xref: /linux/include/net/tcp.h (revision 93a3545d812ae7cfe4426374e00a7d8f64ac02e0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48 
49 extern struct inet_hashinfo tcp_hashinfo;
50 
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53 
54 #define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56 #define TCP_MIN_SND_MSS		48
57 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
58 
59 /*
60  * Never offer a window over 32767 without using window scaling. Some
61  * poor stacks do signed 16bit maths!
62  */
63 #define MAX_TCP_WINDOW		32767U
64 
65 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
66 #define TCP_MIN_MSS		88U
67 
68 /* The initial MTU to use for probing */
69 #define TCP_BASE_MSS		1024
70 
71 /* probing interval, default to 10 minutes as per RFC4821 */
72 #define TCP_PROBE_INTERVAL	600
73 
74 /* Specify interval when tcp mtu probing will stop */
75 #define TCP_PROBE_THRESHOLD	8
76 
77 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
78 #define TCP_FASTRETRANS_THRESH 3
79 
80 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
81 #define TCP_MAX_QUICKACKS	16U
82 
83 /* Maximal number of window scale according to RFC1323 */
84 #define TCP_MAX_WSCALE		14U
85 
86 /* urg_data states */
87 #define TCP_URG_VALID	0x0100
88 #define TCP_URG_NOTYET	0x0200
89 #define TCP_URG_READ	0x0400
90 
91 #define TCP_RETR1	3	/*
92 				 * This is how many retries it does before it
93 				 * tries to figure out if the gateway is
94 				 * down. Minimal RFC value is 3; it corresponds
95 				 * to ~3sec-8min depending on RTO.
96 				 */
97 
98 #define TCP_RETR2	15	/*
99 				 * This should take at least
100 				 * 90 minutes to time out.
101 				 * RFC1122 says that the limit is 100 sec.
102 				 * 15 is ~13-30min depending on RTO.
103 				 */
104 
105 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
106 				 * when active opening a connection.
107 				 * RFC1122 says the minimum retry MUST
108 				 * be at least 180secs.  Nevertheless
109 				 * this value is corresponding to
110 				 * 63secs of retransmission with the
111 				 * current initial RTO.
112 				 */
113 
114 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
115 				 * when passive opening a connection.
116 				 * This is corresponding to 31secs of
117 				 * retransmission with the current
118 				 * initial RTO.
119 				 */
120 
121 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
122 				  * state, about 60 seconds	*/
123 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
124                                  /* BSD style FIN_WAIT2 deadlock breaker.
125 				  * It used to be 3min, new value is 60sec,
126 				  * to combine FIN-WAIT-2 timeout with
127 				  * TIME-WAIT timer.
128 				  */
129 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
130 
131 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
132 #if HZ >= 100
133 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
134 #define TCP_ATO_MIN	((unsigned)(HZ/25))
135 #else
136 #define TCP_DELACK_MIN	4U
137 #define TCP_ATO_MIN	4U
138 #endif
139 #define TCP_RTO_MAX	((unsigned)(120*HZ))
140 #define TCP_RTO_MIN	((unsigned)(HZ/5))
141 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
142 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
143 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
144 						 * used as a fallback RTO for the
145 						 * initial data transmission if no
146 						 * valid RTT sample has been acquired,
147 						 * most likely due to retrans in 3WHS.
148 						 */
149 
150 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
151 					                 * for local resources.
152 					                 */
153 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
154 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
155 #define TCP_KEEPALIVE_INTVL	(75*HZ)
156 
157 #define MAX_TCP_KEEPIDLE	32767
158 #define MAX_TCP_KEEPINTVL	32767
159 #define MAX_TCP_KEEPCNT		127
160 #define MAX_TCP_SYNCNT		127
161 
162 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
163 
164 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
165 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
166 					 * after this time. It should be equal
167 					 * (or greater than) TCP_TIMEWAIT_LEN
168 					 * to provide reliability equal to one
169 					 * provided by timewait state.
170 					 */
171 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
172 					 * timestamps. It must be less than
173 					 * minimal timewait lifetime.
174 					 */
175 /*
176  *	TCP option
177  */
178 
179 #define TCPOPT_NOP		1	/* Padding */
180 #define TCPOPT_EOL		0	/* End of options */
181 #define TCPOPT_MSS		2	/* Segment size negotiating */
182 #define TCPOPT_WINDOW		3	/* Window scaling */
183 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
184 #define TCPOPT_SACK             5       /* SACK Block */
185 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
186 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
187 #define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
195 
196 /*
197  *     TCP option lengths
198  */
199 
200 #define TCPOLEN_MSS            4
201 #define TCPOLEN_WINDOW         3
202 #define TCPOLEN_SACK_PERM      2
203 #define TCPOLEN_TIMESTAMP      10
204 #define TCPOLEN_MD5SIG         18
205 #define TCPOLEN_FASTOPEN_BASE  2
206 #define TCPOLEN_EXP_FASTOPEN_BASE  4
207 #define TCPOLEN_EXP_SMC_BASE   6
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
219 
220 /* Flags in tp->nonagle */
221 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
222 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
223 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
224 
225 /* TCP thin-stream limits */
226 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
227 
228 /* TCP initial congestion window as per rfc6928 */
229 #define TCP_INIT_CWND		10
230 
231 /* Bit Flags for sysctl_tcp_fastopen */
232 #define	TFO_CLIENT_ENABLE	1
233 #define	TFO_SERVER_ENABLE	2
234 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
235 
236 /* Accept SYN data w/o any cookie option */
237 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
238 
239 /* Force enable TFO on all listeners, i.e., not requiring the
240  * TCP_FASTOPEN socket option.
241  */
242 #define	TFO_SERVER_WO_SOCKOPT1	0x400
243 
244 
245 /* sysctl variables for tcp */
246 extern int sysctl_tcp_max_orphans;
247 extern long sysctl_tcp_mem[3];
248 
249 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
250 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
251 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
252 
253 extern atomic_long_t tcp_memory_allocated;
254 extern struct percpu_counter tcp_sockets_allocated;
255 extern unsigned long tcp_memory_pressure;
256 
257 /* optimized version of sk_under_memory_pressure() for TCP sockets */
258 static inline bool tcp_under_memory_pressure(const struct sock *sk)
259 {
260 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 		return true;
263 
264 	return READ_ONCE(tcp_memory_pressure);
265 }
266 /*
267  * The next routines deal with comparing 32 bit unsigned ints
268  * and worry about wraparound (automatic with unsigned arithmetic).
