xref: /linux/include/net/tcp.h (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 #include <linux/bpf.h>
50 #include <linux/filter.h>
51 #include <linux/bpf-cgroup.h>
52 
53 extern struct inet_hashinfo tcp_hashinfo;
54 
55 extern struct percpu_counter tcp_orphan_count;
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57 
58 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 
61 /*
62  * Never offer a window over 32767 without using window scaling. Some
63  * poor stacks do signed 16bit maths!
64  */
65 #define MAX_TCP_WINDOW		32767U
66 
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS		88U
69 
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS		1024
72 
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL	600
75 
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD	8
78 
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81 
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS	16U
84 
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE		14U
87 
88 /* urg_data states */
89 #define TCP_URG_VALID	0x0100
90 #define TCP_URG_NOTYET	0x0200
91 #define TCP_URG_READ	0x0400
92 
93 #define TCP_RETR1	3	/*
94 				 * This is how many retries it does before it
95 				 * tries to figure out if the gateway is
96 				 * down. Minimal RFC value is 3; it corresponds
97 				 * to ~3sec-8min depending on RTO.
98 				 */
99 
100 #define TCP_RETR2	15	/*
101 				 * This should take at least
102 				 * 90 minutes to time out.
103 				 * RFC1122 says that the limit is 100 sec.
104 				 * 15 is ~13-30min depending on RTO.
105 				 */
106 
107 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108 				 * when active opening a connection.
109 				 * RFC1122 says the minimum retry MUST
110 				 * be at least 180secs.  Nevertheless
111 				 * this value is corresponding to
112 				 * 63secs of retransmission with the
113 				 * current initial RTO.
114 				 */
115 
116 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117 				 * when passive opening a connection.
118 				 * This is corresponding to 31secs of
119 				 * retransmission with the current
120 				 * initial RTO.
121 				 */
122 
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 				  * state, about 60 seconds	*/
125 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                  /* BSD style FIN_WAIT2 deadlock breaker.
127 				  * It used to be 3min, new value is 60sec,
128 				  * to combine FIN-WAIT-2 timeout with
129 				  * TIME-WAIT timer.
130 				  */
131 
132 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
133 #if HZ >= 100
134 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
135 #define TCP_ATO_MIN	((unsigned)(HZ/25))
136 #else
137 #define TCP_DELACK_MIN	4U
138 #define TCP_ATO_MIN	4U
139 #endif
140 #define TCP_RTO_MAX	((unsigned)(120*HZ))
141 #define TCP_RTO_MIN	((unsigned)(HZ/5))
142 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
143 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
144 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
145 						 * used as a fallback RTO for the
146 						 * initial data transmission if no
147 						 * valid RTT sample has been acquired,
148 						 * most likely due to retrans in 3WHS.
149 						 */
150 
151 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
152 					                 * for local resources.
153 					                 */
154 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
155 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
156 #define TCP_KEEPALIVE_INTVL	(75*HZ)
157 
158 #define MAX_TCP_KEEPIDLE	32767
159 #define MAX_TCP_KEEPINTVL	32767
160 #define MAX_TCP_KEEPCNT		127
161 #define MAX_TCP_SYNCNT		127
162 
163 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
164 
165 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
166 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
167 					 * after this time. It should be equal
168 					 * (or greater than) TCP_TIMEWAIT_LEN
169 					 * to provide reliability equal to one
170 					 * provided by timewait state.
171 					 */
172 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
173 					 * timestamps. It must be less than
174 					 * minimal timewait lifetime.
175 					 */
176 /*
177  *	TCP option
178  */
179 
180 #define TCPOPT_NOP		1	/* Padding */
181 #define TCPOPT_EOL		0	/* End of options */
182 #define TCPOPT_MSS		2	/* Segment size negotiating */
183 #define TCPOPT_WINDOW		3	/* Window scaling */
184 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
185 #define TCPOPT_SACK             5       /* SACK Block */
186 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
187 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
188 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
189 #define TCPOPT_EXP		254	/* Experimental */
190 /* Magic number to be after the option value for sharing TCP
191  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192  */
193 #define TCPOPT_FASTOPEN_MAGIC	0xF989
194 
195 /*
196  *     TCP option lengths
197  */
198 
199 #define TCPOLEN_MSS            4
200 #define TCPOLEN_WINDOW         3
201 #define TCPOLEN_SACK_PERM      2
202 #define TCPOLEN_TIMESTAMP      10
203 #define TCPOLEN_MD5SIG         18
204 #define TCPOLEN_FASTOPEN_BASE  2
205 #define TCPOLEN_EXP_FASTOPEN_BASE  4
206 
207 /* But this is what stacks really send out. */
208 #define TCPOLEN_TSTAMP_ALIGNED		12
209 #define TCPOLEN_WSCALE_ALIGNED		4
210 #define TCPOLEN_SACKPERM_ALIGNED	4
211 #define TCPOLEN_SACK_BASE		2
212 #define TCPOLEN_SACK_BASE_ALIGNED	4
213 #define TCPOLEN_SACK_PERBLOCK		8
214 #define TCPOLEN_MD5SIG_ALIGNED		20
215 #define TCPOLEN_MSS_ALIGNED		4
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_retrans_collapse;
244 extern int sysctl_tcp_stdurg;
245 extern int sysctl_tcp_rfc1337;
246 extern int sysctl_tcp_abort_on_overflow;
247 extern int sysctl_tcp_max_orphans;
248 extern int sysctl_tcp_fack;
249 extern int sysctl_tcp_reordering;
250 extern int sysctl_tcp_max_reordering;
251 extern int sysctl_tcp_dsack;
252 extern long sysctl_tcp_mem[3];
253 extern int sysctl_tcp_wmem[3];
254 extern int sysctl_tcp_rmem[3];
255 extern int sysctl_tcp_app_win;
256 extern int sysctl_tcp_adv_win_scale;
257 extern int sysctl_tcp_frto;
258 extern int sysctl_tcp_nometrics_save;
259 extern int sysctl_tcp_moderate_rcvbuf;
260 extern int sysctl_tcp_tso_win_divisor;
261 extern int sysctl_tcp_workaround_signed_windows;
262 extern int sysctl_tcp_slow_start_after_idle;
263 extern int sysctl_tcp_thin_linear_timeouts;
264 extern int sysctl_tcp_thin_dupack;
265 extern int sysctl_tcp_early_retrans;
266 extern int sysctl_tcp_recovery;
267 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
268 
269 extern int sysctl_tcp_limit_output_bytes;
270 extern int sysctl_tcp_challenge_ack_limit;
271 extern int sysctl_tcp_min_tso_segs;
272 extern int sysctl_tcp_min_rtt_wlen;
273 extern int sysctl_tcp_autocorking;
274 extern int sysctl_tcp_invalid_ratelimit;
275 extern int sysctl_tcp_pacing_ss_ratio;
276 extern int sysctl_tcp_pacing_ca_ratio;
277 
278 extern atomic_long_t tcp_memory_allocated;
279 extern struct percpu_counter tcp_sockets_allocated;
280 extern unsigned long tcp_memory_pressure;
281 
282 /* optimized version of sk_under_memory_pressure() for TCP sockets */
283 static inline bool tcp_under_memory_pressure(const struct sock *sk)
284 {
285 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
286 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
287 		return true;
288 
289 	return tcp_memory_pressure;
290 }
291 /*
292  * The next routines deal with comparing 32 bit unsigned ints
293  * and worry about wraparound (automatic with unsigned arithmetic).
