xref: /linux/include/net/tcp.h (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47 
48 extern struct inet_hashinfo tcp_hashinfo;
49 
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52 
53 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS		48
56 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return READ_ONCE(tcp_memory_pressure);
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 int tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 					 const unsigned int pkts)
348 {
349 	struct inet_connection_sock *icsk = inet_csk(sk);
350 
351 	if (icsk->icsk_ack.quick) {
352 		if (pkts >= icsk->icsk_ack.quick) {
353 			icsk->icsk_ack.quick = 0;
354 			/* Leaving quickack mode we deflate ATO. */
355 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
356 		} else
357 			icsk->icsk_ack.quick -= pkts;
358 	}
359 }
360 
361 #define	TCP_ECN_OK		1
362 #define	TCP_ECN_QUEUE_CWR	2
363 #define	TCP_ECN_DEMAND_CWR	4
364 #define	TCP_ECN_SEEN		8
365 
366 enum tcp_tw_status {
367 	TCP_TW_SUCCESS = 0,
368 	TCP_TW_RST = 1,
369 	TCP_TW_ACK = 2,
370 	TCP_TW_SYN = 3
371 };
372 
373 
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 					      struct sk_buff *skb,
376 					      const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 			   struct request_sock *req, bool fastopen,
379 			   bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 		      struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 		   char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 #ifdef CONFIG_MMU
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 #endif
412 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 		       struct tcp_options_received *opt_rx,
414 		       int estab, struct tcp_fastopen_cookie *foc);
415 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416 
417 /*
418  *	BPF SKB-less helpers
419  */
420 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
421 			 struct tcphdr *th, u32 *cookie);
422 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
423 			 struct tcphdr *th, u32 *cookie);
424 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
425 			  const struct tcp_request_sock_ops *af_ops,
426 			  struct sock *sk, struct tcphdr *th);
427 /*
428  *	TCP v4 functions exported for the inet6 API
429  */
430 
431 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
432 void tcp_v4_mtu_reduced(struct sock *sk);
433 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
434 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435 struct sock *tcp_create_openreq_child(const struct sock *sk,
436 				      struct request_sock *req,
437 				      struct sk_buff *skb);
438 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440 				  struct request_sock *req,
441 				  struct dst_entry *dst,
442 				  struct request_sock *req_unhash,
443 				  bool *own_req);
444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446 int tcp_connect(struct sock *sk);
447 enum tcp_synack_type {
448 	TCP_SYNACK_NORMAL,
449 	TCP_SYNACK_FASTOPEN,
450 	TCP_SYNACK_COOKIE,
451 };
452 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453 				struct request_sock *req,
454 				struct tcp_fastopen_cookie *foc,
455 				enum tcp_synack_type synack_type);
456 int tcp_disconnect(struct sock *sk, int flags);
457 
458 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
459 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
460 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
461 
462 /* From syncookies.c */
463 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
464 				 struct request_sock *req,
465 				 struct dst_entry *dst, u32 tsoff);
466 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
467 		      u32 cookie);
468 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
469 #ifdef CONFIG_SYN_COOKIES
470 
471 /* Syncookies use a monotonic timer which increments every 60 seconds.
472  * This counter is used both as a hash input and partially encoded into
473  * the cookie value.  A cookie is only validated further if the delta
474  * between the current counter value and the encoded one is less than this,
475  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
476  * the counter advances immediately after a cookie is generated).
477  */
478 #define MAX_SYNCOOKIE_AGE	2
479 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
480 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
481 
482 /* syncookies: remember time of last synqueue overflow
483  * But do not dirty this field too often (once per second is enough)
484  * It is racy as we do not hold a lock, but race is very minor.
485  */
486 static inline void tcp_synq_overflow(const struct sock *sk)
487 {
488 	unsigned int last_overflow;
489 	unsigned int now = jiffies;
490 
491 	if (sk->sk_reuseport) {
492 		struct sock_reuseport *reuse;
493 
494 		reuse = rcu_dereference(sk->sk_reuseport_cb);
495 		if (likely(reuse)) {
496 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
497 			if (time_after32(now, last_overflow + HZ))
498 				WRITE_ONCE(reuse->synq_overflow_ts, now);
499 			return;
500 		}
501 	}
502 
503 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
504 	if (time_after32(now, last_overflow + HZ))
505 		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
506 }
507 
508 /* syncookies: no recent synqueue overflow on this listening socket? */
509 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
510 {
511 	unsigned int last_overflow;
512 	unsigned int now = jiffies;
513 
514 	if (sk->sk_reuseport) {
515 		struct sock_reuseport *reuse;
516 
517 		reuse = rcu_dereference(sk->sk_reuseport_cb);
518 		if (likely(reuse)) {
519 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 			return time_after32(now, last_overflow +
521 					    TCP_SYNCOOKIE_VALID);
522 		}
523 	}
524 
525 	last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
526 	return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID);
527 }
528 
529 static inline u32 tcp_cookie_time(void)
530 {
531 	u64 val = get_jiffies_64();
532 
533 	do_div(val, TCP_SYNCOOKIE_PERIOD);
534 	return val;
535 }
536 
537 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
538 			      u16 *mssp);
539 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
540 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
541 bool cookie_timestamp_decode(const struct net *net,
542 			     struct tcp_options_received *opt);
543 bool cookie_ecn_ok(const struct tcp_options_received *opt,
544 		   const struct net *net, const struct dst_entry *dst);
545 
546 /* From net/ipv6/syncookies.c */
547 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
548 		      u32 cookie);
549 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
550 
551 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
552 			      const struct tcphdr *th, u16 *mssp);
553 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
554 #endif
555 /* tcp_output.c */
556 
557 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
558 			       int nonagle);
559 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
560 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
561 void tcp_retransmit_timer(struct sock *sk);
562 void tcp_xmit_retransmit_queue(struct sock *);
563 void tcp_simple_retransmit(struct sock *);
564 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
565 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
566 enum tcp_queue {
567 	TCP_FRAG_IN_WRITE_QUEUE,
568 	TCP_FRAG_IN_RTX_QUEUE,
569 };
570 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
571 		 struct sk_buff *skb, u32 len,
572 		 unsigned int mss_now, gfp_t gfp);
573 
574 void tcp_send_probe0(struct sock *);
575 void tcp_send_partial(struct sock *);
576 int tcp_write_wakeup(struct sock *, int mib);
577 void tcp_send_fin(struct sock *sk);
578 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
579 int tcp_send_synack(struct sock *);
580 void tcp_push_one(struct sock *, unsigned int mss_now);
581 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
582 void tcp_send_ack(struct sock *sk);
583 void tcp_send_delayed_ack(struct sock *sk);
584 void tcp_send_loss_probe(struct sock *sk);
585 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
586 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
587 			     const struct sk_buff *next_skb);
588 
589 /* tcp_input.c */
590 void tcp_rearm_rto(struct sock *sk);
591 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
592 void tcp_reset(struct sock *sk);
593 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
594 void tcp_fin(struct sock *sk);
595 
596 /* tcp_timer.c */
597 void tcp_init_xmit_timers(struct sock *);
598 static inline void tcp_clear_xmit_timers(struct sock *sk)
599 {
600 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
601 		__sock_put(sk);
602 
603 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
604 		__sock_put(sk);
605 
606 	inet_csk_clear_xmit_timers(sk);
607 }
608 
609 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
610 unsigned int tcp_current_mss(struct sock *sk);
611 
612 /* Bound MSS / TSO packet size with the half of the window */
613 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
614 {
615 	int cutoff;
616 
617 	/* When peer uses tiny windows, there is no use in packetizing
618 	 * to sub-MSS pieces for the sake of SWS or making sure there
619 	 * are enough packets in the pipe for fast recovery.