269  */
270 
271 static inline bool before(__u32 seq1, __u32 seq2)
272 {
273         return (__s32)(seq1-seq2) < 0;
274 }
275 #define after(seq2, seq1) 	before(seq1, seq2)
276 
277 /* is s2<=s1<=s3 ? */
278 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279 {
280 	return seq3 - seq2 >= seq1 - seq2;
281 }
282 
283 static inline bool tcp_out_of_memory(struct sock *sk)
284 {
285 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 		return true;
288 	return false;
289 }
290 
291 void sk_forced_mem_schedule(struct sock *sk, int size);
292 
293 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294 {
295 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 	int orphans = percpu_counter_read_positive(ocp);
297 
298 	if (orphans << shift > sysctl_tcp_max_orphans) {
299 		orphans = percpu_counter_sum_positive(ocp);
300 		if (orphans << shift > sysctl_tcp_max_orphans)
301 			return true;
302 	}
303 	return false;
304 }
305 
306 bool tcp_check_oom(struct sock *sk, int shift);
307 
308 
309 extern struct proto tcp_prot;
310 
311 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315 
316 void tcp_tasklet_init(void);
317 
318 int tcp_v4_err(struct sk_buff *skb, u32);
319 
320 void tcp_shutdown(struct sock *sk, int how);
321 
322 int tcp_v4_early_demux(struct sk_buff *skb);
323 int tcp_v4_rcv(struct sk_buff *skb);
324 
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 		 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 			size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 		 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 	      int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 			struct pipe_inode_info *pipe, size_t len,
349 			unsigned int flags);
350 
351 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
352 static inline void tcp_dec_quickack_mode(struct sock *sk,
353 					 const unsigned int pkts)
354 {
355 	struct inet_connection_sock *icsk = inet_csk(sk);
356 
357 	if (icsk->icsk_ack.quick) {
358 		if (pkts >= icsk->icsk_ack.quick) {
359 			icsk->icsk_ack.quick = 0;
360 			/* Leaving quickack mode we deflate ATO. */
361 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
362 		} else
363 			icsk->icsk_ack.quick -= pkts;
364 	}
365 }
366 
367 #define	TCP_ECN_OK		1
368 #define	TCP_ECN_QUEUE_CWR	2
369 #define	TCP_ECN_DEMAND_CWR	4
370 #define	TCP_ECN_SEEN		8
371 
372 enum tcp_tw_status {
373 	TCP_TW_SUCCESS = 0,
374 	TCP_TW_RST = 1,
375 	TCP_TW_ACK = 2,
376 	TCP_TW_SYN = 3
377 };
378 
379 
380 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
381 					      struct sk_buff *skb,
382 					      const struct tcphdr *th);
383 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
384 			   struct request_sock *req, bool fastopen,
385 			   bool *lost_race);
386 int tcp_child_process(struct sock *parent, struct sock *child,
387 		      struct sk_buff *skb);
388 void tcp_enter_loss(struct sock *sk);
389 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
390 void tcp_clear_retrans(struct tcp_sock *tp);
391 void tcp_update_metrics(struct sock *sk);
392 void tcp_init_metrics(struct sock *sk);
393 void tcp_metrics_init(void);
394 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
395 void tcp_close(struct sock *sk, long timeout);
396 void tcp_init_sock(struct sock *sk);
397 void tcp_init_transfer(struct sock *sk, int bpf_op);
398 __poll_t tcp_poll(struct file *file, struct socket *sock,
399 		      struct poll_table_struct *wait);
400 int tcp_getsockopt(struct sock *sk, int level, int optname,
401 		   char __user *optval, int __user *optlen);
402 int tcp_setsockopt(struct sock *sk, int level, int optname,
403 		   char __user *optval, unsigned int optlen);
404 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
405 			  char __user *optval, int __user *optlen);
406 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
407 			  char __user *optval, unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
411 		int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 void tcp_data_ready(struct sock *sk);
414 #ifdef CONFIG_MMU
415 int tcp_mmap(struct file *file, struct socket *sock,
416 	     struct vm_area_struct *vma);
417 #endif
418 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
419 		       struct tcp_options_received *opt_rx,
420 		       int estab, struct tcp_fastopen_cookie *foc);
421 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
422 
423 /*
424  *	BPF SKB-less helpers
425  */
426 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
427 			 struct tcphdr *th, u32 *cookie);
428 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
429 			 struct tcphdr *th, u32 *cookie);
430 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
431 			  const struct tcp_request_sock_ops *af_ops,
432 			  struct sock *sk, struct tcphdr *th);
433 /*
434  *	TCP v4 functions exported for the inet6 API
435  */
436 
437 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
438 void tcp_v4_mtu_reduced(struct sock *sk);
439 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
440 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
441 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
442 struct sock *tcp_create_openreq_child(const struct sock *sk,
443 				      struct request_sock *req,
444 				      struct sk_buff *skb);
445 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
446 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
447 				  struct request_sock *req,
448 				  struct dst_entry *dst,
449 				  struct request_sock *req_unhash,
450 				  bool *own_req);
451 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
452 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
453 int tcp_connect(struct sock *sk);
454 enum tcp_synack_type {
455 	TCP_SYNACK_NORMAL,
456 	TCP_SYNACK_FASTOPEN,
457 	TCP_SYNACK_COOKIE,
458 };
459 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
460 				struct request_sock *req,
461 				struct tcp_fastopen_cookie *foc,
462 				enum tcp_synack_type synack_type);
463 int tcp_disconnect(struct sock *sk, int flags);
464 
465 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
466 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
467 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
468 
469 /* From syncookies.c */
470 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
471 				 struct request_sock *req,
472 				 struct dst_entry *dst, u32 tsoff);
473 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
474 		      u32 cookie);
475 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
476 #ifdef CONFIG_SYN_COOKIES
477 
478 /* Syncookies use a monotonic timer which increments every 60 seconds.
479  * This counter is used both as a hash input and partially encoded into
480  * the cookie value.  A cookie is only validated further if the delta
481  * between the current counter value and the encoded one is less than this,
482  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
483  * the counter advances immediately after a cookie is generated).
484  */
485 #define MAX_SYNCOOKIE_AGE	2
486 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
487 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
488 
489 /* syncookies: remember time of last synqueue overflow
490  * But do not dirty this field too often (once per second is enough)
491  * It is racy as we do not hold a lock, but race is very minor.
492  */
493 static inline void tcp_synq_overflow(const struct sock *sk)
494 {
495 	unsigned int last_overflow;
496 	unsigned int now = jiffies;
497 
498 	if (sk->sk_reuseport) {
499 		struct sock_reuseport *reuse;
500 
501 		reuse = rcu_dereference(sk->sk_reuseport_cb);
502 		if (likely(reuse)) {
503 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
504 			if (!time_between32(now, last_overflow,
505 					    last_overflow + HZ))
506 				WRITE_ONCE(reuse->synq_overflow_ts, now);
507 			return;
508 		}
509 	}
510 
511 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
512 	if (!time_between32(now, last_overflow, last_overflow + HZ))
513 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
514 }
515 
516 /* syncookies: no recent synqueue overflow on this listening socket? */
517 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
518 {
519 	unsigned int last_overflow;
520 	unsigned int now = jiffies;
521 
522 	if (sk->sk_reuseport) {
523 		struct sock_reuseport *reuse;
524 
525 		reuse = rcu_dereference(sk->sk_reuseport_cb);
526 		if (likely(reuse)) {
527 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
528 			return !time_between32(now, last_overflow - HZ,
529 					       last_overflow +
530 					       TCP_SYNCOOKIE_VALID);
531 		}
532 	}
533 
534 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
535 
536 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
537 	 * then we're under synflood. However, we have to use
538 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
539 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
540 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
541 	 * which could lead to rejecting a valid syncookie.
542 	 */
543 	return !time_between32(now, last_overflow - HZ,
544 			       last_overflow + TCP_SYNCOOKIE_VALID);
545 }
546 
547 static inline u32 tcp_cookie_time(void)
548 {
549 	u64 val = get_jiffies_64();
550 
551 	do_div(val, TCP_SYNCOOKIE_PERIOD);
552 	return val;
553 }
554 
555 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
556 			      u16 *mssp);
557 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
558 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
559 bool cookie_timestamp_decode(const struct net *net,
560 			     struct tcp_options_received *opt);
561 bool cookie_ecn_ok(const struct tcp_options_received *opt,
562 		   const struct net *net, const struct dst_entry *dst);
563 
564 /* From net/ipv6/syncookies.c */
565 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
566 		      u32 cookie);
567 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
568 
569 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
570 			      const struct tcphdr *th, u16 *mssp);
571 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
572 #endif
573 /* tcp_output.c */
574 
575 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
576 			       int nonagle);
577 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
578 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
579 void tcp_retransmit_timer(struct sock *sk);
580 void tcp_xmit_retransmit_queue(struct sock *);
581 void tcp_simple_retransmit(struct sock *);
582 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
583 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
584 enum tcp_queue {
585 	TCP_FRAG_IN_WRITE_QUEUE,
586 	TCP_FRAG_IN_RTX_QUEUE,
587 };
588 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
589 		 struct sk_buff *skb, u32 len,
590 		 unsigned int mss_now, gfp_t gfp);
591 
592 void tcp_send_probe0(struct sock *);
593 void tcp_send_partial(struct sock *);
594 int tcp_write_wakeup(struct sock *, int mib);
595 void tcp_send_fin(struct sock *sk);
596 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
597 int tcp_send_synack(struct sock *);
598 void tcp_push_one(struct sock *, unsigned int mss_now);
599 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
600 void tcp_send_ack(struct sock *sk);
601 void tcp_send_delayed_ack(struct sock *sk);
602 void tcp_send_loss_probe(struct sock *sk);
603 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
604 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
605 			     const struct sk_buff *next_skb);
606 
607 /* tcp_input.c */
608 void tcp_rearm_rto(struct sock *sk);
609 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
610 void tcp_reset(struct sock *sk);
611 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
612 void tcp_fin(struct sock *sk);
613 
614 /* tcp_timer.c */
615 void tcp_init_xmit_timers(struct sock *);
616 static inline void tcp_clear_xmit_timers(struct sock *sk)
617 {
618 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
619 		__sock_put(sk);
620 
621 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
622 		__sock_put(sk);
623 
624 	inet_csk_clear_xmit_timers(sk);
625 }
626 
627 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
628 unsigned int tcp_current_mss(struct sock *sk);
629 
630 /* Bound MSS / TSO packet size with the half of the window */
631 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
632 {
633 	int cutoff;
634 
635 	/* When peer uses tiny windows, there is no use in packetizing
636 	 * to sub-MSS pieces for the sake of SWS or making sure there
637 	 * are enough packets in the pipe for fast recovery.