294  */
295 
296 static inline bool before(__u32 seq1, __u32 seq2)
297 {
298         return (__s32)(seq1-seq2) < 0;
299 }
300 #define after(seq2, seq1) 	before(seq1, seq2)
301 
302 /* is s2<=s1<=s3 ? */
303 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
304 {
305 	return seq3 - seq2 >= seq1 - seq2;
306 }
307 
308 static inline bool tcp_out_of_memory(struct sock *sk)
309 {
310 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
311 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
312 		return true;
313 	return false;
314 }
315 
316 void sk_forced_mem_schedule(struct sock *sk, int size);
317 
318 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
319 {
320 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
321 	int orphans = percpu_counter_read_positive(ocp);
322 
323 	if (orphans << shift > sysctl_tcp_max_orphans) {
324 		orphans = percpu_counter_sum_positive(ocp);
325 		if (orphans << shift > sysctl_tcp_max_orphans)
326 			return true;
327 	}
328 	return false;
329 }
330 
331 bool tcp_check_oom(struct sock *sk, int shift);
332 
333 
334 extern struct proto tcp_prot;
335 
336 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
337 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
338 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
339 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
340 
341 void tcp_tasklet_init(void);
342 
343 void tcp_v4_err(struct sk_buff *skb, u32);
344 
345 void tcp_shutdown(struct sock *sk, int how);
346 
347 int tcp_v4_early_demux(struct sk_buff *skb);
348 int tcp_v4_rcv(struct sk_buff *skb);
349 
350 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
351 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
352 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
353 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
354 		 int flags);
355 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
356 			size_t size, int flags);
357 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
358 		 size_t size, int flags);
359 void tcp_release_cb(struct sock *sk);
360 void tcp_wfree(struct sk_buff *skb);
361 void tcp_write_timer_handler(struct sock *sk);
362 void tcp_delack_timer_handler(struct sock *sk);
363 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
364 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
365 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
366 			 const struct tcphdr *th);
367 void tcp_rcv_space_adjust(struct sock *sk);
368 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
369 void tcp_twsk_destructor(struct sock *sk);
370 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
371 			struct pipe_inode_info *pipe, size_t len,
372 			unsigned int flags);
373 
374 static inline void tcp_dec_quickack_mode(struct sock *sk,
375 					 const unsigned int pkts)
376 {
377 	struct inet_connection_sock *icsk = inet_csk(sk);
378 
379 	if (icsk->icsk_ack.quick) {
380 		if (pkts >= icsk->icsk_ack.quick) {
381 			icsk->icsk_ack.quick = 0;
382 			/* Leaving quickack mode we deflate ATO. */
383 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
384 		} else
385 			icsk->icsk_ack.quick -= pkts;
386 	}
387 }
388 
389 #define	TCP_ECN_OK		1
390 #define	TCP_ECN_QUEUE_CWR	2
391 #define	TCP_ECN_DEMAND_CWR	4
392 #define	TCP_ECN_SEEN		8
393 
394 enum tcp_tw_status {
395 	TCP_TW_SUCCESS = 0,
396 	TCP_TW_RST = 1,
397 	TCP_TW_ACK = 2,
398 	TCP_TW_SYN = 3
399 };
400 
401 
402 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
403 					      struct sk_buff *skb,
404 					      const struct tcphdr *th);
405 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
406 			   struct request_sock *req, bool fastopen);
407 int tcp_child_process(struct sock *parent, struct sock *child,
408 		      struct sk_buff *skb);
409 void tcp_enter_loss(struct sock *sk);
410 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
411 void tcp_clear_retrans(struct tcp_sock *tp);
412 void tcp_update_metrics(struct sock *sk);
413 void tcp_init_metrics(struct sock *sk);
414 void tcp_metrics_init(void);
415 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
416 void tcp_disable_fack(struct tcp_sock *tp);
417 void tcp_close(struct sock *sk, long timeout);
418 void tcp_init_sock(struct sock *sk);
419 void tcp_init_transfer(struct sock *sk, int bpf_op);
420 unsigned int tcp_poll(struct file *file, struct socket *sock,
421 		      struct poll_table_struct *wait);
422 int tcp_getsockopt(struct sock *sk, int level, int optname,
423 		   char __user *optval, int __user *optlen);
424 int tcp_setsockopt(struct sock *sk, int level, int optname,
425 		   char __user *optval, unsigned int optlen);
426 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
427 			  char __user *optval, int __user *optlen);
428 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
429 			  char __user *optval, unsigned int optlen);
430 void tcp_set_keepalive(struct sock *sk, int val);
431 void tcp_syn_ack_timeout(const struct request_sock *req);
432 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
433 		int flags, int *addr_len);
434 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
435 		       struct tcp_options_received *opt_rx,
436 		       int estab, struct tcp_fastopen_cookie *foc);
437 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
438 
439 /*
440  *	TCP v4 functions exported for the inet6 API
441  */
442 
443 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
444 void tcp_v4_mtu_reduced(struct sock *sk);
445 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
446 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
447 struct sock *tcp_create_openreq_child(const struct sock *sk,
448 				      struct request_sock *req,
449 				      struct sk_buff *skb);
450 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
451 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
452 				  struct request_sock *req,
453 				  struct dst_entry *dst,
454 				  struct request_sock *req_unhash,
455 				  bool *own_req);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 enum tcp_synack_type {
460 	TCP_SYNACK_NORMAL,
461 	TCP_SYNACK_FASTOPEN,
462 	TCP_SYNACK_COOKIE,
463 };
464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
465 				struct request_sock *req,
466 				struct tcp_fastopen_cookie *foc,
467 				enum tcp_synack_type synack_type);
468 int tcp_disconnect(struct sock *sk, int flags);
469 
470 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
471 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
472 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
473 
474 /* From syncookies.c */
475 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
476 				 struct request_sock *req,
477 				 struct dst_entry *dst, u32 tsoff);
478 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
479 		      u32 cookie);
480 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
481 #ifdef CONFIG_SYN_COOKIES
482 
483 /* Syncookies use a monotonic timer which increments every 60 seconds.
484  * This counter is used both as a hash input and partially encoded into
485  * the cookie value.  A cookie is only validated further if the delta
486  * between the current counter value and the encoded one is less than this,
487  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
488  * the counter advances immediately after a cookie is generated).
489  */
490 #define MAX_SYNCOOKIE_AGE	2
491 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
492 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
493 
494 /* syncookies: remember time of last synqueue overflow
495  * But do not dirty this field too often (once per second is enough)
496  * It is racy as we do not hold a lock, but race is very minor.