620 	 *
621 	 * On the other hand, for extremely large MSS devices, handling
622 	 * smaller than MSS windows in this way does make sense.
623 	 */
624 	if (tp->max_window > TCP_MSS_DEFAULT)
625 		cutoff = (tp->max_window >> 1);
626 	else
627 		cutoff = tp->max_window;
628 
629 	if (cutoff && pktsize > cutoff)
630 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
631 	else
632 		return pktsize;
633 }
634 
635 /* tcp.c */
636 void tcp_get_info(struct sock *, struct tcp_info *);
637 
638 /* Read 'sendfile()'-style from a TCP socket */
639 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
640 		  sk_read_actor_t recv_actor);
641 
642 void tcp_initialize_rcv_mss(struct sock *sk);
643 
644 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
645 int tcp_mss_to_mtu(struct sock *sk, int mss);
646 void tcp_mtup_init(struct sock *sk);
647 void tcp_init_buffer_space(struct sock *sk);
648 
649 static inline void tcp_bound_rto(const struct sock *sk)
650 {
651 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
652 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
653 }
654 
655 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
656 {
657 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
658 }
659 
660 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
661 {
662 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
663 			       ntohl(TCP_FLAG_ACK) |
664 			       snd_wnd);
665 }
666 
667 static inline void tcp_fast_path_on(struct tcp_sock *tp)
668 {
669 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
670 }
671 
672 static inline void tcp_fast_path_check(struct sock *sk)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 
676 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
677 	    tp->rcv_wnd &&
678 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
679 	    !tp->urg_data)
680 		tcp_fast_path_on(tp);
681 }
682 
683 /* Compute the actual rto_min value */
684 static inline u32 tcp_rto_min(struct sock *sk)
685 {
686 	const struct dst_entry *dst = __sk_dst_get(sk);
687 	u32 rto_min = TCP_RTO_MIN;
688 
689 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
690 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
691 	return rto_min;
692 }
693 
694 static inline u32 tcp_rto_min_us(struct sock *sk)
695 {
696 	return jiffies_to_usecs(tcp_rto_min(sk));
697 }
698 
699 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
700 {
701 	return dst_metric_locked(dst, RTAX_CC_ALGO);
702 }
703 
704 /* Minimum RTT in usec. ~0 means not available. */
705 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
706 {
707 	return minmax_get(&tp->rtt_min);
708 }
709 
710 /* Compute the actual receive window we are currently advertising.
711  * Rcv_nxt can be after the window if our peer push more data
712  * than the offered window.
713  */
714 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
715 {
716 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
717 
718 	if (win < 0)
719 		win = 0;
720 	return (u32) win;
721 }
722 
723 /* Choose a new window, without checks for shrinking, and without
724  * scaling applied to the result.  The caller does these things
725  * if necessary.  This is a "raw" window selection.
726  */
727 u32 __tcp_select_window(struct sock *sk);
728 
729 void tcp_send_window_probe(struct sock *sk);
730 
731 /* TCP uses 32bit jiffies to save some space.
732  * Note that this is different from tcp_time_stamp, which
733  * historically has been the same until linux-4.13.
734  */
735 #define tcp_jiffies32 ((u32)jiffies)
736 
737 /*
738  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
739  * It is no longer tied to jiffies, but to 1 ms clock.
740  * Note: double check if you want to use tcp_jiffies32 instead of this.
741  */
742 #define TCP_TS_HZ	1000
743 
744 static inline u64 tcp_clock_ns(void)
745 {
746 	return ktime_get_ns();
747 }
748 
749 static inline u64 tcp_clock_us(void)
750 {
751 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
752 }
753 
754 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
755 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
756 {
757 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
758 }
759 
760 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
761 static inline u32 tcp_ns_to_ts(u64 ns)
762 {
763 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
764 }
765 
766 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
767 static inline u32 tcp_time_stamp_raw(void)
768 {
769 	return tcp_ns_to_ts(tcp_clock_ns());
770 }
771 
772 void tcp_mstamp_refresh(struct tcp_sock *tp);
773 
774 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
775 {
776 	return max_t(s64, t1 - t0, 0);
777 }
778 
779 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
780 {
781 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
782 }
783 
784 /* provide the departure time in us unit */
785 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
786 {
787 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
788 }
789 
790 
791 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
792 
793 #define TCPHDR_FIN 0x01
794 #define TCPHDR_SYN 0x02
795 #define TCPHDR_RST 0x04
796 #define TCPHDR_PSH 0x08
797 #define TCPHDR_ACK 0x10
798 #define TCPHDR_URG 0x20
799 #define TCPHDR_ECE 0x40
800 #define TCPHDR_CWR 0x80
801 
802 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
803 
804 /* This is what the send packet queuing engine uses to pass
805  * TCP per-packet control information to the transmission code.
806  * We also store the host-order sequence numbers in here too.
807  * This is 44 bytes if IPV6 is enabled.