638 	 *
639 	 * On the other hand, for extremely large MSS devices, handling
640 	 * smaller than MSS windows in this way does make sense.
641 	 */
642 	if (tp->max_window > TCP_MSS_DEFAULT)
643 		cutoff = (tp->max_window >> 1);
644 	else
645 		cutoff = tp->max_window;
646 
647 	if (cutoff && pktsize > cutoff)
648 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
649 	else
650 		return pktsize;
651 }
652 
653 /* tcp.c */
654 void tcp_get_info(struct sock *, struct tcp_info *);
655 
656 /* Read 'sendfile()'-style from a TCP socket */
657 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
658 		  sk_read_actor_t recv_actor);
659 
660 void tcp_initialize_rcv_mss(struct sock *sk);
661 
662 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
663 int tcp_mss_to_mtu(struct sock *sk, int mss);
664 void tcp_mtup_init(struct sock *sk);
665 
666 static inline void tcp_bound_rto(const struct sock *sk)
667 {
668 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
669 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
670 }
671 
672 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
673 {
674 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
675 }
676 
677 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
678 {
679 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
680 			       ntohl(TCP_FLAG_ACK) |
681 			       snd_wnd);
682 }
683 
684 static inline void tcp_fast_path_on(struct tcp_sock *tp)
685 {
686 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
687 }
688 
689 static inline void tcp_fast_path_check(struct sock *sk)
690 {
691 	struct tcp_sock *tp = tcp_sk(sk);
692 
693 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
694 	    tp->rcv_wnd &&
695 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
696 	    !tp->urg_data)
697 		tcp_fast_path_on(tp);
698 }
699 
700 /* Compute the actual rto_min value */
701 static inline u32 tcp_rto_min(struct sock *sk)
702 {
703 	const struct dst_entry *dst = __sk_dst_get(sk);
704 	u32 rto_min = TCP_RTO_MIN;
705 
706 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
707 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
708 	return rto_min;
709 }
710 
711 static inline u32 tcp_rto_min_us(struct sock *sk)
712 {
713 	return jiffies_to_usecs(tcp_rto_min(sk));
714 }
715 
716 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
717 {
718 	return dst_metric_locked(dst, RTAX_CC_ALGO);
719 }
720 
721 /* Minimum RTT in usec. ~0 means not available. */
722 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
723 {
724 	return minmax_get(&tp->rtt_min);
725 }
726 
727 /* Compute the actual receive window we are currently advertising.
728  * Rcv_nxt can be after the window if our peer push more data
729  * than the offered window.
730  */
731 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
732 {
733 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
734 
735 	if (win < 0)
736 		win = 0;
737 	return (u32) win;
738 }
739 
740 /* Choose a new window, without checks for shrinking, and without
741  * scaling applied to the result.  The caller does these things
742  * if necessary.  This is a "raw" window selection.
743  */
744 u32 __tcp_select_window(struct sock *sk);
745 
746 void tcp_send_window_probe(struct sock *sk);
747 
748 /* TCP uses 32bit jiffies to save some space.
749  * Note that this is different from tcp_time_stamp, which
750  * historically has been the same until linux-4.13.
751  */
752 #define tcp_jiffies32 ((u32)jiffies)
753 
754 /*
755  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
756  * It is no longer tied to jiffies, but to 1 ms clock.
757  * Note: double check if you want to use tcp_jiffies32 instead of this.
758  */
759 #define TCP_TS_HZ	1000
760 
761 static inline u64 tcp_clock_ns(void)
762 {
763 	return ktime_get_ns();
764 }
765 
766 static inline u64 tcp_clock_us(void)
767 {
768 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
769 }
770 
771 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
772 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
773 {
774 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
775 }
776 
777 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
778 static inline u32 tcp_ns_to_ts(u64 ns)
779 {
780 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
781 }
782 
783 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
784 static inline u32 tcp_time_stamp_raw(void)
785 {
786 	return tcp_ns_to_ts(tcp_clock_ns());
787 }
788 
789 void tcp_mstamp_refresh(struct tcp_sock *tp);
790 
791 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
792 {
793 	return max_t(s64, t1 - t0, 0);
794 }
795 
796 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
797 {
798 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
799 }
800 
801 /* provide the departure time in us unit */
802 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
803 {
804 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
805 }
806 
807 
808 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
809 
810 #define TCPHDR_FIN 0x01
811 #define TCPHDR_SYN 0x02
812 #define TCPHDR_RST 0x04
813 #define TCPHDR_PSH 0x08
814 #define TCPHDR_ACK 0x10
815 #define TCPHDR_URG 0x20
816 #define TCPHDR_ECE 0x40
817 #define TCPHDR_CWR 0x80
818 
819 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
820 
821 /* This is what the send packet queuing engine uses to pass
822  * TCP per-packet control information to the transmission code.
823  * We also store the host-order sequence numbers in here too.
824  * This is 44 bytes if IPV6 is enabled.
825  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
826  */
827 struct tcp_skb_cb {
828 	__u32		seq;		/* Starting sequence number	*/
829 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
830 	union {
831 		/* Note : tcp_tw_isn is used in input path only
832 		 *	  (isn chosen by tcp_timewait_state_process())
833 		 *
834 		 * 	  tcp_gso_segs/size are used in write queue only,
835 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
836 		 */
837 		__u32		tcp_tw_isn;
838 		struct {
839 			u16	tcp_gso_segs;
840 			u16	tcp_gso_size;
841 		};
842 	};
843 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
844 
845 	__u8		sacked;		/* State flags for SACK.	*/
846 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
847 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
848 #define TCPCB_LOST		0x04	/* SKB is lost			*/
849 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
850 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
851 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
852 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
853 				TCPCB_REPAIRED)
854 
855 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
856 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
857 			eor:1,		/* Is skb MSG_EOR marked? */
858 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
859 			unused:5;
860 	__u32		ack_seq;	/* Sequence number ACK'd	*/
861 	union {
862 		struct {
863 			/* There is space for up to 24 bytes */
864 			__u32 in_flight:30,/* Bytes in flight at transmit */
865 			      is_app_limited:1, /* cwnd not fully used? */
866 			      unused:1;
867 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
868 			__u32 delivered;
869 			/* start of send pipeline phase */
870 			u64 first_tx_mstamp;
871 			/* when we reached the "delivered" count */
872 			u64 delivered_mstamp;
873 		} tx;   /* only used for outgoing skbs */
874 		union {
875 			struct inet_skb_parm	h4;
876 #if IS_ENABLED(CONFIG_IPV6)
877 			struct inet6_skb_parm	h6;
878 #endif
879 		} header;	/* For incoming skbs */
880 		struct {
881 			__u32 flags;
882 			struct sock *sk_redir;
883 			void *data_end;
884 		} bpf;
885 	};
886 };
887 
888 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
889 
890 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
891 {
892 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
893 }
894 
895 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
896 {
897 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
898 }
899 
900 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
901 {
902 	return TCP_SKB_CB(skb)->bpf.sk_redir;
903 }
904 
905 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
906 {
907 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
908 }
909 
910 extern const struct inet_connection_sock_af_ops ipv4_specific;
911 
912 #if IS_ENABLED(CONFIG_IPV6)
913 /* This is the variant of inet6_iif() that must be used by TCP,
914  * as TCP moves IP6CB into a different location in skb->cb[]
915  */
916 static inline int tcp_v6_iif(const struct sk_buff *skb)
917 {
918 	return TCP_SKB_CB(skb)->header.h6.iif;
919 }
920 
921 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
922 {
923 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
924 
925 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
926 }
927 
928 /* TCP_SKB_CB reference means this can not be used from early demux */
929 static inline int tcp_v6_sdif(const struct sk_buff *skb)
930 {
931 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
932 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
933 		return TCP_SKB_CB(skb)->header.h6.iif;
934 #endif
935 	return 0;
936 }
937 
938 extern const struct inet_connection_sock_af_ops ipv6_specific;
939 
940 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
941 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
942 INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
943 
944 #endif
945 
946 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
947 {
948 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
949 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
950 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
951 		return true;
952 #endif
953 	return false;
954 }
955 
956 /* TCP_SKB_CB reference means this can not be used from early demux */
957 static inline int tcp_v4_sdif(struct sk_buff *skb)
958 {
959 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
960 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
961 		return TCP_SKB_CB(skb)->header.h4.iif;
962 #endif
963 	return 0;
964 }
965 
966 /* Due to TSO, an SKB can be composed of multiple actual
967  * packets.  To keep these tracked properly, we use this.