497  */
498 static inline void tcp_synq_overflow(const struct sock *sk)
499 {
500 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
501 	unsigned long now = jiffies;
502 
503 	if (time_after(now, last_overflow + HZ))
504 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
505 }
506 
507 /* syncookies: no recent synqueue overflow on this listening socket? */
508 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
509 {
510 	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
511 
512 	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
513 }
514 
515 static inline u32 tcp_cookie_time(void)
516 {
517 	u64 val = get_jiffies_64();
518 
519 	do_div(val, TCP_SYNCOOKIE_PERIOD);
520 	return val;
521 }
522 
523 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
524 			      u16 *mssp);
525 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
526 u64 cookie_init_timestamp(struct request_sock *req);
527 bool cookie_timestamp_decode(const struct net *net,
528 			     struct tcp_options_received *opt);
529 bool cookie_ecn_ok(const struct tcp_options_received *opt,
530 		   const struct net *net, const struct dst_entry *dst);
531 
532 /* From net/ipv6/syncookies.c */
533 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
534 		      u32 cookie);
535 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
536 
537 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
538 			      const struct tcphdr *th, u16 *mssp);
539 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
540 #endif
541 /* tcp_output.c */
542 
543 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
544 		     int min_tso_segs);
545 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
546 			       int nonagle);
547 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
548 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
549 void tcp_retransmit_timer(struct sock *sk);
550 void tcp_xmit_retransmit_queue(struct sock *);
551 void tcp_simple_retransmit(struct sock *);
552 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
553 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
554 enum tcp_queue {
555 	TCP_FRAG_IN_WRITE_QUEUE,
556 	TCP_FRAG_IN_RTX_QUEUE,
557 };
558 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
559 		 struct sk_buff *skb, u32 len,
560 		 unsigned int mss_now, gfp_t gfp);
561 
562 void tcp_send_probe0(struct sock *);
563 void tcp_send_partial(struct sock *);
564 int tcp_write_wakeup(struct sock *, int mib);
565 void tcp_send_fin(struct sock *sk);
566 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
567 int tcp_send_synack(struct sock *);
568 void tcp_push_one(struct sock *, unsigned int mss_now);
569 void tcp_send_ack(struct sock *sk);
570 void tcp_send_delayed_ack(struct sock *sk);
571 void tcp_send_loss_probe(struct sock *sk);
572 bool tcp_schedule_loss_probe(struct sock *sk);
573 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
574 			     const struct sk_buff *next_skb);
575 
576 /* tcp_input.c */
577 void tcp_rearm_rto(struct sock *sk);
578 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
579 void tcp_reset(struct sock *sk);
580 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
581 void tcp_fin(struct sock *sk);
582 
583 /* tcp_timer.c */
584 void tcp_init_xmit_timers(struct sock *);
585 static inline void tcp_clear_xmit_timers(struct sock *sk)
586 {
587 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
588 	inet_csk_clear_xmit_timers(sk);
589 }
590 
591 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
592 unsigned int tcp_current_mss(struct sock *sk);
593 
594 /* Bound MSS / TSO packet size with the half of the window */
595 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
596 {
597 	int cutoff;
598 
599 	/* When peer uses tiny windows, there is no use in packetizing
600 	 * to sub-MSS pieces for the sake of SWS or making sure there
601 	 * are enough packets in the pipe for fast recovery.
602 	 *
603 	 * On the other hand, for extremely large MSS devices, handling
604 	 * smaller than MSS windows in this way does make sense.
605 	 */
606 	if (tp->max_window > TCP_MSS_DEFAULT)
607 		cutoff = (tp->max_window >> 1);
608 	else
609 		cutoff = tp->max_window;
610 
611 	if (cutoff && pktsize > cutoff)
612 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
613 	else
614 		return pktsize;
615 }
616 
617 /* tcp.c */
618 void tcp_get_info(struct sock *, struct tcp_info *);
619 
620 /* Read 'sendfile()'-style from a TCP socket */
621 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
622 		  sk_read_actor_t recv_actor);
623 
624 void tcp_initialize_rcv_mss(struct sock *sk);
625 
626 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
627 int tcp_mss_to_mtu(struct sock *sk, int mss);
628 void tcp_mtup_init(struct sock *sk);
629 void tcp_init_buffer_space(struct sock *sk);
630 
631 static inline void tcp_bound_rto(const struct sock *sk)
632 {
633 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
634 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
635 }
636 
637 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
638 {
639 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
640 }
641 
642 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
643 {
644 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
645 			       ntohl(TCP_FLAG_ACK) |
646 			       snd_wnd);
647 }
648 
649 static inline void tcp_fast_path_on(struct tcp_sock *tp)
650 {
651 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
652 }
653 
654 static inline void tcp_fast_path_check(struct sock *sk)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 
658 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
659 	    tp->rcv_wnd &&
660 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
661 	    !tp->urg_data)
662 		tcp_fast_path_on(tp);
663 }
664 
665 /* Compute the actual rto_min value */
666 static inline u32 tcp_rto_min(struct sock *sk)
667 {
668 	const struct dst_entry *dst = __sk_dst_get(sk);
669 	u32 rto_min = TCP_RTO_MIN;
670 
671 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
672 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
673 	return rto_min;
674 }
675 
676 static inline u32 tcp_rto_min_us(struct sock *sk)
677 {
678 	return jiffies_to_usecs(tcp_rto_min(sk));
679 }
680 
681 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
682 {
683 	return dst_metric_locked(dst, RTAX_CC_ALGO);
684 }
685 
686 /* Minimum RTT in usec. ~0 means not available. */
687 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
688 {
689 	return minmax_get(&tp->rtt_min);
690 }
691 
692 /* Compute the actual receive window we are currently advertising.
693  * Rcv_nxt can be after the window if our peer push more data
694  * than the offered window.
695  */
696 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
697 {
698 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
699 
700 	if (win < 0)
701 		win = 0;
702 	return (u32) win;
703 }
704 
705 /* Choose a new window, without checks for shrinking, and without
706  * scaling applied to the result.  The caller does these things
707  * if necessary.  This is a "raw" window selection.
708  */
709 u32 __tcp_select_window(struct sock *sk);
710 
711 void tcp_send_window_probe(struct sock *sk);
712 
713 /* TCP uses 32bit jiffies to save some space.
714  * Note that this is different from tcp_time_stamp, which
715  * historically has been the same until linux-4.13.
716  */
717 #define tcp_jiffies32 ((u32)jiffies)
718 
719 /*
720  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
721  * It is no longer tied to jiffies, but to 1 ms clock.
722  * Note: double check if you want to use tcp_jiffies32 instead of this.
723  */
724 #define TCP_TS_HZ	1000
725 
726 static inline u64 tcp_clock_ns(void)
727 {
728 	return local_clock();
729 }
730 
731 static inline u64 tcp_clock_us(void)
732 {
733 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
734 }
735 
736 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
737 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
738 {
739 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
740 }
741 
742 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
743 static inline u32 tcp_time_stamp_raw(void)
744 {
745 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
746 }
747 
748 
749 /* Refresh 1us clock of a TCP socket,
750  * ensuring monotically increasing values.
751  */
752 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
753 {
754 	u64 val = tcp_clock_us();
755 
756 	if (val > tp->tcp_mstamp)
757 		tp->tcp_mstamp = val;
758 }
759 
760 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
761 {
762 	return max_t(s64, t1 - t0, 0);
763 }
764 
765 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
766 {
767 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
768 }
769 
770 
771 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
772 
773 #define TCPHDR_FIN 0x01
774 #define TCPHDR_SYN 0x02
775 #define TCPHDR_RST 0x04
776 #define TCPHDR_PSH 0x08
777 #define TCPHDR_ACK 0x10
778 #define TCPHDR_URG 0x20
779 #define TCPHDR_ECE 0x40
780 #define TCPHDR_CWR 0x80
781 
782 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
783 
784 /* This is what the send packet queuing engine uses to pass
785  * TCP per-packet control information to the transmission code.
786  * We also store the host-order sequence numbers in here too.
787  * This is 44 bytes if IPV6 is enabled.