808  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
809  */
810 struct tcp_skb_cb {
811 	__u32		seq;		/* Starting sequence number	*/
812 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
813 	union {
814 		/* Note : tcp_tw_isn is used in input path only
815 		 *	  (isn chosen by tcp_timewait_state_process())
816 		 *
817 		 * 	  tcp_gso_segs/size are used in write queue only,
818 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
819 		 */
820 		__u32		tcp_tw_isn;
821 		struct {
822 			u16	tcp_gso_segs;
823 			u16	tcp_gso_size;
824 		};
825 	};
826 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
827 
828 	__u8		sacked;		/* State flags for SACK.	*/
829 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
830 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
831 #define TCPCB_LOST		0x04	/* SKB is lost			*/
832 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
833 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
834 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
835 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
836 				TCPCB_REPAIRED)
837 
838 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
839 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
840 			eor:1,		/* Is skb MSG_EOR marked? */
841 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
842 			unused:5;
843 	__u32		ack_seq;	/* Sequence number ACK'd	*/
844 	union {
845 		struct {
846 			/* There is space for up to 24 bytes */
847 			__u32 in_flight:30,/* Bytes in flight at transmit */
848 			      is_app_limited:1, /* cwnd not fully used? */
849 			      unused:1;
850 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
851 			__u32 delivered;
852 			/* start of send pipeline phase */
853 			u64 first_tx_mstamp;
854 			/* when we reached the "delivered" count */
855 			u64 delivered_mstamp;
856 		} tx;   /* only used for outgoing skbs */
857 		union {
858 			struct inet_skb_parm	h4;
859 #if IS_ENABLED(CONFIG_IPV6)
860 			struct inet6_skb_parm	h6;
861 #endif
862 		} header;	/* For incoming skbs */
863 		struct {
864 			__u32 flags;
865 			struct sock *sk_redir;
866 			void *data_end;
867 		} bpf;
868 	};
869 };
870 
871 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
872 
873 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
874 {
875 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
876 }
877 
878 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
879 {
880 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
881 }
882 
883 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
884 {
885 	return TCP_SKB_CB(skb)->bpf.sk_redir;
886 }
887 
888 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
889 {
890 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
891 }
892 
893 #if IS_ENABLED(CONFIG_IPV6)
894 /* This is the variant of inet6_iif() that must be used by TCP,
895  * as TCP moves IP6CB into a different location in skb->cb[]
896  */
897 static inline int tcp_v6_iif(const struct sk_buff *skb)
898 {
899 	return TCP_SKB_CB(skb)->header.h6.iif;
900 }
901 
902 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
903 {
904 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
905 
906 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
907 }
908 
909 /* TCP_SKB_CB reference means this can not be used from early demux */
910 static inline int tcp_v6_sdif(const struct sk_buff *skb)
911 {
912 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
913 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
914 		return TCP_SKB_CB(skb)->header.h6.iif;
915 #endif
916 	return 0;
917 }
918 #endif
919 
920 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
921 {
922 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
923 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
924 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
925 		return true;
926 #endif
927 	return false;
928 }
929 
930 /* TCP_SKB_CB reference means this can not be used from early demux */
931 static inline int tcp_v4_sdif(struct sk_buff *skb)
932 {
933 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
934 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
935 		return TCP_SKB_CB(skb)->header.h4.iif;
936 #endif
937 	return 0;
938 }
939 
940 /* Due to TSO, an SKB can be composed of multiple actual
941  * packets.  To keep these tracked properly, we use this.
942  */
943 static inline int tcp_skb_pcount(const struct sk_buff *skb)
944 {
945 	return TCP_SKB_CB(skb)->tcp_gso_segs;
946 }
947 
948 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
949 {
950 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
951 }
952 
953 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
954 {
955 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
956 }
957 
958 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
959 static inline int tcp_skb_mss(const struct sk_buff *skb)
960 {
961 	return TCP_SKB_CB(skb)->tcp_gso_size;
962 }
963 
964 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
965 {
966 	return likely(!TCP_SKB_CB(skb)->eor);
967 }
968 
969 /* Events passed to congestion control interface */
970 enum tcp_ca_event {
971 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
972 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
973 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
974 	CA_EVENT_LOSS,		/* loss timeout */
975 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
976 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
977 };
978 
979 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
980 enum tcp_ca_ack_event_flags {
981 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
982 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
983 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
984 };
985 
986 /*
987  * Interface for adding new TCP congestion control handlers
988  */
989 #define TCP_CA_NAME_MAX	16
990 #define TCP_CA_MAX	128
991 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
992 
993 #define TCP_CA_UNSPEC	0
994 
995 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
996 #define TCP_CONG_NON_RESTRICTED 0x1
997 /* Requires ECN/ECT set on all packets */
998 #define TCP_CONG_NEEDS_ECN	0x2
999 
1000 union tcp_cc_info;
1001 
1002 struct ack_sample {
1003 	u32 pkts_acked;
1004 	s32 rtt_us;
1005 	u32 in_flight;
1006 };
1007 
1008 /* A rate sample measures the number of (original/retransmitted) data
1009  * packets delivered "delivered" over an interval of time "interval_us".
1010  * The tcp_rate.c code fills in the rate sample, and congestion
1011  * control modules that define a cong_control function to run at the end
1012  * of ACK processing can optionally chose to consult this sample when
1013  * setting cwnd and pacing rate.
1014  * A sample is invalid if "delivered" or "interval_us" is negative.
1015  */
1016 struct rate_sample {
1017 	u64  prior_mstamp; /* starting timestamp for interval */
1018 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1019 	s32  delivered;		/* number of packets delivered over interval */
1020 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1021 	u32 snd_interval_us;	/* snd interval for delivered packets */
1022 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1023 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1024 	int  losses;		/* number of packets marked lost upon ACK */
1025 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1026 	u32  prior_in_flight;	/* in flight before this ACK */
1027 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1028 	bool is_retrans;	/* is sample from retransmission? */
1029 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1030 };
1031 
1032 struct tcp_congestion_ops {
1033 	struct list_head	list;
1034 	u32 key;
1035 	u32 flags;
1036 
1037 	/* initialize private data (optional) */
1038 	void (*init)(struct sock *sk);
1039 	/* cleanup private data  (optional) */
1040 	void (*release)(struct sock *sk);
1041 
1042 	/* return slow start threshold (required) */
1043 	u32 (*ssthresh)(struct sock *sk);
1044 	/* do new cwnd calculation (required) */
1045 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1046 	/* call before changing ca_state (optional) */
1047 	void (*set_state)(struct sock *sk, u8 new_state);
1048 	/* call when cwnd event occurs (optional) */
1049 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1050 	/* call when ack arrives (optional) */
1051 	void (*in_ack_event)(struct sock *sk, u32 flags);
1052 	/* new value of cwnd after loss (required) */
1053 	u32  (*undo_cwnd)(struct sock *sk);
1054 	/* hook for packet ack accounting (optional) */
1055 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1056 	/* override sysctl_tcp_min_tso_segs */
1057 	u32 (*min_tso_segs)(struct sock *sk);
1058 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1059 	u32 (*sndbuf_expand)(struct sock *sk);
1060 	/* call when packets are delivered to update cwnd and pacing rate,
1061 	 * after all the ca_state processing. (optional)
1062 	 */
1063 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1064 	/* get info for inet_diag (optional) */
1065 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1066 			   union tcp_cc_info *info);
1067 
1068 	char 		name[TCP_CA_NAME_MAX];
1069 	struct module 	*owner;
1070 };
1071 
1072 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1073 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1074 
1075 void tcp_assign_congestion_control(struct sock *sk);
1076 void tcp_init_congestion_control(struct sock *sk);
1077 void tcp_cleanup_congestion_control(struct sock *sk);
1078 int tcp_set_default_congestion_control(struct net *net, const char *name);
1079 void tcp_get_default_congestion_control(struct net *net, char *name);
1080 void tcp_get_available_congestion_control(char *buf, size_t len);
1081 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1082 int tcp_set_allowed_congestion_control(char *allowed);
1083 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1084 			       bool reinit, bool cap_net_admin);
1085 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1086 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1087 
1088 u32 tcp_reno_ssthresh(struct sock *sk);
1089 u32 tcp_reno_undo_cwnd(struct sock *sk);
1090 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1091 extern struct tcp_congestion_ops tcp_reno;
1092 
1093 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1094 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1095 #ifdef CONFIG_INET
1096 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1097 #else
1098 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1099 {
1100 	return NULL;
1101 }
1102 #endif
1103 
1104 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1105 {
1106 	const struct inet_connection_sock *icsk = inet_csk(sk);
1107 
1108 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1109 }
1110 
1111 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1112 {
1113 	struct inet_connection_sock *icsk = inet_csk(sk);
1114 
1115 	if (icsk->icsk_ca_ops->set_state)
1116 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1117 	icsk->icsk_ca_state = ca_state;
1118 }
1119 
1120 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1121 {
1122 	const struct inet_connection_sock *icsk = inet_csk(sk);
1123 
1124 	if (icsk->icsk_ca_ops->cwnd_event)
1125 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1126 }
1127 
1128 /* From tcp_rate.c */
1129 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1130 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1131 			    struct rate_sample *rs);
1132 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1133 		  bool is_sack_reneg, struct rate_sample *rs);
1134 void tcp_rate_check_app_limited(struct sock *sk);
1135 
1136 /* These functions determine how the current flow behaves in respect of SACK
1137  * handling. SACK is negotiated with the peer, and therefore it can vary
1138  * between different flows.
