inet_connection_sock *icsk); 2320 void clean_acked_data_flush(void); 2321 #endif 2322 2323 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 2324 static inline void tcp_add_tx_delay(struct sk_buff *skb, 2325 const struct tcp_sock *tp) 2326 { 2327 if (static_branch_unlikely(&tcp_tx_delay_enabled)) 2328 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC; 2329 } 2330 2331 /* Compute Earliest Departure Time for some control packets 2332 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets. 2333 */ 2334 static inline u64 tcp_transmit_time(const struct sock *sk) 2335 { 2336 if (static_branch_unlikely(&tcp_tx_delay_enabled)) { 2337 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ? 2338 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay; 2339 2340 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC; 2341 } 2342 return 0; 2343 } 2344 2345 #endif /* _TCP_H */ 2346