788  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
789  */
790 struct tcp_skb_cb {
791 	__u32		seq;		/* Starting sequence number	*/
792 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
793 	union {
794 		/* Note : tcp_tw_isn is used in input path only
795 		 *	  (isn chosen by tcp_timewait_state_process())
796 		 *
797 		 * 	  tcp_gso_segs/size are used in write queue only,
798 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
799 		 */
800 		__u32		tcp_tw_isn;
801 		struct {
802 			u16	tcp_gso_segs;
803 			u16	tcp_gso_size;
804 		};
805 	};
806 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
807 
808 	__u8		sacked;		/* State flags for SACK/FACK.	*/
809 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
810 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
811 #define TCPCB_LOST		0x04	/* SKB is lost			*/
812 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
813 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
814 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
815 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
816 				TCPCB_REPAIRED)
817 
818 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
819 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
820 			eor:1,		/* Is skb MSG_EOR marked? */
821 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
822 			unused:5;
823 	__u32		ack_seq;	/* Sequence number ACK'd	*/
824 	union {
825 		struct {
826 			/* There is space for up to 24 bytes */
827 			__u32 in_flight:30,/* Bytes in flight at transmit */
828 			      is_app_limited:1, /* cwnd not fully used? */
829 			      unused:1;
830 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
831 			__u32 delivered;
832 			/* start of send pipeline phase */
833 			u64 first_tx_mstamp;
834 			/* when we reached the "delivered" count */
835 			u64 delivered_mstamp;
836 		} tx;   /* only used for outgoing skbs */
837 		union {
838 			struct inet_skb_parm	h4;
839 #if IS_ENABLED(CONFIG_IPV6)
840 			struct inet6_skb_parm	h6;
841 #endif
842 		} header;	/* For incoming skbs */
843 	};
844 };
845 
846 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
847 
848 
849 #if IS_ENABLED(CONFIG_IPV6)
850 /* This is the variant of inet6_iif() that must be used by TCP,
851  * as TCP moves IP6CB into a different location in skb->cb[]
852  */
853 static inline int tcp_v6_iif(const struct sk_buff *skb)
854 {
855 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
856 
857 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
858 }
859 
860 /* TCP_SKB_CB reference means this can not be used from early demux */
861 static inline int tcp_v6_sdif(const struct sk_buff *skb)
862 {
863 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
864 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
865 		return TCP_SKB_CB(skb)->header.h6.iif;
866 #endif
867 	return 0;
868 }
869 #endif
870 
871 /* TCP_SKB_CB reference means this can not be used from early demux */
872 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
873 {
874 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
875 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
876 	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
877 		return true;
878 #endif
879 	return false;
880 }
881 
882 /* TCP_SKB_CB reference means this can not be used from early demux */
883 static inline int tcp_v4_sdif(struct sk_buff *skb)
884 {
885 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
886 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
887 		return TCP_SKB_CB(skb)->header.h4.iif;
888 #endif
889 	return 0;
890 }
891 
892 /* Due to TSO, an SKB can be composed of multiple actual
893  * packets.  To keep these tracked properly, we use this.
894  */
895 static inline int tcp_skb_pcount(const struct sk_buff *skb)
896 {
897 	return TCP_SKB_CB(skb)->tcp_gso_segs;
898 }
899 
900 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
901 {
902 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
903 }
904 
905 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
906 {
907 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
908 }
909 
910 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
911 static inline int tcp_skb_mss(const struct sk_buff *skb)
912 {
913 	return TCP_SKB_CB(skb)->tcp_gso_size;
914 }
915 
916 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
917 {
918 	return likely(!TCP_SKB_CB(skb)->eor);
919 }
920 
921 /* Events passed to congestion control interface */
922 enum tcp_ca_event {
923 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
924 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
925 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
926 	CA_EVENT_LOSS,		/* loss timeout */
927 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
928 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
929 	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
930 	CA_EVENT_NON_DELAYED_ACK,
931 };
932 
933 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
934 enum tcp_ca_ack_event_flags {
935 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
936 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
937 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
938 };
939 
940 /*
941  * Interface for adding new TCP congestion control handlers
942  */
943 #define TCP_CA_NAME_MAX	16
944 #define TCP_CA_MAX	128
945 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
946 
947 #define TCP_CA_UNSPEC	0
948 
949 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
950 #define TCP_CONG_NON_RESTRICTED 0x1
951 /* Requires ECN/ECT set on all packets */
952 #define TCP_CONG_NEEDS_ECN	0x2
953 
954 union tcp_cc_info;
955 
956 struct ack_sample {
957 	u32 pkts_acked;
958 	s32 rtt_us;
959 	u32 in_flight;
960 };
961 
962 /* A rate sample measures the number of (original/retransmitted) data
963  * packets delivered "delivered" over an interval of time "interval_us".
964  * The tcp_rate.c code fills in the rate sample, and congestion
965  * control modules that define a cong_control function to run at the end
966  * of ACK processing can optionally chose to consult this sample when
967  * setting cwnd and pacing rate.
968  * A sample is invalid if "delivered" or "interval_us" is negative.
969  */
970 struct rate_sample {
971 	u64  prior_mstamp; /* starting timestamp for interval */
972 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
973 	s32  delivered;		/* number of packets delivered over interval */
974 	long interval_us;	/* time for tp->delivered to incr "delivered" */
975 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
976 	int  losses;		/* number of packets marked lost upon ACK */
977 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
978 	u32  prior_in_flight;	/* in flight before this ACK */
979 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
980 	bool is_retrans;	/* is sample from retransmission? */
981 };
982 
983 struct tcp_congestion_ops {
984 	struct list_head	list;
985 	u32 key;
986 	u32 flags;
987 
988 	/* initialize private data (optional) */
989 	void (*init)(struct sock *sk);
990 	/* cleanup private data  (optional) */
991 	void (*release)(struct sock *sk);
992 
993 	/* return slow start threshold (required) */
994 	u32 (*ssthresh)(struct sock *sk);
995 	/* do new cwnd calculation (required) */
996 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
997 	/* call before changing ca_state (optional) */
998 	void (*set_state)(struct sock *sk, u8 new_state);
999 	/* call when cwnd event occurs (optional) */
1000 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1001 	/* call when ack arrives (optional) */
1002 	void (*in_ack_event)(struct sock *sk, u32 flags);
1003 	/* new value of cwnd after loss (required) */
1004 	u32  (*undo_cwnd)(struct sock *sk);
1005 	/* hook for packet ack accounting (optional) */
1006 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1007 	/* suggest number of segments for each skb to transmit (optional) */
1008 	u32 (*tso_segs_goal)(struct sock *sk);
1009 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1010 	u32 (*sndbuf_expand)(struct sock *sk);
1011 	/* call when packets are delivered to update cwnd and pacing rate,
1012 	 * after all the ca_state processing. (optional)
1013 	 */
1014 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1015 	/* get info for inet_diag (optional) */
1016 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1017 			   union tcp_cc_info *info);
1018 
1019 	char 		name[TCP_CA_NAME_MAX];
1020 	struct module 	*owner;
1021 };
1022 
1023 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1024 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1025 
1026 void tcp_assign_congestion_control(struct sock *sk);
1027 void tcp_init_congestion_control(struct sock *sk);
1028 void tcp_cleanup_congestion_control(struct sock *sk);
1029 int tcp_set_default_congestion_control(const char *name);
1030 void tcp_get_default_congestion_control(char *name);
1031 void tcp_get_available_congestion_control(char *buf, size_t len);
1032 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1033 int tcp_set_allowed_congestion_control(char *allowed);
1034 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load, bool reinit);
1035 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1036 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1037 
1038 u32 tcp_reno_ssthresh(struct sock *sk);
1039 u32 tcp_reno_undo_cwnd(struct sock *sk);
1040 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1041 extern struct tcp_congestion_ops tcp_reno;
1042 
1043 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1044 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1045 #ifdef CONFIG_INET
1046 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1047 #else
1048 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1049 {
1050 	return NULL;
1051 }
1052 #endif
1053 
1054 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1055 {
1056 	const struct inet_connection_sock *icsk = inet_csk(sk);
1057 
1058 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1059 }
1060 
1061 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1062 {
1063 	struct inet_connection_sock *icsk = inet_csk(sk);
1064 
1065 	if (icsk->icsk_ca_ops->set_state)
1066 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1067 	icsk->icsk_ca_state = ca_state;
1068 }
1069 
1070 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1071 {
1072 	const struct inet_connection_sock *icsk = inet_csk(sk);
1073 
1074 	if (icsk->icsk_ca_ops->cwnd_event)
1075 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1076 }
1077 
1078 /* From tcp_rate.c */
1079 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1080 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1081 			    struct rate_sample *rs);
1082 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1083 		  struct rate_sample *rs);
1084 void tcp_rate_check_app_limited(struct sock *sk);
1085 
1086 /* These functions determine how the current flow behaves in respect of SACK
1087  * handling. SACK is negotiated with the peer, and therefore it can vary
1088  * between different flows.