1139  *
1140  * tcp_is_sack - SACK enabled
1141  * tcp_is_reno - No SACK
1142  */
1143 static inline int tcp_is_sack(const struct tcp_sock *tp)
1144 {
1145 	return likely(tp->rx_opt.sack_ok);
1146 }
1147 
1148 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1149 {
1150 	return !tcp_is_sack(tp);
1151 }
1152 
1153 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1154 {
1155 	return tp->sacked_out + tp->lost_out;
1156 }
1157 
1158 /* This determines how many packets are "in the network" to the best
1159  * of our knowledge.  In many cases it is conservative, but where
1160  * detailed information is available from the receiver (via SACK
1161  * blocks etc.) we can make more aggressive calculations.
1162  *
1163  * Use this for decisions involving congestion control, use just
1164  * tp->packets_out to determine if the send queue is empty or not.
1165  *
1166  * Read this equation as:
1167  *
1168  *	"Packets sent once on transmission queue" MINUS
1169  *	"Packets left network, but not honestly ACKed yet" PLUS
1170  *	"Packets fast retransmitted"
1171  */
1172 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1173 {
1174 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1175 }
1176 
1177 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1178 
1179 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1180 {
1181 	return tp->snd_cwnd < tp->snd_ssthresh;
1182 }
1183 
1184 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1185 {
1186 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1187 }
1188 
1189 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1190 {
1191 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1192 	       (1 << inet_csk(sk)->icsk_ca_state);
1193 }
1194 
1195 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1196  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1197  * ssthresh.
1198  */
1199 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1200 {
1201 	const struct tcp_sock *tp = tcp_sk(sk);
1202 
1203 	if (tcp_in_cwnd_reduction(sk))
1204 		return tp->snd_ssthresh;
1205 	else
1206 		return max(tp->snd_ssthresh,
1207 			   ((tp->snd_cwnd >> 1) +
1208 			    (tp->snd_cwnd >> 2)));
1209 }
1210 
1211 /* Use define here intentionally to get WARN_ON location shown at the caller */
1212 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1213 
1214 void tcp_enter_cwr(struct sock *sk);
1215 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1216 
1217 /* The maximum number of MSS of available cwnd for which TSO defers
1218  * sending if not using sysctl_tcp_tso_win_divisor.
1219  */
1220 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1221 {
1222 	return 3;
1223 }
1224 
1225 /* Returns end sequence number of the receiver's advertised window */
1226 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1227 {
1228 	return tp->snd_una + tp->snd_wnd;
1229 }
1230 
1231 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1232  * flexible approach. The RFC suggests cwnd should not be raised unless
1233  * it was fully used previously. And that's exactly what we do in
1234  * congestion avoidance mode. But in slow start we allow cwnd to grow
1235  * as long as the application has used half the cwnd.
1236  * Example :
1237  *    cwnd is 10 (IW10), but application sends 9 frames.
1238  *    We allow cwnd to reach 18 when all frames are ACKed.
1239  * This check is safe because it's as aggressive as slow start which already
1240  * risks 100% overshoot. The advantage is that we discourage application to
1241  * either send more filler packets or data to artificially blow up the cwnd
1242  * usage, and allow application-limited process to probe bw more aggressively.
1243  */
1244 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1245 {
1246 	const struct tcp_sock *tp = tcp_sk(sk);
1247 
1248 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1249 	if (tcp_in_slow_start(tp))
1250 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1251 
1252 	return tp->is_cwnd_limited;
1253 }
1254 
1255 /* BBR congestion control needs pacing.
1256  * Same remark for SO_MAX_PACING_RATE.
1257  * sch_fq packet scheduler is efficiently handling pacing,
1258  * but is not always installed/used.
1259  * Return true if TCP stack should pace packets itself.
1260  */
1261 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1262 {
1263 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1264 }
1265 
1266 /* Return in jiffies the delay before one skb is sent.
1267  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1268  */
1269 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1270 					     const struct sk_buff *skb)
1271 {
1272 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1273 
1274 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1275 
1276 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1277 }
1278 
1279 static inline void tcp_reset_xmit_timer(struct sock *sk,
1280 					const int what,
1281 					unsigned long when,
1282 					const unsigned long max_when,
1283 					const struct sk_buff *skb)
1284 {
1285 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1286 				  max_when);
1287 }
1288 
1289 /* Something is really bad, we could not queue an additional packet,
1290  * because qdisc is full or receiver sent a 0 window, or we are paced.