968  */
969 static inline int tcp_skb_pcount(const struct sk_buff *skb)
970 {
971 	return TCP_SKB_CB(skb)->tcp_gso_segs;
972 }
973 
974 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
975 {
976 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
977 }
978 
979 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
980 {
981 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
982 }
983 
984 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
985 static inline int tcp_skb_mss(const struct sk_buff *skb)
986 {
987 	return TCP_SKB_CB(skb)->tcp_gso_size;
988 }
989 
990 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
991 {
992 	return likely(!TCP_SKB_CB(skb)->eor);
993 }
994 
995 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
996 					const struct sk_buff *from)
997 {
998 	return likely(tcp_skb_can_collapse_to(to) &&
999 		      mptcp_skb_can_collapse(to, from));
1000 }
1001 
1002 /* Events passed to congestion control interface */
1003 enum tcp_ca_event {
1004 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1005 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1006 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1007 	CA_EVENT_LOSS,		/* loss timeout */
1008 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1009 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1010 };
1011 
1012 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1013 enum tcp_ca_ack_event_flags {
1014 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1015 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1016 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1017 };
1018 
1019 /*
1020  * Interface for adding new TCP congestion control handlers
1021  */
1022 #define TCP_CA_NAME_MAX	16
1023 #define TCP_CA_MAX	128
1024 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1025 
1026 #define TCP_CA_UNSPEC	0
1027 
1028 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1029 #define TCP_CONG_NON_RESTRICTED 0x1
1030 /* Requires ECN/ECT set on all packets */
1031 #define TCP_CONG_NEEDS_ECN	0x2
1032 #define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1033 
1034 union tcp_cc_info;
1035 
1036 struct ack_sample {
1037 	u32 pkts_acked;
1038 	s32 rtt_us;
1039 	u32 in_flight;
1040 };
1041 
1042 /* A rate sample measures the number of (original/retransmitted) data
1043  * packets delivered "delivered" over an interval of time "interval_us".
1044  * The tcp_rate.c code fills in the rate sample, and congestion
1045  * control modules that define a cong_control function to run at the end
1046  * of ACK processing can optionally chose to consult this sample when
1047  * setting cwnd and pacing rate.
1048  * A sample is invalid if "delivered" or "interval_us" is negative.
1049  */
1050 struct rate_sample {
1051 	u64  prior_mstamp; /* starting timestamp for interval */
1052 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1053 	s32  delivered;		/* number of packets delivered over interval */
1054 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1055 	u32 snd_interval_us;	/* snd interval for delivered packets */
1056 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1057 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1058 	int  losses;		/* number of packets marked lost upon ACK */
1059 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1060 	u32  prior_in_flight;	/* in flight before this ACK */
1061 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1062 	bool is_retrans;	/* is sample from retransmission? */
1063 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1064 };
1065 
1066 struct tcp_congestion_ops {
1067 	struct list_head	list;
1068 	u32 key;
1069 	u32 flags;
1070 
1071 	/* initialize private data (optional) */
1072 	void (*init)(struct sock *sk);
1073 	/* cleanup private data  (optional) */
1074 	void (*release)(struct sock *sk);
1075 
1076 	/* return slow start threshold (required) */
1077 	u32 (*ssthresh)(struct sock *sk);
1078 	/* do new cwnd calculation (required) */
1079 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1080 	/* call before changing ca_state (optional) */
1081 	void (*set_state)(struct sock *sk, u8 new_state);
1082 	/* call when cwnd event occurs (optional) */
1083 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1084 	/* call when ack arrives (optional) */
1085 	void (*in_ack_event)(struct sock *sk, u32 flags);
1086 	/* new value of cwnd after loss (required) */
1087 	u32  (*undo_cwnd)(struct sock *sk);
1088 	/* hook for packet ack accounting (optional) */
1089 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1090 	/* override sysctl_tcp_min_tso_segs */
1091 	u32 (*min_tso_segs)(struct sock *sk);
1092 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1093 	u32 (*sndbuf_expand)(struct sock *sk);
1094 	/* call when packets are delivered to update cwnd and pacing rate,
1095 	 * after all the ca_state processing. (optional)
1096 	 */
1097 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1098 	/* get info for inet_diag (optional) */
1099 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1100 			   union tcp_cc_info *info);
1101 
1102 	char 		name[TCP_CA_NAME_MAX];
1103 	struct module 	*owner;
1104 };
1105 
1106 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1107 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1108 
1109 void tcp_assign_congestion_control(struct sock *sk);
1110 void tcp_init_congestion_control(struct sock *sk);
1111 void tcp_cleanup_congestion_control(struct sock *sk);
1112 int tcp_set_default_congestion_control(struct net *net, const char *name);
1113 void tcp_get_default_congestion_control(struct net *net, char *name);
1114 void tcp_get_available_congestion_control(char *buf, size_t len);
1115 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1116 int tcp_set_allowed_congestion_control(char *allowed);
1117 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1118 			       bool reinit, bool cap_net_admin);
1119 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1120 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1121 
1122 u32 tcp_reno_ssthresh(struct sock *sk);
1123 u32 tcp_reno_undo_cwnd(struct sock *sk);
1124 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1125 extern struct tcp_congestion_ops tcp_reno;
1126 
1127 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1128 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1129 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1130 #ifdef CONFIG_INET
1131 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1132 #else
1133 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1134 {
1135 	return NULL;
1136 }
1137 #endif
1138 
1139 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1140 {
1141 	const struct inet_connection_sock *icsk = inet_csk(sk);
1142 
1143 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1144 }
1145 
1146 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1147 {
1148 	struct inet_connection_sock *icsk = inet_csk(sk);
1149 
1150 	if (icsk->icsk_ca_ops->set_state)
1151 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1152 	icsk->icsk_ca_state = ca_state;
1153 }
1154 
1155 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1156 {
1157 	const struct inet_connection_sock *icsk = inet_csk(sk);
1158 
1159 	if (icsk->icsk_ca_ops->cwnd_event)
1160 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1161 }
1162 
1163 /* From tcp_rate.c */
1164 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1165 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1166 			    struct rate_sample *rs);
1167 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1168 		  bool is_sack_reneg, struct rate_sample *rs);
1169 void tcp_rate_check_app_limited(struct sock *sk);
1170 
1171 /* These functions determine how the current flow behaves in respect of SACK
1172  * handling. SACK is negotiated with the peer, and therefore it can vary
1173  * between different flows.
1174  *
1175  * tcp_is_sack - SACK enabled
1176  * tcp_is_reno - No SACK
1177  */
1178 static inline int tcp_is_sack(const struct tcp_sock *tp)
1179 {
1180 	return likely(tp->rx_opt.sack_ok);
1181 }
1182 
1183 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1184 {
1185 	return !tcp_is_sack(tp);
1186 }
1187 
1188 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1189 {
1190 	return tp->sacked_out + tp->lost_out;
1191 }
1192 
1193 /* This determines how many packets are "in the network" to the best
1194  * of our knowledge.  In many cases it is conservative, but where
1195  * detailed information is available from the receiver (via SACK
1196  * blocks etc.) we can make more aggressive calculations.
1197  *
1198  * Use this for decisions involving congestion control, use just
1199  * tp->packets_out to determine if the send queue is empty or not.