1089  *
1090  * tcp_is_sack - SACK enabled
1091  * tcp_is_reno - No SACK
1092  * tcp_is_fack - FACK enabled, implies SACK enabled
1093  */
1094 static inline int tcp_is_sack(const struct tcp_sock *tp)
1095 {
1096 	return tp->rx_opt.sack_ok;
1097 }
1098 
1099 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1100 {
1101 	return !tcp_is_sack(tp);
1102 }
1103 
1104 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1105 {
1106 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1107 }
1108 
1109 static inline void tcp_enable_fack(struct tcp_sock *tp)
1110 {
1111 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1112 }
1113 
1114 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1115 {
1116 	return tp->sacked_out + tp->lost_out;
1117 }
1118 
1119 /* This determines how many packets are "in the network" to the best
1120  * of our knowledge.  In many cases it is conservative, but where
1121  * detailed information is available from the receiver (via SACK
1122  * blocks etc.) we can make more aggressive calculations.
1123  *
1124  * Use this for decisions involving congestion control, use just
1125  * tp->packets_out to determine if the send queue is empty or not.
1126  *
1127  * Read this equation as:
1128  *
1129  *	"Packets sent once on transmission queue" MINUS
1130  *	"Packets left network, but not honestly ACKed yet" PLUS
1131  *	"Packets fast retransmitted"
1132  */
1133 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1134 {
1135 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1136 }
1137 
1138 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1139 
1140 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1141 {
1142 	return tp->snd_cwnd < tp->snd_ssthresh;
1143 }
1144 
1145 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1146 {
1147 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1148 }
1149 
1150 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1151 {
1152 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1153 	       (1 << inet_csk(sk)->icsk_ca_state);
1154 }
1155 
1156 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1157  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1158  * ssthresh.
1159  */
1160 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1161 {
1162 	const struct tcp_sock *tp = tcp_sk(sk);
1163 
1164 	if (tcp_in_cwnd_reduction(sk))
1165 		return tp->snd_ssthresh;
1166 	else
1167 		return max(tp->snd_ssthresh,
1168 			   ((tp->snd_cwnd >> 1) +
1169 			    (tp->snd_cwnd >> 2)));
1170 }
1171 
1172 /* Use define here intentionally to get WARN_ON location shown at the caller */
1173 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1174 
1175 void tcp_enter_cwr(struct sock *sk);
1176 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1177 
1178 /* The maximum number of MSS of available cwnd for which TSO defers
1179  * sending if not using sysctl_tcp_tso_win_divisor.
1180  */
1181 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1182 {
1183 	return 3;
1184 }
1185 
1186 /* Returns end sequence number of the receiver's advertised window */
1187 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1188 {
1189 	return tp->snd_una + tp->snd_wnd;
1190 }
1191 
1192 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1193  * flexible approach. The RFC suggests cwnd should not be raised unless
1194  * it was fully used previously. And that's exactly what we do in
1195  * congestion avoidance mode. But in slow start we allow cwnd to grow
1196  * as long as the application has used half the cwnd.
1197  * Example :
1198  *    cwnd is 10 (IW10), but application sends 9 frames.
1199  *    We allow cwnd to reach 18 when all frames are ACKed.
1200  * This check is safe because it's as aggressive as slow start which already
1201  * risks 100% overshoot. The advantage is that we discourage application to
1202  * either send more filler packets or data to artificially blow up the cwnd
1203  * usage, and allow application-limited process to probe bw more aggressively.
1204  */
1205 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1206 {
1207 	const struct tcp_sock *tp = tcp_sk(sk);
1208 
1209 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1210 	if (tcp_in_slow_start(tp))
1211 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1212 
1213 	return tp->is_cwnd_limited;
1214 }
1215 
1216 /* Something is really bad, we could not queue an additional packet,
1217  * because qdisc is full or receiver sent a 0 window.
1218  * We do not want to add fuel to the fire, or abort too early,
1219  * so make sure the timer we arm now is at least 200ms in the future,
1220  * regardless of current icsk_rto value (as it could be ~2ms)
1221  */
1222 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1223 {
1224 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1225 }
1226 
1227 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1228 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1229 					    unsigned long max_when)
1230 {
1231 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1232 
1233 	return (unsigned long)min_t(u64, when, max_when);
1234 }
1235 
1236 static inline void tcp_check_probe_timer(struct sock *sk)
1237 {
1238 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1239 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1240 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1241 }
1242 
1243 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1244 {
1245 	tp->snd_wl1 = seq;
1246 }
1247 
1248 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1249 {
1250 	tp->snd_wl1 = seq;
1251 }
1252 
1253 /*
1254  * Calculate(/check) TCP checksum
1255  */
1256 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1257 				   __be32 daddr, __wsum base)
1258 {
1259 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1260 }
1261 
1262 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1263 {
1264 	return __skb_checksum_complete(skb);
1265 }
1266 
1267 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1268 {
1269 	return !skb_csum_unnecessary(skb) &&
1270 		__tcp_checksum_complete(skb);
1271 }
1272 
1273 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1274 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1275 
1276 #undef STATE_TRACE
1277 
1278 #ifdef STATE_TRACE
1279 static const char *statename[]={
1280 	"Unused","Established","Syn Sent","Syn Recv",
1281 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1282 	"Close Wait","Last ACK","Listen","Closing"
1283 };
1284 #endif
1285 void tcp_set_state(struct sock *sk, int state);
1286 
1287 void tcp_done(struct sock *sk);
1288 
1289 int tcp_abort(struct sock *sk, int err);
1290 
1291 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1292 {
1293 	rx_opt->dsack = 0;
1294 	rx_opt->num_sacks = 0;
1295 }
1296 
1297 u32 tcp_default_init_rwnd(u32 mss);
1298 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1299 
1300 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1301 {
1302 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1303 	struct tcp_sock *tp = tcp_sk(sk);
1304 	s32 delta;
1305 
1306 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1307 	    ca_ops->cong_control)
1308 		return;
1309 	delta = tcp_jiffies32 - tp->lsndtime;
1310 	if (delta > inet_csk(sk)->icsk_rto)
1311 		tcp_cwnd_restart(sk, delta);
1312 }
1313 
1314 /* Determine a window scaling and initial window to offer. */
1315 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1316 			       __u32 *window_clamp, int wscale_ok,
1317 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1318 
1319 static inline int tcp_win_from_space(int space)
1320 {
1321 	int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1322 
1323 	return tcp_adv_win_scale <= 0 ?