1291  * We do not want to add fuel to the fire, or abort too early,
1292  * so make sure the timer we arm now is at least 200ms in the future,
1293  * regardless of current icsk_rto value (as it could be ~2ms)
1294  */
1295 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1296 {
1297 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1298 }
1299 
1300 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1301 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1302 					    unsigned long max_when)
1303 {
1304 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1305 
1306 	return (unsigned long)min_t(u64, when, max_when);
1307 }
1308 
1309 static inline void tcp_check_probe_timer(struct sock *sk)
1310 {
1311 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1312 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1313 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1314 				     NULL);
1315 }
1316 
1317 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1318 {
1319 	tp->snd_wl1 = seq;
1320 }
1321 
1322 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1323 {
1324 	tp->snd_wl1 = seq;
1325 }
1326 
1327 /*
1328  * Calculate(/check) TCP checksum
1329  */
1330 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1331 				   __be32 daddr, __wsum base)
1332 {
1333 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1334 }
1335 
1336 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1337 {
1338 	return !skb_csum_unnecessary(skb) &&
1339 		__skb_checksum_complete(skb);
1340 }
1341 
1342 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1343 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1344 void tcp_set_state(struct sock *sk, int state);
1345 void tcp_done(struct sock *sk);
1346 int tcp_abort(struct sock *sk, int err);
1347 
1348 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1349 {
1350 	rx_opt->dsack = 0;
1351 	rx_opt->num_sacks = 0;
1352 }
1353 
1354 u32 tcp_default_init_rwnd(u32 mss);
1355 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1356 
1357 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1358 {
1359 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1360 	struct tcp_sock *tp = tcp_sk(sk);
1361 	s32 delta;
1362 
1363 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1364 	    ca_ops->cong_control)
1365 		return;
1366 	delta = tcp_jiffies32 - tp->lsndtime;
1367 	if (delta > inet_csk(sk)->icsk_rto)
1368 		tcp_cwnd_restart(sk, delta);
1369 }
1370 
1371 /* Determine a window scaling and initial window to offer. */
1372 void tcp_select_initial_window(const struct sock *sk, int __space,
1373 			       __u32 mss, __u32 *rcv_wnd,
1374 			       __u32 *window_clamp, int wscale_ok,
1375 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1376 
1377 static inline int tcp_win_from_space(const struct sock *sk, int space)
1378 {
1379 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1380 
1381 	return tcp_adv_win_scale <= 0 ?
1382 		(space>>(-tcp_adv_win_scale)) :
1383 		space - (space>>tcp_adv_win_scale);
1384 }
1385 
1386 /* Note: caller must be prepared to deal with negative returns */
1387 static inline int tcp_space(const struct sock *sk)
1388 {
1389 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1390 				  READ_ONCE(sk->sk_backlog.len) -
1391 				  atomic_read(&sk->sk_rmem_alloc));
1392 }
1393 
1394 static inline int tcp_full_space(const struct sock *sk)
1395 {
1396 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1397 }
1398 
1399 extern void tcp_openreq_init_rwin(struct request_sock *req,
1400 				  const struct sock *sk_listener,
1401 				  const struct dst_entry *dst);
1402 
1403 void tcp_enter_memory_pressure(struct sock *sk);
1404 void tcp_leave_memory_pressure(struct sock *sk);
1405 
1406 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1407 {
1408 	struct net *net = sock_net((struct sock *)tp);
1409 
1410 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1411 }
1412 
1413 static inline int keepalive_time_when(const struct tcp_sock *tp)
1414 {
1415 	struct net *net = sock_net((struct sock *)tp);
1416 
1417 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1418 }
1419 
1420 static inline int keepalive_probes(const struct tcp_sock *tp)
1421 {
1422 	struct net *net = sock_net((struct sock *)tp);
1423 
1424 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1425 }
1426 
1427 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1428 {
1429 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1430 
1431 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1432 			  tcp_jiffies32 - tp->rcv_tstamp);
1433 }
1434 
1435 static inline int tcp_fin_time(const struct sock *sk)
1436 {
1437 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1438 	const int rto = inet_csk(sk)->icsk_rto;
1439 
1440 	if (fin_timeout < (rto << 2) - (rto >> 1))
1441 		fin_timeout = (rto << 2) - (rto >> 1);
1442 
1443 	return fin_timeout;
1444 }
1445 
1446 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1447 				  int paws_win)
1448 {
1449 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1450 		return true;
1451 	if (unlikely(!time_before32(ktime_get_seconds(),
1452 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1453 		return true;
1454 	/*
1455 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1456 	 * then following tcp messages have valid values. Ignore 0 value,
1457 	 * or else 'negative' tsval might forbid us to accept their packets.
1458 	 */
1459 	if (!rx_opt->ts_recent)
1460 		return true;
1461 	return false;
1462 }
1463 
1464 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1465 				   int rst)
1466 {
1467 	if (tcp_paws_check(rx_opt, 0))
1468 		return false;
1469 
1470 	/* RST segments are not recommended to carry timestamp,
1471 	   and, if they do, it is recommended to ignore PAWS because
1472 	   "their cleanup function should take precedence over timestamps."
1473 	   Certainly, it is mistake. It is necessary to understand the reasons
1474 	   of this constraint to relax it: if peer reboots, clock may go
1475 	   out-of-sync and half-open connections will not be reset.
1476 	   Actually, the problem would be not existing if all
1477 	   the implementations followed draft about maintaining clock
1478 	   via reboots. Linux-2.2 DOES NOT!
1479 
1480 	   However, we can relax time bounds for RST segments to MSL.
1481 	 */
1482 	if (rst && !time_before32(ktime_get_seconds(),
1483 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1484 		return false;
1485 	return true;
1486 }
1487 
1488 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1489 			  int mib_idx, u32 *last_oow_ack_time);
1490 
1491 static inline void tcp_mib_init(struct net *net)
1492 {
1493 	/* See RFC 2012 */
1494 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1495 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1496 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1497 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1498 }
1499 
1500 /* from STCP */
1501 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1502 {
1503 	tp->lost_skb_hint = NULL;
1504 }
1505 
1506 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1507 {
1508 	tcp_clear_retrans_hints_partial(tp);
1509 	tp->retransmit_skb_hint = NULL;
1510 }
1511 
1512 union tcp_md5_addr {
1513 	struct in_addr  a4;
1514 #if IS_ENABLED(CONFIG_IPV6)
1515 	struct in6_addr	a6;
1516 #endif
1517 };
1518 
1519 /* - key database */
1520 struct tcp_md5sig_key {
1521 	struct hlist_node	node;
1522 	u8			keylen;
1523 	u8			family; /* AF_INET or AF_INET6 */
1524 	union tcp_md5_addr	addr;
1525 	u8			prefixlen;
1526 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1527 	struct rcu_head		rcu;
1528 };
1529 
1530 /* - sock block */
1531 struct tcp_md5sig_info {
1532 	struct hlist_head	head;
1533 	struct rcu_head		rcu;
1534 };
1535 
1536 /* - pseudo header */
1537 struct tcp4_pseudohdr {
1538 	__be32		saddr;
1539 	__be32		daddr;
1540 	__u8		pad;
1541 	__u8		protocol;
1542 	__be16		len;
1543 };
1544 
1545 struct tcp6_pseudohdr {
1546 	struct in6_addr	saddr;
1547 	struct in6_addr daddr;
1548 	__be32		len;
1549 	__be32		protocol;	/* including padding */
1550 };
1551 
1552 union tcp_md5sum_block {
1553 	struct tcp4_pseudohdr ip4;
1554 #if IS_ENABLED(CONFIG_IPV6)
1555 	struct tcp6_pseudohdr ip6;
1556 #endif
1557 };
1558 
1559 /* - pool: digest algorithm, hash description and scratch buffer */
1560 struct tcp_md5sig_pool {
1561 	struct ahash_request	*md5_req;
1562 	void			*scratch;
1563 };
1564 
1565 /* - functions */