1200  *
1201  * Read this equation as:
1202  *
1203  *	"Packets sent once on transmission queue" MINUS
1204  *	"Packets left network, but not honestly ACKed yet" PLUS
1205  *	"Packets fast retransmitted"
1206  */
1207 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1208 {
1209 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1210 }
1211 
1212 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1213 
1214 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1215 {
1216 	return tp->snd_cwnd < tp->snd_ssthresh;
1217 }
1218 
1219 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1220 {
1221 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1222 }
1223 
1224 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1225 {
1226 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1227 	       (1 << inet_csk(sk)->icsk_ca_state);
1228 }
1229 
1230 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1231  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1232  * ssthresh.
1233  */
1234 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1235 {
1236 	const struct tcp_sock *tp = tcp_sk(sk);
1237 
1238 	if (tcp_in_cwnd_reduction(sk))
1239 		return tp->snd_ssthresh;
1240 	else
1241 		return max(tp->snd_ssthresh,
1242 			   ((tp->snd_cwnd >> 1) +
1243 			    (tp->snd_cwnd >> 2)));
1244 }
1245 
1246 /* Use define here intentionally to get WARN_ON location shown at the caller */
1247 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1248 
1249 void tcp_enter_cwr(struct sock *sk);
1250 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1251 
1252 /* The maximum number of MSS of available cwnd for which TSO defers
1253  * sending if not using sysctl_tcp_tso_win_divisor.
1254  */
1255 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1256 {
1257 	return 3;
1258 }
1259 
1260 /* Returns end sequence number of the receiver's advertised window */
1261 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1262 {
1263 	return tp->snd_una + tp->snd_wnd;
1264 }
1265 
1266 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1267  * flexible approach. The RFC suggests cwnd should not be raised unless
1268  * it was fully used previously. And that's exactly what we do in
1269  * congestion avoidance mode. But in slow start we allow cwnd to grow
1270  * as long as the application has used half the cwnd.
1271  * Example :
1272  *    cwnd is 10 (IW10), but application sends 9 frames.
1273  *    We allow cwnd to reach 18 when all frames are ACKed.
1274  * This check is safe because it's as aggressive as slow start which already
1275  * risks 100% overshoot. The advantage is that we discourage application to
1276  * either send more filler packets or data to artificially blow up the cwnd
1277  * usage, and allow application-limited process to probe bw more aggressively.
1278  */
1279 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1280 {
1281 	const struct tcp_sock *tp = tcp_sk(sk);
1282 
1283 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1284 	if (tcp_in_slow_start(tp))
1285 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1286 
1287 	return tp->is_cwnd_limited;
1288 }
1289 
1290 /* BBR congestion control needs pacing.
1291  * Same remark for SO_MAX_PACING_RATE.
1292  * sch_fq packet scheduler is efficiently handling pacing,
1293  * but is not always installed/used.
1294  * Return true if TCP stack should pace packets itself.
1295  */
1296 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1297 {
1298 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1299 }
1300 
1301 /* Estimates in how many jiffies next packet for this flow can be sent.
1302  * Scheduling a retransmit timer too early would be silly.
1303  */
1304 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1305 {
1306 	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1307 
1308 	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1309 }
1310 
1311 static inline void tcp_reset_xmit_timer(struct sock *sk,
1312 					const int what,
1313 					unsigned long when,
1314 					const unsigned long max_when)
1315 {
1316 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1317 				  max_when);
1318 }
1319 
1320 /* Something is really bad, we could not queue an additional packet,
1321  * because qdisc is full or receiver sent a 0 window, or we are paced.
1322  * We do not want to add fuel to the fire, or abort too early,
1323  * so make sure the timer we arm now is at least 200ms in the future,
1324  * regardless of current icsk_rto value (as it could be ~2ms)
1325  */
1326 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1327 {
1328 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1329 }
1330 
1331 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1332 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1333 					    unsigned long max_when)
1334 {
1335 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1336 
1337 	return (unsigned long)min_t(u64, when, max_when);
1338 }
1339 
1340 static inline void tcp_check_probe_timer(struct sock *sk)
1341 {
1342 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1343 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1344 				     tcp_probe0_base(sk), TCP_RTO_MAX);
1345 }
1346 
1347 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1348 {
1349 	tp->snd_wl1 = seq;
1350 }
1351 
1352 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1353 {
1354 	tp->snd_wl1 = seq;
1355 }
1356 
1357 /*
1358  * Calculate(/check) TCP checksum
1359  */
1360 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1361 				   __be32 daddr, __wsum base)
1362 {
1363 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1364 }
1365 
1366 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1367 {
1368 	return !skb_csum_unnecessary(skb) &&
1369 		__skb_checksum_complete(skb);
1370 }
1371 
1372 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1373 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1374 void tcp_set_state(struct sock *sk, int state);
1375 void tcp_done(struct sock *sk);
1376 int tcp_abort(struct sock *sk, int err);
1377 
1378 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1379 {
1380 	rx_opt->dsack = 0;
1381 	rx_opt->num_sacks = 0;
1382 }
1383 
1384 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1385 
1386 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1387 {
1388 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1389 	struct tcp_sock *tp = tcp_sk(sk);
1390 	s32 delta;
1391 
1392 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1393 	    ca_ops->cong_control)
1394 		return;
1395 	delta = tcp_jiffies32 - tp->lsndtime;
1396 	if (delta > inet_csk(sk)->icsk_rto)
1397 		tcp_cwnd_restart(sk, delta);
1398 }
1399 
1400 /* Determine a window scaling and initial window to offer. */
1401 void tcp_select_initial_window(const struct sock *sk, int __space,
1402 			       __u32 mss, __u32 *rcv_wnd,
1403 			       __u32 *window_clamp, int wscale_ok,
1404 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1405 
1406 static inline int tcp_win_from_space(const struct sock *sk, int space)
1407 {
1408 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1409 
1410 	return tcp_adv_win_scale <= 0 ?
1411 		(space>>(-tcp_adv_win_scale)) :
1412 		space - (space>>tcp_adv_win_scale);
1413 }
1414 
1415 /* Note: caller must be prepared to deal with negative returns */
1416 static inline int tcp_space(const struct sock *sk)
1417 {
1418 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1419 				  READ_ONCE(sk->sk_backlog.len) -
1420 				  atomic_read(&sk->sk_rmem_alloc));
1421 }
1422 
1423 static inline int tcp_full_space(const struct sock *sk)
1424 {
1425 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1426 }
1427 
1428 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1429  * If 87.5 % (7/8) of the space has been consumed, we want to override
1430  * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1431  * len/truesize ratio.
1432  */
1433 static inline bool tcp_rmem_pressure(const struct sock *sk)
1434 {
1435 	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1436 	int threshold = rcvbuf - (rcvbuf >> 3);
1437 
1438 	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1439 }
1440 
1441 extern void tcp_openreq_init_rwin(struct request_sock *req,
1442 				  const struct sock *sk_listener,
1443 				  const struct dst_entry *dst);
1444 
1445 void tcp_enter_memory_pressure(struct sock *sk);
1446 void tcp_leave_memory_pressure(struct sock *sk);
1447 
1448 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1449 {
1450 	struct net *net = sock_net((struct sock *)tp);
1451 
1452 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1453 }
1454 
1455 static inline int keepalive_time_when(const struct tcp_sock *tp)
1456 {
1457 	struct net *net = sock_net((struct sock *)tp);
1458 
1459 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1460 }
1461 
1462 static inline int keepalive_probes(const struct tcp_sock *tp)
1463 {
1464 	struct net *net = sock_net((struct sock *)tp);
1465 
1466 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1467 }
1468 
1469 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1470 {
1471 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1472 
1473 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1474 			  tcp_jiffies32 - tp->rcv_tstamp);
1475 }
1476 
1477 static inline int tcp_fin_time(const struct sock *sk)
1478 {
1479 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1480 	const int rto = inet_csk(sk)->icsk_rto;
1481 
1482 	if (fin_timeout < (rto << 2) - (rto >> 1))
1483 		fin_timeout = (rto << 2) - (rto >> 1);
1484 
1485 	return fin_timeout;
1486 }
1487 
1488 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1489 				  int paws_win)
1490 {
1491 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1492 		return true;
1493 	if (unlikely(!time_before32(ktime_get_seconds(),
1494 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1495 		return true;
1496 	/*
1497 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1498 	 * then following tcp messages have valid values. Ignore 0 value,
1499 	 * or else 'negative' tsval might forbid us to accept their packets.