1324 		(space>>(-tcp_adv_win_scale)) :
1325 		space - (space>>tcp_adv_win_scale);
1326 }
1327 
1328 /* Note: caller must be prepared to deal with negative returns */
1329 static inline int tcp_space(const struct sock *sk)
1330 {
1331 	return tcp_win_from_space(sk->sk_rcvbuf -
1332 				  atomic_read(&sk->sk_rmem_alloc));
1333 }
1334 
1335 static inline int tcp_full_space(const struct sock *sk)
1336 {
1337 	return tcp_win_from_space(sk->sk_rcvbuf);
1338 }
1339 
1340 extern void tcp_openreq_init_rwin(struct request_sock *req,
1341 				  const struct sock *sk_listener,
1342 				  const struct dst_entry *dst);
1343 
1344 void tcp_enter_memory_pressure(struct sock *sk);
1345 void tcp_leave_memory_pressure(struct sock *sk);
1346 
1347 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1348 {
1349 	struct net *net = sock_net((struct sock *)tp);
1350 
1351 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1352 }
1353 
1354 static inline int keepalive_time_when(const struct tcp_sock *tp)
1355 {
1356 	struct net *net = sock_net((struct sock *)tp);
1357 
1358 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1359 }
1360 
1361 static inline int keepalive_probes(const struct tcp_sock *tp)
1362 {
1363 	struct net *net = sock_net((struct sock *)tp);
1364 
1365 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1366 }
1367 
1368 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1369 {
1370 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1371 
1372 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1373 			  tcp_jiffies32 - tp->rcv_tstamp);
1374 }
1375 
1376 static inline int tcp_fin_time(const struct sock *sk)
1377 {
1378 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1379 	const int rto = inet_csk(sk)->icsk_rto;
1380 
1381 	if (fin_timeout < (rto << 2) - (rto >> 1))
1382 		fin_timeout = (rto << 2) - (rto >> 1);
1383 
1384 	return fin_timeout;
1385 }
1386 
1387 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1388 				  int paws_win)
1389 {
1390 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1391 		return true;
1392 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1393 		return true;
1394 	/*
1395 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1396 	 * then following tcp messages have valid values. Ignore 0 value,
1397 	 * or else 'negative' tsval might forbid us to accept their packets.
1398 	 */
1399 	if (!rx_opt->ts_recent)
1400 		return true;
1401 	return false;
1402 }
1403 
1404 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1405 				   int rst)
1406 {
1407 	if (tcp_paws_check(rx_opt, 0))
1408 		return false;
1409 
1410 	/* RST segments are not recommended to carry timestamp,
1411 	   and, if they do, it is recommended to ignore PAWS because
1412 	   "their cleanup function should take precedence over timestamps."
1413 	   Certainly, it is mistake. It is necessary to understand the reasons
1414 	   of this constraint to relax it: if peer reboots, clock may go
1415 	   out-of-sync and half-open connections will not be reset.
1416 	   Actually, the problem would be not existing if all
1417 	   the implementations followed draft about maintaining clock
1418 	   via reboots. Linux-2.2 DOES NOT!
1419 
1420 	   However, we can relax time bounds for RST segments to MSL.
1421 	 */
1422 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1423 		return false;
1424 	return true;
1425 }
1426 
1427 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1428 			  int mib_idx, u32 *last_oow_ack_time);
1429 
1430 static inline void tcp_mib_init(struct net *net)
1431 {
1432 	/* See RFC 2012 */
1433 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1434 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1435 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1436 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1437 }
1438 
1439 /* from STCP */
1440 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1441 {
1442 	tp->lost_skb_hint = NULL;
1443 }
1444 
1445 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1446 {
1447 	tcp_clear_retrans_hints_partial(tp);
1448 	tp->retransmit_skb_hint = NULL;
1449 }
1450 
1451 union tcp_md5_addr {
1452 	struct in_addr  a4;
1453 #if IS_ENABLED(CONFIG_IPV6)
1454 	struct in6_addr	a6;
1455 #endif
1456 };
1457 
1458 /* - key database */
1459 struct tcp_md5sig_key {
1460 	struct hlist_node	node;
1461 	u8			keylen;
1462 	u8			family; /* AF_INET or AF_INET6 */
1463 	union tcp_md5_addr	addr;
1464 	u8			prefixlen;
1465 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1466 	struct rcu_head		rcu;
1467 };
1468 
1469 /* - sock block */
1470 struct tcp_md5sig_info {
1471 	struct hlist_head	head;
1472 	struct rcu_head		rcu;
1473 };
1474 
1475 /* - pseudo header */
1476 struct tcp4_pseudohdr {
1477 	__be32		saddr;
1478 	__be32		daddr;
1479 	__u8		pad;
1480 	__u8		protocol;
1481 	__be16		len;
1482 };
1483 
1484 struct tcp6_pseudohdr {
1485 	struct in6_addr	saddr;
1486 	struct in6_addr daddr;
1487 	__be32		len;
1488 	__be32		protocol;	/* including padding */
1489 };
1490 
1491 union tcp_md5sum_block {
1492 	struct tcp4_pseudohdr ip4;
1493 #if IS_ENABLED(CONFIG_IPV6)
1494 	struct tcp6_pseudohdr ip6;
1495 #endif
1496 };
1497 
1498 /* - pool: digest algorithm, hash description and scratch buffer */
1499 struct tcp_md5sig_pool {
1500 	struct ahash_request	*md5_req;
1501 	void			*scratch;
1502 };
1503 
1504 /* - functions */
1505 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1506 			const struct sock *sk, const struct sk_buff *skb);
1507 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1508 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1509 		   gfp_t gfp);
1510 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1511 		   int family, u8 prefixlen);
1512 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1513 					 const struct sock *addr_sk);
1514 
1515 #ifdef CONFIG_TCP_MD5SIG
1516 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1517 					 const union tcp_md5_addr *addr,
1518 					 int family);
1519 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1520 #else
1521 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1522 					 const union tcp_md5_addr *addr,
1523 					 int family)
1524 {
1525 	return NULL;
1526 }
1527 #define tcp_twsk_md5_key(twsk)	NULL
1528 #endif
1529 
1530 bool tcp_alloc_md5sig_pool(void);
1531 
1532 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1533 static inline void tcp_put_md5sig_pool(void)
1534 {
1535 	local_bh_enable();
1536 }
1537 
1538 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1539 			  unsigned int header_len);
1540 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1541 		     const struct tcp_md5sig_key *key);
1542 
1543 /* From tcp_fastopen.c */
1544 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1545 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1546 			    unsigned long *last_syn_loss);
1547 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1548 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1549 			    u16 try_exp);
1550 struct tcp_fastopen_request {
1551 	/* Fast Open cookie. Size 0 means a cookie request */
1552 	struct tcp_fastopen_cookie	cookie;
1553 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1554 	size_t				size;
1555 	int				copied;	/* queued in tcp_connect() */
1556 };
1557 void tcp_free_fastopen_req(struct tcp_sock *tp);
1558 
1559 void tcp_fastopen_ctx_destroy(struct net *net);
1560 int tcp_fastopen_reset_cipher(struct net *net, void *key, unsigned int len);
1561 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1562 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1563 			      struct request_sock *req,
1564 			      struct tcp_fastopen_cookie *foc);
1565 void tcp_fastopen_init_key_once(struct net *net);
1566 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1567 			     struct tcp_fastopen_cookie *cookie);
1568 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1569 #define TCP_FASTOPEN_KEY_LENGTH 16
1570 
1571 /* Fastopen key context */
1572 struct tcp_fastopen_context {
1573 	struct crypto_cipher	*tfm;
1574 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1575 	struct rcu_head		rcu;
1576 };
1577 
1578 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1579 void tcp_fastopen_active_disable(struct sock *sk);
1580 bool tcp_fastopen_active_should_disable(struct sock *sk);
1581 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1582 void tcp_fastopen_active_timeout_reset(void);
1583 
1584 /* Latencies incurred by various limits for a sender. They are
1585  * chronograph-like stats that are mutually exclusive.