1566 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1567 			const struct sock *sk, const struct sk_buff *skb);
1568 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1569 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1570 		   gfp_t gfp);
1571 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1572 		   int family, u8 prefixlen);
1573 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1574 					 const struct sock *addr_sk);
1575 
1576 #ifdef CONFIG_TCP_MD5SIG
1577 #include <linux/jump_label.h>
1578 extern struct static_key_false tcp_md5_needed;
1579 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1580 					   const union tcp_md5_addr *addr,
1581 					   int family);
1582 static inline struct tcp_md5sig_key *
1583 tcp_md5_do_lookup(const struct sock *sk,
1584 		  const union tcp_md5_addr *addr,
1585 		  int family)
1586 {
1587 	if (!static_branch_unlikely(&tcp_md5_needed))
1588 		return NULL;
1589 	return __tcp_md5_do_lookup(sk, addr, family);
1590 }
1591 
1592 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1593 #else
1594 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1595 					 const union tcp_md5_addr *addr,
1596 					 int family)
1597 {
1598 	return NULL;
1599 }
1600 #define tcp_twsk_md5_key(twsk)	NULL
1601 #endif
1602 
1603 bool tcp_alloc_md5sig_pool(void);
1604 
1605 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1606 static inline void tcp_put_md5sig_pool(void)
1607 {
1608 	local_bh_enable();
1609 }
1610 
1611 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1612 			  unsigned int header_len);
1613 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1614 		     const struct tcp_md5sig_key *key);
1615 
1616 /* From tcp_fastopen.c */
1617 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1618 			    struct tcp_fastopen_cookie *cookie);
1619 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1620 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1621 			    u16 try_exp);
1622 struct tcp_fastopen_request {
1623 	/* Fast Open cookie. Size 0 means a cookie request */
1624 	struct tcp_fastopen_cookie	cookie;
1625 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1626 	size_t				size;
1627 	int				copied;	/* queued in tcp_connect() */
1628 	struct ubuf_info		*uarg;
1629 };
1630 void tcp_free_fastopen_req(struct tcp_sock *tp);
1631 void tcp_fastopen_destroy_cipher(struct sock *sk);
1632 void tcp_fastopen_ctx_destroy(struct net *net);
1633 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1634 			      void *primary_key, void *backup_key);
1635 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1636 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1637 			      struct request_sock *req,
1638 			      struct tcp_fastopen_cookie *foc,
1639 			      const struct dst_entry *dst);
1640 void tcp_fastopen_init_key_once(struct net *net);
1641 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1642 			     struct tcp_fastopen_cookie *cookie);
1643 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1644 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1645 #define TCP_FASTOPEN_KEY_MAX 2
1646 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1647 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1648 
1649 /* Fastopen key context */
1650 struct tcp_fastopen_context {
1651 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1652 	int		num;
1653 	struct rcu_head	rcu;
1654 };
1655 
1656 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1657 void tcp_fastopen_active_disable(struct sock *sk);
1658 bool tcp_fastopen_active_should_disable(struct sock *sk);
1659 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1660 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1661 
1662 /* Caller needs to wrap with rcu_read_(un)lock() */
1663 static inline
1664 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1665 {
1666 	struct tcp_fastopen_context *ctx;
1667 
1668 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1669 	if (!ctx)
1670 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1671 	return ctx;
1672 }
1673 
1674 static inline
1675 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1676 			       const struct tcp_fastopen_cookie *orig)
1677 {
1678 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1679 	    orig->len == foc->len &&
1680 	    !memcmp(orig->val, foc->val, foc->len))
1681 		return true;
1682 	return false;
1683 }
1684 
1685 static inline
1686 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1687 {
1688 	return ctx->num;
1689 }
1690 
1691 /* Latencies incurred by various limits for a sender. They are
1692  * chronograph-like stats that are mutually exclusive.
1693  */
1694 enum tcp_chrono {
1695 	TCP_CHRONO_UNSPEC,
1696 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1697 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1698 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1699 	__TCP_CHRONO_MAX,
1700 };
1701 
1702 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1703 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1704 
1705 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1706  * the same memory storage than skb->destructor/_skb_refdst
1707  */
1708 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1709 {
1710 	skb->destructor = NULL;
1711 	skb->_skb_refdst = 0UL;
1712 }
1713 
1714 #define tcp_skb_tsorted_save(skb) {		\
1715 	unsigned long _save = skb->_skb_refdst;	\
1716 	skb->_skb_refdst = 0UL;
1717 
1718 #define tcp_skb_tsorted_restore(skb)		\
1719 	skb->_skb_refdst = _save;		\
1720 }
1721 
1722 void tcp_write_queue_purge(struct sock *sk);
1723 
1724 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1725 {
1726 	return skb_rb_first(&sk->tcp_rtx_queue);
1727 }
1728 
1729 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1730 {
1731 	return skb_rb_last(&sk->tcp_rtx_queue);
1732 }
1733 
1734 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1735 {
1736 	return skb_peek(&sk->sk_write_queue);
1737 }
1738 
1739 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1740 {
1741 	return skb_peek_tail(&sk->sk_write_queue);
1742 }
1743 
1744 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1745 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1746 
1747 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1748 {
1749 	return skb_peek(&sk->sk_write_queue);
1750 }
1751 
1752 static inline bool tcp_skb_is_last(const struct sock *sk,
1753 				   const struct sk_buff *skb)
1754 {
1755 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1756 }
1757 
1758 static inline bool tcp_write_queue_empty(const struct sock *sk)
1759 {
1760 	return skb_queue_empty(&sk->sk_write_queue);
1761 }
1762 
1763 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1764 {
1765 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1766 }
1767 
1768 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1769 {
1770 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1771 }
1772 
1773 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1774 {
1775 	__skb_queue_tail(&sk->sk_write_queue, skb);
1776 
1777 	/* Queue it, remembering where we must start sending. */
1778 	if (sk->sk_write_queue.next == skb)
1779 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1780 }
1781 
1782 /* Insert new before skb on the write queue of sk.  */
1783 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1784 						  struct sk_buff *skb,
1785 						  struct sock *sk)
1786 {
1787 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1788 }
1789 
1790 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1791 {
1792 	tcp_skb_tsorted_anchor_cleanup(skb);
1793 	__skb_unlink(skb, &sk->sk_write_queue);
1794 }
1795 
1796 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1797 
1798 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1799 {
1800 	tcp_skb_tsorted_anchor_cleanup(skb);
1801 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1802 }
1803 
1804 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1805 {
1806 	list_del(&skb->tcp_tsorted_anchor);
1807 	tcp_rtx_queue_unlink(skb, sk);
1808 	sk_wmem_free_skb(sk, skb);
1809 }
1810 
1811 static inline void tcp_push_pending_frames(struct sock *sk)
1812 {
1813 	if (tcp_send_head(sk)) {
1814 		struct tcp_sock *tp = tcp_sk(sk);
1815 
1816 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1817 	}
1818 }
1819 
1820 /* Start sequence of the skb just after the highest skb with SACKed
1821  * bit, valid only if sacked_out > 0 or when the caller has ensured
1822  * validity by itself.