1500 	 */
1501 	if (!rx_opt->ts_recent)
1502 		return true;
1503 	return false;
1504 }
1505 
1506 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1507 				   int rst)
1508 {
1509 	if (tcp_paws_check(rx_opt, 0))
1510 		return false;
1511 
1512 	/* RST segments are not recommended to carry timestamp,
1513 	   and, if they do, it is recommended to ignore PAWS because
1514 	   "their cleanup function should take precedence over timestamps."
1515 	   Certainly, it is mistake. It is necessary to understand the reasons
1516 	   of this constraint to relax it: if peer reboots, clock may go
1517 	   out-of-sync and half-open connections will not be reset.
1518 	   Actually, the problem would be not existing if all
1519 	   the implementations followed draft about maintaining clock
1520 	   via reboots. Linux-2.2 DOES NOT!
1521 
1522 	   However, we can relax time bounds for RST segments to MSL.
1523 	 */
1524 	if (rst && !time_before32(ktime_get_seconds(),
1525 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1526 		return false;
1527 	return true;
1528 }
1529 
1530 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1531 			  int mib_idx, u32 *last_oow_ack_time);
1532 
1533 static inline void tcp_mib_init(struct net *net)
1534 {
1535 	/* See RFC 2012 */
1536 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1537 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1538 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1539 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1540 }
1541 
1542 /* from STCP */
1543 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1544 {
1545 	tp->lost_skb_hint = NULL;
1546 }
1547 
1548 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1549 {
1550 	tcp_clear_retrans_hints_partial(tp);
1551 	tp->retransmit_skb_hint = NULL;
1552 }
1553 
1554 union tcp_md5_addr {
1555 	struct in_addr  a4;
1556 #if IS_ENABLED(CONFIG_IPV6)
1557 	struct in6_addr	a6;
1558 #endif
1559 };
1560 
1561 /* - key database */
1562 struct tcp_md5sig_key {
1563 	struct hlist_node	node;
1564 	u8			keylen;
1565 	u8			family; /* AF_INET or AF_INET6 */
1566 	u8			prefixlen;
1567 	union tcp_md5_addr	addr;
1568 	int			l3index; /* set if key added with L3 scope */
1569 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1570 	struct rcu_head		rcu;
1571 };
1572 
1573 /* - sock block */
1574 struct tcp_md5sig_info {
1575 	struct hlist_head	head;
1576 	struct rcu_head		rcu;
1577 };
1578 
1579 /* - pseudo header */
1580 struct tcp4_pseudohdr {
1581 	__be32		saddr;
1582 	__be32		daddr;
1583 	__u8		pad;
1584 	__u8		protocol;
1585 	__be16		len;
1586 };
1587 
1588 struct tcp6_pseudohdr {
1589 	struct in6_addr	saddr;
1590 	struct in6_addr daddr;
1591 	__be32		len;
1592 	__be32		protocol;	/* including padding */
1593 };
1594 
1595 union tcp_md5sum_block {
1596 	struct tcp4_pseudohdr ip4;
1597 #if IS_ENABLED(CONFIG_IPV6)
1598 	struct tcp6_pseudohdr ip6;
1599 #endif
1600 };
1601 
1602 /* - pool: digest algorithm, hash description and scratch buffer */
1603 struct tcp_md5sig_pool {
1604 	struct ahash_request	*md5_req;
1605 	void			*scratch;
1606 };
1607 
1608 /* - functions */
1609 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1610 			const struct sock *sk, const struct sk_buff *skb);
1611 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1612 		   int family, u8 prefixlen, int l3index,
1613 		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1614 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1615 		   int family, u8 prefixlen, int l3index);
1616 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1617 					 const struct sock *addr_sk);
1618 
1619 #ifdef CONFIG_TCP_MD5SIG
1620 #include <linux/jump_label.h>
1621 extern struct static_key_false tcp_md5_needed;
1622 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1623 					   const union tcp_md5_addr *addr,
1624 					   int family);
1625 static inline struct tcp_md5sig_key *
1626 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1627 		  const union tcp_md5_addr *addr, int family)
1628 {
1629 	if (!static_branch_unlikely(&tcp_md5_needed))
1630 		return NULL;
1631 	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1632 }
1633 
1634 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1635 #else
1636 static inline struct tcp_md5sig_key *
1637 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1638 		  const union tcp_md5_addr *addr, int family)
1639 {
1640 	return NULL;
1641 }
1642 #define tcp_twsk_md5_key(twsk)	NULL
1643 #endif
1644 
1645 bool tcp_alloc_md5sig_pool(void);
1646 
1647 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1648 static inline void tcp_put_md5sig_pool(void)
1649 {
1650 	local_bh_enable();
1651 }
1652 
1653 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1654 			  unsigned int header_len);
1655 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1656 		     const struct tcp_md5sig_key *key);
1657 
1658 /* From tcp_fastopen.c */
1659 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1660 			    struct tcp_fastopen_cookie *cookie);
1661 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1662 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1663 			    u16 try_exp);
1664 struct tcp_fastopen_request {
1665 	/* Fast Open cookie. Size 0 means a cookie request */
1666 	struct tcp_fastopen_cookie	cookie;
1667 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1668 	size_t				size;
1669 	int				copied;	/* queued in tcp_connect() */
1670 	struct ubuf_info		*uarg;
1671 };
1672 void tcp_free_fastopen_req(struct tcp_sock *tp);
1673 void tcp_fastopen_destroy_cipher(struct sock *sk);
1674 void tcp_fastopen_ctx_destroy(struct net *net);
1675 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1676 			      void *primary_key, void *backup_key);
1677 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1678 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1679 			      struct request_sock *req,
1680 			      struct tcp_fastopen_cookie *foc,
1681 			      const struct dst_entry *dst);
1682 void tcp_fastopen_init_key_once(struct net *net);
1683 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1684 			     struct tcp_fastopen_cookie *cookie);
1685 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1686 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1687 #define TCP_FASTOPEN_KEY_MAX 2
1688 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1689 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1690 
1691 /* Fastopen key context */
1692 struct tcp_fastopen_context {
1693 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1694 	int		num;
1695 	struct rcu_head	rcu;
1696 };
1697 
1698 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1699 void tcp_fastopen_active_disable(struct sock *sk);
1700 bool tcp_fastopen_active_should_disable(struct sock *sk);
1701 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1702 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1703 
1704 /* Caller needs to wrap with rcu_read_(un)lock() */
1705 static inline
1706 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1707 {
1708 	struct tcp_fastopen_context *ctx;
1709 
1710 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1711 	if (!ctx)
1712 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1713 	return ctx;
1714 }
1715 
1716 static inline
1717 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1718 			       const struct tcp_fastopen_cookie *orig)
1719 {
1720 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1721 	    orig->len == foc->len &&
1722 	    !memcmp(orig->val, foc->val, foc->len))
1723 		return true;
1724 	return false;
1725 }
1726 
1727 static inline
1728 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1729 {
1730 	return ctx->num;
1731 }
1732 
1733 /* Latencies incurred by various limits for a sender. They are
1734  * chronograph-like stats that are mutually exclusive.