1586  */
1587 enum tcp_chrono {
1588 	TCP_CHRONO_UNSPEC,
1589 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1590 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1591 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1592 	__TCP_CHRONO_MAX,
1593 };
1594 
1595 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1596 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1597 
1598 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1599  * the same memory storage than skb->destructor/_skb_refdst
1600  */
1601 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1602 {
1603 	skb->destructor = NULL;
1604 	skb->_skb_refdst = 0UL;
1605 }
1606 
1607 #define tcp_skb_tsorted_save(skb) {		\
1608 	unsigned long _save = skb->_skb_refdst;	\
1609 	skb->_skb_refdst = 0UL;
1610 
1611 #define tcp_skb_tsorted_restore(skb)		\
1612 	skb->_skb_refdst = _save;		\
1613 }
1614 
1615 void tcp_write_queue_purge(struct sock *sk);
1616 
1617 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1618 {
1619 	return skb_rb_first(&sk->tcp_rtx_queue);
1620 }
1621 
1622 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1623 {
1624 	return skb_peek(&sk->sk_write_queue);
1625 }
1626 
1627 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1628 {
1629 	return skb_peek_tail(&sk->sk_write_queue);
1630 }
1631 
1632 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1633 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1634 
1635 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1636 {
1637 	return skb_peek(&sk->sk_write_queue);
1638 }
1639 
1640 static inline bool tcp_skb_is_last(const struct sock *sk,
1641 				   const struct sk_buff *skb)
1642 {
1643 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1644 }
1645 
1646 static inline bool tcp_write_queue_empty(const struct sock *sk)
1647 {
1648 	return skb_queue_empty(&sk->sk_write_queue);
1649 }
1650 
1651 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1652 {
1653 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1654 }
1655 
1656 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1657 {
1658 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1659 }
1660 
1661 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1662 {
1663 	if (tcp_write_queue_empty(sk))
1664 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1665 
1666 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1667 		tcp_sk(sk)->highest_sack = NULL;
1668 }
1669 
1670 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1671 {
1672 	__skb_queue_tail(&sk->sk_write_queue, skb);
1673 }
1674 
1675 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1676 {
1677 	__tcp_add_write_queue_tail(sk, skb);
1678 
1679 	/* Queue it, remembering where we must start sending. */
1680 	if (sk->sk_write_queue.next == skb) {
1681 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1682 
1683 		if (tcp_sk(sk)->highest_sack == NULL)
1684 			tcp_sk(sk)->highest_sack = skb;
1685 	}
1686 }
1687 
1688 /* Insert new before skb on the write queue of sk.  */
1689 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1690 						  struct sk_buff *skb,
1691 						  struct sock *sk)
1692 {
1693 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1694 }
1695 
1696 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1697 {
1698 	tcp_skb_tsorted_anchor_cleanup(skb);
1699 	__skb_unlink(skb, &sk->sk_write_queue);
1700 }
1701 
1702 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1703 
1704 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1705 {
1706 	tcp_skb_tsorted_anchor_cleanup(skb);
1707 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1708 }
1709 
1710 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1711 {
1712 	list_del(&skb->tcp_tsorted_anchor);
1713 	tcp_rtx_queue_unlink(skb, sk);
1714 	sk_wmem_free_skb(sk, skb);
1715 }
1716 
1717 static inline void tcp_push_pending_frames(struct sock *sk)
1718 {
1719 	if (tcp_send_head(sk)) {
1720 		struct tcp_sock *tp = tcp_sk(sk);
1721 
1722 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1723 	}
1724 }
1725 
1726 /* Start sequence of the skb just after the highest skb with SACKed
1727  * bit, valid only if sacked_out > 0 or when the caller has ensured
1728  * validity by itself.
1729  */
1730 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1731 {
1732 	if (!tp->sacked_out)
1733 		return tp->snd_una;
1734 
1735 	if (tp->highest_sack == NULL)
1736 		return tp->snd_nxt;
1737 
1738 	return TCP_SKB_CB(tp->highest_sack)->seq;
1739 }
1740 
1741 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1742 {
1743 	struct sk_buff *next = skb_rb_next(skb);
1744 
1745 	tcp_sk(sk)->highest_sack = next ?: tcp_send_head(sk);
1746 }
1747 
1748 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1749 {
1750 	return tcp_sk(sk)->highest_sack;
1751 }
1752 
1753 static inline void tcp_highest_sack_reset(struct sock *sk)
1754 {
1755 	struct sk_buff *skb = tcp_rtx_queue_head(sk);
1756 
1757 	tcp_sk(sk)->highest_sack = skb ?: tcp_send_head(sk);
1758 }
1759 
1760 /* Called when old skb is about to be deleted (to be combined with new skb) */
1761 static inline void tcp_highest_sack_combine(struct sock *sk,
1762 					    struct sk_buff *old,
1763 					    struct sk_buff *new)
1764 {
1765 	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1766 		tcp_sk(sk)->highest_sack = new;
1767 }
1768 
1769 /* This helper checks if socket has IP_TRANSPARENT set */
1770 static inline bool inet_sk_transparent(const struct sock *sk)
1771 {
1772 	switch (sk->sk_state) {
1773 	case TCP_TIME_WAIT:
1774 		return inet_twsk(sk)->tw_transparent;
1775 	case TCP_NEW_SYN_RECV:
1776 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1777 	}
1778 	return inet_sk(sk)->transparent;
1779 }
1780 
1781 /* Determines whether this is a thin stream (which may suffer from
1782  * increased latency). Used to trigger latency-reducing mechanisms.