1823  */
1824 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1825 {
1826 	if (!tp->sacked_out)
1827 		return tp->snd_una;
1828 
1829 	if (tp->highest_sack == NULL)
1830 		return tp->snd_nxt;
1831 
1832 	return TCP_SKB_CB(tp->highest_sack)->seq;
1833 }
1834 
1835 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1836 {
1837 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1838 }
1839 
1840 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1841 {
1842 	return tcp_sk(sk)->highest_sack;
1843 }
1844 
1845 static inline void tcp_highest_sack_reset(struct sock *sk)
1846 {
1847 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1848 }
1849 
1850 /* Called when old skb is about to be deleted and replaced by new skb */
1851 static inline void tcp_highest_sack_replace(struct sock *sk,
1852 					    struct sk_buff *old,
1853 					    struct sk_buff *new)
1854 {
1855 	if (old == tcp_highest_sack(sk))
1856 		tcp_sk(sk)->highest_sack = new;
1857 }
1858 
1859 /* This helper checks if socket has IP_TRANSPARENT set */
1860 static inline bool inet_sk_transparent(const struct sock *sk)
1861 {
1862 	switch (sk->sk_state) {
1863 	case TCP_TIME_WAIT:
1864 		return inet_twsk(sk)->tw_transparent;
1865 	case TCP_NEW_SYN_RECV:
1866 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1867 	}
1868 	return inet_sk(sk)->transparent;
1869 }
1870 
1871 /* Determines whether this is a thin stream (which may suffer from
1872  * increased latency). Used to trigger latency-reducing mechanisms.
1873  */
1874 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1875 {
1876 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1877 }
1878 
1879 /* /proc */
1880 enum tcp_seq_states {
1881 	TCP_SEQ_STATE_LISTENING,
1882 	TCP_SEQ_STATE_ESTABLISHED,
1883 };
1884 
1885 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1886 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1887 void tcp_seq_stop(struct seq_file *seq, void *v);
1888 
1889 struct tcp_seq_afinfo {
1890 	sa_family_t			family;
1891 };
1892 
1893 struct tcp_iter_state {
1894 	struct seq_net_private	p;
1895 	enum tcp_seq_states	state;
1896 	struct sock		*syn_wait_sk;
1897 	int			bucket, offset, sbucket, num;
1898 	loff_t			last_pos;
1899 };
1900 
1901 extern struct request_sock_ops tcp_request_sock_ops;
1902 extern struct request_sock_ops tcp6_request_sock_ops;
1903 
1904 void tcp_v4_destroy_sock(struct sock *sk);
1905 
1906 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1907 				netdev_features_t features);
1908 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1909 int tcp_gro_complete(struct sk_buff *skb);
1910 
1911 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1912 
1913 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1914 {
1915 	struct net *net = sock_net((struct sock *)tp);
1916 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1917 }
1918 
1919 /* @wake is one when sk_stream_write_space() calls us.
1920  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1921  * This mimics the strategy used in sock_def_write_space().
1922  */
1923 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1924 {
1925 	const struct tcp_sock *tp = tcp_sk(sk);
1926 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1927 			    READ_ONCE(tp->snd_nxt);
1928 
1929 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1930 }
1931 
1932 #ifdef CONFIG_PROC_FS
1933 int tcp4_proc_init(void);
1934 void tcp4_proc_exit(void);
1935 #endif
1936 
1937 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1938 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1939 		     const struct tcp_request_sock_ops *af_ops,
1940 		     struct sock *sk, struct sk_buff *skb);
1941 
1942 /* TCP af-specific functions */
1943 struct tcp_sock_af_ops {
1944 #ifdef CONFIG_TCP_MD5SIG
1945 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1946 						const struct sock *addr_sk);
1947 	int		(*calc_md5_hash)(char *location,
1948 					 const struct tcp_md5sig_key *md5,
1949 					 const struct sock *sk,
1950 					 const struct sk_buff *skb);
1951 	int		(*md5_parse)(struct sock *sk,
1952 				     int optname,
1953 				     char __user *optval,
1954 				     int optlen);
1955 #endif
1956 };
1957 
1958 struct tcp_request_sock_ops {
1959 	u16 mss_clamp;
1960 #ifdef CONFIG_TCP_MD5SIG
1961 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1962 						 const struct sock *addr_sk);
1963 	int		(*calc_md5_hash) (char *location,
1964 					  const struct tcp_md5sig_key *md5,
1965 					  const struct sock *sk,
1966 					  const struct sk_buff *skb);
1967 #endif
1968 	void (*init_req)(struct request_sock *req,
1969 			 const struct sock *sk_listener,
1970 			 struct sk_buff *skb);
1971 #ifdef CONFIG_SYN_COOKIES
1972 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1973 				 __u16 *mss);
1974 #endif
1975 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1976 				       const struct request_sock *req);
1977 	u32 (*init_seq)(const struct sk_buff *skb);
1978 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1979 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1980 			   struct flowi *fl, struct request_sock *req,
1981 			   struct tcp_fastopen_cookie *foc,
1982 			   enum tcp_synack_type synack_type);
1983 };
1984 
1985 #ifdef CONFIG_SYN_COOKIES
1986 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1987 					 const struct sock *sk, struct sk_buff *skb,
1988 					 __u16 *mss)
1989 {
1990 	tcp_synq_overflow(sk);
1991 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1992 	return ops->cookie_init_seq(skb, mss);
1993 }
1994 #else
1995 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1996 					 const struct sock *sk, struct sk_buff *skb,
1997 					 __u16 *mss)
1998 {
1999 	return 0;
2000 }
2001 #endif
2002 
2003 int tcpv4_offload_init(void);
2004 
2005 void tcp_v4_init(void);
2006 void tcp_init(void);
2007 
2008 /* tcp_recovery.c */
2009 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2010 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2011 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2012 				u32 reo_wnd);
2013 extern void tcp_rack_mark_lost(struct sock *sk);
2014 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2015 			     u64 xmit_time);
2016 extern void tcp_rack_reo_timeout(struct sock *sk);
2017 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2018 
2019 /* At how many usecs into the future should the RTO fire? */
2020 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2021 {
2022 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2023 	u32 rto = inet_csk(sk)->icsk_rto;
2024 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2025 
2026 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2027 }
2028 
2029 /*
2030  * Save and compile IPv4 options, return a pointer to it
2031  */
2032 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2033 							 struct sk_buff *skb)
2034 {
2035 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2036 	struct ip_options_rcu *dopt = NULL;
2037 
2038 	if (opt->optlen) {
2039 		int opt_size = sizeof(*dopt) + opt->optlen;
2040 
2041 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2042 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2043 			kfree(dopt);
2044 			dopt = NULL;
2045 		}
2046 	}
2047 	return dopt;
2048 }
2049 
2050 /* locally generated TCP pure ACKs have skb->truesize == 2
2051  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2052  * This is much faster than dissecting the packet to find out.