1735  */
1736 enum tcp_chrono {
1737 	TCP_CHRONO_UNSPEC,
1738 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1739 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1740 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1741 	__TCP_CHRONO_MAX,
1742 };
1743 
1744 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1745 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1746 
1747 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1748  * the same memory storage than skb->destructor/_skb_refdst
1749  */
1750 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1751 {
1752 	skb->destructor = NULL;
1753 	skb->_skb_refdst = 0UL;
1754 }
1755 
1756 #define tcp_skb_tsorted_save(skb) {		\
1757 	unsigned long _save = skb->_skb_refdst;	\
1758 	skb->_skb_refdst = 0UL;
1759 
1760 #define tcp_skb_tsorted_restore(skb)		\
1761 	skb->_skb_refdst = _save;		\
1762 }
1763 
1764 void tcp_write_queue_purge(struct sock *sk);
1765 
1766 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1767 {
1768 	return skb_rb_first(&sk->tcp_rtx_queue);
1769 }
1770 
1771 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1772 {
1773 	return skb_rb_last(&sk->tcp_rtx_queue);
1774 }
1775 
1776 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1777 {
1778 	return skb_peek(&sk->sk_write_queue);
1779 }
1780 
1781 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1782 {
1783 	return skb_peek_tail(&sk->sk_write_queue);
1784 }
1785 
1786 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1787 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1788 
1789 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1790 {
1791 	return skb_peek(&sk->sk_write_queue);
1792 }
1793 
1794 static inline bool tcp_skb_is_last(const struct sock *sk,
1795 				   const struct sk_buff *skb)
1796 {
1797 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1798 }
1799 
1800 /**
1801  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1802  * @sk: socket
1803  *
1804  * Since the write queue can have a temporary empty skb in it,
1805  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1806  */
1807 static inline bool tcp_write_queue_empty(const struct sock *sk)
1808 {
1809 	const struct tcp_sock *tp = tcp_sk(sk);
1810 
1811 	return tp->write_seq == tp->snd_nxt;
1812 }
1813 
1814 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1815 {
1816 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1817 }
1818 
1819 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1820 {
1821 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1822 }
1823 
1824 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1825 {
1826 	__skb_queue_tail(&sk->sk_write_queue, skb);
1827 
1828 	/* Queue it, remembering where we must start sending. */
1829 	if (sk->sk_write_queue.next == skb)
1830 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1831 }
1832 
1833 /* Insert new before skb on the write queue of sk.  */
1834 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1835 						  struct sk_buff *skb,
1836 						  struct sock *sk)
1837 {
1838 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1839 }
1840 
1841 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1842 {
1843 	tcp_skb_tsorted_anchor_cleanup(skb);
1844 	__skb_unlink(skb, &sk->sk_write_queue);
1845 }
1846 
1847 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1848 
1849 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1850 {
1851 	tcp_skb_tsorted_anchor_cleanup(skb);
1852 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1853 }
1854 
1855 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1856 {
1857 	list_del(&skb->tcp_tsorted_anchor);
1858 	tcp_rtx_queue_unlink(skb, sk);
1859 	sk_wmem_free_skb(sk, skb);
1860 }
1861 
1862 static inline void tcp_push_pending_frames(struct sock *sk)
1863 {
1864 	if (tcp_send_head(sk)) {
1865 		struct tcp_sock *tp = tcp_sk(sk);
1866 
1867 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1868 	}
1869 }
1870 
1871 /* Start sequence of the skb just after the highest skb with SACKed
1872  * bit, valid only if sacked_out > 0 or when the caller has ensured
1873  * validity by itself.
1874  */
1875 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1876 {
1877 	if (!tp->sacked_out)
1878 		return tp->snd_una;
1879 
1880 	if (tp->highest_sack == NULL)
1881 		return tp->snd_nxt;
1882 
1883 	return TCP_SKB_CB(tp->highest_sack)->seq;
1884 }
1885 
1886 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1887 {
1888 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1889 }
1890 
1891 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1892 {
1893 	return tcp_sk(sk)->highest_sack;
1894 }
1895 
1896 static inline void tcp_highest_sack_reset(struct sock *sk)
1897 {
1898 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1899 }
1900 
1901 /* Called when old skb is about to be deleted and replaced by new skb */
1902 static inline void tcp_highest_sack_replace(struct sock *sk,
1903 					    struct sk_buff *old,
1904 					    struct sk_buff *new)
1905 {
1906 	if (old == tcp_highest_sack(sk))
1907 		tcp_sk(sk)->highest_sack = new;
1908 }
1909 
1910 /* This helper checks if socket has IP_TRANSPARENT set */
1911 static inline bool inet_sk_transparent(const struct sock *sk)
1912 {
1913 	switch (sk->sk_state) {
1914 	case TCP_TIME_WAIT:
1915 		return inet_twsk(sk)->tw_transparent;
1916 	case TCP_NEW_SYN_RECV:
1917 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1918 	}
1919 	return inet_sk(sk)->transparent;
1920 }
1921 
1922 /* Determines whether this is a thin stream (which may suffer from
1923  * increased latency). Used to trigger latency-reducing mechanisms.
1924  */
1925 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1926 {
1927 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1928 }
1929 
1930 /* /proc */
1931 enum tcp_seq_states {
1932 	TCP_SEQ_STATE_LISTENING,
1933 	TCP_SEQ_STATE_ESTABLISHED,
1934 };
1935 
1936 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1937 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1938 void tcp_seq_stop(struct seq_file *seq, void *v);
1939 
1940 struct tcp_seq_afinfo {
1941 	sa_family_t			family;
1942 };
1943 
1944 struct tcp_iter_state {
1945 	struct seq_net_private	p;
1946 	enum tcp_seq_states	state;
1947 	struct sock		*syn_wait_sk;
1948 	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1949 	int			bucket, offset, sbucket, num;
1950 	loff_t			last_pos;
1951 };
1952 
1953 extern struct request_sock_ops tcp_request_sock_ops;
1954 extern struct request_sock_ops tcp6_request_sock_ops;
1955 
1956 void tcp_v4_destroy_sock(struct sock *sk);
1957 
1958 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1959 				netdev_features_t features);
1960 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1961 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1962 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1963 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1964 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1965 int tcp_gro_complete(struct sk_buff *skb);
1966 
1967 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1968 
1969 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1970 {
1971 	struct net *net = sock_net((struct sock *)tp);
1972 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1973 }
1974 
1975 /* @wake is one when sk_stream_write_space() calls us.
1976  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1977  * This mimics the strategy used in sock_def_write_space().
1978  */
1979 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1980 {
1981 	const struct tcp_sock *tp = tcp_sk(sk);
1982 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1983 			    READ_ONCE(tp->snd_nxt);
1984 
1985 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1986 }
1987 
1988 #ifdef CONFIG_PROC_FS
1989 int tcp4_proc_init(void);
1990 void tcp4_proc_exit(void);
1991 #endif
1992 
1993 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1994 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1995 		     const struct tcp_request_sock_ops *af_ops,
1996 		     struct sock *sk, struct sk_buff *skb);
1997 
1998 /* TCP af-specific functions */
1999 struct tcp_sock_af_ops {
2000 #ifdef CONFIG_TCP_MD5SIG
2001 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2002 						const struct sock *addr_sk);
2003 	int		(*calc_md5_hash)(char *location,
2004 					 const struct tcp_md5sig_key *md5,
2005 					 const struct sock *sk,
2006 					 const struct sk_buff *skb);
2007 	int		(*md5_parse)(struct sock *sk,
2008 				     int optname,
2009 				     char __user *optval,
2010 				     int optlen);
2011 #endif
2012 };
2013 
2014 struct tcp_request_sock_ops {
2015 	u16 mss_clamp;
2016 #ifdef CONFIG_TCP_MD5SIG
2017 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2018 						 const struct sock *addr_sk);
2019 	int		(*calc_md5_hash) (char *location,
2020 					  const struct tcp_md5sig_key *md5,
2021 					  const struct sock *sk,
2022 					  const struct sk_buff *skb);
2023 #endif
2024 	void (*init_req)(struct request_sock *req,
2025 			 const struct sock *sk_listener,
2026 			 struct sk_buff *skb);
2027 #ifdef CONFIG_SYN_COOKIES
2028 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2029 				 __u16 *mss);
2030 #endif
2031 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2032 				       const struct request_sock *req);
2033 	u32 (*init_seq)(const struct sk_buff *skb);
2034 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2035 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2036 			   struct flowi *fl, struct request_sock *req,
2037 			   struct tcp_fastopen_cookie *foc,
2038 			   enum tcp_synack_type synack_type);
2039 };
2040 
2041 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2042 #if IS_ENABLED(CONFIG_IPV6)
2043 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2044 #endif
2045 
2046 #ifdef CONFIG_SYN_COOKIES
2047 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2048 					 const struct sock *sk, struct sk_buff *skb,
2049 					 __u16 *mss)
2050 {
2051 	tcp_synq_overflow(sk);
2052 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2053 	return ops->cookie_init_seq(skb, mss);
2054 }
2055 #else
2056 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2057 					 const struct sock *sk, struct sk_buff *skb,
2058 					 __u16 *mss)
2059 {
2060 	return 0;
2061 }
2062 #endif
2063 
2064 int tcpv4_offload_init(void);
2065 
2066 void tcp_v4_init(void);
2067 void tcp_init(void);
2068 
2069 /* tcp_recovery.c */
2070 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2071 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2072 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2073 				u32 reo_wnd);
2074 extern void tcp_rack_mark_lost(struct sock *sk);
2075 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2076 			     u64 xmit_time);
2077 extern void tcp_rack_reo_timeout(struct sock *sk);
2078 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2079 
2080 /* At how many usecs into the future should the RTO fire? */
2081 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2082 {
2083 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2084 	u32 rto = inet_csk(sk)->icsk_rto;
2085 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2086 
2087 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2088 }
2089 
2090 /*
2091  * Save and compile IPv4 options, return a pointer to it
2092  */
2093 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2094 							 struct sk_buff *skb)
2095 {
2096 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2097 	struct ip_options_rcu *dopt = NULL;
2098 
2099 	if (opt->optlen) {
2100 		int opt_size = sizeof(*dopt) + opt->optlen;
2101 
2102 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2103 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2104 			kfree(dopt);
2105 			dopt = NULL;
2106 		}
2107 	}
2108 	return dopt;
2109 }
2110 
2111 /* locally generated TCP pure ACKs have skb->truesize == 2
2112  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2113  * This is much faster than dissecting the packet to find out.