1783  */
1784 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1785 {
1786 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1787 }
1788 
1789 /* /proc */
1790 enum tcp_seq_states {
1791 	TCP_SEQ_STATE_LISTENING,
1792 	TCP_SEQ_STATE_ESTABLISHED,
1793 };
1794 
1795 int tcp_seq_open(struct inode *inode, struct file *file);
1796 
1797 struct tcp_seq_afinfo {
1798 	char				*name;
1799 	sa_family_t			family;
1800 	const struct file_operations	*seq_fops;
1801 	struct seq_operations		seq_ops;
1802 };
1803 
1804 struct tcp_iter_state {
1805 	struct seq_net_private	p;
1806 	sa_family_t		family;
1807 	enum tcp_seq_states	state;
1808 	struct sock		*syn_wait_sk;
1809 	int			bucket, offset, sbucket, num;
1810 	loff_t			last_pos;
1811 };
1812 
1813 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1814 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1815 
1816 extern struct request_sock_ops tcp_request_sock_ops;
1817 extern struct request_sock_ops tcp6_request_sock_ops;
1818 
1819 void tcp_v4_destroy_sock(struct sock *sk);
1820 
1821 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1822 				netdev_features_t features);
1823 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1824 int tcp_gro_complete(struct sk_buff *skb);
1825 
1826 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1827 
1828 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1829 {
1830 	struct net *net = sock_net((struct sock *)tp);
1831 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1832 }
1833 
1834 static inline bool tcp_stream_memory_free(const struct sock *sk)
1835 {
1836 	const struct tcp_sock *tp = tcp_sk(sk);
1837 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1838 
1839 	return notsent_bytes < tcp_notsent_lowat(tp);
1840 }
1841 
1842 #ifdef CONFIG_PROC_FS
1843 int tcp4_proc_init(void);
1844 void tcp4_proc_exit(void);
1845 #endif
1846 
1847 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1848 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1849 		     const struct tcp_request_sock_ops *af_ops,
1850 		     struct sock *sk, struct sk_buff *skb);
1851 
1852 /* TCP af-specific functions */
1853 struct tcp_sock_af_ops {
1854 #ifdef CONFIG_TCP_MD5SIG
1855 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1856 						const struct sock *addr_sk);
1857 	int		(*calc_md5_hash)(char *location,
1858 					 const struct tcp_md5sig_key *md5,
1859 					 const struct sock *sk,
1860 					 const struct sk_buff *skb);
1861 	int		(*md5_parse)(struct sock *sk,
1862 				     int optname,
1863 				     char __user *optval,
1864 				     int optlen);
1865 #endif
1866 };
1867 
1868 struct tcp_request_sock_ops {
1869 	u16 mss_clamp;
1870 #ifdef CONFIG_TCP_MD5SIG
1871 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1872 						 const struct sock *addr_sk);
1873 	int		(*calc_md5_hash) (char *location,
1874 					  const struct tcp_md5sig_key *md5,
1875 					  const struct sock *sk,
1876 					  const struct sk_buff *skb);
1877 #endif
1878 	void (*init_req)(struct request_sock *req,
1879 			 const struct sock *sk_listener,
1880 			 struct sk_buff *skb);
1881 #ifdef CONFIG_SYN_COOKIES
1882 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1883 				 __u16 *mss);
1884 #endif
1885 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1886 				       const struct request_sock *req);
1887 	u32 (*init_seq)(const struct sk_buff *skb);
1888 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1889 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1890 			   struct flowi *fl, struct request_sock *req,
1891 			   struct tcp_fastopen_cookie *foc,
1892 			   enum tcp_synack_type synack_type);
1893 };
1894 
1895 #ifdef CONFIG_SYN_COOKIES
1896 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1897 					 const struct sock *sk, struct sk_buff *skb,
1898 					 __u16 *mss)
1899 {
1900 	tcp_synq_overflow(sk);
1901 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1902 	return ops->cookie_init_seq(skb, mss);
1903 }
1904 #else
1905 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1906 					 const struct sock *sk, struct sk_buff *skb,
1907 					 __u16 *mss)
1908 {
1909 	return 0;
1910 }
1911 #endif
1912 
1913 int tcpv4_offload_init(void);
1914 
1915 void tcp_v4_init(void);
1916 void tcp_init(void);
1917 
1918 /* tcp_recovery.c */
1919 extern void tcp_rack_mark_lost(struct sock *sk);
1920 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1921 			     u64 xmit_time);
1922 extern void tcp_rack_reo_timeout(struct sock *sk);
1923 
1924 /* At how many usecs into the future should the RTO fire? */
1925 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1926 {
1927 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1928 	u32 rto = inet_csk(sk)->icsk_rto;
1929 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1930 
1931 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1932 }
1933 
1934 /*
1935  * Save and compile IPv4 options, return a pointer to it
1936  */
1937 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1938 							 struct sk_buff *skb)
1939 {
1940 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1941 	struct ip_options_rcu *dopt = NULL;
1942 
1943 	if (opt->optlen) {
1944 		int opt_size = sizeof(*dopt) + opt->optlen;
1945 
1946 		dopt = kmalloc(opt_size, GFP_ATOMIC);
1947 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1948 			kfree(dopt);
1949 			dopt = NULL;
1950 		}
1951 	}
1952 	return dopt;
1953 }
1954 
1955 /* locally generated TCP pure ACKs have skb->truesize == 2
1956  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1957  * This is much faster than dissecting the packet to find out.
1958  * (Think of GRE encapsulations, IPv4, IPv6, ...)
1959  */
1960 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1961 {
1962 	return skb->truesize == 2;
1963 }
1964 
1965 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1966 {
1967 	skb->truesize = 2;
1968 }
1969 
1970 static inline int tcp_inq(struct sock *sk)
1971 {
1972 	struct tcp_sock *tp = tcp_sk(sk);
1973 	int answ;
1974 
1975 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1976 		answ = 0;
1977 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1978 		   !tp->urg_data ||
1979 		   before(tp->urg_seq, tp->copied_seq) ||
1980 		   !before(tp->urg_seq, tp->rcv_nxt)) {
1981 
1982 		answ = tp->rcv_nxt - tp->copied_seq;
1983 
1984 		/* Subtract 1, if FIN was received */
1985 		if (answ && sock_flag(sk, SOCK_DONE))
1986 			answ--;
1987 	} else {
1988 		answ = tp->urg_seq - tp->copied_seq;
1989 	}
1990 
1991 	return answ;
1992 }
1993 
1994 int tcp_peek_len(struct socket *sock);
1995 
1996 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1997 {
1998 	u16 segs_in;
1999 
2000 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2001 	tp->segs_in += segs_in;
2002 	if (skb->len > tcp_hdrlen(skb))
2003 		tp->data_segs_in += segs_in;
2004 }
2005 
2006 /*
2007  * TCP listen path runs lockless.
2008  * We forced "struct sock" to be const qualified to make sure
2009  * we don't modify one of its field by mistake.
2010  * Here, we increment sk_drops which is an atomic_t, so we can safely
2011  * make sock writable again.
2012  */
2013 static inline void tcp_listendrop(const struct sock *sk)
2014 {
2015 	atomic_inc(&((struct sock *)sk)->sk_drops);
2016 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2017 }
2018 
2019 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2020 
2021 /*
2022  * Interface for adding Upper Level Protocols over TCP
2023  */
2024 
2025 #define TCP_ULP_NAME_MAX	16
2026 #define TCP_ULP_MAX		128
2027 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2028 
2029 struct tcp_ulp_ops {
2030 	struct list_head	list;
2031 
2032 	/* initialize ulp */
2033 	int (*init)(struct sock *sk);
2034 	/* cleanup ulp */
2035 	void (*release)(struct sock *sk);
2036 
2037 	char		name[TCP_ULP_NAME_MAX];
2038 	struct module	*owner;
2039 };
2040 int tcp_register_ulp(struct tcp_ulp_ops *type);
2041 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2042 int tcp_set_ulp(struct sock *sk, const char *name);
2043 void tcp_get_available_ulp(char *buf, size_t len);
2044 void tcp_cleanup_ulp(struct sock *sk);
2045 
2046 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2047  * is < 0, then the BPF op failed (for example if the loaded BPF
2048  * program does not support the chosen operation or there is no BPF
2049  * program loaded).
2050  */
2051 #ifdef CONFIG_BPF
2052 static inline int tcp_call_bpf(struct sock *sk, int op)
2053 {
2054 	struct bpf_sock_ops_kern sock_ops;
2055 	int ret;
2056 
2057 	if (sk_fullsock(sk))
2058 		sock_owned_by_me(sk);
2059 
2060 	memset(&sock_ops, 0, sizeof(sock_ops));
2061 	sock_ops.sk = sk;
2062 	sock_ops.op = op;
2063 
2064 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2065 	if (ret == 0)
2066 		ret = sock_ops.reply;
2067 	else
2068 		ret = -1;
2069 	return ret;
2070 }
2071 #else
2072 static inline int tcp_call_bpf(struct sock *sk, int op)
2073 {
2074 	return -EPERM;
2075 }
2076 #endif
2077 
2078 static inline u32 tcp_timeout_init(struct sock *sk)
2079 {
2080 	int timeout;
2081 
2082 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2083 
2084 	if (timeout <= 0)
2085 		timeout = TCP_TIMEOUT_INIT;
2086 	return timeout;
2087 }
2088 
2089 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2090 {
2091 	int rwnd;
2092 
2093 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2094 
2095 	if (rwnd < 0)
2096 		rwnd = 0;
2097 	return rwnd;
2098 }
2099 
2100 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2101 {
2102 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2103 }
2104 #endif	/* _TCP_H */
2105