2053  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2054  */
2055 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2056 {
2057 	return skb->truesize == 2;
2058 }
2059 
2060 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2061 {
2062 	skb->truesize = 2;
2063 }
2064 
2065 static inline int tcp_inq(struct sock *sk)
2066 {
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 	int answ;
2069 
2070 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2071 		answ = 0;
2072 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2073 		   !tp->urg_data ||
2074 		   before(tp->urg_seq, tp->copied_seq) ||
2075 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2076 
2077 		answ = tp->rcv_nxt - tp->copied_seq;
2078 
2079 		/* Subtract 1, if FIN was received */
2080 		if (answ && sock_flag(sk, SOCK_DONE))
2081 			answ--;
2082 	} else {
2083 		answ = tp->urg_seq - tp->copied_seq;
2084 	}
2085 
2086 	return answ;
2087 }
2088 
2089 int tcp_peek_len(struct socket *sock);
2090 
2091 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2092 {
2093 	u16 segs_in;
2094 
2095 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2096 	tp->segs_in += segs_in;
2097 	if (skb->len > tcp_hdrlen(skb))
2098 		tp->data_segs_in += segs_in;
2099 }
2100 
2101 /*
2102  * TCP listen path runs lockless.
2103  * We forced "struct sock" to be const qualified to make sure
2104  * we don't modify one of its field by mistake.
2105  * Here, we increment sk_drops which is an atomic_t, so we can safely
2106  * make sock writable again.
2107  */
2108 static inline void tcp_listendrop(const struct sock *sk)
2109 {
2110 	atomic_inc(&((struct sock *)sk)->sk_drops);
2111 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2112 }
2113 
2114 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2115 
2116 /*
2117  * Interface for adding Upper Level Protocols over TCP
2118  */
2119 
2120 #define TCP_ULP_NAME_MAX	16
2121 #define TCP_ULP_MAX		128
2122 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2123 
2124 struct tcp_ulp_ops {
2125 	struct list_head	list;
2126 
2127 	/* initialize ulp */
2128 	int (*init)(struct sock *sk);
2129 	/* update ulp */
2130 	void (*update)(struct sock *sk, struct proto *p);
2131 	/* cleanup ulp */
2132 	void (*release)(struct sock *sk);
2133 	/* diagnostic */
2134 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2135 	size_t (*get_info_size)(const struct sock *sk);
2136 
2137 	char		name[TCP_ULP_NAME_MAX];
2138 	struct module	*owner;
2139 };
2140 int tcp_register_ulp(struct tcp_ulp_ops *type);
2141 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2142 int tcp_set_ulp(struct sock *sk, const char *name);
2143 void tcp_get_available_ulp(char *buf, size_t len);
2144 void tcp_cleanup_ulp(struct sock *sk);
2145 void tcp_update_ulp(struct sock *sk, struct proto *p);
2146 
2147 #define MODULE_ALIAS_TCP_ULP(name)				\
2148 	__MODULE_INFO(alias, alias_userspace, name);		\
2149 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2150 
2151 struct sk_msg;
2152 struct sk_psock;
2153 
2154 int tcp_bpf_init(struct sock *sk);
2155 void tcp_bpf_reinit(struct sock *sk);
2156 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2157 			  int flags);
2158 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2159 		    int nonblock, int flags, int *addr_len);
2160 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2161 		      struct msghdr *msg, int len, int flags);
2162 
2163 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2164  * is < 0, then the BPF op failed (for example if the loaded BPF
2165  * program does not support the chosen operation or there is no BPF
2166  * program loaded).
2167  */
2168 #ifdef CONFIG_BPF
2169 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2170 {
2171 	struct bpf_sock_ops_kern sock_ops;
2172 	int ret;
2173 
2174 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2175 	if (sk_fullsock(sk)) {
2176 		sock_ops.is_fullsock = 1;
2177 		sock_owned_by_me(sk);
2178 	}
2179 
2180 	sock_ops.sk = sk;
2181 	sock_ops.op = op;
2182 	if (nargs > 0)
2183 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2184 
2185 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2186 	if (ret == 0)
2187 		ret = sock_ops.reply;
2188 	else
2189 		ret = -1;
2190 	return ret;
2191 }
2192 
2193 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2194 {
2195 	u32 args[2] = {arg1, arg2};
2196 
2197 	return tcp_call_bpf(sk, op, 2, args);
2198 }
2199 
2200 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2201 				    u32 arg3)
2202 {
2203 	u32 args[3] = {arg1, arg2, arg3};
2204 
2205 	return tcp_call_bpf(sk, op, 3, args);
2206 }
2207 
2208 #else
2209 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2210 {
2211 	return -EPERM;
2212 }
2213 
2214 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2215 {
2216 	return -EPERM;
2217 }
2218 
2219 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2220 				    u32 arg3)
2221 {
2222 	return -EPERM;
2223 }
2224 
2225 #endif
2226 
2227 static inline u32 tcp_timeout_init(struct sock *sk)
2228 {
2229 	int timeout;
2230 
2231 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2232 
2233 	if (timeout <= 0)
2234 		timeout = TCP_TIMEOUT_INIT;
2235 	return timeout;
2236 }
2237 
2238 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2239 {
2240 	int rwnd;
2241 
2242 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2243 
2244 	if (rwnd < 0)
2245 		rwnd = 0;
2246 	return rwnd;
2247 }
2248 
2249 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2250 {
2251 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2252 }
2253 
2254 static inline void tcp_bpf_rtt(struct sock *sk)
2255 {
2256 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2257 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2258 }
2259 
2260 #if IS_ENABLED(CONFIG_SMC)
2261 extern struct static_key_false tcp_have_smc;
2262 #endif
2263 
2264 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2265 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2266 			     void (*cad)(struct sock *sk, u32 ack_seq));
2267 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2268 void clean_acked_data_flush(void);
2269 #endif
2270 
2271 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2272 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2273 				    const struct tcp_sock *tp)
2274 {
2275 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2276 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2277 }
2278 
2279 /* Compute Earliest Departure Time for some control packets
2280  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2281  */
2282 static inline u64 tcp_transmit_time(const struct sock *sk)
2283 {
2284 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2285 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2286 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2287 
2288 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2289 	}
2290 	return 0;
2291 }
2292 
2293 #endif	/* _TCP_H */
2294