2114  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2115  */
2116 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2117 {
2118 	return skb->truesize == 2;
2119 }
2120 
2121 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2122 {
2123 	skb->truesize = 2;
2124 }
2125 
2126 static inline int tcp_inq(struct sock *sk)
2127 {
2128 	struct tcp_sock *tp = tcp_sk(sk);
2129 	int answ;
2130 
2131 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2132 		answ = 0;
2133 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2134 		   !tp->urg_data ||
2135 		   before(tp->urg_seq, tp->copied_seq) ||
2136 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2137 
2138 		answ = tp->rcv_nxt - tp->copied_seq;
2139 
2140 		/* Subtract 1, if FIN was received */
2141 		if (answ && sock_flag(sk, SOCK_DONE))
2142 			answ--;
2143 	} else {
2144 		answ = tp->urg_seq - tp->copied_seq;
2145 	}
2146 
2147 	return answ;
2148 }
2149 
2150 int tcp_peek_len(struct socket *sock);
2151 
2152 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2153 {
2154 	u16 segs_in;
2155 
2156 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2157 	tp->segs_in += segs_in;
2158 	if (skb->len > tcp_hdrlen(skb))
2159 		tp->data_segs_in += segs_in;
2160 }
2161 
2162 /*
2163  * TCP listen path runs lockless.
2164  * We forced "struct sock" to be const qualified to make sure
2165  * we don't modify one of its field by mistake.
2166  * Here, we increment sk_drops which is an atomic_t, so we can safely
2167  * make sock writable again.
2168  */
2169 static inline void tcp_listendrop(const struct sock *sk)
2170 {
2171 	atomic_inc(&((struct sock *)sk)->sk_drops);
2172 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2173 }
2174 
2175 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2176 
2177 /*
2178  * Interface for adding Upper Level Protocols over TCP
2179  */
2180 
2181 #define TCP_ULP_NAME_MAX	16
2182 #define TCP_ULP_MAX		128
2183 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2184 
2185 struct tcp_ulp_ops {
2186 	struct list_head	list;
2187 
2188 	/* initialize ulp */
2189 	int (*init)(struct sock *sk);
2190 	/* update ulp */
2191 	void (*update)(struct sock *sk, struct proto *p,
2192 		       void (*write_space)(struct sock *sk));
2193 	/* cleanup ulp */
2194 	void (*release)(struct sock *sk);
2195 	/* diagnostic */
2196 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2197 	size_t (*get_info_size)(const struct sock *sk);
2198 	/* clone ulp */
2199 	void (*clone)(const struct request_sock *req, struct sock *newsk,
2200 		      const gfp_t priority);
2201 
2202 	char		name[TCP_ULP_NAME_MAX];
2203 	struct module	*owner;
2204 };
2205 int tcp_register_ulp(struct tcp_ulp_ops *type);
2206 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2207 int tcp_set_ulp(struct sock *sk, const char *name);
2208 void tcp_get_available_ulp(char *buf, size_t len);
2209 void tcp_cleanup_ulp(struct sock *sk);
2210 void tcp_update_ulp(struct sock *sk, struct proto *p,
2211 		    void (*write_space)(struct sock *sk));
2212 
2213 #define MODULE_ALIAS_TCP_ULP(name)				\
2214 	__MODULE_INFO(alias, alias_userspace, name);		\
2215 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2216 
2217 struct sk_msg;
2218 struct sk_psock;
2219 
2220 #ifdef CONFIG_BPF_STREAM_PARSER
2221 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2222 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2223 #else
2224 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2225 {
2226 }
2227 #endif /* CONFIG_BPF_STREAM_PARSER */
2228 
2229 #ifdef CONFIG_NET_SOCK_MSG
2230 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2231 			  int flags);
2232 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2233 		      struct msghdr *msg, int len, int flags);
2234 #endif /* CONFIG_NET_SOCK_MSG */
2235 
2236 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2237  * is < 0, then the BPF op failed (for example if the loaded BPF
2238  * program does not support the chosen operation or there is no BPF
2239  * program loaded).
2240  */
2241 #ifdef CONFIG_BPF
2242 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2243 {
2244 	struct bpf_sock_ops_kern sock_ops;
2245 	int ret;
2246 
2247 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2248 	if (sk_fullsock(sk)) {
2249 		sock_ops.is_fullsock = 1;
2250 		sock_owned_by_me(sk);
2251 	}
2252 
2253 	sock_ops.sk = sk;
2254 	sock_ops.op = op;
2255 	if (nargs > 0)
2256 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2257 
2258 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2259 	if (ret == 0)
2260 		ret = sock_ops.reply;
2261 	else
2262 		ret = -1;
2263 	return ret;
2264 }
2265 
2266 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2267 {
2268 	u32 args[2] = {arg1, arg2};
2269 
2270 	return tcp_call_bpf(sk, op, 2, args);
2271 }
2272 
2273 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2274 				    u32 arg3)
2275 {
2276 	u32 args[3] = {arg1, arg2, arg3};
2277 
2278 	return tcp_call_bpf(sk, op, 3, args);
2279 }
2280 
2281 #else
2282 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2283 {
2284 	return -EPERM;
2285 }
2286 
2287 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2288 {
2289 	return -EPERM;
2290 }
2291 
2292 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293 				    u32 arg3)
2294 {
2295 	return -EPERM;
2296 }
2297 
2298 #endif
2299 
2300 static inline u32 tcp_timeout_init(struct sock *sk)
2301 {
2302 	int timeout;
2303 
2304 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2305 
2306 	if (timeout <= 0)
2307 		timeout = TCP_TIMEOUT_INIT;
2308 	return timeout;
2309 }
2310 
2311 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2312 {
2313 	int rwnd;
2314 
2315 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2316 
2317 	if (rwnd < 0)
2318 		rwnd = 0;
2319 	return rwnd;
2320 }
2321 
2322 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2323 {
2324 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2325 }
2326 
2327 static inline void tcp_bpf_rtt(struct sock *sk)
2328 {
2329 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2330 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2331 }
2332 
2333 #if IS_ENABLED(CONFIG_SMC)
2334 extern struct static_key_false tcp_have_smc;
2335 #endif
2336 
2337 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2338 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2339 			     void (*cad)(struct sock *sk, u32 ack_seq));
2340 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2341 void clean_acked_data_flush(void);
2342 #endif
2343 
2344 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2345 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2346 				    const struct tcp_sock *tp)
2347 {
2348 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2349 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2350 }
2351 
2352 /* Compute Earliest Departure Time for some control packets
2353  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2354  */
2355 static inline u64 tcp_transmit_time(const struct sock *sk)
2356 {
2357 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2358 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2359 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2360 
2361 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2362 	}
2363 	return 0;
2364 }
2365 
2366 #endif	/* _TCP_H */
2367